WO2000054353A1 - Method for operating a fuel cell facility and corresponding fuel cell facility - Google Patents

Method for operating a fuel cell facility and corresponding fuel cell facility Download PDF

Info

Publication number
WO2000054353A1
WO2000054353A1 PCT/DE2000/000509 DE0000509W WO0054353A1 WO 2000054353 A1 WO2000054353 A1 WO 2000054353A1 DE 0000509 W DE0000509 W DE 0000509W WO 0054353 A1 WO0054353 A1 WO 0054353A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
drive motor
cell system
water
air compressor
Prior art date
Application number
PCT/DE2000/000509
Other languages
German (de)
French (fr)
Inventor
Willi Bette
Christian Merkel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2000054353A1 publication Critical patent/WO2000054353A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a method for operating a fuel cell system and to a fuel cell system.
  • the technical implementation of the principle of the fuel cell has led to different solutions, namely with different types of electrolytes and with operating temperatures between 80 ° C and 1000 ° C. Depending on their operating temperature, the fuel cells are divided into low, medium and high temperature fuel cells, which in turn differ from one another in different technical embodiments.
  • a fuel cell alone supplies an operating voltage of less than one volt.
  • a large number of fuel cells are therefore stacked and combined to form a fuel line block.
  • Such a block is used in the specialist literature also called “stack *.
  • the operating voltage of a fuel cell system can be a few 100 volts.
  • One or more fuel cells cannot be operated by themselves. They are therefore operated in a fuel cell system, which comprises a fuel cell block, an operating part and an electronic system control.
  • the operating section includes devices for supplying the fuel cells with operating gases, ie with oxygen - or air - and fuel gas.
  • the operating part includes devices for product water removal, for heat removal, and the discharge of the electrical current generated in the fuel cells.
  • the electronic system control controls the interaction of the various facilities of the fuel cell system.
  • a fuel cell system works particularly effectively and inexpensively when its overall efficiency is high.
  • the overall efficiency of a fuel cell system is made up of the electrical and thermal efficiency of the system.
  • the electrical and thermal efficiency results from the electrical and thermal energy generated and usable per quantity of fuel.
  • a high overall efficiency is achieved if much of the electrical and thermal energy generated is used for applications outside the fuel cell system. As a rule, priority is given to the generation of electrical energy because electrical energy is economically more valuable than thermal energy.
  • auxiliary energy is no longer available for applications outside the fuel cell system.
  • a high power consumption need of the drives i.e. a high demand for auxiliary energy, thus lowers the electrical efficiency of a fuel cell system.
  • the ratio of auxiliary energy to the generated electrical energy is particularly unfavorable for small fuel cell systems with an output of just a few kW, which can be operated in single-family houses, for example.
  • the auxiliary energy required must be reduced to a minimum, for example by reducing the power of the drives to a minimum.
  • the invention is based on the object of specifying a method for operating a fuel cell system in which a high electrical efficiency of the fuel cell system is achieved.
  • the invention is also based on the object of specifying a fuel cell system which has a high electrical efficiency.
  • the first-mentioned object is achieved by a method for operating a fuel cell system which comprises a fuel cell block, an air compressor, a water pump and an electronic system control, in which, according to the invention, the air compressor and the water pump are driven by a common drive motor.
  • the invention is based on the consideration that the power consumption, that is to say the need for auxiliary energy, of components of a fuel cell system can be reduced by two components, which were previously each driven by their own drive motor, being Drive motor to be driven.
  • This common drive motor must then be able to perform better than each of two separate drive motors.
  • the power loss of a common drive motor which generally results from frictional losses, is less than the power loss of two separate drive motors combined. Therefore, the electricity consumption of the common drive motor less than the power consumption of two separate drive motors combined.
  • the invention is based on the consideration that the speed of the drive of a water pump, for example a cooling water circulating pump or a pump for product water removal, which is currently required in the operation of the fuel cell system, is dependent on the current output of the fuel cell block. If the fuel cell block provides a high output, the heat generation in the fuel cell block is also high.
  • the required speed ie the required output, for example of a cooling water circulating pump, which pumps the cooling water of a cooling water circuit through the fuel cell block, is also correspondingly high.
  • the adjustment of the speed of a drive of a water pump to the power currently provided by the fuel cell block is usually dispensed with in conventional fuel cell systems because of the additionally required speed controller.
  • Such a drive is usually operated at a preset, high speed during the operation of the fuel cell system.
  • the drives use up an unnecessarily large amount of energy.
  • a power-dependent speed regulation of the drive thus leads to a reduction in the power consumption of the drive.
  • the invention is based on the consideration that the control of the power output of a fuel cell block takes place via the supply amount of air or oxygen into the fuel cell block.
  • the supply amount of air is usually controlled by a speed controller of the drive of the air compressor of the fuel cell system.
  • a speed controller of the drive of the air compressor of the fuel cell system When the air compressor and a water pump are driven by a common, speed-controlled drive motor, a double advantage is achieved: without an additional speed controller, the water is serpump operated at a speed adapted to the current output of the fuel cell block. And two drive motors are replaced by one.
  • the use of a common drive motor thus leads to the advantage described above of the lower power consumption of the drive motor compared to the use of two conventional motors.
  • the invention therefore reduces the consumption of auxiliary energy by components of the fuel cell system and thus increases the electrical efficiency of the fuel cell system.
  • the motor for the air compressor and the motor for the water pump are the main consumers of electrical energy.
  • the energy required to operate the air compressor and water pump is up to a third of the electrical energy generated by the fuel cell system.
  • the combination of the drive motors of the air compressor and water pump is therefore associated with a particularly high advantage, particularly in the case of small, in particular mobile, fuel cell systems.
  • the weight of the fuel cell system plays an important role, particularly in a fuel cell system in a vehicle.
  • the invention can also bring an important advantage here, since a common drive motor is lighter than two separate small motors combined.
  • the speed of the drive motor is controlled by the electronic system control of the fuel cell system.
  • the electronic system control controls, for example, the speed controller of the drive motor.
  • the power output of the fuel line block is usually controlled by the electronic system control. Controlling the speed of the common drive motor by the electronic system control thus has the advantage that it is direct can be coupled to the power output of the fuel cell block.
  • the speed of the drive motor is expediently controlled by a predetermined power control variable, which also controls the electrical power output of the fuel cell block.
  • This power control variable is, for example, the current setpoint of the fuel cell block or the internal resistance of a consumer connected to the fuel cell system or the accelerator pedal position of a vehicle driven by the fuel cell system.
  • the water pump advantageously pumps the water of a cooling water circuit. In this way it is achieved that the pumping speed of such a cooling water circulation pump is coupled to the power output of the fuel cell block. This makes sense because the heat emission from the fuel cell block is directly dependent on the necessary cooling.
  • cooling water is cooled by water from a heating water circuit which is thermally connected to the cooling water circuit.
  • the thermal connection is established, for example, by a heat exchanger.
  • the water in the heating water circuit is led, for example, through heating in a house.
  • the thermal energy stored in the cooling water is passed on to the water in the heating water circuit and thus made usable for heating, for example, a house.
  • the drive motor is cooled with water from the heating water circuit.
  • the heat generated in the drive motor is fed directly to the heating water circuit and thus made available.
  • a fuel cell system which, according to the invention, comprises a fuel cell block, an air compressor, a water pump, an electronic system control and a drive motor which is designed for the common drive of the air compressor and the water pump.
  • a fuel cell system can be operated with a high electrical efficiency in the manner described above.
  • the fuel cell block comprises PEM fuel cells.
  • PEM fuel cells are operated at a low operating temperature of around 80 ° C, have a favorable overload behavior and a long service life. In addition, they show a favorable behavior with fast load changes and can be operated with air instead of pure oxygen. All of these properties make PEM fuel cells particularly suitable for use in the mobile sector, such as for driving a wide variety of vehicles.
  • the figure shows a fuel cell system 1 in a highly simplified, schematic representation. It is intended for operation in a motor vehicle.
  • the fuel cell system 1 comprises a fuel cell block
  • an air compressor 4 a water pump 6, which pumps the water of a cooling water circuit 8, a common drive motor 10 for the air compressor 4 and the water pump 6, an electronic system controller 12 and a heat exchanger 14, which thermally cools the cooling water circuit 8 with a heating water circuit 16 connects.
  • the common drive motor 10 drives the water pump 6 and the air compressor 4.
  • the speed of the drive motor 10 is controlled by the electronic system controller 12, which gives a control signal to the speed controller of the drive motor 10, not shown in the drawing.
  • the electronic system controller 12 sends the control signal as a function of a power control variable to the drive motor 10, which also controls the electronic power output of the fuel cell block 2.
  • the power control variable thus also controls the speed of the drive motor 10.
  • the drive motor 10 is cooled by the water from the colder return of the heating water circuit 16.
  • the water is piped to and from the drive motor 10.
  • the lines are not shown in the figure.
  • the air compressor 4 is a liquid ring compressor. It sucks in air for the operation of the fuel cells of the fuel cell block 2 via an operating air inlet 18, compresses it and supplies it to the fuel cell block 2. Used operating air is conducted out of the fuel cell system through the operating air path 20. In the liquid ring compressor 4, the air is not only compressed to a predetermined density, which has an advantageous effect on the operation of the fuel cells, but is also humidified at the same time. This moistening considerably extends the life of the electrolyte membranes that are used in the so-called PEM fuel cells (polymer electrolyte membrane) of the fuel cell block 2.
  • a setpoint for the current is formed and thereby the speed of the drive motor 10 are determined.
  • a setpoint for the current to be generated by the fuel cell system 1 is predetermined, such a setpoint ultimately causing the system controller 12 to output the power of the
  • Fuel cell system 1 and the speed of the drive motor 10 are specified accordingly.
  • the air compressor 4 and the water pump 6 are driven by a common speed-controlled drive motor 10.
  • Auxiliary energy consumption of the air compressor 4 and the water pump 6 is considerably reduced compared to conventional operating methods.
  • little of the electrical energy generated by the fuel cell block 2 is consumed by the fuel cell system 1 as auxiliary energy itself.
  • a fuel cell system operated with this method therefore has a high electrical efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Electric efficiency of a fuel cell facility (1) is given by the electric energy that is generated per fuel cell quantity and that can be used outside the fuel cell facility (1). The invention relates to a method, wherein auxiliary energy consumption needed to operate the fuel cell facility (1) is reduced and the electric energy that can be used outside the fuel cell facility (1) is augmented. According to said method, the air compressor (4) and a water pump (6) of the fuel cell facility (1) are driven by a common torque controlled drive motor (10).

Description

Beschreibungdescription
Verfahren zum Betreiben einer Brennstoffzellenanlage und BrennstoffZeilenanlageMethod for operating a fuel cell system and fuel cell system
Die Erfindung bezieht sich auf ein Verfahren zum Betreiben einer Brennstoffzellenanlage und auf eine Brennstoffzellenanlage.The invention relates to a method for operating a fuel cell system and to a fuel cell system.
Es ist bekannt, daß bei der Elektrolyse von Wasser die Wassermoleküle durch elektrischen Strom in Wasserstoff (H2) und Sauerstoff (02) zerlegt werden. In einer Brennstoffzelle läuft dieser Vorgang in umgekehrter Richtung ab. Durch eine elektrochemische Verbindung von Wasserstoff und Sauerstoff zu Wasser entsteht elektrischer Strom mit hohem Wirkungsgrad und, wenn als Brenngas reiner Wasserstoff eingesetzt wird, ohne Emission von Schadstoffen und Kohlendioxid (C02) . Auch mit einem technischen Brenngas, beispielsweise Erdgas oder Kohlegas und mit Luft anstelle von reinem Sauerstoff, wobei die Luft zusätzlich mit Sauerstoff angereichert sein kann, erzeugt eine Brennstoffzelle deutlich weniger Schadstoffe und weniger Kohlendioxid als andere Energieerzeuger, die mit fossilen Energieträgern arbeiten.It is known that in the electrolysis of water, the water molecules are broken down into hydrogen (H 2 ) and oxygen (0 2 ) by electric current. In a fuel cell, this process takes place in the opposite direction. An electrochemical combination of hydrogen and oxygen to water creates electrical power with high efficiency and, if pure hydrogen is used as the fuel gas, without emission of pollutants and carbon dioxide (C0 2 ). Even with a technical fuel gas, such as natural gas or coal gas and with air instead of pure oxygen, where the air can also be enriched with oxygen, a fuel cell generates significantly less pollutants and less carbon dioxide than other energy producers that work with fossil fuels.
Die technische Umsetzung des Prinzips der Brennstoffzelle hat zu unterschiedlichen Lösungen und zwar mit verschiedenartigen Elektrolyten und mit Betriebstemperaturen zwischen 80°C und 1000°C geführt. In Abhängigkeit von ihrer Betriebstemperatur werden die Brennstoffzellen in Nieder-, Mittel- und Hochtem- peratur-Brennstoffzellen eingeteilt, die sich wiederum durch verschiedene technische Ausführungsformen voneinander unterscheiden.The technical implementation of the principle of the fuel cell has led to different solutions, namely with different types of electrolytes and with operating temperatures between 80 ° C and 1000 ° C. Depending on their operating temperature, the fuel cells are divided into low, medium and high temperature fuel cells, which in turn differ from one another in different technical embodiments.
Eine Brennstoffzelle alleine liefert eine Betriebsspannung von unter einem Volt. Daher werden eine Vielzahl von Brennstoffzellen gestapelt und zu einem BrennstoffZeilenblock zusammengefaßt. In der Fachliteratur wird ein solcher Block auch „Stack* genannt. Durch das In-Reihe-Schalten der Brennstoffzellen des BrennstoffZellenblocks kann die Betriebsspannung einer Brennstoffzellenanlage einige 100 Volt betragen.A fuel cell alone supplies an operating voltage of less than one volt. A large number of fuel cells are therefore stacked and combined to form a fuel line block. Such a block is used in the specialist literature also called “stack *. By connecting the fuel cells of the fuel cell block in series, the operating voltage of a fuel cell system can be a few 100 volts.
Eine oder mehrere Brennstoffzellen sind für sich alleine nicht betreibbar. Sie werden daher in einer Brennstoff ellenanlage betrieben, die einen Brennstoffzellenblock, einen Betriebsteil und eine elektronische Anlagensteuerung umfaßt. Der Betriebsteil umfaßt Einrichtungen für die Versorgung der Brennstoffzellen mit Betriebsgasen, also mit Sauerstoff - o- der Luft - und Brenngas. Ferner umfaßt der Betriebsteil Einrichtungen für die Produktwasserabfuhr, für die Wärmeabfuhr, und die Ableitung des in den Brennstoffzellen erzeugten elektrischen Stroms. Die elektronische Anlagensteuerung steuert das Zusammenspiel der verschiedenen Einrichtungen der Brennstoffzellenanlage .One or more fuel cells cannot be operated by themselves. They are therefore operated in a fuel cell system, which comprises a fuel cell block, an operating part and an electronic system control. The operating section includes devices for supplying the fuel cells with operating gases, ie with oxygen - or air - and fuel gas. Furthermore, the operating part includes devices for product water removal, for heat removal, and the discharge of the electrical current generated in the fuel cells. The electronic system control controls the interaction of the various facilities of the fuel cell system.
Eine Brennstoffzellenanlage arbeitet dann besonders effektiv und kostengünstig, wenn ihr Gesamtwirkungsgrad hoch ist. Der Gesamtwirkungsgrad einer Brennstoffzellenanlage setzt sich additiv aus dem elektrischen und dem thermischen Wirkungsgrad der -Anlage zusammen. Der elektrische und thermische Wirkungsgrad ergibt sich aus der pro Menge Brennstoff erzeugten und nutzbaren elektrischen bzw. thermischen Energie. Ein hoher Gesamtwirkungsgrad wird erreicht, wenn viel der erzeugten e- lektrischen und thermischen Energie für Anwendungen außerhalb der Brennstoffzellenanlage nutzbar gemacht wird. Hierbei wird in der Regel der Erzeugung von elektrischer Energie der Vorrang gegeben, weil elektrische Energie gegenüber thermischer Energie ökonomisch wertvoller ist.A fuel cell system works particularly effectively and inexpensively when its overall efficiency is high. The overall efficiency of a fuel cell system is made up of the electrical and thermal efficiency of the system. The electrical and thermal efficiency results from the electrical and thermal energy generated and usable per quantity of fuel. A high overall efficiency is achieved if much of the electrical and thermal energy generated is used for applications outside the fuel cell system. As a rule, priority is given to the generation of electrical energy because electrical energy is economically more valuable than thermal energy.
Manche Komponenten einer Brennstoffzellenanlage, beispielsweise der -Antrieb einer Wasserpumpe oder eines Luftverdichters oder auch die elektronische Anlagensteuerung verbrauchen während ihres Betriebs elektrische Energie. Diese sogenannte Hilfsenergie steht für Anwendungen außerhalb der Brennstoffzellenanlage nicht mehr zur Verfügung. Ein hoher Stromver- brauch der Antriebe, also ein hoher Bedarf an Hilfsenergie, senkt somit den elektrischen Wirkungsgrad einer Brennstoffzellenanlage. Besonders bei kleinen BrennstoffZellenanlagen mit einer Leistung von nur wenigen kW, die beispielsweise in Einfamilienhäusern betrieben werden können, ist das Verhältnis von Hilfsenergie zur erzeugten elektrischen Energie ungünstig. Besonders bei diesen Anlagen ist daher die benötigte Hilfsenergie auf ein Minimum zu senken, beispielsweise durch die Reduzierung der Leistung der -Antriebe auf ein Minimum.Some components of a fuel cell system, for example the drive of a water pump or an air compressor or the electronic system control, consume electrical energy during their operation. This so-called auxiliary energy is no longer available for applications outside the fuel cell system. A high power consumption need of the drives, i.e. a high demand for auxiliary energy, thus lowers the electrical efficiency of a fuel cell system. The ratio of auxiliary energy to the generated electrical energy is particularly unfavorable for small fuel cell systems with an output of just a few kW, which can be operated in single-family houses, for example. With these systems, in particular, the auxiliary energy required must be reduced to a minimum, for example by reducing the power of the drives to a minimum.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Brennstoffzellenanlage anzugeben, bei dem ein hoher elektrischer Wirkungsgrad der Brennstoffzellenanlage erreicht wird. Der Erfindung liegt ferner die Aufgabe zugrun- de, eine Brennstoffzellenanlage anzugeben, die einen hohen elektrischen Wirkungsgrad aufweist.The invention is based on the object of specifying a method for operating a fuel cell system in which a high electrical efficiency of the fuel cell system is achieved. The invention is also based on the object of specifying a fuel cell system which has a high electrical efficiency.
Die erstgenannte Aufgabe wird von einem Verfahren zum Betreiben einer Brennstoffzellenanlage gelöst, die einen Brenn- stoffzellenblock, einen Luftverdichter, eine Wasserpumpe und eine elektronische Anlagensteuerung umfaßt, bei dem erfindungsgemäß der Luftverdichter und die Wasserpumpe von einem gemeinsamen Antriebsmotor angetrieben werden.The first-mentioned object is achieved by a method for operating a fuel cell system which comprises a fuel cell block, an air compressor, a water pump and an electronic system control, in which, according to the invention, the air compressor and the water pump are driven by a common drive motor.
Die Erfindung geht in einem ersten Schritt von der Überlegung aus, daß der Stromverbrauch, also der Bedarf an Hilfsenergie von Komponenten einer Brennstoffzellenanlage verringert werden kann, indem zwei Komponenten, die bisher jede von einem eigenen Antriebsmotor angetrieben wurden, von einem ge einsa- men -Antriebsmotor angetrieben werden. Dieser gemeinsame Antriebsmotor muß dann zwar eine höhere Leistung erbringen können, als jeder einzelne von zwei getrennten Antriebsmotoren. Die - in der Regel aus Reibungsverlusten resultierende - Verlustleistung eines gemeinsamen -Antriebsmotors ist jedoch ge- ringer als die Verlustleistung von zwei getrennten Antriebsmotoren zusammen. Daher ist der Stromverbrauch des gemeinsa- men Antriebsmotors geringer als der Stromverbrauch zweier getrennter -Antriebsmotoren zusammen.In a first step, the invention is based on the consideration that the power consumption, that is to say the need for auxiliary energy, of components of a fuel cell system can be reduced by two components, which were previously each driven by their own drive motor, being Drive motor to be driven. This common drive motor must then be able to perform better than each of two separate drive motors. However, the power loss of a common drive motor, which generally results from frictional losses, is less than the power loss of two separate drive motors combined. Therefore, the electricity consumption of the common drive motor less than the power consumption of two separate drive motors combined.
In einem zweiten Schritt geht die Erfindung von der Überle- gung aus, daß die im Betrieb der Brennstoffzellenanlage momentan geforderte Drehzahl des -Antriebs einer Wasserpumpe, beispielsweise einer Kühlwasserumwälzpumpe oder einer Pumpe für die Produktwasserabfuhr, von der momentan erbrachten Leistung des BrennstoffZellenblocks abhängig ist. Wird vom Brennstoffzellenblock große Leistung erbracht, so ist auch die Wärmeerzeugung im Brennstoffzellenblock hoch. Dementsprechend hoch ist auch die geforderte Drehzahl, also die geforderte Leistung beispielswiese einer Kühlwasserumwälzpumpe, die das Kühlwasser eines Kühlwasserkreislaufs durch den Brennstoffzellenblock pumpt. Auf die Anpassung der Drehzahl eines Antriebs einer Wasserpumpe an die vom Brennstoffzellenblock momentan erbrachte Leistung wird in herkömmlichen Brennstoffzellenanlagen wegen des zusätzlich erforderlichen Drehzahlstellers gewöhnlich verzichtet. Ein solcher -Antrieb wird in der Regel während des Betriebs der Brennstoffzellenanlage mit einer voreingestellten, hohen Drehzahl betrieben. Beim Schwachlastbetrieb der Brennstoffzellenanlage verbraucht der Antriebe unnötig viel Energie. Eine leistungsabhängige Drehzahlregulierung des Antriebs führt somit zu einer Verringerung des Stromverbrauchs des Antriebs .In a second step, the invention is based on the consideration that the speed of the drive of a water pump, for example a cooling water circulating pump or a pump for product water removal, which is currently required in the operation of the fuel cell system, is dependent on the current output of the fuel cell block. If the fuel cell block provides a high output, the heat generation in the fuel cell block is also high. The required speed, ie the required output, for example of a cooling water circulating pump, which pumps the cooling water of a cooling water circuit through the fuel cell block, is also correspondingly high. The adjustment of the speed of a drive of a water pump to the power currently provided by the fuel cell block is usually dispensed with in conventional fuel cell systems because of the additionally required speed controller. Such a drive is usually operated at a preset, high speed during the operation of the fuel cell system. During low-load operation of the fuel cell system, the drives use up an unnecessarily large amount of energy. A power-dependent speed regulation of the drive thus leads to a reduction in the power consumption of the drive.
Die Erfindung geht in einem dritten Schritt von der Überlegung aus, daß die Steuerung der Leistungsabgabe eines BrennstoffZellenblocks über die Zufuhrmenge an Luft oder Sauerstoff in den Brennstoffzellenblock erfolgt. Die Zufuhrmenge an Luft wird gewöhlicherweise durch einen Drehzahlsteller des -Antriebs des Luftverdichters der Brennstoffzellenanlage gesteuert. Bei Antrieb des Luftverdichters und einer Wasserpumpe durch einen gemeinsamen, drehzahlgesteuerten Antriebsmotor wird somit ein doppelten Vorteil erzielt: Ohne einen zusätzlichen Drehzahlsteller wird die Was- serpumpe mit einer an die momentane Leistung des Brennstoffzellenblocks angepaßten Drehzahl betrieben. Und zwei Antriebsmotoren werden durch einen ersetzt. Die Verwendung eines gemeinsamen Antriebsmotor führt somit zu dem jeweils oben beschriebenen Vorteil des geringeren Stromverbrauchs des Antriebsmotors gegenüber der Verwendung zweier herkömmlicher Motoren. Durch die Erfindung wird daher der Verbrauch an Hilfsenergie von Komponenten der Brennstoffzellenanlage verringert und somit der elektrische Wirkungsgrad der Brenn- stoffzellenanlage erhöht.In a third step, the invention is based on the consideration that the control of the power output of a fuel cell block takes place via the supply amount of air or oxygen into the fuel cell block. The supply amount of air is usually controlled by a speed controller of the drive of the air compressor of the fuel cell system. When the air compressor and a water pump are driven by a common, speed-controlled drive motor, a double advantage is achieved: without an additional speed controller, the water is serpump operated at a speed adapted to the current output of the fuel cell block. And two drive motors are replaced by one. The use of a common drive motor thus leads to the advantage described above of the lower power consumption of the drive motor compared to the use of two conventional motors. The invention therefore reduces the consumption of auxiliary energy by components of the fuel cell system and thus increases the electrical efficiency of the fuel cell system.
Bei einer Brennstoffzellenanlage, insbesondere einer Brennstoffzellenanlage für den mobilen Einsatz in einem Fahrzeug, sind der Motor für den Luftverdichter und der Motor für die Wasserpumpe die Hauptverbraucher elektrischer Energie. Die zum Betrieb des Luftverdichters und der Wasserpumpe benötigte Energie beträgt bis zu einem Drittel der von der Brennstoffzellenanlage erzeugten elektrischen Energie. Daher ist die Zusammenlegung der Antriebsmotoren von Luftverdichter und Wasserpumpe gerade bei kleinen, insbesondere mobilen Brennstoffzellenanlagen mit besonders hohem Vorteil verbunden.In a fuel cell system, in particular a fuel cell system for mobile use in a vehicle, the motor for the air compressor and the motor for the water pump are the main consumers of electrical energy. The energy required to operate the air compressor and water pump is up to a third of the electrical energy generated by the fuel cell system. The combination of the drive motors of the air compressor and water pump is therefore associated with a particularly high advantage, particularly in the case of small, in particular mobile, fuel cell systems.
Gerade bei einer Brennstoffzellenanlage in einem Fahrzeug spielt das Gewicht der Brennstoffzellenanlage eine wichtige Rolle. Auch hier kann die Erfindung einen wichtigen Vorteil erbringen, da ein gemeinsamer Antriebsmotor leichter ist als zwei separate kleiner Motoren zusammen.The weight of the fuel cell system plays an important role, particularly in a fuel cell system in a vehicle. The invention can also bring an important advantage here, since a common drive motor is lighter than two separate small motors combined.
In vorteilhafter Ausgestaltung der Erfindung wird die Dreh- zahl des Antriebsmotors von der elektronischen Anlagensteuerung der Brennstoffzellenanlage gesteuert. Die elektronische Anlagensteuerung steuert hierfür beispielsweise den Drehzahlsteller des Antriebsmotors an. Auch die Leistungsabgabe des BrennstoffZeilenblocks wird gewöhnlicherweise von der elek- tronischen Anlagensteuerung gesteuert. Eine Steuerung der Drehzahl des gemeinsamen Antriebsmotors durch die elektronische Anlagensteuerung hat somit den Vorteil, daß sie direkt an die Leistungsabgabe des BrennstoffZellenblocks koppelbar ist .In an advantageous embodiment of the invention, the speed of the drive motor is controlled by the electronic system control of the fuel cell system. For this purpose, the electronic system control controls, for example, the speed controller of the drive motor. The power output of the fuel line block is usually controlled by the electronic system control. Controlling the speed of the common drive motor by the electronic system control thus has the advantage that it is direct can be coupled to the power output of the fuel cell block.
Zweckmäßigerweise wird die Drehzahl des Antriebsmotors von einer vorgegebenen Leistungssteuergröße gesteuert, die auch die elektrische Leistungsabgabe des BrennstoffZellenblocks steuert. Diese Leistungssteuergröße ist beispielsweise der Stromsollwert des BrennstoffZeilenblocks oder der Innenwiderstand eines an die Brennstoffzellenanlage angeschlossenen Verbrauchers oder die Fahrpedalstellung eines von der Brennstoffzellenanlage angetriebenen Fahrzeugs.The speed of the drive motor is expediently controlled by a predetermined power control variable, which also controls the electrical power output of the fuel cell block. This power control variable is, for example, the current setpoint of the fuel cell block or the internal resistance of a consumer connected to the fuel cell system or the accelerator pedal position of a vehicle driven by the fuel cell system.
Mit Vorteil pumpt die Wasserpumpe das Wasser eines Kühlwasserkreislaufs. Auf diese Weise wird erreicht, daß die Pumpgeschwindigkeit einer solchen Kühlwasserumwälzpumpe an die Leistungsabgabe des BrennstoffZellenblocks gekoppelt wird. Dies ist sinnvoll, da die Wärmeabgabe des Brennstoffzellenblocks in direkter -Abhängigkeit zur nötigen Kühlung steht.The water pump advantageously pumps the water of a cooling water circuit. In this way it is achieved that the pumping speed of such a cooling water circulation pump is coupled to the power output of the fuel cell block. This makes sense because the heat emission from the fuel cell block is directly dependent on the necessary cooling.
Ein weiterer Vorteil läßt sich dadurch erreichen, daß das Kühlwasser von Wasser eines Heizwasserkreislaufs gekühlt wird, der mit dem Kühlwasserkreislauf thermisch verbunden ist. Die thermische Verbindung wird beispielsweise durch einen Wärmetauscher hergestellt. Das Wasser des Heizwasserkreislaufs wird beispielsweise durch Heizungen eines Hauses geleitet. Bei dieser Ausgestaltung der Erfindung wird die im Kühlwasser gespeicherte thermische Energie an das Wasser des Heizwasserkreislaufs weitergeleitet und somit für die Heizung beispielsweise eines Hauses nutzbar gemacht.Another advantage can be achieved in that the cooling water is cooled by water from a heating water circuit which is thermally connected to the cooling water circuit. The thermal connection is established, for example, by a heat exchanger. The water in the heating water circuit is led, for example, through heating in a house. In this embodiment of the invention, the thermal energy stored in the cooling water is passed on to the water in the heating water circuit and thus made usable for heating, for example, a house.
In bevorzugter Ausführungsform der Erfindung wird der Antriebsmotor mit Wasser aus dem Heizwasserkreislauf gekühlt. Auf diese Weise wird die im Antriebsmotor erzeugte Wärme direkt dem Heizwasserkreislauf zugeführt und somit nutzbar gemacht . Die zweitgenannte Aufgabe wird von einer -Brennstoffzellenanlage gelöst, die erfindungsgemäß einen Brennstoffzellenblock, einen Luftverdichter, eine Wasserpumpe, eine elektronische Anlagensteuerung und einen Antriebsmotor umfaßt, der für den gemeinsamen Antrieb des Luftverdichters und der Wasserpumpe ausgelegt ist. Eine solche Brennstoffzellenanlage ist auf die oben beschriebene Art und Weise mit einem hohen elektrischen Wirkungsgrad betreibbar.In a preferred embodiment of the invention, the drive motor is cooled with water from the heating water circuit. In this way, the heat generated in the drive motor is fed directly to the heating water circuit and thus made available. The second object is achieved by a fuel cell system which, according to the invention, comprises a fuel cell block, an air compressor, a water pump, an electronic system control and a drive motor which is designed for the common drive of the air compressor and the water pump. Such a fuel cell system can be operated with a high electrical efficiency in the manner described above.
In weiterer vorteilhafter Ausgestaltung der Erfindung umfaßt der Brennstoffzellenblock PEM-BrennstoffZellen. PEM-Brenn- stoffzellen werden bei einer niedrigen Betriebstemperatur von etwa 80°C betrieben, weisen ein günstiges Überlastverhalten und eine hohe Lebensdauer auf. Außerdem zeigen sie ein günstiges Verhalten bei schnellen Lastwechseln und sind mit Luft anstelle von reinem Sauerstoff betreibbar. Alle diese Eigenschaften machen PEM-Brennstoffzellen besonders geeignet für eine Anwendung im mobilen Bereich, wie beispielsweise für den Antrieb von Fahrzeuge verschiedenster Art.In a further advantageous embodiment of the invention, the fuel cell block comprises PEM fuel cells. PEM fuel cells are operated at a low operating temperature of around 80 ° C, have a favorable overload behavior and a long service life. In addition, they show a favorable behavior with fast load changes and can be operated with air instead of pure oxygen. All of these properties make PEM fuel cells particularly suitable for use in the mobile sector, such as for driving a wide variety of vehicles.
Ein Ausführungsbeispiel der Erfindung ist anhand einer Figur erläutert. Die Figur zeigt in stark vereinfachter, schemati- scher Darstellung eine Brennstoffzellenanlage 1. Sie ist für den Betrieb in einen Kraftfahrzeug vorgesehen. Die Brennstoffzellenanlage 1 umfaßt einen BrennstoffzellenblockAn embodiment of the invention is explained with reference to a figure. The figure shows a fuel cell system 1 in a highly simplified, schematic representation. It is intended for operation in a motor vehicle. The fuel cell system 1 comprises a fuel cell block
2, einen Luftverdichter 4, eine Wasserpumpe 6, die das Wasser eines Kühlwasserkreislaufs 8 pumpt, einen gemeinsamen -Antriebsmotor 10 für den Luftverdichter 4 und die Wasserpumpe 6, eine elektronische Anlagensteuerung 12 und einen Wärmetauscher 14, der den Kühlwasserkreislauf 8 mit einem Heizwasserkreislauf 16 thermisch verbindet.2, an air compressor 4, a water pump 6, which pumps the water of a cooling water circuit 8, a common drive motor 10 for the air compressor 4 and the water pump 6, an electronic system controller 12 and a heat exchanger 14, which thermally cools the cooling water circuit 8 with a heating water circuit 16 connects.
Der gemeinsame Antriebsmotor 10 treibt die Wasserpumpe 6 und den Luftverdichter 4 an. Die Drehzahl des Antriebsmotors 10 wird von der elektronischen Anlagensteuerung 12 gesteuert, die ein Steuersignal an den - in der Zeichnung nicht dargestellten - Drehzahlsteller des -Antriebsmotors 10 gibt. Die elektronische -Anlagensteuerung 12 gibt das Steuersignal in Abhängigkeit von einer Leistungssteuergröße an den Antriebsmotor 10, die auch die elektronische Leistungsabgabe des Brennstoffzellenblocks 2 steuert. Die Leistungssteuergröße steuert somit auch die Drehzahl des Antriebsmotors 10.The common drive motor 10 drives the water pump 6 and the air compressor 4. The speed of the drive motor 10 is controlled by the electronic system controller 12, which gives a control signal to the speed controller of the drive motor 10, not shown in the drawing. The electronic system controller 12 sends the control signal as a function of a power control variable to the drive motor 10, which also controls the electronic power output of the fuel cell block 2. The power control variable thus also controls the speed of the drive motor 10.
Der Antriebsmotor 10 wird vom Wasser des kälteren Rücklaufs des Heizwasserkreislaufs 16 gekühlt. Das Wasser wird Leitungen zum Antriebsmotor 10 hin- und wieder weggeführt. Die Leitungen sind in der Figur nicht dargestellt.The drive motor 10 is cooled by the water from the colder return of the heating water circuit 16. The water is piped to and from the drive motor 10. The lines are not shown in the figure.
Der Luftverdichter 4 ist ein Flüssigkeitsringverdichter. Er saugt über einen Betriebsluftzuweg 18 Luft für den Betrieb der Brennstoffzellen des Brennstoffzellenblocks 2 an, verdichtet sie und führt sie den Brennstoffzellenblock 2 zu. Durch den Betriebsluftabweg 20 wird verbrauchte Betriebsluft aus der Brennstoffzellenanlage heraus geleitet. Im Flüssigkeitsringverdichter 4 wird die Luft nicht nur auf eine vorgegebene Dichte verdichtet, was sich vorteilhaft auf den Betrieb der Brennstoffzellen auswirkt, sondern auch gleichzeitig befeuchtet. Durch diese Befeuchtung wird eine erhebliche Verlängerung der Lebensdauer der Elektrolytmembranen erreicht, die in den sogenannten PEM-BrennstoffZellen (Polymer Electrolyte Membrane) des Brennstoffzellenblocks 2 eingesetzt werden.The air compressor 4 is a liquid ring compressor. It sucks in air for the operation of the fuel cells of the fuel cell block 2 via an operating air inlet 18, compresses it and supplies it to the fuel cell block 2. Used operating air is conducted out of the fuel cell system through the operating air path 20. In the liquid ring compressor 4, the air is not only compressed to a predetermined density, which has an advantageous effect on the operation of the fuel cells, but is also humidified at the same time. This moistening considerably extends the life of the electrolyte membranes that are used in the so-called PEM fuel cells (polymer electrolyte membrane) of the fuel cell block 2.
Weitere Komponenten der Brennstoffzellenanlage 1 wie beispielsweise Wärmetauscher im Luftabweg 20, Brenngaszu- und abweg, Wasserabscheider und weitere Pumpen sind der Übersichtlichkeit halber nicht in der Figur dargestellt.Further components of the fuel cell system 1 such as, for example, heat exchangers in the air outlet 20, fuel gas inlet and outlet, water separators and further pumps are not shown in the figure for the sake of clarity.
Ferner sei darauf hingewiesen, daß die Begriffe *Anlagensteuerung" und ΛΛLeistungssteuergröße" die Verwendung von Regelkreisen nicht ausschließt. In einem einfachen Fall kann also direkt ein Leistungssollwert vorgegeben werden, aus dem nach einem mathematischen Steuergesetz der Sollwert für die Drehzahl des Antriebsmotors 10 gebildet wird. Ebenso kann aber z.B. auch die Spannung gemessen, aus demIt should also be pointed out that the terms * system control "and ΛΛ output control variable " do not exclude the use of control loops. In a simple case, a power setpoint can thus be specified directly, from which the setpoint for, according to a mathematical control law the speed of the drive motor 10 is formed. Likewise, the voltage from which the
Leistungssollwert und der Spannung ein Sollwert für den Strom gebildet und dadurch die Drehzahl des Antriebsmotors 10 bestimmt werden. Außerdem kann z.B. ein Sollwert für den von der Brennstoffzellenanlage 1 zu erzeugende Strom vorgegeben werden, wobei ein solcher Sollwert letztlich bewirkt, daß von der Anlagensteuerung 12 die Leistung derPower setpoint and the voltage, a setpoint for the current is formed and thereby the speed of the drive motor 10 are determined. In addition, e.g. a setpoint for the current to be generated by the fuel cell system 1 is predetermined, such a setpoint ultimately causing the system controller 12 to output the power of the
Brennstoffzellenanlage 1 und die Drehzahl des Antriebsmotors 10 entsprechend vorgegeben werden.Fuel cell system 1 and the speed of the drive motor 10 are specified accordingly.
In diesem Ausführungsbeispiel der Erfindung wird der Luftverdichter 4 und die Wasserpumpe 6 von einen gemeinsamen drehzahlgesteuerten -Antriebsmotor 10 angetrieben. Durch dieses Betriebsverfahren der Brennstoffzellenanlage 1 wird derIn this exemplary embodiment of the invention, the air compressor 4 and the water pump 6 are driven by a common speed-controlled drive motor 10. Through this operating method of the fuel cell system 1
Hilfsenergieverbrauch des Luftverdichters 4 und der Wasserpumpe 6 gegenüber herkömmlichen Betriebsverfahren erheblich gesenkt. Es wird somit wenig der vom Brennstoffzellenblock 2 erzeugten elektrischen Energie von der Brennstoffzellenanlage 1 als Hilfsenergie selber verbraucht. Eine mit diesem Verfahren betriebene Brennstoffzellenanlage weist daher einen hohen elektrischen Wirkungsgrad auf. Auxiliary energy consumption of the air compressor 4 and the water pump 6 is considerably reduced compared to conventional operating methods. Thus, little of the electrical energy generated by the fuel cell block 2 is consumed by the fuel cell system 1 as auxiliary energy itself. A fuel cell system operated with this method therefore has a high electrical efficiency.

Claims

Patentansprüche claims
1. Verfahren zum Betreiben einer Brennstoffzellenanlage (1), die einen Brennstoffzellenblock (2), einen Luftverdichter (4), eine Wasserpumpe (6) und eine elektronische Anlagensteuerung (12) umfaßt, bei dem der Luftverdichter (4) und die Wasserpumpe (6) von einem gemeinsamen Antriebsmotor (10) angetrieben werden.1. A method for operating a fuel cell system (1), which comprises a fuel cell block (2), an air compressor (4), a water pump (6) and an electronic system controller (12), in which the air compressor (4) and the water pump (6 ) are driven by a common drive motor (10).
2. Verfahren nach Anspruch 1, bei dem die Drehzahl des2. The method according to claim 1, wherein the speed of the
Antriebsmotors (10) von der elektronischen Anlagensteuerung (12) gesteuert wird.Drive motor (10) is controlled by the electronic system controller (12).
3. Verfahren nach Anspruch 1 oder 2, bei dem die Drehzahl des Antriebsmotors (10) und die elektrische Leistungsabgabe des3. The method of claim 1 or 2, wherein the speed of the drive motor (10) and the electrical power output of the
' Brennstoffzellenblocks (2) von einer vorgegebenen Leistungssteuergröße gesteuert wird.'Fuel cell blocks (2) are controlled by a predetermined power control variable.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Wasserpumpe (6) das Kühlwasser eines Kühlwasserkreislaufs (8) pumpt .4. The method according to any one of claims 1 to 3, wherein the water pump (6) pumps the cooling water of a cooling water circuit (8).
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem der Luftverdichter (4) Luft für die elektrochemische Reaktion im Brennstoffzellenblock (2) komprimiert.5. The method according to any one of claims 1 to 4, wherein the air compressor (4) compresses air for the electrochemical reaction in the fuel cell block (2).
6. Verfahren nach Anspruch 4, bei dem das Kühlwasser mit Wasser eines Heizwasserkreislaufs (16) gekühlt wird, der mit dem Kühlwasserkreislauf (8) thermisch verbunden ist.6. The method according to claim 4, wherein the cooling water is cooled with water from a heating water circuit (16) which is thermally connected to the cooling water circuit (8).
7. Verfahren nach Anspruch 6, bei dem der Antriebsmotor (10) mit Wasser aus dem Heizwasserkreislauf (16) gekühlt wird.7. The method according to claim 6, wherein the drive motor (10) with water from the heating water circuit (16) is cooled.
8. Brennstoffzellenanlage (1), die einen Brennstoffzellen- block (2), einen Luftverdichter (4), eine Wasserpumpe (6), eine elektronische Anlagensteuerung (12) und einen Antriebs- motor (10) umfaßt, der für den gemeinsamen Antrieb des Luftverdichters (4) und der Wasserpumpe (6) vorgesehen ist.8. Fuel cell system (1) which a fuel cell block (2), an air compressor (4), a water pump (6), an electronic system control (12) and a drive Motor (10), which is provided for the common drive of the air compressor (4) and the water pump (6).
9. Brennstoffzellenanlage (1) nach Anspruch 8, die für den Betrieb in einem Fahrzeug vorgesehen ist.9. The fuel cell system (1) according to claim 8, which is provided for operation in a vehicle.
10. Brennstoffzellenanlage (1) nach Anspruch 8 oder 9, bei10. Fuel cell system (1) according to claim 8 or 9, at
* der die elektronische -Anlagensteuerung (12) zur Steuerung der Drehzahl des Antriebsmotors (10) vorgesehen ist. * The electronic system controller (12) is provided for controlling the speed of the drive motor (10).
11. Brennstoffzellenanlage (1) nach einem der Ansprüche 8 bis 10 mit einem Kühlwasserkreislauf (8), der durch einen Wärmetauscher (14) thermisch mit einem Heizwasserkreislauf11. Fuel cell system (1) according to one of claims 8 to 10 with a cooling water circuit (8), which is thermally connected to a heating water circuit by a heat exchanger (14)
(16) verbunden ist.(16) is connected.
12. Brennstoffzellenanlage (1) nach einem der Anspruch 8 bis 11, bei der der Antriebsmotor (10) wassergekühlt ist.12. The fuel cell system (1) according to any one of claims 8 to 11, wherein the drive motor (10) is water-cooled.
13. Brennstoffzellenanlage (1) nach einem der Anspruch 8 bis 12, bei der der Brennstoffzellenblock (2) PEM-Brennstoff- zellen umfaßt.13. Fuel cell system (1) according to one of claims 8 to 12, wherein the fuel cell block (2) comprises PEM fuel cells.
BERICHTIGTES BLATT (REGEL 91) ISA / EP CORRECTED SHEET (RULE 91) ISA / EP
PCT/DE2000/000509 1999-03-10 2000-02-23 Method for operating a fuel cell facility and corresponding fuel cell facility WO2000054353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910701.7 1999-03-10
DE19910701 1999-03-10

Publications (1)

Publication Number Publication Date
WO2000054353A1 true WO2000054353A1 (en) 2000-09-14

Family

ID=7900496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000509 WO2000054353A1 (en) 1999-03-10 2000-02-23 Method for operating a fuel cell facility and corresponding fuel cell facility

Country Status (1)

Country Link
WO (1) WO2000054353A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026047A1 (en) * 2010-07-02 2012-01-05 Hochschule Bochum Vehicle e.g. passenger car, has vacuum pump i.e. liquid ring pump, for producing low pressure during operation of device by suction of pure gaseous medium i.e. air, where liquid ring pump is driven by electromotor
WO2022157206A3 (en) * 2021-01-22 2022-09-22 Cellcentric Gmbh & Co. Kg Conveying apparatus for media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646852A (en) * 1993-07-08 1997-07-08 Daimler-Benz Aktiengesellschaft Method and device for vehicle fuel cell dynamic power control
US5645950A (en) * 1993-06-07 1997-07-08 Daimler-Benz Ag Process for supplying air to a fuel cell system
US5662184A (en) * 1994-04-12 1997-09-02 Daimler-Benz Ag Arrangement of a drive unit in an electric vehicle
DE19640808C1 (en) * 1996-10-02 1997-11-27 Siemens Ag Operating Polymer Electrolyte Membrane (PEM) fuel cell system with fuel-cell block and compressor e.g. for vehicle electric drive
EP0919425A1 (en) * 1997-12-01 1999-06-02 dbb fuel cell engines GmbH Fuel cell engine having a propulsion motor operatively connected to drive a fluid supply device
FR2788631A1 (en) * 1999-01-19 2000-07-21 Renault Fuel cell assembly for an electrically powered vehicle, utilises oxygen as a combustion agent and hydrogen as a fuel element, comprises a water cooling system with an energy recovering turbine assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645950A (en) * 1993-06-07 1997-07-08 Daimler-Benz Ag Process for supplying air to a fuel cell system
US5646852A (en) * 1993-07-08 1997-07-08 Daimler-Benz Aktiengesellschaft Method and device for vehicle fuel cell dynamic power control
US5662184A (en) * 1994-04-12 1997-09-02 Daimler-Benz Ag Arrangement of a drive unit in an electric vehicle
DE19640808C1 (en) * 1996-10-02 1997-11-27 Siemens Ag Operating Polymer Electrolyte Membrane (PEM) fuel cell system with fuel-cell block and compressor e.g. for vehicle electric drive
EP0919425A1 (en) * 1997-12-01 1999-06-02 dbb fuel cell engines GmbH Fuel cell engine having a propulsion motor operatively connected to drive a fluid supply device
FR2788631A1 (en) * 1999-01-19 2000-07-21 Renault Fuel cell assembly for an electrically powered vehicle, utilises oxygen as a combustion agent and hydrogen as a fuel element, comprises a water cooling system with an energy recovering turbine assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026047A1 (en) * 2010-07-02 2012-01-05 Hochschule Bochum Vehicle e.g. passenger car, has vacuum pump i.e. liquid ring pump, for producing low pressure during operation of device by suction of pure gaseous medium i.e. air, where liquid ring pump is driven by electromotor
WO2022157206A3 (en) * 2021-01-22 2022-09-22 Cellcentric Gmbh & Co. Kg Conveying apparatus for media

Similar Documents

Publication Publication Date Title
EP0914685B1 (en) Process for operating a pem-fuel cell system
DE19722598B4 (en) Fuel cell system and method for operating a fuel cell system and its use in an arrangement for uninterruptible power supply
DE102009009243B4 (en) Apparatus and method for optimally cooling a drive unit and a fuel cell in a fuel cell vehicle
DE102009012994B4 (en) Heating system for optimizing heating in a fuel cell vehicle
DE102005049846B4 (en) Fuel cell system and method and power control system for operating and in particular starting a fuel cell system
DE112004001762B4 (en) Storage of fuel cell energy during start-up and shutdown
DE112009005061B4 (en) FUEL CELL SYSTEM
EP1159770B1 (en) Method for operating a fuel cell facility and corresponding fuel cell facility
DE102009035960A1 (en) Method for heating a fuel cell stack
DE10146943A1 (en) Method for operating a fuel cell system and fuel cell system
DE10155217B4 (en) Fuel cell system and method for operating the fuel cell system
DE10154637A1 (en) Fuel supply unit and method for supplying a hydrogen-containing fuel
DE102006050182A1 (en) Fuel cell system operating method for vehicle, involves interrupting air supply to cathode of fuel cell system, during changeover to mode of reduced power output, and reducing electric voltage of fuel cell stack by using current pulse
DE10307856A1 (en) fuel cell plant
DE102015221597A1 (en) Cathode supply for a fuel cell
DE112004000156B4 (en) Fuel cell system for converting H2 exhaust gas from fuel cells and methods
DE102008047871B4 (en) Fuel cell system warm-up strategy with reduced efficiency losses
DE102004015563B4 (en) Method for preheating fuel cell stacks
WO2000054353A1 (en) Method for operating a fuel cell facility and corresponding fuel cell facility
DE102009050935B4 (en) Extended life fuel cell system and method for reducing MEA damage to a fuel cell stack
DE102004007981A1 (en) Electric vehicle and function determination procedure therefor
DE102015117055A1 (en) Stack case ventilation, fuel cell system and vehicle
EP1358693A1 (en) Fuel cell arrangement and method for operating a fuel cell arrangement
DE10133580A1 (en) Onboard electrical system for road vehicle has auxiliary energy supply unit with fuel cell used for compensating energy loss of at least one electrical load
WO2017072000A1 (en) Cathode supply for a fuel cell group and method for supplying fuel cell units with a cathode operating medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase