WO2005111406A1 - High-pressure fuel pump - Google Patents

High-pressure fuel pump Download PDF

Info

Publication number
WO2005111406A1
WO2005111406A1 PCT/JP2004/006790 JP2004006790W WO2005111406A1 WO 2005111406 A1 WO2005111406 A1 WO 2005111406A1 JP 2004006790 W JP2004006790 W JP 2004006790W WO 2005111406 A1 WO2005111406 A1 WO 2005111406A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
plunger
cam
force
pressure fuel
Prior art date
Application number
PCT/JP2004/006790
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichiro Tokuo
Hideaki Yamauchi
Minoru Hashida
Toru Onose
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2006519158A priority Critical patent/JPWO2005111406A1/en
Priority to PCT/JP2004/006790 priority patent/WO2005111406A1/en
Publication of WO2005111406A1 publication Critical patent/WO2005111406A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams

Definitions

  • the present invention relates to a high-pressure fuel pump used in a fuel supply system that supplies fuel to a fuel injection valve of an internal combustion engine.
  • Japanese Patent Application Laid-Open No. 2000-08997 has a suction flow path for sucking fuel into a pump chamber, and a discharge flow path for discharging the fuel from the pump chamber.
  • a suction check valve is provided in the suction flow passage, and a discharge check valve is provided in the discharge flow passage.
  • the fuel flow rate is controlled, and when the solenoid valve is not energized and does not open and close, the suction check valve is The plunger A constant flow rate of fuel is sucked into the pump chamber from the suction flow path according to the return movement, and the discharge check valve is configured to discharge a constant flow rate of fuel from the pump chamber according to the reciprocating movement of the plunger.
  • a variable flow high pressure fuel pump discharging to a pump is described.
  • Japanese Patent Application Laid-Open Publication No. 2000-4-1128 discloses that a cam driven by an internal combustion engine reciprocates a plunger in a cylinder, and a pressurized section defined by the cylinder and the plunger. Fuel is sucked from the fuel tank into the pressurizing chamber in a suction stroke in which the volume of the chamber is expanded, and is adjusted based on control of a closing period of a spill valve in a discharge stroke in which the volume of the pressurizing chamber is reduced.
  • a high-pressure fuel pump in which fuel is discharged from the pressurizing chamber to a discharge passage by an amount to be measured, the volume change rate of the pressurizing chamber in the discharge stroke is controlled by A speed varying means for decreasing the volume change speed of the pressurizing chamber; the speed varying means is the cam; and the cam has an asymmetrical cam profile between the discharge stroke and the suction stroke.
  • a high-pressure fuel pump is described in which a force angle in a discharge stroke is set to be larger than a cam angle in a suction stroke.
  • Japanese Patent Application Laid-Open No. 2000-145573 discloses a fuel injection pump in which a plunger is piled on a return spring by a cam provided on a camshaft to push up and feed fuel.
  • a fuel injection pump in which the projection is formed in the force so that the plunger is pushed by the return spring to cancel the positive torque applied to the force shaft.
  • Japanese Unexamined Patent Publication No. 5-227424 describes that the characteristic of a spring for biasing a flow control valve is made non-linear.
  • FIG. 1 is a diagram showing a configuration of a fuel injection system.
  • FIG. 2 is a vertical sectional view of one embodiment.
  • FIG. 3 is a partially enlarged sectional view of FIG.
  • FIG. 4 shows the spring load characteristics of one embodiment.
  • FIG. 5 is an explanatory diagram of one embodiment.
  • FIG. 6 is a partially enlarged sectional view of one embodiment.
  • FIG. 7 is a partially enlarged cross-sectional view of one embodiment.
  • FIG. 8 shows a pressure change characteristic of one embodiment.
  • FIG. 9 is a partially enlarged sectional view of one embodiment. Disclosure of the invention
  • the high-pressure fuel pump has the following problems. This is due to the large inertial force of the reciprocating plunger, sunset, etc. in engines with high rotational speeds, especially in the case of an evening car, and a large spring force is required to urge it. .
  • the same problem occurs when a large evening pet such as a roller overnight pet is applied.
  • to increase the spring force general In order to maintain the durability of the spring, it is necessary to increase the outer diameter of the spring. If the outer diameter of the spring is large, the pets receiving the spring will also be large, and the mass of the reciprocating part will be further increased, causing a vicious cycle. Also, if the spring force is large, the frictional force between the cam and the sunset increases, and there is also a problem that the bombing loss increases.
  • An object of the present invention is to provide a high-pressure fuel pump which prevents the cam and the evening pet from jumping and has a small bomping loss.
  • the present invention provides a high-pressure fuel pump comprising: a plunger; a cam mechanism that applies reciprocating driving force to the plunger; and a cam follow-up mechanism that operates the plunger to follow the cam mechanism.
  • the spring characteristic with respect to one deflection shows a non-linear characteristic in which the ratio of the change amount of the biasing force to the displacement of the plunger is larger in the top dead center state of the plunger than in the bottom dead center state. Shown, for example, a conical coil spring, bamboo coil spring, tall coil spring, or a concentric combination of two cylindrical springs with large and small outside diameters.
  • the cam end of the inner spring is Provided is a high-pressure fuel pump in which a spring having a shape disposed inward in a longitudinal direction from a cam-side end of an outer spring is used.
  • the present invention relates to a high-pressure fuel pump comprising: a plunger; a cam mechanism that applies reciprocating driving force to the plunger; and a force follow-up mechanism that operates the plunger by following the force mechanism.
  • a spring having a non-linear characteristic in a spring characteristic with respect to a deflection of a load, a spring reciprocatingly urged by the cam mechanism, wherein the sunset is connected to one end of the spring.
  • a high-pressure fuel pump in which the outer diameter of the evening pet is smaller than the maximum outer diameter of the spring at a portion where the spring is placed.
  • the present invention provides a plunger, a cam mechanism having a cam for applying reciprocating driving force to the plunger, a force follower mechanism for operating the plunger to follow the cam mechanism, and a reciprocating mechanism urged by the cam mechanism.
  • the cam follow-up mechanism applies an urging force for bringing the evening into contact with the cam mechanism.
  • the present invention provides a plunger, a cam mechanism having a cam for applying reciprocating driving force to the plunger, a force follower mechanism for operating the plunger to follow the cam mechanism, and a reciprocating mechanism urged by the cam mechanism.
  • the cam follow-up mechanism includes a spring that applies an urging force for bringing the evening pet into contact with the cam mechanism.
  • a high-pressure fuel pump that has a non-linear characteristic that follows the amount of displacement of the cam lift curve except near the top dead center and provides a biasing force added to the displacement near the top dead center of the plunger provide.
  • the high-pressure fuel pump is a high-pressure fuel pump that includes a plunger, a cam mechanism that applies reciprocating driving force to the plunger, and a force-following mechanism that urges the plunger to the cam mechanism to operate the plunger following the cam mechanism. Therefore, in the force follow-up mechanism, the ratio of the change in the biasing force to the displacement of the plunger is larger in the state at the top dead center of the high-pressure fuel pump than in the state at the bottom dead center of the high-pressure fuel pump. It is composed.
  • the high-pressure fuel pump includes: an evening pet that reciprocates by a rotating cam; a force transmitting member that transmits the translational motion of the evening pet; and fuel injection by the force transmitted by the force transmitting member.
  • a piston-type high-pressure fuel pump for pressurizing and supplying a valve comprising: a return mechanism for applying a biasing force so that the reciprocating sunset always returns to a position where it comes into contact with the cam. It is configured such that the rate of increase of the urging force with respect to the displacement of the plunger increases as the urging force increases.
  • the high-pressure fuel pump includes a high-pressure fuel pump that pressurizes and supplies fuel to a fuel injection valve by reciprocating a plunger, a retainer that engages with the plunger, a housing of the high-pressure fuel pump, and the retainer.
  • Engaged with one A return spring for urging the plunger in the extension direction; a force transmitting member for transmitting the urging force of the plunger; a evening pet urged by the urging force transmitted by the force transmitting member;
  • a high-pressure fuel pump comprising: a cam for applying a driving force; and the return spring is a non-cylindrical spring, and an outer diameter of one end of the non-cylindrical spring is smaller than an outer diameter of the tuft.
  • the maximum outer diameter of the non-cylindrical spring is configured to be larger than the outer diameter of the evening.
  • the high-pressure fuel pump includes a return mechanism that applies a biasing force so that the reciprocating sunset always returns to a position where it comes into contact with the cam, and the return mechanism is a rate of increase of the biasing force with respect to the plunger displacement. Is increased with an increase in the biasing force.
  • the biasing force generated by the force follow-up mechanism near the top dead center where jumping occurs most can be increased, and jumping can be effectively suppressed.
  • the bombing loss does not increase.
  • a plunger that pressurizes and supplies fuel to the fuel injection valve by reciprocating; a retainer that engages the plunger; and a housing and retainer of the high-pressure fuel pump that extend the plunger in the extending direction.
  • a spring that transmits the urging force of the plunger to form a cam follow-up mechanism; a sunset that is urged by the urging force transmitted by the force transmitting member;
  • a high-pressure fuel pump comprising: a cam for providing a translational driving force to the non-cylindrical spring; the return spring is a non-cylindrical spring; the outer diameter of one end of the non-cylindrical spring is smaller than the outer diameter of the evening pet; The maximum outer diameter of the spring is larger than the outer diameter of the sunset.
  • the non-cylindrical spring has a non-linear load characteristic in the same manner as described above, and furthermore, by reducing the outer diameter of the end on the evening pet side, the evening and the reciprocating motion accompanying the evening are reduced.
  • the mass of the moving parts (retainers, force transmitting members, etc.) can be reduced, and jumping can be prevented.
  • the biasing force of the spring for preventing jumping can be designed to be small. Bing loss can be reduced.
  • FIG. 1 shows a fuel injection system
  • FIG. 2 shows a high-pressure fuel pump 100 according to an embodiment of the present invention used in the fuel injection system
  • FIG. 3 is a part of FIG. FIG.
  • fuel is guided from a tank 50 by a low pressure pump through a fuel inlet of a high pressure fuel pump 1.
  • the introduced fuel is pressurized by the high-pressure fuel pump 1 and sent to the common rail 53 from the fuel discharge port.
  • the common rail 53 is equipped with an injector 54, a relief valve 55, and a pressure sensor 56.
  • the injector 54 is mounted in accordance with the number of cylinders of the internal combustion engine, is controlled by an engine control unit (ECU) 40, and performs injection by a signal from the ECU 40.
  • the ECU 40 also controls the low-pressure pump 51 and controls the pressure of the fuel guided to the fuel inlet.
  • the relief valve 55 opens when the pressure in the common rail 53 exceeds a predetermined value to prevent damage to the piping system.
  • the plunger 2 is slidably held by a cylinder 20 and is reciprocated as indicated by an arrow by a cam follower including a cam, which will be described later, which is rotated by an engine power shaft (not shown).
  • the volume in the pressurizing chamber 12 in the cylinder 20 is changed to discharge fuel.
  • the high-pressure fuel pump 1 includes a fuel intake passage 10, a discharge passage 11, and a caropressure chamber 12.
  • a discharge valve 6 is provided in the discharge passage 11.
  • the suction valve 5 and the discharge valve 6 are held in one direction by springs 5a and 6a, respectively, and serve as check valves for restricting the fuel flow direction.
  • the pressurizing chamber 12 is formed by communicating a suction hole and a discharge hole with a pump chamber 300 in which a plunger 2 as a pressurizing member slides.
  • the high-pressure fuel pump 1 holds a solenoid 200, and an engagement member 201 and a spring 202 are arranged in the solenoid 200.
  • the engaging member 201 opens the suction valve 5 by the spring 202.
  • the urging force is applied in the direction. Since the urging force of the spring 200 is larger than the urging force of the suction valve spring 5a, when the solenoid 200 is OFF, the suction valve 5 is in the open state.
  • a current i is applied to the solenoid 200 at a time t in a state of a solenoid drive current waveform.
  • the pump main body 90 of the high-pressure fuel pump 1 is provided with a fuel intake passage 1 ⁇ , a discharge passage 11, and a pressurization chamber 12 as described above.
  • the suction passage 10 and the discharge passage 11 are provided with a suction valve 5 and a discharge valve 6, which are held in one direction by springs 5a and 6a, respectively.
  • a hole 19 is formed in the pump body 90, a cylinder 20 is arranged in the hole 19, and the plunger 2 slides in the cylinder 20.
  • the cylinder 20 is held by a cylinder holding member 21.
  • the cylinder holding member 21 is held by the pump body 90.
  • a plunger seal 30 is provided on the cylinder holding member 21 below the cylinder 20 and toward the surface of the plunger 2 to prevent fuel from flowing out to the cam 100 side.
  • the pressurizing chamber 12 is provided with a suction hole 5 b communicating with the suction valve 5 and a discharge hole 6 b communicating with the discharge valve 6.
  • the high-pressure fuel pump 1 holds the solenoid 200 for controlling the flow rate, and the solenoid 200 is provided with the engaging member 201 and the spring 202.
  • a suction chamber 10 a is formed in the suction passage 10.
  • a fuel chamber 10b communicating with the suction chamber 10a is provided with two metal diaphragms 80 and 84, and a fisher 86 is provided therebetween.
  • 10 c is a pressure sensor
  • 10 d is a damper case.
  • the horseshoe-shaped retainer 31 is engaged with the side of the lower end of the plunger 2, the shim 32 is engaged with the lower end, and the retainer 31 and the shim 3 2 are engaged by the evening pet 3. Will be retained.
  • a roller 33 is provided on one side of the sunset 3, and the mouth roller 33 reciprocates up and down along the cam shape by the cam 100. Therefore, the evening 3 is urged by the cam mechanism including the cam 100 to reciprocate. It will be.
  • a recess (spring accommodation portion) is formed on the other side of the sunset 3, and the retainer 31 and the shim 32 described above are disposed in the recess.
  • a gap is provided between the side wall of the recess and the retainer 31, and a lower end 4b of a conical coil spring 4 (plunger spring) forming a cam follow-up mechanism is disposed in the gap. Is done.
  • the upper end 4a of the conical coil spring is arranged in a recess formed in the lower end 91 of the pump and held by a part of the cylinder holding member 21. That is, the conical coil spring 4 has one end held by the pump body 90 and the other end 4 b held by the evening pet 3.
  • the conical coil spring 4 functions as a cam following mechanism.
  • the outer diameter d of the cylindrical pet 3 is smaller than the maximum outer diameter D of the conical coil spring 4.
  • the outer diameter d indicates a portion where the conical coil spring 4 is housed and placed inside the evening pet 3.
  • the maximum outer diameter is near the top end of the conical coil spring. As described later, depending on the structure, the maximum outer diameter may be provided in the middle of the spring. It is desirable to be provided near the uppermost end in design. In this way, the configuration of evening 3 can be reduced.
  • the retainer 31 is engaged with the lower end of the plunger 2, and the urging force of the spring 4 is transmitted to the sunset 3 via the shim 32 which is a force transmission mechanism.
  • the spring 4 a spring whose one end has a smaller diameter than the other end, for example, a conical coil spring is used. The operation of the above configuration will be described.
  • the suction valve 5 automatically opens when the pressure of the pressurizing chamber 12 becomes lower than the fuel inlet, but the closing of the valve is determined by the operation of the solenoid 200.
  • the solenoid 200 is kept in the ON (energized) state, an electromagnetic force greater than the biasing force of the spring 202 is generated, and the engaging member 201 is drawn to the solenoid 200 side.
  • the engagement member 201 and the suction valve 5 are separated.
  • the suction valve 5 is an automatic valve that opens and closes in synchronization with the reciprocation of the plunger 2. Therefore, during the compression stroke, the suction valve 5 is closed, and the fuel corresponding to the reduced volume of the pressurizing chamber 12 pushes the discharge valve 6 and is fed to the common rail 53.
  • the solenoid 200 when the solenoid 200 is kept OFF (non-energized), the engaging member 201 is engaged with the suction valve 5 by the biasing force of the spring 202, and the suction valve 5 is opened. Keep in state. Therefore, even during the compression stroke, the pressure in the pressurizing chamber 12 is maintained at a low pressure almost equal to that of the fuel introduction port, so that the discharge valve 6 cannot be opened, and the volume of the pressurizing chamber 12 is reduced. The reduced fuel is returned to the fuel inlet side through the suction valve 5.
  • the solenoid 200 is set to the ⁇ N state during the compression stroke, the fuel is fed to the common rail 53 from this time.
  • the pressure in the pressurizing chamber 12 increases, so that even if the solenoid 200 is turned off, the suction valve 5 remains closed, and the suction stroke starts. Automatically opens in synchronization.
  • the conical coil spring shown in Fig. 1, that is, the non-cylindrical spring has a non-linear load deflection characteristic as shown in Fig. 4.
  • non-cylindrical springs usually have non-linear load deflection characteristics. The reason for this is that, for example, a portion with a large diameter is likely to bend, so when a compressive load is applied to a spring, bonding starts from a portion with a large diameter, indicating directness in a load-deflection relationship, followed by a deflection with a small diameter.
  • the curve shows the load-deflection relationship, that is, the ability to bear a large load with a small deflection.
  • Fig. 5 shows one cycle of the evening 3 under a certain operating condition, that is, the lift curve L of the plunger 2, the biasing force F spr of the cam follow-up mechanism 4, and the reciprocating part when a normal spring is used.
  • the time change of the inertia force F i of the plunger 2 is shown. If a spring having a normal linear load deflection characteristic is used, the increase or decrease of the urging force F spr is proportional to the displacement of the lift curve L. That is, follow.
  • the force is transmitted by the force transmitting member, such as the sunset 3 that performs reciprocating motion by the rotating cam 100, the plunger 2 that transmits the translational motion force of the evening 3, and the force transmitting member.
  • a piston type high pressure fuel pump that pressurizes and supplies fuel to the fuel injection valve with a certain force, and applies an urging force so that the reciprocating evening 3 always returns to the position where it comes into contact with the cam 100.
  • a high-pressure fuel pump can be configured such that a return mechanism is provided, and the return mechanism increases the rate of increase of the urging force with respect to the displacement of the plunger as the urging force increases.
  • the return mechanism is composed of a return spring, and the return spring is a non-cylindrical spring.
  • the outer diameter of one end of the non-cylindrical spring is substantially smaller than the outer diameter of the sunset 3, and the maximum outer diameter of the non-cylindrical spring is It can be larger than the outer diameter of the pet 3.
  • the cam follow-up mechanism provides an urging force for bringing the sunset 3 into contact with the cam mechanism, and the increase or decrease in the urging force is caused by the displacement of the lift curve L of the cam except in the vicinity of the top dead center of the plunger 2.
  • a high-pressure fuel pump having an urging force increasing means for applying an urging force that is added to the displacement amount near the top dead center of the plunger 2 following the amount Can be achieved.
  • the cam follow-up mechanism includes a spring that applies an urging force for bringing the evening pet 3 into contact with the cam mechanism, and the urging force of the spring increases or decreases except for the vicinity of the top dead center of the plunger 2.
  • a high-pressure fuel pump that follows the displacement of the lift curve L and has a non-linear characteristic that provides an urging force added to the displacement near the top dead center of the plunger 2 can be configured.
  • FIG. 6 shows a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and similar components are denoted by the same reference numerals with alphanumeric characters, and the description may be omitted.
  • a bamboo shoot spring 4 B is used in place of the conical coil spring 4.
  • the evening part 3b in this case has a bowl-like or cup-like shape, and the inside is a concave part, in which the retainer 31b and the shim 32b are arranged.
  • One end 4Ba of the bamboo shoot spring is supported by the pump body 1, and the other end 4Bb is supported by the retainer 31b.
  • the cam follower mechanism uses a bamboo child spring 4B whose load-deflection spring characteristic shows nonlinear characteristics, and the maximum outer diameter of the bamboo child spring 4b accommodates the bamboo child spring 4B.
  • the outer diameter is smaller than 3b.
  • a single straight plunger can be used as the plunger 2b.
  • FIG. 7 shows a third embodiment of the present invention.
  • annular coil spring 4C is used in place of the conical coil spring 4 or the bamboo shoot spring 4B.
  • annular skirt portion 302a is provided to prevent the lateral movement of the sunset 3c, and the annular skirt portion 302a is provided on the pump body 90 side. But on the cam 100c side.
  • the cam follower mechanism uses a tall-shaped coil spring 4C whose spring characteristic with respect to load deflection exhibits a non-linear characteristic, and the maximum outer diameter of the tall-shaped coil spring 4C is The spring 4C is smaller than the outer diameter of the sunset 3c that houses the spring 4C.
  • the shape of the roller 33c of the plunger 2c is the same as that of the first embodiment.
  • FIG. 8 shows a fourth embodiment of the present invention.
  • a drum-shaped spring 4 D is used instead of the conical coil spring 4.
  • a constriction at the tip of the plunger 2d is arranged in a hole provided at the center of the retainer 3Id.
  • the cam follow-up mechanism uses a drum-shaped coil spring 4D whose load-deflection spring characteristic shows nonlinear characteristics, and accommodates the maximum outer diameter of the drum-shaped coil spring 4d. ⁇ The diameter is smaller than the outer diameter of 3d.
  • FIG. 9 shows a fifth embodiment of the present invention.
  • combined coil springs 4E and 4F are used instead of the conical coil spring 4 or the hourglass coil spring 4D.
  • FIG. 9 has two return springs (4E, 4F) as a cam follow-up mechanism.
  • the outer return spring 4E is made thick and the inner return spring 4F is made of a thin wire.
  • the retainer since the outer spring 4F is received by the retainer, only the retainer can be lightened, and the mass of the reciprocating portion can be reduced.
  • the same non-linear characteristics as in the above embodiment can be obtained as the resultant force of the springs.
  • one of the two springs is lifted at the position of the bottom dead center of the pump (the installation length is longer than the natural length of the spring), one of the springs is located near the bottom dead center of the pump. It is urged by a spring and is urged by two springs near the top dead center, so that a non-linear spring characteristic as shown in FIG. 7 can be obtained.
  • this configuration consists of a concentric combination of two cylindrical springs with large and small outside diameters, with the cam side end of the inner spring being more inward in the longitudinal direction than the cam side end of the outer spring.
  • a combination of springs 4E, 4F that are arranged and used is used.
  • the negative ends 4 ⁇ &, 4Fa of the combined coil springs 4E, 4 are supported by the pump body 90, and the other ends 4Eb, 4Fb are supported by the retainers 31e.
  • the end with the larger spring diameter should be placed on the lower end 91 side of the pump body, and the end with the smaller spring diameter should be placed on the evening pet side.
  • the spring diameter on the evening pet side has a common feature that it is smaller than the evening diameter.
  • the retainer 31 that engages with the spring and the evening pet 3 that covers the spring also need to be designed large, and the weight increases.
  • both a strong spring constant and a small sunset mounting diameter can be achieved.
  • the diameter of the cam side end of the spring used as the cam follow-up mechanism is reduced, so that a small-sized evening pet can be used, and a small high-pressure fuel pump can be provided. it can.

Abstract

A high-pressure fuel pump allowing the prevention of the jumping of a cam and a tappet and a reduction in pumping loss, comprising a plunger, a cam mechanism providing a reciprocating driving force to the plunger, and a cam follow-up mechanism operating the plunger to follow up the cam mechanism. The cam follow-up mechanism comprises a spring having non-linear spring characteristic with respect to load-deflection wherein the ratio of the variation amount of an energizing force to the displacement of the plunger is larger in the top dead center state of the plunger than in the bottom dead center state, and the maximum outside diameter of the spring is formed smaller than the outside diameter of the tappet which stores the spring.

Description

明 細 書 高圧燃料ポンプ 技術分野  Description High-pressure fuel pump Technical field
本発明は、 内燃機関の燃料噴射弁に燃料を供給する燃料供給システムに使 用される高圧燃料ポンプに関する。 背景技術  The present invention relates to a high-pressure fuel pump used in a fuel supply system that supplies fuel to a fuel injection valve of an internal combustion engine. Background art
特開 2 0 0 0— 8 9 9 7号公報には、 ポンプ室へ燃料を吸入する吸入流路 と、 前記ポンプ室から前記燃料を吐出する吐出流路とを有し、 前記ポンプ室 内を往復動するプランジャによって燃料の吸入 ·吐出を行ない、 インジェク 夕に供給する可変流量高圧燃料ポンプにおいて、 前記吸入流路に吸入チヱヅ ク弁、 前記吐出流路に吐出チェック弁を、 それそれ備え、 また、 前記吸入流 路あるいは前記吐出-流^こ燃料流量の制御を行う電磁弁を備え、 前記電磁弁 は、 該電磁弁を開閉して前記吸入流路と前記ポンプ室ぁるいは前記吐出流路 と前記ポンプ室との連通および非連通を切り換えることにより、 前記燃料流 量を制御し、 前記電磁弁への通電がなく前記電磁弁が開閉動作を行わない場 合には、 前記吸入チェック弁は、 前記プランジャの往復動に応じた一定流量 の燃料を前記吸入流路から前記ポンプ室へ吸入し、 前記吐出チェック弁は、 前記ブランジャの往復動に応じた一定流量の燃料を前記ポンプ室から前記吐 出流路へ吐出する可変流量高圧燃料ポンプが記載される。  Japanese Patent Application Laid-Open No. 2000-08997 has a suction flow path for sucking fuel into a pump chamber, and a discharge flow path for discharging the fuel from the pump chamber. In a variable flow high-pressure fuel pump that performs suction and discharge of fuel by a reciprocating plunger and supplies it during injection, a suction check valve is provided in the suction flow passage, and a discharge check valve is provided in the discharge flow passage. An electromagnetic valve for controlling the suction flow path or the discharge-flow fuel flow rate, wherein the electromagnetic valve opens and closes the electromagnetic valve to open the suction flow path and the pump chamber or the discharge flow path. By switching between communication and non-communication with the pump chamber, the fuel flow rate is controlled, and when the solenoid valve is not energized and does not open and close, the suction check valve is The plunger A constant flow rate of fuel is sucked into the pump chamber from the suction flow path according to the return movement, and the discharge check valve is configured to discharge a constant flow rate of fuel from the pump chamber according to the reciprocating movement of the plunger. A variable flow high pressure fuel pump discharging to a pump is described.
特開 2 0 0 1— 4 1 1 2 8号公報には、 内燃機関により回転駆動がされる カムによってシリンダ内のブランジャが往復動されるとともに、 それらシリ ンダとプランジャとにより区画される加圧室の容積が拡大される吸入行程に おいて燃料タンクから前記加圧室への燃料吸入が行われ、 前記加圧室の容積 が縮小される吐出行程においてスピル弁の閉弁期間制御に基づき調量される 量だけ前記加圧室から吐出通路への燃料吐出が行われる高圧燃料ポンプにお いて、 前記吐出行程での前記加圧室の容積変化速度を前記吸入行程での前記 加圧室の容積変化速度よりも小とする速度可変手段を備え、 前記速度可変手 段は前記カムであり、 同カムは、 そのカムプロフィールが前記吐出行程と前 記吸入行程とで非対称とされ、 吐出行程での力ム角度が吸入行程でのカム角 度よりも大きく設定されてなる高圧燃料ポンプが記載されている。 Japanese Patent Application Laid-Open Publication No. 2000-4-1128 discloses that a cam driven by an internal combustion engine reciprocates a plunger in a cylinder, and a pressurized section defined by the cylinder and the plunger. Fuel is sucked from the fuel tank into the pressurizing chamber in a suction stroke in which the volume of the chamber is expanded, and is adjusted based on control of a closing period of a spill valve in a discharge stroke in which the volume of the pressurizing chamber is reduced. In a high-pressure fuel pump in which fuel is discharged from the pressurizing chamber to a discharge passage by an amount to be measured, the volume change rate of the pressurizing chamber in the discharge stroke is controlled by A speed varying means for decreasing the volume change speed of the pressurizing chamber; the speed varying means is the cam; and the cam has an asymmetrical cam profile between the discharge stroke and the suction stroke. A high-pressure fuel pump is described in which a force angle in a discharge stroke is set to be larger than a cam angle in a suction stroke.
また、 特開 2 0 0 0 - 1 4 5 5 7 3号公報には、 カムシャフトに設けられ ているカムによってプランジャを戻しばねに杭して突上げて燃料を圧送する ようにした燃料噴射ポンプにおいて、 前記戻しばねによつて前記ブランジャ が押されて前記力ムシャフトに加わる正方向のトルクを打消すような突部を 前記力ムに形成した燃料噴射ポンプが記載されている。  Also, Japanese Patent Application Laid-Open No. 2000-145573 discloses a fuel injection pump in which a plunger is piled on a return spring by a cam provided on a camshaft to push up and feed fuel. In the above, there is described a fuel injection pump in which the projection is formed in the force so that the plunger is pushed by the return spring to cancel the positive torque applied to the force shaft.
特開平 5— 2 7 2 4 6 2号公報には流量制御弁を付勢するばねの特性を非 線形とすることが記載されている。 図面の簡単な説明  Japanese Unexamined Patent Publication No. 5-227424 describes that the characteristic of a spring for biasing a flow control valve is made non-linear. Brief Description of Drawings
第 1図は、 燃料噴射システムの構成を示す図である。  FIG. 1 is a diagram showing a configuration of a fuel injection system.
第 2図は、 一実施態様の垂直断面図である。  FIG. 2 is a vertical sectional view of one embodiment.
第 3図は、 第 2図の部分拡大断面図である。  FIG. 3 is a partially enlarged sectional view of FIG.
第 4図は、 一実施態様のばね荷重特性である。  FIG. 4 shows the spring load characteristics of one embodiment.
第 5図は、 一実施態様の説明図である。  FIG. 5 is an explanatory diagram of one embodiment.
第 6図は、 一実施態様の部分拡大断面図である。  FIG. 6 is a partially enlarged sectional view of one embodiment.
第 7図は、 一実施態様の部分 ¾大断面図である。  FIG. 7 is a partially enlarged cross-sectional view of one embodiment.
第 8図は、 一実施態様の圧力変化特性である。  FIG. 8 shows a pressure change characteristic of one embodiment.
第 9図は、 一実施態様の部分拡大断面図である。 発明の開示  FIG. 9 is a partially enlarged sectional view of one embodiment. Disclosure of the invention
発明者らは、 高圧燃料ポンプには次の問題点を有することを見出した。 そ れは、 回転数が高いエンジン、 特に夕一ボ車においては往復運動するプラン ジャゃ夕ぺット等の慣性力が大きく、 それを付勢するために大きなばね力が 必要なことである。 また、 ローラ一夕ペット等、 質量が大きな夕ペットを適 用する場合も同様の問題が生じる。 しかし、 ばね力を増強するためには一般 にばねの耐久性を維持するためにばねの外径を大きくする必要がある。 ばね の外径が大きいと、 ばねを受ける夕ペット等も大きくなり、 往復運動部の質 量はさらに大きくなるという悪循環に陥る。 また、 ばね力が大きと、 カムと 夕ぺヅト間の摩擦力が大きくなり、 ボンビングロスが大きくなるという問題 もある。 The inventors have found that the high-pressure fuel pump has the following problems. This is due to the large inertial force of the reciprocating plunger, sunset, etc. in engines with high rotational speeds, especially in the case of an evening car, and a large spring force is required to urge it. . The same problem occurs when a large evening pet such as a roller overnight pet is applied. However, to increase the spring force, general In order to maintain the durability of the spring, it is necessary to increase the outer diameter of the spring. If the outer diameter of the spring is large, the pets receiving the spring will also be large, and the mass of the reciprocating part will be further increased, causing a vicious cycle. Also, if the spring force is large, the frictional force between the cam and the sunset increases, and there is also a problem that the bombing loss increases.
本発明の目的は、 カムと夕ペットのジヤンビングを防止し、 かつボンピン グロスの小さ 、高圧燃料ポンプを提供することである。  SUMMARY OF THE INVENTION An object of the present invention is to provide a high-pressure fuel pump which prevents the cam and the evening pet from jumping and has a small bomping loss.
本発明は、 プランジャと、 前記ブランジャに往復運動駆動力を与えるカム 機構と、 前記プランジャを前記カム機構に追従して動作させるカム追従機構 を備えた高圧燃料ポンプにおいて、 前記カム追従機構は、 荷重一たわみにつ いてのばね特性が、 前記ブランジャの変位に対する付勢力の変化量の割合に ついて、 前記プランジャの上死点状態における方が下死点状態における方よ りも大きくされた非線形特性を示すばね、 例えば、 円錐型コイルばね、 竹の 子ばね、 タル型コイルばねあるいは円筒状を呈する外径が大小の 2つのばね を同心状に組み合わせたものからなり、 内側のばねのカム側端は外側のばね のカム側端より長手方向において内側に配設された形状とされたばねが使用 される高圧燃料ポンプを提供する。  The present invention provides a high-pressure fuel pump comprising: a plunger; a cam mechanism that applies reciprocating driving force to the plunger; and a cam follow-up mechanism that operates the plunger to follow the cam mechanism. The spring characteristic with respect to one deflection shows a non-linear characteristic in which the ratio of the change amount of the biasing force to the displacement of the plunger is larger in the top dead center state of the plunger than in the bottom dead center state. Shown, for example, a conical coil spring, bamboo coil spring, tall coil spring, or a concentric combination of two cylindrical springs with large and small outside diameters. The cam end of the inner spring is Provided is a high-pressure fuel pump in which a spring having a shape disposed inward in a longitudinal direction from a cam-side end of an outer spring is used.
本発明は、 プランジャと、 該プランジャに往復運動駆動力を与えるカム機 構と、 前記ブランジャを前記力ム機構に追従して動作させる力ム追従機構を 備えた高圧燃料ポンプにおいて、 前記カム追従機構は、 荷重一たわみについ てのばね特性が非線形特性を有するばねを備え、 前記カム機構により付勢さ れて往復運動する夕ぺットを備え、 該夕ぺットが前記ばねの一端側を収納し 、 前記ばねを載置する部位において前記夕ペットの外径は、 前記ばねの最大 外径よりも小さい高圧燃料ポンプを提供する。  The present invention relates to a high-pressure fuel pump comprising: a plunger; a cam mechanism that applies reciprocating driving force to the plunger; and a force follow-up mechanism that operates the plunger by following the force mechanism. Comprises a spring having a non-linear characteristic in a spring characteristic with respect to a deflection of a load, a spring reciprocatingly urged by the cam mechanism, wherein the sunset is connected to one end of the spring. Provided is a high-pressure fuel pump in which the outer diameter of the evening pet is smaller than the maximum outer diameter of the spring at a portion where the spring is placed.
本発明は、 プランジャと、 該プランジャに往復運動駆動力を与えるカムを 有するカム機構と、 前記プランジャを前記カム機構に追従して動作させる力 ム追従機構と、 前記カム機構により付勢されて往復運動する夕ぺットを備え た高圧燃料ポンプにおいて、 前記カム追従機構は、 前記夕ぺヅトを前記カム 機構に接触させる付勢力を与えるものであって、 該付勢力の増減は、 プラン ジャの上死点近傍付近を除いてカムのリフト曲線の変位量に追随し、 プラン ジャの上死点近傍付近では前記変位量に加算される付勢力を与える付勢力增 大手段を有する高圧燃料ポンプを提供する The present invention provides a plunger, a cam mechanism having a cam for applying reciprocating driving force to the plunger, a force follower mechanism for operating the plunger to follow the cam mechanism, and a reciprocating mechanism urged by the cam mechanism. In a high-pressure fuel pump having a moving sunset, the cam follow-up mechanism applies an urging force for bringing the evening into contact with the cam mechanism. A high-pressure fuel having a biasing force increasing means for following the displacement of the lift curve of the cam except near the top dead center of the plunger and providing a biasing force added to the displacement near the top dead center of the plunger. Provide a pump
本発明は、 プランジャと、 該プランジャに往復運動駆動力を与えるカムを 有するカム機構と、 前記プランジャを前記カム機構に追従して動作させる力 ム追従機構と、 前記カム機構により付勢されて往復運動する夕ぺットを備え た高圧燃料ポンプにおいて、 前記カム追従機構は、 前記夕ペットを前記カム 機構に接触させる付勢力を与えるばねを備え、 該ばねの付勢力の増減は、 プ ランジャの上死点近傍付近を除いてカムのリフト曲線の変位量に追随し、 プ ランジャの上死点近傍付近では前記変位量に加算される付勢力を与える非線 形特性とされた高圧燃料ポンプを提供する。 発明を実施するための最良の形態  The present invention provides a plunger, a cam mechanism having a cam for applying reciprocating driving force to the plunger, a force follower mechanism for operating the plunger to follow the cam mechanism, and a reciprocating mechanism urged by the cam mechanism. In the high-pressure fuel pump having a moving sunset, the cam follow-up mechanism includes a spring that applies an urging force for bringing the evening pet into contact with the cam mechanism. A high-pressure fuel pump that has a non-linear characteristic that follows the amount of displacement of the cam lift curve except near the top dead center and provides a biasing force added to the displacement near the top dead center of the plunger provide. BEST MODE FOR CARRYING OUT THE INVENTION
高圧燃料ポンプは、 プランジャと、 プランジャに往復運動駆動力を与える カム機構と、 プランジャをカム機構に付勢してプランジャをカム機構に追従 して動作させる力ム追従機構を備えた高圧燃料ポンプであって、 力ム追従機 構は、 プランジャの変位に対する付勢力の変ィ匕量の割合が、 高圧燃料ポンプ の下死点における状態よりも高圧燃料ポンプの上死点における状態の方が大 きくして構成される。  The high-pressure fuel pump is a high-pressure fuel pump that includes a plunger, a cam mechanism that applies reciprocating driving force to the plunger, and a force-following mechanism that urges the plunger to the cam mechanism to operate the plunger following the cam mechanism. Therefore, in the force follow-up mechanism, the ratio of the change in the biasing force to the displacement of the plunger is larger in the state at the top dead center of the high-pressure fuel pump than in the state at the bottom dead center of the high-pressure fuel pump. It is composed.
また、 高圧燃料ポンプは、 回転するカムにより往復運動を行う夕ペットと 、 前記夕ペットの併進運動力を伝達する力伝達部材と、 前記力伝達部材によ り伝達される力で燃料を燃料噴射弁に加圧供給するビストン式の高圧燃料ポ ンプであって、 往復運動する前記夕ぺヅトが常に前記カムと接触する位置に 戻るように付勢力を与える戻し機構を備え、 前記戻し機構は前記プランジャ 変位に対する付勢力の増加率が付勢力の増大とともに増大させるようにして 構成される。  Further, the high-pressure fuel pump includes: an evening pet that reciprocates by a rotating cam; a force transmitting member that transmits the translational motion of the evening pet; and fuel injection by the force transmitted by the force transmitting member. A piston-type high-pressure fuel pump for pressurizing and supplying a valve, comprising: a return mechanism for applying a biasing force so that the reciprocating sunset always returns to a position where it comes into contact with the cam. It is configured such that the rate of increase of the urging force with respect to the displacement of the plunger increases as the urging force increases.
また、 高圧燃料ポンプは、 プランジャを往復運動させることにより燃料を 燃料噴射弁に加圧供給する高圧燃料ポンプと、 前記プランジャに係合するリ テ一ナと、 前記高圧燃料ポンプのハウジングと前記リテ一ナに係合して前記 ブランジャを伸張方向に付勢する戻しばねと、 前記ブランジャの付勢力を伝 達する力伝達部材と、 前記力伝達部材の伝達する付勢力により付勢される夕 ペットと、 前記夕ペットに併進運動の駆動力を与えるカムと、 を備えた高圧 燃料ポンプであって、 前記戻しばねは非円筒ばねであり、 前記非円筒ばねの 一端の外径は前記タぺヅ卜の外径よりも小さく、 前記非円筒ばねの最大外径 は前記夕ぺヅトの外径よりも大きくして構成される。 The high-pressure fuel pump includes a high-pressure fuel pump that pressurizes and supplies fuel to a fuel injection valve by reciprocating a plunger, a retainer that engages with the plunger, a housing of the high-pressure fuel pump, and the retainer. Engaged with one A return spring for urging the plunger in the extension direction; a force transmitting member for transmitting the urging force of the plunger; a evening pet urged by the urging force transmitted by the force transmitting member; A high-pressure fuel pump comprising: a cam for applying a driving force; and the return spring is a non-cylindrical spring, and an outer diameter of one end of the non-cylindrical spring is smaller than an outer diameter of the tuft. The maximum outer diameter of the non-cylindrical spring is configured to be larger than the outer diameter of the evening.
回転する力ムにより往復運動を行う夕ペットと、 夕ペットの併進運動力を 伝達する力伝達部材と、 力伝達部材により伝達される力で燃料を燃料噴射弁 に加圧供給するピストン式の高圧燃料ポンプであって、 高圧燃料ポンプは、 往復運動する夕ぺッ卜が常にカムと接触する位置に戻るように付勢力を与え る戻し機構を備え、 戻し機構はプランジャ変位に対する付勢力の増加率が付 勢力の増大とともに増大することを特徴とする。 これにより上記同様、 一番 ジャンピングの発生しゃすい上死点近傍において力ム追従機構が発生する付 勢力が強くすることができ、 ジヤンピングを効果的に抑止することができる 。 なおかつ、 上死点近傍以外は付勢力が小さいのでボンビングロスは増大し ない。  An evening pet that reciprocates with a rotating force, a force transmitting member that transmits the translational motion of the evening pet, and a piston-type high pressure that pressurizes and supplies fuel to the fuel injection valve with the force transmitted by the force transmitting member. The high-pressure fuel pump includes a return mechanism that applies a biasing force so that the reciprocating sunset always returns to a position where it comes into contact with the cam, and the return mechanism is a rate of increase of the biasing force with respect to the plunger displacement. Is increased with an increase in the biasing force. As a result, similarly to the above, the biasing force generated by the force follow-up mechanism near the top dead center where jumping occurs most can be increased, and jumping can be effectively suppressed. In addition, since the biasing force is small except near the top dead center, the bombing loss does not increase.
また、 往復運動することにより燃料を燃料噴射弁に加圧供給するプランジ ャと、 プランジャに係合するリテ一ナと、 高圧燃料ポンプのハウジングとリ テ一ナに係合してプランジャを伸張方向に付勢する戻しばねと、 プランジャ の付勢力を伝達し、 カム追従機構を構成する力伝達部材と、 力伝達部材の伝 達する付勢力により付勢される夕ぺットと、 夕ぺットに併進運動の駆動力を 与えるカムと、 を備えた高圧燃料ポンプであって、 戻しばねは非円筒ばねで あり、 非円筒ばねの一端の外径は夕ペットの外径よりも小さく、 非円筒ばね の最大外径は前記夕ぺットの外径よりも大きいことを特徴とする。 これによ り、 非円筒ばねは上記と同様に非線型な荷重特性をもち、 尚且つ、 夕ペット 側の端の外径を小さくすることにより夕ぺット及び夕ぺットに付随する往復 運動部 (リテ一ナ、 力伝達部材等) の質量を軽減することができ、 ジヤンピ ング防止することができる。 また、 往復運動部の質量を小さく設計できるこ とから、 ジヤンビング防止するためのばねの付勢力を小さく設計でき、 ボン ビングロスを低減できる。 A plunger that pressurizes and supplies fuel to the fuel injection valve by reciprocating; a retainer that engages the plunger; and a housing and retainer of the high-pressure fuel pump that extend the plunger in the extending direction. A spring that transmits the urging force of the plunger to form a cam follow-up mechanism; a sunset that is urged by the urging force transmitted by the force transmitting member; A high-pressure fuel pump comprising: a cam for providing a translational driving force to the non-cylindrical spring; the return spring is a non-cylindrical spring; the outer diameter of one end of the non-cylindrical spring is smaller than the outer diameter of the evening pet; The maximum outer diameter of the spring is larger than the outer diameter of the sunset. As a result, the non-cylindrical spring has a non-linear load characteristic in the same manner as described above, and furthermore, by reducing the outer diameter of the end on the evening pet side, the evening and the reciprocating motion accompanying the evening are reduced. The mass of the moving parts (retainers, force transmitting members, etc.) can be reduced, and jumping can be prevented. Also, since the mass of the reciprocating part can be designed to be small, the biasing force of the spring for preventing jumping can be designed to be small. Bing loss can be reduced.
以下、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は、 燃料噴射システムを示し、 第 2図はこの燃料噴射システムに使 用される本発明の実施例である高圧燃料ポンプ 1 0 0を示し、 第 3図は第 2 図の一部詳細を示す図である。  FIG. 1 shows a fuel injection system, FIG. 2 shows a high-pressure fuel pump 100 according to an embodiment of the present invention used in the fuel injection system, and FIG. 3 is a part of FIG. FIG.
第 1図において、 燃料はタンク 5 0から低圧ポンプによって高圧燃料ボン プ 1の燃料導入口によつて導かれる。 導入された燃料は高圧燃料ポンプ 1に よって加圧され、 燃料吐出口からコモンレール 5 3に圧送される。  In FIG. 1, fuel is guided from a tank 50 by a low pressure pump through a fuel inlet of a high pressure fuel pump 1. The introduced fuel is pressurized by the high-pressure fuel pump 1 and sent to the common rail 53 from the fuel discharge port.
コモンレール 5 3には、 インジェク夕 5 4、 リリーフ弁 5 5、 圧力センサ 5 6が装置されている。  The common rail 53 is equipped with an injector 54, a relief valve 55, and a pressure sensor 56.
インジェク夕 5 4は、 内燃機関の気筒数に合わせて装着されており、 ェン ジンコント口一ルユニット (E C U) 4 0によって制御され、 E C U 4 0か らの信号によって噴射することを行う。 E C U 4 0は、 低圧ポンプ 5 1も制 御しており、 燃料導入口に導かれる燃料の圧力を制御する。 リリーフ弁 5 5 は、 コモンレール 5 3内の圧力が所定値を超えた際に開弁し、 配管系の破損 を防止する。  The injector 54 is mounted in accordance with the number of cylinders of the internal combustion engine, is controlled by an engine control unit (ECU) 40, and performs injection by a signal from the ECU 40. The ECU 40 also controls the low-pressure pump 51 and controls the pressure of the fuel guided to the fuel inlet. The relief valve 55 opens when the pressure in the common rail 53 exceeds a predetermined value to prevent damage to the piping system.
プランジャ 2は、 シリンダ 2 0に摺動可能に保持されており、 エンジン力 ムシャフト (図示せず) 等により回転される後述するカムを含むカム追従装 置によって矢印で示すように往復運動させられて、 シリンダ 2 0内の加圧室 1 2内の容積を変化させ、 燃料を吐出させる。  The plunger 2 is slidably held by a cylinder 20 and is reciprocated as indicated by an arrow by a cam follower including a cam, which will be described later, which is rotated by an engine power shaft (not shown). The volume in the pressurizing chamber 12 in the cylinder 20 is changed to discharge fuel.
高圧燃料ポンプ 1は、 燃料の吸入通路 1 0、 吐出通路 1 1、 カロ圧室 1 2を 備える。 吐出通路 1 1には吐出弁 6が設けられている。 吸入弁 5および吐出 弁 6はそれそればね 5 a、 6 aによって一方向に保持され、 燃料の流通方向 を制限する逆止弁となっている。  The high-pressure fuel pump 1 includes a fuel intake passage 10, a discharge passage 11, and a caropressure chamber 12. A discharge valve 6 is provided in the discharge passage 11. The suction valve 5 and the discharge valve 6 are held in one direction by springs 5a and 6a, respectively, and serve as check valves for restricting the fuel flow direction.
加圧室 1 2は、 加圧部材であるプランジャ 2が摺動するポンプ室 3 0 0に 吸入孔および吐出孔が連通して形成される。  The pressurizing chamber 12 is formed by communicating a suction hole and a discharge hole with a pump chamber 300 in which a plunger 2 as a pressurizing member slides.
高圧燃料ポンプ 1は、 ソレノイド 2 0 0を保持しており、 ソレノイド 2 0 0には係合部材 2 0 1、 ばね 2 0 2が配されている。 係合部材 2 0 1は、 ソ レノイド 2 0◦が O F F時は、 ばね 2 0 2によって、 吸入弁 5を開弁する方 向に付勢力がかけられている。 ばね 2 0 2の付勢力は、 吸入弁ばね 5 aの付 勢力より大きくなつているため、 ソレノィド 2 0 0が O F F時は吸入弁 5は 開弁状態となっている。 ソレノイド 2 0 0には、 図に示すように時間 tに対 して電流 iがソレノィド駆動電流波形の状態で加えられる。 The high-pressure fuel pump 1 holds a solenoid 200, and an engagement member 201 and a spring 202 are arranged in the solenoid 200. When the solenoid 20 ° is OFF, the engaging member 201 opens the suction valve 5 by the spring 202. The urging force is applied in the direction. Since the urging force of the spring 200 is larger than the urging force of the suction valve spring 5a, when the solenoid 200 is OFF, the suction valve 5 is in the open state. As shown in the figure, a current i is applied to the solenoid 200 at a time t in a state of a solenoid drive current waveform.
第 2図において、 高圧燃料ポンプ 1のポンプ本体 9 0には、 前述のように 燃料の吸入通路 1◦、 吐出通路 1 1、 加圧室 1 2が形成されている。 吸入通 路 1 0および吐出通路 1 1には、 吸入弁 5、 吐出弁 6が設けられており、 そ れそればね 5 a、 6 aによって一方向に保持される。  In FIG. 2, the pump main body 90 of the high-pressure fuel pump 1 is provided with a fuel intake passage 1 ◦, a discharge passage 11, and a pressurization chamber 12 as described above. The suction passage 10 and the discharge passage 11 are provided with a suction valve 5 and a discharge valve 6, which are held in one direction by springs 5a and 6a, respectively.
ポンプ本体 9 0内には、 孔部 1 9が形成され、 孔部 1 9内にはシリンダ 2 0が配され、 プランジャ 2はシリンダ 2 0内を摺動する。 シリンダ 2 0はシ リンダ保持部材 2 1によって保持される。 シリンダ保持部材 2 1は、 ポンプ 本体 9 0によって保持される。  A hole 19 is formed in the pump body 90, a cylinder 20 is arranged in the hole 19, and the plunger 2 slides in the cylinder 20. The cylinder 20 is held by a cylinder holding member 21. The cylinder holding member 21 is held by the pump body 90.
シリンダ 2 0の下方であって、 プランジャ 2の表面に向かってプランジャ シール 3 0がシリンダ保持部材 2 1に設けてあり、 燃料がカム 1 0 0側に流 出することを防止している。 加圧室 1 2には、 吸入弁 5に連通する吸入孔 5 b、 吐出弁 6に連通する吐出孔 6 bが設けてある。  A plunger seal 30 is provided on the cylinder holding member 21 below the cylinder 20 and toward the surface of the plunger 2 to prevent fuel from flowing out to the cam 100 side. The pressurizing chamber 12 is provided with a suction hole 5 b communicating with the suction valve 5 and a discharge hole 6 b communicating with the discharge valve 6.
前述のように、 高圧燃料ポンプ 1は、 流量制御を行うソレノイド 2 0 0を 保持しており、 ソレノイド 2 0 0には、 係合部材 2 0 1、 ばね 2 0 2が配さ れている。  As described above, the high-pressure fuel pump 1 holds the solenoid 200 for controlling the flow rate, and the solenoid 200 is provided with the engaging member 201 and the spring 202.
吸入通路 1 0には吸入室 1 0 aが形成してある。  A suction chamber 10 a is formed in the suction passage 10.
高圧燃料ポンプ 1の上部には、 吸入室 1 0 aに連通する燃料室 1 0 bには 、 2個の金属ダイヤフラム 8 0と 8 4とが設けられ、 その間にフィッシャー 8 6が設けられている。 1 0 cは圧力センサであり、 1 0 dはダンパ一ケ一 スである。  In the upper part of the high-pressure fuel pump 1, a fuel chamber 10b communicating with the suction chamber 10a is provided with two metal diaphragms 80 and 84, and a fisher 86 is provided therebetween. . 10 c is a pressure sensor, and 10 d is a damper case.
ブランジャ 2の下端部側面には、 馬蹄形をしたリテ一ナ 3 1が係合してあ り、 下端にはシム 3 2が係合してあり、 リテーナ 3 1、 シム 3 2は夕ペット 3によって保持される。 夕ぺヅト 3の一方側にはローラ 3 3が設けられ、 口 —ラ 3 3はカム 1 0 0によってカム形状に沿って上下往復運動する。 従って 、 カム 1 0 0を含むカム機構によって夕ぺヅト 3は付勢されて往復運動する ことになる。 The horseshoe-shaped retainer 31 is engaged with the side of the lower end of the plunger 2, the shim 32 is engaged with the lower end, and the retainer 31 and the shim 3 2 are engaged by the evening pet 3. Will be retained. A roller 33 is provided on one side of the sunset 3, and the mouth roller 33 reciprocates up and down along the cam shape by the cam 100. Therefore, the evening 3 is urged by the cam mechanism including the cam 100 to reciprocate. It will be.
夕ぺヅト 3の他方側には凹部 (ばね収容部) が形成され、 この凹部内に前 述のリテ一ナ 3 1、 シム 3 2が配設される。 この場合に、 凹部側壁とリテー ナ 3 1との間には間隙が設けられ、 この間隙にカム追従機構を形成する円錐 型コイルばね 4 (プランジャリ夕一ンばね) の下端部 4 bが配置される。 円錐型コイルばねの上端部 4 aは、 ポンプ下端部 9 1に形成された凹部内 に配置され、 シリンダ保持部材 2 1の一部によって保持される。 すなわち、 円錐型コイルばね 4は一端がポンプ本体 9 0によって保持され、 他端 4 bは 夕ペット 3によって保持される。 この場合に、 前述のように円錐型コイルば ね 4は、 カム追従機構として機能する。  A recess (spring accommodation portion) is formed on the other side of the sunset 3, and the retainer 31 and the shim 32 described above are disposed in the recess. In this case, a gap is provided between the side wall of the recess and the retainer 31, and a lower end 4b of a conical coil spring 4 (plunger spring) forming a cam follow-up mechanism is disposed in the gap. Is done. The upper end 4a of the conical coil spring is arranged in a recess formed in the lower end 91 of the pump and held by a part of the cylinder holding member 21. That is, the conical coil spring 4 has one end held by the pump body 90 and the other end 4 b held by the evening pet 3. In this case, as described above, the conical coil spring 4 functions as a cam following mechanism.
第 3図において、 円錐型コィルばね 4の最大外径 Dに比べて円筒状をした 夕ペット 3の外径 dは小さく構成されている。 外径 dは、 円錐型コイルばね 4が夕ペット 3の内部に収納、 載置された部位を表示している。 第 3図に示 す例の場合、 最大外径は円錐型コイルばねの最上端付近となっている。後述 するように、 構造によっては最大外径はばねの途中に設けられることがある 。 設計上、 最上端付近に設けられることが望ましい。 このようにして夕ぺヅ ト 3の構成を小さくすることができる。  In FIG. 3, the outer diameter d of the cylindrical pet 3 is smaller than the maximum outer diameter D of the conical coil spring 4. The outer diameter d indicates a portion where the conical coil spring 4 is housed and placed inside the evening pet 3. In the example shown in Fig. 3, the maximum outer diameter is near the top end of the conical coil spring. As described later, depending on the structure, the maximum outer diameter may be provided in the middle of the spring. It is desirable to be provided near the uppermost end in design. In this way, the configuration of evening 3 can be reduced.
このように、 プランジャ 2の下端にはリテ一ナ 3 1が係合されてあり、 ば ね 4の付勢力は力伝達機構であるシム 3 2を介して夕ぺット 3へ伝わり、 夕 ペット 3をカム 1 0 0に付勢する。 ばね 4は、 一方の端部の径が他方の端部 の径よりも小さくなるばね、 たとえば円錐型コイルばねを用いられる。 以上の構成による動作を説明する。  As described above, the retainer 31 is engaged with the lower end of the plunger 2, and the urging force of the spring 4 is transmitted to the sunset 3 via the shim 32 which is a force transmission mechanism. Energize 3 to cam 100. As the spring 4, a spring whose one end has a smaller diameter than the other end, for example, a conical coil spring is used. The operation of the above configuration will be described.
プランジャ 2の圧縮行程中に吸入弁 5が閉弁すると、 加圧室 1 2内圧力が 上昇し、 これにより吐出弁 6が自動的に開弁し、 燃料をコモンレール 5 3に 圧送する。  When the suction valve 5 is closed during the compression stroke of the plunger 2, the pressure in the pressurizing chamber 12 is increased, whereby the discharge valve 6 is automatically opened and fuel is pumped to the common rail 53.
吸入弁 5は、 加圧室 1 2の圧力が燃料導入口より低くなると自動的に開弁 するが、 閉弁に関しては、 ソレノイド 2 0 0の動作により決定される。 ソレノィド 2 0 0が O N (通電) 状態を保持した際は、 ばね 2 0 2の付勢 力以上の電磁力を発生させ、 係合部材 2 0 1をソレノィド 2 0 0側に引き寄 せるため、 係合部材 2 0 1と吸入弁 5は分離される。 この状態であれば、 吸 入弁 5はプランジャ 2の往復運動に同期して開閉する自動弁となる。 従って 、 圧縮行程中は、 吸入弁 5は閉塞し、 加圧室 1 2の容積減少分の燃料は、 吐 出弁 6を押し開きコモンレール 5 3へ圧送される。 The suction valve 5 automatically opens when the pressure of the pressurizing chamber 12 becomes lower than the fuel inlet, but the closing of the valve is determined by the operation of the solenoid 200. When the solenoid 200 is kept in the ON (energized) state, an electromagnetic force greater than the biasing force of the spring 202 is generated, and the engaging member 201 is drawn to the solenoid 200 side. For this purpose, the engagement member 201 and the suction valve 5 are separated. In this state, the suction valve 5 is an automatic valve that opens and closes in synchronization with the reciprocation of the plunger 2. Therefore, during the compression stroke, the suction valve 5 is closed, and the fuel corresponding to the reduced volume of the pressurizing chamber 12 pushes the discharge valve 6 and is fed to the common rail 53.
これに対し、 ソレノイド 2 0 0が O F F (無通電) を保持した際は、 ばね 2 0 2の付勢力により、 係合部材 2 0 1は吸入弁 5に係合し、 吸入弁 5を開 弁状態に保持する。 従って、 圧縮行程時においても、 加圧室 1 2の圧力は燃 料導入口部とほぼ同等の低圧状態を保っため、 吐出弁 6を開弁することがで きず、 加圧室 1 2の容積減少分の燃料は、 吸入弁 5を通り燃料導入口側へ戻 される。  On the other hand, when the solenoid 200 is kept OFF (non-energized), the engaging member 201 is engaged with the suction valve 5 by the biasing force of the spring 202, and the suction valve 5 is opened. Keep in state. Therefore, even during the compression stroke, the pressure in the pressurizing chamber 12 is maintained at a low pressure almost equal to that of the fuel introduction port, so that the discharge valve 6 cannot be opened, and the volume of the pressurizing chamber 12 is reduced. The reduced fuel is returned to the fuel inlet side through the suction valve 5.
また、 圧縮行程の途中で、 ソレノイド 2 0 0を〇N状態とすれば、 このと きから、 コモンレール 5 3へ燃料圧送される。 また、 一度圧送が始まれば、 加圧室 1 2内の圧力は上昇するため、 その後、 ソレノイド 2 0 0を O F F状 態にしても、 吸入弁 5は閉塞状態を維持し、 吸入行程は始まりと同期して自 動開弁する。  Also, if the solenoid 200 is set to the 〇N state during the compression stroke, the fuel is fed to the common rail 53 from this time. In addition, once the pressure feeding starts, the pressure in the pressurizing chamber 12 increases, so that even if the solenoid 200 is turned off, the suction valve 5 remains closed, and the suction stroke starts. Automatically opens in synchronization.
第 1図に示した円錐型コイルばね、 すなわち非円筒型ばねには第 4図に示 すような非線形な荷重たわみ特性を与える。 また、 通常このような非円筒形 ばねは非線形の荷重たわみ特性を有する。 その理由としては、 たとえば径の 太い部分はたわみやすいために、 ばねに圧縮荷重を加えると径の大きい部分 から接着を始めて、 荷重一たわみ関係で直接性を示し、 次いで径の小さい部 分がたわみ、 荷重一たわみ関係で曲線性を示し、 すなわち、 小さなたわみで 大きな荷重を負担する性能を示す。  The conical coil spring shown in Fig. 1, that is, the non-cylindrical spring has a non-linear load deflection characteristic as shown in Fig. 4. Also, such non-cylindrical springs usually have non-linear load deflection characteristics. The reason for this is that, for example, a portion with a large diameter is likely to bend, so when a compressive load is applied to a spring, bonding starts from a portion with a large diameter, indicating directness in a load-deflection relationship, followed by a deflection with a small diameter. The curve shows the load-deflection relationship, that is, the ability to bear a large load with a small deflection.
この特性を生かしてポンプの容積効率向上を図ることができる。 以下、 そ の方法と理由を説明する。  By utilizing this characteristic, it is possible to improve the volumetric efficiency of the pump. The method and the reason are described below.
第 5図に通常のばねを用いた場合の、 ある運転条件における 1サイクル分 の夕ぺヅト 3、 すなわちプランジャ 2のリフト曲線 L、 カム追従機構 4の付 勢力 F s p r、 往復運動部であるブランジャ 2の慣性力 F iの時間変化を示 す。 通常の線型な荷重たわみ特性を有するばねを用いるのであれば、 付勢力 F s p rの増減はリフト曲線 Lの変位量に比例する。 すなわち、 追従する。 そのため、 図のようにポンプの上死点 (T D C) 近傍で慣性力 F iが増大す ると付勢力 F s p rが足りなくなり、 夕ぺット 3がカム 1 0 0に追従しなく なる状態が生じる。 従来はこのような状態を回避するために、 上死点近傍の 加速度が小さくなるように力ム形状を工夫する対策が知られている (特許文 献 3参照) 。 そうした場合の慣性力の例を第 8図の F i 2で示す。 しかし、 このようなカム形状にした場合、 跳ね返りとして、 ポンプの容積効率が低下 することが知られている (特許文献 2参照) 。 詳細は割愛するが、 上死点近 傍の加速度を小さくする跳ね返りとして、 下死点近傍の速度 ·加速度が大き くなり、 これが効率低下につながるからである。 しかし、 第 4図に示すよう な非線形なばね荷重特性を有するばねをカム追従機構に設けた場合、 ポンプ の上死点近傍でカム追従機構が夕ぺットを付勢する力が特に強くなる。 その 例を第 5図の F s p r 2に示す。 こうすることにより、 上死点近傍の'慣性力 を抑える必要がなくなり、 上死点近傍で大きな加速度を有するカムプロファ ィルを (第 5図に示す F iの慣性力を発生するカムプロファイル) を適用し 、 高い容積効率を引き出すことができる。 Fig. 5 shows one cycle of the evening 3 under a certain operating condition, that is, the lift curve L of the plunger 2, the biasing force F spr of the cam follow-up mechanism 4, and the reciprocating part when a normal spring is used. The time change of the inertia force F i of the plunger 2 is shown. If a spring having a normal linear load deflection characteristic is used, the increase or decrease of the urging force F spr is proportional to the displacement of the lift curve L. That is, follow. As a result, as shown in the figure, when the inertia force F i increases near the top dead center (TDC) of the pump, the urging force F spr becomes insufficient, and the state in which the sunset 3 does not follow the cam 100 may occur. Occurs. Conventionally, in order to avoid such a state, there has been known a measure for devising a force shape so as to reduce the acceleration near the top dead center (see Patent Document 3). An example of the inertial force in such a case is shown by Fi 2 in FIG. However, it is known that when such a cam shape is used, the volume efficiency of the pump is reduced as a rebound (see Patent Document 2). Although details are omitted, the speed and acceleration near the bottom dead center increase as a rebound that reduces the acceleration near the top dead center, which leads to a decrease in efficiency. However, if a spring having a non-linear spring load characteristic as shown in Fig. 4 is provided in the cam follow-up mechanism, the force that urges the sunset by the cam follow-up mechanism near the top dead center of the pump becomes particularly strong. . An example is shown in Fspr 2 in FIG. By doing so, it is not necessary to suppress the inertial force near the top dead center, and a cam profile having a large acceleration near the top dead center (cam profile that generates the inertia force of Fi shown in Fig. 5) Apply and can achieve high volumetric efficiency.
以上の構成によって、 回転するカム 1 0 0により往復運動を行う夕ぺヅト 3と、 夕ぺヅト 3の併進運動力を伝達するプランジャ 2などの力伝達部材と 、 力伝達部材により伝達される力で燃料を燃料噴射弁に加圧供給するビスト ン式の高圧燃料ポンプであって、 往復運動する夕ぺヅト 3が常にカム 1 0 0 と接触する位置に戻るように付勢力を与える戻し機構を備え、 この戻し機構 はブランジャ変位に対する付勢力の増加率が付勢力の増大とともに増大させ るようにして高圧燃料ポンプを構成することができる。  With the configuration described above, the force is transmitted by the force transmitting member, such as the sunset 3 that performs reciprocating motion by the rotating cam 100, the plunger 2 that transmits the translational motion force of the evening 3, and the force transmitting member. A piston type high pressure fuel pump that pressurizes and supplies fuel to the fuel injection valve with a certain force, and applies an urging force so that the reciprocating evening 3 always returns to the position where it comes into contact with the cam 100. A high-pressure fuel pump can be configured such that a return mechanism is provided, and the return mechanism increases the rate of increase of the urging force with respect to the displacement of the plunger as the urging force increases.
戻し機構を戻しばねで構成し、 戻しばねを非円筒ばねとして、 非円筒ばね の一端の外径は夕ぺット 3の外径よりも実質的に小さく、 非円筒ばねの最大 外径は夕ぺット 3の外径よりも大きいものとすることができる。  The return mechanism is composed of a return spring, and the return spring is a non-cylindrical spring. The outer diameter of one end of the non-cylindrical spring is substantially smaller than the outer diameter of the sunset 3, and the maximum outer diameter of the non-cylindrical spring is It can be larger than the outer diameter of the pet 3.
カム追従機構は、 夕ぺヅト 3をカム機構に接触させる付勢力を与えるもの であって、 該付勢力の増減は、 プランジャ 2の上死点近傍付近を除いてカム のリフト曲線 Lの変位量に追随し、 プランジャ 2の上死点近傍付近では変位 量に加算される付勢力を与える付勢力増大手段を有する高圧燃料ポンプを構 成することができる。 The cam follow-up mechanism provides an urging force for bringing the sunset 3 into contact with the cam mechanism, and the increase or decrease in the urging force is caused by the displacement of the lift curve L of the cam except in the vicinity of the top dead center of the plunger 2. A high-pressure fuel pump having an urging force increasing means for applying an urging force that is added to the displacement amount near the top dead center of the plunger 2 following the amount Can be achieved.
更に、 具体的にはカム追従機構は、 夕ペット 3をカム機構に接触させる付 勢力を与えるばねを備え、 該ばねの付勢力の増減は、 プランジャ 2の上死点 近傍付近を除いてカムのリフト曲線 Lの変位量に追随し、 プランジャ 2の上 死点近傍付近では変位量に加算される付勢力を与える非線形特性とされた高 圧燃料ポンプを構成することができる。  Further, specifically, the cam follow-up mechanism includes a spring that applies an urging force for bringing the evening pet 3 into contact with the cam mechanism, and the urging force of the spring increases or decreases except for the vicinity of the top dead center of the plunger 2. A high-pressure fuel pump that follows the displacement of the lift curve L and has a non-linear characteristic that provides an urging force added to the displacement near the top dead center of the plunger 2 can be configured.
[実施例 2 ]  [Example 2]
第 6図に本発明の第 2の実施例を示す。 先の第 1の実施例と同一の構成に ついては同一の番号を付し、 類似の構成については同一番号にアルファべヅ ト符号を付し、 説明を省略する場合がある。 以下の実施例についても同じで ある。 第 6図に示す例にあっては、 円錐型コイルばね 4に代えて竹の子ばね 4 Bを使用している。  FIG. 6 shows a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and similar components are denoted by the same reference numerals with alphanumeric characters, and the description may be omitted. The same applies to the following embodiments. In the example shown in FIG. 6, a bamboo shoot spring 4 B is used in place of the conical coil spring 4.
カム追従機構の夕ぺヅト 3 bにはフラヅト夕ぺヅトを使用している。 この 場合の夕ぺヅト 3 bは、 椀状もしくはコップ状をなして内部は凹部とされ、 この中にリテーナ 3 1 b、 シム 3 2 bが配置される。  Flat evening is used for evening 3b of the cam following mechanism. The evening part 3b in this case has a bowl-like or cup-like shape, and the inside is a concave part, in which the retainer 31b and the shim 32b are arranged.
竹の子ばねの一端 4 B aがポンプ本体 1によって、 他端 4 B bがリテ一ナ 3 1 bによって支持される。  One end 4Ba of the bamboo shoot spring is supported by the pump body 1, and the other end 4Bb is supported by the retainer 31b.
夕ペット 3 bの先端面はカム 1 0 0 bに直接接触する。 この構成にあって は、 カム追従機構には、 荷重—たわみについてのばね特性が非線形特性を示 す竹の子ばね 4 Bが使用され、 竹の子ばね 4 bの最大外径は、 竹の子ばね 4 Bを収容する夕ぺヅト 3 bの外径よりも小さくされる。  The tip of evening pet 3b directly contacts cam 100b. In this configuration, the cam follower mechanism uses a bamboo child spring 4B whose load-deflection spring characteristic shows nonlinear characteristics, and the maximum outer diameter of the bamboo child spring 4b accommodates the bamboo child spring 4B. The outer diameter is smaller than 3b.
尚、 プランジャ 2 bとしては、 ストレートな一本の のものを使用する ことが出来る。  Incidentally, a single straight plunger can be used as the plunger 2b.
[実施例 3 ]  [Example 3]
第 7図に本発明の第 3の実施例を示す。  FIG. 7 shows a third embodiment of the present invention.
第 7図に示す例にあっては、 円錐型コィルばね 4あるいは竹の子ばね 4 B に代えて、 夕ル型コイルばね 4 Cを使用している。  In the example shown in FIG. 7, an annular coil spring 4C is used in place of the conical coil spring 4 or the bamboo shoot spring 4B.
この例にあっては、 夕ぺヅト 3 cの横方向運動を防ぐために環状スカート 部 3 0 2 aを設けており、 この環状スカート部 3 0 2 aはポンプ本体 9 0側 でなく、 カム 1 0 0 c側に配設してある。 In this example, an annular skirt portion 302a is provided to prevent the lateral movement of the sunset 3c, and the annular skirt portion 302a is provided on the pump body 90 side. But on the cam 100c side.
タル型コィルばね 4 Cの一端 4 C aがボンプ本体 1によって、 他端 4 C b がリテ一ナ 3 1 cによって支持される。 この構成あっては、 カム追従機構に は、 荷重一たわみについてのばね特性が非線形特性を示すタル型コイルばね 4 Cが使用され、 タル型コイルばね 4 Cの最大外径は、 夕ル型コイルばね 4 Cを収容する夕ぺット 3 cの外径よりも小さくされている。  One end 4Ca of the barrel type coil spring 4C is supported by the pump body 1, and the other end 4Cb is supported by the retainer 31c. In this configuration, the cam follower mechanism uses a tall-shaped coil spring 4C whose spring characteristic with respect to load deflection exhibits a non-linear characteristic, and the maximum outer diameter of the tall-shaped coil spring 4C is The spring 4C is smaller than the outer diameter of the sunset 3c that houses the spring 4C.
尚、 プランジャ 2 cのローラ 3 3 cの形状は第 1の実施例と同様とされる  The shape of the roller 33c of the plunger 2c is the same as that of the first embodiment.
[実施例 4 ] [Example 4]
第 8図に本発明の第 4の実施例を示す。  FIG. 8 shows a fourth embodiment of the present invention.
第 8図に示す例にあっては、 円錐型コイルばね 4に代えて、 鼓形ばね 4 D を使用している。  In the example shown in FIG. 8, a drum-shaped spring 4 D is used instead of the conical coil spring 4.
この例にあっては、 リテ一ナ 3 I dの中央部に設けた孔にプランジャ 2 d の先端部のくびれ部を配置する構成としている。  In this example, a constriction at the tip of the plunger 2d is arranged in a hole provided at the center of the retainer 3Id.
鼓形ばね 4 Dの一端 4 D aがポンプ本体 1によって支持され、 他端 4 D b がリテ一ナ 3 1 dによって支持される。 この構成にあっては、 カム追従機構 には、 荷重—たわみについてのばね特性が非線形特性を示す鼓形コイルばね 4 Dが使用され、 鼓形コィルばね 4 dの最大外径を収納する夕ぺヅト 3 dの 外径よりも小さくしている。  One end 4Da of the drum-shaped spring 4D is supported by the pump body 1, and the other end 4Db is supported by the retainer 31d. In this configuration, the cam follow-up mechanism uses a drum-shaped coil spring 4D whose load-deflection spring characteristic shows nonlinear characteristics, and accommodates the maximum outer diameter of the drum-shaped coil spring 4d.ヅ The diameter is smaller than the outer diameter of 3d.
[実施例 5 ]  [Example 5]
第 9図に本発明の第 5の実施例を示す。 第 9図に示す例にあっては、 円錐 型コィルばね 4に代え、 あるいは鼓状コィルばね 4 Dに代えて組み合わせコ ィルばね 4 E、 4 Fを使用する。 第 9図は、 カム追従機構として戻しばねを 2つ (4 E、 4 F ) を有する。 この例では外側の戻しばね 4 Eを太く、 内側 の戻しばね 4 Fを細径の線材で構成している。 このような構成では、 外側の ばね 4 Fをリテ一ナで受け止めるため、 リテ一ナだけ軽量^することができ 、 往復運動部の質量を軽くすることができる。 また、 一方のばねに非線型特 性を持たせることにより、 ばねの合力として上記実施例と同様の非線型特性 を得ることができ、 上記実施例と同様にジヤンビング防止とボンビングロス 低減、 容積効率向上の効果を得ることができる。 あるいは、 2つのばねのう ち、 一方のばねを、 ポンプの下死点の位置で浮かせれば (ばねの自然長より も取付け長さの方が長い) 、 ポンプの下死点近傍では 1つのばねで付勢し、 上死点近傍では 2つのばねで付勢することになり、 第 7図に示すような非線 型なばね特性を得ることができる。 FIG. 9 shows a fifth embodiment of the present invention. In the example shown in FIG. 9, combined coil springs 4E and 4F are used instead of the conical coil spring 4 or the hourglass coil spring 4D. FIG. 9 has two return springs (4E, 4F) as a cam follow-up mechanism. In this example, the outer return spring 4E is made thick and the inner return spring 4F is made of a thin wire. In such a configuration, since the outer spring 4F is received by the retainer, only the retainer can be lightened, and the mass of the reciprocating portion can be reduced. In addition, by giving one of the springs non-linear characteristics, the same non-linear characteristics as in the above embodiment can be obtained as the resultant force of the springs. The effect of reduction and improvement of volumetric efficiency can be obtained. Alternatively, if one of the two springs is lifted at the position of the bottom dead center of the pump (the installation length is longer than the natural length of the spring), one of the springs is located near the bottom dead center of the pump. It is urged by a spring and is urged by two springs near the top dead center, so that a non-linear spring characteristic as shown in FIG. 7 can be obtained.
この構成にあっては、 円筒状を呈する外径が大小の二つのばねを同心状に 組み合わせたものからなり、 内側のばねのカム側端は外側のばねのカム側端 より長手方向において内側に配設された形状とされたばね 4 E、 4 Fの組み 合わせが使用される。  In this configuration, it consists of a concentric combination of two cylindrical springs with large and small outside diameters, with the cam side end of the inner spring being more inward in the longitudinal direction than the cam side end of the outer spring. A combination of springs 4E, 4F that are arranged and used is used.
組み合わせコイルばね 4 E、 4 のー端4∑&、 4 F aはポンプ本体 9 0 によって、 他端 4 E b、 4 F bはリテ一ナ 3 1 eによって支持される。 いずれの場合においても、 ばね径の大きい端部をポンプボディの下端 9 1 側へ、 ばね径の小さい端部を夕ペット側へ配置する。 このとき、 夕ペット側 のばね径は、 夕ぺヅト径より小さい特徴が共通にある。 一般的に、 ばね定数 の大きなばねを設計する場合はばねの外径も大きく設計する必要がある。 従 つて、 ばねに係合するリテーナ 3 1や、 ばねを外覆する夕ペット 3も大きく 設計する必要があり、 重量が増加する。 しかし、 本発明を適用することによ り、 強いばね定数と小さな夕ぺット取り付け径を両立することができる。 本発明によれば、 小型でジヤンビングの防止効果が高く、 容積効率が高く 、 ボンビングロスの小さい高圧燃料ポンプを提供することができる。 また、 本発明によればカム追従機構として使用されるばねのカム側端の径を小さく しているために、 小さな形状の夕ペットを使用することができ、 小さい高圧 燃料ポンプを提供することができる。  The negative ends 4∑ &, 4Fa of the combined coil springs 4E, 4 are supported by the pump body 90, and the other ends 4Eb, 4Fb are supported by the retainers 31e. In either case, the end with the larger spring diameter should be placed on the lower end 91 side of the pump body, and the end with the smaller spring diameter should be placed on the evening pet side. At this time, the spring diameter on the evening pet side has a common feature that it is smaller than the evening diameter. In general, when designing a spring having a large spring constant, it is necessary to design a spring with a large outer diameter. Therefore, the retainer 31 that engages with the spring and the evening pet 3 that covers the spring also need to be designed large, and the weight increases. However, by applying the present invention, both a strong spring constant and a small sunset mounting diameter can be achieved. According to the present invention, it is possible to provide a high-pressure fuel pump that is small, has a high effect of preventing jumping, has a high volumetric efficiency, and has a small bombing loss. Further, according to the present invention, the diameter of the cam side end of the spring used as the cam follow-up mechanism is reduced, so that a small-sized evening pet can be used, and a small high-pressure fuel pump can be provided. it can.

Claims

請 求 の 範 囲 The scope of the claims
1 . プランジャと、 該プランジャに往復運動駆動力を与えるカム機構と、 前 記プランジャを前記カム機構に追従して動作させるカム追従機構を備えた高 圧燃料ポンプにおいて、  1. A high-pressure fuel pump comprising a plunger, a cam mechanism for applying reciprocating driving force to the plunger, and a cam follow-up mechanism for operating the plunger to follow the cam mechanism.
前記カム追従機構は、 荷重—たわみについてのばね特性が、 前記プランジ ャの変位に対する付勢力の変化量の害 []合について、 前記ブランジャの上死点 状態における方が下死点状態における方よりも大きくされた非線形特性を示 すばねを備えること  The cam follow-up mechanism may be configured such that the spring characteristic with respect to load-deflection is such that, when the amount of change in the biasing force with respect to the displacement of the plunger is harmful [], the plunger is in the top dead center state than in the bottom dead center state. A spring exhibiting increased nonlinear characteristics
を特徴とする高圧燃料ポンプ。  A high pressure fuel pump characterized by the following.
2 . プランジャと、 該プランジャに往復運動駆動力を与えるカム機構と、 前 記ブランジャを前記力ム機構に追従して動作させる力ム追従機構を備えた高 圧燃料ポンプにおいて、 2. A high-pressure fuel pump including a plunger, a cam mechanism for applying reciprocating driving force to the plunger, and a force following mechanism for operating the plunger to follow the force mechanism.
前記カム追従機構は、 荷重—たわみについてのばね特性が非線形特性を有 するばねを備え、 前記カム機構により付勢されて往復運動する夕ぺヅトを備 え、 該夕ぺヅトが前記ばねの一端側を収納し、 前記ばねを載置する部位にお いて前記夕ぺットの外径は、 前記ばねの最大外径よりも小さいことを特徴と する高圧燃料ポンプ。  The cam follow-up mechanism includes a spring whose load-deflection spring characteristic has a non-linear characteristic, and includes a reciprocating member that is urged by the cam mechanism to reciprocate. A high-pressure fuel pump, wherein one end of the spring is housed and an outer diameter of the sunset is smaller than a maximum outer diameter of the spring at a portion where the spring is mounted.
3 . 特許請求の範囲第 1項または第 2項において、 前記ばねは円錐型コイル ばねであることを特徴とする高圧燃料ポンプ。  3. The high-pressure fuel pump according to claim 1, wherein the spring is a conical coil spring.
4 . 特許請求の範囲第 1項または第 2項において、 前記ばねは竹の子ばねで あることを特徴とする高圧燃料ポンプ。 4. The high-pressure fuel pump according to claim 1 or 2, wherein the spring is a bamboo shoot spring.
5 . 特許請求の範囲第 1項または第 2項において、 前記ばねはタル型コイル ばねであることを特徴とする高圧燃料ポンプ。  5. The high-pressure fuel pump according to claim 1, wherein the spring is a tall coil spring.
6 . 特許請求の範囲第 1項または第 2項において、 前記ばねは、 円筒状を呈 する外径が大小の 2つのばねを同心状に組み合わせたものからなり、 内側の ばねのカム側端は外側のばねのカム側端より長手方向において内側に配設さ れた形状とされたことを特徴とする高圧燃料ポンプ。  6. In claim 1 or claim 2, the spring is formed by concentrically combining two cylindrical springs having large and small outer diameters, and a cam-side end of the inner spring is provided. A high-pressure fuel pump characterized in that it has a shape disposed inward in the longitudinal direction from the cam-side end of the outer spring.
7 . プランジャと、 該プランジャに往復運動駆動力を与えるカムを有する力 ム機構と、 前記ブランジャを前記力ム機構に追従して動作させる力ム追従機 構と、 前記カム機構により付勢されて往復運動する夕ぺットを備えた高圧燃 料ポンプにおいて、 7. A plunger, a force mechanism having a cam that applies reciprocating driving force to the plunger, and a force follower that operates the plunger following the force mechanism. A high-pressure fuel pump having a sunset reciprocatingly urged by the cam mechanism,
前記カム追従機構は、 前記夕ぺットを前記カム機構に接触させる付勢力を 与えるものであって、 該付勢力の増減は、 プランジャの上死点近傍付近を除 いてカムのリフト曲線の変位量に追随し、 プランジャの上死点近傍付近では 前記変位量に加算される付勢力を与える付勢力増大手段を有することを特徴 とする高圧燃料ポンプ。  The cam follower mechanism provides an urging force for bringing the sunset into contact with the cam mechanism, and the increase or decrease in the urging force depends on the displacement of the lift curve of the cam except near the top dead center of the plunger. A high-pressure fuel pump comprising an urging force increasing means for following the amount and providing an urging force near the top dead center of the plunger to be added to the displacement amount.
8 . プランジャと、 該プランジャに往復運動駆動力を与えるカムを有する力 ム機構と、 前記プランジャを前記カム機構に追従して動作させるカム追従機 構と、 前記カム機構により付勢されて往復運動する夕ぺットを備えた高圧燃 料ポンプにおいて、  8. A plunger, a force mechanism having a cam for providing a reciprocating motion driving force to the plunger, a cam follower mechanism for operating the plunger to follow the cam mechanism, and a reciprocating motion urged by the cam mechanism. High-pressure fuel pump with a
前記カム追従機構は、 前記夕ぺヅトを前記カム機構に接触させる付勢力を 与えるばねを備え、 該ばねの付勢力の増減は、 プランジャの上死点近傍付近 を除いてカムのリフ卜曲線の変位量に追随し、 プランジャの上死点近傍付近 では前記変位量に加算される付勢力を与える非線形特性とされたことを特徴 とする高圧燃料ポンプ。  The cam follow-up mechanism includes a spring that applies an urging force for bringing the evening into contact with the cam mechanism, and the urging force of the spring increases or decreases according to a lift curve of the cam except near the top dead center of the plunger. A high-pressure fuel pump characterized by a non-linear characteristic that follows the amount of displacement of the plunger and provides a biasing force added to the amount of displacement near the top dead center of the plunger.
PCT/JP2004/006790 2004-05-13 2004-05-13 High-pressure fuel pump WO2005111406A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519158A JPWO2005111406A1 (en) 2004-05-13 2004-05-13 High pressure fuel pump
PCT/JP2004/006790 WO2005111406A1 (en) 2004-05-13 2004-05-13 High-pressure fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/006790 WO2005111406A1 (en) 2004-05-13 2004-05-13 High-pressure fuel pump

Publications (1)

Publication Number Publication Date
WO2005111406A1 true WO2005111406A1 (en) 2005-11-24

Family

ID=35394221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006790 WO2005111406A1 (en) 2004-05-13 2004-05-13 High-pressure fuel pump

Country Status (2)

Country Link
JP (1) JPWO2005111406A1 (en)
WO (1) WO2005111406A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892410A1 (en) * 2005-06-08 2008-02-27 Bosch Corporation Fuel feed pump and tappet structure
JP2012154301A (en) * 2011-01-28 2012-08-16 Denso Corp High pressure pump
KR101182130B1 (en) 2010-08-23 2012-09-12 (주)모토닉 High presure fuel pump for direct injection type gasoline engine
EP3176421A1 (en) * 2015-12-03 2017-06-07 Aktiebolaget SKF Cam follower roller device with reinforced tappet body
CN108150328A (en) * 2017-12-25 2018-06-12 南岳电控(衡阳)工业技术股份有限公司 A kind of high-power monomer pump plunger
US11401883B2 (en) 2020-04-03 2022-08-02 Ford Global Technologies, Llc System and method for direct injection fuel pump control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919521A (en) * 1972-06-01 1974-02-21
JPH02169856A (en) * 1988-12-21 1990-06-29 Diesel Kiki Co Ltd Fuel injection pump
JPH09209781A (en) * 1996-02-09 1997-08-12 Kubota Corp Fuel supply device for diesel engine
JP2000008997A (en) * 1998-06-29 2000-01-11 Hitachi Ltd Variable displacement high pressure fuel pump and fuel supply control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919521A (en) * 1972-06-01 1974-02-21
JPH02169856A (en) * 1988-12-21 1990-06-29 Diesel Kiki Co Ltd Fuel injection pump
JPH09209781A (en) * 1996-02-09 1997-08-12 Kubota Corp Fuel supply device for diesel engine
JP2000008997A (en) * 1998-06-29 2000-01-11 Hitachi Ltd Variable displacement high pressure fuel pump and fuel supply control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892410A1 (en) * 2005-06-08 2008-02-27 Bosch Corporation Fuel feed pump and tappet structure
EP1892410A4 (en) * 2005-06-08 2008-11-12 Bosch Corp Fuel feed pump and tappet structure
KR101182130B1 (en) 2010-08-23 2012-09-12 (주)모토닉 High presure fuel pump for direct injection type gasoline engine
JP2012154301A (en) * 2011-01-28 2012-08-16 Denso Corp High pressure pump
EP3176421A1 (en) * 2015-12-03 2017-06-07 Aktiebolaget SKF Cam follower roller device with reinforced tappet body
US10030548B2 (en) 2015-12-03 2018-07-24 Aktiebolaget Skf Cam follower roller device with reinforced tappet body
CN108150328A (en) * 2017-12-25 2018-06-12 南岳电控(衡阳)工业技术股份有限公司 A kind of high-power monomer pump plunger
US11401883B2 (en) 2020-04-03 2022-08-02 Ford Global Technologies, Llc System and method for direct injection fuel pump control

Also Published As

Publication number Publication date
JPWO2005111406A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US8820300B2 (en) High pressure fuel supply pump
US20090126688A1 (en) Fuel pump control for a direct injection internal combustion engine
US7827967B2 (en) Low noise fuel pump with variable pressure regulation
US7610902B2 (en) Low noise fuel injection pump
EP1013922A2 (en) Variable-delivery high-pressure fuel pump
US20100206252A1 (en) High-pressure pump for a fuel system of an internal combustion engine
US7575419B2 (en) Fuel pump for an internal combustion engine
JP4010175B2 (en) Internal combustion engine fuel pump
US5520523A (en) Diaphragm-type pump
JP2006207451A (en) Fuel pump and delivery valve equipped in fuel pump
US6874474B2 (en) Single-die injection pump for a common rail fuel injection system
WO2005111406A1 (en) High-pressure fuel pump
JP5682335B2 (en) High pressure pump
US6637410B2 (en) High pressure fuel supply apparatus
US11035356B2 (en) High pressure pump and method for compressing a fluid
US20020146337A1 (en) Piston pump for increasing pressure
JP5648620B2 (en) High pressure fuel pump
WO2000055495A1 (en) Fuel feed pump
JPS5951156A (en) Fuel injection device of internal-combustion engine
JP3800932B2 (en) High pressure fuel pump
JP3693463B2 (en) Variable discharge high pressure pump
KR101540502B1 (en) Hydraulic pump, in particular a fuel pump
US20030222154A1 (en) High pressure fuel supply apparatus
KR20110062122A (en) High pressure fuel pump
JP2006170097A (en) Fuel pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006519158

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase