WO2000052145A2 - Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees - Google Patents

Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees Download PDF

Info

Publication number
WO2000052145A2
WO2000052145A2 PCT/US2000/005434 US0005434W WO0052145A2 WO 2000052145 A2 WO2000052145 A2 WO 2000052145A2 US 0005434 W US0005434 W US 0005434W WO 0052145 A2 WO0052145 A2 WO 0052145A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
embryonic
human
stem
Prior art date
Application number
PCT/US2000/005434
Other languages
English (en)
Other versions
WO2000052145A3 (fr
Inventor
James Robl
Jose Cibell
Steven L. Stice
Original Assignee
University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus filed Critical University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus
Priority to CA002364415A priority Critical patent/CA2364415A1/fr
Priority to IL14515100A priority patent/IL145151A0/xx
Priority to BR0008714-9A priority patent/BR0008714A/pt
Priority to JP2000602757A priority patent/JP2002537803A/ja
Priority to EP00912131A priority patent/EP1159404A2/fr
Priority to AU33913/00A priority patent/AU3391300A/en
Publication of WO2000052145A2 publication Critical patent/WO2000052145A2/fr
Publication of WO2000052145A3 publication Critical patent/WO2000052145A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/04Cells produced using nuclear transfer

Definitions

  • the present invention generally relates to the production of embryonic or stemlike cells by transplantation of cell nuclei derived from animal or human cells into enucleated animal oocytes of a species different from the donor nuclei.
  • enucleated animal oocyte e.g., a primate or ungulate oocyte and in a preferred embodiment a bovine enucleated oocyte.
  • the present invention further relates to the use of the resultant embryonic or
  • stem-like cells preferably primate or human embryonic or stem-like cells for therapy, for diagnostic applications, for the production of differentiated cells which may also be used for therapy or diagnosis, and for the production of transgenic embryonic or transgenic differentiated cells, cell lines, tissues and organs.
  • differentiated cells which may also be used for therapy or diagnosis, and for the production of transgenic embryonic or transgenic differentiated cells, cell lines, tissues and organs.
  • the embryonic or stem-like cells obtained according to the present invention may themselves be used as
  • ES cells can be passaged in an undifferentiated state, provided that a feeder layer of fibroblast cells (Evans et al., Id.) or a differentiation inhibiting source (Smith et al., Dev. Biol, 121:1-9 (1987)) is present.
  • ES cells have been previously reported to possess numerous applications. For example, it has been reported that ES cells can be used as an in vitro model for differen- tiation, especially for the study of genes which are involved in the regulation of early development. Mouse ES cells can give rise to germline chimeras when introduced into preimplantation mouse embryos, thus demonstrating their pluripotency (Bradley et al., Nature, 309:255-256 (1984)).
  • ES cells have potential utility for germline manipulation of livestock animals by using ES cells with or without a desired genetic modification.
  • nuclei from like preimplantation livestock embryos support the development of enucleated oocytes to term (Smith et al., Biol. Reprod., 40:1027-1035 (1989); and Keefer et al, Biol. Reprod, 50:935-939 (1994)).
  • This is in contrast to nuclei from mouse embryos which beyond the eight-cell stage after transfer reportedly do not support the development of enucleated oocytes (Cheong et al, Biol.
  • ES cells from livestock animals are highly desirable because they may provide a potential source of totipotent donor nuclei, genetically manipulated or otherwise, for nuclear transfer procedures.
  • Some research groups have reported the isolation of purportedly pluripotent embryonic cell lines. For example, Notarianni et al., J. Reprod. Fert. Suppl, 43:255- 260 (1991), report the establishment of purportedly stable, pluripotent cell lines from pig and sheep blastocysts which exhibit some morphological and growth characteristics similar to that of cells in primary cultures of inner cell masses isolated immunosurgically from sheep blastocysts. (Id.) Also, Notarianni et al., J. Reprod. Fert.
  • Van Stekelenburg et al reported, however, that their cell lines resembled epithelial cells more than pluripotent ICM cells. (Id.) Still further, Smith et al., WO 94/24274, published October 27, 1994, Evans et al, WO 90/03432, published April 5, 1990, and Wheeler et al, WO 94/26889, published November 24, 1994, report the isolation, selection and propagation of animal stem cells which purportedly may be used to obtain transgenic animals. Also, Evans et al., WO 90/03432, published on April 5, 1990, reported the derivation of purportedly pluripotent embryonic stem cells derived from porcine and bovine species which assertedly are useful for the production of transgenic animals.
  • bovine embryonic cells were fused with bison oocytes to produce some cross species NT units possibly having an inner cell mass.
  • embryonic cells not adult cells were used, as donor nuclei in the nuclear transfer procedure.
  • the dogma has been that embryonic cells are more easily reprogrammed than adult cells. This dates back to earlier NT studies in the frog (review by DiBerardino, Differentiation, 17:17-30 (1980)). Also, this study involved very phylogenetically similar animals (cattle nuclei and bison oocytes).
  • Collas et al taught the use of granulosa cells (adult somatic cells) to produce bovine nuclear transfer embryos. However, unlike the present invention, these experiments did not involve cross-species nuclear transfer. Also, unlike the present invention ES-like cell colonies were not obtained.
  • These cells were reportedly negative for the SSEA-1 marker, positive for the SEA-3 marker, positive for the SSEA-4 marker, express alkaline phosphatase activity, are pluripotent, and have karyotypes which include the presence of all the chromosomes characteristic of the primate species and in which none of the chromosomes are altered. Further, these cells are respectfully positive for the TRA-1-60, and TRA-1-81 markers.
  • the cells purportedly differentiate into endoderm, mesoderm and ectoderm cells when injected into a SCID mouse. Also, purported embryonic stem cell lines derived from human or primate blastocytes are discussed in Thomson et al, Science 282: 1145-1147 and Proc. Natl. Acad.
  • a different approach to treating Parkinson's which promises to have broad applicability to treatment of many brain diseases and central nervous system injury, involves transplantation of cells or tissues from fetal or neonatal animals into the adult brain. Fetal neurons from a variety of brain regions can be inco ⁇ orated into the adult brain. Such grafts have been shown to alleviate experimentally induced behavioral deficits, including complex cognitive functions, in laboratory animals. Initial test results from human clinical trials have also been promising. However, supplies of human fetal cells or tissue obtained from miscarriages is very limited. Moreover, obtaining cells or tissues from aborted fetuses is highly controversial.
  • an enucleated animal or human oocyte e.g., an ungulate, human or primate enucleated oocyte.
  • It is another object of the invention to provide a novel method for producing lineage-defective non-human primate or human embryonic or stem-like cells which involves transplantation of the nucleus of a non-human primate or human cell, e.g., a human adult cell into an enucleated non-human primate or human oocyte, wherein such cell has been genetically engineered to be incapable of differentiation into a specific cell lineage or has been modified such that the cells are "mortal", and thereby do not give rise to a viable offspring, e.g., by engineering expression of anti-sense or ribozyme telomerase gene.
  • a DNA construct that provides for the expression of genes that inhibit apoptosis, e.g., Bcl-2 or Bcl-2 family members and/or by the expression of antisense ribozymes specific to genes that induce apoptosis during early embryonic development.
  • a detectable marker e.g., one that encodes a visualizable (e.g., fluorescent tag) marker protein.
  • an enucleated animal oocyte e.g., a human, primate or ungulate enucle- ated oocyte.
  • embryonic or stem-like cells produced according to the invention for the production of genetically engineered embryonic or stem-like cells, which cells may be used to produce genetically engineered or transgenic differentiated human cells, tissues or organs, e.g., having use in gene therapies. It is another specific object of the invention to use the embryonic or stem- like cells produced according to the invention in vitro, e.g. for study of cell differentiation and for assay pu ⁇ oses, e.g. for drug studies.
  • Such therapies include by way of example treatment of diseases and injuries including Parkinson's, Huntington's, Alzheimer's, ALS, spinal cord injuries, multiple sclerosis, muscular dystrophy, diabetes, liver diseases, heart disease, cartilage replace- ment, burns, vascular diseases, urinary tract diseases, as well as for the treatment of immune defects, bone marrow transplantation, cancer, among other diseases.
  • Figure 1 is a photograph of a nuclear transfer (NT) unit produced by transfer of an adult human cell into an enucleated bovine oocyte.
  • Figures 2 to 5 are photographs of embryonic stem-like cells derived from a NT unit such as is depicted in Figure 1.
  • the present invention provides a novel method for producing embryonic or stem-like cells, and more specifically non-human primate or human embryonic or stemlike cells by nuclear transfer or nuclear transplantation.
  • nuclear transfer or nuclear transplantation or NT are used interchangeably.
  • human embryonic or stem-like cells and cell colonies may be obtained by transplantation of the nucleus of a human cell, e.g., an adult differentiated human cell, into an enucleated animal oocyte, which is used to produce nuclear transfer (NT) units, the cells of which upon culturing give rise to human embryonic or stem-like cells and cell colonies.
  • a human cell e.g., an adult differentiated human cell
  • NT nuclear transfer
  • the NT units used to produce ES-like cells will be cultured to a size of at least 2 to 400 cells, preferably 4 to 128 cells, and most preferably to a size of at least about 50 cells.
  • embryonic or stem-like cells refer to cells produced according to the present invention.
  • the present application refers to such cells as stemlike cells rather than stem cells because of the manner in which they are typically produced, i.e., by cross-species nuclear transfer. While these cells are expected to possess similar differentiation capacity as normal stem cells they may possess some insignificant differences because of the manner they are produced. For example, these stem-like cells may possess the mitochondria of the oocytes used for nuclear transfer, and thus not behave identically to conventional embryonic stem cells.
  • the present discovery was made based on the observation that nuclear transplantation of the nucleus of an adult human cell, specifically a human epithelial cell obtained from the oral cavity of a human donor, when transferred into an enucleated bovine oocyte, resulted in the formation of nuclear transfer units, the cells of which upon culturing gave rise to human stem-like or embryonic cells and human embryonic or stem-like cell colonies.
  • This result has recently been reproduced by transplantation of keratinocytes from an adult human into an enucleated bovine oocyte with the successful production of a blastocyst and ES cell line.
  • bovine oocytes and human oocytes and likely mammals in general must undergo maturation processes during embryonic development which are sufficiently similar or conserved so as to permit the bovine oocyte to function as an effective substitute or surrogate for a human oocyte.
  • oocytes in general comprise factors, likely proteinaceous or nucleic acid in nature, that induce embryonic development under appropriate conditions, and these functions that are the same or very similar in different species. These factors may comprise material RNAs and/or telomerase.
  • human cell nuclei can be effectively transplanted into bovine oocytes, it is reasonable to expect that human cells may be transplanted into oocytes of other non-related species, e.g., other ungulates as well as other animals.
  • other ungulate oocytes should be suitable, e.g. pigs, sheep, horses, goats, etc.
  • oocytes from other sources should be suitable, e.g. oocytes derived from other primates, amphibians, rodents, rabbits, guinea pigs, etc.
  • the present invention involves the transplantation of an animal or human cell nucleus or animal or human cell into the enucleated oocyte of an animal species different from the donor nuclei, by injection or fusion, to produce an NT unit containing cells which may be used to obtain embryonic or stem-like cells and/or cell cultures.
  • the invention may involve the transplantation of an ungulate cell nucleus or ungulate cell into an enucleated oocyte of another species, e.g., another ungulate or non-ungulate, by injection or fusion, which cells and/or nuclei are combined to produce NT units and which are cultured under conditions suitable to obtain multicellular NT units, preferably comprising at least about 2 to 400 cells, more preferably 4 to 128 cells, and most preferably at least about 50 cells.
  • the cells of such NT units may be used to produce embryonic or stem-like cells or cell colonies upon culturing.
  • the preferred embodiment of the invention comprises the production of non-human primate or human embryonic or stem-like cells by transplantation of the nucleus of a donor human cell or a human cell into an enucleated human, primate, or non-primate animal oocyte, e.g., an ungulate oocyte, and in a preferred embodiment a bovine enucleated oocyte.
  • an enucleated human, primate, or non-primate animal oocyte e.g., an ungulate oocyte, and in a preferred embodiment a bovine enucleated oocyte.
  • the embryonic or stem-like cells will be produced by a nuclear transfer process comprising the following steps:
  • obtaining desired human or animal cells to be used as a source of donor nuclei (which may be genetically altered); (ii) obtaining oocytes from a suitable source, e.g. a mammal and most preferably a primate or an ungulate source, e.g. bovine,
  • Human or animal cells may be obtained and cultured by well known methods.
  • Human and animal cells useful in the present invention include, by way of example, epithelial, neural cells, epidermal cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T lymphocytes), other immune cells, erythrocytes, macrophages, melanocytes, monocytes, mononuclear cells, fibroblasts, cardiac muscle cells, and other muscle cells, etc.
  • the human cells used for nuclear transfer may be obtained from different organs, e.g., skin, lung, pancreas, liver, stomach, intestine, heart, reproductive organs, bladder, kidney, urethra and other urinary organs, etc.
  • suitable donor cells i.e., cells useful in the subject invention, may be obtained from any cell or organ of the body. This includes all somatic or germ cells.
  • the donor cells or nucleus would comprise actively dividing, i.e., non- quiescent, cells as this has been reported to enhance cloning efficacy. Also preferably, such donor cells will be in the Gl cell cycle.
  • the resultant blastocytes may be used to obtain embryonic stem cell lines according to the culturing methods reported by Thomson et al., Science 282:1145-1147 (1998) and Thomson et al., Proc. Natl. Acad. Sci., USA 92:7544-7848 (1995), inco ⁇ orated by reference in their entirety herein.
  • the cells used as donors for nuclear transfer were epithelial cells derived from the oral cavity of a human donor and adult human keratinocytes.
  • the disclosed method is applicable to other human cells or nuclei.
  • the cell nuclei may be obtained from both human somatic and germ cells.
  • Trichostatin-A has been shown to inhibit histone deacetylase in a reversible manner (Adenot et al. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development (Nov. 1997) 124(22): 4615-4625; Yoshida et al. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays (May, 1995) 17(5): 423-430), as have other compounds.
  • butyrate is also believed to cause hyper-acetylations of histones by inhibiting histone deacetylase.
  • butyrate appears to modify gene expression and in almost all cases its addition to cells in culture appears to arrest cell growth.
  • Use of butyrate in this regard is described in U.S. Patent No. 5,681,718, which is herein inco ⁇ orated by reference.
  • donor cells may be exposed to Trichostatin- A or another appropriate deacetylase inhibitor prior to fusion, or such a compound may be added to the culture media prior to genome activation.
  • demethylation of DNA is thought to be a requirement for proper access of transcription factors to DNA regulatory sequences.
  • Global demethylation of DNA from the eight-cell stage to the blastocyst stage in preimplantation embryos has previously been described (Stein et al, Mol. Reprod. & Dev. 47(4): 421-429).
  • Jaenisch et al. (1997) have reported that 5-azacytidine can be used to reduce the level of DNA methylation in cells, potentially leading to increased access of transcription factors to DNA regulatory sequences. Accordingly, donor cells may be exposed to 5- azacytidine (5-Aza) previous to fusion, or 5-Aza may be added to the culture medium from the 8 cell stage to blastocyst.
  • the oocytes used for nuclear transfer may be obtained from animals including mammals and amphibians. Suitable mammalian sources for oocytes include sheep, bovines, ovines, pigs, horses, rabbits, goats, guinea pigs, mice, hamsters, rats, primates, humans, etc. In the preferred embodiments, the oocytes will be obtained from primates or ungulates, e.g., a bovine.
  • oocytes Methods for isolation of oocytes are well known in the art. Essentially, this will comprise isolating oocytes from the ovaries or reproductive tract of a mammal or amphibian, e.g., a bovine. A readily available source of bovine oocytes is slaughterhouse materials. For the successful use of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells may be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo.
  • This process generally requires collecting immature (prophase I) oocytes from animal ovaries, e.g., bovine ovaries obtained at a slaughterhouse and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. For pu ⁇ oses of the present invention, this period of time is known as the "maturation period.” As used herein for calculation of time periods, “aspiration” refers to aspiration of the immature oocyte from ovarian follicles.
  • metaphase II stage oocytes which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes are collected surgically from either non-superovulated or superovulated cows or heifers 35 to 48 hours past the onset of estrus or past the injection of human chori- onic gonadotropin (hCG) or similar hormone.
  • hCG human chori- onic gonadotropin
  • the stage of maturation of the oocyte at enucleation and nuclear transfer has been reported to be significant to the success of NT methods. (See e.g., Prather et al., Differentiation, 48, 1-8, 1991).
  • previous successful mammalian embryo cloning practices use the metaphase II stage oocyte as the recipient oocyte because at this stage it is believed that the oocyte can be or is sufficiently "activated" to treat the introduced nucleus as it does a fertilizing sperm.
  • the oocyte activation period generally ranges from about 16-52 hours, preferably about 28-42 hours post-aspiration.
  • immature oocytes may be washed in HEPES buffered hamster embryo culture medium (HECM) as described in Seshagine et al., Biol. Reprod., 40, 544-606, 1989, and then placed into drops of maturation medium consisting of 50 microliters of tissue culture medium (TCM) 199 containing 10% fetal calf serum which contains appropriate gonadotropins such as luteinizing hormone (LH) and follicle stimulating hormone (FSH), and estradiol under a layer of lightweight paraffin or silicon at 39 °C.
  • TCM tissue culture medium
  • FSH follicle stimulating hormone
  • the oocytes will be enucleated. Prior to enucleation the oocytes will preferably be removed and placed in HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. This may be effected by repeated pipetting through very fine bore pipettes or by vortexing briefly. The stripped oocytes are then screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.
  • Enucleation may be effected by known methods, such as described in U.S. Patent No. 4,994,384 which is inco ⁇ orated by reference herein.
  • metaphase II oocytes are either placed in HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or may be placed in a suitable medium, for example CRIaa, plus 10% estrus cow serum, and then enucleated later, preferably not more than 24 hours later, and more preferably 16-18 hours later.
  • Enucleation may be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm.
  • the oocytes may then be screened to identify those of which have been successfully enucleated. This screening may be effected by staining the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then viewing the oocytes under ultraviolet irradiation for less than 10 seconds.
  • the oocytes that have been successfully enucleated can then be placed in a suitable culture medium.
  • the recipient oocytes will preferably be enucleated at a time ranging from about 10 hours to about 40 hours after the initiation of in vitro maturation, more preferably from about 16 hours to about 24 hours after initiation of in vitro maturation, and most preferably about 16-18 hours after initiation of in vitro maturation.
  • a single animal or human cell or nucleus derived therefrom which is typically heterologous to the enucleated oocyte will then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit.
  • the animal or human cell or nucleus and the enucleated oocyte will be used to produce NT units according to methods known in the art.
  • the cells may be fused by elecfrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient break down of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Essentially, if two adjacent membranes are induced to break down, upon reformation the lipid bilayers intermingle and small channels will open between the two cells.
  • nucleus in some cases (e.g. with small donor nuclei) it may be preferable to inject the nucleus directly into the oocyte rather than using electroporation fusion.
  • electroporation fusion Such techniques are disclosed in Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994), and inco ⁇ orated by reference in its entirety herein.
  • the human or animal cell and oocyte are electrofused in a 500 ⁇ m chamber by application of an electrical pulse of 90-120V for about 15 ⁇ sec, about 24 hours after initiation of oocyte maturation.
  • the resultant fused NT units are then placed in a suitable medium until activation, e.g., one identified infra. -
  • activation will be effected shortly thereafter, typically less than 24 hours later, and preferably about 4-9 hours later.
  • the NT unit may be activated by known methods. Such methods include, e.g., culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This may be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed.
  • activation may be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock or cycloheximide treatment may also be used to activate
  • NT embryos after fusion NT embryos after fusion.
  • Suitable oocyte activation methods are the subject of U.S. Patent No. 5,496,720, to Susko-Parrish et al., which is herein inco ⁇ orated by reference.
  • oocyte activation may be effected by simultaneously or sequentially:
  • divalent cations in the oocyte
  • reducing phosphorylation of cellular proteins in the oocyte This will generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an iono- phore.
  • divalent cations include the use of electric shock, treatment with ethanol and treatment with caged chelators.
  • Phosphorylation may be reduced by known methods, e.g., by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethylamino- purine, staurosporine, 2-aminopurine, and sphingosine.
  • kinase inhibitors e.g., serine-threonine kinase inhibitors, such as 6-dimethylamino- purine, staurosporine, 2-aminopurine, and sphingosine.
  • phosphorylation of cellular proteins may be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.
  • a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.
  • Activated NT units may be cultured in a suitable in vitro culture medium until the generation of embryonic or stem-like cells and cell colonies.
  • Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which may be used for bovine embryo culture and maintenance, include Ham's F- 10 + 10% fetal calf serum (FCS), Tissue Culture Medium- 199 (TCM- 199) + 10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media.
  • TCM- 199 One of the most common media used for the collection and maturation of oocytes is TCM- 199, and 1 to 20% serum supplement including fetal calf serum, newborn serum, estrual cow serum, lamb serum or steer serum.
  • a preferred maintenance medium includes TCM- 199 with Earl salts, 10% fetal calf serum, 0.2 MM Ma pyruvate and 50 ⁇ g/ml gentamicin sulphate. Any of the above may also involve co-culture with a variety of cell types such as granulosa cells, oviduct cells, BRL cells and uterine cells and STO cells.
  • LIF leukemia inhibitory factor
  • CR1 contains the nutritional substances necessary to support an embryo.
  • CR1 contains hemicalcium L-lactate in amounts ranging from 1.0 mM to 10 mM, preferably 1.0 mM to 5.0 mM.
  • Hemicalcium L-lactate is L-lactate with a hemicalcium salt inco ⁇ orated thereon.
  • the cultured NT unit or units are preferably washed and then placed in a suitable media, e.g., CRIaa medium, Ham's F-10, Tissue Culture Media -199 (TCM- 199).
  • a suitable media e.g., CRIaa medium, Ham's F-10, Tissue Culture Media -199 (TCM- 199).
  • Tyrodes-Albumin-Lactate-Pyrovate (TALP) Dulbecco's Phosphate Buffered Saline (PBS), Eagle's or Whitten's, preferably containing about 10% FCS.
  • TCM-199 Tissue Culture Media -199
  • Suitable feeder layers include, by way of example, fibroblasts and epithelial cells, e.g., fibroblasts and uterine epithelial cells derived from ungulates, chicken fibroblasts, niurine (e.g., mouse or rat) fibroblasts, STO and SI-m220 feeder cell lines, and BRL cells.
  • the feeder cells will comprise mouse embryonic fibroblasts. Means for preparation of a suitable fibroblast feeder layer are described in the example which follows and is well within the skill of the ordinary artisan.
  • the NT units are cultured on the feeder layer until the NT units reach a size suitable for obtaining cells which may be used to produce embryonic stem-like cells or cell colonies.
  • these NT units will be cultured until they reach a size of at least about 2 to 400 cells, more preferably about 4 to 128 cells, and most preferably at least about 50 cells.
  • the culturing will be effected under suitable conditions, i.e., about 38.5 °C and 5% CO 2 , with the culture medium changed in order to optimize growth typically about every 2-5 days, preferably about every 3 days.
  • oocyte derived NT units sufficient cells to produce an ES cell colony, typically on the order of about 50 cells, will be obtained about 12 days after initiation of oocyte activation. However, this may vary dependent upon the particular cell used as the nuclear donor, the species of the particular oocyte, and culturing conditions. One skilled in the art can readily ascertain visually when a desired sufficient number of cells has been obtained based on the mo ⁇ hology of the cultured NT units.
  • culture medium known to be useful for maintaining human cells in tissue culture.
  • Examples of a culture media suitable for human embryo culture include the medium reported in Jones et al, Human Reprod., 13(1):169-177 (1998), the Pl-catalog #99242 medium, and the P-l catalog #99292 medium, both available from Irvine Scientific, Santa Ana, California, and those used by Thomson et al. (1998) and (1995). (Id.).
  • the cells used in the present invention will preferably comprise mammalian somatic cells, most preferably cells derived from an actively proliferating (non-quiescent) mammalian cell culture.
  • the donor cell will be genetically modified by the addition, deletion or substitution of a desired DNA sequence.
  • the donor cell e.g., a keratinocyte or fibroblast, e.g., of human, primate or bovine origin
  • the donor cell may be fransfected or transformed with a DNA construct that provides for the expression of a desired gene product, e.g., therapeutic polypeptide.
  • a desired gene product e.g., therapeutic polypeptide.
  • therapeutic polypeptide e.g., therapeutic polypeptide.
  • examples thereof include lympokines, e.g., IGF- I, IGF-II, interferons, colony stimulating factors, connective tissue polypeptides such as collagens, genetic factors, clotting factors, enzymes, enzyme inhibitors, etc.
  • the donor cells may be modified prior to nuclear transfer to achieve other desired effects, e.g., impaired cell lineage development, enhanced embryonic development and/or inhibition of apoptosis. Examples of desirable modifications
  • One aspect of the invention will involve genetic modification of the donor cell, e.g., a human cell, such that it is lineage deficient and therefore when used for nuclear transfer it will be unable to give rise to a viable offspring.
  • a donor cell e.g., a human cell
  • This is desirable especially in the context of human nuclear transfer embryos, wherein for ethical reasons, production of a viable embryo may be an unwanted outcome.
  • This can be effected by genetically engineering a human cell such that it is incapable of differentiating into specific cell lineages when used for nuclear transfer.
  • cells may be genetically modified such that when used as nuclear transfer donors the resultant "embryos" do not contain or substantially lack at least one of mesoderm, endoderm or ectoderm tissue.
  • mesoderm, endoderm or ectoderm specific genes examples thereof include:
  • Ectoderm RNA helicase A, H beta 58.
  • a desired somatic cell e.g., a human keratinocyte, epithelial cell or fibroblast
  • a desired somatic cell will be genetically engineered such that one or more genes specific to particular cell lineages are “knocked out” and/or the expression of such genes significantly impaired. This may be effected by known methods, e.g., homologous recombination.
  • a preferred genetic system for effecting "knock-out" of desired genes is disclosed by Capecchi et al, U.S. Patents 5,631,153 and 5,464,764, which reports positive-negative selection (PNS) vectors that enable targeted modification of DNA sequences in a desired mammalian genome.
  • PPS positive-negative selection
  • Such genetic modification will result in a cell that is incapable of differentiating into a particular cell lineage when used as a nuclear transfer donor.
  • This genetically modified cell will be used to produce a lineage-defective nuclear transfer embryo, i.e., that does not develop at least one of a functional mesoderm, endoderm or ectoderm. Thereby, the resultant embryos, even if implanted, e.g., into a human uterus, would not give rise to a viable offspring.
  • the ES cells that result from such nuclear transfer will still be useful in that they will produce cells of the one or two remaining non-impaired lineage.
  • an ectoderm deficient human nuclear transfer embryo will still give rise to mesoderm and endoderm derived differentiated cells.
  • An ectoderm deficient cell can be produced by deletion and/or impairment of one or both of RNA helicase A or H beta 58 genes.
  • These lineage deficient donor cells may also be genetically modified to express another desired DNA sequence.
  • the genetically modified donor cell will give rise to a lineage-deficient blastocyst which, when plated, will differentiate into at most two of the embryonic germ layers.
  • the donor cell can be modified such that it is "mortal". This can be achieved by expressing anti-sense or ribozyme telomerase genes. This can be effected by known genetic methods that will provide for expression of antisense DNA or ribozymes, or by gene knockout. These "mortal" cells, when used for nuclear transfer, will not be capable of differentiating into viable offspring.
  • Another prefe ⁇ ed embodiment of the present invention is the production of nuclear transfer embryos that grow more efficiently in tissue culture. This is advantageous in that it should reduce the requisite time and necessary fusions to produce ES cells and/or offspring (if the blastocysts are to be implanted into a female surrogate). This is desirable also because it has been observed that blastocysts and ES cells resulting from nuclear transfer may have impaired development potential. While these problems may often be alleviated by alteration of tissue culture conditions, an alternative solution is to enhance embryonic development by enhancing expression of genes involved in embryonic development. For example, it has been reported that the gene products of the Ped type, which are members of the MHC I family, are of significant importance to embryonic development.
  • an expression construct can be constructed containing a strong constitutive mammalian promoter operably linked to the Q7 and/or Q9 genes, an IRES, one or more suitable selectable markers, e.g,. neomycin, ADA, DHFR, and a poly-A sequence, e.g., bGH polyA sequence.
  • suitable selectable markers e.g.,. neomycin, ADA, DHFR
  • poly-A sequence e.g., bGH polyA sequence.
  • donor cells can be engineered to affect other genes that enhance embryonic development. Thus, these genetically modified donor cells should produce blastocysts and preimplantation stage embryos more efficiently.
  • Still another aspect of the invention involves the construction of donor cells that are resistant to apoptosis, i.e., programmed cell death. It has been reported in the literature that cell death related genes are present in preimplantation stage embryos. (Adams et al, Science, 281(5381):1322-1326 (1998)). Genes reported to induce apoptosis include, e.g., Bad, Bok, BH3, Bik, Hrk, BNIP3, Bim L , Bad, Bid, and EGL-1.
  • genes that reportedly protect cells from programmed cell death include, by way of example, BcL-XL, Bcl-w, Mcl-l, Al, Nr-13, BHRF-1, LMW5-HL, ORF16, Ks-Bel-2, E1B-19K, and CED-9.
  • donor cells can be constructed wherein genes that induce apoptosis are "knocked out” or wherein the expression of genes that protect the cells from apoptosis is enhanced or turned on during embryonic development.
  • this can be effected by introducing a DNA construct that provides for regulated expression of such protective genes, e.g., Bcl-2 or related genes during embryonic development.
  • the gene can be "turned on” by culturing the embryo under specific growth conditions.
  • it can be linked to a constitutive promoter.
  • a DNA construct containing a Bcl-2 gene operably linked to a regulatable or constitutive promoter e.g., PGK, SV40, CMV, ubiquitin, or beta-actin, an IRES, a suitable selectable marker, and a poly-A sequence
  • a regulatable or constitutive promoter e.g., PGK, SV40, CMV, ubiquitin, or beta-actin, an IRES, a suitable selectable marker, and a poly-A sequence
  • a desired donor mammalian cell e.g., human keratinocyte or fibroblast.
  • donor cells when used to produce nuclear transfer embryos, should be resistant to apoptosis and thereby differentiate more efficiently in tissue culture. Thereby, the speed and/or number of suitable preimplantation embryos produced by nuclear transfer can be increased.
  • Another means of accomplishing the same result is to impair the expression of one or more genes that induce apoptosis. This will be effected by knock-out or by the use of antisense or ribozymes against genes that are expressed in and which induce apoptosis early on in embryonic development. Examples thereof are identified above.
  • donor cells may be constructed containing both modifications, i.e., impairment of apoptosis-inducing genes and enhanced expression of genes that impede or prevent apoptosis.
  • modifications i.e., impairment of apoptosis-inducing genes and enhanced expression of genes that impede or prevent apoptosis.
  • the construction and selection of genes that affect apoptosis, and cell lines that express such genes, is disclosed in U.S. Patent No. 5,646,008, Craig B. Thompson et al inventors, and assigned to the University of Michigan. This patent is inco ⁇ orated by reference herein.
  • a particular cyclin DNA may be operably linked to a regulatory sequence, together with a detectable marker, e.g., green fluorescent protein (GFP), followed by the cyclin destruction box, and optionally insulation sequences to enhance cyclin and marker protein expression.
  • a detectable marker e.g., green fluorescent protein (GFP)
  • GFP green fluorescent protein
  • cells of a desired cell cycle can be easily visually detected and selected for use as a nuclear transfer donor.
  • An example thereof is the cyclin Dl gene in order to select for cells that are in Gl.
  • any cyclin gene should be suitable for use in the claimed invention. (See, e.g., King et al, Mol. Biol Cell, Vol. 7(9): 1343-1357 (1996)).
  • a less invasive or more efficient method for producing cells of a desired cell cycle stage are needed.
  • Cyclins are proteins that are expressed only during specific stages of the cell cycle. They include cyclin Dl, D2 and D3 in Gl phase, cyclin Bl and B2 in G2/M phase and cyclin E, A and H in S phase. These proteins are easily translated and destroyed in the cytogolcytosol. This "transient" expression of such proteins is attributable in part to the presence of a "destruction box", which is a short amino acid sequence that is part of the protein that functions as a tag to direct the prompt destruction of these proteins via the ugiquitin pathway.
  • donor cells will be constructed that express one or more of such cyclin genes under easily detectable conditions, preferably visualizable, e.g., by the use of a fluorescent label.
  • a particular cyclin DNA may be operably linked to a regulatory sequence, together with a detectable marker, e.g., green fluorescent protein (GFP), followed by the cyclin destruction box, and optionally insulation sequences to enhance cyclin and/or marker protein expression.
  • GFP green fluorescent protein
  • cyclin Dl gene which can be used to select for cells that are in Gl.
  • any cyclin gene should be suitable for use in the claimed invention. (See, e.g., King et al, Mol. Biol Cell, Vol. 7(9): 1343-1357 (1996)).
  • Still another aspect of the invention is a method for enhancing nuclear transfer efficiency, preferably in a cross-species nuclear transfer process. While the present inventors have demonstrated that nuclei or cells of one species when inserted or fused with an enucleated oocyte of a different species can give rise to nuclear transfer embryos that produce blastocysts, which embryos can give rise to ES cell lines, the efficiency of such process is quite low. Therefore, many fusions typically need to be effected to produce a blastocyst the cells of which may be cultured to produce ES cells and ES cell lines.
  • capsase inhibitors include by way of example capsase-4 inhibitor I, capsase-3 inhibitor I, capsase-6 inhibitor II, capsase-9 inhibitor II, and capsase- 1 inhibitor I.
  • the amount thereof will be an amount effective to inhibit apoptosis, e.g., 0.00001 to 5.0% by weight of medium; more preferably 0.01% to 1.0% by weight of medium.
  • the foregoing methods may be used to increase the efficiency of nuclear transfer by enhancing subsequent blastocyst and embryo development in tissue culture.
  • the cells are mechanically removed from the zone and are then used to produce embryonic or stem-like cells and cell lines. This is preferably effected by taking the clump of cells which comprise the NT unit, which typically will contain at least about 50 cells, washing such cells, and plating the cells onto a feeder layer, e.g., irradiated fibroblast cells.
  • a feeder layer e.g., irradiated fibroblast cells.
  • the cells used to obtain the stem-like cells or cell colonies will be obtained from the inner most portion of the cultured NT unit which is preferably at least 50 cells in size.
  • NT units of smaller or greater cell numbers as well as cells from other portions of the NT unit may also be used to obtain ES-like cells and cell colonies.
  • a longer exposure of donor cell DNA to the oocyte' s cytosol would facilitate the dedifferentiation process.
  • recloning could be accomplished by taking blastomeres from a reconstructed embryo and fusing them with a new enucleated oocyte.
  • the donor cell may be fused with an enucleated oocyte and 4 to 6 hours later, without activation, chromosomes may be removed and fused with a younger oocyte. Activation would occur thereafter.
  • the cells are maintained in the feeder layer in a suitable growth medium, e.g., alpha MEM supplemented with 10% FCS and 0.1 mM beta-mercaptoethanol (Sigma) and L-glutamine.
  • a suitable growth medium e.g., alpha MEM supplemented with 10% FCS and 0.1 mM beta-mercaptoethanol (Sigma) and L-glutamine.
  • the growth medium is changed as often as necessary to optimize growth, e.g., about every 2-3 days.
  • This culturing process results in the formation of embryonic or stem-like cells or cell lines.
  • colonies are observed by about the second day of culturing in the alpha MEM medium.
  • this time may vary dependent upon the particular nuclear donor cell, specific oocyte and culturing conditions.
  • One skilled in the art can vary the culturing conditions as desired to optimize growth of the particular embryonic or stem-like cells.
  • the embryonic or stem-like cells and cell colonies obtained will typically exhibit an appearance similar to embryonic or stem-like cells of the species used as the nuclear cell donor rather than the species of the donor oocyte.
  • the cells exhibit a mo ⁇ hology more similar to mouse embryonic stem cells than bovine ES-like cells.
  • the individual cells of the human ES-line cell colony are not well defined, and the perimeter of the colony is refractive and smooth in appearance. Further, the cell colony has a longer cell doubling time, about twice that of mouse ES cells.
  • primate stem cells are SSEA-1 (-), SSEA-4 (+), TRA-1-60 (+), TRA-1-81 (+) and alkaline phosphatase (+). It is anticipated that human and primate ES cells produced according to the present methods will exhibit similar or identical marker expression.
  • embryonic or stem-like cells preferably human embryonic or stem-like cells and cell lines, have numerous therapeutic and diagnostic applications. Most especially, such embryonic or stem-like cells may be used for cell transplantation therapies. Human embryonic or stem-like cells have application in the treatment of numerous disease conditions.
  • mouse embryonic stem (ES) cells are capable of differentiating into almost any cell type, e.g., hematopoietic stem cells. Therefore, human embryonic or stem-like cells produced according to the invention should possess similar differentiation capacity.
  • the embryonic or stem-like cells according to the invention will be induced to differentiate to obtain the desired cell types according to known methods.
  • the subject human embryonic or stem-like cells may be induced to differentiate into hematopoietic stem cells, muscle cells, cardiac muscle cells, liver cells, cartilage cells, epithelial cells, urinary tract cells, etc., by culturing such cells in differentiation medium and under conditions which provide for cell differentiation. Medium and methods which result in the differentiation of embryonic stem cells are known in the art as are suitable culturing conditions.
  • hematopoietic stem cells from an embryonic cell line by subjecting stem cells to an induction procedure comprising initially culturing aggregates of such cells in a suspension culture medium lacking retinoic acid followed by culturing in the same medium containing retinoic acid, followed by transferral of cell aggregates to a substrate which provides for cell attachment.
  • Bcl-2 prevents many, but not all, forms of apoptotic cell death that occur during lymphoid and neural development.
  • a thorough discussion of how Bcl-2 expression might be used to inhibit apoptosis of relevent cell lineages following transfection of donor cells is disclosed in U.S. Patent No. 5,646,008, which is herein inco ⁇ orated by reference.
  • the subject embryonic or stem-like cells may be used to obtain any desired differentiated cell type. Therapeutic usages of such differentiated human cells are unparalleled.
  • human hematopoietic stem cells may be used in medical treatments requiring bone marrow transplantation. Such procedures are used to treat many diseases, e.g., late stage cancers such as ovarian cancer and leukemia, as well as diseases that compromise the immune system, such as AIDS.
  • Hematopoietic stem cells can be obtained, e.g., by fusing adult somatic cells of a cancer or AIDS patient, e.g., epithelial cells or lymphocytes with an enucleated oocyte, e.g., bovine oocyte, obtaining embryonic or stem-like cells as described above, and culturing such cells under conditions which favor differentiation, until hematopoietic stem cells are obtained.
  • oocyte e.g., bovine oocyte
  • Such hematopoietic cells may be used in the treatment of diseases including cancer and AIDS.
  • adult somatic cells from a patient with a neurological disorder may be fused with an enucleated animal oocyte, e.g., a primate or bovine oocyte, human embryonic or stem-like cells obtained therefrom, and such cells cultured under differentiation conditions to produce neural cell lines.
  • an enucleated animal oocyte e.g., a primate or bovine oocyte, human embryonic or stem-like cells obtained therefrom, and such cells cultured under differentiation conditions to produce neural cell lines.
  • oocyte e.g., a primate or bovine oocyte, human embryonic or stem-like cells obtained therefrom, and such cells cultured under differentiation conditions to produce neural cell lines.
  • Specific diseases treatable by transplantation of such human neural cells include, by way of example, Parkinson's disease, Alzheimer's disease, ALS and cerebral palsy, among others.
  • Parkinson's disease it has been demonstrated that transplanted fetal brain neural cells make the proper connections with surrounding cells and produce dopamine. This can result in
  • donor cells may be fransfected with selectable markers expressed via inducible promoters, thereby permitting selection or enrichment of particular cell lineages when differentiation is induced.
  • CD34-neo may be used for selection of hematopoietic cells, Pwl -neo for muscle cells, Mash- 1 -neo for sympathetic neurons, Mal-neo for human CNS heurons of the grey matter of the cerebral cortex, etc.
  • the great advantage of the subject invention is that it provides an essentially limitless supply of isogenic or synegenic human cells suitable for transplantation. Therefore, it will obviate the significant problem associated with current transplantation methods, i.e., rejection of the transplanted tissue which may occur because of host-vs- graft or graft- vs-host rejection. Conventionally, rejection is prevented or reduced by the administration of anti-rejection drugs such as cyclosporine. However, such drugs have significant adverse side-effects, e.g., immunosuppression, carcinogenic properties, as well as being very expensive.
  • the present invention should eliminate, or at least greatly reduce, the need for anti-rejection drugs.
  • diseases and conditions treatable by isogenic cell therapy include, by way of example, spinal cord injuries, multiple sclerosis, muscular dystrophy, diabetes, liver diseases, i.e., hypercholesterolemia, heart diseases, cartilage replacement, burns, foot ulcers, gastrointestinal diseases, vascular diseases, kidney disease, urinary tract disease, and aging related diseases and conditions.
  • human embryonic or stem-like cells produced according to the invention may be used to produce genetically engineered or transgenic human differentiated cells. Essentially, this will be effected by introducing a desired gene or genes, which may be heterologous, or removing all or part of an endogenous gene or genes of human embryonic or stem-like cells produced according to the invention, and allowing such cells to differentiate into the desired cell type.
  • a prefe ⁇ ed method for achieving such modification is by homologous recombination because such technique can be used to insert, delete or modify a gene or genes at a specific cite or cites in the stem-like cell genome.
  • This methodology can be used to replace defective genes, e.g., defective immune system genes, cystic fibrosis genes, or to introduce genes which result in the expression of therapeutically beneficial proteins such as growth factors, lymphokines, cytokines, enzymes, etc.
  • the gene encoding brain derived growth factor may be introduced into human embryonic or stem-like cells, the cells differentiated into neural cells and the cells transplanted into a Parkinson's patient to retard the loss of neural cells during such disease.
  • cell types fransfected with BDNF varied from primary cells to immortalized cell lines, either neural or non-neural (myoblast and fibroblast) derived cells.
  • astrocytes have been fransfected with BDNF gene using retroviral vectors, and the cells grafted into a rat model of Parkinson's disease (Yoshimoto et al., Brain Research, 691:25-36, (1995)). This ex vivo therapy reduced Parkinson's-like symptoms in the rats up to 45%
  • Genes which may be introduced into the subject embryonic or stem-like cells include, by way of example, epidermal growth factor, basic fibroblast growth factor, glial derived neurotrophic growth factor, insulin-like growth factor (I and II), neurotrophin-3, neurotrophin-4/5, ciliary neurotrophic factor, AFT-1, cytokine genes (interleukins, interferons, colony stimulating factors, tumor necrosis factors (alpha and beta), etc.), genes encoding therapeutic enzymes, collagen, human serum albumin, etc.
  • TK thymidine kinase
  • donor cells fransfected with the thymidine kinase (TK) gene will lead to the production of embryonic cells containing the TK gene. Differentiation of these cells will lead to the isolation of therapeutic cells of interest which also express the TK gene.
  • Such cells may be selectively eliminated at any time from a patient upon gancyclovir administration.
  • TK thymidine kinase
  • Such a negative selection system is described in U.S. Patent No. 5,698,446, and is herein inco ⁇ orated by reference.
  • the subject embryonic or stem-like cells preferably human cells, also may be used as an in vitro model of differentiation, in particular for the study of genes which are involved in the regulation of early development.
  • differentiated cell tissues and organs using the subject embryonic or stem-like cells may be used in drug studies.
  • subject embryonic or stem-like cells may be used as nuclear donors for the production of other embryonic or stem-like cells and cell colonies.
  • Epithelial cells were lightly scraped from the inside of the mouth of a consenting adult with a standard glass slide. The cells were washed off the slide into a petri dish containing phosphate buffered saline without Ca or Mg. The cells were pipetted through a small-bore pipette to break up cell clumps into a single cell suspension. The cells were then transfe ⁇ ed into a microdrop of TL-HEPES medium containing 10% fetal calf serum (FCS) under oil for nuclear transfer into enucleated cattle oocytes.
  • FCS fetal calf serum
  • oocytes were stripped of cumulus cells and enucleated with a beveled micropipette at approximately 18 hours post maturation (hpm). Enucleation was confirmed in TL-HEPES medium plus bisbenzimide (Hoechst 33342, 3 ⁇ g/ml; Sigma). Individual donor cells were then placed into the perivitelline space of the recipient oocyte. The bovine oocyte cytoplasm and the donor nucleus (NT unit) are fused together using electrofusion techniques. One fusion pulse consisting of 90 V for 15 ⁇ sec was applied to the NT unit. This occwred at 24 hours post-initiation of maturation (hpm) of the oocytes. The NT units were placed in CRIaa medium until 28 hpm.
  • NT unit activation was at 28 hpm.
  • a brief description of the activation procedure is as follows: NT units were exposed for four min to ionomycin (5 ⁇ M; CalBiochem, La Jolla, CA) in TL-HEPES supplemented with 1 mg/ml BSA and then washed for five min in TL-HEPES supplemented with 30 mg/ml BSA.
  • the NT units were then transfe ⁇ ed into a microdrop of CRIaa culture medium containing 0.2 mM DMAP (Sigma) and cultured at 38.5 °C 5% CO 2 for four to five hours.
  • the NT units were washed and then placed in a CRl aa medium plus 10% FCS and 6 mg/ml BSA in four well plates containing a confluent feeder layer of mouse embryonic fibroblasts (described below).
  • the NT units were cultured for three more days at 38.5 °C and 5% CO 2 .
  • the culture medium was changed every three days until day 12 after the time of activation.
  • NT units reaching the desired cell number i.e., about 50 cell number, were mechanically removed from the zona and used to produce embryonic cell lines.
  • a photograph of an NT unit obtained as described above is contained in Figure 1. Fibroblast feeder layer
  • NT unit cells obtained as described above were washed and plated directly onto irradiated feeder fibroblast cells. These cells included those of the inner portion of the NT unit.
  • the cells were maintained in a growth medium consisting of alpha MEM supplemented with 10% FCS and 0.1 mM beta-mercaptoethanol (Sigma). Growth medium was exchanged every two to three days. The initial colony was observed by the second day of culture. The colony was propagated and exhibits a similar mor- phology to previously disclosed mouse embryonic stem (ES) cells. Individual cells within the colony are not well defined and the perimeter of the colony is retractile and smooth in appearance. The cell colony appears to have a slower cell doubling time than mouse ES cells. Also, unlike bovine and porcine derived ES cells, the colony does not have an epithelial appearance thus far.
  • Figures 2 through 5 are photographs of ES-like cell colonies obtained as described, supra. Production of Differentiated Human Cells
  • the human embryonic cells obtained are transferred to a differentiation medium and cultured until differentiated human cell types are obtained.
  • the one NT unit that developed a structure having greater than 16 cells was plated down onto a fibroblast feeder layer. This structure was attached to 0 the feeder layer and started to propagate forming a colony with a ES cell-like morphology (See, e.g., Figure 2).
  • ES cell-like morphology See, e.g., Figure 2.
  • 4 to 16 cell stage structures were not used to try and produce an ES cell colony, it has been previously shown that this stage is capable of producing ES or ES-like cell lines (mouse, Eistetter et al., Devel. Growth and Differ., 31:275-282 (1989); Bovine, 5 Stice et al., 1996)). Therefore, it is expected that 4 - 16 cell stage NT units should also give rise to embryonic or stem-like cells and cell colonies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Diabetes (AREA)
  • Genetics & Genomics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Psychology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Psychiatry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Obesity (AREA)
  • Developmental Biology & Embryology (AREA)

Abstract

L'invention concerne une méthode améliorée de transfert nucléaire, consistant à transplanter des noyaux de cellules donneuses différenciées dans des ovocytes énucléés d'une espèce différente de celle de la cellule donneuse. Les unités de transfert nucléaire ainsi obtenues sont utilisées pour produire des cellules souches embryonnaires isogéniques, en particulier des cellules souches ou embryonnaires isogéniques humaines. Ces cellules embryonnaires ou de type souche sont par ailleurs utilisées pour produire les cellules différenciées voulues, et pour introduire, éliminer, ou modifier les gènes souhaités, par exemple sur les sites spécifiques du génome de ces cellules, par recombinaison homologue. Ces cellules, qui peuvent renfermer un gène hétérologue, sont particulièrement utilisées dans des thérapies de transplantation cellulaire et pour l'étude in vitro de la différenciation cellulaire. L'invention concerne également des méthodes permettant d'améliorer l'efficacité du transfert nucléaire grâce à une modification génétique des cellules donneuses, destinée à inhiber l'apoptose, à choisir un cycle cellulaire spécifique, et/ou à favoriser la croissance et le développement embryonnaire.
PCT/US2000/005434 1999-03-02 2000-03-02 Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees WO2000052145A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002364415A CA2364415A1 (fr) 1999-03-02 2000-03-02 Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees
IL14515100A IL145151A0 (en) 1999-03-02 2000-03-02 Embr0yonic or stem-like cell lines produced by cross species nuclear transplantation
BR0008714-9A BR0008714A (pt) 1999-03-02 2000-03-02 Linhagens celulares embriÈnicas ou tipo tronco produzidas por transplante nuclear de espécies cruzadas
JP2000602757A JP2002537803A (ja) 1999-03-02 2000-03-02 異種間核移植により産生される胚性細胞株あるいは幹様細胞株
EP00912131A EP1159404A2 (fr) 1999-03-02 2000-03-02 Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees
AU33913/00A AU3391300A (en) 1999-03-02 2000-03-02 Embryonic or stem-like cell lines produced by cross species nuclear transplantation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26046899A 1999-03-02 1999-03-02
US09/260,468 1999-03-02

Publications (2)

Publication Number Publication Date
WO2000052145A2 true WO2000052145A2 (fr) 2000-09-08
WO2000052145A3 WO2000052145A3 (fr) 2001-01-04

Family

ID=22989289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/005434 WO2000052145A2 (fr) 1999-03-02 2000-03-02 Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees

Country Status (8)

Country Link
EP (1) EP1159404A2 (fr)
JP (1) JP2002537803A (fr)
AU (1) AU3391300A (fr)
BR (1) BR0008714A (fr)
CA (1) CA2364415A1 (fr)
IL (1) IL145151A0 (fr)
NZ (1) NZ513888A (fr)
WO (1) WO2000052145A2 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040358A1 (fr) * 2001-11-06 2003-05-15 Shanghai Second Medical University Cellules souches embryonnaires derivees de cellules somatiques, et leurs cellules differenciees
WO2003040359A1 (fr) * 2001-11-06 2003-05-15 Shanghai Second Medical University Preparation d'un embryon somatique au moyen d'un ovocyte de lapin
EP1465992A2 (fr) * 2001-12-18 2004-10-13 Acceptys, Inc. Cellules souches multipotentes derivees embryons ni tissu foetal
US7371719B2 (en) 2002-02-15 2008-05-13 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7390526B2 (en) 2003-02-11 2008-06-24 Northwestern University Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
WO2007115337A3 (fr) * 2006-04-05 2008-07-03 Univ Rice William M Ingéniérie tissulaire utilisant des cellules souches embryonnaires humaines
US7452679B2 (en) 2003-12-05 2008-11-18 Northwestern University Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US7462448B2 (en) 2002-08-02 2008-12-09 Stratatech Corporation Species specific DNA detection
WO2009002223A1 (fr) * 2007-06-21 2008-12-31 Alexander Sergeevich Teplyashin Procédé de fabrication d'une cellule souche humaine hybride
US7491690B2 (en) 2001-11-14 2009-02-17 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
US7534761B1 (en) 2002-08-21 2009-05-19 North Western University Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom
US7544661B2 (en) 2003-12-05 2009-06-09 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US7554021B2 (en) 2002-11-12 2009-06-30 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
US7683025B2 (en) 2002-11-14 2010-03-23 Northwestern University Synthesis and self-assembly of ABC triblock bola peptide amphiphiles
US7851445B2 (en) 2005-03-04 2010-12-14 Northwestern University Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use
US8076295B2 (en) 2007-04-17 2011-12-13 Nanotope, Inc. Peptide amphiphiles having improved solubility and methods of using same
US8450271B2 (en) 2009-04-13 2013-05-28 Northwestern University Peptide-based scaffolds for cartilage regeneration and methods for their use
US8637065B2 (en) 2004-07-09 2014-01-28 William Marsh Rice University Dermis-derived cells for tissue engineering applications
US8697048B2 (en) 2003-12-23 2014-04-15 Northwestern University Peptide amphiphile suspension to prevent or reduce tumor formation from administered embryonic stem cells
US9371516B2 (en) 2014-09-19 2016-06-21 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US9828634B2 (en) 2015-01-22 2017-11-28 Regenerative Medical Solutions, Inc. Markers for differentiation of stem cells into differentiated cell populations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007841A1 (fr) * 1996-08-19 1998-02-26 University Of Massachusetts Lignees de cellules embryonnaires ou de type souche produites par transplantation nucleaire croisee d'especes
WO2000029602A1 (fr) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center Transfection de cellules germinales males permettant de generer des cellules souches transgeniques selectionnables

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007841A1 (fr) * 1996-08-19 1998-02-26 University Of Massachusetts Lignees de cellules embryonnaires ou de type souche produites par transplantation nucleaire croisee d'especes
WO2000029602A1 (fr) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center Transfection de cellules germinales males permettant de generer des cellules souches transgeniques selectionnables

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. JURISICOVA ET AL.: "EXPRESSION AND REGULATION OF GENES ASSOCIATED WITH CELL DEATH DURING MURINE PREIMPLANTATION EMBRYO DEVELOPMENT." MOLECULAR REPRODUCTION AND DEVELOPMENT, vol. 51, November 1998 (1998-11), pages 243-253, XP000952608 NEW YOK, N.Y., US cited in the application *
A. TROUNSON ET AL.: "POTENTIAL BENEFITS OF CELL CLONING FOR HUMAN MEDICINE." REPRODUCTION FERTILITY AND DEVELOPMENT, vol. 10, 1998, pages 121-125, XP000952550 *
L. BERGSON ET AL.: "DEFECTS IN REGULATION OF APOPTOSIS IN CASPASE DEFICIENT MICE." GENES & DEVELOPMENT, vol. 12, 1 May 1998 (1998-05-01), pages 1304-1314, XP000952591 NEW YORK, N.Y., US *
S. ARSENIAN ET AL.: "SERUM RESPONSE FACTOR IS ESSENTIAL FOR MESODERM FORMATION DURING MOUSE EMBRYOGENESIS." THE EMBO JOURNAL., vol. 17, no. 21, 2 November 1998 (1998-11-02), pages 6289-6299, XP002149683 EYNSHAM, OXFORD, GB cited in the application *
W. CAI ET AL.: "SEQUENCE AND TRANSCRIPTION OF Qa-2-ENCODING GENES IN MOUSE LYMPHOCYTES AND BLASTOCYSTS." IMMUNOGENETICS, vol. 45, no. 2, 1996, pages 97-107, XP000952557 NEW YORK, N.Y., US *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040359A1 (fr) * 2001-11-06 2003-05-15 Shanghai Second Medical University Preparation d'un embryon somatique au moyen d'un ovocyte de lapin
WO2003040358A1 (fr) * 2001-11-06 2003-05-15 Shanghai Second Medical University Cellules souches embryonnaires derivees de cellules somatiques, et leurs cellules differenciees
US7527974B2 (en) 2001-11-06 2009-05-05 Shanghai Second Medical University Embryonic stem cells derived from human somatic cell—rabbit oocyte NT units
US7491690B2 (en) 2001-11-14 2009-02-17 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
US7838491B2 (en) 2001-11-14 2010-11-23 Northwestern University Self-assembly and mineralization of peptide-amphiphile nanofibers
EP1465992A2 (fr) * 2001-12-18 2004-10-13 Acceptys, Inc. Cellules souches multipotentes derivees embryons ni tissu foetal
EP1465992A4 (fr) * 2001-12-18 2005-06-01 Acceptys Inc Cellules souches multipotentes derivees embryons ni tissu foetal
US7371719B2 (en) 2002-02-15 2008-05-13 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US8063014B2 (en) 2002-02-15 2011-11-22 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7745708B2 (en) 2002-02-15 2010-06-29 Northwestern University Self-assembly of peptide-amphiphile nanofibers under physiological conditions
US7462448B2 (en) 2002-08-02 2008-12-09 Stratatech Corporation Species specific DNA detection
US7888496B2 (en) 2002-08-02 2011-02-15 Stratatech Corporation Kit for species specific DNA detection
US7534761B1 (en) 2002-08-21 2009-05-19 North Western University Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom
US8124583B2 (en) 2002-11-12 2012-02-28 Northwestern University Composition and method for self-assembly and mineralization of peptide-amphiphiles
US7554021B2 (en) 2002-11-12 2009-06-30 Northwestern University Composition and method for self-assembly and mineralization of peptide amphiphiles
US7683025B2 (en) 2002-11-14 2010-03-23 Northwestern University Synthesis and self-assembly of ABC triblock bola peptide amphiphiles
US7390526B2 (en) 2003-02-11 2008-06-24 Northwestern University Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon
US7544661B2 (en) 2003-12-05 2009-06-09 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US7452679B2 (en) 2003-12-05 2008-11-18 Northwestern University Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
US8580923B2 (en) 2003-12-05 2013-11-12 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US8138140B2 (en) 2003-12-05 2012-03-20 Northwestern University Self-assembling peptide amphiphiles and related methods for growth factor delivery
US8697048B2 (en) 2003-12-23 2014-04-15 Northwestern University Peptide amphiphile suspension to prevent or reduce tumor formation from administered embryonic stem cells
US8637065B2 (en) 2004-07-09 2014-01-28 William Marsh Rice University Dermis-derived cells for tissue engineering applications
US7851445B2 (en) 2005-03-04 2010-12-14 Northwestern University Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use
WO2007115337A3 (fr) * 2006-04-05 2008-07-03 Univ Rice William M Ingéniérie tissulaire utilisant des cellules souches embryonnaires humaines
US8076295B2 (en) 2007-04-17 2011-12-13 Nanotope, Inc. Peptide amphiphiles having improved solubility and methods of using same
WO2009002223A1 (fr) * 2007-06-21 2008-12-31 Alexander Sergeevich Teplyashin Procédé de fabrication d'une cellule souche humaine hybride
US8450271B2 (en) 2009-04-13 2013-05-28 Northwestern University Peptide-based scaffolds for cartilage regeneration and methods for their use
US9371516B2 (en) 2014-09-19 2016-06-21 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US9765302B2 (en) 2014-09-19 2017-09-19 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US10138466B2 (en) 2014-09-19 2018-11-27 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US10526576B2 (en) 2014-09-19 2020-01-07 Regenerative Medical Solutions, Inc. Compositions and methods for differentiating stem cells into cell populations comprising beta-like cells
US9828634B2 (en) 2015-01-22 2017-11-28 Regenerative Medical Solutions, Inc. Markers for differentiation of stem cells into differentiated cell populations

Also Published As

Publication number Publication date
NZ513888A (en) 2001-09-28
CA2364415A1 (fr) 2000-09-08
EP1159404A2 (fr) 2001-12-05
IL145151A0 (en) 2002-06-30
JP2002537803A (ja) 2002-11-12
AU3391300A (en) 2000-09-21
BR0008714A (pt) 2002-01-02
WO2000052145A3 (fr) 2001-01-04

Similar Documents

Publication Publication Date Title
AU740709B2 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplanta tion
CA2277192C (fr) Transfert nucleaire au moyen de cellules donneuses foetales et adultes differentiees
US20010012513A1 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation
EP1159404A2 (fr) Lignees cellulaires embryonnaires ou de type souche produites par transplantation nucleaire d'especes croisees
NZ502129A (en) Cloning using donor nuclei from non-serum starved, differentiated cells
US7696404B2 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
AU784731B2 (en) Embryonic or stem-like cells produced by cross species nuclear transplantation
AU759322B2 (en) Embryonic or stem-like cell lines produced by cross-species nuclear transplantation
AU2008229989A1 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
NZ517609A (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
US20050095704A1 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation
MXPA00008602A (en) Embryonic or stem-like cell lines produced by cross-species nuclear transplantation
AU2005225103A1 (en) Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
AU2006201208A1 (en) Embryonic or stem-like cells produced by cross species nuclear transpantation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 145151

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2364415

Country of ref document: CA

Ref document number: 2364415

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 513888

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020017011132

Country of ref document: KR

Ref document number: PA/A/2001/008848

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 602757

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 33913/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000912131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 00806980.8

Country of ref document: CN

WWW Wipo information: withdrawn in national office

Ref document number: 2000912131

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000912131

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017011132

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020017011132

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642