WO2000046552A1 - Klimagerät zur temperaturregulierung - Google Patents

Klimagerät zur temperaturregulierung Download PDF

Info

Publication number
WO2000046552A1
WO2000046552A1 PCT/EP2000/000188 EP0000188W WO0046552A1 WO 2000046552 A1 WO2000046552 A1 WO 2000046552A1 EP 0000188 W EP0000188 W EP 0000188W WO 0046552 A1 WO0046552 A1 WO 0046552A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
condenser
heat exchanger
pump
recooler
Prior art date
Application number
PCT/EP2000/000188
Other languages
English (en)
French (fr)
Inventor
Heinz Glagowski
Original Assignee
Stulz Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stulz Gmbh filed Critical Stulz Gmbh
Priority to AT00901096T priority Critical patent/ATE304150T1/de
Priority to EP00901096A priority patent/EP1149262B1/de
Priority to DE50011114T priority patent/DE50011114D1/de
Publication of WO2000046552A1 publication Critical patent/WO2000046552A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to an air conditioner for temperature regulation, which is connected to a recooler via a first coolant circuit and has a heat exchanger for free cooling and a condenser which can be acted upon by the recooler.
  • the invention further relates to a system for temperature regulation and a method for operating an air conditioner.
  • the air conditioning units mentioned are installed inside a building for room cooling.
  • the dry cooler is usually located outside the building outdoors.
  • at least one pump for circulating the coolant is provided in the first coolant circuit.
  • the division between the heat exchanger and the condenser of the air conditioning unit is done by series-connected reusable valves.
  • a disadvantage of the known air conditioners is the very high hydraulic resistance of the heat exchanger for free cooling of the condenser and the reusable valves. This leads to an increased energy consumption for the circulation of the coolant in the first coolant circuit.
  • an expensive, central and large pump is required to overcome the hydraulic resistance.
  • a standby pump is also required to be able to bridge a failure of the first pump. This stand-by pump must have the same pumping capacity as that provide the first pump and is therefore also very expensive and large.
  • the heat exchanger and the condenser are connected in parallel.
  • At least two pumps connected in parallel with adjustable speed are provided, the first pump acting on the heat exchanger and the second pump on the condenser.
  • the use of the pumps instead of the known valves further reduces the water-side resistance of the air conditioning unit and thus the energy consumption.
  • the coolant flow through the heat exchanger and the condenser can be precisely adjusted the.
  • the pump acting on the condenser can be switched off, so that the energy consumption is further reduced.
  • At least one of the pumps is advantageously arranged in the air conditioning unit. This makes it possible to dispense with cost-intensive, central and large circulation pumps in the first coolant circuit. A stand-by pump is no longer required because at least one pump is already integrated in each air conditioning unit. The total investment costs decrease considerably.
  • a second coolant circuit with the condenser, an evaporator, an expansion valve and a compressor is provided in the air conditioning unit and is cooled via the condenser which can be acted upon by the recooler.
  • This second coolant circuit can be run independently of the cooling through the heat exchanger of the air conditioner with variable output, so that an optimal adaptation to different boundary conditions is made possible.
  • the air conditioning unit is provided with a fan for the forced circulation of air. This increases the cooling capacity of the air conditioner.
  • a system for temperature regulation in which several air conditioning units of the type described above are provided, which are connected in parallel to one another and connected to the recooler.
  • air conditioning units of the type described above are provided, which are connected in parallel to one another and connected to the recooler.
  • a separate pump cabinet can be dispensed with.
  • the system is therefore more compact than the known systems.
  • the arrangement of the pumps in each air conditioning unit enables flexible positioning of the air conditioning units in the building and autonomous control of each individual air conditioning unit.
  • the air conditioning units are only connected to a common coolant supply line and coolant return line of the first coolant circuit. Subsequent extensions can be made without changing the piping and without changing pumps.
  • the circulating amount of coolant is reduced because, in contrast to the use of a central pump, the coolant is only pumped as required by the air conditioning units in operation.
  • the invention further relates to a method for operating such an air conditioner, in which the pumps acting on the heat exchanger and the condenser are operated independently of one another.
  • the amount of coolant pumped by the heat exchanger can thus be set completely independently of the amount of coolant pumped by the condenser.
  • the pump acting on the condenser can be switched off completely in winter operation, since the cold generated by the heat exchanger is sufficient to regulate the temperature. This reduces energy consumption and increases the service life of the pumps.
  • the pump acting on the heat exchanger is advantageously controlled as a function of the temperature of the coolant of the first cooling circuit and the ambient temperature of the air conditioning unit. This ensures that coolant can only be is exchanged when a contribution to the desired temperature regulation is actually made. As soon as the temperature of the coolant corresponds approximately to the ambient temperature of the air conditioner, no contribution can be made to regulate the temperature.
  • the pump for loading the heat exchanger is then switched off, so that the entire temperature regulation is achieved by the pump for loading the condenser.
  • the pump which acts on the condenser is controlled as a function of the cooling capacity of the second coolant circuit in the air conditioning device, in particular as a function of the condensing pressure and the electrical power consumption of the compressor. This ensures that only the amount of coolant required for cooling the second coolant circuit is circulated, so that the energy consumption is further reduced and the service life is increased again.
  • the temperature of the coolant in the first coolant circuit can be taken into account in order to ensure reliable removal of the heat from the condenser to the recooler.
  • the method according to the invention further provides that the greatest possible proportion of the desired temperature regulation is achieved by the heat exchanger for free cooling.
  • the power consumption of the second coolant circuit in the air conditioning unit can be kept to a minimum, so that there is low energy consumption and a long service life for the pump acting on the condenser.
  • Figure 1 is a schematic representation of a system for temperature regulation with several air conditioning units according to the invention connected in parallel;
  • Figure 2 is an enlarged schematic representation of an air conditioner according to the invention.
  • a system 20 for temperature regulation is shown in FIG.
  • the system 20 comprises a plurality of air conditioning units 4 connected in parallel to one another.
  • the air conditioning units 4 are connected to a recooler 1 via a first coolant circuit.
  • Each air conditioner 4 has a pump 2 for charging a heat exchanger 3 for free cooling and a pump 5 for charging a condenser 6.
  • the coolant is simultaneously circulated in the first coolant circuit in the direction of the arrows 7, 8 by means of the pumps 2, 5.
  • the pumps 2, 5 as well as the heat exchanger 3 and the condenser 6 are each connected in parallel to one another and have a low hydraulic resistance. Furthermore, the pumps 2, 5 can be regulated separately in their speed. As a result, the amount of the coolant pumped through the heat exchanger 3 and the condenser 6 can be predetermined separately.
  • FIG. 2 shows an enlarged schematic illustration of an air conditioning unit 4.
  • the pumps 2, 5 are arranged in the air conditioning unit 4.
  • a second coolant circuit is provided, which Condenser 6, an evaporator 1 3, an expansion valve 1 4 and a compressor 1 5 comprises.
  • a fan 1 0 is also provided for the forced circulation of the air.
  • the air enters the air conditioner 4 in the direction of the arrow 1 1, flows through a filter 9 for removing impurities, is directed past the heat exchanger 3 and the evaporator 1 3, is tempered and is finally expelled in the direction of the arrow 1 2.
  • the air conditioner 4 is connected to the first coolant circuit via connections 1 6, 1 7.
  • the air conditioners 4 are installed in the interior of a building, possibly distributed over several floors.
  • the recooler 1 is located outside the building, i.e. outdoors. There are three operating states, which are described below for an air conditioner 4.
  • the coolant of the first coolant circuit is cooled down greatly by the recooler 1.
  • the cold coolant is pumped with the pump 2 through the heat exchanger 3 for free cooling. Because of the low temperature of the coolant, the required cooling capacity can be provided by the heat exchanger 3 alone. If the room temperature rises, the speed of pump 2 is increased by means of a suitable controller, and the amount of coolant is regulated as required.
  • the second coolant circuit in the air conditioner 4 which is shown in more detail in FIG. 2, is used for cooling.
  • This second coolant circuit enables the environment of the air conditioner 4 to be cooled by circulating another coolant.
  • the heat extracted from the environment of the air conditioning unit 4 is dissipated in the condenser 6 to the first coolant circuit and from there via the recooler 1 outside the building.
  • the pump 5 is controlled as a function of the cooling capacity of the second coolant circuit.
  • This cooling capacity depends on the compression generated by the compressor 15, which can be determined via the electrical power consumption or the condensing pressure / suction pressure of the compressor 15.
  • the speed of the pump 5 is therefore set depending on the temperature of the coolant or the condensing pressure in the second coolant circuit. This ensures reliable heat dissipation from the condenser 6 to the recooler 1.
  • the cooling capacity of the heat exchanger 3 is not sufficient for free cooling when the outside temperature rises for the desired temperature regulation.
  • the second coolant circuit of the air conditioner 4 is therefore switched on.
  • the pumps 2, 5 run as required during this transition period.
  • the pump 2 runs at maximum power in order to generate as much cooling power as possible.
  • the remaining cooling capacity is generated by the pump 5 and the second coolant circuit in the air conditioner 4.
  • the pump 5 and the compressor 1 5 run here with comparatively low power and low energy consumption.
  • the speed of the pumps 2, 5 and the amount of coolant supplied to the heat exchanger 3 and the condenser 6 is dependent on the required cooling capacity for each air conditioner 4 individually and autonomously.
  • a mixture of water and antifreeze is preferably used as the coolant in the first coolant circuit, while a refrigerant, for example R 22, is used in the second coolant circuit.
  • the air conditioners 4 By connecting the heat exchanger 3 and the condenser 6 in parallel, the air conditioners 4 according to the invention enable a significant reduction in the hydraulic resistance. As a result, the energy consumption required to circulate the coolant in the first coolant circuit can be significantly reduced. A further reduction can be achieved by using pumps 2, 5 connected in parallel, the speeds of which can be set separately from one another.

Abstract

Die Erfindung betrifft ein Klimagerät (4) zur Temperaturregulierung, das über einen ersten Kühlmittelkreislauf mit einem Rückkühler (1) verbunden ist. Das Klimagerät (4) weist einen von dem Rückkühler (1) beaufschlagbaren Wärmetauscher (3) für freie Kühlung und einen Verflüssiger (6) auf. Erfindungsgemäß sind der Wärmetauscher (3) und der Verflüssiger (6) parallel geschaltet. Zum Umwälzen des Kühlmittels zwischen dem Rückkühler (1) und dem Klimagerät (4) sind vorteilhaft zwei parallel geschaltete Pumpen (2, 5) vorgesehen, die getrennt voneinander in der Drehzahl einstellbar sind.

Description

Klimagerät zur Temperaturregulierung
Die vorliegende Erfindung betrifft ein Klimagerät zur Temperaturregulierung, das über einen ersten Kühlmittelkreislauf mit einem Rückkühler verbunden ist und einen von dem Rückkühler beaufschlagbaren Wärmetauscher für freie Kühlung und einen Verflüssiger aufweist. Die Erfindung betrifft weiter eine Anlage zur Temperaturregulierung sowie ein Verfahren zum Betrieb eines Klimagerätes.
Die genannten Klimageräte werden im Inneren eines Gebäudes zur Raumkühlung aufgestellt. Der Rückkühler ist im Regelfall außerhalb des Gebäudes im Freien angeordnet. Bei den bekannten Klimageräten ist in dem ersten Kühimittelkreislauf mindestens eine Pumpe zum Umwälzen des Kühlmittels vorgesehen. Die Aufteilung zwischen dem Wärmetauscher und dem Verflüssiger des Klimagerätes erfolgt durch in Serie geschaltete Mehrwegventile. Nachteilig bei den bekannten Klimageräten ist der sehr große hydraulische Widerstand des Wärmetauschers für die freie Kühlung des Verflüssigers und der Mehrwegventile. Dies führt zu einem erhöhten Energieverbrauch für die Umwälzung des Kühlmittels in dem ersten Kühimittelkreislauf. Weiter ist eine kostenintensive, zentrale und große Pumpe zum Überwinden des hydraulischen Widerstands erforderlich. Aus Sicherheitsgründen wird darüber hinaus eine Stand-by- Pumpe benötigt, um einen Ausfall der ersten Pumpe überbrücken zu können. Diese Stand-by-Pumpe muß dieselbe Pumpleistung wie die erste Pumpe erbringen und ist daher ebenfalls sehr kostenintensiv und groß.
Aufgabe der vorliegenden Erfindung ist es daher, ein Klimagerät bereitzustellen, das bei geringem Energieverbrauch eine gute Temperaturre- guiierung ermöglicht. Es ist eine weitere Aufgabe der Erfindung, eine Anlage zur Temperaturregulierung sowie ein Verfahren zum Betrieb eines Klimageräts bereitzustellen.
Erfindungsgemäß ist zur Lösung dieser Aufgabe bei einem Klimagerät der eingangs genannten Art vorgesehen, daß der Wärmetauscher und der Verflüssiger parallel geschaltet sind.
Durch die Parallelschaltung des Wärmetauschers und des Verflüssigers wird der wasserseitige Widerstand reduziert. Hierdurch wird der Energieverbrauch zum Umwälzen des Kühlmittels in dem ersten Kühimittelkreislauf wesentlich verringert.
Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.
In vorteilhafter Ausgestaltung zum Umwälzen des Kühlmittels zwischen dem Rückkühler und dem Klimagerät mindestens zwei parallel geschaltete Pumpen mit regelbarer Drehzahl vorgesehen, wobei die ersten Pumpe den Wärmetauscher und die zweite Pumpe den Verflüssiger beaufschlagt. Die Verwendung der Pumpen anstatt der bekannten Ventile reduziert den wasserseitigen Widerstand des Klimageräts und damit den Energieverbrauch weiter. Weiter kann der Kühlmittelstrom durch den Wärmetauscher und den Verflüssiger genau eingestellt wer- den. In Abhängigkeit von den Randbedingungen kann die den Verflüssiger beaufschlagende Pumpe abgeschaltet werden, so daß der Energieverbrauch weiter reduziert wird.
Vorteilhaft ist mindestens eine der Pumpen in dem Klimagerät angeordnet. Hierdurch kann auf kostenintensive, zentrale und große Umwälzpumpen in dem ersten Kühimittelkreislauf verzichtet werden. Eine Stand-by-Pumpe wird nicht mehr benötigt, da in jedes Klimagerät bereits mindestens eine Pumpe integriert ist. Die gesamten Investitionskosten sinken erheblich.
Nach einer vorteilhaften Ausgestaltung ist in dem Klimagerät ein zweiter Kühimittelkreislauf mit dem Verflüssiger, einem Verdampfer, einem Expansionsventil und einem Kompressor vorgesehen, der über den von dem Rückkühler beaufschlagbaren Verflüssiger gekühlt wird. Dieser zweite Kühimittelkreislauf kann unabhängig von der Kühlung durch den Wärmetauscher des Klimagerätes mit variabler Leistung gefahren werden, so daß eine optimale Anpassung an unterschiedliche Randbedingungen ermöglicht wird.
In vorteilhafter Weiterbildung ist das Klimagerät mit einem Lüfter zur Zwangsumwälzung von Luft versehen. Hierdurch wird die Kühlleistung des Klimageräts erhöht.
Gemäß einem anderen Aspekt der vorliegenden Erfindung wird eine Anlage zur Temperaturregulierung vorgeschlagen, bei der mehrere Klimageräte der vorstehend beschriebenen Art vorgesehen sind, die zueinander parallel geschaltet und mit dem Rückkühler verbunden sind. Insbesondere bei in den einzelnen Klimageräten angeordneten Pumpen kann auf einen separaten Pumpenschrank verzichtet werden. Die Anlage ist damit kompakter als die bekannten Anlagen. Das Anordnen der Pumpen in jedem Klimagerät ermöglicht ein flexibles Aufstellen der Klimageräte in dem Gebäude und eine autonome Regelung jedes einzelnen Klimageräts. Die Klimageräte werden lediglich an eine gemeinsame Kühlmittelvorlaufleitung und Kühlmittelrücklaufleitung des ersten Kühlmittelkreislaufs angeschlossen. Nachträgliche Erweiterungen können ohne Veränderung der Verrohrung und ohne Austausch von Pumpen erfolgen. Zusätzlich wird die umlaufende Kühlmittelmenge reduziert, da im Gegensatz zur Verwendung einer zentralen Pumpe das Kühlmittel bedarfsgerecht nur durch die in Betrieb befindlichen Klimageräte gepumpt wird.
Die Erfindung betrifft weiter ein Verfahren zum Betrieb eines derartigen Klimageräts, bei dem die den Wärmetauscher und den Verflüssiger beaufschlagenden Pumpen unabhängig voneinander betrieben werden. Die durch den Wärmetauscher gepumpte Kühlmittelmenge kann somit völlig unabhängig von der durch den Verflüssiger gepumpten Kühlmittelmenge eingestellt werden. Insbesondere kann im Winterbetrieb die den Verflüssiger beaufschlagende Pumpe vollständig abgeschaltet werden, da die durch den Wärmetauscher erzeugte Kälte zur Temperaturregulierung ausreicht. Hierdurch werden der Energieverbrauch verringert und die Lebensdauer der Pumpen erhöht.
Vorteilhaft wird die den Wärmetauscher beaufschlagende Pumpe in Abhängigkeit von der Temperatur des Kühlmittels des ersten Kühlkreislaufs und der Umgebungstemperatur des Klimageräts angesteuert. Hierdurch wird sichergestellt, daß nur dann Kühlmittel durch den War- metauscher gepumpt wird, wenn tatsächlich ein Beitrag zur gewünschten Temperaturregulierung geleistet wird. Sobald die Temperatur des Kühlmittels etwa der Umgebungstemperatur des Klimageräts entspricht, kann kein Beitrag zur Temperaturregulierung mehr geleistet werden. Die Pumpe zur Beaufschlagung des Wärmetauschers wird dann abgeschaltet, so daß die gesamte Temperaturregulierung durch die Pumpe zur Beaufschlagung des Verflüssigers erreicht wird.
In vorteilhafter Weiterbildung wird die den Verflüssiger beaufschlagende Pumpe in Abhängigkeit von der Kühlleistung des zweiten Kühlmittelkreislaufs in dem Klimagerät, insbesondere in Abhängigkeit von dem Verflüssigungsdruck und der elektrischen Leistungsaufnahme des Kompressors, angesteuert. Hierdurch wird sichergestellt, daß nur die zur Kühlung des zweiten Kühlmittelkreislaufs erforderliche Kühlmittelmenge umgewälzt wird, so daß der Energieverbrauch weiter verringert und die Lebensdauer nochmals gesteigert werden. Zusätzlich kann die Temperatur des Kühlmittels in dem ersten Kühimittelkreislauf berücksichtigt werden, um ein zuverlässiges Abführen der Wärme von dem Verflüssiger zu dem Rückkühler zu gewährleisten.
Das erfindungsgemäße Verfahren sieht weiter vor, daß ein möglichst großer Anteil der gewünschten Temperaturregulierung durch den Wärmetauscher für freie Kühlung erreicht wird. Hierdurch kann die Leistungsaufnahme des zweiten Kühlmittelkreislaufs in dem Klimagerät minimal gehalten werden, so daß sich ein geringer Energieverbrauch und eine hohe Lebensdauer für die den Verflüssiger beaufschlagende Pumpe ergeben. Nachstehend wird die Erfindung an Hand eines Ausführungsbeispiels beschrieben, das schematisch in der Zeichnung darstellt ist. Dabei zeigt:
Figur 1 : eine schematische Darstellung einer Anlage zur Temperaturregulierung mit mehreren parallel geschalteten erfindungsgemäßen Klimageräten; und
Figur 2: eine vergrößerte schematische Darstellung eines erfindungsgemäßen Klimageräts.
In Figur 1 ist eine Anlage 20 zur Temperaturregulierung dargestellt. Die Anlage 20 umfaßt mehrere parallel zueinander geschaltete Klimageräte 4. Die Klimageräte 4 sind über einen ersten Kühimittelkreislauf mit einem Rückkühler 1 verbunden. Jedes Klimagerät 4 weist eine Pumpe 2 zum Beaufschlagen eines Wärmetauschers 3 für freie Kühlung sowie eine Pumpe 5 zum Beaufschlagen eines Verflüssigers 6 auf. Mittels der Pumpen 2, 5 wird gleichzeitig das Kühlmittel in dem ersten Kühimittelkreislauf in Pfeilrichtungen 7, 8 umgewälzt. Die Pumpen 2, 5 sowie der Wärmetauscher 3 und der Verflüssiger 6 sind jeweils parallel zueinander geschaltet und weisen einen geringen hydraulischen Widerstand auf. Weiter sind die Pumpen 2, 5 getrennt voneinander in der Drehzahl regelbar. Hierdurch kann die Menge des durch den Wärmetauscher 3 und den Verflüssiger 6 gepumpten Kühlmittels getrennt vorgegeben werden.
Figur 2 zeigt eine vergrößerte schematische Darstellung eines Klimageräts 4. Die Pumpen 2, 5 sind in dem Klimagerät 4 angeordnet. In dem Klimagerät 4 ist ein zweiter Kühimittelkreislauf vorgesehen, der den Verflüssiger 6, einen Verdampfer 1 3, ein Expansionsventil 1 4 und einen Kompressor 1 5 umfaßt. Zur Zwangsumwälzung der Luft ist weiter ein Lüfter 1 0 vorgesehen. Die Luft tritt in Pfeilrichtung 1 1 in das Klimagerät 4 ein, durchstömt einen Filter 9 zum Entfernen von Verunreinigungen, wird an dem Wärmetauscher 3 und dem Verdampfer 1 3 vorbeigeleitet, temperiert und schließlich in Pfeilrichtung 1 2 ausgestoßen. Das Klimagerät 4 ist über Anschlüsse 1 6, 1 7 an den ersten Kühimittelkreislauf angeschlossen.
Die Klimageräte 4 sind im Inneren eines Gebäudes, gegebenenfalls verteilt auf mehrere Stockwerke, aufgestellt. Der Rückkühler 1 ist außerhalb des Gebäudes, also im Freien angeordnet. Es ergeben sich drei Betriebszustände, die nachstehend für ein Klimagerät 4 beschrieben werden.
Im Winterbetrieb wird das Kühlmittel des ersten Kühlmittelkreislaufs durch den Rückkühler 1 stark abgekühlt. Das kalte Kühlmittel wird mit der Pumpe 2 durch den Wärmetauscher 3 für die freie Kühlung gepumpt. Wegen der niedrigen Temperatur des Kühlmittels kann die erforderliche Kälteleistung allein durch den Wärmetauscher 3 erbracht werden. Bei einem Anstieg der Raumtemperatur wird über einen geeigneten Regler die Drehzahl der Pumpe 2 erhöht und so die Kühlmittelmenge bedarfsgerecht geregelt.
Im Sommerbetrieb liegt die Temperatur des Kühlmittels auch nach dem Abkühlen im Rückkühler 1 noch oberhalb der Raumtemperatur. Die Pumpe 2 ist daher abgeschaltet, da die gewünschte Temperaturregulierung durch freie Kühlung nicht erreicht werden kann. Das Kühlmittel wird daher über die Pumpe 5 direkt zu dem Verflüssiger 6 gepumpt. Zur Abkühlung dient der zweite Kühimittelkreislauf in dem Klimageräte 4, der in Figur 2 näher dargestellt ist. Dieser zweite Kühimittelkreislauf ermöglicht eine Abkühlung der Umgebung des Klimageräts 4 durch Umwälzen eines weiteren Kühlmittels. Die der Umgebung des Klimageräts 4 entzogene Wärme wird in dem Verflüssiger 6 an den ersten Kühimittelkreislauf und von dort über den Rückkühler 1 außerhalb des Gebäudes abgeführt. Die Pumpe 5 wird in Abhängigkeit von der Kühlleistung des zweiten Kühlmittelkreislaufs angesteuert. Diese Kühlleistung hängt von der von dem Kompressor 1 5 erzeugten Verdichtung ab, die sich über die elektrische Leistungsaufnahme oder dem Verflüssigungsdruck/Saugdruck des Kompressor 1 5 ermitteln läßt. Die Drehzahl der Pumpe 5 wird deshalb in Abhängigkeit von der Temperatur des Kühlmittels oder dem Verflüssigungsdruck in dem zweiten Kühimittelkreislauf eingestellt. Hierdurch ist eine zuverlässige Wärmeabfuhr von dem Verflüssiger 6 zu dem Rückkühler 1 gewährleistet.
In der Übergangszeit ist die Kühlleistung des Wärmetauschers 3 für freie Kühlung bei steigender Außentemperatur für die gewünschte Temperaturregulierung nicht ausreichend. Es wird daher der zweite Kühimittelkreislauf des Klimageräts 4 zugeschaltet. Die Pumpen 2, 5 laufen während dieser Übergangszeit bedarfsgerecht. Die Pumpe 2 läuft hierbei mit Maximalleistung, um möglichst viel Kühlleistung zu erzeugen. Die verbleibende Kühlleistung wird über die Pumpe 5 und den zweiten Kühimittelkreislauf in dem Klimagerät 4 erzeugt. Die Pumpe 5 und der Kompressor 1 5 laufen hierbei mit vergleichsweise geringer Leistung und geringem Energieverbrauch.
Die Drehzahl der Pumpen 2, 5 und die dem Wärmetauscher 3 und dem Verfiüssiger 6 zugeführte Kühlmittelmenge wird in Abhängigkeit von der benötigten Kühlleistung für jedes Klimagerät 4 individuell und autonom eingestellt.
Als Kühlmittel im ersten Kühimittelkreislauf wird bevorzugt eine Mischung von Wasser und Frostschutzmittel eingesetzt, während im zweiten Kühimittelkreislauf ein Kältemittel, beispielsweise R 22, verwendet wird.
Die erfindungsgemäßen Klimageräte 4 ermöglichen durch die Parallelschaltung des Wärmetauschers 3 und des Verflüssigers 6 eine erhebliche Verringerung des hydraulischen Widerstands. Hierdurch kann der zum Umwälzen des Kühlmittels in dem ersten Kühimittelkreislauf erforderliche Energieverbrauch deutlich gesenkt werden. Eine weitere Absenkung läßt sich durch den Einsatz von parallel geschalteten Pumpen 2, 5 erreichen, deren Drehzahlen getrennt voneinander einstellbar sind.

Claims

Patentansprüche
1 . Klimagerät zur Temperaturregulierung, das über einen ersten Kühimittelkreislauf mit einem Rückkühler (1 ) verbunden ist und einen von dem Rückkühler ( 1 ) beaufschlagbaren Wärmetauscher (3) für freie Kühlung und einen Verflüssiger (6) aufweist, dadurch gekennzeichnet, daß der Wärmetauscher (3) und der Verflüssiger (6) parallel geschaltet sind.
2. Klimagerät nach Anspruch 1 , dadurch gekennzeichnet, daß mindestens zwei parallel geschaltete Pumpen (2; 5) mit einstellbarer Drehzahl zum Umwälzen des Kühlmittels zwischen dem Rückkühler ( 1 ) und dem Klimagerät (4) vorgesehen sind, wobei die erste Pumpe (2) den Wärmetauscher (3) und die zweite Pumpe (5) den Verflüssiger (6) beaufschlagt.
3. Klimagerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die mindestens eine Pumpe (2; 5) in dem Klimagerät (4) angeordnet ist.
4. Klimagerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in dem Klimagerät (4) ein zweiter Kühimittelkreislauf mit dem Verflüssiger (6), einem Verdampfer ( 1 3), einem Expansionsventil ( 14) und einem Kompressor (1 5) vorgesehen ist, der über den von dem Rückkühler ( 1 ) beaufschlagbaren Verflüssiger (6) gekühlt wird.
5. Klimagerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Klimagerät (4) mit einem Lüfter ( 1 0) zur Zwangsumwälzung von Luft versehen ist.
6. Anlage zur Temperaturregulierung, dadurch gekennzeichnet, daß mehrere Klimageräte (4) nach einem der vorhergehenden Ansprüche vorgesehen sind, die zueinander parallel geschaltet und mit dem Rückkühler ( 1 ) verbunden sind.
7. Verfahren zum Betrieb eines Klimagerätes (4) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die den Wärmetauscher (3) und den Verflüssiger (6) beaufschlagenden Pumpen (2; 5) unabhängig voneinander betrieben werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die den Wärmetauscher (1 3) beaufschlagende Pumpe (2) in Abhängigkeit von der Temperatur des Kühlmittels des ersten Kühlmittelkreislaufs und der Umgebungstemperatur des Klimageräts (4) angesteuert wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die den Verflüssiger (6) beaufschlagende Pumpe (5) in Abhängigkeit von der Kühlleistung des zweiten Kühlmittelkreislaufs in dem Klimagerät (4) insbesondere in Abhängigkeit von dem Verflüssigungsdruck und der elektrischen Leistungsaufnahme des Kompressors ( 1 5) angesteuert wird. GEÄNDERTE ANSPRÜCHE
[beim Internationalen Büro am 22 Mai 2000 (22.05.00) eingegangen; ursprüngliche Ansprüche 1-9 durch neue Ansprüche 1-9 ersetzt; alle weiteren Ansprüche unverändert (2 Seiten)]
Patentansprüche
1 . Klimagerät zur Temperaturregulierung, das über einen ersten Kühimittelkreislauf mit einem Rückkühler (1 ) verbunden ist und einen von dem Rückkühler (1 ) beaufschlagbaren Wärmetauscher (3) für freie Kühlung und einen Verflüssiger (6) aufweist, wobei der Wärmetauscher (3) und der Verflüssiger (6) parallel geschaltet sind, dadurch gekennzeichnet, daß mindestens zwei parallel geschaltete Pumpen (2; 5) zum Umwälzen des Kühlmittels zwischen dem Rückkühler (1 ) und dem Klimagerät (4) vorgesehen sind, wobei die erste Pumpe (2) den Wärmetauscher (3) und die zweite Pumpe (5) den Verflüssiger (6) beaufschlagt.
2. Klimagerät nach Anspruch 1 , dadurch gekennzeichnet, daß die Drehzahl der Pumpen (2; 5) regulierbar ist.
3. Klimagerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die mindestens eine Pumpe (2; 5) in dem Klimagerät (4) angeordnet ist.
4. Klimagerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in dem Klimagerät (4) ein zweiter Kühimittelkreislauf mit dem Verflüssiger (6), einem Verdampfer (1 3), einem Expansionsventil (14) und einem Kompressor (1 5) vorgesehen ist, der über den von dem Rückkühler (1 ) beaufschlagbaren Verflüssiger (6) gekühlt wird.
5. Klimagerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Klimagerät (4) mit einem Lüfter (10) zur Zwangsumwälzung von Luft versehen ist.
6. Anlage zur Temperaturregulierung, dadurch gekennzeichnet, daß mehrere Klimageräte (4) nach einem der vorhergehenden Ansprüche vorgesehen sind, die zueinander parallel geschaltet und mit dem Rückkühler ( 1 ) verbunden sind.
7. Verfahren zum Betrieb eines Klimagerätes (4) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die den Wärmetauscher (3) und den Verflüssiger (6) beaufschlagenden Pumpen (2; 5) unabhängig voneinander betrieben werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die den Wärmetauscher (1 3) beaufschlagende Pumpe (2) in Abhängigkeit von der Temperatur des Kühlmittels des ersten Kühlmittelkreislaufs und der Umgebungstemperatur des Klimageräts (4) angesteuert wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die den Verflüssiger (6) beaufschlagende Pumpe (5) in Abhängigkeit von der Kühlleistung des zweiten Kühlmittelkreislaufs in dem Klimagerät (4) insbesondere in Abhängigkeit von dem Verflüssigungsdruck und der elektrischen Leistungsaufnahme des Kompressors ( 1 5) angesteuert wird.
PCT/EP2000/000188 1999-02-04 2000-01-13 Klimagerät zur temperaturregulierung WO2000046552A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT00901096T ATE304150T1 (de) 1999-02-04 2000-01-13 Klimagerät zur temperaturregulierung
EP00901096A EP1149262B1 (de) 1999-02-04 2000-01-13 Klimagerät zur temperaturregulierung
DE50011114T DE50011114D1 (de) 1999-02-04 2000-01-13 Klimagerät zur temperaturregulierung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904667A DE19904667A1 (de) 1999-02-04 1999-02-04 Klimagerät zur Temperaturregulierung
DE19904667.0 1999-02-04

Publications (1)

Publication Number Publication Date
WO2000046552A1 true WO2000046552A1 (de) 2000-08-10

Family

ID=7896521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/000188 WO2000046552A1 (de) 1999-02-04 2000-01-13 Klimagerät zur temperaturregulierung

Country Status (5)

Country Link
EP (1) EP1149262B1 (de)
AT (1) ATE304150T1 (de)
DE (2) DE19904667A1 (de)
DK (1) DK1149262T3 (de)
WO (1) WO2000046552A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550556B1 (ko) * 2003-11-11 2006-02-10 엘지전자 주식회사 에어컨의 중앙제어 시스템 및 그 동작방법
PL2246634T3 (pl) * 2009-04-27 2015-03-31 Stulz Gmbh Bezpośrednie chłodzenie swobodne
EP2295885A1 (de) 2009-08-27 2011-03-16 STULZ GmbH Klimabox mit Wärmetauscher und Klimatisierungsverfahren
IT1395867B1 (it) * 2009-10-09 2012-10-26 Uniflair S P A Sistema indipendente di deumidificazione dell' aria
CN104180455A (zh) * 2014-09-01 2014-12-03 广东志高暖通设备股份有限公司 一种风冷热泵机组
EP3076109B1 (de) * 2015-03-30 2021-07-07 Viessmann Refrigeration Solutions GmbH Kühlsystem und verfahren zum betreiben des kühlsystems
EP3076108B1 (de) * 2015-03-30 2020-11-11 Viessmann Refrigeration Solutions GmbH Kühleinrichtung und verfahren zum betreiben einer kühleinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715515A (en) * 1951-09-10 1955-08-16 York Corp Air conditioning system
US3305001A (en) * 1964-10-26 1967-02-21 Itt Plural zone heating and cooling system
GB2245967A (en) * 1990-06-28 1992-01-15 Electricity Ass Services Ltd Air conditioning system
FR2753526A1 (fr) * 1996-09-13 1998-03-20 Rene Gaudry Installation de chauffage-climatisation avec reseau boucle a temperature constante alimentant des unites terminales de transfert de calories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715515A (en) * 1951-09-10 1955-08-16 York Corp Air conditioning system
US3305001A (en) * 1964-10-26 1967-02-21 Itt Plural zone heating and cooling system
GB2245967A (en) * 1990-06-28 1992-01-15 Electricity Ass Services Ltd Air conditioning system
FR2753526A1 (fr) * 1996-09-13 1998-03-20 Rene Gaudry Installation de chauffage-climatisation avec reseau boucle a temperature constante alimentant des unites terminales de transfert de calories

Also Published As

Publication number Publication date
DK1149262T3 (da) 2006-01-16
EP1149262A1 (de) 2001-10-31
DE19904667A1 (de) 2000-08-10
EP1149262B1 (de) 2005-09-07
ATE304150T1 (de) 2005-09-15
DE50011114D1 (de) 2005-10-13

Similar Documents

Publication Publication Date Title
EP1606564B1 (de) Verfahren und vorrichtung zur energierückgewinnung
DE69837031T2 (de) Drucksteuerung einer Dampfleitung
WO2009062595A1 (de) Brennstoffzellenantrieb für ein kraftfahrzeug
DE102017204804A1 (de) Integriertes Thermomanagementsystem
DE102018219203A1 (de) Brennstoffzellenvorrichtung und Verfahren zum Kühlen eines Brennstoffzellensystems
EP2246634A1 (de) Direkte freie Kühlung
WO2000046552A1 (de) Klimagerät zur temperaturregulierung
DE102007063009B4 (de) Verfahren zur Belüftung von Objekten und Vorrichtung zur Belüftung von Objekten, insbesondere raumlufttechnische Anlage
WO2012116768A1 (de) Kühleinrichtung, insbesondere klimatisierungseinrichtung für eine elektrische einrichtung, insbesondere für eine computeranlage
DE10323287A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung
DE102017212131A1 (de) Wärmepumpenanordnung mit einem steuerbaren Wärmetauscher und Verfahren zur Herstellung einer Wärmepumpenanordnung
EP0152608B1 (de) Verfahren zur Steuerung einer Verbundkälteanlage
EP2204619B1 (de) Vorrichtung und verfahren für einen optimierten betrieb eines klimatisierungssystems und klimatisierungssystem
EP0582282B1 (de) Kaltluft-Kältemaschinen-Anlage
DE102019120229A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug, Verfahren zum Wärmemanagement eines Kraftfahrzeugs und Kraftfahrzeug mit einem Wärmemanagementsystem
EP3492823A1 (de) Klimatisierungsanlage und verfahren zum konditionieren von luft
DE102007033548A1 (de) Kühlmodul, technisches Gerät mit einem Kühlmodul sowie Verfahren zur Innenkühlung eines technischen Geräts
DE2704857C2 (de) Verfahren und Einrichtung zur Kühlung und Heizung von Gebäuden mit Zweirohr-Wassernetzen mittels Kältemaschinen mit wassergekühlten Kondensatoren und Warmwasser-Heizregistern
EP2257147A1 (de) Kühlgerät
DE102018219859A1 (de) Kälteanlage für ein Fahrzeug sowie Fahrzeug mit einer Kälteanlage
EP2652409B1 (de) Verfahren zum betrieb einer wärmepumpeneinrichtung
DE102020003962B4 (de) Kälteanlage und Verfahren zum Betreiben einer Kälteanlage mit einem Lüftermotor als Wärmequelle
DE2757721A1 (de) Verfahren zur temperatureinstellung von medien
EP3222935B1 (de) Klimatisierungssystem zum kühlen und/oder heizen eines gebäudes
EP4197851A1 (de) Ladestation für ein elektro- oder hybridfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000901096

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000901096

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000901096

Country of ref document: EP