WO2000054031A1 - Procede de caracterisation des proprietes electroniques d'un semi-conducteur - Google Patents

Procede de caracterisation des proprietes electroniques d'un semi-conducteur Download PDF

Info

Publication number
WO2000054031A1
WO2000054031A1 PCT/DE2000/000725 DE0000725W WO0054031A1 WO 2000054031 A1 WO2000054031 A1 WO 2000054031A1 DE 0000725 W DE0000725 W DE 0000725W WO 0054031 A1 WO0054031 A1 WO 0054031A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
infrared
charge carrier
examined
halble
Prior art date
Application number
PCT/DE2000/000725
Other languages
German (de)
English (en)
Inventor
Jürgen ZETTNER
Thomas Hierl
Original Assignee
Zettner Juergen
Thomas Hierl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19951269A external-priority patent/DE19951269A1/de
Application filed by Zettner Juergen, Thomas Hierl filed Critical Zettner Juergen
Priority to AU45360/00A priority Critical patent/AU4536000A/en
Publication of WO2000054031A1 publication Critical patent/WO2000054031A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the invention relates to a method for characterizing the electronic properties of a semiconductor, e.g. a wafer, semi-finished or finished semiconductor component, in particular the dopant concentration, dopant distribution and / or charge carrier life.
  • characterization methods are used which serve to determine the doping concentration N of the semiconductor.
  • An important method uses the Hall effect, which is described, for example, in SM Sze, Physics of semiconductor devices, Wiley, New York, USA. Four contacts must be made. A local resolution can only be achieved by dividing the area to be characterized into smaller semiconductor samples.
  • the so-called “spreading resistance method” the resistance R between a metal tip and the semiconductor material is measured. With this measurement method, the product of the charge carrier mobility and concentration, which corresponds to the specific resistance p, can be specified.
  • the method requires calibration samples and a defined pretreatment in order to provide absolute values for the specific resistance p. Local resolution is possible by scanning the semiconductor material, but it is time-consuming.
  • the so-called "four-tip measurement” according to DIN standard 50431 enables this Measurement of the specific resistance p The local resolution is even more limited than with the spreading resistance measurement
  • characterization methods are used that serve to determine the charge carrier lifespan of semiconductors. These are either a local excitation by means of incident light and detection of the changed microwave reflection (Ch Kolzow, charge carrier kinetics in semiconductors - investigations of electronic loss processes with the aid of light-induced microwave absorption measurements (TRMC - Method), diploma thesis, Department of Physics at the University of Berlin, 1995) or non-contact (J Carstensen. W Lippik. S Liebert. S Koster. H Foell. New Developments of the ELYMAT techmque. Proc Of the Satelhte Symp To ESSDERC '95. The Hague, "Analytical techniques for Semiconductor Materials and Process Characterization II"
  • An imaging method for charge carrier lifetime measurement uses the absorption of free charge carriers by impressing time-modulated light and the detection of the phase shift by the resonance of the charge carriers in the electric field of light (SW Glunz, W Warta, High resolution lifetime mapping using modulated free-car ⁇ er absorption. J Appl , Phys 77 (7). 1995, p. 3243
  • the invention has for its object to develop a method the features of the preamble of claim 1 such that it can be carried out with high efficiency and so quickly that it can be used directly to control a manufacturing process
  • the semiconductor crystal can have any dimensions.
  • the method can advantageously be in Combine i nat on i m e i ner it V.er-peak measurement at a suitable Detekt i s t he position of the semiconducting t erkristalls be applied
  • the to be tested Halbleitermatenal is a plane-parallel disc w ith lobed or pol i erter surface and / or with an additional Antireflex.onsbesch-ch t ung zw i's e i ne Infraro t camera and e.ne Infraro t source brought The infrared radiation w i rd by the Halble i termatenal weakened ä cht.
  • the basic construction of the measuring method i st i m Fig ldung 1 is shown.
  • H i H i
  • I 0 d i e on the semiconducting t he incident intensity of the infrared radiation
  • I d i e measured Intens i t ä t after passage through the semiconductor
  • d D i blocks of Halble it CHT ersch i and R
  • the weakening is caused by reflection on the surfaces, by scattering on internal defects and impurities and by absorption on free charge carriers.
  • the extinction K is considered as the sum of absorption due to free charge carriers ⁇ and scattering ⁇ .
  • the contributions to extinction vary from semiconductor to semiconductor and must be determined in each case.
  • the absorption coefficient ⁇ of the free charge carriers can, according to R.A. Smith, Semiconductors, (New York. Cambridge, 1961), pp. 216-222 are written as
  • N is the concentration of the free charge carriers, ⁇ the wavelength, n the refractive index, m * the effective mass and ⁇ the DC mobility.
  • the constants q, c, ⁇ 0 , ⁇ are the elementary charge, the speed of light, the electric field constant and the circle number Pi. For semiconductors with a small dependence of the mobility on the doping concentration, ⁇ is determined for every point of the examined area. From this, the charge carrier concentration N can be calculated immediately
  • the charge carrier concentration N is given at a suitable point in the semiconductor crystal using the following equation at each point in the crystal
  • the suitable location is also determined with the infrared camera.
  • the specific resistance p is determined within a sufficiently homogeneous area of the infrared image.
  • the charge carrier lifetime ⁇ denotes the time within which the majority of generated charge carriers recombine. Impurities in the volume of the semiconductor serve as recombination mechanisms. Surfaces and interfaces. The lifespan is determined by all existing recombination mechanisms. The charge carrier lifetime in the volume of the crystal can be separated from boundary / surface recombination by passivating the boundary / surfaces. i.e. the recombination centers there are largely deactivated. In this sense, the determination of the charge carrier lifespan is further referred to as the effective lifespan, i.e. all recombination mechanisms contribute to or as volume life, i.e. to be regarded as an inherent material life free from boundary / surface recombination. The techniques for boundary / surface passivation are state of the art.
  • the net rate of generation and recombination is given by the lifetime of the charge carrier and the excitation density of the lighting. To determine the life of the charge carrier, it is sufficient to statistically measure the charge carrier concentration with and without illumination using the methods described above, and thus to determine the net rate. This requires a homogeneous illumination source either monochromatic or with a spectral distribution of the spectrum and a known excitation density. b) Dynamic measurement
  • the lifespan of the charge carriers of the sample under investigation is obtained by evaluating the decay behavior by repeated generation, each with a defined time delay in the time of recording the infrared camera after one generation and with high spatial resolution.
  • the charge carriers additionally generated by the lighting during the pulse recombine with the time constant of their service life after the lighting has been switched off.
  • the recombination time constant is determined directly by dynamic measurement of the transient of the charge carrier concentration with high-speed infrared cameras.
  • the mathematical methods for extracting the service life from transients for example B. Boxcar method, Laplace transformation) or using lock-in methods from Fou ⁇ er transformation are state of the art .
  • one of the mathematical methods just mentioned is applied to 256 x 256 or more pixels of a sequence of time-delayed recordings in order to ensure the local resolution.
  • the semiconductor is illuminated locally, ie in a focused manner.
  • the charge carriers are generated at location x within a range ⁇ g «sample dimension.
  • the absorbance detected by means of an infrared camera has a decaying extinction with the distance of x when the material is homogeneous.
  • the imaging method described can be used by slight modifications as a further basic addition - also as briefly summarized below - for a more precise identification of the position of the defect level. This can be used to identify the chemical nature of the contamination and thus process-relevant statements about its origin
  • the position of the Fermi level is varied and the recombination mechanisms are influenced from the outside.
  • This variation of the Fermi level and the detection of the lifetime associated with this temperature enables the detection of the energetic position of recombination centers and thus a chemical identification (the basis of this additional variant is the so-called “deep level transient spectroscopy”, which is found in relevant HL literature is described)
  • the spectral distribution of the infrared light of the infrared source can also be selected by suitable filtering in such a way that absorption in storage sites, the absorption bands of which are known in many semiconductor materials, can be avoided. This can prevent or even falsify the measurement result due to storage site absorption be exploited.
  • the two variations in the temperature of the sample and the variation in the spectral distribution of the infrared source can also be used in the imaging determination of the doping.
  • a selective filtering of the infrared radiation detected at the location of the camera can increase the sensitivity, ie for the detection of storcell-specific impurities in the semiconductor
  • the basis of this modification can be seen in the infrared spectroscopy of HL (HL literature).
  • HL literature infrared spectroscopy of HL (HL literature).
  • its novelty is its spatial distribution, which is quickly and imaged as a novelty.
  • Figure 1 Schematic representation of the experimental set-up for infrared transmission images.
  • the semiconductor material is irradiated with the aid of an infrared source.
  • the penetrating radiation is detected by an infrared camera and the extinction is recorded quantitatively and imaging based on the semiconductor properties.
  • Figure 2 Schematic representation of the test setup for infrared transmission images to determine the service life.
  • the semiconductor material is irradiated with the aid of an infrared source and, in addition to the structure shown in Fig. 1, a light source excites charge carriers in semiconductors.
  • the penetrating radiation is detected by an infrared camera and the extinction is recorded quantitatively based on the semiconductor properties.
  • the light-excited charge carriers cause an extinction, which is stronger compared to the case without lighting (Fig. 1).
  • the measure of the increased extinction is a measure of the carrier life.
  • Figure 3 Local generation of charge carriers by focusing the light in a small area.
  • the IR transmission recording then shows an absorbance decreasing from the excitation point, the width of which is a measure of the diffusion length of the charge carriers in the semiconductor and thus represents a measure of the service life.
  • the infrared recording determines the absolute charge carrier concentration and its spatial fluctuation without contact.
  • the higher doped wafer (right) weakens the infrared radiation significantly more than the less doped wafer (left).
  • the rings in the right wafer are correlated with its DC resistance.
  • Figure 6 Infrared transmission image of a double-sided polished, block-cast, polycrystalline silicon wafer. A resistance line profile of a spreading resistance measurement is inserted into the recording.
  • the resistance profile was recorded along the two dotted lines.
  • the dark areas of the infrared pickup mean high extinction of the infrared radiation and show smaller electrical resistances than the less absorbent, bright areas.
  • the extinction differences detected with the infrared camera are due to electronic semiconductor properties.

Abstract

L'invention concerne un procédé de caractérisation de propriétés électroniques d'un élément semi-conducteur, notamment de la concentration du dopage, de la répartition du dopant et/ou de la durée de vie du porteur de charge. L'élément semi-conducteur est examiné photographiquement par une caméra infrarouge selon le procédé d'imagerie par éclairage par transmission. L'extinction du rayonnement infrarouge frappant l'élément semi-conducteur est alors détecté et exploité.
PCT/DE2000/000725 1999-03-06 2000-03-03 Procede de caracterisation des proprietes electroniques d'un semi-conducteur WO2000054031A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45360/00A AU4536000A (en) 1999-03-06 2000-03-03 Method for characterising the electronic properties of a semiconductor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19909843.3 1999-03-06
DE19909843 1999-03-06
DE19927675 1999-06-17
DE19927675.7 1999-06-17
DE19951269.8 1999-10-25
DE19951269A DE19951269A1 (de) 1999-03-06 1999-10-25 Verfahren zur Charakterisierung elektronischer Eigenschaften eines Halbleiters

Publications (1)

Publication Number Publication Date
WO2000054031A1 true WO2000054031A1 (fr) 2000-09-14

Family

ID=27219012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000725 WO2000054031A1 (fr) 1999-03-06 2000-03-03 Procede de caracterisation des proprietes electroniques d'un semi-conducteur

Country Status (2)

Country Link
AU (1) AU4536000A (fr)
WO (1) WO2000054031A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118074A1 (fr) 2008-03-27 2009-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé et dispositif de reconnaissance de différences de densité et/ou d'épaisseur, pour des matériaux transparents ou partiellement transparents au rayonnement infrarouge
WO2010099998A3 (fr) * 2009-03-04 2011-04-28 Robert Bosch Gmbh Procédé pour produire des composants semi-conducteurs à l'aide de techniques de dopage
US10386310B2 (en) 2014-08-29 2019-08-20 Aurora Solar Technologies (Canada) Inc. System for measuring levels of radiation reflecting from semiconductor material for use in measuring the dopant content thereof
DE102013002602B4 (de) 2013-02-15 2022-05-05 Hegla Boraident Gmbh & Co. Kg Verfahren und Vorrichtung zur Detektion von Partikeln in Glas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126569A (en) * 1989-03-10 1992-06-30 Massachusetts Institute Of Technology Apparatus for measuring optical properties of materials
US5173443A (en) * 1987-02-13 1992-12-22 Northrop Corporation Method of manufacture of optically transparent electrically conductive semiconductor windows
US5229304A (en) * 1992-05-04 1993-07-20 At&T Bell Laboratories Method for manufacturing a semiconductor device, including optical inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173443A (en) * 1987-02-13 1992-12-22 Northrop Corporation Method of manufacture of optically transparent electrically conductive semiconductor windows
US5126569A (en) * 1989-03-10 1992-06-30 Massachusetts Institute Of Technology Apparatus for measuring optical properties of materials
US5229304A (en) * 1992-05-04 1993-07-20 At&T Bell Laboratories Method for manufacturing a semiconductor device, including optical inspection

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LA ROSA A H ET AL: "Optical imaging of carrier dynamics in silicon with subwavelength resolution", APPL PHYS LETT;APPLIED PHYSICS LETTERS MAR 31 1997 AMERICAN INST OF PHYSICS, WOODBURY, NY, USA, vol. 70, no. 13, 31 March 1997 (1997-03-31), pages 1656 - 1658, XP000689456 *
LA ROSA ANDRES H ET AL: "Time-resolved contrast in near-field scanning optical microscopy of semiconductors", SCANNING PROBE MICROSCOPIES III;SAN JOSE, CA, USA FEB 6-7 95, vol. 2384, 1995, Proc SPIE Int Soc Opt Eng;Proceedings of SPIE - The International Society for Optical Engineering 1995 Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, pages 101 - 108, XP000917246 *
MORI Y ET AL: "Two-dimensional image detection of luminescence and transport properties of GaAs", PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON DEFECT RECOGNITION AND IMAGE PROCESSING IN III-V COMPOUNDS (DRIP III);TOKYO, JPN SEP 22-25 1989, vol. 103, no. 1-4, 22 September 1989 (1989-09-22), J Cryst Growth;Journal of Crystal Growth Jun 1990, pages 8 - 13, XP000917163 *
RODRIGUEZ M E ET AL: "Microelectronic circuit characterization via photothermal radiometry of scribeline recombination lifetime", SOLID STATE ELECTRONICS,GB,ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 44, no. 4, pages 703 - 711, XP004202210, ISSN: 0038-1101 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118074A1 (fr) 2008-03-27 2009-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé et dispositif de reconnaissance de différences de densité et/ou d'épaisseur, pour des matériaux transparents ou partiellement transparents au rayonnement infrarouge
DE102008016195B3 (de) * 2008-03-27 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erkennung von Dichte- und/oder Dickenunterschieden
WO2010099998A3 (fr) * 2009-03-04 2011-04-28 Robert Bosch Gmbh Procédé pour produire des composants semi-conducteurs à l'aide de techniques de dopage
JP2012519385A (ja) * 2009-03-04 2012-08-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ドーピング技術を用いた半導体素子の製造方法
DE102013002602B4 (de) 2013-02-15 2022-05-05 Hegla Boraident Gmbh & Co. Kg Verfahren und Vorrichtung zur Detektion von Partikeln in Glas
US10386310B2 (en) 2014-08-29 2019-08-20 Aurora Solar Technologies (Canada) Inc. System for measuring levels of radiation reflecting from semiconductor material for use in measuring the dopant content thereof

Also Published As

Publication number Publication date
AU4536000A (en) 2000-09-28

Similar Documents

Publication Publication Date Title
EP2473839B1 (fr) Procédé de mesure d'une structure semi-conductrice sous la forme d'une cellule solaire ou d'une ébauche de cellule solaire
EP3514523A1 (fr) Procédé et dispositif de détection des défauts mécaniques d'un composant à semi-conducteur, en particulier d'une cellule solaire ou d'un agencement de cellules solaires
DE69837204T2 (de) Verfahren und vorrichtung zum abbilden der parameterdifferenz einer probenoberfläche
Bajaj et al. Spatially resolved characterization of HgCdTe materials and devices by scanning laser microscopy
EP4014027A1 (fr) Procédé et dispositif d'analyse d'une cellule solaire multijonction dotée d'au moins deux sous-cellules solaires au moyen d'un rayonnement luminescent
DE102008013068B4 (de) Verfahren und Vorrichtung zur ortsaufgelösten Bestimmung von Ladungsträgerlebensdauern in Halbleiterstrukturen
WO2000054031A1 (fr) Procede de caracterisation des proprietes electroniques d'un semi-conducteur
DE19882660B4 (de) Optisches Verfahren für die Kennzeichnung der elektrischen Eigenschaften von Halbleitern und Isolierfilmen
Ennouri et al. Determination of the mobility and transport properties of photocarriers in Bi12GeO20 by the time‐of‐flight technique
DE19951269A1 (de) Verfahren zur Charakterisierung elektronischer Eigenschaften eines Halbleiters
EP0400373A2 (fr) Procédé pour la détermination de la résolution spatiale de la longueur de diffusion de porteurs minoritaires de charge dans un corps cristallin semi-conducteur à l'aide d'une cellule électrolytique
DE102010056098B3 (de) Vorrichtung zur Charakterisierung von Materialparametern an Halbleitergrenzflächen mittels THz-Strahlung
Greaves et al. Material uniformity of CdZnTe grown by low-pressure bridgman
DE60123971T2 (de) Verfahren zur schnellen und genauen bestimmung der minoritätsträgerdiffusionslänge aus gleichzeitig gemessenen oberflächenfotospannungen
DE102008044879A1 (de) Verfahren zur Bestimmung der Überschussladungsträgerlebensdauer in einer Halbleiterschicht
EP0400386B1 (fr) Procédé pour déterminer la vitesse de recombination de porteurs minoritaires aux surfaces de séparation entre semi-conducteurs et autres matières
DE60310318T2 (de) Vorrichtung und Verfahren zur zerstörungsfreien Messung der Eigenschaften eines Halbleitersubstrats
DE10248504B4 (de) Zerstörungsfreies Analyseverfahren zur Güteermittlung einer Solarzelle auf Chalkopyritbasis
DE102009003544B4 (de) Verfahren zur Überprüfung von Solarzellenoberflächen
DE19915051C2 (de) Verfahren und Vorrichtung zur ortsaufgelösten Charakterisierung elektronischer Eigenschaften von Halbleitermaterialien
Yayon et al. Excitonic emission in the presence of a two-dimensional electron gas: A microscopic view
Zielinger et al. Assessment of deep levels in photorefractive materials by transient photoelectric methods
DE102007000988B4 (de) Verfahren zur Messung zeitlich modulierter Spektren
DE102008044881A1 (de) Messverfahren für eine Halbleiterstruktur
DE19822360C2 (de) Vorrichtung und Verfahren zur Bestimmung der Anzahl, der energetischen Lage und der energetischen Breite von Defekten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase