WO2000049143A1 - Procede d'analyse d'une frequence d'expression genique - Google Patents

Procede d'analyse d'une frequence d'expression genique Download PDF

Info

Publication number
WO2000049143A1
WO2000049143A1 PCT/JP2000/000902 JP0000902W WO0049143A1 WO 2000049143 A1 WO2000049143 A1 WO 2000049143A1 JP 0000902 W JP0000902 W JP 0000902W WO 0049143 A1 WO0049143 A1 WO 0049143A1
Authority
WO
WIPO (PCT)
Prior art keywords
restriction enzyme
sequence
primer
vector
cdna
Prior art date
Application number
PCT/JP2000/000902
Other languages
English (en)
French (fr)
Inventor
Takami Maekawa
Akira Mitsui
Masayo Date
Hisao Fukuda
Yoshiyuki Takahara
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to EP00904009A priority Critical patent/EP1156107B1/en
Priority to AT00904009T priority patent/ATE275196T1/de
Priority to US09/926,028 priority patent/US6806049B1/en
Priority to DE60013410T priority patent/DE60013410T2/de
Publication of WO2000049143A1 publication Critical patent/WO2000049143A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection

Definitions

  • the present invention relates to a method for analyzing the frequency of expression of a gene.Specifically, in order to capture dynamic changes in gene expression, the type and amount of mRNA expressed from all genes encoding proteins in cells are determined using a microbiological sample. It relates to a method that can be analyzed by using. Background art
  • the total number of genes encoding proteins present in the genome is expected to be about 100,000 in humans. In yeast whose whole genome structure has already been elucidated, the total number of genes encoding proteins is estimated to be about 5,000.
  • mRNA messenger RNA
  • gene expression frequency information the type and amount of the expressed gene (hereinafter, also referred to as “gene expression frequency information”) vary depending on the type and state of the cell. For example, as blood stem cells differentiate into lymphocyte progenitor cells, pre-B cells, B cells, and activated B cells, some genes are commonly expressed in each cell, but show completely different gene expression.
  • Gene expression profile analysis Proteins are mainly responsible for the vital activities of cells, and analyzing the type and amount of proteins translated from mRNA is important for gene expression analysis, but at present, obtaining a profile of all proteins Is technically difficult. On the other hand, it is possible to measure all types of mRNA.
  • the first reported gene expression profile analysis method is the Body Map method (Gene, 174, 151-158 (1996)).
  • the outline of the Body Map method is as follows.
  • the poly T sequence on the vector is linked to the poly A tail at the 3 'end of the mRNA, and the cDNA is synthesized using the vector poly T sequence as the primer.
  • the cDNA is cut with the restriction enzyme Mbol. Since the Mbol site is one for every 300 base pairs on the cDNA, the cDNA on the vector is split into 300 base pairs on average. At this time, the cDNA from the poly A tail remains bound to the vector.
  • the vector containing the cDNA fragment is closed, and it is introduced into Escherichia coli to produce a cDNA library.
  • Approximately 1000 clones are arbitrarily selected from the library, and an average of 300 base pairs is determined for each clone. For each clone containing the same sequence from among these sequences, the type and appearance frequency of each sequence are calculated to obtain a gene expression profile. For each cDNA sequence, a homology search (BLAST search) in the data bank is performed, and a clone having the same sequence as a known gene is given the name of the gene. If the sequence is not registered in the bank, it is assumed that the gene corresponding to the sequence does not exist.
  • BLAST search a homology search in the data bank is performed, and a clone having the same sequence as a known gene is given the name of the gene. If the sequence is not registered in the bank, it is assumed that the gene corresponding to the sequence does not exist.
  • a fragment is further shortened to 11 base pairs or more (referred to as a “tag”), and a large number of these fragments are ligated together and inserted into a vector, thereby creating a library of ligated tags ⁇ :
  • a tag represents a gene sequence, and the frequency of appearance of the tag indicates the frequency of expression of the gene.
  • the length of a DNA sequence that can be read in a single sequence is about 600 base pairs, so up to about 50 MA sequences can be read in a single sequence.
  • gene expression profile analysis can be performed with a maximum efficiency of about 50 times compared to the Body Map method.
  • SAGE Serial analysis of gene expression
  • Each linker should contain a site for a Class I restriction enzyme such as BsmF I (called a "tagging enzyme"). Cut the cDNA fragment from the beads with a tagging enzyme, smooth the cleavage site, and connect the tag connected to the A linker and the tag connected to the B linker. This is called ditag. Amplify ditags by PCR using primers that recognize A linker and B linker. A large number of amplified ditags are ligated together, integrated into a vector, and sequenced. A maximum of about 50 tag sequences can be obtained in one sequence. This tag sequence information is aggregated to derive the gene expression frequency.
  • BsmF I Class I restriction enzyme
  • a gene chip method and a gene microarray method.
  • a gene fragment is used that is extremely densely arranged (approximately 10 / nrai 2 or more) on a suitable plate (usually a slide glass).
  • the chip is hybridized with the fluorescently labeled mRNA, and the mRNA species is Measure type and quantity.
  • the SAGE method is the most effective means to measure the expression frequency of all genes in all eukaryotes, but when this method is actually implemented, many problems are encountered, and most methods are used.
  • the SAGE method could not be reproduced at the research institution. That is, the SAGE method is difficult to perform and can only be performed by specially trained personnel.
  • measurement requires about l ⁇ g of mRNA, and if only a small amount of sample is available, for example, perform measurement on clinical biopsy materials or measure differences in gene expression in minute parts of tissues That is virtually impossible. In addition, there are many measurement errors in principle.
  • tags are short (about 13 bp), and misreading at one place may cause the same tag to be judged as a different one, or a different tag to be considered the same.
  • the SAGE method is likely to make this mistake. This is because in the SAGE method, a tag is formed by connecting two tags, but the boundary between the tag and the tag becomes unclear at this time. Evening is a short gene fragment cut with restriction enzymes such as BsmFI and Fokl. However, the cleavage sites of these enzymes are not always stable, and the lengths of the excised tags vary. If tags with different lengths are mixed and a tag is connected to form a ditag, a precise tag sequence cannot be obtained.
  • the SAGE method has an inevitable disadvantage in principle.
  • the SAGE method has an operation of recovering DNA using avidin and biotin beads.However, recovering DNA using avidin and biotin beads without generating contaminants is actually very difficult. It is difficult, and it is very difficult to get an accurate data by the operation of the protocol.
  • the SAGE method required a large amount of mRNA to obtain a complete image, and when the sample amount of a clinical sample was limited, sufficient mRNA could not be obtained, making it difficult to perform the SAGE method.
  • the gene chip method and the gene microarray method can measure only genes whose structure is known. Therefore, At present, it is not possible to measure the frequency of expression of all genes in all organisms.
  • the SAGE method is the most effective means to measure the expression frequency of all genes in all eukaryotes.
  • the problems with the SAGE method are as follows: (1) The technique is difficult and can only be performed by specially trained persons. (2) The amount of mRNA required is about l ⁇ g for measurement, and when only a small amount of sample is available, for example, clinical biopsy material cannot be measured. Similarly, it is not possible to measure differences in gene expression in minute parts of the tissue. (3) There are many measurement errors in principle due to the measurement of ditags. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and provides a method that can be easily performed by ordinary researchers and that can perform accurate gene expression frequency analysis from a very small amount of sample.
  • the task is to
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, synthesized cDNA from mA using a vector primer having a poly T sequence, and obtained a cDNA sequence on the same vector.
  • the concatemer is formed by linking the obtained tags via a sequence capable of identifying the end of the tag, and the base sequence of the concatemer is analyzed, whereby the efficiency and the efficiency are improved.
  • the present invention provides the following.
  • a method for analyzing the expression frequency of a gene comprising the following steps;
  • the linear plasmid vector has a single-stranded poly (T) sequence at one of the three termini and a first restriction enzyme recognition sequence inside, and a second restriction fragment near the other terminus.
  • a vector primer having an enzyme recognition sequence, a type 11 S restriction enzyme recognition sequence therein, and mRNA derived from a cell whose frequency of gene expression is to be analyzed is annealed to synthesize cDNA.
  • step (e) the ligation reaction is performed in the presence of an adapter having one end having the same shape as the end of the tag, whereby the adapter is placed at both ends of the concatemer, and
  • the base sequence of the concatemer is determined by cloning into a cloning vector for base sequence determination.
  • the vector primer has a cleavage point at or at the same position as the cleavage point of the second restriction enzyme recognition sequence, and is not excised from the vector primer by cleavage with the type IIS restriction enzyme. Having a restriction enzyme recognition sequence of
  • the primer downstream of the tag recognizes a fifth restriction enzyme that generates an end having the same shape as the fourth restriction enzyme-cleaved end.
  • the vector primer has a base sequence that differs by one base from the fifth restriction enzyme recognition sequence further inside the first restriction enzyme recognition sequence, and The method according to (5), wherein the base sequence different by one base is converted into a fifth restriction enzyme recognition sequence by the used PCR.
  • a vector-primer comprises a linear plasmid obtained by cleaving a plasmid having a multiple cloning site at two locations of the same multicloning site, and a primer having the same form as one end of the linear plasmid.
  • the method according to any one of (1) to (7), wherein the partial double-stranded DNA having a terminal and having a single-stranded poly-T sequence is linked.
  • Figure 1 shows an example of the structure of plasmid DNA (MAGE / PUC19) for making a vector-primer.
  • FIG. 2 shows an example of the structure of the vector-primer and the construction process thereof.
  • FIG. 3 schematically represents steps (a) and (b) of the method of the invention.
  • FIG. 4 schematically represents steps (c) and (d) of the method of the invention.
  • FIG. 5 schematically shows step (e) of the method of the present invention and the step of inserting the amplification product obtained in step (e) into the sequence-cloning vector.
  • the method of the present invention includes the above steps (a) to (f). Hereinafter, each step will be described.
  • a single-stranded plasmid at the 3 'end of one of the linear plasmid vectors A vector having a poly-T sequence of the present invention, a first restriction enzyme recognition sequence therein, a second restriction enzyme recognition sequence near the other end thereof, and a type IIS restriction enzyme recognition sequence therein.
  • One primer hereinafter, also referred to as "vector primer for reverse transcription"
  • the type IIS restriction enzyme refers to a restriction enzyme that cleaves a specific site apart from the sequence recognized by the restriction enzyme.
  • Fig. 2D shows an example of the structure of the vector-primer.
  • the vector primer includes, for example, a linear plasmid obtained by cutting a plasmid having a multicloning site at two points of the multicloning site, and one end of the linear plasmid. It can be prepared by ligating a partially double-stranded DNA having the same type of terminus and a single-stranded poly T sequence.
  • FIG. 1 shows the structure of MAGE / pUC19 as an example of a plasmid having a multicloning site.
  • This primer contains a known cloning vector, PUC19, as its basic structure. A sequence containing various restriction enzyme recognition sites between the EcoRl and Hindi 11 restriction sites of the multicloning site (Z fragment and The sequence is shown in SEQ ID NO: 1.) is inserted.
  • MAGE / pUC19 is described as an example in which an Escherichia coli host having a Dam methylation system, for example, a host prepared using the JM109 strain or the like is used. is not.
  • the vector having the basic structure is not limited to pUCl9, and other vectors such as pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSFlOlOv pMW119, pMW118, pM219, pMW218, etc. Can be used.
  • the host of the vector to be used is not particularly limited as long as it can be applied with a conventional gene recombination technique such as transformation, recovery of the vector from the host, etc., but usually, Escherichia coli Is used.
  • the MAGE / pUC19 vector (FIG. 2A) is treated with the restriction enzymes BstXI and Pstl to remove the cut small fragments (FIG. 2B).
  • a partially double-stranded DNA having a single-stranded poly-T sequence (poly-T adapter-1 shown in Fig. 2C) was placed at the cut end of BstXI. Rigege. This forms a vector-primer (or a reverse transcription vector-primer) in which a single-stranded poly-T protrudes from one end of the MAGE / pUC19 vector (FIG. 2D).
  • the first restriction enzyme is Pmel
  • the second restriction enzyme is Bglll
  • the type IIS restriction enzyme is Bsgl.
  • the recognition sequence of the second restriction enzyme Bglll contains an overlapping bol recognition sequence, which can be cut with Mbol when the Bgill end is linked to the Mbol end.
  • the vector primer is designed to include a base sequence that differs by one base from the fourth restriction enzyme (Mbol) recognition sequence further inside the first restriction enzyme (Pmel) recognition sequence (Fig. 3E AMboI).
  • the first restriction enzyme recognition sequence of AMboI and vector-primer is derived from a poly (II) adapter.
  • the first and second restriction enzymes are not particularly limited as long as they cut the vector primer at one site.
  • the type IIS restriction enzyme and the location thereof are not particularly limited as long as the fourth restriction enzyme site is not excised from the vector primer and the cDNA is cut while leaving a part of the upstream side of the cDNA in the vector primer.
  • Not restricted Specifically, for example, in addition to the above Bsgl, BsmFI and the like can be mentioned.
  • the length of the poly T sequence may be any length that can anneal with the poly A sequence of the mRNA, and is usually about 10 to 50 bases.
  • the vector primers as described above are annealed with mRNA derived from the cell whose gene expression frequency is to be analyzed.
  • poly-T becomes a primer and cDNA synthesis starts (Fig. 3E).
  • the synthesized first-strand cDNA as type II
  • the second strand is synthesized, and a double-stranded cDNA can be synthesized (Fig. 3F).
  • FIG. 3F A vector primer molecule (cDNA-MAGE / pUC19) in which a large number of cDNAs are bound from a large number of mRNA molecules is shown in FIG. 3F, which is a typical example.
  • mRNA is extracted from cells whose gene expression frequency is to be analyzed.
  • the cell whose expression frequency is to be analyzed is not particularly limited as long as it has a poly A structure at the 3 ′ end of mRNA in the cell, such as animal or plant tissue cells, yeast or other microorganism cells, etc. be able to.
  • prokaryotic mRNA has no poly A (poly (A)) structure at the 3 'end, so it cannot be annealed to poly-T of vector-primer-prime as it is.
  • a third primer which does not cleave the vector primer and which has the same form as the cleaved end of the second restriction enzyme, is used to cut the vector primer to which the cDNA thus obtained is bound. Digestion is performed with a restriction enzyme and the second restriction enzyme to excise the upstream side of the cDNA and to close the vector primer.
  • the closed loop primer can be amplified by introducing it into an appropriate host, culturing the resulting transformant, and recovering plasmid. The same applies to the closed vector primer obtained in the subsequent steps.However, if the restriction enzyme site that is going to cut the recovered vector primer is not cleaved by Dam methylation, a modification system is used. Use a non-host.
  • the third restriction enzyme an enzyme that recognizes four bases is preferable. If the enzyme recognizes 6 bases, there may be no restriction enzyme site in the cDNA sequence. In addition, if the cDNA sequence remaining in the vector-primer is long, the tag obtained by the subsequent operation will be far from the polyA sequence of mA. In such cases, the gene expression information in the database
  • EST expressed sequence tag
  • MboI, Tail, and the like are examples of the restriction enzyme that recognizes four bases suitable for the present invention.
  • the cDNA-coupled vector primer (cMA-MAGE / pUC19) is digested with restriction enzymes BglII and Mbol (FIG. 3G).
  • restriction enzymes BglII and Mbol (FIG. 3G).
  • MAGE / pUC19 since MAGE / pUC19 has received Dam methylation, it is not cleaved by Mbol, but only the Mbol site in cDNA newly synthesized by reverse transcription is cleaved.
  • Figure 3G shows an example in which the cDNA contains three Mbol sites. You.
  • the downstream portion from the poly A tail to the first bol site upstream remains connected to the MAGE / pUC19 vector primer, while the other portion, the upstream side of the cDNA is Mbol Separated and removed by cutting.
  • MAGE / pUC19 is cut by Bglll.
  • the ends cut with Mbol and Bglll have the same shape, and can be connected to each other by a ligation reaction. Therefore, the cDNA-MAGE / pUC19 is closed through these ends by a self-ligation reaction (FIG. 3H).
  • the vector primer closed in step (b) is digested with the first restriction enzyme and the type 11S restriction enzyme, and the downstream side of the cDNA is excised leaving a tag consisting of a part of cDNA, Close the vector primer again.
  • the closed cDNA-MAGE / pUC19 is digested with restriction enzymes BsgI and PmeI (FIG. 41). Cleavage of these restriction enzymes leaves only about 13 bases farthest from the poly A tail of the 3 'end of the cDNA in the vector primer. The sequence consisting of about 13 bases of this cDNA is called a tag (indicated by “tag” in FIG. 4J).
  • PCR is performed using the vector primer closed in step (c) as type I, and oligonucleotides having base sequences corresponding to the respective regions on both sides of the tag in the vector primer as primers. To amplify.
  • the tag-containing vector primer is made rust-shaped, and a PCR reaction is performed using primers (for example, SEQ ID NOs: 2 and 3) corresponding to the sequence of the vector portion on both sides of the tag (FIG. 4K).
  • primers for example, SEQ ID NOs: 2 and 3
  • a DNA fragment containing a tag in the center in this case, LlObp
  • Fig. 4L the primer sequence and evening primer
  • the primer downstream of the tag contains a recognition sequence for a fifth restriction enzyme that generates an end having the same shape as the end of the fourth restriction enzyme. If the amplified primer is digested with the fourth and fifth restriction enzymes, a concatemer can be efficiently formed.
  • the type of the fifth restriction enzyme is not particularly limited, but using the same restriction enzyme as the fourth restriction enzyme simplifies the operation. Further, the same restriction enzyme as the third restriction enzyme may be used as the fourth restriction enzyme. Further, the third, fourth and fifth restriction enzymes may be the same.
  • the entire sequence of the cDNA is excised from the vector primer in step (b).
  • a base sequence that is different from the fifth restriction enzyme recognition sequence by one base is included further inside the restriction enzyme recognition sequence, and PCR is performed using a primer having the fifth restriction enzyme recognition sequence downstream of the evening restriction enzyme. By doing so, it is necessary to convert a base sequence that differs by one base to a fifth restriction enzyme recognition sequence.
  • the third and fourth restriction enzymes are the same, it is necessary to prevent the fourth restriction enzyme recognition site of the vector primer from being cleaved by methylation. In this case, before digestion with the fourth restriction enzyme, the vector-primer closed in step (c) is introduced into a host having no modification system and demodified.
  • the ligation reaction of the tag is carried out in the presence of an adapter having one end having the same shape as that of the end of the tag, whereby the adapters are arranged at both ends of the concatemer, whereby an oligo having a sequence corresponding to the sequence of the adapter
  • an adapter having one end having the same shape as that of the end of the tag, whereby the adapters are arranged at both ends of the concatemer, whereby an oligo having a sequence corresponding to the sequence of the adapter
  • the resulting concatemers are inserted into a closing vector for nucleotide sequencing to facilitate the sequence operation.
  • a small fragment containing a tag can be obtained by digesting the amplification product in step (d) with the restriction enzyme Mbol (FIG. 5M).
  • the evening fragment obtained here is sandwiched between known DNA sequences, that is, GATC and AAACG, and it is possible to clearly identify which portion is evening. Since the Mbol sites are exposed at both ends of this tag sequence, the concatemers can be formed by linking the evening dogs by the ligation reaction (Fig. 5M).
  • the nucleotide sequence of the concatemer obtained as described above contains tags derived from many cDNA molecules, and the type and frequency of the tags appearing in the nucleotide sequence are examined. This makes it possible to analyze the expression frequency of the gene from which the cDNA is derived.
  • the type of tag can be determined by searching the database for information on the known partial sequence (EST) of mMA.
  • the orientation of the tag in the concatemer is undefined, so the sequence analysis considers not only the sequence of one strand but the sequence of the opposite strand. I do.
  • a ditag is not formed unlike the SAGE method, and each tag is sandwiched between known DNA fragments, so that a tag can be prevented from being continuous with another tag.
  • the problem that the boundaries of tags become ambiguous has been solved Is done.
  • the sample can be amplified by performing PCR multiple times, it is possible to analyze even a small amount of mRNA.
  • vector-1 primers to synthesize cDNA in a form fused to vector-1, analysis can be performed without using avidin or biotin beads.
  • the MAGE / pUC19 vector (Fig. 2A) was treated with the restriction enzymes BstXI and Pstl to remove the cut small fragments (Fig. 2B).
  • a partially double-stranded DNA having a single-stranded poly-T sequence (poly-T adapter shown in FIG. 2C) was ligated to the cut end by BstXI (FIG. 2D).
  • the first restriction enzyme is Pmel
  • the second restriction enzyme is Bglll
  • the type IIS restriction enzyme is Bsgl (FIG. 3E).
  • the above-mentioned vector primer (0.2 ⁇ g) and the above-mentioned mouse liver-derived mRNA (0.97 ⁇ g) were annealed to synthesize cDNA, and then the second strand was synthesized using the synthesized first strand cDNA as type II (Fig. 3 F). Then, gene expression frequency analysis was performed using an amount corresponding to 1/40 of the obtained cDNA (equivalent to 0.025 ⁇ g of mRNA) as a material.
  • the vector primer to which the cDNA obtained as described above was ligated was digested with the second restriction enzyme Bglll and the third restriction enzyme Mbol (FIG. 3G).
  • the Mbo I terminus and Bgl 11 terminus of cDNA-AGE / pUC19 were ligated and closed by a self-ligation reaction (FIG. 3H).
  • the closed vector primer was digested with Bsgl and Pmel, blunted by T4 MA polymerase treatment, and the vector primer was closed again (FIG. 41 to FIG. 41).
  • K An oligonucleotide having a base sequence corresponding to the respective regions on both sides of the tag in the vector-primer, with this closed vector-primer as type II.
  • the above-mentioned PCR amplification product is digested with Mbol to excise the tag, and an adapter which is annealed with an oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 4 or 5 is added so that the tag: adapter becomes 8: 1.
  • a ligation reaction was performed to form a concatemer in the evening (Fig. 5M). This concatemer was amplified by PCR using a primer having the nucleotide sequence shown in SEQ ID NO: 6.
  • the PCR reaction consists of denaturation (95 ° C, 3 minutes), annealing (40 ° C, 3 minutes), polymerase reaction (72 ° C, 1 minute), followed by 5 cycles, followed by denaturation (95 ° C , 0.3 min), annealing and extension reaction (72 ° C, 1 min) were performed for 60 cycles.
  • the amplification product was digested with the restriction enzyme Notl, inserted into the Notl site of the sequencing-cloning vector pKF3, and the nucleotide sequence was determined.
  • the expression frequency of a gene can be simply, reliably, and accurately analyzed.
  • the gene expression analysis method of the present invention is useful for life science research, in particular, by analyzing the difference in gene expression in specific organs or cells between healthy and sick people, it is possible to develop therapeutic methods for diseases and Useful for developing diagnostic methods. For example, by analyzing the difference between the expressed genes in the liver of healthy humans and the liver of hepatitis by this method, it is possible to find genes whose expression is specifically increased or decreased in hepatitis. By investigating the role of these genes in the liver, drugs for inhibiting or promoting the function of this gene can be developed for the treatment of hepatitis.
  • the gene itself, an antisense oligonucleotide designed from the gene structure, or a protein obtained by expressing the gene can be used for the treatment of hepatitis.
  • a therapeutic method can be developed by using the method of the present invention for diseases for which the mechanism of onset is unknown.
  • a gene whose expression fluctuates in a disease-specific manner can be found by the method of the present invention, it will be possible to develop not only a treatment but also a diagnostic method for a disease.
  • it can be used not only for medical applications, but also for finding useful genes in all eukaryotes.
  • a yeast suitable for beer production is bred by mutation
  • changes in gene expression between the parent strain and the mutant strain are analyzed by the method of the present invention, and a gene whose expression has changed due to the mutation can be identified.
  • a better beer-producing yeast can be created by comprehensively manipulating the genes that are advantageous for beer production thus obtained.
  • an amino acid-producing bacterium such as Escherichia coli or corynepacterium
  • a better amino acid-producing bacterium can be created.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明細書
― 遺伝子の発現頻度の解析方法 技術分野
本発明は、 遺伝子の発現頻度の解析方法に関し、 詳しくは、 遺伝子発現の動的 変化を捉えるために、 細胞において蛋白質をコードする全遺伝子より発現してい る mRNAの種類と量を、 微量生体サンプルを用いて解析することが可能な方法に関 する。 背景技術
ゲノム上に存在する蛋白質をコードする遺伝子の総数は、 ヒトで約 10万種と予 想されている。 既に全ゲノム構造が明らかとなった酵母では、 蛋白質をコードす る遺伝子の総数は約 5000種と推定されている。
近年、 公共の遺伝子データバンクが欧米、 日本を中心に設立され、 世界中の膨 犬な量の遺伝子情報がデータバンクに登録されており、 さらに日々新たな情報が データバンクに集まって来る。 世界規模で行なわれているヒトゲノムプロジェク ト (human genome project) は、 2005年を目標にヒトゲノムの全遺伝子の配列を 明らかにしつつあり、 その遺伝子情報もデータバンクに登録されつつある。 ある 遺伝子配列についてデータバンクに問い合わせると、 その配列と同一又は類似の 配列を持つ遺伝子が既に登録されているか否か、 さらには登録されていれば、 そ の配列に関する情報、 例えば、 遺伝子名、 機能、 関連する文献等を知ることがで きる。 このような検索をホモロジ一検索といい、 ホモロジ一検索を行うソフトゥ エアは何種類かあるが、 多数の検索を行なう場合は検索時間の短い BLASTが通常 用いられている。
通常、 細胞の遺伝子は全ての遺伝子が mRNAに読みとられ、 mRNAから蛋白質が生 産されている訳ではなく、 ヒトでは 1細胞の発現している遺伝子は約 15000種と 推定されている。 このように、 細胞中では何種類ものゲノム遺伝子が発現してお り、 それに応じた種類のメッセンジャー RNA (以下、 「mRNA」 という)が生成して いるが、 発現している遺伝子の種類及び量(以下、 「遺伝子発現頻度情報」 とも いう)は、 細胞の種類、 状態により変動する。 例えば、 血液幹細胞からリンパ球 前駆細胞、 プレ B細胞、 B細胞、 活性化 B細胞と分化するに従い、 各細胞で共通 に発現する遺伝子もあるが、 全く違う遺伝子発現を示す。
上記のような遺伝子発現頻度情報を測定することを、 遺伝子発現プロファイル 解析という。 細胞の生命活動を担っているのは主として蛋白質であり、 mRNAから 翻訳される蛋白質の種類と量を解析することは、 遺伝子発現解析として重要であ るが、 現状では全蛋白質のプロファイルを得ることは技術的に困難である。 一方、 mRNAについては、 全種類の mRNAを測定することが可能となっている。
遺伝子発現プロファイル解析法として最初に報告されたのは、 Body Map法 (Ge ne, 174, 151 -158 ( 1996 ) ) である。 Body Map法の概略は以下の通りである。 ベ クタ一上のポリ T配列と mRNAの 3'末端にあるポリ Aテールを結合させ、 ベクタ一 ポリ T配列をプライマ一として cDNAを合成する。 更に、 制限酵素 Mbolで cDNAを切 断する。 Mbolサイ トは cDNA上で平均 300塩基対に一つあるため、 ベクター上の cDN Aは平均 300塩基対に分断される。 このとき、 最もポリ Aテールよりの cDNAは、 ベ クタ一に結合したまま残る。 この cDNA断片を持つベクタ一を閉環させ、 それを大 腸菌に導入して cDNAライブラリーを作製する。 ライブラリーから約 1000クロ一ン を任意に選択して、 それそれについて平均 300塩基対の塩基配列を決定する。 そ れらの配列の中から同じ配列を含むクローン毎にまとめて、 それそれの配列の種 類と出現頻度を算出して遺伝子発現プロファイルを得る。 各 cDNA配列はデータバ ンクでのホモロジ一検索(BLAST検索)を行い、 既知の遺伝子と同一の配列を有す るクローンにはその遺伝子の名称を与える。 配列がデ一夕バンクに登録されてい ない場合は、 その配列に該当する遺伝子は存在しないものとする。
BLAST検索によりホモロジ一検索を行なうためには、 最低 11塩基対の情報が必 要である。 10塩基からなる配列の種類は約百万種であり、 人で存在すると予想さ れる遺伝子の種類 10万種を遙かに越える。 すなわち、 11塩基対の情報があれば、 その配列を持つ遺伝子は特定することができ、 遺伝子発現プロファイル解析が可 能である。 したがって、 多量のシークェンスを必要とする Body Mapによる遺伝子 発現プロファイル解析を効率化するために、 Body Mapにおける約 300塩基対の cDN A断片を、 更に 11塩基対以上の短い断片( 「タグ (tag) 」 と呼ばれる)とし、 更に この断片同士を多数連結してベクターに挿入することにより、 連結タグのライブ ラリ^:作成し、 Body Mapと同様に約 1000クローンを任意に選択して、 連結タグ の DNA配列を決定すれば、 Body Mapと同じ手数でより多くの遺伝子発現情報を得 ることが期待できる。 タグは遺伝子配列を代表し、 タグの出現頻度はその遺伝子 の発現頻度を現す。 通常、 1回のシークェンスで判読出来る DNA配列の長さは約 6 00塩基対であるから、 1回のシークェンスで最大 50個程度の夕グの MA配列を判 読出来る。 すなわち、 Body Map法に比べて最大約 50倍の効率で、 遺伝子発現プロ フアイル解析を行うことが可能になる。
上記の考えに基づいた遺伝子発現プロファイル解析法として、 Serial analysi s of gene expression (SAGE) 法がある (米国特許第 5, 695, 937号、 第 5,866,330 号、 欧州特許公開第 0761 822号) 。 SAGEは、 ピオチンが 3'末端に結合したポリ T をプライマーとして cDNAを作製し、 Body Mapと同様に Mbol等の制限酵素 ( 「アン 力リング酵素(anchoring enzyme )」 と呼ばれる) で cDNAを切断した後、 ビォチン が結合した 3,末端を含む cDNA断片をアビジンビーズに吸着させ、 ビーズを二分し て、 それそれのビーズに吸着した cDNA断片 (約 13bp) に 2種のリンカ一 (A又は B ) の一方ずつを結合させる。 各リンカ一には BsmF Iのような Class I I制限酵素 ( 「タグ化酵素(tagging enzyme )」 と呼ばれる) のサイ トを含ませておく。 タグ 化酵素で cDNA断片をビーズから切り出し、 切断部位を平滑化し、 Aリンカ一に接 続するタグと Bリンカ一に接続するタグを連結させる。 これは、 ダイタグ (dita g) と称される。 Aリンカ一と Bリンカ一を認識するプライマ一を用いて PCRによ りダイタグを増幅する。 増幅されたダイタグ同士を多数連結させてベクターに組 み込み、 シークェンスする。 1シークェンスで最大 50程度のタグシークェンスを 得ることができる。 このタグシークェンス情報を集計して、 遺伝子発現頻度を導 き出す。
また、 遺伝子の発現頻度を解析する他の方法として、 遺伝子チップ法及び遺伝 子マイクロアレイ法がある。 いずれも、 遺伝子断片を適当な板の上(通常はスラ イ ドガラス)に、 極めて高密度に (約 10個/ nrai2以上) 並べて張り付けたものが用 いられる。 このチップと蛍光ラベルした mRNAをハイブリダィズさせて、 mRNAの種 類と量を測定する。
上記のように、 遺伝子の発現頻度を解析する方法がいくつか開発され、 それな りの成果は得られている。 現状では、 全ての真核生物の全ての遺伝子の発現頻度 を測定するには SAGE法が最も有効な手段であるが、 実際にこの手法を実施しょう とすると多くの問題に遭遇して、 殆どの研究機関で SAGE法を再現することができ なかった。 すなわち、 SAGE法は、 手技が難しく、 特別に訓練した者しか実施でき ない。 また、 測定には mRNAが l〃g程度必要であり、 小量の検体しか入手できない 場合、 例えば臨床生検材料では測定を行うことや、 組織の微細な部分の遺伝子発 現の違いを測定することは、 事実上不可能である。 さらに、 原理的に測定ミスが 多い。
SAGE法では、 正確にタグの配列を読み取ることは極めて重要である。 なぜなら、 タグは短く (約 13bp) 、 一力所でも読み間違いがあると同一物であるにも関わら ず別物と判断したり、 また、 異なるタグを同一物とみなしてしまうことが起こる。 ところが、 SAGE法にはこの間違いが生じる可能性が高い。 なぜなら、 SAGE法では 2つのタグをつなげてダイ夕グを形成するが、 このときにタグと夕グの境界が不 明瞭になるからである。 夕グは BsmFIや Foklなどの制限酵素で切り取られる短い 遺伝子断片である。 しかし、 これらの酵素は切断部位が必ずしも安定しておらず、 切り出されたタグの長さはまちまちである。 このように長さの異なる夕グが混在 している状態でタグとタグをつなげてダイタグにすると、 夕グと夕グの連結部位 確なタグの配列が得られなくなる。 このように、 SAGE法には原理的に不可避な欠 点がある。 また、 SAGE法にはアビジン及びビォチンビーズを用いて DNAを回収す る操作があるが、 アビジン及びピオチンビーズを用いてコン夕ミネ一シヨンを生 じることなく DNAを回収することは実際には非常に難しく、 プロトコ一ル通りの 操作では正確なデ一夕を得ることは非常に困難である。 また、 SAGE法ではデ一夕 を得るためには多量の mRNAを必要とし、 臨床サンプルなどのサンプル量に限りが あるものの場合、 十分な mRNAは得られず、 SAGE法は実施困難であった。
また、 遺伝子チップ法及び遺伝子マイクロアレイ法では、 Body Map法や SAGE法 と違って、 構造の解っている遺伝子しか測定することができない。 したがって、 現状では、 全ての生物の全ての遺伝子の発現頻度を測定することはできない。 現状では、 全ての真核生物の全ての遺伝子の発現頻度を測定するには SAGE法が 最も有効な手段であるが、 実際にこの手法を実施しょうとすると多くの問題に遭 遇して、 殆どの研究機関で SAGE法を再現することができなかった。 SAGE法の問題 点を上げると、 ( 1 ) 手技が難しく、 特別に訓練した者しか実施出来ない。 (2 ) 測定に mRNA量が l〃g程度必要であり、 小量の検体しか入手できない場合、 例えば 臨床生検材料は測定できない。 同様に、 組織の微細な部分の遺伝子発現の違いを 測定することができない。 ( 3 ) ダイタグを測定するために、 原理的に測定ミス が多い。 発明の開示
本発明は、 上記現状に鑑みなされたものであり、 通常の研究者が容易に実施す ることができ、 また、 ごく微量の検体から正確な遺伝子発現頻度解析を行なうこ とができる方法を提供することを課題とする。
本発明者らは、 上記課題を解決するために鋭意検討を行った結果、 ポリ T配列 を有するベクタ一プライマ一を用いて m Aから cDNAを合成し、 同べクタ一上で cD NA配列をタグ化し、 得られたタグを、 タグの末端が識別できるような配列を介在 させて連結することによりコンカテマ一を形成させ、 このコンカテマ一の塩基配 列を解析することによって、 効率よく、 しかも高精度で遺伝子の発現頻度を解析 することができることを見出し、 「 AGE (Micro-analysis of Gene Expression) 」 と名付けた本発明の方法を完成するに至った。
すなわち本発明は、 以下のものを提供する。
( 1 ) 以下のステップを含む遺伝子の発現頻度を解析する方法;
( a ) 直鎖状のプラスミ ドベクターの一方の 3, 末端に一本鎖のポリ T配列と、 その内側に第一の制限酵素認識配列とを有し、 他方の末端近傍に第二の制限酵素 認識配列と、 さらにその内側にタイプ 11 S制限酵素認識配列とを有するベクター プライマーと、 遺伝子の発現頻度を解析しょうとする細胞に由来する mR N Aと をァニールさせて c D N A合成を行い、 c D N Aが結合したベクタープライマ一 を生成するステップと、 (b) 前記 cDNAが結合したベクタープライマ一を、 ベクタ一プライマ一を 切断せず、 かつ、 前記第二の制限酵素の切断末端と同じ形の末端を生じさせる第 三の II艮酵素と、 前記第二の制限酵素とを用いて消化して cDNAの上流侧を切 除し、 ベクタープライマ一を閉環するステップと、
(c) 閉環したベクタ一プライマーを、 前記第一の制限酵素及び前記タイプ II S制限酵素で消化して、 c D N Aの一部からなる夕グを残して c D N Aの下流側 を切除し、 ベクタ一プライマーを再び閉環するステップと、
(d) 前記ベクタープライマーを鎵型とし、 ベクタ一プライマー中のタグの両 側のそれそれの領域に相当する塩基配列を有するオリゴヌクレオチドをプライマ —としてポリメラ一ゼ 'チェイン ' リアクション (PCR) を行い、 タグを増幅 するステップと、
(e)前記増幅産物を連結してタグのコンカテマ一を形成するステップと、 (f ) 前記コンカテマ一の塩基配列を決定し、 その塩基配列中に出現するタグ の種類及びその頻度を調べるステップ。
(2)前記ステップ (e) において、 連結反応を、 一方の末端がタグの末端と同 じ形を有するアダプタ一存在下で行い、 それによりコンカテマ一の両端にァダプ 夕一を配置させ、 アダプターの配列に相当する配列を有するオリゴヌクレオチド をプライマーに用いて P CRを行うことによりコンカテマ一を増幅することを特 徴とする (1) の方法。
(3)前記ステップ (e) の後に、 前記コンカテマ一の塩基配列の決定を、 塩基 配列決定用のクローニングベクターにクロ一ニングして行うことを特徴とする
(1)又は (2) の方法。
(4)前記第三の制限酵素の認識配列が 4塩基である (1) 〜 (3) のいずれか の方法。
(5)ベクタープライマ一は、 第二の制限酵素認識配列の切断点と同じ位置又は その内側に切断点を有し、 かつ、 タイプ IIS制限酵素による切断によってべクタ 一プライマ一から切除されない第四の制限酵素認識配列を有し、
前記 (d) のステップで用いるプライマーのうち、 タグの下流側のプライマー は、 第四の制限酵素切断末端と同じ形の末端を生じさせる第五の制限酵素の認識 配列を有し、 増幅されたプライマーを第四の制限酵素及び第五の制限酵素で消化 した後にコンカテマ一を形成させる ( 1) ~ (4) のいずれか一項に記載の方法。 ( 6 )—前記ベクターブラィマ一は、 第一の制限酵素認識配列のさらに内側に第五 の制限酵素認識配列と一塩基異なる塩基配列を有し、 前記夕グの下流側のブラィ マーを用いた P C Rにより前記一塩基異なる塩基配列が第五の制限酵素認識配列 に変換される (5) の方法。
( 7 ) 前記第三の制限酵素、 第四の制限酵素及び第五の制限酵素が同一である前 記 ( 6 ) の方法。
(8) ベクタ一プライマーが、 マルチクローニング部位を有するプラスミ ドを同 マルチクローニング部位の二箇所で切断して得られる直鎖状プラスミ ドと、 この 直鎖状プラスミ ドの一方の末端と同じ形の末端を有し、 一本鎖のポリ T配列を有 する部分二本鎖 DNAとが連結されたものである ( 1) 〜 (7) のいずれかの方 法。 図面の簡単な説明
図 1は、 ベクタ一プライマ一を作るためのプラスミ ド DNAの構造の一例 (MAGE/ PUC19) を示す。
図 2は、 ベクタ一プライマーの構造の一例とその構築過程を示す。
図 3は、 本発明の方法のステップ (a) 及び (b) を模式的に表す。
図 4は、 本発明の方法のステップ (c) 及び (d) を模式的に表す。
図 5は、 本発明の方法のステップ (e) と、 ステップ (e) により得られる増 幅産物をシークェンス用クロ一ニングベクタ一に挿入するステツプを模式的に表 す。 発明を実施するための最良の形態
本発明の方法は、 上記 (a) 〜 (f ) のステップを含む。 以下、 各ステップ毎 に説明する。
< 1 >ステップ ( a )
最初のステップでは、 直鎖状のプラスミ ドベクタ一の一方の 3 ' 末端に一本鎖 のポリ T配列と、 その内側に第一の制限酵素認識配列とを有し、 他方の末端近傍 に第二の制限酵素認識配列と、 さらにその内側にタイプ I I S制限酵素認識配列と を有 るベクタ一プライマ一 (以下、 「逆転写用ベクタープライマ一」 ともいう) を用いる。 ここで、 タイプ I I S制限酵素とは、 制限酵素により認識される配列か ら離れた特定の部位を開裂する制限酵素をいう。
ベクタ一プライマ一の構造の一例を、 図 2 Dに示す。 このべクタ一プライマー は、 例えば、 マルチクローニング部位を有するプラスミ ドを同マルチクロ一ニン グ部位の二箇所で切断して得られる直鎖状プラスミ ドと、 この直鎖状プラスミ ド の一方の末端と同じ形の末端を有し、 一本鎖のポリ T配列を有する部分二本鎖 D N Aとを連結することにより、 調製することができる。 図 1に、 マルチクロー二 ング部位を有するプラスミ ドの例として、 MAGE/pUC19の構造を示す。 このプライ マ一は、 基本構造として公知のクローニングベクターである PUC19を含み、 その マルチクローニングサイ 卜の EcoRlと Hindi 11制限酵素部位の間に、 種々の制限酵 素認識部位を含む配列 (Z fragmentと呼ぶ。 配列を配列番号 1に示す。 ) が挿入 されたものである。
尚、 以下の具体例では、 MAGE/pUC19は、 Damメチレ一シヨン系を有するェシェ リヒア · コリ宿主、 例えば JM109株等を用いて調製したものを使用する例につい て説明するが、 本発明に必須ではない。 また、 基本構造となるベクターは、 pUCl 9に限られるものでなく、 それ以外のベクタ一、 例えば pUC18、 pBR322, pHSG299、 pHSG298、 pHSG399、 pHSG398、 RSFlOlOv pMW119、 pMW118、 pM 219、 pMW218等、 種 々のベクターを用いることができる。 尚、 用いるベクタ一の宿主は、 形質転換、 宿主からのベクターの回収等、 通常の遺伝子組換え技術を適用することができる ものであれば特に制限されるものではないが、 通常、 ェシエリヒア ·コリが用い られる。
以下、 マルチクロ一ニング部位を有するプラスミ ドとして MAGE/pUC19を用いた 例について説明するが、 本発明はこれに限られるものではない。
まず、 MAGE/pUC19ベクタ一 (図 2 A ) を、 制限酵素 BstXI及び Pst lで処理し、 切り取られた小断片を除去する (図 2 B ) 。 次に BstXIによる切断末端に、 一本 鎖のポリ T配列を有する部分二本鎖 D N A (図 2 Cに示すポリ Tアダプタ一) を ライゲ一シヨンする。 これにより、 MAGE/pUC19ベクターの一端から一本鎖のポリ Tが飛び出した形のベクタ一プライマー (又は、 逆転写用べクタ一プライマー) が形成される (図 2D) 。 このべクタ一プライマ一では、 第一の制限酵素は Pmel であり、 第二の制限酵素は Bglllであり、 タイプ IIS制限酵素は Bsglである。 第二の制限酵素 Bglllの認識配列には bol認識配列が重複して含まれており、 B gill末端を Mbol末端と連結すると、 Mbolで切断することができる。 また、 この例 では、 ベクタープライマーの第一の制限酵素 (Pmel) 認識配列のさらに内側に、 第四の制限酵素 (Mbol) 認識配列と一塩基異なる塩基配列を含むように設計され ている (図 3 Eの AMboI) 。 この AMboI及びべクタ一プライマ一の第一の制限酵 素認識配列は、 ポリ Τアダプターに由来する。
第一の制限酵素及び第二の制限酵素は、 ベクタープライマーを一箇所で切断す るものであれば特に限定されない。 また、 タイプ IIS制限酵素及びその存在位置 は、 ベクタープライマ一から第四の制限酵素部位を切除せず、 かつ、 cDNAの上流 側の一部をベクタープライマーに残したまま切断するものであれば特に制限され ない。 具体的には、 例えば上記 Bsglの他に、 BsmFI等が挙げられる。
また、 ポリ T配列の長さは、 mRNAのポリ A配列とァニールできる程度の長さで あればよく、 通常 10〜50塩基程度である。
上記のようなベクタ一プライマーと、 遺伝子の発現頻度を解析しょうとする細 胞に由来する mRNAとをァニールさせる。 その状態で逆転写反応を行うと、 ポ リ Tがプライマ一となって cDNA合成が始まる (図 3 E) 。 そして、 合成された一 鎖目の cDNAを錡型として二鎖目を合成し、 二本鎖 cDNAが合成できる (図 3 F) 。 多数の mRNA分子から多数の cDNAが結合したベクタープライマー分子 ( cDNA- M AGE/pUC19) ができるが、 図 3 Fはその典型例のひとつを示したものである。 mRNAは、 遺伝子の発現頻度を解析しょうとする細胞から抽出する。 発現頻度を 解析しょうとする細胞は、 動物や植物の組織の細胞、 酵母等の微生物の細胞等、 細胞中の mRNAの 3 ' 末端にポリ A構造を有するものであれば特に制限なく使用す ることができる。 また、 原核生物の mRNAは 3 ' 末端にポリ A (poly(A)) 構造を 持たないために、 そのままではべクタ一プライマ一のポリ Tにァニールさせるこ とはできないが、 mRNAに酵素的にポリ A構造を付加することにより、 真核生物の mRNAと同様にして本発明の方法を実施することができる。
mRNAの調製、 及び c D N A合成、 オリゴヌクレオチドの合成、 制限酵素反応、 ライ 一シヨン反応、 ポリメラ一ゼ ·チェイン · リアクション (P C R ) 、 形質 転換等の操作は、 通常の c D N Aクロ一ニングに用いられる mRNAの調製法 (例え ば Sambrook, J. , Fritsch, E. F., and Maniatis, T. , "Molecular Cloning A L aboratory Manual , Second Edition" , Cold Spring Harbor Laboratory Press, ( 1989 )等参照) と同様にして行うことができる。
< 2 >ステップ ( b )
次に、 前記のようにして得られる c D N Aが結合したベクタ一プライマ一を、 ベクタープライマーを切断せず、 かつ、 前記第二の制限酵素の切断末端と同じ形 の末端を生じさせる第三の制限酵素と、 前記第二の制限酵素とを用いて消化して c D N Aの上流側を切除し、 ベクタープライマーを閉環させる。 閉環されたべク 夕一プライマ一は、 それを適当な宿主に導入し、 得られる形質転換体を培養して プラスミ ドを回収することにより、 増幅させることができる。 尚、 以降の工程で 得られる閉環状のベクタープライマーも同様であるが、 回収されたベクターブラ イマ一を切断しょうとする制限酵素部位が、 Damメチレーシヨンにより切断され ない場合には、 修飾系を有しない宿主を用いる。
前記第三の制限酵素としては 4塩基認識の酵素が好ましい。 6塩基認識の酵素 であると、 cDNA配列中に制限酵素部位が存在しない場合がある。 また、 ベクタ一 プライマ一に残される cDNAの配列が長いと、 後の操作で得られるタグが m Aのポ リ A配列から遠くなる。 そのような場合、 データべ一ス中の遺伝子の発現情報
(EST :expressed sequence tag) は、 通常 mRNAの 3 ' 末端側の一部であるため、 タグ配列を検索してもヒットしない場合がある。 本発明に好適な 4塩基認識の制 限酵素としては、 MboI、 Tai l等が挙げられる。
以下、 第三の制限酵素として、 Mbolを用いた例を説明する。 まず、 c D N Aが 結合したベクタープライマ一 (cMA- MAGE/pUC19) を制限酵素 Bgl I I及び Mbolで消 化する (図 3 G ) 。 このとき、 MAGE/pUC19は Damメチレ一シヨンを受けているの で、 Mbolでは切断されず、 逆転写により新たに合成された cDNA中の Mbolサイ トだ けが切断される。 図 3 Gは、 仮に cDNAが 3箇所の Mbolサイ トを含む例を示してい る。 cDNAに注目すると、 ポリ Aテールから上流に向かって最初の bolサイ トまで の下流側部分が MAGE/pUC19ベクタープライマ一につながったまま残り、 他の部分、 すなねち cDNAの上流側は Mbol切断により分離除去される。 また、 MAGE/pUC19 は、 Bglllにより一箇所のみが切断される。 Mbol及び Bglllで切断された末端は同 じ形をしており、 ライゲーシヨン反応で互いをつなぐことができる。 そこで、 こ れらの末端を介して、 cDNA- MAGE/pUC19をセルフライゲ一シヨン反応により閉環 する (図 3H) 。
< 3〉ステップ (c)
ステップ (b) で閉環したベクタープライマ一を、 前記第一の制限酵素及び前 記タイプ 11 S制限酵素で消化して、 cDNAの一部からなるタグを残して cDN Aの下流側を切除し、 ベクタ一プライマ一を再び閉環する。
具体的には、 閉環された cDNA-MAGE/pUC 19を制限酵素 Bsg I及び Pme Iで消化する (図 41) 。 これらの制限酵素の切断により、 cDNAの前記 3' 末端側部分のう ちポリ Aテールから最も遠い約 13塩基のみがべクタ一プライマーに残る。 この cDNAの約 1 3塩基からなる配列を、 タグ (図 4 J中の 「tag」 で示される) と呼ぶ。
上記の Bsglによる切断点は、 5' 側が 2 bp突出しているので、 例えば T4 DNA ポリメラ一ゼ処理により平滑化する。 また、 Pmelによる他方の切断末端は、 平滑 末端であるので、 これらの末端をライゲ一シヨンすることができる (図 4 J) 。 そこで、 ベクタ一プライマーをセルフライゲーシヨン反応で閉環すると、 夕グ以 外の部分の cDNAが切り取られ、 MAGE/pUC19に短いタグがつながった構造のベクタ —プライマーが得られる (図 4 J、K) 。
< 4〉ステップ (d)
次に、 ステップ (c) で閉環されたベクタープライマ一を銪型とし、 ベクター プライマー中のタグの両側のそれそれの領域に相当する塩基配列を有するオリゴ ヌクレオチドをプライマ一として P CRを行い、 タグを増幅する。
具体的には、 タグを含むベクタープライマーを銹型とし、 タグの両側のベクタ —部分の配列に相当するプライマー (例えば配列番号 2及び 3 ) を用いて PCR反 応を行う (図 4 K) 。 その結果、 中央にタグを含む DNAフラグメント (この場合 はプライマ一の配列及び夕グを含めて llObp) が増幅される (図 4 L ) 。
< 5 >ステップ ( e )
前 ¾·® Ρ C R増幅産物を連結してタグのコンカテマ一を形成させる。 その際、 前記 (d ) のステップで用いるプライマーのうち、 タグの下流側のプライマ一に、 第四の制限酵素切断末端と同じ形の末端を生じさせる第五の制限酵素の認識配列 を含ませておき、 増幅されたプライマーを第四の制限酵素及び第五の制限酵素で 消化すると、 効率よくコンカテマ一を形成させることができる。 第五の制限酵素 の種類は特に制限されないが、 第四の制限酵素と同じ制限酵素を用いると、 操作 が簡便となる。 また、 第四の制限酵素として、 第三の制限酵素と同じ制限酵素を 用いてもよい。 さらに、 第三、 第四及び第五の制限酵素が同じであってもよい。 ただし、 第五の制限酵素と第四の制限酵素に同じものを用いる場合は、 ステップ ( b ) で cDNAの全配列がベクタープライマーから切除されてしまうので、 それを 防ぐために、 ベクタープライマーの第一の制限酵素認識配列のさらに内側に、 第 五の制限酵素認識配列と一塩基異なる塩基配列を含ませておき、 夕グの下流側に 第五の制限酵素認識配列を有するプライマーを用いて P C Rを行うことにより、 一塩基異なる塩基配列を第五の制限酵素認識配列に変換するようにする必要があ る。 また、 第三の制限酵素と第四の制限酵素が同じである場合には、 ベクタープ ラィマ一の第四の制限酵素認識部位は、 メチレ一シヨンにより切断されないよう にしておく必要がある。 その場合には、 第四の制限酵素で消化する前に、 ステツ プ (c ) で閉環されたべクタ一プライマ一を修飾系を持たない宿主に導入して脱 修飾する。
タグの連結反応を、 一方の末端がタグの末端と同じ形を有するアダプター存在 下で行い、 それによりコンカテマ一の両端にアダプタ一を配置させると、 ァダプ 夕一の配列に相当する配列を有するオリゴヌクレオチドをプライマーに用いて P C Rを行うことにより、 コンカテマ一を増幅することができる。 アダプタ一は、 タグの量に比べて少量用いるか、 一方の末端がタグの末端と異なる形を有するァ ダブ夕一を用いると、 多数のタグからなるコンカテマ一の末端にアダプタ一を配 置させることができる。 このようにすることで、 ごく微量のコンカテマ一でもク ローニングすることができ、 結果としてごく微量のサンプル mRNAを用いた解析が 可能となる。
タグとアダプターの比率は、 通常モル比でタグ:アダプタ一 = 1 : 1〜 1 : 0 . 0 1、4子ましくは 1 : 0 . 2〜; 1 : 0 . 0 5である。 この範囲でアダプタ一を用 いると、 タグが 2〜5 0程度連結したコンカテマ一が得られる。
得られるコンカテマ一は、 塩基配列決定用のクロ一ニングベクタ一に挿入する と、 シークェンス操作が容易になる。
MAGE/pUC19を用いる場合には、 ステップ (d ) の増幅産物を制限酵素 Mbolで消 化することにより、 タグを含む小断片が得られる (図 5 M ) 。 ここで得られた夕 グ断片は、 既知の DNA配列、 すなわち GATCと AAACGに挟まれており、 どの部分が夕 グかを明確に識別することができる。 このタグ配列は両端に Mbolサイ 卜が露出し ているので、 ライゲーシヨン反応により夕グ同士を連結し、 コンカテマ一を形成 させることができる (図 5 M ) 。
< 6 >ステップ (f )
上記のようにして得られるコンカテマ一の塩基配列を決定すると、 その中には 多数の cDNA分子に由来するタグが含まれているので、 その塩基配列中に出現する タグの種類及びその頻度を調べることにより、 cDNAが由来する遺伝子の発現頻度 を解析することができる。 タグの種類は、 既知の mMAの部分配列 (EST) の情報 に関するデ一夕ベースを検索することにより調べることができる。
尚、 タグのコンカテマ一を増幅することにより、 同一配列を持つフラグメント が複数個生じることになる。 しかし、 クロ一ニング後のシークェンス解析におい て、 先にシークェンスしたものと同一物とみなされるシークェンスは出現した場 合は、 それを解析から除くことにより、 遺伝子発現頻度解析に PCRが及ぼす悪影 響を排除することができる。
また、 第四と第五の制限酵,素として同じ酵素を用いた場合は、 コンカテマ一中 のタグの向きは不定であるので、 配列解析においては一方の鎖だけでなく逆鎖の 配列も考慮する。
以上説明したように、 本発明の方法では、 SAGE法のようにダイタグを作らず、 個々のタグを既知の DNA断片で挟むことにより、 タグが他のタグと連続しないよ うにすることができる。 その結果、 タグの境界が曖昧になるという問題点が解決 される。 また、 PCRを複数回行い、 試料を増幅することができるので、 微量の mRNAからでも解析が可能となる。 さらに、 ベクタ一プライマーを用いることによ り、 ベクタ一に融合した形の cDNA合成を行うことで、 アビジンやピオチンビーズ を用いずに解析することができる。 実施例
マウス C57BL/6肝臓 lgから、 Invitrogen社製 FastTrack 2.0キットを用いて mRN A 35〃gを抽出した。
得られた mRNA 0.97〃gを用いて、 以下の様にして MAGE/pUC19を用いて逆転写 cD NA合成後、 遺伝子発現頻度解析を行った。
MAGE/pUC19ベクタ一 (図 2A) を、 制限酵素 BstXI及び Pstlで処理し、 切り取 られた小断片を除去した (図 2 B) 。 次に BstXIによる切断末端に、 一本鎖のポ リ T配列を有する部分二本鎖 DNA (図 2 Cに示すポリ Tアダプター) をライゲ —シヨンした (図 2D) 。 このベクタープライマ一では、 第一の制限酵素は Pmel であり、 第二の制限酵素は Bglllであり、 タイプ IIS制限酵素は Bsglである (図 3E) 。
上記ベクタープライマー 0.2〃gと、 上記のマウス肝臓由来の mRNA 0.97〃gとを ァニールさせ、 cDNA合成を行い、 続いて合成された一鎖目の cDNAを錶型として二 鎖目を合成した (図 3 F) 。 そして、 得られた cDNAの 40分の 1に当たる量 (mRNA 0.025〃g相当) を材料に遺伝子発現頻度解析を行った。
尚、 別の実験では、 4.5mgの微量臨床サンプルから抽出した、 0.05 ^の微量11111 NAを実験材料にして、 逆転写 cDNA合成後、 以下と同様にして遺伝子発現頻度解析 を実施することに成功している。
次に、 前記のようにして得られる cDNAが結合したベクタ一プライマ一を、 第二 の制限酵素 Bglll及び第三の制限酵素である Mbolで消化した (図 3G) 。 次に、 c DNA- AGE/pUC 19の Mbo I末端及び Bgl 11末端をセルフライゲ一シヨン反応により連 結して閉環させた (図 3 H) 。
前記の閉環したベクタ一プライマ一を Bsgl及び Pmelで消化し、 T4 MAポリメラ —ゼ処理により平滑化した後、 ベクタープライマーを再び閉環させた (図 41〜 K ) 。 この閉環されたべクタ一プライマーを銪型とし、 ベクタ一プライマ一中の タグの両側のそれそれの領域に相当する塩基配列を有するオリゴヌクレオチド
(配 番号 2及び 3 ) をプライマ一として、 酵素 AmpliTaq Gold (PE Biosystems 社) を用いて P C Rを行い、 タグを増幅した (図 4 L ) 。 P C R反応は、 変性
(95°C、 0.3分) 、 アニーリング及びポリメラ一ゼによる伸長反応 (72°C、 1.5分) からなる反応を 65サイクル行うことにより行った。 その結果、 中央にタグを含む llObpの DNAフラグメントが増幅された。
前記の P C R増幅産物を Mbolで消化してタグを切り出し、 タグ:アダプタ一が 8 : 1となるように、 配列番号 4、 5に示す塩基配列を有するオリゴヌクレオチ ドをァニールさせたアダプタ一を加えて連結反応を行い、 夕グのコンカテマ一を 形成させた (図 5 M) 。 このコンカテマ一を、 配列番号 6に示す塩基配列を有す るプライマーを用いた P C Rにより増幅した。 P C R反応は、 変性 (95° 0.3 分) 、 アニーリング (40°C、 3分) 、 ポリメラ一ゼによる伸長反応 (72°C、 1分) からなる反応を 5サイクル行い、 引き続き変性 (95°C、 0.3分) 、 アニーリング 及び伸長反応 (72°C、 1分) からなる反応を 60サイクル行った。 増幅産物を制限 酵素 Notlで消化し、 シークェンス用クロ一ニングベクタ一 pKF3の Notl部位に挿入 して、 塩基配列を決定した。
得られたシークェンスデ一夕 (11000個) から、 同一の配列を有する夕グをグ ループィ匕し、 出現頻度順に並べた。 頻度上位 1 0番までを表 1に示す。 この結果 から、 マウス肝臓組織中で最も発現頻度が高い遺伝子はゥリナリ · プロテイン I /I I遺伝子であることがわかる。 以下、 発現頻度の高い順に、 アルブミン遺伝子、 ゥリナリ · プロテイン I I I遺伝子、 アルギニノコハク酸合成酵素遺伝子と並んで いる。 このように、 本発明の方法は、 mRNAサンプルが微量であっても、 ベクター プライマーを用いることにより cDNAの回収効率が高く、 またタグ配列の不明瞭さ を除くことが可能であるので、 遺伝子発現頻度を高精度で解析することができる。 表 1 タ (配列番号) 頻度順位 夕グの数 遺伝子名
TGCATTCCATC ( ) 1 2196 ゥリナリ · プロティン I/I I
CCTGGTGGAAA ( 8) 2 1261 アルブミン
TGCTCTCCACC ( 9 ) 3 485 ゥリナリ ·プロティン I I I
GGGAAGTACGC ( 10 ) 4 383 アルギニノコハク酸合成酵素
ACCTCGGATGA ( 11 ) 5 . 345 フィブリノ一ゲン Aひ
TTCCAGGCCCG ( 12) 6 333 ァポリポプロティン E
ACCAGTGTCGC ( 13 ) 7 310 マウス EST
TGCATGCCCTG ( 14) 8 307 フヱリチン軽鎖
CACTACAGCAC ( 15 ) 9 300 マウス EST
CTGCCAAGTTC ( 16 ) 10 226 レチノ一ル結合夕ンパク質
産業上の利用の可能性
本発明により、 遺伝子の発現頻度を、 簡便に、 確実に、 かつ精度よく解析する ことができる。
本発明の遺伝子発現解析法は、 生命科学の研究にとって有用であるが、 特に、 健康人と病気の人における特定臓器、 又は細胞における遺伝子発現の差異を解析 する事により、 病気の治療法開発や診断法開発に有用である。 例えば、 健康人の 肝臓と肝炎の肝臓の発現遺伝子の違いを本法により解析することにより、 肝炎で 特異的に発現が増加したり減少したりする遺伝子を見つけることができる。 これ ら遺伝子の肝臓での役割を調べることにより、 肝炎治療を目的として、 この遺伝 子の働きを阻害したり、 促進させたりする薬剤を開発することができる。 又、 遺 伝子そのもの、 遺伝子構造から設計したアンチセンスオリゴヌクレオチド、 ある いは遺伝子を発現させて得た蛋白質等を、 肝炎治療に用いることができる。
また、 発症のメカニズムが解っていない病気に対しても、 本発明の方法を用い れば、 治療法を開発できる可能性がある。 さらに、 本発明の方法により疾患特異 的に発現が変動する遺伝子を発見することができれば、 治療ばかりでなく、 疾患 の診断法を開発することも可能となる。 さらに、 医療における利用ばかりでなく、 全ての真核生物を対象に有用遺伝子 を発見する手段ともなる。 例えば、 ビール生産に適した酵母を変異により育種し た場^ 親株と変異株の遺伝子発現の変化を本発明の方法で解析し、 変異により 発現が変化した遺伝子を同定することができる。 このようにして得たビール生産 にとつて有利な遺伝子を総合的に操作することにより、 よりよいビール生産酵母 を創製することができる。
また、 例えば、 大腸菌やコリネパクテリゥムのようなアミノ酸生産菌の解析を 行うことにより、 より優れたアミノ酸生産菌を創製することができる。

Claims

請求の範囲
1. 以下のステップを含む遺伝子の発現頻度を解析する方法;
(a) "ii鎖状のプラスミ ドベクタ一の一方の 3' 末端に一本鎖のポリ T配列と、 その内側に第一の制限酵素認識配列とを有し、 他方の末端近傍に第二の制限酵素 認識配列と、 さらにその内側にタイプ 11 S制限酵素認識配列とを有するベクター プライマ一と、 遺伝子の発現頻度を解析しょうとする細胞に由来する mRNAと をァニールさせて c DNA合成を行い、 c DNAが結合したベクタ一プライマ一 を生成するステップと、
(b)前記 cDNAが結合したベクタ一プライマ一を、 ベクタープライマーを切 断せず、 かつ、 前記第二の制限酵素の切断末端と同じ形の末端を生じさせる第三 の制限酵素と、 前記第二の制限酵素とを用いて消化して cDNAの上流側を切除 し、 ベクタ一プライマ一を閉環するステップと、
(c) 閉環したベクタ一プライマーを、 前記第一の制限酵素及び前記タイプ IIS 制限酵素で消化して、 c D N Aの一部からなる夕グを残して c D N Aの下流側を 切除し、 ベクタ一プライマ一を再び閉環するステップと、
(d ) 前記ベクタープライマーを铸型とし、 ベクタ一プライマ一中のタグの両側 のそれぞれの領域に相当する塩基配列を有するオリゴヌクレオチドをプライマー としてポリメラ一ゼ ·チェイン · リアクション (PCR) を行い、 タグを増幅す るステップと、
(e)前記増幅産物を連結してタグのコンカテマ一を形成するステップと、
(f ) 前記コンカテマ一の塩基配列を決定し、 その塩基配列中に出現するタグの 種類及びその頻度を調べるステップ。
2. 前記ステップ (e) において、 連結反応を、 一方の末端がタグの末端 と同じ形を有するアダプタ一存在下で行い、 それによりコンカテマ一の両端にァ ダブ夕一を配置させ、 ァダブ夕一の配列に相当する配列を有するオリゴヌクレオ チドをプライマーに用い、 コンカテマ一を錶型として P CRを行うことによりコ ン力テマ一を増幅することを特徴とする請求項 1記載の方法。
3. 前記ステップ (e) の後に、 前記コンカテマ一の塩基配列の決定を、 塩基配列決定用のクロ一ニングベクタ一にクロ一ニングして行うことを特徴とす る請求項 1又は 2記載の方法。
4 . 前記第三の制限酵素の認識配列が 4塩基である請求項 1〜 3のいずれ か一 (こ記載の方法。
5 . ベクタープライマ一は、 第二の制限酵素.認識配列の切断点と同じ位置 又はその内側に切断点を有し、 かつ、 タイプ I I S制限酵素による切断によってべ クタ一プライマ一から切除されない第四の制限酵素認識配列を有し、
前記 (d ) のステップで用いるプライマーのうち、 タグの下流側のプライマ一 は、 第四の制限酵素切断末端と同じ形の末端を生じさせる第五の制限酵素の認識 配列を有し、 増幅されたプライマーを第四の制限酵素及び第五の制限酵素で消化 した後にコンカテマ一を形成させる請求項 1〜 4のいずれか一項に記載の方法。
6 . 前記べクタ一プライマーは、 第一の制限酵素認識配列のさらに内側に 第五の制限酵素認識配列と一塩基異なる塩基配列を有し、 前記夕グの下流側のプ ライマーを用いた P C Rにより前記一塩基異なる塩基配列が第五の制限酵素認識 配列に変換される請求項 5記載の方法。
7 . 前記第三の制限酵素、 第四の制限酵素及び第五の制限酵素が同一であ る請求項 6記載の方法。
8 . ベクタープライマ一が、 マルチクロ一ニング部位を有するプラスミ ド を同マルチクローニング部位の二箇所で切断して得られる直鎖状プラスミ ドと、 この直鎖状プラスミ ドの一方の末端と同じ形の末端を有し、 一本鎖のポリ T配列 を有する部分二本鎖 D N Aとが連結されたものである請求項 1〜7のいずれか一 項に記載の方法。
PCT/JP2000/000902 1999-02-17 2000-02-17 Procede d'analyse d'une frequence d'expression genique WO2000049143A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00904009A EP1156107B1 (en) 1999-02-17 2000-02-17 Method for analyzing gene expression frequency
AT00904009T ATE275196T1 (de) 1999-02-17 2000-02-17 Verfahren zur analyse der genexpressions-frequenz
US09/926,028 US6806049B1 (en) 1999-02-17 2000-02-17 Method for analyzing gene expression frequency
DE60013410T DE60013410T2 (de) 1999-02-17 2000-02-17 Verfahren zur analyse der genexpressions-frequenz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP03853899A JP3924976B2 (ja) 1999-02-17 1999-02-17 遺伝子の発現頻度の解析方法
JP11/38538 1999-02-17

Publications (1)

Publication Number Publication Date
WO2000049143A1 true WO2000049143A1 (fr) 2000-08-24

Family

ID=12528071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000902 WO2000049143A1 (fr) 1999-02-17 2000-02-17 Procede d'analyse d'une frequence d'expression genique

Country Status (7)

Country Link
US (1) US6806049B1 (ja)
EP (1) EP1156107B1 (ja)
JP (1) JP3924976B2 (ja)
AT (1) ATE275196T1 (ja)
DE (1) DE60013410T2 (ja)
DK (1) DK1156107T3 (ja)
WO (1) WO2000049143A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097158A (ja) * 2002-09-12 2004-04-02 Kureha Chem Ind Co Ltd 発現遺伝子同定用cDNAタグの作成方法、及び該cDNAタグを用いる遺伝子発現解析方法
JP4034317B2 (ja) 2005-03-29 2008-01-16 富士通株式会社 画像符号化装置
AU2007341981A1 (en) * 2006-12-29 2008-07-10 The Salk Institute For Biological Studies Methods for enhancing exercise performance
WO2009091719A1 (en) 2008-01-14 2009-07-23 Applera Corporation Compositions, methods, and kits for detecting ribonucleic acid
EP2910649A1 (en) 2009-08-24 2015-08-26 National University Corporation Kanazawa University Detection of pancreatic cancer by gene expression profiling
JP7445334B1 (ja) 2022-09-05 2024-03-07 株式会社キュービクス 膵臓癌に特異的な遺伝子発現パターンの検出及びca19-9の測定の併用による膵臓癌の検出

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010363A1 (en) * 1995-09-12 1997-03-20 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695937A (en) 1995-09-12 1997-12-09 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression
US6136537A (en) * 1998-02-23 2000-10-24 Macevicz; Stephen C. Gene expression analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010363A1 (en) * 1995-09-12 1997-03-20 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERANGERE VIRLON ET AL.: "Serial microanalysis of renal transcriptomes", PROC. NATL. ACAD. SCI. USA,, vol. 96, no. 26, 21 December 1999 (1999-12-21), pages 15286 - 15291, XP002927763 *
CZARNOTA G.J. ET AL.: "High resolution microanalysis and three-dimensioanl mucleosome structure associated with transcribing chromatin", MICRON.,, vol. 28, no. 6, December 1997 (1997-12-01), pages 419 - 431, XP002929046 *
GIGUERE S. ET AL.: "Quantitation of equine cytokine mRNA expression by reverse transcription-competitive polymerase chain reaction", VET IMMUNOL. IMMUNOPATHOL.,, vol. 67, no. 1, 4 January 1999 (1999-01-04), pages 1 - 15, XP000925534 *

Also Published As

Publication number Publication date
EP1156107A1 (en) 2001-11-21
JP3924976B2 (ja) 2007-06-06
US6806049B1 (en) 2004-10-19
ATE275196T1 (de) 2004-09-15
DE60013410T2 (de) 2005-09-15
EP1156107A4 (en) 2002-09-25
DE60013410D1 (de) 2004-10-07
EP1156107B1 (en) 2004-09-01
DK1156107T3 (da) 2004-12-06
JP2000232888A (ja) 2000-08-29

Similar Documents

Publication Publication Date Title
CN107586835B (zh) 一种基于单链接头的下一代测序文库的构建方法及其应用
US6472207B1 (en) Method for producing tagged genes, transcripts, and proteins
US6395478B1 (en) Identification and comparison of protein-protein interactions that occur in populations and indentification of inhibitors of these interactors
JP2001514488A (ja) 遺伝子の量的発現を分析する方法
JP4644685B2 (ja) 塩基配列タグの調製方法
WO2006085616A1 (ja) 核酸配列増幅方法
KR20150141944A (ko) 혼합물 중 핵산의 서열분석 방법 및 그와 관련된 조성물
CN108300767A (zh) 一种核酸复合体中核酸区段相互作用的分析方法
TW200948969A (en) Expression-linked gene discovery
CN113337502B (zh) 一种gRNA及其用途
JPH0923885A (ja) 遺伝子発現ライブラリー及びその製造法
KR101913735B1 (ko) 차세대 염기서열 분석을 위한 시료 간 교차 오염 탐색용 내부 검정 물질
WO2000049143A1 (fr) Procede d&#39;analyse d&#39;une frequence d&#39;expression genique
JP2002530119A (ja) 任意プライマーおよび低ストリンジェンシーを用いるヌクレオチド配列決定法
WO2022185664A1 (ja) 翻訳促進剤、翻訳鋳型mRNA、転写鋳型DNA、翻訳鋳型mRNAの生産方法、および、タンパク質の生産方法
JP4403069B2 (ja) クローニングおよび分析のためのmRNAの5’末端の使用方法
JP2004187606A (ja) 核酸アイソフォームの同定、分析および/またはクローニング方法
CN104419756B (zh) 检测哺乳动物基因组三核苷酸重复序列的方法及其应用
JP5322141B2 (ja) 5’領域ディファレンシャルディスプレー法
JP6417603B2 (ja) Rnaの末端領域に対応する核酸の塩基配列を解読する方法およびdnaエレメントの分析方法
AU2004295532A1 (en) Method of obtaining gene tag
WO2008015975A1 (fr) Procédé d&#39;amplification d&#39;un fragment d&#39;adn
WO2024119461A1 (en) Compositions and methods for detecting target cleavage sites of crispr/cas nucleases and dna translocation
TW200411069A (en) Detection of evolutionary bottlenecking by dna sequencing as a method to discover genes of value
EP3763811A1 (en) Reverse transcriptase and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926028

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000904009

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000904009

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000904009

Country of ref document: EP