WO2000044905A1 - Slow growing acid-fast bacterium polypeptide - Google Patents

Slow growing acid-fast bacterium polypeptide Download PDF

Info

Publication number
WO2000044905A1
WO2000044905A1 PCT/JP2000/000455 JP0000455W WO0044905A1 WO 2000044905 A1 WO2000044905 A1 WO 2000044905A1 JP 0000455 W JP0000455 W JP 0000455W WO 0044905 A1 WO0044905 A1 WO 0044905A1
Authority
WO
WIPO (PCT)
Prior art keywords
mdp1
dna
protein
polypeptide
bcg
Prior art date
Application number
PCT/JP2000/000455
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yamada
Sohkichi Matsumoto
Original Assignee
Otsuka Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co., Ltd. filed Critical Otsuka Pharmaceutical Co., Ltd.
Priority to AU23207/00A priority Critical patent/AU2320700A/en
Publication of WO2000044905A1 publication Critical patent/WO2000044905A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention relates to a polypeptide produced by a slow-growing acid-fast bacterium (mycobacterium) and a derivative thereof, a DNA encoding the polypeptide, and a vaccine containing the polypeptide or DNA.
  • the present invention also relates to a vector containing the DNA, and a transformant containing the vector. Furthermore, the present invention relates to a method for diagnosing pathogenic mycobacteriosis.
  • Mycobacterium tuberculosis (Mycobacterium leprae) and other pathogenic mycobacteria (mycobacterium) are extremely slow-growing bacteria that infect one-third of humans. Will be Slow growth allows intracellular parasitism and confers resistance to drugs.
  • An object of the present invention is to elucidate the mechanism of slow growth of pathogenic mycobacteria, and to provide a new diagnostic prevention, vaccine and therapeutic agent for pathogenic mycobacteria such as tuberculosis.
  • FIG. 1 (A) identification of the DNA binding protein was performed by Southwestern blotting. After SDS-PAGE, 20 ⁇ g of protein derived from BCG lysate (12.5% polyacrylamide gel) was transferred. The film [ ⁇ - 32 P] labeled p BSKS + and Inkyubeto, protein - was visualized MA complex in autoradiographs. MDP1 is indicated by an arrow. The molecular weight marker is kilodalton (kDa).
  • Figure 1 The molecular weight marker is kilodalton (kDa).
  • FIG. 1 (C) shows separation of MDP1 through a Hiload Superdex 200p column (Pharmacia). Bars indicate fractions containing MDP1.
  • FIG. 1 (D) shows a CBB_stained SDS-12.5% polyacrylamide gel showing proteins obtained from each purification step. Lane 1 is total protein from BCG lysate; lane 2 is total protein from BCG lysate. Acid-soluble protein obtained by treatment with 25N HCl; Lane 3 is an MDP1-rich fraction after ion exchange chromatography; Lane 4 is purified MDP1 passed through a gel filtration column. The MDP1 protein band in the cell lysate is indicated by the arrowhead. The molecular weight marker is kDa on the left.
  • FIG. 2 (A) shows the nucleotide sequence and deduced amino acid sequence of the MDP1 gene. Numbers corresponding to nucleotides are placed every 60 on the right. The hypothetical SD sequence is underlined and the asterisk indicates the termination codon. The peptide sequence in the box is determined by microsequencing of the purified MDP1, and the bold underlined peptide sequence is the DNA binding motif observed by Yuka Naka et al. ((1984) Nature, 310, 376-381). is there. Arrowheads indicate one possible terminator.
  • FIG. 2 shows BCG MDPKBCG-MDP), tubercWosis (Mt-MDP) (nucleotides 274 to 918 in Y349 cosmid library, accession number; Z83018), and f. Ieprae (MI-MDP) (B637).
  • MDP1 homologue from nucleotides 38644 to 39246 in the cosmid library, accession number; Z99263), E.
  • FIG. 3 (A) is an autoradiograph showing the binding of radiolabeled pBSKS + to recombinant MDP1 (GST-MDP1, indicated by arrow) expressed in £ .coJi. Protein expression is 0. ImM. It was induced by culturing in LB medium containing IPTG (lanes 3 and 5). Protein from parental E. coli (lane 1) and transformants with PGEX4T-3 (lanes 2 and 3) or pGEXMDPl (lanes 4 and 5) was subjected to 12.5% SDS-PAGE and transferred to a membrane. Was reacted. Molecular weight markers are displayed on the left side as kDa.
  • Figures 3 (B)-(D) are in vitro analyzes of the binding activity of native MDP1 to circular (B) or linear (C) DNA and RM (D) by gel retardation assay.
  • C, 0 and L are super coils respectively) NA, Nick DM, Hi It is a linear form of DNA cleaved by ndIII.
  • Different molar amounts of purified native MDP1 (indicated by M on the lane) were incubated with pBSKS + (B), HindIII-cleaved pBSKSKC) and MS2 phage RNA (D) at 37 ° C for 10 minutes. The samples were subjected to 0.8% agarose gel electrophoresis. Nucleic acids were visualized under UV light after EtBr treatment. 7 ⁇ 1 shows /] £ / 111 cleavage; 10 ⁇ .
  • FIG. 4 (A) shows the localization of the MDP1 homologue in s / segisaiis by an immobilized electron microscope.
  • FIG. 4 (B) In panel a: the separated proteins in each subcellular fraction and the liposome subnet were visualized by SDS-PAGE (12.5% gel) followed by staining with CBB. Arrowheads indicate estimated MDP trends. Lanes are: molecular weight marker (lane 0), secreted protein (lane 1), protein in cell lysate (lane 2), cell wall (lane 3), membrane (lane 4), cytoplasm (lane 5), ribosome (Lane 6) and 3OS (lane 7) and 50S (lane 8) ribosome subunits.
  • FIG. 4 (B) In panel b: the protein of each fraction was blotted on the membrane and the reaction with the anti-MDP1 antibody was visualized. The samples on each lane are identical to those on panel a. Molecular weight markers are indicated by kDa on the left side of both panels.
  • Figure 4 (C) Panel a: on a YMC-GEL C4 column equilibrated with 30% acetonitrile in 0.1% TFA and eluted with a linear gradient of 30-70% acetonitrile at room temperature at 0.6 ml / min. Of the 50S ribosomal protein from BCG in the laboratory.
  • FIG. 4 (C) Panel b: SDS-PAGEC 12.5% gel of proteins contained in each fraction. The gel was stained with CBB. The first lane is the molecular weight marker (MWM); the second lane is the protein in the ribosome fraction (RF). The number of fractions is indicated on the lane. The 28 kDa N-terminal amino acid sequence in fraction 27 is the same as that of MDP1.
  • Fig. 4 (C) Panel c: detection of 27 kDa and 28 kDa (MDPl) proteins recognized by anti-MDP1 antibody in 50S ribosomal subunit.
  • Figure 5 Effect of MDP1 on macromolecular biosynthesis in vitro.
  • Figure 5 (A) In vitro effect of MDP1 on DNA synthesis by Klenow fragment after annealing of type I single-stranded DM and primers. DNA synthesis was performed at 22 ° C. for 8 minutes in a suitable medium containing different molar amounts (indicated by / M below the bar) of MDP1 (see Examples). e- is a negative control for type I DNA minus. TCA insoluble [ ⁇ - 32 ⁇ ] - dTTP incorporation (cpm; vertical axis) was quantified and displayed.
  • Figure 5 (B) Effect of MDPl on transcription by T7 RNA polymerase in vitro. The transfer was performed at 37 ° C.
  • RN A— is a negative control for type I DM minus. Ly indicates chicken white egg lysozyme. The amount of TCA-insoluble [ 35 S] -methionine (vertical axis) determined by scintillation counting is shown.
  • Figure 6 Effect of MDP1 on bacterial growth rate.
  • Figure 6 (A) Effect of MDPl expression on growth of M. smegmatis.
  • M. smegmatis transformed with empty plasmid (panel a) or pSOMDPl (panel b) were harvested for 7 days at 37 ° C on 7H10 agar (see Examples).
  • Figure 6 (B) Effect of MDPl on .co? I growth.
  • CoJi transformed with the ET22M DPI panels a and c
  • Carpenicillin 50 g / ml
  • chloramphenicol 34 / zg / ml
  • FIG 7 MDP1 expression by different species of mycobacterium in exponential phase (indicated by "EX” above the number of lanes) or stationary phase (indicated by “ST”).
  • Figure 7 (A) BCG,
  • FIG. 7 (B), Western blotting of each cell lysate (shown above the lanes as in FIG. 7 (A)) was analyzed with anti-MDP1 antibody. Molecular weight markers are indicated in kDa on the left side of both panels.
  • FIG. 8 BCG Tokyo strain cultured in Sauton's medium, cells (cell protein) and culture filter The location of MDP1 was identified by Western Blotting into liquids (containing secretory proteins). As a result, as shown in Fig. 8, a protein reacting with the anti-MDP1 antibody was observed only in the protein prepared from the cells, indicating that MDP1 is a protein distributed in the cells or on the surface of the cells. all right.
  • FIG. 9 It was confirmed that the antigenicity (antibody-inducing activity) of MDP1 was enhanced in the presence of DNA (derived from BCG). Mice were immunized with BCG (10 6 cells / mouse), MDPl (5 / g / mouse), DNA (500 ng / mouse) and [MDP1 (5 ⁇ g) + DNA (500 ng)) / mouse. As a result of confirming the induction of antibodies against MDP1, antibody production was confirmed by Western Blotting only in the BCG and MDP1 + DNA administration groups, and it was found that the antigenicity of MDP1 was enhanced in the presence of DNA. Was.
  • Fig. 10- I 3. 5 g each of histone HI (Fig. 10), H2A (Fig. 11), H3 (Fig. 12) and MDP1 (Fig. 13) derived from pesticide
  • Fig. 10 histone HI
  • H2A Fig. 11
  • H3 Fig. 12
  • MDP1 Fig. 13
  • FIG. 14 After SDS-PAGE of MDP1 in one lane, Western Blotting was performed to determine the presence of anti-MDP1 antibody in serum dilutions from leprosy patients (Ll-3) and tuberculosis patients (Tl-4) The presence or absence was checked. As a result, it was confirmed that an antibody against MDP1 was present in the patient's serum.
  • Lymphocytes were prepared from mice infected with M. tuberculosis and stimulated in MDP1, Ag85, H37Ra ⁇ Beauty PPD (Bberukurin), measures the uptake of 3 H-Thymidine proliferative activity of lymphocytes confirmed. As a result, the proliferation activity of lymphocytes was confirmed in MDP1, Mycobacterium tuberculosis H37Ra and PPD. The activity of MDP 1 was the strongest.
  • FIG. 1 The expression of recombinant BCG (pMDPlMutant-3PYBM rBCG, pMDPl Mutant-3PYBC rBCG) protein was confirmed.
  • Mutant-3PYBM in which the amino acids at positions 146 to 165 of the MDP1 protein were deleted and 3PYB was introduced instead, was stained with an anti-NANP antibody at the migration position of MDP1 as shown in lane 3 in Figure 17b. A band was obtained. Since the pMDP mutant Mutant-3PYBC bound to the C-terminus has an added molecular weight of 20 amino acids, a band stained with the anti-MDP1 antibody can be confirmed between MW 28000 MDP1 and MW 32500 (Fig. 1). Lane 4 in 7a) and anti-NANP antibody stained in the same place (lane 4 in FIG. 17b). The MDP1 band was confirmed by running 1 g of purified MDP in lane 5 and staining with an anti-MDP1 antibody. The fusion protein with MDP1 confirmed to be expressed by each recombinant BCG is indicated by an arrowhead.
  • FIG. 18 The 3PYB gene, a malaria antigen B-cell epitope, was ligated into MDP1 and transformed into BCG. Mice were immunized with 3PYBC and induced antibodies against 3PYB.As a result, no antibody induction was confirmed with the antigen peptide (3PYB) alone, but in the group immunized with rBCG, increased antibody titers were confirmed in both groups. Was done.
  • MDP 1 Mycobacterium DNA Binding Protein
  • a fusion protein in which MDP1 and a heterologous antigen are bound can enhance the antigenicity of a heterologous antigen due to the high antigenicity of MDP1.
  • the present invention provides the following items 1 to 9.
  • Item 1.1 A polypeptide having immunogenicity against a pathogenic acid-fast bacterium represented by SEQ ID NO: 2 (205 amino acids) in which one or more amino acids may be substituted, added or deleted. Puchido.
  • Item 2 The phosphorylated polypeptide of Item 1.
  • Item 3 A DNA encoding the polypeptide of Item 1.
  • Item 4. A vector containing the DNA described in Item 3
  • Item 5 A transformant containing the vector according to Item 4.
  • Item 6 The method for producing a polypeptide according to Item 1, wherein the transformant according to Item 5 is cultured.
  • Item 7. A peptide comprising the polypeptide according to Item 1 or the DNA according to Item 3.
  • Item 9 The diagnostic method according to Item 8, wherein the pathogenic mycobacteriosis is selected from the group consisting of tuberculosis, MAC (Mycobacterium avium-intracellulare complex), and Hansen's disease.
  • the pathogenic mycobacteriosis is selected from the group consisting of tuberculosis, MAC (Mycobacterium avium-intracellulare complex), and Hansen's disease.
  • polypeptides particularly the phosphorylated MDP1, and the DNA encoding the polypeptides are useful for diagnosing tuberculosis and producing vaccines.
  • the polypeptide may be modified with a sugar chain.
  • the polypeptide of the present invention can be obtained, for example, from the BCG Tokyo strain, but is not limited to this strain, and may be a protein obtained from another BCG strain or a Mycobacterium bacterium such as Mycobacterium tuberculosis or Mycobacterium leprae. Even if they are included in the present invention.
  • polypeptide of the present invention consisting of 205 amino acids, one or more amino acids, preferably one to several amino acids are substituted at a specific position or randomly, as long as they have immunogenicity against pathogenic mycobacteria. May be added or deleted. Further, the polypeptide of the present invention is preferably phosphorylated.
  • immunogenic to pathogenic mycobacteria means that an antibody against pathogenic mycobacteria is produced when the polypeptide is administered to a mammal in combination with other proteins as necessary. It has the ability to induce.
  • the DNA of the present invention includes a DNA that can hybridize with the DNA of SEQ ID NO: 1 under stringent conditions.
  • stringent conditions means conditions usually used in a hybridization method, and such conditions can be easily understood by those skilled in the art.
  • the polypeptide of the present invention is characterized in that, for example, a vector incorporating a DNA encoding the polypeptide is introduced into cells to obtain a transformant, and the transformant is cultured in a medium.
  • a vector incorporating a DNA encoding the polypeptide is introduced into cells to obtain a transformant, and the transformant is cultured in a medium.
  • the cell transformed with the vector incorporating the DNA encoding the above polypeptide is not particularly limited, and conventionally known cells for transformation are widely used, for example, Escherichia coli, BCG bacteria, etc. And cultivated cells of various mammals such as mouse, rat, hamster, human and the like, preferably bacteria or yeast.
  • the introduction of the vector into a host cell such as E. coli can also be performed according to a known method. ⁇
  • the vector used for the production of the polypeptide of the present invention is not particularly limited as long as it has a promoter necessary for translation of the DNA encoding the polypeptide of the present invention.
  • Examples include pBluescript pGEX and the like. Is mentioned.
  • the present invention also relates to a transformant in which a vector incorporating DNA encoding the polypeptide is incorporated in the cell.
  • the medium in which the transformant is cultured depends on the type of cells to be transformed.
  • a carbon source such as glucose
  • a nitrogen source such as ammonium sulfate
  • a medium containing an inorganic substance such as sodium phosphate, iron sulfate, manganese sulfate, etc.
  • Culture conditions such as temperature, pH, and time are the same as those used for normal culture of various cells.
  • polypeptide of the present invention When the polypeptide of the present invention is used for diagnosis of tuberculosis or mycobacteria, several to several tens of peptides contained in the polypeptide or polypeptide of the present invention are used as antigens, and the antigen is used as the antigen.
  • a biological sample such as serum
  • detecting the resulting antigen-antibody complex to diagnose tuberculosis or mycobacteria. It can be performed.
  • the present inventors have found that the DNA encoding MDP1 consisting of the amino acid sequence of SEQ ID NO: 2 enhances the immunogenicity of the protective antigen by binding to the above-described DNA encoding the heterologous protective antigen. And proved that the antibody titer against the heterologous protective antigen was raised.
  • a safe and effective vaccine without infectivity can be produced.
  • the fusion protein can be expressed in BCG bacteria as a host cell for transformation and used as a vaccine.
  • BCG is a live vaccine with the highest adjuvant activity, is effective, and is still used as a safe vaccine.
  • MDP 1 as a vaccine
  • fusion protein as a vaccine with DNA and existing adjuvants
  • a vaccine against tuberculosis can be obtained by administering the polypeptide of claim 1 or the DNA of claim 2 as it is or together with an appropriate carrier.
  • the protective effect of the vaccine against tuberculosis infection has been confirmed in Examples.
  • the dose of the polypeptide described in claim 1 or the DNA described in claim 2 per vaccination is about 5 to 1,000 g for an adult.
  • the present invention has a slow growth property against bacteria such as mycobacterium and Escherichia coli.
  • bacteria such as mycobacterium and Escherichia coli.
  • the polypeptide can be easily mass-produced by a genetic engineering method, and can be applied to the development of an antigen for diagnosing atypical mycobacteriosis such as tuberculosis and leprosy, vaccine development, and the like.
  • the polypeptide of the present invention binds to DNA, RNA or ribosome to delay proliferation, and can be used for treating infectious diseases or cancer.
  • M. tuberculosis H37Rv and .smegmat is ATCC 606 are Middlebrook 7H9 broth (Difco Laboratories, Detroit, Inc.) supplemented with Soton's medium or 10% ADC concentrate and 0.05% Tween 80. , USA) at 37 ° C.
  • the M. leprae 53 Thai strain was obtained from Pine Talent Dr. Masanori.
  • M. smegmatis was used as a host for plasmid pSO246 and its derivatives. Recombinant M.
  • smegmatis clones are: 10% 0 ADC concentrate (Difco Laboratories), 0.5% glycerol, penicillin 400 units Zm I, cycloheximide 100 g / m I 7 H 1 Selection was performed by culturing on Middlebrook 7H10 agar (Difco Laboratories) supplemented with 0 agar.
  • the E. coli strain XU-Blue is a plasmid pBluescript SK (I) (pBS SK +) (Stratagene Cloning 'System, California, USA) or pGEX4T-3 (Pharmacia Biotech, Tokyo, Japan) And its derivatives.
  • the large intestine strain BL21 (DE3) pLysE was used as a host for pET22b (+) (Novagen Madison, USA); iMSOElox (Amersham) and its derivatives. All E. coli strains were grown in LB broth.
  • the precipitate formed by standing at 4 ° C for 4 hours is collected by centrifugation, washed once with acetone (20 ml) and acidic acetone containing 0.01 ml of concentrated hydrochloric acid, and washed twice with acetone. And dried in a vacuum desiccator. The dried precipitate was resuspended in 0.2 M sodium phosphate buffer (pH 6.8).
  • the acid-soluble protein was purified by a linear gradient of granidine hydrochloride G dn C 1 in 0.2 M sodium phosphate buffer (pH 6.8) using a fast-mouth column (bed volume 5 m 1; (Pharmacia) Chromatography on Hi trap CM Sepharose at room temperature for fractionation.
  • the gradient was performed on a gradient apparatus filled with 15 ml of 0 and 5% GdnCl solution. The flow rate was maintained at 1 ml Zmin, and each fraction of lm was collected. The fraction containing the purified MDP1 was dialyzed against 0.2 M phosphate buffer containing 5% GdnCl and concentrated. Finally, it was further purified by gel filtration on a Hi load Seperdex 200 pg column (Pharmacia). Protein purity was monitored by measuring absorbance at 22011111 or by analysis with 303-86E.
  • a sample for amino acid analysis was obtained by excising a protein band from a PVDF membrane (Millipore, Mass., USA). 1 2.5% polyacrylamide gel contains 0.05% SDS protein 3- [cyclohexylamino] -1-propanesulfonic acid (CAPS; Sigma, St. Louis, Missouri) — NaOH buffer The solution (pH 11) was electrophoretically blocked on a PVDF membrane. After staining with CBB, the protein spots were subjected to amino-terminal sequencing by automated Edman degradation on an Applied Biosystems 477 A gas phenol-Applied Biosystems (Applied Biosystems).
  • the BCG genomic DNA is fragmented by repeatedly passing the injection needle until the main part of the DNA becomes 1 to 5 kbp, and the cDNA is excised using Amersham's cDNA rapid adapter ligation module. 0 Connect the RI adapter And then! ⁇ 03 £ 10 inserted into the £ (; 01 ⁇ 1 site. Colony hybridization was performed as previously described (Matsuo et al., 1988), with two sets of [ ⁇ _ homologous to the N-terminal amino acid sequence. 32 [rho] using labeled oligonucleotide probes row ivy probe 1, 2 sequences, 5 '-.
  • ATGAACAAGGC ( ⁇ or 0) (corresponding to Met- l ⁇ Val- 9) G AGCT ( ⁇ or 6) ATCGACGT And 5'-GA CGT (C or G) (T or C) T (C or G) AC (C or G) C AG A AG (T or C) T (C or G) GG (Asp-8 to Gly -Equivalent to-15.
  • the inserted DNA fragment containing the MDP1 gene was used for the tack 'die' primer 'cycle sequencing kit and the 373A system (Applied Biosystems). The search for sequence homology was performed using the DDBJ (Shizuoka) database using the fasta program (Pearson and Lippman, 1988). I went through a tab.
  • Primers were synthesized for amplification of the MDP1 gene.
  • the DNA sequence of Primer-1A was 5'GGggatccGGGAGGGTTGGGATGAACAAAGCAG (sense strand)
  • the DNA sequence of Primer-1B was 5'GGGGggatccAGCACGTGGGTGTTGTCGTTG (antisense strand).
  • Lowercase letters indicate added restriction enzyme sites.
  • the products amplified by the primers A and B were digested with Hindlll and BamHI and introduced into the same site of pGEX4T_3. The final construct was named pGEXMDP1. E. coli was transformed with this plasmid. GST-MDP1 expression was performed according to the manufacturer's instructions (Falman).
  • BCG cultured at 37 ° C. in soton medium was disrupted by ultrasonication in a TM NSH buffer.
  • the crushed material was centrifuged twice at 1000 g at 4 ° C for 5 minutes to remove unbroken cells.
  • the cell wall, cell membrane, ribosome, and cytoplasmic fraction were prepared by a known method (Ohara et al., 1997).
  • Secreted proteins were prepared as previously described (Matsumoto et al., 1991b).
  • Ribosomal protein as is known (Hin Den'natsuha et al., 1 9 7 1) was extracted from 5 0 S Sabuyuni' Bok with 0. 1 M Mg C 1 2 in the presence a 6 6% acetic acid. The extract was then dialyzed against 5% acetic acid and lyophilized.
  • the extracted protein, reverse phase using a Hitachi L- 6 0 0 0 HPLC system using a C 4 column - were separated by HP LC. 2 mg of 50S total protein was chromatographed using a linear gradient of 30-70% acetonitrile in 0.1% TFA at a flow rate of 0.6 ml Zin in for 90 minutes. . The eluate was monitored by measuring the absorbance at 220 nm or analysis by SDS-PAGE.
  • Antisera to MDP1 were obtained by intraperitoneal immunization of female BALB / c mice twice with 20 ⁇ g of purified MDP1 in Freund's incomplete adjuvant. ⁇ ⁇ ⁇ Estanblot analysis was performed as known (Matsumoto et al., 1991b :).
  • the filter paper was washed three times with 5% TCA containing 20 mM sodium pyrophosphate. After drying the Gurasufa I bar filter foremost, the TCA insoluble [ ⁇ - 32 P] UTP in each sample was determined by scintillation counting.
  • Purification MD P 1 1 g of have use bacteria al force Rihosufata Ichize the (BAP), 5 OmM Tris - solution containing HC 1 (p H 9. 0) and 1 mM M g C 1 2, 6 5 Treated at ° C for 1 hour.
  • MDP1 For expression of MDP1 (BCG) in M. smea (J's, primer C for the sense strand was synthesized.
  • the oligonucleotide sequence was 5 'GGGaagcttTTTGA GGGTGCGTGCGCGTAC.
  • the gene encoding the MDP1 structural gene and its upstream region amplified by primers B and C was digested with both Hindlll and BaMHI, and the same site of pBSKS + (named pBMDP1).
  • pBMDP1 was digested with HindiII and BamHI, and a 1 kbp DNA fragment containing the MDP1 gene was inserted into PS0246 (Matsumoto et al., 996a) at the same site.
  • p S OMD P1 M. smegmatis was transformed with pS OMD P1 by electoral poration as previously described (Matsumoto et al., 1996b).
  • the following primers were newly synthesized to express the unfused form of MDP1 in E. coli.
  • Primer D for the sense strand was CcatatgAACAAAGCAGA GCTCATTGAC and
  • Primer E was CaagcttCTATTTGCGACCCCGCCGAGCGG.
  • the amplified DNA containing the structural gene for MDP1 was cut with both Ndel and Hindlll and inserted into the same site in pET22b (+). This plasmid was named pET22MDP1.
  • the transformed cells contained 50 ⁇ g / m1 of carbenicillin, 34 g / m1 of clonal ramjunicol, and LB agar with or without 0.5 mM IPTG. Grown on top. result
  • FIG. 1D shows the most abundant protein (indicated by the arrow in lane 1 in FIG. 1D).
  • the present inventors purified MDP1 as described above.
  • a sample rich in MDP1 was prepared by treating BCG lysate with 0.25N-HC1 (lane 2 in Figure 1D) and then purifying it on an ion exchange column.
  • FIG. 1B shows the chromatographic profile, with the proteins in the major fractions visualized in lane 3 of FIG. 1D.
  • the protein in this fraction was further purified through a gel filtration column (Fig. 1C) to yield highly purified MDP1 (lane 4, Fig. 1D).
  • MDP 1 was eluted as a 195 kDa protein (FIG. 1D). This indicates that MDP1 forms a multimer.
  • the final yield of MDP 1 was about 5 mg from a fresh wet weight of 100 g BCG.
  • the N-terminus of the purified amino acid sequence of MDP1 was identified as MNKAELIDVLYQKLG-D by the amino acid sequencer.
  • colony hybridization was performed using two [ ⁇ - 32 P] -labeled sets of oligonucleotide probes corresponding to the N-terminal amino acid sequence (see Examples). -I went there with a bus. DNA fragments hybridized with the two probes were obtained and sequenced.
  • FIG. 2A shows the nucleic acid sequence and the deduced amino acid sequence.
  • the DNA fragment contains an open reading frame (ORF) beginning with ATG at position 265 and ending with a TAG stop codon at position 882.
  • ORF open reading frame
  • MDP1 N-terminal amino acid of MDP 1
  • the acid sequence (boxed in FIG. 2A) was found to be completely consistent with this ORF.
  • MDP1 is extremely basic (isoelectric point (PI) force, '12 .4) and contains high amounts of alanine, arginine, lysine, proline and threonine.
  • SD Shine-Dalgarno
  • FIG. 2B A computer search showing alignments of some protein and amino acid sequences homologous to MDP1 is shown in FIG. 2B. High homology encoded by the two ORFs was observed in the DNA sequences of genomic cosmid libraries from M. tuberculosis and M. Jeprae. MDP1 has 95% homology with M. tuberculosis and 83% homology with Ueprae. Computer analysis shows that the N-terminal region of MDP1 has partial homology to HU from bacteria and the C-terminal region has partial homology to the histone H1 class in eukaryotic cells. Was.
  • the best ⁇ Line Instruments of c initial 9 0 amino acids showing a comparison of MD P 1 and HU 2 and human Bok histone H 1 of E. coli in Figure 2 B is the MD P 1 and HU 2 Between 4 1%
  • MDP1 was expressed as a fusion protein with Schistosom a japonicum glutathione S_transferase (GST) (GST-MDP1). All proteins of E. coli-expressed GST-MDP1 were transcribed to the membrane. Film reacts with [ ⁇ _ 32 ⁇ ] labeled p BSKS +, its auto Rajiogurafu is shown in Figure 3 Alpha. Additional bands were observed in lanes 4 and 5 (indicated by arrows on Figure 3A) and recognized by anti-MDP1 antibody (data not shown) (data not shown) . This confirms the DNA binding ability of the product encoded by the gene.
  • Proteins derived from the 30 S or 50 S subnet were reacted with anti-MDP1 antibody on the transferred membrane after SDS-PAGE.
  • the reaction was observed in the 28 kDa and 27 kDa proteins of the 50 S subunit but not the 3 OS subunit, as shown in panel b of FIG. 4B.
  • 50 S subunit protein was replaced with RP- Separated by HP LC ( Figure 4C, panel a).
  • the protein in each fraction was visualized by SDS-PAGE stained with CBB (Fig. 4C, panel b), or these were reacted with anti-MDP1 antibody after blotting on a membrane. .
  • Macromolecular synthesis at the mouth of in vivo was studied to elucidate the molecular processes of MDP1.
  • MDP1 the effect of MDP1 on the function of DNA polymerase I was examined to see the elongation of DNA synthesis (FIG. 5A).
  • DNA synthesis was dose-dependently inhibited by MDP1. Up to 97% inhibition was observed with 1.25 MDP 1.
  • the inventors evaluated the effect of MDP1 on the transcription of ⁇ 7RN ⁇ polymerase (FIG. 5B). Transcription, 2. c 3 was almost completely inhibited in the 5 M MDP 1, examined the effect of MDP 1 relating to the translation in vitro. Translation analysis at the in-vitro mouth was performed using an E. coli S30 extract (FIG. 5C). After a 30 minute incubation, protein synthesis was observed even without the type 2 of MS2 phage RNA. This may be due to the endogenous native mRNA of the E. coli S30 extract. Inhibition of protein synthesis by MDP1 was observed depending on the concentration of MDP1. At 10, MDP 1 almost completely inhibited translation.
  • MDP1 may delay growth by inhibiting macromolecular biosynthesis depending on its binding to DNA, RNA and ribosomes.
  • the present inventors investigated this hypothesis by expressing MDP1 in rapidly growing bacteria.
  • p SOMDP 1 and p ETMD P1 was constructed (see Example).
  • M. smegmatis and E. coli were transformed with each plasmid and collected on a plate.
  • FIG. 6 the growth rate of both bacteria was dramatically reduced by the expression of MDP1, indicating that MDP1 reduces the growth rate of the bacteria.
  • MDP1 is a threonine phosphorylated protein.
  • Antibodies include a 28 kDa protein of BCG (lanes 1 and 2 in FIG. 7B), a 30 kDa protein of M. tuberculosis (lanes 3 and 4), and a 26 kDa protein of M. leprae. It reacted strongly with the protein a (lane 5) and the 31 kDa protein of M. smegma iis (lanes 6 and 7), but did not react with the E. coli protein at all.
  • MDP1 is conserved in a wide range of mycobacteria, but expression levels of MDP1 differ between slow-growing and fast-growing bacteria.
  • Slowly growing bacteria have large amounts of MD regardless of the growth phase It expresses P1, but fast-growing bacteria are mainly expressed in the steady state and not in the logarithmic growth phase.
  • mice C3H / He, C57BL / 6, A / J, BALB / c
  • MDP 1 twice with 5 g of Freund's incomplete adjuvant (second time after 3 weeks After immunization (the first time was subcutaneous and the second time was intraperitoneal), blood was collected 4 weeks later, and the serum was diluted 100-fold (diluent: 1% BSA in PBS), and used as a primary antibody in a sterile blot.
  • the antigen a lysate of BCG was used. Only BALB / c mice produced antibodies against MDP1.
  • the serum of three patients with Hansen's disease, four patients with tuberculosis, and healthy individuals were diluted 100-fold.
  • the purified MDP1 was transferred to a membrane and reacted with the diluted antibody.
  • the presence of an antibody recognizing MDP1 was revealed in the sera of all mycobacteriosis patients.
  • the presence of the antibody was not observed in the samples of healthy subjects.
  • secreted proteins including 85 complexes
  • the prepared antibody was reacted with BSA-blocked PVDF membrane overnight at 4 ° C, washed with PBS containing 0.05% Nonidet P40, and washed with PBS. After reacting with a peroxidase-labeled anti-mouse antibody diluted 1 000 in 83, washing with the above washing solution, 25 mg of 3,3-diaminobenzidine'tetrahydrochloride was added to 2 OmM Tris (pH 7.5) 10 The PVDF membrane was dissolved in OmI and immersed in a solution to which 291 H 2 O 2 was added, to detect antibodies. Fig. 8 shows the results. As shown in FIG.
  • mice The BCG bacteria (1 0 8 C FU), mice. (C 3 HZH e: s 1 c) to Kumishi throw the tail vein, MDP 1 (5 g) / RAS ( Ribi adjuvant system), DNA (M tuberculosis DNA 0.5 ⁇ g) / RAS, MD P 1 (5 // g) + DNA (0.5 g) ZRAS was administered subcutaneously to mice (C3HZHe: s1c), 3 weeks later, the same dose was intraperitoneally administered, 4 weeks later, serum was collected, and the collected serum was 100 times with PBS + 1% BSA. Diluted.
  • the purified MDP1 was subjected to SDS-PAGE / lane, transferred to a PVDF membrane, and reacted with the diluted serum.
  • Fig. 9 antibodies were produced only in mice immunized with BCG and MDP1 + DNA. No antibody production was observed with MDP1 alone or DNA alone, and MDP1 bound to DNA. It was confirmed that the immunogenicity was enhanced and the antibody titer was increased.
  • each antigen was dissolved in a 96-well ELISA plate for ELISA (Sumitomo Beclite Co., Ltd.) with 0.05M carbonate buffer (pH 9.6) to 2 g / ml, One aliquot was dispensed into each well and allowed to stand at room temperature for 2 hours to layer the antigen. For blocking, wash the wells once with BBS (pH 8.0; 10.33 gZL of boric acid, 7.83 gZL of NaCl), then divide the BBS containing 3% BSA into 300 ⁇ 1 aliquots. It was poured, left at room temperature for 2 hours, and washed once with BBS.
  • BBS pH 8.0; 10.33 gZL of boric acid, 7.83 gZL of NaCl
  • Each serum sample was diluted with BBS solution containing 1% BSA to 50 to 102400 times, added to each gel 100 1 each, and reacted at 37 ° C for 30 minutes.
  • HBBS pH 8.0; 10.33 g of boric acid, 29.22 g / L of NaCl
  • each pellet was washed 300 ⁇ 1 seven times.
  • the peroxidase anti-mouse antibody was diluted 2000-fold with a 883 solution containing 1% 83, dispensed 1001 into each well, and cultured at 37 ° C for 30 minutes.
  • the purified MDP1 was transferred on a PVDF membrane after SDS-PAGE in one lane, and the patients (L1, L2, L3) and tuberculosis patients (Tl, ⁇ 2, ⁇ 3, ⁇ ⁇ The antibody was reacted with the serum diluted solution of 4) in the same manner as described above, and an antibody against MDP1 was detected. As a result (Fig. 14), antibodies to MDP1 were detected in the serum of all patients tested. From these results, MDP1 is considered to be applied as a diagnostic agent for tuberculosis and leprosy patients.
  • MD-1 was a protein specific to acid-fast bacteria and had strong antigenicity.
  • the results of Experiment 1 revealed that the antigenicity is the strongest at present and has stronger antigenicity than the mycobacterial-specific antigen Ag85 complex, which is being studied as a diagnostic drug. Therefore, by identifying an antibody against MDP1, the presence or absence of infection by tuberculosis can be diagnosed (Experiment 5).
  • the sequence of MDP1 differs depending on the species of the acid-fast bacterium, it is possible to identify the infecting bacterium by using a species-specific antigen or peptide. Therefore, MDP1 of various mycobacteria including Mycobacterium tuberculosis and peptides contained in the MDP1 can be used as antigens of diagnostic agents.
  • Group A vein 1 (5 ⁇ g) + DNA (5 ng, derived from BCG) -PBS / RIB, Group B DNA (5 ng, derived from BCG) / RIB, Group C ⁇ antigen (Ag85: 5 ⁇ g) / RIB, Group D PBS / RIB, group E PBS were prepared and 9 to 10 mice were immunized by subcutaneous administration first. After three weeks, the compound was again intraperitoneally administered, and three weeks later, the appearance of antibodies against MDP1 and Ag85 was confirmed. Thereafter, the M. tuberculosis Kuro no strain per animal from the mouse tail vein, were infected with about 10 4 CFU.
  • mice were dissected, the lungs were aseptically removed, homogenized with a glass homogenizer, and the number of endophytic bacteria in the lung was measured using 7H11 agar medium.
  • the vaccine effect was determined by comparison with the control group (Group D and E) using the Turkey test (significance level: 5%, two-tailed test).
  • Antibodies to MDP1 and Ag85 were detected by ELISA. As shown in FIG. 15, antibodies against MDP1 and Ag85 were detected.
  • the number of bacteria in the lung 2 weeks after infection was higher in the MDP1 + DNA / RIB group than in the PBS and PBS / RIB groups, as compared to 5.57 and 5.45.
  • the number of bacteria in the lung was significantly lower (5.17).
  • Ag85B / RIB a significant difference of 5.60 was not obtained.
  • Mycobacterium tuberculosis is transmitted to ICR mice and lymph nodes are removed 4 weeks later to prepare lymphocytes Afterwards, PBS ⁇ MDPKO. 1, 1, 10 g / ml), Ag85B (0.1, 1, 10 ⁇ g / ml).
  • H37Ra 0.1, 1, 10 g / ml
  • PPD 0.1 , 1, 10 g / ml
  • Figure 16 shows the results. MDP1, H37Ra, the PPD stimulation, but uptake of 3 H- thymidine was observed, the Ag85 was observed.
  • Ag85 is the only protein antigen derived from Mycobacterium tuberculosis and has been confirmed to be protective against Mycobacterium tuberculosis in guinea pigs.
  • a vaccine trial has been conducted as an MA vaccine (Proc. Natl. Acad. Sci, 92 (1995) 1530-1534) .
  • the data obtained revealed that MDP1 exhibited a 60-82% protective effect on the bacterial count in the lungs, despite the fact that the protective effect of Ag85 could not be confirmed.
  • the results show that MDP1 is a novel antigen capable of achieving a protective effect in mice with a protein antigen, and that it is useful as a clinically novel vaccine.
  • PBS 5. 57
  • MDP1 5. 17
  • PBS 5. 57
  • MDP1 5. 17
  • the following formula can be used to calculate the protective effect of the MDP1 vaccine group when PBS was set at 100% infection.
  • tuberculosis cannot be obtained by humoral immunity, but can be obtained by cell-mediated immunity (Thl dominance).
  • Thl dominance the detailed mechanism is unknown, and extensive research is being conducted on the search for new antigenic proteins, Mycobacterium tuberculosis-specific glycolipid antigens, DNA vaccines, and rBCG.
  • Tuberculosis patients are predominantly Th2, and it is not clear whether this has resulted in the onset of the disease as a result of its natural constitution, or whether it has led to a Th2 predominance.
  • IFNa kills M. tuberculosis bacterium and makes it harder for Thl-dominant healthcare workers to get sick.
  • IgG2a is known to be a subclass that is frequently induced in the presence of IFNa.
  • MDP1 can induce M. tuberculosis-specific cellular immunity by activating lymphocytes obtained from M. tuberculosis-infected mice.
  • PPD, H37Ra and the like are known as antigens capable of inducing such M. tuberculosis-specific cell-mediated immunity, but it is known that these antigens cannot obtain a protective effect against infection.
  • Ag85 complex is said to have high antigenicity, and many possibilities have been reported as diagnostic antigens and vaccine antigens (Infect. Immu. 167 (1999) 6187-6190).
  • the newly discovered MDP1 has been confirmed to have higher antigenicity than Ag85 (FIG. 8).
  • the major difference between these proteins is that Ag85 is a secreted protein, MDP1 is a superficial • endogenous protein, and there are differences in the localization sites of both proteins.
  • MDP1 is a superficial • endogenous protein, and there are differences in the localization sites of both proteins.
  • One of the reasons for the high antigenicity of MDP1 is that it is localized near BCG, which has a safe and reliable adjuvant effect.
  • MSP1, NANP (3PYB), and SERA are known as malaria vaccine candidates, and it has been confirmed that the induction of antibodies against them can provide a protective effect against malaria infection.
  • adjuvants that can be used in animal experiments cannot be applied to humans, and complete vaccination has not been achieved. Therefore, we attempted to develop a new vaccine by expressing these antigens in BCG as fusion proteins with MDP1.
  • the vector used here used a mutannt MDP1 expression vector (pSOMDPlMutant) in which the fourth base from the N-terminus was substituted with adenine for guanine, and the growth inhibitory activity of BCG was weakened.
  • pSOMDPlMutant mutannt MDP1 expression vector
  • the recombinant vector was amplified with PiuTurbo T "DNA polymerase (STRATAGENE, CA, USA) using 1 ng of pSOMDPlMutant and ⁇ -type MDP1-A and MDP1-B, respectively.
  • pSOMDPlMutant 1 ng
  • ⁇ -type MDP1-A and MDP1-B 1 ng
  • pSOMDPlMutant ⁇ -type MDP1-A and MDP1-B
  • the sporozoite surface B cell epitope of mouse malaria which is an insert fragment, takes 2 nmol of each of 3PYB-A and 3PYB-B, and performs an annealing reaction buffer (20 mM Tris_HCl (pH 7.5), 10 mM MgCh, 50 mM NaCl). After holding at 85 ° C for 5 minutes in the medium, annealing was performed by slow cooling, and CH 3 C00Na having a final concentration of 300 mM was added to the reaction solution, and ethanol precipitation was performed. Treated with phenol, Alcohol treatment and ethanol precipitation were carried out using the thus prepared 0.03 pmol recombinant vector and 0.3prao 1 insert fragment in DNA Ligation Kit Ver.
  • a Sea I recognition sequence was introduced into the portion encoding the MDP1 C-terminus of pSOMDP1Mutant plasmid.
  • pSOMDPlMutant was treated with i / 2i / III and BamHI, a lOObp fragment containing the MDPlMutant gene was purified, and introduced into pKF19 DNA also treated with indU1 and BamHI. Thereafter, a PCR reaction was performed using pKF19-MDP1Mu as a template using a primer containing a Sea I recognition sequence.
  • the PCR product was treated with Phenol Z-Kokuguchi Form / Isoamyl alcohol, precipitated with ethanol, and then treated with Dpn KNEW ENGLAND Biolabs, Inc., MA, USA). Then, pKF19-MDPlMuScaI was constructed using DNA Ligation Kit Ver. 2 CTAKARA SUZO CO., LTD., Otsu, Japan). This plasmid transformed the E. coli DH5a strain. The transformed Escherichia coli was seeded on an LB plate containing kanamycin at a concentration of 30 g / ml.
  • plasmid was extracted and pKFl9-MDPlMuScaI was selected.
  • This plasmid was treated with Hind III and feiz / HI, the lOOObp fragment containing the mutated MDPlmutant gene was purified, and introduced into a PS0246 vector treated with Hind Ui and Bam HI. This resulted in pSOMDPlmutantScaI.
  • This pSOM DPlmutantSca I was treated with Sea I and dephosphorylated at the 5 'end with Calf intestine Alkaline Phosphatase.
  • the following insert sequence was introduced into the vector thus prepared.
  • the NANP sequence a sporozoid surface B cell epitope of mouse malaria, anneals 3PYB-c and 3PYB-d, precipitates with ethanol, and then uses T4 Polynucleotide Kinase (TAKARA SU Z0 CO., LTD., 0tsu, Japan).
  • T4 Polynucleotide Kinase T4 Polynucleotide Kinase (TAKARA SU Z0 CO., LTD., 0tsu, Japan).
  • the 5 'end was phosphorylated.
  • the MA fragment was introduced into the Sea I site of pSOMDPlmutantScaI to construct pMDPlMutant-3PYBC.
  • MSP1 Malozoite Surface Protein 1
  • PfuTurbo T DNA polymerase using went.
  • pMDPlMutant-PfMSPl and pMDPlMutant-PyMSPl were constructed using TaKaRa BKL Kit (TAKARA SUZO CO., LTD., Otsu, Japan). Escherichia coli containing these plasmids were selected on an LB plate containing 30 g / ml Kanamycin, cultured in an LB broth containing 30 j «g / ml Kanamycin, and then purified using Aldrich SDS method.
  • the constructed plasmid DNA was transduced into the recombinant BCG prepared by the following method.
  • the M. bovisBCG Tokyo strain was transformed into a Middlebrook 7H9 medium (Becton Dickinson Microbiology Systems, MD, USA) containing albumin dextroleum complex (OADC, Becton Dickinson Microbiology Systems, MD, USA) and 0.05% Tween80.
  • the cells were cultured with shaking at 37 ° C in Oml. OD 6 6.
  • the concentration reached 0.2 the cells were centrifuged at 7, OOO g for 15 minutes to collect the cells.
  • the recovered cells were suspended in 50 ml of ice-cooled 10% glycerol solution, and centrifuged at 7,000 g for 15 minutes to recover the cells.
  • glycerol treatment was performed 5 times while reducing the 10% glycerol solution by 10 ml. Finally 5 ml of 10% glyce And stored at -80 ° C.
  • plasmid DNA was added to 100% of the BCG suspension solution, and the mixture was placed in an electrification cuvette and allowed to stand on ice for 30 minutes. After that, electroporation was performed at 2.5 KV using Electroporre. The cuvette was again allowed to stand in ice for 30 minutes, 9001 of 7H9 was added, and the cells were cultured at 37 ° C for 18 hours. This was added to a 7H11 medium (Becton Dickinson Microbiology Systems) supplemented with albumin dextrose complex (0ADC, Becton Dickinson Microbiology Systems, MD, USA), 0.5% glycerol and kanamycin at 30 g / ml. , MD, USA) and cultured for 20 days to obtain a transformant.
  • 7H11 medium Becton Dickinson Microbiology Systems
  • albumin dextrose complex 0.5% glycerol and kanamycin at 30 g / ml. , MD, USA
  • ⁇ ⁇ Stamp lotting was performed to confirm the expression of malaria antigen.
  • recombinant BCG was isolated and seeded on a 7H11 medium supplemented with 0.5% glycerol and kanamycin at 30 g / ml. After 14 days from the culture, the cells were recovered using a protease. The collected cells were suspended in water and collected by centrifugation. The recovered cells were weighed, and 5 // I of sample buffer per mg was added. The cells were treated with an ultrasonic homogenizer for 60 seconds and centrifuged again. The supernatant was collected and treated at 100 ° C. for 8 minutes to obtain a sample for electrophoresis.
  • Electrophoresis was performed using 15% separation gel and 3.9% stacking gel.
  • the separated proteins were transferred to PVDF transfer membrane I obilon T "-P (Millipore Corporation, A, USA) using a protein blotting device, TRANS BLOT SD (BioRad Laboratories, CA, USA).
  • the transfer membrane was treated with MeOH for 20 seconds, and then immersed in a solution of 48 mM Tris-HCl, 39 mM Glycin (pH 9.2) in Blotting Buffer containing MeOH to 20% for 10 minutes.
  • the gel that had been subjected to electrophoresis was immersed in Blotting Buffer and held for 10 minutes.This gel was overlaid on the transfer membrane, and treated with TRANS BLOT SD at 10 V for 30 minutes.
  • Cells were collected from the recombinant BCG obtained above using 7H11 medium supplemented with 0.5% glycerol and 30 ⁇ g / ml of kanamycin, and 14 days after culturing. did. The collected cells were suspended in water and treated using a glass homogenizer so as to be uniform. Its cells were prepared to be 10 8/1111, injected bacteria body fluid 200] subcutaneously C3H / the He, were sensitized. 3PYB was also sensitized subcutaneously to 50 g / mouse. Three weeks after the initial sensitization, similar cells or antigenic peptides were intraperitoneally administered, and three weeks later, serum was collected.
  • the serum obtained above was diluted serially appropriately, and the above-mentioned diluted serum was dispensed in 100 1 portions each into a 96-well plate coated with antigen, and reacted at room temperature for 2 hours.
  • Washing buffer 400 // l / well
  • 100 ⁇ 1 of peroxidase conjugated anti-mouse IgG antibody react at room temperature for 30 minutes, wash 5 times with Washing buffer, and wash with Peroxidase Color Kit (Sumitomo).
  • Bec Client Co. was used to confirm the presence of protective antibodies.
  • Figure 18 shows the results. That is, in the immunization group (No. 1 to No.
  • a malaria vaccine could be prepared by expressing the malaria antigen as a fusion protein with MDP1 in BCG. Also, by using the same method, a new safe and persistent pectin against other diseases can be produced.

Abstract

A polypeptide represented by SEQ ID NO: 2 (having 205 amino acids), optionally having substitution, addition or deletion of one or more amino acids, which has an immunogenicity against pathogenic acid-fast bacteria; a DNA encoding this polypeptide; a vector and a transformant containing this DNA; a process for producing the polypeptide; a vaccine; and a method for diagnosing diseases caused by pathogenic acid-fast bacteria.

Description

明細書  Specification
遅発育性抗酸菌ポリべプチド  Slow-growing acid-fast bacterium polypeptide
技術分野  Technical field
本発明は、 遅発育性抗酸菌 (マイコバクテリゥム) の産生するポリペプチドお よびその誘導体、 該ポリべプチドをコ一ドする DN A及び該ポリべプチドまたは DNAを含むワクチンに関する。 また、 本発明は、 前記 DNAを含むベクタ一、 該ベクターを含む形質転換体に関する。 さらに本発明は、 病原性抗酸菌症の診断 法に関する。  The present invention relates to a polypeptide produced by a slow-growing acid-fast bacterium (mycobacterium) and a derivative thereof, a DNA encoding the polypeptide, and a vaccine containing the polypeptide or DNA. The present invention also relates to a vector containing the DNA, and a transformant containing the vector. Furthermore, the present invention relates to a method for diagnosing pathogenic mycobacteriosis.
背景技術  Background art
ヒ 卜結核菌 {Mycobacterium tuberculosis)^ しヽ菌 Mycobacterium leprae) などの病原性抗酸菌 (マイコバクテリゥム) は非常に増殖の緩慢な菌で、 人類の 3分の 1に感染しているといわれる。 遅発育性は、 細胞内寄生を可能にし、 また 薬剤に対する抵抗性を付与する。  Mycobacterium tuberculosis (Mycobacterium leprae) and other pathogenic mycobacteria (mycobacterium) are extremely slow-growing bacteria that infect one-third of humans. Will be Slow growth allows intracellular parasitism and confers resistance to drugs.
本発明者は、 病原性抗酸菌の遅発育メカニズムを解明し、 結核等の病原性抗酸 菌の新たな診断予防、 ワクチン及び治療剤を提供することを目的とする。  An object of the present invention is to elucidate the mechanism of slow growth of pathogenic mycobacteria, and to provide a new diagnostic prevention, vaccine and therapeutic agent for pathogenic mycobacteria such as tuberculosis.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1. MA結合蛋白の同定及び MDP1の精製。 図 1 (A) において、 DNA結合タ ンパクの同定は、 サウスウェスタンブロッテイングにより行った。 S D S— PA G E後、 B C Gライゼート ( 1 2. 5 %ポリアクリルアミ ドゲル) 由来の蛋白質 2 0 ^ gを電子伝達した。 膜を [ α— 32P] 標識 p B S K S +とィンキュベート し、 蛋白質- MAコンプレックスをオートラジオグラフで視覚化した。 MD P 1を 矢印により示す。 分子量マーカ一は、 キロダルトン (k D a ) である。 図 1Figure 1. Identification of MA binding protein and purification of MDP1. In FIG. 1 (A), identification of the DNA binding protein was performed by Southwestern blotting. After SDS-PAGE, 20 ^ g of protein derived from BCG lysate (12.5% polyacrylamide gel) was transferred. The film [α- 32 P] labeled p BSKS + and Inkyubeto, protein - was visualized MA complex in autoradiographs. MDP1 is indicated by an arrow. The molecular weight marker is kilodalton (kDa). Figure 1
(B) は、 Hitrap CM Sepharose (Pharmacia)のカラムを通す酸可溶性蛋白質の分 離を示す。 溶離のため、 200mM リン酸バッファー(pH6.8)及び 0〜5 %の GdnClの リニアグラジェントを用いた。 棒は MD P 1を含むフラクションを示す。 図 1(B) shows the separation of acid-soluble proteins through a column of Hitrap CM Sepharose (Pharmacia). For elution, a linear gradient of 200 mM phosphate buffer (pH 6.8) and 0-5% GdnCl was used. Bars indicate fractions containing MDP1. Figure 1
(C) は、 Hiload Superdex 200 p カラム(Pharmacia)を通す MDP1の分離を示す。 棒は MDP1を含むフラクションを示す。 図 1 (D) は、 各精製工程から得られた蛋 白質を示す C B B _染色された SDS- 12.5%ポリアクリルアミ ドゲルを示す。 レーン 1は B C Gライゼ一卜からのトータル蛋白質; レーン 2は B C Gライゼ一卜の 0. 25N HClでの処理により得られた酸可溶性蛋白質; レーン 3はイオン交換クロマト グラフィ一後の MDP1豊富なフラクション; レーン 4はゲル濾過カラムを通した精 製 MDP1。 細胞ライゼ一ト中の MDP1の蛋白質バンドは矢じりにより示される。 分子 量マーカ一は左側の k D aである。 (C) shows separation of MDP1 through a Hiload Superdex 200p column (Pharmacia). Bars indicate fractions containing MDP1. FIG. 1 (D) shows a CBB_stained SDS-12.5% polyacrylamide gel showing proteins obtained from each purification step. Lane 1 is total protein from BCG lysate; lane 2 is total protein from BCG lysate. Acid-soluble protein obtained by treatment with 25N HCl; Lane 3 is an MDP1-rich fraction after ion exchange chromatography; Lane 4 is purified MDP1 passed through a gel filtration column. The MDP1 protein band in the cell lysate is indicated by the arrowhead. The molecular weight marker is kDa on the left.
図 2 . MDP1のヌクレオチド及びアミノ酸配列並びにァミノ酸配列ホモロジ一。 図 2 ( A ) は、 MDP1遺伝子のヌクレオチド配列及び推定アミノ酸配列を示す。 ヌ クレオチドに対応する数は、 右側に 6 0毎に配置される。 仮定 S D配列は下線を 引かれ、 アステリスクは終末コドンを示す。 ボックス内のペプチド配列は精製 MD P1のマイクロシークェンシングにより決定され、 太い下線を引いたぺプチド配列 は夕ナカら((1984)Nature, 310, 376- 381)により観察された DNA結合モチーフであ る。 矢じりは 1つの可能性のあるターミネータ一を示す。 ヌクレオチド配列デ一 タは accession 番号 AB013441の下に EMBL/GenBank/DDBJヌクレオチド配列デ一タラ イブラリーにデポジッ 卜されている。 図 2 ( B ) は、 BCG MDPKBCG- MDP), tub ercWosis(Mt- MDP) (Y349コスミ ドライブラリー中のヌクレオチド 274から 918, ac cession番号; Z83018),及びf. ieprae(MI -MDP) (B637コスミ ドライブラリー中の ヌクレオチド 38644から 39246, accession番号; Z99263)由来の MDP1ホモローグ, E. coli HU2(Ec-HU2) (Kano et al. , 1987 Mol Gen Genet 209, 408-410, accession 番号; X05994)及びヒ トヒストン H 1 (h- Hl ) (Albig, et al. , 1991, Genomics 10, 940-948, accession番号; M60748)間のギヤップ(-)を許容するアミノ酸配列のァ ラインメントである。 ドッ トは BCG MDP1と同一のァミノ酸を示す。  Figure 2. MDP1 nucleotide and amino acid sequences and amino acid sequence homology. FIG. 2 (A) shows the nucleotide sequence and deduced amino acid sequence of the MDP1 gene. Numbers corresponding to nucleotides are placed every 60 on the right. The hypothetical SD sequence is underlined and the asterisk indicates the termination codon. The peptide sequence in the box is determined by microsequencing of the purified MDP1, and the bold underlined peptide sequence is the DNA binding motif observed by Yuka Naka et al. ((1984) Nature, 310, 376-381). is there. Arrowheads indicate one possible terminator. The nucleotide sequence data is deposited in the EMBL / GenBank / DDBJ nucleotide sequence data library under accession number AB013441. FIG. 2 (B) shows BCG MDPKBCG-MDP), tubercWosis (Mt-MDP) (nucleotides 274 to 918 in Y349 cosmid library, accession number; Z83018), and f. Ieprae (MI-MDP) (B637). MDP1 homologue from nucleotides 38644 to 39246 in the cosmid library, accession number; Z99263), E. coli HU2 (Ec-HU2) (Kano et al., 1987 Mol Gen Genet 209, 408-410, accession number; X05994) And an alignment of amino acid sequences allowing a gap (-) between human histone H1 (h-Hl) (Albig, et al., 1991, Genomics 10, 940-948, accession number; M60748). The dot shows the same amino acid as BCG MDP1.
図 3 . MDP1の核酸へのバインディングアツセィ。 図 3(A)は、 放射標識 pBSKS+の £. coJi中で発現された組換え MDP1 (GST-MDP1, 矢印で示される) への結合を示すォ —トラジオグラフである蛋白発現は 0. ImM IPTG (レーン 3及び 5 ) を含む LB培地 中で培養することにより誘導された。 親 E. coli (レーン 1 ) 及び PGEX4T- 3 (レー ン 2及び 3 ) または pGEXMDPl (レーン 4及び 5 ) によるトランスフォーマントか らの蛋白質は 12. 5%SDS-PAGEに供せられ、 膜に移され、 そして反応された。 分子量 マーカ一は左側に k D aで表示される。 図 3 ( B ) から (D ) は、 ゲル遅延アツ セィによる天然 MDP1の環状 (B ) または直線状(C)DNAおよび RM(D)への結合活性 のインビトロ分析である。 C,0及び Lは、 各々スーパ一コイル]) NA、 ニック DM、 Hi nd IIIで開裂された直鎖形態の DNAである。 精製された天然 MDP1の異なるモル量 (レーン上に Mで示される)が pBSKS+(B)、 Hind IIIで開裂された pBSKSKC)及び MS2ファージ RNA(D)と 3 7°Cで 1 0分間インキュベートされ、 サンプルは 0. 8 % ァガロースゲル電気泳動に供せられた。 核酸は EtBr処理の後 U V光下に視覚化さ れた。 ス7^1は /]£/ 111開裂;10^を示す。 Figure 3. MDP1 binding to nucleic acid. FIG. 3 (A) is an autoradiograph showing the binding of radiolabeled pBSKS + to recombinant MDP1 (GST-MDP1, indicated by arrow) expressed in £ .coJi. Protein expression is 0. ImM. It was induced by culturing in LB medium containing IPTG (lanes 3 and 5). Protein from parental E. coli (lane 1) and transformants with PGEX4T-3 (lanes 2 and 3) or pGEXMDPl (lanes 4 and 5) was subjected to 12.5% SDS-PAGE and transferred to a membrane. Was reacted. Molecular weight markers are displayed on the left side as kDa. Figures 3 (B)-(D) are in vitro analyzes of the binding activity of native MDP1 to circular (B) or linear (C) DNA and RM (D) by gel retardation assay. C, 0 and L are super coils respectively) NA, Nick DM, Hi It is a linear form of DNA cleaved by ndIII. Different molar amounts of purified native MDP1 (indicated by M on the lane) were incubated with pBSKS + (B), HindIII-cleaved pBSKSKC) and MS2 phage RNA (D) at 37 ° C for 10 minutes. The samples were subjected to 0.8% agarose gel electrophoresis. Nucleic acids were visualized under UV light after EtBr treatment. 7 ^ 1 shows /] £ / 111 cleavage; 10 ^.
図 4. MDP1の細胞中の局在化。 図 4 (A)は , s/segisaiis中 MDP1ホモローグのィム ノゴ一ルド電子顕微鏡局在化を示す。 図 4 (B)パネル aにおいて:各サブセルラー フラクション及びリポソームサブュニッ ト中の分離された蛋白質は SDS- PAGE(12. 5%ゲル)後に C B Bで染色することにより視覚化された。 矢じりは推定 MDPレ ンド を示す。 レーンは:分子量マーカー (レーン 0 ) 、 分泌蛋白 (レーン 1 ) 、 細胞 ライゼ一ト中の蛋白質 (レーン 2 ) 、 細胞壁 (レーン 3 ) 、 膜 (レーン 4 ) 、 細 胞質 (レーン 5 ) 、 リボソーム (レーン 6 ) 並びに 3 O S (レーン 7 ) 及び 5 0 S (レーン 8 ) リボソームサブュニッ ト。 MDPレ ンドは矢じりで示される。 図 4 (B)パネル bにおいて:各フラクションの蛋白質は膜上にブロッ 卜され、 抗 MDP1抗 体との反応は視覚化された。 各レーン上のサンプルはパネル a上のものと同一で ある。 分子量マーカ一は、 両パネルの左側に k D aで示される。 図 4 (C)パネル a : 0.1% TFA中 30%ァセトニトリルで平衡化され、 室温で 0.6ml/minで 30〜70%のァセ トニトリル濃度のリニアグラジェントにより溶出される YMC-GEL C4カラム上での BCGからの 50Sリボソーム蛋白質の分離。 図 4 (C)パネル b :個々のフラクション中 に含まれる蛋白質の SDS- PAGEC12.5%ゲル)。 ゲルは CBBにより染色された。 第 1レ ーンは分子量マーカー(MWM);第 2レーンはリボソームフラクション(RF)中の蛋白 質。 フラクション数はレーン上に示される。 フラクション 27中の 28kDaの N末端ァ ミノ酸配列は MDP1のものと同じ。 図 4 (C)パネル c : 50Sリボソームサブユニッ ト 中抗 MDP1抗体で認識された 27kDa及び 28kDa(MDPl)蛋白質の検出。  Figure 4. MDP1 localization in cells. FIG. 4 (A) shows the localization of the MDP1 homologue in s / segisaiis by an immobilized electron microscope. FIG. 4 (B) In panel a: the separated proteins in each subcellular fraction and the liposome subnet were visualized by SDS-PAGE (12.5% gel) followed by staining with CBB. Arrowheads indicate estimated MDP trends. Lanes are: molecular weight marker (lane 0), secreted protein (lane 1), protein in cell lysate (lane 2), cell wall (lane 3), membrane (lane 4), cytoplasm (lane 5), ribosome (Lane 6) and 3OS (lane 7) and 50S (lane 8) ribosome subunits. The MDP render is indicated by an arrowhead. Fig. 4 (B) In panel b: the protein of each fraction was blotted on the membrane and the reaction with the anti-MDP1 antibody was visualized. The samples on each lane are identical to those on panel a. Molecular weight markers are indicated by kDa on the left side of both panels. Figure 4 (C) Panel a: on a YMC-GEL C4 column equilibrated with 30% acetonitrile in 0.1% TFA and eluted with a linear gradient of 30-70% acetonitrile at room temperature at 0.6 ml / min. Of the 50S ribosomal protein from BCG in the laboratory. Figure 4 (C) Panel b: SDS-PAGEC 12.5% gel of proteins contained in each fraction. The gel was stained with CBB. The first lane is the molecular weight marker (MWM); the second lane is the protein in the ribosome fraction (RF). The number of fractions is indicated on the lane. The 28 kDa N-terminal amino acid sequence in fraction 27 is the same as that of MDP1. Fig. 4 (C) Panel c: detection of 27 kDa and 28 kDa (MDPl) proteins recognized by anti-MDP1 antibody in 50S ribosomal subunit.
図 5. in vitroでのマクロ分子生合成についての MDP1の効果。 図 5 (A)、 铸型 1 本鎖 DM及びプライマーのァニ一リング後の Klenowフラグメントによる DNA合成に ついての MDP1の in vitro効果。 DNA合成は異なるモル量 (棒の下に /Mで示され る) の MDP1を含む適当な培地中 (実施例参照) 2 2°Cで 8分間行った。 e-は铸型 DNAマイナスのネガティブコントロール。 TCA不溶性 [α—32Ρ] - dTTP取り込み (cpm;垂直軸)を定量及び表示した。 図 5 (B)、 in vitroでの T7 RNAポリメラーゼに よる転写についての MDPlの効果。 転写は異なるモル量の (棒の下の M) の MDP1 を含む適当な条件下 (実施例参照) 3 7°Cで 3 0分間行った。 反応は E D TAに より停止した。 DNA—は铸型 DNAのないネガティブコントロールを示す。 TCA不 溶性 [ a— 32P] -dTTP取り込み(垂直軸)をシンチレ一シヨンカウンターでカウン 卜し及び表示した。 図 5 (C)、 、 in vitroでの翻訳についての MDPlの効果。 異なる モル量の (棒の下の M) の MDPlは MS2ファージ RNA, E. coli S30 in vitro翻訳 アツセィミックス(Promega)及び [35S ] —メチォニンと混合した。 翻訳は 3 7°C で 30分間行った。 詳細は実施例に記載された。 RN A—は铸型 DMマイナスのネ ガティブコントロールである。 Lyはチキンホワイ トエッグリゾチームを示す。 シ ンチレ一シヨンカウンティングにより定量された TCA不溶性 [35S ] —メチォニン の量 (垂直軸)が示された。 Figure 5. Effect of MDP1 on macromolecular biosynthesis in vitro. Figure 5 (A), In vitro effect of MDP1 on DNA synthesis by Klenow fragment after annealing of type I single-stranded DM and primers. DNA synthesis was performed at 22 ° C. for 8 minutes in a suitable medium containing different molar amounts (indicated by / M below the bar) of MDP1 (see Examples). e- is a negative control for type I DNA minus. TCA insoluble [α- 32 Ρ] - dTTP incorporation (cpm; vertical axis) was quantified and displayed. Figure 5 (B), Effect of MDPl on transcription by T7 RNA polymerase in vitro. The transfer was performed at 37 ° C. for 30 minutes with appropriate conditions (see Examples) containing different molar amounts (M below the bar) of MDP1. The reaction was stopped by EDTA. DNA- indicates a negative control without type I DNA. Counted Bok and and displayed in TCA - insoluble [a- 32 P] -dTTP incorporation scintillator one Chillon counter (vertical axis). Figure 5 (C), Effect of MDPl on translation in vitro. Different molar amounts of MDP1 (M below the bar) were mixed with MS2 phage RNA, E. coli S30 in vitro translated Atsemix (Promega) and [ 35 S] -methionine. Translation was performed at 37 ° C for 30 minutes. Details are described in the examples. RN A— is a negative control for type I DM minus. Ly indicates chicken white egg lysozyme. The amount of TCA-insoluble [ 35 S] -methionine (vertical axis) determined by scintillation counting is shown.
図 6. バクテリアの成長速度についての MDP1の効果。 図 6 (A)、 M. smegmatisの 成長についての MDPl発現の効果。 空のプラスミ ド (パネル a ) または pSOMDPl (パ ネル b ) でトランスフオームされた M. smegmatisは 7 H 1 0ァガー上 3 7°Cで 7日 間収穫した (実施例参照) 。 図 6 (B)、 . co?i成長についての MDPlの効果。 ET22M DPI (パネル aおよび c ) でトランスフォームされた coJi は、 0.5mMの IPTGとと もに (パネル d) またはそれなしに (パネル。) 、 カルペニシリン (50 g/ml) 、 クロラムフヱニコール (34/zg/ml) を含む L Bァガ一上 3 7 °Cで 1 8日間収穫し た。  Figure 6. Effect of MDP1 on bacterial growth rate. Figure 6 (A), Effect of MDPl expression on growth of M. smegmatis. M. smegmatis transformed with empty plasmid (panel a) or pSOMDPl (panel b) were harvested for 7 days at 37 ° C on 7H10 agar (see Examples). Figure 6 (B), Effect of MDPl on .co? I growth. CoJi transformed with the ET22M DPI (panels a and c) was treated with 0.5 mM IPTG (panel d) or without (panel.), Carpenicillin (50 g / ml), chloramphenicol (34 / zg / ml) and harvested at 37 ° C for 18 days.
図 7, 指数期 (レーン数の上に" EX"で示される) または定常期 ("ST"で示され る) でのマイコバクテリゥムの異なる種による MDP1発現。 図 7 (A)、 BCG、  Figure 7, MDP1 expression by different species of mycobacterium in exponential phase (indicated by "EX" above the number of lanes) or stationary phase (indicated by "ST"). Figure 7 (A), BCG,
M. tuberculosis (Mt), M. lepare (Ml), M. smegmatis (Ms)及び £ coii (Ec)由来の ライゼート中の蛋白質の SDS-PAGE分析。 ゲル(12.5%)は CBBで染色された。 MDP1ま たはそのホモローグと推定される蛋白質バンドは矢じりで示される。 図 7(B)、 各 細胞ライゼ一卜のウェスタンブロッテイング (図 7 (A)と同様にレーンの上に示さ れる) は抗 MDP1抗体で分析された。 分子量マ一カーは両パネルの左側に kDaで示さ れる。 SDS-PAGE analysis of proteins in lysates from M. tuberculosis (Mt), M. lepare (Ml), M. smegmatis (Ms) and £ coii (Ec). The gel (12.5%) was stained with CBB. The protein band presumed to be MDP1 or its homologue is indicated by an arrowhead. FIG. 7 (B), Western blotting of each cell lysate (shown above the lanes as in FIG. 7 (A)) was analyzed with anti-MDP1 antibody. Molecular weight markers are indicated in kDa on the left side of both panels.
図 8. B C G東京株をソートン培地で培養し、 菌体 (菌体蛋白質) 及び培養ろ 液 (分泌蛋白質含有) にわけ、 MDP1の存在部位を Western Blottingにより特定し た。 その結果、 図 8に示すように、 菌体より調製した蛋白質にのみ抗 MDP1抗体に 反応する蛋白質が観察されたことにより、 MDP1は菌体内または菌体表層に分布し ている蛋白質であることがわかった。 Figure 8. BCG Tokyo strain cultured in Sauton's medium, cells (cell protein) and culture filter The location of MDP1 was identified by Western Blotting into liquids (containing secretory proteins). As a result, as shown in Fig. 8, a protein reacting with the anti-MDP1 antibody was observed only in the protein prepared from the cells, indicating that MDP1 is a protein distributed in the cells or on the surface of the cells. all right.
図 9. MDP 1の抗原性 (抗体誘導活性) が、 DNA (B CG由来) 存在下で 増強されることを確認した。 BCG(106cells/マウス)、 MDP l(5 / g /マウ ス)、 DNA(500ng/マウス)及び 〔MD P 1 (5^ g ) + D N A (500n g )) /マウス をマウスに免疫し、 MDP 1に対する抗体誘導を確認した結果、 B CGおよび MDP 1 + DN Aの投与群でのみ抗体産生が Western Blottingで確認でき、 MDP 1の抗原性は DN A共存下で増強されることが分かった。 Figure 9. It was confirmed that the antigenicity (antibody-inducing activity) of MDP1 was enhanced in the presence of DNA (derived from BCG). Mice were immunized with BCG (10 6 cells / mouse), MDPl (5 / g / mouse), DNA (500 ng / mouse) and [MDP1 (5 ^ g) + DNA (500 ng)) / mouse. As a result of confirming the induction of antibodies against MDP1, antibody production was confirmed by Western Blotting only in the BCG and MDP1 + DNA administration groups, and it was found that the antigenicity of MDP1 was enhanced in the presence of DNA. Was.
図 1 0〜: I 3. ゥシ由来のヒストン H I (図 1 0) , H2 A (図 1 1 ) , H3 (図 1 2) 及び MD P 1 (図 1 3) を各々 5 gずつ、 単独又は D N A (0.5 ^ g ) と混合してマウスに免疫した結果、 MDP 1については DN Aの共存下で抗体価 が上がることが確認でき、 またヒストン蛋白質については DN Aの共存、 非共存 に関わらず抗体産生が確認できなかった。  Fig. 10-: I 3. 5 g each of histone HI (Fig. 10), H2A (Fig. 11), H3 (Fig. 12) and MDP1 (Fig. 13) derived from pesticide Alternatively, as a result of immunization of mice mixed with DNA (0.5 ^ g), it was confirmed that the antibody titer of MDP 1 was increased in the presence of DNA, and that of histone protein was not affected by the presence or absence of DNA. No antibody production was confirmed.
図 14. MDP 1を 1 レーンで SDS- PAGE後、 Western Blottingにより、 らい患者 (Ll〜3)及び結核患者 (Tl〜4)由来の血清希釈液中に存在する抗 MD P 1 抗体の存在の有無を確認した。 その結果、 MD P 1に対する抗体が患者血清中に 存在していることが確認された。  Figure 14. After SDS-PAGE of MDP1 in one lane, Western Blotting was performed to determine the presence of anti-MDP1 antibody in serum dilutions from leprosy patients (Ll-3) and tuberculosis patients (Tl-4) The presence or absence was checked. As a result, it was confirmed that an antibody against MDP1 was present in the patient's serum.
図 1 5. 感染防御効果実験の際、 結核菌をマウスに感染させる前に抗体誘導が なされていたかどうかを精製 MDP 1及び精製 Ag 85を用いて E L I SA法に より確認した。 その結果、 MDP 1及び Ag 85両抗原に対して抗体が誘導され ていることが確認できた。  Figure 1 5. In the protective effect experiment, whether or not antibodies were induced before infecting the mice with M. tuberculosis was confirmed by the ELISA method using purified MDP1 and purified Ag85. As a result, it was confirmed that antibodies were induced to both MDP1 and Ag85 antigens.
図 1 6. 結核菌を感染させたマウスからリンパ球を調製し MDP1、 Ag85、 H37Ra及 び PPD (ッベルクリン) で刺激し、 リンパ球の増殖活性を3 H-Thymidineの取り込み 量を測定することで確認した。 その結果、 MDP1、 結核菌 H37Ra及び PPDにおいてリ ンパ球の増殖活性を確認できた。 またその活性は MDP 1が最も強かった。 1 6. By Lymphocytes were prepared from mice infected with M. tuberculosis and stimulated in MDP1, Ag85, H37Ra及Beauty PPD (Bberukurin), measures the uptake of 3 H-Thymidine proliferative activity of lymphocytes confirmed. As a result, the proliferation activity of lymphocytes was confirmed in MDP1, Mycobacterium tuberculosis H37Ra and PPD. The activity of MDP 1 was the strongest.
図 1 7. リコンビナント B CG (pMDPlMutant-3PYBM rBCG, pMDPl Mutant -3PYBC rBCG)の蛋白質の発現を確認した。 またコントロールとして同時に PS0246 rBCGお よび pS0246MDPlMutant rBCGを用い、 菌体より蛋白質を調製し、 SDS-PAGE後、 MDP1- 3PYBのリコンビナン卜蛋白質の発現を確認した。 MDP1蛋白質の 146〜165番目 のアミノ酸部分を削除し、 代わりに 3PYBを導入した pMDP卜 Mutant- 3PYBMについて は図 1 7 bのレーン 3に示すように MDP1の泳動位置に抗 NANP抗体で染色されるバ ンドが得られた。 C末端に結合させた pMDP卜 Mutant- 3PYBCは、 2 0アミノ酸の分 子量の付加があるため、 MW 28000の MDP1と MW 32500の間に抗 MDP1抗体で染色され るバンドが確認でき (図 1 7 aのレーン 4 ) 、 また抗 N A N P抗体でも同一場所 に染色された (図 1 7 bのレーン 4 ) 。 MDP1のバンドはレーン 5に精製 MD P 1 gを泳動し、 抗 MDP1抗体で染色して確認した。 各リコンビナント B C Gより発 現が確認された MDP1との融合蛋白質は、 矢じりにより示される。 Figure 1 7. The expression of recombinant BCG (pMDPlMutant-3PYBM rBCG, pMDPl Mutant-3PYBC rBCG) protein was confirmed. PS0246 rBCG and control Using pS0246MDP1Mutant rBCG and pS0246MDP1Mutant rBCG, a protein was prepared from the cells, and after SDS-PAGE, expression of the recombinant protein of MDP1-3PYB was confirmed. Mutant-3PYBM, in which the amino acids at positions 146 to 165 of the MDP1 protein were deleted and 3PYB was introduced instead, was stained with an anti-NANP antibody at the migration position of MDP1 as shown in lane 3 in Figure 17b. A band was obtained. Since the pMDP mutant Mutant-3PYBC bound to the C-terminus has an added molecular weight of 20 amino acids, a band stained with the anti-MDP1 antibody can be confirmed between MW 28000 MDP1 and MW 32500 (Fig. 1). Lane 4 in 7a) and anti-NANP antibody stained in the same place (lane 4 in FIG. 17b). The MDP1 band was confirmed by running 1 g of purified MDP in lane 5 and staining with an anti-MDP1 antibody. The fusion protein with MDP1 confirmed to be expressed by each recombinant BCG is indicated by an arrowhead.
図 1 8 . マラリア抗原 B- cellェピトープである 3PYB遺伝子を MDP1の中に結合さ せ、 BCG内に形質転換した rBCG pMDPlMutant-3PYBM, または C末端に結合させ、 BCG内に形質転換した rBCG pMDPlMutant- 3PYBCをマウスに免疫し、 3PYBに対する抗 体誘導を行った結果、 抗原べプチド(3PYB)単独では抗体誘導が確認できなかった が、 rBCGを免疫した群では、 両群において抗体価の上昇が確認された。  Figure 18. The 3PYB gene, a malaria antigen B-cell epitope, was ligated into MDP1 and transformed into BCG. Mice were immunized with 3PYBC and induced antibodies against 3PYB.As a result, no antibody induction was confirmed with the antigen peptide (3PYB) alone, but in the group immunized with rBCG, increased antibody titers were confirmed in both groups. Was done.
発明の開示  Disclosure of the invention
本発明者は、 上記課題に鑑み鋭意検討した結果、 B C G東京株からの配列番号 2で表されるポリぺプチド (以下、 M D P 1 (Mycobacterium DNA Binding Prote in と略す) を分離し、 該ポリペプチドが遅発育性の原因であることを見出した c また、 該ポリペプチドを投与することで、 結核菌感染防御効果を発現し、 ワク チンとして有用であることを見出した。 The present inventors have conducted intensive studies in view of the above problems, and as a result, isolated a polypeptide represented by SEQ ID NO: 2 (hereinafter, abbreviated as MDP 1 (hereinafter abbreviated as Mycobacterium DNA Binding Protein)) from BCG Tokyo strain, Was found to be a cause of delayed growth c. Further, it was found that administration of the polypeptide exhibited a protective effect against M. tuberculosis infection and was useful as a vaccine.
さらに、 MD P 1と異種抗原を結合した融合蛋白は、 MD P 1の高い抗原性に より、 異種抗原の抗原性を高め得ることを見出した。  Furthermore, they have found that a fusion protein in which MDP1 and a heterologous antigen are bound can enhance the antigenicity of a heterologous antigen due to the high antigenicity of MDP1.
すなわち、 本発明は以下の項 1〜項 9を提供するものである。  That is, the present invention provides the following items 1 to 9.
項 1 . 1又は複数個のアミノ酸が置換、 付加又は欠失していてもよい配列番号 2 ( 2 0 5個のアミノ酸) で表される病原性抗酸菌に対する免疫原性を有するポ リぺプチド。 Item 1.1 A polypeptide having immunogenicity against a pathogenic acid-fast bacterium represented by SEQ ID NO: 2 (205 amino acids) in which one or more amino acids may be substituted, added or deleted. Puchido.
項 2 . リン酸化された項 1に記載のポリべプチド。 Item 2. The phosphorylated polypeptide of Item 1.
項 3 . 項 1に記載のポリべプチドをコ一ドしている D N A。 項 4 . 項 3に記載の D N Aを含むベクタ一 Item 3. A DNA encoding the polypeptide of Item 1. Item 4. A vector containing the DNA described in Item 3
項 5 . 項 4に記載の該べクタ一を含む形質転換体。 Item 5. A transformant containing the vector according to Item 4.
項 6 . 項 5に記載の形質転換体を培養することを特徴とする項 1に記載のポリ ぺプチドの製造法。 Item 6. The method for producing a polypeptide according to Item 1, wherein the transformant according to Item 5 is cultured.
項 7 . 項 1に記載のポリぺプチドまたは項 3に記載の D N Aを含むヮクチン。 項 8 . 項 1に記載のポリぺプチドに対する抗体を検出することを特徴とする病 原性抗酸菌症の診断法。 Item 7. A peptide comprising the polypeptide according to Item 1 or the DNA according to Item 3. Item 8. A diagnostic method for pathogenic mycobacteriosis, comprising detecting an antibody against the polypeptide according to Item 1.
項 9 . 病原性抗酸菌症が結核、 M A C (Mycobacterium avium-intracellulare complex), ハンセン氏病からなる群から選ばれる項 8に記載の診断法。 Item 9. The diagnostic method according to Item 8, wherein the pathogenic mycobacteriosis is selected from the group consisting of tuberculosis, MAC (Mycobacterium avium-intracellulare complex), and Hansen's disease.
該ポリべプチド、 特にリン酸化された M D P 1、 及び該ポリべプチドをコ一ド する D N Aは、 結核の診断およびワクチンの製造に有用である。 該ポリペプチド は、 糖鎖により修飾されていてもよい。  The polypeptides, particularly the phosphorylated MDP1, and the DNA encoding the polypeptides are useful for diagnosing tuberculosis and producing vaccines. The polypeptide may be modified with a sugar chain.
本発明のポリペプチドは、 例えば B C G東京株から得ることができるが、 該株 に限定されず、 他の B C G株、 或いは結核菌、 らい菌等のマイコバクテリゥム属 の菌から得られる蛋白質であっても本発明に包含される。  The polypeptide of the present invention can be obtained, for example, from the BCG Tokyo strain, but is not limited to this strain, and may be a protein obtained from another BCG strain or a Mycobacterium bacterium such as Mycobacterium tuberculosis or Mycobacterium leprae. Even if they are included in the present invention.
本発明の 2 0 5個のアミノ酸からなるポリべプチドは、 病原性抗酸菌に対する 免疫原性を有する限り 1又は複数個、 好ましくは 1〜数個のアミノ酸が特定の位 置又はランダムに置換、 付加又は欠失していても良い。 また、 本発明のポリぺプ チドはリン酸化されたものであるのが好ましい。 なお、 病原性抗酸菌に対する免 疫原性を有するとは、 該ポリべプチドを必要に応じて他のタンパク質などと組み 合わせて哺乳動物に投与したときに病原性抗酸菌に対する抗体産生を誘導する能 力を有することを意味する。  In the polypeptide of the present invention consisting of 205 amino acids, one or more amino acids, preferably one to several amino acids are substituted at a specific position or randomly, as long as they have immunogenicity against pathogenic mycobacteria. May be added or deleted. Further, the polypeptide of the present invention is preferably phosphorylated. The term "immunogenic to pathogenic mycobacteria" means that an antibody against pathogenic mycobacteria is produced when the polypeptide is administered to a mammal in combination with other proteins as necessary. It has the ability to induce.
前記アミノ酸をコ一ドする D N Aは、 該 D N Aがコ一ドするポリべプチドが病 原性抗酸菌に対する免疫原性を有する限り 1又は複数個、 好ましくは 1〜数個の 核酸塩基が特定の位置又はランダムに置換、 付加又は欠失していても良い。 本発 明の D N Aには、 配列番号 1の D N Aとストリンジヱン卜な条件下にハイブリダ ィズし得る D N Aを包含する。  One or more, preferably one to several, nucleobases are specified for the DNA encoding the amino acid as long as the polypeptide encoded by the DNA has immunogenicity against pathogenic mycobacteria. May be substituted, added or deleted at random positions. The DNA of the present invention includes a DNA that can hybridize with the DNA of SEQ ID NO: 1 under stringent conditions.
特定のアミノ酸を置換、 付加又は欠失する方法としては、 ポイントミューテ一 ション法、 P C Rを利用した deletion/insertion法などの従来公知の方法が広く 用いられる。 Conventionally known methods such as point mutation and deletion / insertion using PCR are widely used as methods for substituting, adding or deleting specific amino acids. Used.
本明細書において、 「ストリンジ ン卜な条件」 とは、 通常ハイブリダィズ法 で用いられる条件を意味し、 このような条件は、 当業者であれば容易に理解でき る o  In the present specification, “stringent conditions” means conditions usually used in a hybridization method, and such conditions can be easily understood by those skilled in the art.
本発明のポリペプチドは、 例えば、 該ポリペプチドをコードする D N Aを組み 込んだベクターを細胞に導入して形質転換体とし、 該形質転換体を培地中で培養 することを特徴とする前記項 1で表されるポリべプチドの製造法により製造され る 0  The polypeptide of the present invention is characterized in that, for example, a vector incorporating a DNA encoding the polypeptide is introduced into cells to obtain a transformant, and the transformant is cultured in a medium. Produced by the method for producing the polypeptide represented by
上記のポリべプチドをコ一ドする D N Aを組み込んだベクターで形質転換され る細胞としては、 特に限定されず、 従来公知の形質転換用の細胞が広く用いられ るが、 例えば大腸菌、 B C G菌等の細菌類、 酵母などの真核微生物、 マウス、 ラ ッ ト、 ハムスター、 ヒト、 等の各種哺乳動物の培養細胞が挙げられ、 好ましくは 細菌又は酵母が例示される。  The cell transformed with the vector incorporating the DNA encoding the above polypeptide is not particularly limited, and conventionally known cells for transformation are widely used, for example, Escherichia coli, BCG bacteria, etc. And cultivated cells of various mammals such as mouse, rat, hamster, human and the like, preferably bacteria or yeast.
大腸菌等の宿主細胞へのベクターの導入も、 公知の方法に従い行うことができ る ο  The introduction of the vector into a host cell such as E. coli can also be performed according to a known method.ο
本発明のポリべプチドの製造に用いられるベクタ一としては、 本発明のポリベ プチドをコ一ドする D N Aの翻訳に必要なプロモータ一等を備えている限り特に 限定されないが、 例えば、 pBluescript pGEX等が挙げられる。  The vector used for the production of the polypeptide of the present invention is not particularly limited as long as it has a promoter necessary for translation of the DNA encoding the polypeptide of the present invention.Examples include pBluescript pGEX and the like. Is mentioned.
本発明は、 該ポリべプチドをコ一ドする D N Aを組み込んだベクターが前記細 胞に組み込まれた形質転換体にも関する。  The present invention also relates to a transformant in which a vector incorporating DNA encoding the polypeptide is incorporated in the cell.
該形質転換体が培養される培地は、 形質転換される細胞の種類にもよるが、 例 えば大腸菌などの微生物の場合には、 炭素源 (グルコース等) 、 窒素源 (硫酸ァ ンモニゥムなど) 、 無機物 (リン酸ナトリウム、 硫酸鉄、 硫酸マンガンなど) を 含む培地が挙げられる。 温度、 p H、 時間などの培養条件は、 各種細胞の通常の 培養条件がそのまま用いられる。  The medium in which the transformant is cultured depends on the type of cells to be transformed. For example, in the case of a microorganism such as Escherichia coli, a carbon source (such as glucose), a nitrogen source (such as ammonium sulfate), A medium containing an inorganic substance (sodium phosphate, iron sulfate, manganese sulfate, etc.) can be mentioned. Culture conditions such as temperature, pH, and time are the same as those used for normal culture of various cells.
本発明のポリぺプチドを結核または抗酸菌の診断に用いる場合、 本発明のポリ ぺプチドまたはポリべプチド中に含まれる数個から数十個のぺプチドを抗原とし て用い、 該抗原を、 抗体を含む生物試料 (血清など) とを in vitroで接触させ、 次いで、 得られた抗原抗体複合体を検出することにより結核または抗酸菌の診靳 を行うことができる。 When the polypeptide of the present invention is used for diagnosis of tuberculosis or mycobacteria, several to several tens of peptides contained in the polypeptide or polypeptide of the present invention are used as antigens, and the antigen is used as the antigen. A biological sample (such as serum) containing the antibody in vitro, and then detecting the resulting antigen-antibody complex to diagnose tuberculosis or mycobacteria. It can be performed.
MD P 1のワクチンへの応用  Application of MD P 1 to vaccine
さまざまな難病の防御抗原 (マラリア等の原虫感染症、 肺炎球菌、 クラミジァ 等の細菌感染症、 H I Vゃィンフルェンザ等のウィルス感染症など) が同定され、 動物実験レベルでは感染防御効果を得ているが、 ヒ卜に応用する場合、 安全で有 効なアジュバントが開発されていないため、 十分な感染防御効果が得られず、 ヮ クチンとして使用するに至っていない。  Protective antigens for various intractable diseases (protozoal infections such as malaria, bacterial infections such as pneumococci and chlamydia, and viral infections such as HIV difluenza) have been identified, and they have been effective at the level of animal experiments. However, when applied to humans, a safe and effective adjuvant has not been developed, so that a sufficient infection protective effect cannot be obtained, and it has not yet been used as a vectin.
本発明者は、 配列番号 2のァミノ酸配列からなる MD P 1をコ一ドする DNA は、 上記の異種防御抗原をコ一ドする DN Aと結合させることで防御抗原の免疫 原性が増強され、 異種防御抗原に対する抗体価が上がることを証明した。 上記の 防御抗原を MDP 1またはその誘導体と連結し、 融合タンパク質とすることで、 感染性のない安全で有効なワクチンを製造できる。 特に、 アジュバント活性が十 分でない場合には、 融合タンパク質を形質転換の宿主細胞としての B C G菌内で 発現させ、 それをワクチンとして活用できる。 B CGはアジュバント活性最大の 生ワクチンであり、 効果が持続し、 また安全なワクチンとして現在も使用されて いる。  The present inventors have found that the DNA encoding MDP1 consisting of the amino acid sequence of SEQ ID NO: 2 enhances the immunogenicity of the protective antigen by binding to the above-described DNA encoding the heterologous protective antigen. And proved that the antibody titer against the heterologous protective antigen was raised. By linking the above protective antigen to MDP1 or a derivative thereof and forming a fusion protein, a safe and effective vaccine without infectivity can be produced. In particular, when the adjuvant activity is not sufficient, the fusion protein can be expressed in BCG bacteria as a host cell for transformation and used as a vaccine. BCG is a live vaccine with the highest adjuvant activity, is effective, and is still used as a safe vaccine.
MDP 1のワクチンとしての使用の一態様としては、  In one embodiment of the use of MDP 1 as a vaccine,
1. MDP 1内に異種抗原を発現させた融合蛋白質を DNAとともにワクチンと して使用する ;  1. Use a fusion protein expressing a heterologous antigen in MDP 1 together with DNA as a vaccine;
2. 上記融合タンパク質を, DNA、 既存アジュバントとともにワクチンとして 使用する;  2. Use the fusion protein as a vaccine with DNA and existing adjuvants;
3. 上記融合タンパク質を B CG菌内で発現させ、 生ワクチンとして使用する; などが例示される。  3. expressing the fusion protein in BCG bacteria and using it as a live vaccine;
さらに、 請求項 1に記載のポリぺプチドまたは請求項 2に記載の D N Aをその まま、 或いは適当な担体とともに投与することで、 結核に対するワクチンとする ことができる。 該ワクチンの結核感染防御効果は、 実施例で確認されている。 請 求項 1に記載のポリべプチドまたは請求項 2に記載の DN Aのワクチン接種 1回 当たりの投与量としては、 成人に対し 5〜 1 000 g程度である。  Furthermore, a vaccine against tuberculosis can be obtained by administering the polypeptide of claim 1 or the DNA of claim 2 as it is or together with an appropriate carrier. The protective effect of the vaccine against tuberculosis infection has been confirmed in Examples. The dose of the polypeptide described in claim 1 or the DNA described in claim 2 per vaccination is about 5 to 1,000 g for an adult.
本発明によれば、 マイコバクテリゥム、 大腸菌などの細菌に対し遅発育性を示 す新規ポリペプチドを単離し、 その構造を明らかにした。 According to the present invention, it has a slow growth property against bacteria such as mycobacterium and Escherichia coli. We isolated a novel polypeptide and elucidated its structure.
該ポリペプチドは、 遺伝子工学の方法により容易に大量生産でき、 結核、 らい 等の非定型抗酸菌症の診断用の抗原、 ワクチン開発等に応用可能である。  The polypeptide can be easily mass-produced by a genetic engineering method, and can be applied to the development of an antigen for diagnosing atypical mycobacteriosis such as tuberculosis and leprosy, vaccine development, and the like.
本発明のポリペプチドは、 DNA、 RNAまたはリボソームに結合して増殖を 遅延させるものであり、 感染症ないし癌の治療にも使用できる。  The polypeptide of the present invention binds to DNA, RNA or ribosome to delay proliferation, and can be used for treating infectious diseases or cancer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体的な実施態様を用いてより詳細に説明する。  Hereinafter, the present invention will be described in more detail using specific embodiments.
製造例 1 Production Example 1
(1) バクテリア株、 プラスミ ド、 培養液  (1) Bacterial strain, plasmid, culture solution
B C G東京株、 M. tuberculosis H37Rv及び . smegma t is ATCC606は、 ソートン 培地または 1 0 % A D C濃縮物及び 0. 0 5 %ツイーン 8 0を添加したミ ドルブ ルック 7 H 9ブロス (ディフコ ラボラトリーズ、 デトロイ ト、 米国) 中、 3 7 °Cで増殖させた。 M. leprae 53タイ株は、 マツ才力 ·マサノリ博士から得た。 M. smegmatisは、 プラスミ ド p S O 24 6及びその誘導体の宿主として使用した。 組換え M. smegmatisクローンは、 1 0 % 0 A D C濃縮物 (ディフコ ラボラト リーズ) 、 0. 5 %グリセロール、 ペニシリン 4 0 0単位 Zm I、 シクロへキシ ミ ド 1 0 0 g/m I 7 H 1 0ァガ一) を添加したミ ドルブルック 7 H 1 0ァガ ― (ディフコ ラボラトリーズ) 上で培養することにより選択した。 大腸菌株 XU- Blueは、 プラスミ ド pBluescript SK(I) (pBS SK+) (ストラタジーン · クロ一 ニング ' システム、 カリフォルニア、 米国) または p G E X 4 T— 3 (フアルマ シァ ·バイオテック、 東京、 日本) 及びその誘導体の宿主として使用した。 大腸 . 菌株 B L 2 1 (D E 3 ) p L y s Eは、 p E T 2 2 b ( + ) (Novagen Madison米 国) 、 ;i MS O E l o x (アマシャム) 及びその誘導体の宿主として使用した。 すべての大腸菌株は、 L Bブロスで増殖させた。  BCG Tokyo strain, M. tuberculosis H37Rv and .smegmat is ATCC 606 are Middlebrook 7H9 broth (Difco Laboratories, Detroit, Inc.) supplemented with Soton's medium or 10% ADC concentrate and 0.05% Tween 80. , USA) at 37 ° C. The M. leprae 53 Thai strain was obtained from Pine Talent Dr. Masanori. M. smegmatis was used as a host for plasmid pSO246 and its derivatives. Recombinant M. smegmatis clones are: 10% 0 ADC concentrate (Difco Laboratories), 0.5% glycerol, penicillin 400 units Zm I, cycloheximide 100 g / m I 7 H 1 Selection was performed by culturing on Middlebrook 7H10 agar (Difco Laboratories) supplemented with 0 agar. The E. coli strain XU-Blue is a plasmid pBluescript SK (I) (pBS SK +) (Stratagene Cloning 'System, California, USA) or pGEX4T-3 (Pharmacia Biotech, Tokyo, Japan) And its derivatives. The large intestine strain BL21 (DE3) pLysE was used as a host for pET22b (+) (Novagen Madison, USA); iMSOElox (Amersham) and its derivatives. All E. coli strains were grown in LB broth.
(2) B C Gからの MD P 1の精製  (2) Purification of MDP1 from BCG
酸可溶性蛋白質を既述(Jhon et al. , 1967)のいくつかの改変方法で沈殿させた c ノくクテリアは、 5 0 m 1 TMN S H ( 1 O mMトリス一HC 1 H= 7. 5、 1 0 mM Mg C 1 2 , 6 0mM NH4C l、 及び 6 mM 2—メルカプトエタノ一 ル) に再懸濁し、 超音波により破砕した。 3 0 0 0 0 gで 2時間遠心分離して得 たペレツ 卜を、 0. 25 N HC 1に 4°Cで終夜攪拌することにより再懸濁し、 20000 gで 20分間遠心分離した。 上澄に 0. 1倍量の 1 00 % (w/v) T C Aを激しく攪拌しながら加えた。 4 °Cで 4時間静置して形成した沈殿を遠心 分離により回収し、 アセトン (20m l ) に 0. 0 1m lの濃塩酸を加えた酸性 アセトンで 1回洗浄し、 アセトンで 2回洗浄し、 真空デシケーターで乾燥した。 乾燥された沈殿を 0. 2Mリン酸ナトリウム緩衝液 (p H6. 8) に再懸濁した。 次に、 酸可溶性蛋白質を 0. 2Mリン酸ナトリウム緩衝液 (pH 6. 8) 中のグ ラニジン塩酸塩 G d n C 1の直線グラジェントによりファーストフ口一カラム (べッ ドボリュ一ム 5m 1 ; フアルマシア) Hi trap CM Sepharose上を用い室温で クロマトグラフィーにかけて分画した。 グラジェントは、 1 5m lの 0及び 5% G d n C 1溶液を充填したグラジェント装置で行った。 1 m 1 Zm i nの流速に 維持し、 l m 1の各フラクションを集めた。 精製された MDP 1を含むフラクシ ヨンを 5%G d nC 1を含む 0. 2Mリン酸緩衝液に対して透析し、 濃縮した。 最後に、 Hi load Seperdex 200 pg カラム (フアルマシア) 上でのゲル濾過により さらに精製した。 蛋白質の純度は 22011111の吸光度の測定又は303— ?八6 Eによる分析でモニターした。 C- Nocteria, in which the acid-soluble protein was precipitated by some of the modifications described above (Jhon et al., 1967), was 50 ml TMN SH (10 mM Tris-HC 1 H = 7.5, 1 0 mM Mg C 1 2, 6 0mM NH 4 C l, and resuspended in 6 mM 2-mercaptoethanol one Le), and disrupted by sonication. Centrifuge at 300 g for 2 hours The pellet was resuspended in 0.25 N HC1 by stirring at 4 ° C. overnight and centrifuged at 20000 g for 20 minutes. 0.1 volume of 100% (w / v) TCA was added to the supernatant with vigorous stirring. The precipitate formed by standing at 4 ° C for 4 hours is collected by centrifugation, washed once with acetone (20 ml) and acidic acetone containing 0.01 ml of concentrated hydrochloric acid, and washed twice with acetone. And dried in a vacuum desiccator. The dried precipitate was resuspended in 0.2 M sodium phosphate buffer (pH 6.8). Next, the acid-soluble protein was purified by a linear gradient of granidine hydrochloride G dn C 1 in 0.2 M sodium phosphate buffer (pH 6.8) using a fast-mouth column (bed volume 5 m 1; (Pharmacia) Chromatography on Hi trap CM Sepharose at room temperature for fractionation. The gradient was performed on a gradient apparatus filled with 15 ml of 0 and 5% GdnCl solution. The flow rate was maintained at 1 ml Zmin, and each fraction of lm was collected. The fraction containing the purified MDP1 was dialyzed against 0.2 M phosphate buffer containing 5% GdnCl and concentrated. Finally, it was further purified by gel filtration on a Hi load Seperdex 200 pg column (Pharmacia). Protein purity was monitored by measuring absorbance at 22011111 or by analysis with 303-86E.
(3) ァミノ酸配列の決定  (3) Determination of amino acid sequence
アミノ酸分析用の標品を、 PVDF膜 (ミリポア、 マサチューセッツ、 米国) からの蛋白質バンドを切り出すことにより得た。 1 2. 5%ポリアクリルアミ ド ゲル中の蛋白質は、 0. 05%SDSを含む 3— [シクロへキシルァミノ] ー 1 —プロパンスルホン酸(C A P S ; シグマ、 セントルイスミズ一リ) — N a OH 緩衝液 (pH l 1 ) を用いて PVDF膜上で電気泳動的にブロッ 卜した。 CBB による染色後、 蛋白質のスポッ トをアプライドバイオシステム 477 Aガスフエ —ズシ一クェンサ一 (アプライドバイオシステムズ) での自動エドマン分解によ るアミノ末端配列の決定に供した。  A sample for amino acid analysis was obtained by excising a protein band from a PVDF membrane (Millipore, Mass., USA). 1 2.5% polyacrylamide gel contains 0.05% SDS protein 3- [cyclohexylamino] -1-propanesulfonic acid (CAPS; Sigma, St. Louis, Missouri) — NaOH buffer The solution (pH 11) was electrophoretically blocked on a PVDF membrane. After staining with CBB, the protein spots were subjected to amino-terminal sequencing by automated Edman degradation on an Applied Biosystems 477 A gas phenol-Applied Biosystems (Applied Biosystems).
(4) 遺伝子クローニング、 DNA配列決定及びコンピュータ一分析  (4) Gene cloning, DNA sequencing and computer analysis
B C Gのゲノム DNAを DNAの主要部分が 1〜5 k b pになるまで注射針を 繰り返し通すことにより断片化し、 アマ一シャム(Amersham)の c DNAラピッド •アダプター ·ライゲ一ション ·モジュールを用いて E c 0 R Iアダプターにラ ィゲートし、 ス!^03£ 1 0 の£ (; 01^ 1部位に挿入した。 コロニー ·ハイブ リダィゼーションを既述のように (マツォら、 1 988 ) 、 N末端アミノ酸配列 と相同な 2セッ 卜の [α_32Ρ] 標識化オリゴヌクレオチドプローブを用いて行 つた。 プローブ 1、 2の配列は、 5' — ATGAACAAGGC (〇又は0) G AGCT (〇又は6) ATCGACGT (Met- l〜Val- 9に相当) 及び 5' -GA CGT (C又は G) (T又は C) T (C又は G) AC (C又は G) C AG A AG (T又は C) T (C又は G) GG (Asp-8〜Gly- 15に相当) であった。 MDP 1遺 伝子を含む挿入された DN Aフラグメントは、 タック 'ダイ 'プライマー 'サイ クル ·シークェンシング ·キッ ト及び 373 Aシステム (アプライ ド ·バイオシ ステムズ) を用いて配列決定した。 配列相同性のサーチは、 ファスタプログラム (fasta program; ピアソン及びリップマン、 1 988 )を用いた D D B J (静岡) データベースを通して行った。 The BCG genomic DNA is fragmented by repeatedly passing the injection needle until the main part of the DNA becomes 1 to 5 kbp, and the cDNA is excised using Amersham's cDNA rapid adapter ligation module. 0 Connect the RI adapter And then! ^ 03 £ 10 inserted into the £ (; 01 ^ 1 site. Colony hybridization was performed as previously described (Matsuo et al., 1988), with two sets of [α_ homologous to the N-terminal amino acid sequence. 32 [rho] using labeled oligonucleotide probes row ivy probe 1, 2 sequences, 5 '-. ATGAACAAGGC (〇 or 0) (corresponding to Met- l~Val- 9) G AGCT (〇 or 6) ATCGACGT And 5'-GA CGT (C or G) (T or C) T (C or G) AC (C or G) C AG A AG (T or C) T (C or G) GG (Asp-8 to Gly -Equivalent to-15. The inserted DNA fragment containing the MDP1 gene was used for the tack 'die' primer 'cycle sequencing kit and the 373A system (Applied Biosystems). The search for sequence homology was performed using the DDBJ (Shizuoka) database using the fasta program (Pearson and Lippman, 1988). I went through a tab.
(5) 大腸菌における G S Tとの融合蛋白質としての MD P 1の発現  (5) Expression of MDP1 as a fusion protein with GST in Escherichia coli
プライマーは、 MDP 1遺伝子の増幅のために合成した。 プライマ一 Aの DN A配列は、 5'GGggatccGGGAGGGTTGGGATGAACAAAGCAG (センス鎖) であり、 プライマ 一 Bの D N A配列は 5' GGGggatccAGCACGTGGGTGTTGTCGTTG (アンチセンス鎖) であ つた。 小文字は、 加えた制限酵素部位を示す。 プライマ一 A及び Bにより増幅さ れた生成物は、 Hindlll及び BamHIで消化され、 p G E X 4 T _ 3の同じ部位に揷 入された。 最終構築物は p GEXMDP 1と名付けられた。 大腸菌はこのプラス ミ ドにより形質転換された。 GST— MDP 1の発現は、 製造元 (ファルマン ァ) の説明書に従い行った。  Primers were synthesized for amplification of the MDP1 gene. The DNA sequence of Primer-1A was 5'GGggatccGGGAGGGTTGGGATGAACAAAGCAG (sense strand), and the DNA sequence of Primer-1B was 5'GGGGggatccAGCACGTGGGTGTTGTCGTTG (antisense strand). Lowercase letters indicate added restriction enzyme sites. The products amplified by the primers A and B were digested with Hindlll and BamHI and introduced into the same site of pGEX4T_3. The final construct was named pGEXMDP1. E. coli was transformed with this plasmid. GST-MDP1 expression was performed according to the manufacturer's instructions (Falman).
(6) ゲル遅延試験  (6) Gel delay test
l O O n gの p B SKS+、 Hindll Iで消化された p B SK S +、 または 240 n gの MS 2ファージ RN Aを、 5 %グリセロールを含む P B S 6 1中に種々 の量の MDP 1 (最終濃度; 20, 10, 5, 2.5, 1.25, 0, M) と混合した。 サン プルを 37 °Cで 1 0分間プレインキュべ一卜し、 0. 8% (w/v) ァガロース ゲル中、 TAE緩衝液を用いた電気泳動により分析し、 ェチジゥムブロミ ド (E t B r ) で染色した。 核酸を紫外線下に可視化した。  l OO ng of pBSKS +, Hindlll-digested pBSKS +, or 240 ng of MS2 phage RNA in various amounts of MDP1 (final concentration) in PBS61 containing 5% glycerol. 20, 10, 5, 2.5, 1.25, 0, M). Samples were preincubated at 37 ° C for 10 minutes, analyzed in a 0.8% (w / v) agarose gel by electrophoresis using TAE buffer, and treated with ethidium bromide (EtBr). Stained. Nucleic acids were visualized under UV light.
(7) 免疫電子顕微鏡試験 免疫電子顕微鏡試験を既知のようにして行った (Ferreira等、 1 9 9 2 ) 。(7) Immunoelectron microscopy test Immunoelectron microscopy studies were performed as known (Ferreira et al., 1992).
(8) B C Gフラクションの調製 (8) Preparation of BCG fraction
ソ一トン培地中 3 7 °Cで培養した B C Gを T M N S H緩衝液中で超音波により 破砕した。 破砕物を 1 0 0 0 gで 4°C、 5分間の遠心分離を 2回行い、 壊れてい ない細胞を除去した。 次いで、 細胞壁、 細胞膜、 リボソーム、 細胞質画分既知の 方法により調製した (大原ら、 1 9 9 7 ) 。 分泌タンパク質は既述のように調製 した (松本ら、 1 9 9 6 b) 。  BCG cultured at 37 ° C. in soton medium was disrupted by ultrasonication in a TM NSH buffer. The crushed material was centrifuged twice at 1000 g at 4 ° C for 5 minutes to remove unbroken cells. Then, the cell wall, cell membrane, ribosome, and cytoplasmic fraction were prepared by a known method (Ohara et al., 1997). Secreted proteins were prepared as previously described (Matsumoto et al., 1991b).
(9) B C Gの 50Sリボソームサブュニッ ト由来のリボソーム及び MD P 1の精製 B C G由来のリボソームの調製及びリボソームサブュニッ 卜の分離は、 既に記 載されている (山田ら、 1 9 7 2 ) 。 リボソーム蛋白質は、 既知のように (ヒン デンナツハら、 1 9 7 1 ) 、 0. 1 M Mg C 1 2の存在下に 6 6 %酢酸を用いて 5 0 Sサブュニッ 卜から抽出した。 次いで、 抽出物を 5 %酢酸に対して透析し、 凍結乾燥した。 抽出された蛋白質は、 C4カラムを用い日立 L— 6 0 0 0 H P L C システムを用いた逆相— HP L Cにより分離した。 2 m gの 5 0 S総蛋白質を、 0. 1 %T FA中の 3 0〜7 0 %のァセトニトリルの直線グラジェントを用い、 9 0分間0. 6m 1 Zin i nの流速でクロマトグラフを行った。 溶離液は、 2 2 0 nmの吸光度の測定又は S D S - P AG Eによる分析でモニターした。 (9) Purification of ribosomes derived from 50S ribosome subunit of BCG and MDP1 Preparation of ribosomes derived from BCG and separation of ribosome subunits have already been described (Yamada et al., 1987) ). Ribosomal protein, as is known (Hin Den'natsuha et al., 1 9 7 1) was extracted from 5 0 S Sabuyuni' Bok with 0. 1 M Mg C 1 2 in the presence a 6 6% acetic acid. The extract was then dialyzed against 5% acetic acid and lyophilized. The extracted protein, reverse phase using a Hitachi L- 6 0 0 0 HPLC system using a C 4 column - were separated by HP LC. 2 mg of 50S total protein was chromatographed using a linear gradient of 30-70% acetonitrile in 0.1% TFA at a flow rate of 0.6 ml Zin in for 90 minutes. . The eluate was monitored by measuring the absorbance at 220 nm or analysis by SDS-PAGE.
(10) 免疫手法  (10) Immunization method
MD P 1に対する抗血清を、 フロイント不完全アジュバント中の 2 0 μ gの精 製 MD P 1を雌性 B A L B/cマウスに 2回腹腔内免疫して得た。 ゥエスタンブ ロット分析を既知のように行った (松本ら、 1 9 9 6 b:) 。  Antisera to MDP1 were obtained by intraperitoneal immunization of female BALB / c mice twice with 20 μg of purified MDP1 in Freund's incomplete adjuvant.ス タ ン Estanblot analysis was performed as known (Matsumoto et al., 1991b :).
(11) MD P 1によるインビトロでの DN A合成の阻害。  (11) Inhibition of DNA synthesis in vitro by MDP1.
インビト口での DN A合成を既述のように (サムブルツクら、 1 9 8 9) クレ ノウフラグメント (タカラ) を用いて行った。 一本鎖 DNAを f 1ファージの感 染により p B S K S +を有する大腸菌 XL 1 - B 1 u eから調製した。 反応前に、 一本鎖 DNA ( 1 μ g) 及び 5 pmo 1の M 1 3ファージの 1 2 4 4プライマ一 (日本ジーン) を 8 5°Cで 1 0分間ィンキュベー卜し、 2 2°Cまでゆつくり冷却 してァニ一リングした。 DN A合成の延長反応は、 5 0 mMトリス (p H 7. 5) 、 5 0 mM N a C l、 1 OmM Mg C 1 2, 1 2 4 4プライマ一のァニール された DNA铸型 0. 6 g、 0. 9mMの dATP, dGTP及び d TTP、 50 じ 1の [ひ一32?] d CTP、 8ュニッ 卜のクレノウフラグメント、 1 0 mM の DTT中、 MDP 1又は B S Aの存在下又は不存在下に行った。 最終容量 は 30 1であった。 延長反応は、 8分間 22 °Cで行った。 反応は 0. 5M ED T A ( p H 8. 0) を 30 1加えて停止させた。 次いで、 サンプルを 68 で インキュベートし、 クレノウフラグメントを不活性化した。 各サンプル 5 μ 1を グラスファイバーフィルタ一 (T o y 0濾紙) 上にスポッ 卜した。 濾紙は 20m Mピロリン酸ナトリウムを含む 5 %TC Aで 3回洗浄した。 濾紙を乾燥後、 各サ ンプル中の TCA不溶性 [α—32 P] d CTPをシンチレーシヨンカウンターに より測定した。 In vivo synthesis of DNA was performed using Klenow fragment (Takara) as previously described (Sambruk et al., 1989). Single stranded DNA was prepared from E. coli XL1-B1ue with pBSKS + by infection of the f1 phage. Prior to the reaction, incubate single-stranded DNA (1 μg) and 5 pmo 1 of the M13 phage in 124 4 primers (Nippon Gene) at 85 ° C for 10 minutes, and place at 22 ° C. It was cooled down slowly and annealed. Extension reaction of DN A synthesis, 5 0 mM tris (p H 7. 5), 5 0 mM N a C l, 1 OmM Mg C 1 2, 1 2 4 4 primers one Aniru DNA was铸型0. 6 g, dATP of 0. 9 mM, dGTP and d TTP, 50 Ji 1 [shed one 32?] D CTP, 8 Yuni' Klenow fragment of Bok, in DTT in 1 0 mM, MDP 1 or in the presence or absence of BSA. The final volume was 301. The extension reaction was performed at 22 ° C for 8 minutes. The reaction was stopped by adding 30 1 of 0.5 M EDTA (pH 8.0). The sample was then incubated at 68 to inactivate the Klenow fragment. 5 μl of each sample was spotted on a glass fiber filter (Toy 0 filter paper). The filter paper was washed three times with 5% TCA containing 20 mM sodium pyrophosphate. After drying the filter paper, the TCA-insoluble [α- 32 P] d CTP in each sample was measured using a scintillation counter.
(12) インビトロ転写分析  (12) In vitro transcription analysis
既述方法 (ベダーソンら、 1 994 ) を改変してインビトロ転写分析を行った。 各種の量 (20, 10, 5, 2.5, 1.25及び O^M) の PB S中の精製 MDP 1及び B S Aを 0. l l pmo l ( 200 n g) の p B S K S +と反応容量を 20 Iに調 整して混合した。 37°Cで 1 0分間インキュベート後、 等容量の以下の溶液を加 えた: 0. 02 % (wZv) DE P C ; 8 OmM T r i s—HC I (p H 8. 0 ) ; 1 6 mMの M g C 12 ; 4 mMのスペルミジン; 1 0 mMの D T Τ ; 1. 8 mMの ATP, CTP, GTP及び UTP ; 1. 84 UZm 1の R N a s e阻害 剤; 1. 42 UZm 1の T 7 RN Aポリメラーゼ (タカラ) 及び 0. 36mC i Zm lの [α— 32P] UTP。 インビトロ転写は、 37 °Cで 30分間行った。 次 いで、 5 1のサンプルをグラスファイバ一フィルタ一上にスポットした。 濾紙 は 20 mMピロリン酸ナトリゥムを含む 5 %T C Aで 3回洗浄した。 グラスファ ィバーフィルタ一を乾燥後、 各サンプル中の TCA不溶性 [α—32 P] UTPを シンチレーションカウンティングにより測定した。 In vitro transcription analysis was performed using a modification of the previously described method (Bederson et al., 1994). Various amounts (20, 10, 5, 2.5, 1.25 and O ^ M) of purified MDP 1 and BSA in PBS were adjusted to 0.1 I pmol (200 ng) pBSKS + and the reaction volume to 20 I. And mixed. After incubation at 37 ° C for 10 minutes, an equal volume of the following solution was added: 0.02% (wZv) DE PC; 8 OmM Tris-HCI (pH 8.0); 16 mM M g C12; 4 mM spermidine; 10 mM DTΤ; 1.8 mM ATP, CTP, GTP and UTP; 1.84 UZm1 RNase inhibitor; 1.42 UZm1 T7 RNA Polymerase (Takara) and [α- 32 P] UTP of 0.36 mC i Zml. In vitro transcription was performed at 37 ° C for 30 minutes. Next, 51 samples were spotted on a glass fiber filter. The filter paper was washed three times with 5% TCA containing 20 mM sodium pyrophosphate. After drying the Gurasufa I bar filter foremost, the TCA insoluble [α- 32 P] UTP in each sample was determined by scintillation counting.
(13) インビトロ翻訳分析  (13) In vitro translation analysis
インビトロ翻訳分析を、 大腸菌 S 30共役転写及び翻訳システム (プロメガ) を用いて行った。 各量 (最終濃度; 20, 10, 5, 2.5, 1.25及び0// ) の MDP 1 又は卵白リゾチーム、 7 1の S 30抽出物、 50 nC i [35S] —メチォニン、 メチォニンを含まない 1 0 1のプレミックス (プロメガ) 、 4 g (3. 33 p m o 1 ) の MS 2 RN A (ベ一リンガ一マンハイム、 東京、 日本) を混合した c 最終反応容量は 34 1であった。 翻訳は 37°Cで 1時間行った。 放射標識メチ ォニンの取り込みを評価するために、 製造元の説明書に従い、 5 n 1のサンプル を取り、 245 μ 1の 1 M N a ΟΗに溶解し、 最終 20 %の T C Aで沈殿させた c T C A処理されたサンプルは、 グラスファイバ一フィルタ一上にトラップ後、 5 %TCAで 3回洗浄した。 膜を乾燥し、 放射能を測定した。 In vitro translation analysis was performed using the E. coli S30 coupled transcription and translation system (Promega). MDP 1 or egg white lysozyme in each amount (final concentration; 20, 10, 5, 2.5, 1.25 and 0 //), S 30 extract of 71, 50 nC i [ 35 S] —methionine, free of methionine 1 0 1 Premix (Promega), 4 g (3.33 MS 2 RN A (base one ringer one Manheim pmo 1), Tokyo, Japan) were mixed c final reaction volume was 34 1. Translation was performed at 37 ° C for 1 hour. To assess the uptake of radiolabeled methylate Onin, according to the manufacturer's instructions, taking a sample of 5 n 1, and dissolved in 245 mu 1 of 1 MN a ΟΗ, c TCA treated precipitated with a final 20% TCA The sample was trapped on a glass fiber filter and then washed three times with 5% TCA. The membrane was dried and the radioactivity was measured.
(14) MDP 1のリ ン酸化の検出  (14) Detection of phosphorylation of MDP 1
1 gの精製 MD P 1をバクテリアのアル力リホスファタ一ゼ (BAP) を用 い、 5 OmMトリス— HC 1 (p H 9. 0 ) 及び 1 mM M g C 1 2を含む溶液中、 6 5°Cで 1時間処理した。 製造元の使用説明書に記載されたように、 BAPで処 理された或いは処理されていない MD P 1の蛋白ィムノブ口ッ トホスホスレオニ ン、 ホスホセリン、 ホスホチロシンに対する抗体 (トランスダクシヨン ·ラボラ トリーズ、 ケンタッキー、 米国) を用いてゥヱスタンプロッ ト法を行った。 Purification MD P 1 1 g of have use bacteria al force Rihosufata Ichize the (BAP), 5 OmM Tris - solution containing HC 1 (p H 9. 0) and 1 mM M g C 1 2, 6 5 Treated at ° C for 1 hour. Antibodies to MDP1, treated with or without BAP, against phosphonothreon, phosphoserine, phosphotyrosine, phospholipidin, phosphoserine, phosphotyrosine, as described in the manufacturer's instructions (Transduction Laboratories, Kentucky, USA ) Was used to perform the stamp lot method.
(15) 速育性細菌における MD P 1の発現  (15) MDP1 expression in fast-growing bacteria
M. s m e a ί J' s中での MD P 1 ( B C G ) の発現のために、 センス鎖 用のプライマー Cを合成した。 該オリゴヌクレオチド配列は、 5' GGGaagcttTTTGA GGGTGCGTGCGCGTACであった。 プライマー B及び Cにより増幅した MD P 1構造遺 伝子及びその上流領域をコ一ドする遺伝子を Hindlll及び BaMHIの両方で消化し、 p B SKS +の同じ部位 (p BMDP 1と名付けられた) に揷入された。 p BM D P 1は Hindi II及び BamHIで消化され、 MD P 1遺伝子を含む 1 k b pの DNA フラグメントを P S 024 6 (松本ら、 1 99 6 a) の同じ部位に挿入した。 そ れは、 p S OMD P 1と名付けられた。 M. sm e gma t i sを既述のように (松本ら、 1 996 b) エレク ト口ポレーションにより p S OMD P 1でトラン スフオームした。 大腸菌中で非融合形態の MD P 1を発現するために、 以下のプ ライマーを新たに合成した。 センス鎖用のプライマー Dは、 CcatatgAACAAAGCAGA GCTCATTGACであり、 プライマー Eは、 CaagcttCTATTTGCGACCCCGCCGAGCGGであった。 MDP 1の構造遺伝子を含む増幅された DN Aは、 Ndelと Hindlllの両方で切断さ れ、 p ET 22 b ( + ) の同じ部位に揷入された。 このプラスミ ドは p ET 22 MD P 1と名付けられた。 大腸菌株 B L 2 1 (DE 3) p L y s Eを、 p E T 2 2MD P 1でトランスフォームした。 卜ランスフォームされた細胞は、 50 ^ g /m 1のカルべニシリン、 34 g/m 1のク口ラムフヱニコ一ルを含み、 並び に、 0. 5mMの I PTGを含むか又は含まない LBァガー上で増殖させた。 結果 For expression of MDP1 (BCG) in M. smea (J's, primer C for the sense strand was synthesized. The oligonucleotide sequence was 5 'GGGaagcttTTTGA GGGTGCGTGCGCGTAC. The gene encoding the MDP1 structural gene and its upstream region amplified by primers B and C was digested with both Hindlll and BaMHI, and the same site of pBSKS + (named pBMDP1). Was purchased. pBMDP1 was digested with HindiII and BamHI, and a 1 kbp DNA fragment containing the MDP1 gene was inserted into PS0246 (Matsumoto et al., 996a) at the same site. It was named p S OMD P1. M. smegmatis was transformed with pS OMD P1 by electoral poration as previously described (Matsumoto et al., 1996b). The following primers were newly synthesized to express the unfused form of MDP1 in E. coli. Primer D for the sense strand was CcatatgAACAAAGCAGA GCTCATTGAC and Primer E was CaagcttCTATTTGCGACCCCGCCGAGCGG. The amplified DNA containing the structural gene for MDP1 was cut with both Ndel and Hindlll and inserted into the same site in pET22b (+). This plasmid was named pET22MDP1. E. coli strain BL 2 1 (DE 3) p Lys E, p ET 2 Transformed with 2MD P1. The transformed cells contained 50 ^ g / m1 of carbenicillin, 34 g / m1 of clonal ramjunicol, and LB agar with or without 0.5 mM IPTG. Grown on top. result
(1) DN A結合能を有する最も豊富な蛋白質の分析  (1) Analysis of the most abundant proteins with DNA binding ability
B CG中の DN A結合蛋白を同定するために、 細胞ライゼ一トを SDS— PA GEに供し PVDF膜上にブロッ 卜した。 該膜は次いで [α—32 P] 標識 pBlues cript KS+(pBSKS+)と反応させ、 蛋白一 D N A相互作用をォートラジオグラフで視 覚化した。 図 1 Aに示されるように、 強い反応が 28 k D aで観察された。 この 28 kD a DNA結合蛋白を、 MDP 1と名付けた。 To identify DNA binding proteins in BCG, cell lysates were subjected to SDS-PAGE and blotted onto PVDF membrane. The membrane was then reacted with [α- 32 P] -labeled pBlues cript KS + (pBSKS +) to visualize the protein-DNA interaction with an autoradiograph. As shown in FIG. 1A, a strong response was observed at 28 kDa. This 28 kDa DNA binding protein was named MDP1.
SD S-PA G E分析は、 MD P 1が最も豊富にある蛋白質であることを示した (図 1 Dのレーン 1の矢印により示される) 。 本発明者は、 上記のように MDP 1の精製を行った。 最初に、 MD P 1の豊富なサンプルは、 B CGライゼ一卜を 0. 25N-HC 1 (図 1 Dのレーン 2) で処理し、 次いでイオン交換カラムで 精製して調製された。 図 1 Bは、 クロマトグラフのプロフィールを示し、 主要ピ 一クフラクションの蛋白質は図 1 Dのレーン 3に視覚化された。 このフラクショ ンの蛋白質は、 ゲル濾過カラムを通してさらに精製され (図 1 C) 高度に精製さ れた MDP 1が得られた (レーン 4、 図 1 D) 。 最終工程において、 MDP 1は、 1 95 kD a蛋白として溶出された (図 1 D) 。 これは、 MDP 1が多量体を形 成していることを示すものである。 MDP 1の最終収率は 1 00 gの BCGの新 鮮湿重量から約 5 m gであった。  SD S-PAGE analysis indicated that MDP1 was the most abundant protein (indicated by the arrow in lane 1 in FIG. 1D). The present inventors purified MDP1 as described above. First, a sample rich in MDP1 was prepared by treating BCG lysate with 0.25N-HC1 (lane 2 in Figure 1D) and then purifying it on an ion exchange column. FIG. 1B shows the chromatographic profile, with the proteins in the major fractions visualized in lane 3 of FIG. 1D. The protein in this fraction was further purified through a gel filtration column (Fig. 1C) to yield highly purified MDP1 (lane 4, Fig. 1D). In the final step, MDP 1 was eluted as a 195 kDa protein (FIG. 1D). This indicates that MDP1 forms a multimer. The final yield of MDP 1 was about 5 mg from a fresh wet weight of 100 g BCG.
精製された MDP 1のアミノ酸配列の N末端は、 アミノ酸シークェンサ一によ り MNKAELIDVLYQKLG- Dと同定された。 MDP 1をコードする遺伝子をクローン化す るために、 コロニーハイブリダィゼーシヨンを N末端アミノ酸配列 (実施例参 照) に相当する 2つの [α— 32P] 標識されたセッ 卜のオリゴヌクレオチドプロ -ブを用し、て行つた。 2つのプロ一ブでハイブリダイズされた D N Aフラグメン トを得、 配列決定した。 図 2 Aは、 核酸配列及び推定アミノ酸配列を示す。 DN Aフラグメントは、 265位に AT Gで始まり 882位の TAG終止コドンで終 わるオープンリ一ディングフレーム (ORF) を含む。 MDP 1の N末端アミノ 酸配列 (図 2 Aにおいて枠で囲まれた部分) はこの OR Fと完全に一致すること が見出された。 予期されたように、 MD P 1は、 極度に塩基性 (等電点 (P I ) 力、' 1 2. 4 ) であり、 ァラニン、 アルギニン、 リシン、 プロリン及びスレオニン を多量に含む。 可能性のあるシャイン—ダルガルノ (S D) 配列は、 開始コドン (図 2 Aの下線部) の上流 7ヌクレオチドの位置に観察された。 バクテリアにお いて、 いくつかの染色体結合蛋白に観察された DN A結合モチーフは、 4 6位〜 6 5位みられた (図 2 Aの太い下線) 。 この領域は、 MD P 1の DNA結合部位 と予測される。 The N-terminus of the purified amino acid sequence of MDP1 was identified as MNKAELIDVLYQKLG-D by the amino acid sequencer. To clone the gene encoding MDP1, colony hybridization was performed using two [α- 32 P] -labeled sets of oligonucleotide probes corresponding to the N-terminal amino acid sequence (see Examples). -I went there with a bus. DNA fragments hybridized with the two probes were obtained and sequenced. FIG. 2A shows the nucleic acid sequence and the deduced amino acid sequence. The DNA fragment contains an open reading frame (ORF) beginning with ATG at position 265 and ending with a TAG stop codon at position 882. N-terminal amino acid of MDP 1 The acid sequence (boxed in FIG. 2A) was found to be completely consistent with this ORF. As expected, MDP1 is extremely basic (isoelectric point (PI) force, '12 .4) and contains high amounts of alanine, arginine, lysine, proline and threonine. A potential Shine-Dalgarno (SD) sequence was observed 7 nucleotides upstream of the start codon (underlined in Figure 2A). In bacteria, the DNA binding motifs observed in some chromosome-binding proteins were at positions 46 to 65 (bold underline in FIG. 2A). This region is predicted as the DNA binding site of MDP1.
MD P 1に相同ないくつかの蛋白質及びァミノ酸配列のァラインメン卜を示す コンピュータ一検索が、 図 2 Bに示される。 2つの OR Fでコードされる高い相 同が、 M. tuberculosis及び M. Jeprae由来のゲノムのコスミ ドライブラリーの D N A配列において観察された。 MD P 1は、 M. tuberculosisと 9 5 %の相同性を有 し、 Uepraeと 8 3 %の相同性を有する。 コンピューター分析は、 MD P 1のN 末端領域がバクテリア由来の H Uに対し部分的な相同性を有し、 C末端領域は真 核細胞のヒストン H 1クラスと部分的な相同性を有することを示した。 代表例と して、 MD P 1と大腸菌の HU 2及びヒ卜のヒストン H 1の比較を図 2 Bに示す c 最初の 9 0アミノ酸の最良のァラインメントは、 MD P 1と HU 2の間で 4 1 %A computer search showing alignments of some protein and amino acid sequences homologous to MDP1 is shown in FIG. 2B. High homology encoded by the two ORFs was observed in the DNA sequences of genomic cosmid libraries from M. tuberculosis and M. Jeprae. MDP1 has 95% homology with M. tuberculosis and 83% homology with Ueprae. Computer analysis shows that the N-terminal region of MDP1 has partial homology to HU from bacteria and the C-terminal region has partial homology to the histone H1 class in eukaryotic cells. Was. As a typical example, the best § Line Instruments of c initial 9 0 amino acids showing a comparison of MD P 1 and HU 2 and human Bok histone H 1 of E. coli in Figure 2 B is the MD P 1 and HU 2 Between 4 1%
(K a n oら、 1 9 8 7 ) 、 MD P 1とヒ トヒストン H 1の間で 2 5 % (A l b i gら、 1 9 9 1 ) であった。 (Kano et al., 1989), and 25% (MDg et al., 1991) between MDP1 and human histone H1.
(2) MD P 1による核酸コンフォーメ一ションの認識  (2) Recognition of nucleic acid conformation by MDP1
MD P 1の DNA結合能は、 以下のように確認された。 MD P 1は Schistosom a japonicum グルタチオン S _トランスフェラ一ゼ (G S T) (G S T-MD P 1 ) との融合蛋白質として発現された。 大腸菌発現 G S T— MD P 1の全蛋白質 は、 膜に転写された。 膜は [ α _32Ρ] 標識 p B S K S +と反応し、 そのオート ラジォグラフが図 3 Αに示される。 付加的なバンドがレーン 4とレーン 5に観察 され (図 3 A上の矢印で示される) 、 抗 MD P 1抗体 (データは示さない) によ り認識された (データは示されていない) 。 これは、 該遺伝子によりコードされ る産物の DN A結合能を確認する。 分解産物が観察され、 この融合蛋白が大腸菌 中で安定でないことを示す。 MD P 1の核酸結合活性をより詳細に分析するため に、 ゲル遅延アツセィを次に行った。 各種濃度の精製 MDP 1を環状プラスミ ド、 直鎖プラスミ ド、 又は RNAとともにィンキュベ一ション後、 複合体をァガロー スゲル電気泳動で分析した (図 3 B、 3 C及び 3D) 。 ヌクレオチドが MD P 1 の濃度に依存してスロッ ト中で遅延するので、 該データは、 MDP 1が DNA及 び RN Aの両方に結合することを示した。 MD P 1のニックを有する DNA (図 3 B) 、 直鎖形態の DN A (図 3 C) 及び RNA (図 3 D) に対する結合能は、 ほぼ同一であった。 一方、 他のものよりもスーパ一コイル D N Aのゲルへの移動 に対する優先的な阻害は、 1 0〜5 M MDP 1において観察された (図 3 Β、 3 C) 。 これらは、 MD Ρ 1が核酸のコンフォーメ一ションを認識することを示 す。 The DNA binding ability of MDP1 was confirmed as follows. MDP1 was expressed as a fusion protein with Schistosom a japonicum glutathione S_transferase (GST) (GST-MDP1). All proteins of E. coli-expressed GST-MDP1 were transcribed to the membrane. Film reacts with [α _ 32 Ρ] labeled p BSKS +, its auto Rajiogurafu is shown in Figure 3 Alpha. Additional bands were observed in lanes 4 and 5 (indicated by arrows on Figure 3A) and recognized by anti-MDP1 antibody (data not shown) (data not shown) . This confirms the DNA binding ability of the product encoded by the gene. Degradation products were observed, indicating that the fusion protein was not stable in E. coli. To analyze the nucleic acid binding activity of MDP1 in more detail Next, a gel delay assay was performed. After incubation of various concentrations of purified MDP1 with cyclic, linear, or RNA, the complexes were analyzed by agarose gel electrophoresis (Figures 3B, 3C, and 3D). The data showed that MDP1 binds to both DNA and RNA, as nucleotides are delayed in slots depending on the concentration of MDP1. The binding abilities to DNA (FIG. 3B), linear form DNA (FIG. 3C) and RNA (FIG. 3D) having a nick of MDP1 were almost the same. On the other hand, preferential inhibition of supercoiled DNA migration to the gel over the others was observed at 10-5 M MDP1 (FIGS. 3C, 3C). These indicate that MDΡ1 recognizes the conformation of nucleic acids.
(3) 細胞中の MD Ρ 1の局在化  (3) Localization of MD Ρ 1 in cells
MD Ρ 1の局在化を知るために、 最初は、 免疫電子顕微鏡試験を B C Gを標的 として行った。 結果は、 MDP 1同族体が細胞壁、 細胞膜、 リボソーム領域、 染 色体 DN Α領域に局在化することを示した (図 4A, パネル a) 。 第 2に、 BC G由来の各細胞下画分が調製された。 これらのサンプルは、 膜上に転写され、 抗 MDP 1抗体と反応された (図 4 B、 パネル b) 。 強い反応が細胞壁、 細胞膜、 リボソーム画分の 28 kD a蛋白で観察されたが、 分泌蛋白及び細胞質蛋白では 観察されなかった。 同時に、 蛋白質を SD S— PAGE後にゲル染色により視覚 化され、 推定 MDP 1バンドが図 4 Bのパネル aにおいて矢印で示される。 これ らの生化学的観察は、 BCGに関する免疫電子顕微鏡試験の結果と一致する。 興 味あることに、 抗 MDP 1抗体のいくつかは免疫電子顕微鏡分析において直接に リポソ一ム粒子と反応しているらしく、 それらはリポソーム画分と強力に反応す る (図 4 B、 ハ。ネル b) 。 これらは、 MDP 1がリボソームに結合する可能性を 示す。 この点を明らかにするために、 リボソーム粒子 (30 S及び 50 Sサブュ ニッ ト) をシュクロース密度勾配遠心により分離した。 30 S又は 50 Sサブュ ニッ トに由来する蛋白質が、 SD S— PAGE後、 転移した膜上で抗 MDP 1抗 体と反応された。 該反応は、 図 4 Bのパネル bに示されるように、 3 O Sサブュ ニッ トではなく 50 Sサブュニッ 卜の 28 k D a及び 27 k D a蛋白質において 観察された。 この結果を確認するために、 50 Sサブユニッ トの蛋白質を RP— HP L C (図 4 C、 パネル a ) により分離された。 各画分の蛋白は、 CBBによ り染色された SDS— PAGEにより視覚化され (図 4 C、 パネル b) 、 或いは これらは、 膜上にブロッテイングした後、 抗 MDP 1抗体と反応させた。 結果は、 28 k D a及び 27 k D a蛋白質は各々約 47 % (図 4 Cのパネル aの画分 2 7) および 40% (画分 1 8、 1 9) ァセトニトリルの濃度で溶出した。 ァミノ 酸シークェンサ一による N末端アミノ酸の配列決定は、 28 kD aの蛋白質が M DP 1であることを示す。 この結果は、 50 Sリボソームサブュニッ 卜は MDP 1を含むことを示す。 しかしながら、 27 kD aの N末端アミノ酸は配列決定さ れていない。 従って、 27 k D aの蛋白質が N末端での修飾ァミノ酸なのか、 異 なる遺伝子をコードする遺伝子の同族体なのかは明らかでない。 To determine the localization of MDΡ1, we first performed an immunoelectron microscopy study on BCG. The results showed that the MDP1 homolog localized to the cell wall, cell membrane, ribosome region, and chromosome DN DN region (Figure 4A, panel a). Second, each subcellular fraction from BCG was prepared. These samples were transcribed onto a membrane and reacted with anti-MDP1 antibody (Figure 4B, panel b). A strong response was observed for the 28 kDa protein in the cell wall, cell membrane, and ribosome fraction, but not for secreted or cytoplasmic proteins. At the same time, the protein was visualized by gel staining after SDS-PAGE, and the putative MDP1 band is indicated by the arrow in panel a of FIG. 4B. These biochemical observations are consistent with the results of immunoelectron microscopy studies on BCG. Interestingly, some of the anti-MDP1 antibodies appear to react directly with liposomal particles in immunoelectron microscopy analysis, and they react strongly with the liposome fraction (Figure 4B, c. Flannel b). These indicate that MDP1 may bind to the ribosome. To elucidate this point, ribosomal particles (30 S and 50 S subunits) were separated by sucrose density gradient centrifugation. Proteins derived from the 30 S or 50 S subnet were reacted with anti-MDP1 antibody on the transferred membrane after SDS-PAGE. The reaction was observed in the 28 kDa and 27 kDa proteins of the 50 S subunit but not the 3 OS subunit, as shown in panel b of FIG. 4B. To confirm this result, 50 S subunit protein was replaced with RP- Separated by HP LC (Figure 4C, panel a). The protein in each fraction was visualized by SDS-PAGE stained with CBB (Fig. 4C, panel b), or these were reacted with anti-MDP1 antibody after blotting on a membrane. . The results showed that the 28 kDa and 27 kDa proteins eluted at a concentration of about 47% (fraction 27 of panel a in FIG. 4C) and 40% (fractions 18, 19), respectively, of acetonitrile. Sequencing of the N-terminal amino acid by the amino acid sequencer indicates that the 28 kDa protein is MDP1. This result indicates that the 50 S ribosomal submission contains MDP1. However, the 27 kDa N-terminal amino acid has not been sequenced. Therefore, it is not clear whether the 27 kDa protein is a modified amino acid at the N-terminus or a homolog of a gene encoding a different gene.
(4) MDP 1のインビト口における複製、 転写及び翻訳の阻害  (4) Inhibition of MDP 1 replication, transcription and translation at the in-vitro mouth
インビト口におけるマクロ分子合成を MDP 1の分子プロセスを解明するため に研究した。 第 1に、 DNAポリメラ一ゼ Iの機能に関する MDP 1の効果を、 DN A合成の伸長を見るために調べた (図 5A) DNA合成は、 MDP 1により 用量依存的に抑制された。 1. 25 の MDP 1で 97%までの阻害が観察さ れた。  Macromolecular synthesis at the mouth of in vivo was studied to elucidate the molecular processes of MDP1. First, the effect of MDP1 on the function of DNA polymerase I was examined to see the elongation of DNA synthesis (FIG. 5A). DNA synthesis was dose-dependently inhibited by MDP1. Up to 97% inhibition was observed with 1.25 MDP 1.
第 2に、 本発明者は、 Τ 7 RN Αポリメラーゼの転写に対する MD P 1の効果 を評価した (図 5 B) 。 転写は、 2. 5 Mの MDP 1でほぼ完全に阻害された c 第 3に、 翻訳に関する MDP 1の効果をインビトロで調べた。 インビト口での 翻訳分析は、 大腸菌 S 30抽出物を用いて行った (図 5 C) 。 30分のィンキュ ベーション後、 蛋白合成を MS 2ファージ RN Aの铸型なしでさえ観察された。 これは、 大腸菌 S 30抽出物の内因性天然 mRN Aのためであるかもしれない。 MDP 1による蛋白合成の阻害は、 MDP 1の濃度に依存して観察された。 10 において、 MDP 1は翻訳をほぼ完全に阻害した。 Second, the inventors evaluated the effect of MDP1 on the transcription of Τ7RNΑ polymerase (FIG. 5B). Transcription, 2. c 3 was almost completely inhibited in the 5 M MDP 1, examined the effect of MDP 1 relating to the translation in vitro. Translation analysis at the in-vitro mouth was performed using an E. coli S30 extract (FIG. 5C). After a 30 minute incubation, protein synthesis was observed even without the type 2 of MS2 phage RNA. This may be due to the endogenous native mRNA of the E. coli S30 extract. Inhibition of protein synthesis by MDP1 was observed depending on the concentration of MDP1. At 10, MDP 1 almost completely inhibited translation.
(5) MDP 1によるバクテリアの増殖遅延  (5) MDP 1 delays bacterial growth
上記の結果から、 MDP 1は DNA、 RNA及びリボソームに対する結合に依 存してマクロ分子生合成の阻害により増殖遅延を起こかもしれない。 本発明者は、 この仮説を速やかに増殖するバクテリァ中において MD P 1を発現させることに より調べた。 MDP 1の非キメラ形態を発現するために、 p SOMDP 1及び p E TMD P 1を構築した (実施例参照) 。 M. s m e gm a t i s及び大腸菌を、 各プラスミ ドを用いてトランスフォームし、 プレート上で集めた。 図 6に示すよ うに、 両方のバクテリアの増殖速度は MD P 1の発現により劇的に減少し、 MD P 1はバクテリァの増殖速度を減少することを示す。 From the above results, MDP1 may delay growth by inhibiting macromolecular biosynthesis depending on its binding to DNA, RNA and ribosomes. The present inventors investigated this hypothesis by expressing MDP1 in rapidly growing bacteria. To express a non-chimeric form of MDP1, p SOMDP 1 and p ETMD P1 was constructed (see Example). M. smegmatis and E. coli were transformed with each plasmid and collected on a plate. As shown in FIG. 6, the growth rate of both bacteria was dramatically reduced by the expression of MDP1, indicating that MDP1 reduces the growth rate of the bacteria.
(6) MD P 1蛋白のスレオニンリン酸化  (6) Threonine phosphorylation of MDP1 protein
リン酸化及び脱リン酸化は、 真核細胞における細胞増殖を制御する主要なメカ 二ズムの 1つである。 本発明者は MD P 1がリン酸化蛋白かそうでないかを調べ た。 精製された MD P 1は、 ホスホセリン、 ホスホチロシン又はホスホスレオニ ンに対するモノクローナル抗体と反応させた。 抗ホスホスレオニン抗体のみが M D P Iと反応し、 予期したようにこの反応は、 反応前にバクテリアのアルカリホ スファターゼ (BA P) で MD P 1を処理することにより消失した (データは示 さない) 。 これらは、 MD P 1がスレオニンリン酸化蛋白質であることを示す。 Phosphorylation and dephosphorylation are one of the major mechanisms controlling cell growth in eukaryotic cells. The present inventors examined whether MDP1 was a phosphorylated protein or not. The purified MDP1 was reacted with a monoclonal antibody against phosphoserine, phosphotyrosine or phosphothreonine. Only anti-phosphothreonine antibody reacted with MDPI and, as expected, this reaction was abolished by treatment of MDP1 with bacterial alkaline phosphatase (BAP) prior to the reaction (data not shown). These indicate that MDP1 is a threonine phosphorylated protein.
(7) 迅速及び遅延増殖マイコバクテリゥム間の対数及び定常増殖期における MD P 1の発現の比較 (7) Comparison of MDP1 expression between logarithmic and stationary growth phases between fast and slow growing mycobacteria
様々なマイコバクテリゥム種の MD P 1の発現を S D S— P AGE (図 7 A) 及びウェスタンブロッ ト分析 (図 7 B) により調べた。 抗体は、 B C Gの 2 8 k D aの蛋白質 (図 7 Bのレーン 1及び 2 )、 M. tuberculosisの 3 0 k D aの蛋白 質 (レーン 3及び 4 )、 M. lepraeの 2 6 k D aの蛋白質 (レーン 5 )、 M. smegma iisの 3 1 k D aの蛋白質 (レーン 6および 7 ) と強く反応したが、 大腸菌の蛋白 質とは全く反応しなかった。 対数及び定常増殖期における B C G及び £ tubercul osis由来のライゼ一卜の豊富な蛋白バンドは、 抗 MD P 1血清反応バンドと同一 である。 lepraeは、 バクテリア中で最も増殖が遅く、 インビトロでの培養が未 だ成功していない。 ヌードマウスのフッ 卜パッ ドで増殖する Uepraeは、 図 7に 示すように多量の MD P 1を発現する。 一方、 M. smegma t isにおいて、 抗 MD P 1 血清を認識する蛋白は定常期においてのみ高度に発現される。 本発明者は、 これ ら MD P 1同族体が DN Aに結合する能力を有することをサウスウェスタンブロ ッ ト分析により確認した (データは示さない) 。 これらの結果は、 MD P 1が広 範囲のマイコバクテリゥムにおいて保存されているが、 MD P 1の発現量は遅い 増殖菌と速い増殖菌で異なっている。 遅い増殖菌は増殖期と無関係に多量の MD P 1を発現するが、 速い増殖菌は定常状態で主に発現され、 対数増殖期では発現 されない。 The expression of MDP1 in various mycobacterial species was examined by SDS-PAGE (FIG. 7A) and Western blot analysis (FIG. 7B). Antibodies include a 28 kDa protein of BCG (lanes 1 and 2 in FIG. 7B), a 30 kDa protein of M. tuberculosis (lanes 3 and 4), and a 26 kDa protein of M. leprae. It reacted strongly with the protein a (lane 5) and the 31 kDa protein of M. smegma iis (lanes 6 and 7), but did not react with the E. coli protein at all. Abundant protein bands in lysates from BCG and tuberculosis in the logarithmic and stationary growth phases are identical to the anti-MDP1 serum reaction bands. leprae is the slowest growing bacteria and has not been successfully cultured in vitro. Ueprae, which grows in the footpad of nude mice, expresses a large amount of MDP1 as shown in FIG. On the other hand, in M. smegmatis, a protein that recognizes anti-MDP1 serum is highly expressed only in the stationary phase. The present inventors have confirmed that these MDP1 homologs have the ability to bind to DNA by Southwestern blot analysis (data not shown). These results indicate that MDP1 is conserved in a wide range of mycobacteria, but expression levels of MDP1 differ between slow-growing and fast-growing bacteria. Slowly growing bacteria have large amounts of MD regardless of the growth phase It expresses P1, but fast-growing bacteria are mainly expressed in the steady state and not in the logarithmic growth phase.
実施例 1 Example 1
6〜1 0週齢の 4種のマウス (C3H/He、 C57BL/6、 A/J、 BALB/c) に MDP 1を フレゥントのインコンプリートアジュバントとともに 5 gずつ 2回 (2回目は 3週後) 免疫し ( 1回目は皮下、 2回目は腹腔内) 、 4週後に採血して血清を 1 00倍に希釈し (希釈液: 1%BSA in PBS), 一次抗体としてゥヱスタンブロッ 卜に 用いた。 抗原は、 B CGのライゼートを用いた。 MDP 1に対する抗体の産生が 認められたマウスは BALB/cのみであった。  Four mice (C3H / He, C57BL / 6, A / J, BALB / c) at the age of 6 to 10 weeks were treated with MDP 1 twice with 5 g of Freund's incomplete adjuvant (second time after 3 weeks After immunization (the first time was subcutaneous and the second time was intraperitoneal), blood was collected 4 weeks later, and the serum was diluted 100-fold (diluent: 1% BSA in PBS), and used as a primary antibody in a sterile blot. As the antigen, a lysate of BCG was used. Only BALB / c mice produced antibodies against MDP1.
次に、 B CG菌を投与した 3種のマウス (C3H/He、 C57BL/6, A/J; 1回目血中、 2回目腹腔内; BCG 1 06 CFU) の血清を同様に反応させた結果、 いずれの マウスにおいても MDP 1に対する抗体産生が確認された。 また、 抗体は B CG 抗原のうち MD P 1に最も強く反応した。  Next, the results of similarly reacting the sera of three kinds of mice to which BCG bacteria were administered (C3H / He, C57BL / 6, A / J; first blood, second intraperitoneal; BCG106 CFU) However, production of an antibody against MDP1 was confirmed in all mice. The antibody reacted most strongly with MDP1 among BCG antigens.
この実験結果から、 菌体で免疫すると、 MDP 1に対する抗体が強く誘導され ることが明らかになった。  The results of this experiment revealed that immunization with bacterial cells strongly induced antibodies against MDP1.
実施例 2 :患者血清との反応 Example 2: Reaction with patient serum
ハンセン氏病患者 3名、 結核患者 4名及び健常人血清を 1 00倍に希釈した。 精製した MDP 1をメンブレンに転写し、 希釈抗体と反応させた。 その結果、 す ベての抗酸菌症患者の血清中に、 MDP 1を認識する抗体の存在が明らかになつ た。 一方、 健常人のサンプルには該抗体の存在は認められなかった。 同じウェス タンブロッ 卜の系で、 分泌蛋白質 (85コンプレックスを含む) に対して反応さ せると、 ハンセン氏病患者の血清には反応するが、 結核患者の血清とは反応しな かった。 この結果は、 MDP 1は Ag 85よりも抗酸菌症において抗原性が高い ことを示している。  The serum of three patients with Hansen's disease, four patients with tuberculosis, and healthy individuals were diluted 100-fold. The purified MDP1 was transferred to a membrane and reacted with the diluted antibody. As a result, the presence of an antibody recognizing MDP1 was revealed in the sera of all mycobacteriosis patients. On the other hand, the presence of the antibody was not observed in the samples of healthy subjects. When reacted with secreted proteins (including 85 complexes) in the same Western blot system, they reacted with the sera of Hansen's disease patients but did not react with the sera of tuberculosis patients. This result indicates that MDP1 is more antigenic in mycobacteriosis than Ag85.
BCG東京株を、 ソートン培地で培養後、 0. 45 m(Millipore)のフィルタ 一に通し、 菌体と分泌蛋白質を分離した。 菌体は SDS_サンプルバッファーに 溶解し、 超音波で破砕し、 1 00°Cで 5分間煮沸した。 分泌蛋白質は、 培養濾過 物に終濃度 80 %になるように硫酸アンモニゥムを加えて夕ンパク質を析出させ、 それを PB S (pH 7. 2) に透析した。 得られた分泌タンパク質に SDS—サ ンプルバッファ一を加え、 1 00°Cで 5分間煮沸した。 それぞれのサンプルを遠 心し、 その上清 (夕ンパク質量 2 O ^ g) を、 SD S— PAGE (2 1. 5 %) にて電気泳動した後、 タンパク質を電気的にポリビニリデンジフルオラィ ド膜(P V D F膜; Millipore)上に転写した。 PVDF膜を 3%B S Aを含む P B S中で 30分間浸し、 ブロッキングを行った。 抗体の調製は、 800東京株1 070?11 を C 3 HZH e静脈に投与し、 1ヶ月後同量の菌体を腹腔内に投与し、 その 1ケ 月後に血清を採取し、 ?83+ 1 %83八で1 00倍希釈した。 調製した抗体を、 B S Aでブロッキングした P VD F膜と 4 °Cで終夜反応させ、 0.05%の Nonidet P 40 を含む PB Sで洗浄し、 ?83で1 000倍に希釈したペルォキシダーゼ標識 した抗マウス抗体と反応させ、 上記洗浄液で洗浄後、 25mgの 3,3-ジァミノべ ンジジン 'テトラヒドロクロライ ドを 2 OmM T r i s (pH7.5) 1 0 Om I中に 溶解し、 29 1の H2O2を加えた溶液に P VDF膜を浸し、 抗体検出を行った。 結果を図 8に示す。 図 8に示されるように、 菌体タンパク質では MDP 1に相当 する分子量のタンパク質および 45〜47 kD aのタンパク質に対する抗体が検 出された。 一方、 分泌タンパク質に対する抗体は、 この条件では検出されなかつ たことから、 MDP 1は最も強い抗原性を有するといわれている A g 85を上回 る抗原性を有していると考えられた。 After culturing the BCG Tokyo strain in Sorton's medium, it was passed through a 0.45 m (Millipore) filter to separate the cells from secreted proteins. The cells were dissolved in SDS_sample buffer, disrupted by sonication, and boiled at 100 ° C for 5 minutes. Secretory protein is added to the culture filtrate by adding ammonium sulfate to a final concentration of 80% to precipitate protein. It was dialyzed against PBS (pH 7.2). SDS-sample buffer was added to the obtained secretory protein, and the mixture was boiled at 100 ° C for 5 minutes. After centrifuging each sample, the supernatant (2 O ^ g of the evening protein) was electrophoresed by SDS-PAGE (21.5%), and the protein was electrically transferred to polyvinylidene difluoride. (PVDF membrane; Millipore). The PVDF membrane was immersed in PBS containing 3% BSA for 30 minutes to perform blocking. Preparation of antibody 800 Tokyo strain 1 0 7 0? 11 administered to C 3 HZH e vein, one month after the same amount of cells were administered intraperitoneally, serum was collected after one month,? It was diluted 100-fold with 83 + 1% 83-8. The prepared antibody was reacted with BSA-blocked PVDF membrane overnight at 4 ° C, washed with PBS containing 0.05% Nonidet P40, and washed with PBS. After reacting with a peroxidase-labeled anti-mouse antibody diluted 1 000 in 83, washing with the above washing solution, 25 mg of 3,3-diaminobenzidine'tetrahydrochloride was added to 2 OmM Tris (pH 7.5) 10 The PVDF membrane was dissolved in OmI and immersed in a solution to which 291 H 2 O 2 was added, to detect antibodies. Fig. 8 shows the results. As shown in FIG. 8, in the bacterial cell protein, a protein having a molecular weight corresponding to MDP1 and an antibody against a protein of 45 to 47 kDa were detected. On the other hand, an antibody against a secreted protein was not detected under these conditions, and it was considered that MDP1 had an antigenicity higher than that of Ag85, which is said to have the strongest antigenicity.
実験 2 Experiment 2
BCG東京株 ( 1 07CFU) を、 AZj、 BALB/c、 C 3 H/H e , C 5 7 BL/6に腹腔内投与し、 1ヶ月後血清を採取し、 PB S+ 1 %B SAで 1 0 0倍希釈した。 精製 MDP 1を l g/レーンで SDS— PAGE後、 PVDF 膜上に転写し、 希釈血清と上記と同様の方法で反応させ、 MDP 1に対する抗体 の検出を行った。 その結果、 4種全てのマウスの血清中に抗 MD P 1抗体が産生 されていることが分かった。 The BCG Tokyo strain (1 0 7 CFU), AZj , BALB / c, was administered intraperitoneally C 3 H / H e, C 5 7 BL / 6, taken 1 month after serum, PB S + 1% B SA Diluted 1: 100. The purified MDP1 was subjected to SDS-PAGE at 1 g / lane, transferred to a PVDF membrane, and reacted with the diluted serum in the same manner as above to detect an antibody against MDP1. As a result, it was found that anti-MDP1 antibodies were produced in the sera of all four mice.
実験 3 Experiment 3
BCG菌 ( 1 08C FU) を、 マウス (C 3 HZH e : s 1 c) に尾静脈より投 与し、 MDP 1 (5 g) /RAS (リビアジュバントシステム) 、 DNA(M. tuberculosis DNA 0.5^ g ) /R A S , MD P 1 (5 // g) +DNA (0. 5 g) ZRASをマウス (C3HZHe : s 1 c ) に皮下投与し、 3週間後に同用 量を腹腔内投与した後、 4週間後に血清を採取し、 採取した血清を PB S+ 1 % B S Aで 100倍希釈した。 精製 MD P 1を /レーンで SDS— PAGE 後、 PVDF膜上に転写し、 希釈血清と反応させた。 その結果 (図 9) 、 BCG 及び MD P 1 +DN Aで免疫したマウスにのみ抗体が産生されており、 MD P 1 単独、 DN A単独では抗体産生が認められず、 MDP 1は DNAと結合させるこ とで免疫原性が増強され、 抗体価が上がることが確認された。 The BCG bacteria (1 0 8 C FU), mice. (C 3 HZH e: s 1 c) to Kumishi throw the tail vein, MDP 1 (5 g) / RAS ( Ribi adjuvant system), DNA (M tuberculosis DNA 0.5 ^ g) / RAS, MD P 1 (5 // g) + DNA (0.5 g) ZRAS was administered subcutaneously to mice (C3HZHe: s1c), 3 weeks later, the same dose was intraperitoneally administered, 4 weeks later, serum was collected, and the collected serum was 100 times with PBS + 1% BSA. Diluted. The purified MDP1 was subjected to SDS-PAGE / lane, transferred to a PVDF membrane, and reacted with the diluted serum. As a result (Fig. 9), antibodies were produced only in mice immunized with BCG and MDP1 + DNA. No antibody production was observed with MDP1 alone or DNA alone, and MDP1 bound to DNA. It was confirmed that the immunogenicity was enhanced and the antibody titer was increased.
実験 4 Experiment 4
MD P 1、 ヒストン H 1、 H 2、 H 3 (ベ一リンガ一マンハイム、 牛由来) を それぞれ 5 gずつ、 単独または結核菌由来 DNA (0. 5 ^ g) と混合して、 リビアジュバント(RIBI i匪 unochen Research, Inc. Hamilton, MT)を用い、 C 3 HZHeマウス (初回免疫時、 7週齢) に免疫した。 サンプルは、 PBSで希釈 し、 1匹のマウスに 100 1となるように調整した。 免疫方法は、 初回免疫を 皮下投与で、 3週間後の追加免疫を腹腔内投与により行った。 追加免疫の 1週間 後のマウスより採血を行い、 遠心分離により血清成分を得た。 それぞれに抗原に 対する抗体の検出は、 E L I S A法により行った。 即ち、 E L I S A用 96穴プ レート H (住友べ一クライト株式会社) に、 それぞれの抗原を 2 g/m 1にな るように 0. 05M炭酸バッファ一 (pH 9. 6) で溶解し、 100 1ずつ各 ゥエルに分注し、 室温で 2時間放置し、 抗原を個層化した。 ブロッキングは、 B B S (p H 8. 0 ;ホウ酸 10. 33 gZL、 Na C l 7. 83 gZL) でゥェ ルを 1回洗浄後、 3 %B S Aを含む B B Sを 300 ^ 1ずつゥヱルに分注し、 室 温で 2時間放置し、 BBSで 1回洗浄することで行った。 それぞれの血清サンプ ルは、 50〜 : 102400倍まで、 1 %B S Aを含む B B S溶液で希釈し、 それ ぞれのゥヱルに 100 1ずつ加え、 30分間 37 °Cで反応させた。 反応プレー トを HBBS (pH8. 0 ;ホウ酸 10. 33 gZL、 Na C l 29. 22 g/ L) を調製し、 各ゥヱルを 300 ^ 1ずつ 7回洗浄した。 その後、 ペルォキシダ —ゼ抗マウス抗体を、 1%83 を含む883溶液で2000倍に希釈し、 10 0 1ずつ各ゥヱルに分注し、 30分間 37°Cで培養した。 その後、 上記洗浄液 で同様の洗浄を行い、 オルトーフヱニレンジァミンニ塩酸塩を 0.4mg/mlとなるよ うに、 8 O mMクェン酸一リン酸緩衝液に加え、 その溶液 1 Om 1にっき H2O2 を 4 1加えた検出液を用い、 発色を行った。 3— 5分間反応後、 1 Nの硫酸を 等量加えて反応を停止し、 4 9 2 nmの吸光度で測定した。 その結果、 図 1 0〜 1 3に示されるように、 MD P 1と DNAを混合して免疫し、 得られたサンプル のみ吸光度の上昇が観察され、 同じ D N A結合夕ンパク質であるヒストン H 1、 H 2、 H 3のいずれの場合にも吸光度の上昇は観察されなかった。 このことから 抗原性に関しては MD P 1特異的であることが明らかになつた。 5 g each of MDP1, histone H1, H2, H3 (from Behringa-Mannheim, cattle), alone or mixed with Mycobacterium tuberculosis DNA (0.5 ^ g), and mixed with Libya adjuvant ( C3 HZHe mice (at the time of the first immunization, 7 weeks of age) were immunized using RIBI i Marunouchi Research, Inc. Hamilton, MT). Samples were diluted in PBS and adjusted to 100 1 per mouse. The immunization was performed by subcutaneous administration of the primary immunization and booster immunization three weeks later by intraperitoneal administration. One week after the booster, blood was collected from the mice, and serum components were obtained by centrifugation. The detection of antibodies against the respective antigens was performed by ELISA. That is, each antigen was dissolved in a 96-well ELISA plate for ELISA (Sumitomo Beclite Co., Ltd.) with 0.05M carbonate buffer (pH 9.6) to 2 g / ml, One aliquot was dispensed into each well and allowed to stand at room temperature for 2 hours to layer the antigen. For blocking, wash the wells once with BBS (pH 8.0; 10.33 gZL of boric acid, 7.83 gZL of NaCl), then divide the BBS containing 3% BSA into 300 ^ 1 aliquots. It was poured, left at room temperature for 2 hours, and washed once with BBS. Each serum sample was diluted with BBS solution containing 1% BSA to 50 to 102400 times, added to each gel 100 1 each, and reacted at 37 ° C for 30 minutes. HBBS (pH 8.0; 10.33 g of boric acid, 29.22 g / L of NaCl) was prepared as a reaction plate, and each pellet was washed 300 × 1 seven times. Thereafter, the peroxidase anti-mouse antibody was diluted 2000-fold with a 883 solution containing 1% 83, dispensed 1001 into each well, and cultured at 37 ° C for 30 minutes. After that, the same washing is performed with the above washing solution, and the concentration of ortho-phenylenediamine dihydrochloride is adjusted to 0.4 mg / ml. As described above, color development was performed using a detection solution obtained by adding H 2 O 2 to 8 O mM citrate monophosphate buffer and adding 41 H 2 O 2 to the solution. After the reaction for 3-5 minutes, the reaction was stopped by adding an equal volume of 1N sulfuric acid, and the absorbance was measured at 492 nm. As a result, as shown in FIGS. 10 to 13, MDP1 and DNA were mixed and immunized, and an increase in absorbance was observed only in the obtained sample, and the same DNA-binding protein, histone H1 No increase in absorbance was observed in any of H2, H3. This revealed that the antigenicity was specific for MDP1.
実験 5 Experiment 5
精製した MD P 1を 1 レーンで S D S— P AG E後、 PVD F膜上に転 写し、 ら 、患者 ( L 1、 L 2、 L 3 ) 、 結核患者 (T l、 Τ 2、 Τ 3、 Τ 4 ) の 血清希釈液と上記と同様にして反応させ、 MD P 1に対する抗体の検出を行った。 その結果 (図 1 4 ) 、 試験した全ての患者血清中に MD P 1に対する抗体が検出 された。 この結果から、 MD P 1は結核、 らい患者等の診断薬としての応用が考 えられる。  The purified MDP1 was transferred on a PVDF membrane after SDS-PAGE in one lane, and the patients (L1, L2, L3) and tuberculosis patients (Tl, Τ2, Τ3,反 応 The antibody was reacted with the serum diluted solution of 4) in the same manner as described above, and an antibody against MDP1 was detected. As a result (Fig. 14), antibodies to MDP1 were detected in the serum of all patients tested. From these results, MDP1 is considered to be applied as a diagnostic agent for tuberculosis and leprosy patients.
MP Ρ 1の診断薬への応用  Application of MPΡ1 to diagnostics
MD Ρ 1は抗酸菌に特異的な夕ンパク質であり、 強い抗原性を有していること が上記実験より確認できた。 特に実験 1の結果より現在抗原性が最も強く、 診断 薬として検討されている抗酸菌特異的な抗原 Ag85 complexよりも強い抗原性を有 することが明らかになった。 従って、 MD P 1に対する抗体を同定することで、 結核による感染の有無を診断できる (実験 5 ) 。 また、 抗酸菌の種が異なれば M D P 1の配列も異なることから、 種特異的な抗原またはべプチドを用いることで 感染菌の同定の可能性もある。 従って、 結核菌を含む各種抗酸菌の MD P 1およ びその MD P 1中に含まれるペプチドは、 診断薬の抗原として利用できる。  The above experiment confirmed that MD-1 was a protein specific to acid-fast bacteria and had strong antigenicity. In particular, the results of Experiment 1 revealed that the antigenicity is the strongest at present and has stronger antigenicity than the mycobacterial-specific antigen Ag85 complex, which is being studied as a diagnostic drug. Therefore, by identifying an antibody against MDP1, the presence or absence of infection by tuberculosis can be diagnosed (Experiment 5). In addition, since the sequence of MDP1 differs depending on the species of the acid-fast bacterium, it is possible to identify the infecting bacterium by using a species-specific antigen or peptide. Therefore, MDP1 of various mycobacteria including Mycobacterium tuberculosis and peptides contained in the MDP1 can be used as antigens of diagnostic agents.
実験 6 :マウスにおける結核菌感染防御効果 Experiment 6: Protection against M. tuberculosis infection in mice
A群脈 1 (5μ g) +DNA(5ng、 BCG由来) -PBS/RIB、 B群 DNA(5ng、 BCG由来)/ RIB、 C群 α抗原(Ag85: 5^g)/RIB, D群 PBS/RIB、 E群 PBSを調製し、 各々 9〜1 0匹のマ ゥスに最初皮下投与により免疫した。 また 3週間後に再度腹腔内に投与した後、 3週間後に MDP1および Ag85に対する抗体の出現を確認した。 その後、 結核菌 Kuro no株をマウス尾静脈より一匹当たり、 約 104CFUを感染させた。 評価は感染 2週間後 及び 4週間後にマウスを解剖し、 無菌的に肺を摘出し、 ガラスホモジナイザーで ホモジナイズ後、 7H11寒天培地を用いて肺内生菌数を測定した。 また、 ワクチン 効果の判定は、 Turkeyの検定 (有意水準: 5 %、 両側検定) により、 対照群 (D群 及び E群)との比較を行った。 Group A vein 1 (5 μg) + DNA (5 ng, derived from BCG) -PBS / RIB, Group B DNA (5 ng, derived from BCG) / RIB, Group C α antigen (Ag85: 5 ^ g) / RIB, Group D PBS / RIB, group E PBS were prepared and 9 to 10 mice were immunized by subcutaneous administration first. After three weeks, the compound was again intraperitoneally administered, and three weeks later, the appearance of antibodies against MDP1 and Ag85 was confirmed. Thereafter, the M. tuberculosis Kuro no strain per animal from the mouse tail vein, were infected with about 10 4 CFU. Evaluation 2 weeks after infection After 4 weeks, the mice were dissected, the lungs were aseptically removed, homogenized with a glass homogenizer, and the number of endophytic bacteria in the lung was measured using 7H11 agar medium. The vaccine effect was determined by comparison with the control group (Group D and E) using the Turkey test (significance level: 5%, two-tailed test).
A)免疫後の抗体の出現の確認  A) Confirmation of appearance of antibody after immunization
MDP1および Ag85に対する抗体は、 ELISAにより検出した。 図 1 5に示すように、 MDP1および Ag85に対する抗体が検出された。  Antibodies to MDP1 and Ag85 were detected by ELISA. As shown in FIG. 15, antibodies against MDP1 and Ag85 were detected.
B)感染 2週間後の判定結果  B) Results of judgment 2 weeks after infection
感染 2週間後の肺内生菌数は、 表 1に示すように、 PBSおよび PBS/RIB投与群の 肺内菌数 5. 57および 5. 45と比較して、 MDP1 +DNA/RIB投与群においては、 有意に少 ない肺内菌数(5. 17)であった。 しかしながら、 Ag85B/RIBについては 5. 60と有意差 は得られなかった。  As shown in Table 1, the number of bacteria in the lung 2 weeks after infection was higher in the MDP1 + DNA / RIB group than in the PBS and PBS / RIB groups, as compared to 5.57 and 5.45. In, the number of bacteria in the lung was significantly lower (5.17). However, for Ag85B / RIB, a significant difference of 5.60 was not obtained.
C)感染 4週間後の判定結果  C) Judgment results 4 weeks after infection
表 2に示したように、 2週間後と同様の結果が得られた。 即ち、 MDP1 + DM/RI B投与群において有意に肺内菌数が減少していたが、 Ag85B/RIB及び他の投与群で は PBS投与群と比較して有意差は得られなかった。 結核菌感染 2週間後の感染防御効果  As shown in Table 2, similar results were obtained after two weeks. That is, the number of bacteria in the lungs was significantly reduced in the MDP1 + DM / RIB administration group, but no significant difference was obtained in the Ag85B / RIB and other administration groups compared to the PBS administration group. Protective effect of Mycobacterium tuberculosis infection 2 weeks after infection
A群 B群 。群_ D群 E群 肺内菌数 5. 17土 0. 15 * 5. 56 + 0. 15 5. 60 + 0. 17 5. 45 + 0. 18 5. 57 + 0. 05 表 2 . 結核菌感染 4週間後の感染防御効果  Group A Group B. Group_ Group D Group E Pulmonary bacteria count 5.17 soil 0.15 * 5.56 + 0.15 5.60 + 0.17 5.45 + 0.18 5.57 + 0.05 0.05 Table 2. Tuberculosis Protective effect 4 weeks after bacterial infection
A B群 C群 D E群  A group B group C D group E
肺内菌数 6. 26士 0. 1 3 * 6. 98 + 0. 43 6. 70 + 0. 21 6. 65 + 0. 26 7. 01 + 0. 28 表 1, 2において、 *は、 P < 0 . 0 5で対照群 (D群及び E群)に対し有意であ ることを示す。 Number of bacteria in the lung 6.26 0.13 * 6.98 + 0.43 6.70 + 0.21 6.65 + 0.26 7.01 + 0.28 In Tables 1 and 2, * indicates P <0.05 indicates that it is significant to the control group (D group and E group).
実験 7 : MDP1のリンパ球活性化 Experiment 7: Lymphocyte activation of MDP1
結核菌を ICRマウスに感染させ、 4週間後にリンパ節を摘出し、 リンパ球を調製 後、 PBSヽ MDPKO. 1, 1, 10 g/ml)、 Ag85B(0. 1, 1, 10 ^ g/ml). H37Ra(0. 1, 1, 10 g/ml)、 PPD(0. 1, 1, 10 g/ml)で 5日間刺激し、 3 H- thymidineを添加し 24時間 後に細胞中の放射活性を測定した。 その結果を図 1 6に示す。 MDP1、 H37Ra、 PPD 刺激により、 3H- thymidineの uptakeが観察されたが、 Ag85には観察されなかった。 Mycobacterium tuberculosis is transmitted to ICR mice and lymph nodes are removed 4 weeks later to prepare lymphocytes Afterwards, PBS ヽ MDPKO. 1, 1, 10 g / ml), Ag85B (0.1, 1, 10 ^ g / ml). H37Ra (0.1, 1, 10 g / ml), PPD (0.1 , 1, 10 g / ml) for 5 days, 3 H-thymidine was added, and the radioactivity in the cells was measured 24 hours later. Figure 16 shows the results. MDP1, H37Ra, the PPD stimulation, but uptake of 3 H- thymidine was observed, the Ag85 was observed.
Ag85は結核菌由来の蛋白質抗原として唯一モルモッ卜で結核菌の感染防御効果 が確認され、 MAワクチンとしてワクチントライアルが行われている (Proc. Natl. Acad. Sci, 92(1995) 1530-1534)。 今回得られたデータにより、 Ag85の感染防御効 果が確認できなかったにもかかわらず、 MDP1は肺内菌数で 60〜82%の感染防御効果 を示すことが明らかになった。 即ち、 蛋白質抗原でマウスにおいて感染防御効果 を得ることができた抗原として M D P 1は新規であり、 また臨床的に新しいワク チンとしての有用性を示す結果である。  Ag85 is the only protein antigen derived from Mycobacterium tuberculosis and has been confirmed to be protective against Mycobacterium tuberculosis in guinea pigs. A vaccine trial has been conducted as an MA vaccine (Proc. Natl. Acad. Sci, 92 (1995) 1530-1534) . The data obtained revealed that MDP1 exhibited a 60-82% protective effect on the bacterial count in the lungs, despite the fact that the protective effect of Ag85 could not be confirmed. In other words, the results show that MDP1 is a novel antigen capable of achieving a protective effect in mice with a protein antigen, and that it is useful as a clinically novel vaccine.
なお、 表 1 , 表 2において、 PBS(5. 57)、 MDP1(5. 17)は対数値であり、 元の菌数 は各々、 3. 7 x l05cells八 ung、 1. 5 x 105cells/lungである。 PBSを感染 1 0 0 %とし た場合に、 MDP1のワクチン群でどれほどの感染防御効果が得られたかは、 次の計 算式で得られる。 In tables 1 and 2, PBS (5. 57) , MDP1 (5. 17) are logarithmic value, each original number of bacteria, 3. 7 x l0 5 cells eight ung, 1. 5 x 10 5 cells / lung. The following formula can be used to calculate the protective effect of the MDP1 vaccine group when PBS was set at 100% infection.
{ (PBSの菌数 3. 7 X 105cells/lung— MDP1の菌数 1. 5 x 105cells/lung)/ (PBSの菌数 3. 7 x eel Is Aung) } x 100 = MDP1の効果により感染防御された菌数(%) = 60% 同様に、 4週間値においても PBS群: 1. 0 x l07cells/lung. MDP1群: 1. 8 X 106 cells八 ungであり、 上記計算式で計算を行うと感染防御率は 82%となる。 {(PBS count 3.7 x 10 5 cells / lung— MDP1 count 1.5 x 10 5 cells / lung) / (PBS count 3.7 x eel Is Aung)} x 100 = MDP1 Similarly, the number of bacteria protected by the effect (%) = 60% Similarly, the PBS group: 1.0 x 10 7 cells / lung. The MDP1 group: 1.8 x 10 6 cells at the 4-week value. Using the above formula, the infection protection rate is 82%.
結核の感染防御効果は液性免疫で得ることはできず、 細胞性免疫 (Thl優位) で 得られることがわかってきている。 しかしながら、 その詳細なメカニズムはわか つておらず、 新しい抗原蛋白質の探索、 結核菌特異的な糖脂質抗原、 DNAワクチン、 rBCGと幅広く研究が行われている。 結核患者は Th2優位になっており、 このことが 生まれつきの体質としての結果発病に至ったのか、 または発病したことが Th2優位 へと導いたのか明らかでない。 しかし、 IFNァを投与すると結核菌は死滅に向かい、 また Thl優位になっている医療従事者は発病しにくいといった報告がなされている。 上記実験 7で抗体が誘導できたことが確認された。 この抗体のサブクラスを測定 してみると、 IgGlよりも IgG2aが多く産生されていた。 IgG2aは IFNァ存在下で多く 誘導されるサブクラスであることが知られており、 この結果は MDP1で免疫された マウスが Thl優位へと誘導され、 細胞性免疫を活性化していることを示すデータで ある。 実際、 結核菌感染マウスから得られたリンパ球を活性化することで、 MDP1 により結核菌特異的細胞性免疫を誘導できることが証明された。 このような結核 菌特異的細胞性免疫を誘導できる抗原として、 PPD、 H37Raなどが知られているが、 これらの抗原では感染防御効果を得られないことが知られている。 また、 同様の 感染防御効果及び IgG2a優位の抗体産生については、 BALB/cマウスを用いた実験に おいても同じ結果が得られた。 異なる 2系統のマウスで同様の効果が確認できた ことが MDP1の新しいワクチンとしての有用性を示している。 蛋白抗原としてその 感染防御効果が確認されたことにより、 より持続性を持たすことが可能である DN Aワクチン、 または MPDを高発現体にした rBCG (生ワクチン) を用いることで、 今 までの BCGに比較してより強い持続性のある感染防御効果、 発病予防効果、 または 化学療法剤との併用による短期化学療法の実現への応用が期待される。 It is becoming clear that the protective effect of tuberculosis cannot be obtained by humoral immunity, but can be obtained by cell-mediated immunity (Thl dominance). However, the detailed mechanism is unknown, and extensive research is being conducted on the search for new antigenic proteins, Mycobacterium tuberculosis-specific glycolipid antigens, DNA vaccines, and rBCG. Tuberculosis patients are predominantly Th2, and it is not clear whether this has resulted in the onset of the disease as a result of its natural constitution, or whether it has led to a Th2 predominance. However, it has been reported that the administration of IFNa kills M. tuberculosis bacterium and makes it harder for Thl-dominant healthcare workers to get sick. In the above Experiment 7, it was confirmed that the antibody could be induced. When the subclass of this antibody was measured, IgG2a was produced more than IgGl. IgG2a is known to be a subclass that is frequently induced in the presence of IFNa. These data show that mice are induced to Thl dominance and activate cell-mediated immunity. Indeed, it has been demonstrated that MDP1 can induce M. tuberculosis-specific cellular immunity by activating lymphocytes obtained from M. tuberculosis-infected mice. PPD, H37Ra and the like are known as antigens capable of inducing such M. tuberculosis-specific cell-mediated immunity, but it is known that these antigens cannot obtain a protective effect against infection. In addition, the same results were obtained in experiments using BALB / c mice for the same protective effect against infection and production of IgG2a-dominant antibodies. The same effect was confirmed in two different strains of mice, indicating the usefulness of MDP1 as a new vaccine. By using the DNA vaccine, which has been shown to have a protective effect as a protein antigen, and more durable, or using rBCG (live vaccine) with high expression of MPD, the BCG up to now can be used. It is expected to be applied to the realization of short-term chemotherapy in combination with a chemotherapeutic agent, as well as a longer lasting protective effect against infection, disease prevention, or combined use with chemotherapeutic agents.
Ag85 complexは抗原性が高いといわれており、 診断抗原、 ワクチン抗原として の可能性が数多く報告されている(Infect. Immu. 167(1999) 6187-6190)。 新規に 見出した MDP1は、 この Ag85に比較してより高い抗原性が確認されている (図 8 )。 これらの蛋白質の大きい違いとしては、 Ag85は分泌蛋白質であり、 MDP1は表在性 •内在性の蛋白質であり、 両蛋白質の局在部位に差異が見出せる。 MDP1の高い抗 原性の理由としては、 安全で確かなアジュバン卜効果を有する BCGに近傍して局在 していることが一つの理由であると考えられる。 抗原性の高い蛋白質である MDP1 の特性を生かし、 MDP1と異種抗原との融合蛋白を作製することで、 新しいヮクチ ンが作製可能である。 その方法の一例を以下に示す。  Ag85 complex is said to have high antigenicity, and many possibilities have been reported as diagnostic antigens and vaccine antigens (Infect. Immu. 167 (1999) 6187-6190). The newly discovered MDP1 has been confirmed to have higher antigenicity than Ag85 (FIG. 8). The major difference between these proteins is that Ag85 is a secreted protein, MDP1 is a superficial • endogenous protein, and there are differences in the localization sites of both proteins. One of the reasons for the high antigenicity of MDP1 is that it is localized near BCG, which has a safe and reliable adjuvant effect. By making use of the properties of MDP1, a protein with high antigenicity, and creating a fusion protein of MDP1 and a heterologous antigen, a new protein can be produced. An example of the method will be described below.
マラリアワクチンの候補として MSP1、 NANP(3PYB)、 SERAが知られており、 これ らに対する抗体を誘導できれば、 マラリアの感染防御効果が得られることが確認 されている。 しかし、 動物実験で使用できるアジュバントを人に応用することは できず、 完全なワクチン化に至っていない。 そこでこれらの抗原を MDP1との融合 蛋白質として BCG内で発現させることで、 新しいワクチンの開発を試みた。 ここで 用いたベクタ一は、 N末端から 4塩基目がアデニンからグァニンに置換し、 BCGの 増殖抑制活性が弱くなつている mutannt MDP1発現ベクター(pSOMDPlMutant)を利用 した。 実験 8 :融合蛋白質発現ベクターの構築 MSP1, NANP (3PYB), and SERA are known as malaria vaccine candidates, and it has been confirmed that the induction of antibodies against them can provide a protective effect against malaria infection. However, adjuvants that can be used in animal experiments cannot be applied to humans, and complete vaccination has not been achieved. Therefore, we attempted to develop a new vaccine by expressing these antigens in BCG as fusion proteins with MDP1. The vector used here used a mutannt MDP1 expression vector (pSOMDPlMutant) in which the fourth base from the N-terminus was substituted with adenine for guanine, and the growth inhibitory activity of BCG was weakened. Experiment 8: Construction of fusion protein expression vector
組換えべクタ一は 1 ngの pSOMDPlMutantを鍀型に各々 MDP1 - Aと MDP1 - Bを 1 Opmolず つ用いて、 PiuTurboT"DNA polymerase(STRATAGENE, CA, USA)により増幅を行った。 増幅産物は、 フヱノール Zクロ口ホルム Zイソアミルアルコール処理、 エタノー ル沈殿後、 Mlu Iで処理し、 ァガロースゲル電気泳動後、 E. Z. N. A Gel Extractio n Kit(0MEGA BI OTEK, GA, USA)を用いて精製を行った。 インサート断片であるマ ウスマラリアのスポロゾィド表面 B細胞ェピトープは、 3PYB- Aと 3PYB-Bとを各々 2nmolずつ取り、 ァニ一リング反応バッファー(20mMTris _HCl (pH7. 5), 10mM MgCh, 50mM NaCl)中において 8 5 °Cで 5分間保持した後、 徐冷することでァニ一リング を行った。 その反応液に終濃度 300mMの CH3C00Naを加え、 エタノール沈殿を行った。 その後、 Mlu Iで処理し、 フエノール クロ口ホルム Zイソアミルアルコール処理、 エタノール沈殿させた。 このように調節した 0. 03pmolの組換えべクタ一と 0. 3prao 1のインサート断片を DNA Ligation Kit Ver. 2(TAKARA SUZ0 CO. , LTD. , Otsu, Japa n)を用いて結合し、 pMDPlMutant- 3PYBNの構築を行った。 このプラスミ ドは大腸菌 DH5 a株に形質転換を行った。 同様に、 pSOMDPlMutantを铸型に MDP1 -Cと MDP1 -Dを 用いて増幅したベクタ一とィンサ一卜断片を結合させることで pMDPlMutant- 3PYB Mの構築を行った。 The recombinant vector was amplified with PiuTurbo T "DNA polymerase (STRATAGENE, CA, USA) using 1 ng of pSOMDPlMutant and 鍀 -type MDP1-A and MDP1-B, respectively. Was treated with phenol Z-cloth form Z isoamyl alcohol, precipitated with ethanol, treated with Mlu I, agarose gel electrophoresed, and purified using the EZN A Gel Extraction Kit (0MEGA BI OTEK, GA, USA). The sporozoite surface B cell epitope of mouse malaria, which is an insert fragment, takes 2 nmol of each of 3PYB-A and 3PYB-B, and performs an annealing reaction buffer (20 mM Tris_HCl (pH 7.5), 10 mM MgCh, 50 mM NaCl). After holding at 85 ° C for 5 minutes in the medium, annealing was performed by slow cooling, and CH 3 C00Na having a final concentration of 300 mM was added to the reaction solution, and ethanol precipitation was performed. Treated with phenol, Alcohol treatment and ethanol precipitation were carried out using the thus prepared 0.03 pmol recombinant vector and 0.3prao 1 insert fragment in DNA Ligation Kit Ver. 2 (TAKARA SUZ0 CO., LTD., Otsu, Japa This plasmid was transformed into Escherichia coli DH5a strain, and pSOMDPlMutant was transformed into p-type using MDP1-C and MDP1-D. PMDPlMutant-3PYBM was constructed by ligating the amplified vector and the insulator fragment.
一方、 MDPlMutantの C末端に結合させ、 種々の抗原を発現させるために pSOMDP lMutantプラスミ ドの MDP1 C末端をコードする部分に Sea I認識配列の導入を行つ た。 具体的には、 pSOMDPlMutantを i/2i/ I I I及び Bam HIで処理し、 MDPlMutant遺伝 子を含む lOOObpの断片を精製し、 同じく ind U 1及び Bam HIで処理した pKF19DNA に導入した。 その後、 Sea I認識配列を含むプライマ一を用いて pKF19-MDPlMuを錶 型に PCR反応を行った。 PCR産物はフヱノール Zク口口ホルム/ィソアミルアルコ —ル処理、 エタノール沈殿後、 Dpn KNEW ENGLAND Biolabs, Inc., MA, USA)で処理 を行った。 その後 DNA Ligation Kit Ver. 2 CTAKARA SUZO CO., LTD., Otsu, Japan)を 用いて pKF19- MDPlMuSca Iの構築を行った。 このプラスミ ドは大腸菌 DH5 a株に形 質転換を行った。 形質転換を行った大腸菌は 30 g/mlになるようにカナマイシン を加えた LBプレートに播種した。 生えてきた菌体を LBブロースで培養後、 プラス ミ ドを抽出し、 pKFl 9- MDPlMuSca Iの選択を行った。 これにより MDPlMutant遺伝子 の 3 ' 末端をコードする部分に Sea I認識配列の導入を行った pKF19- MDPlMuSca I を作製した。 このプラスミ ドを Hind I I I及び feiz/ HIで処理し、 変異の導入を行つ た MDPlmutant遺伝子を含む l OOObpの断片を精製し、 Hind U i及び Bam HIで処理し た PS0246ベクタ一に導入した。 これにより pSOMDPlmutantSca Iを得た。 この pSOM DPlmutantSca Iを Sea Iで処理し、 さらに Calf intestine Alkaline Phosphatase で 5 ' 末端の脱リン酸化を行った。 On the other hand, in order to bind to the C-terminus of MDP1Mutant and express various antigens, a Sea I recognition sequence was introduced into the portion encoding the MDP1 C-terminus of pSOMDP1Mutant plasmid. Specifically, pSOMDPlMutant was treated with i / 2i / III and BamHI, a lOObp fragment containing the MDPlMutant gene was purified, and introduced into pKF19 DNA also treated with indU1 and BamHI. Thereafter, a PCR reaction was performed using pKF19-MDP1Mu as a template using a primer containing a Sea I recognition sequence. The PCR product was treated with Phenol Z-Kokuguchi Form / Isoamyl alcohol, precipitated with ethanol, and then treated with Dpn KNEW ENGLAND Biolabs, Inc., MA, USA). Then, pKF19-MDPlMuScaI was constructed using DNA Ligation Kit Ver. 2 CTAKARA SUZO CO., LTD., Otsu, Japan). This plasmid transformed the E. coli DH5a strain. The transformed Escherichia coli was seeded on an LB plate containing kanamycin at a concentration of 30 g / ml. After the grown cells were cultured in LB broth, plasmid was extracted and pKFl9-MDPlMuScaI was selected. This enables the MDPlMutant gene PKF19-MDP1MuScaI was prepared by introducing a Sea I recognition sequence into the 3'-end-encoding region of the gene. This plasmid was treated with Hind III and feiz / HI, the lOOObp fragment containing the mutated MDPlmutant gene was purified, and introduced into a PS0246 vector treated with Hind Ui and Bam HI. This resulted in pSOMDPlmutantScaI. This pSOM DPlmutantSca I was treated with Sea I and dephosphorylated at the 5 'end with Calf intestine Alkaline Phosphatase.
このように作製したベクターに以下のインサート配列を導入した。 まず、 マウ スマラリアのスポロゾィド表面 B細胞ェピトープである NANP配列は 3PYB- cと 3PYB -dをァニーリングし、 エタノール沈殿後、 T4 Polynucleotide Kinase(TAKARA SU Z0 CO.,LTD.,0tsu, Japan)を用いて 5 ' 末端のリン酸化を行った。 その MA断片を pSOMDPlmutantSca Iの Sea I部位に導入し、 pMDPlMutant- 3PYBCの構築を行った。 メロゾィ ド期のヒトマラリァ原虫(Plasmodium falciparum)主要抗原である MSP1 (Merozoite Surface Protein 1 )は、 pBlue- PfMSPlを铸型にプライマー MSP1F- f、 MSP1F- rを用いて、 PfuTurboT"DNA polymeraseにより増幅を行った。 The following insert sequence was introduced into the vector thus prepared. First, the NANP sequence, a sporozoid surface B cell epitope of mouse malaria, anneals 3PYB-c and 3PYB-d, precipitates with ethanol, and then uses T4 Polynucleotide Kinase (TAKARA SU Z0 CO., LTD., 0tsu, Japan). The 5 'end was phosphorylated. The MA fragment was introduced into the Sea I site of pSOMDPlmutantScaI to construct pMDPlMutant-3PYBC. MSP1 (Merozoite Surface Protein 1), which is a major antigen of human malaria parasite (Plasmodium falciparum) in the melozoid stage, is amplified with PfuTurbo T "DNA polymerase using went.
それぞれ増幅を行った断片について、 TaKaRa BKL Kit(TAKARA SUZO CO. , LTD. , Otsu, Japan)を用いて pMDPlMutant- PfMSPl、 pMDPlMutant- PyMSPlの構築を行った。 これらプラスミ ドを含む大腸菌は 30 g/mlの Kanamycinを含む LBプレー卜で選択を 行い、 30 j« g/mlの Kanamycinを含む LBブロースで培養後アル力リ SDS法を用いて精 製した。  For each of the amplified fragments, pMDPlMutant-PfMSPl and pMDPlMutant-PyMSPl were constructed using TaKaRa BKL Kit (TAKARA SUZO CO., LTD., Otsu, Japan). Escherichia coli containing these plasmids were selected on an LB plate containing 30 g / ml Kanamycin, cultured in an LB broth containing 30 j «g / ml Kanamycin, and then purified using Aldrich SDS method.
実験 9 : BCGへの形質転換 Experiment 9: Transformation into BCG
構築したプラスミ ド DNAは、 以下の方法で作成したコンビタント BCGに形質導入 した。  The constructed plasmid DNA was transduced into the recombinant BCG prepared by the following method.
まず、 M. bovisBCG東京株をォレイン酸アルブミンデキス卜ロースコンプレック ス(OADC, Becton Dickinson Microbiology Systems, MD, USA)と 0. 05% Tween80を 含む Middlebrook7H9培地(Becton Dickinson Microbiology Systems, MD, USA)20 Oml中 37°Cで振とう培養した。 O D 6 6。が 0. 2に達したら、 7, OOOgで 15分間遠心分離 し菌体を回収した。 回収した菌体は氷冷した 10%グリセロール溶液 50mlに懸濁し、 7, 000gで 15分間遠心分離し菌体を回収した。 さらに 10mlずつ 10%グリセロール溶液 を減らしながら、 5回グリセロール処理を行った。 最終的に 5mlの 10%グリセ口一 ル溶液に懸濁し、 120 1ずつ分注し、 - 80°Cで保存した。 First, the M. bovisBCG Tokyo strain was transformed into a Middlebrook 7H9 medium (Becton Dickinson Microbiology Systems, MD, USA) containing albumin dextroleum complex (OADC, Becton Dickinson Microbiology Systems, MD, USA) and 0.05% Tween80. The cells were cultured with shaking at 37 ° C in Oml. OD 6 6. When the concentration reached 0.2, the cells were centrifuged at 7, OOO g for 15 minutes to collect the cells. The recovered cells were suspended in 50 ml of ice-cooled 10% glycerol solution, and centrifuged at 7,000 g for 15 minutes to recover the cells. Further, glycerol treatment was performed 5 times while reducing the 10% glycerol solution by 10 ml. Finally 5 ml of 10% glyce And stored at -80 ° C.
この BCG懸濁溶液 100〃 1に lOOngのプラスミ ド DNAを加え、 エレク トロボレ一シ ョンキュべッ 卜に入れて氷中で 3 0分間静置した。 その後、 エレク トロポレー夕 一を用いて、 2. 5KVでエレク トロポレーシヨンを行った。 再びキュべッ トを氷中で 3 0分間静置し、 900〃 1の 7H9を加え、 37°Cで 18時間培養した。 これをォレイン 酸アルブミンデキストロ一スコンプレックス(0ADC, Becton Dickinson Microbio logy Systems, MD, USA)、 0. 5%グリセロール及び 30 g/mlになるようにカナマイ シンを加えた 7H11培地(Becton Dickinson Microbiology Systems, MD, USA)に塗 布し、 20日間の培養を行い、 形質転換体を得た。  One hundred ng of plasmid DNA was added to 100% of the BCG suspension solution, and the mixture was placed in an electrification cuvette and allowed to stand on ice for 30 minutes. After that, electroporation was performed at 2.5 KV using Electroporre. The cuvette was again allowed to stand in ice for 30 minutes, 9001 of 7H9 was added, and the cells were cultured at 37 ° C for 18 hours. This was added to a 7H11 medium (Becton Dickinson Microbiology Systems) supplemented with albumin dextrose complex (0ADC, Becton Dickinson Microbiology Systems, MD, USA), 0.5% glycerol and kanamycin at 30 g / ml. , MD, USA) and cultured for 20 days to obtain a transformant.
実験 1 0 :組換え BCGでの抗原発現 Experiment 10: Antigen expression on recombinant BCG
マラリア抗原発現を確認するために、 ゥヱスタンプロッテイングを行った。 ま ず、 組換え BCGを単離し、 0. 5%グリセロール及び 30 g/mlになるようにカナマイシ ンを加えた 7H11培地に播種した。 培養から 14日後にェ一ゼを用いて菌体を回収し た。 回収した菌体を水に懸濁し、 遠心分離により回収した。 回収した菌体の重量 を測定し、 l mgあたり 5 // Iのサンプルバッファーを加えた。 菌体は超音波破砕機 で 60秒間処理を行い、 再び遠心分離を行った。 その上清を取り、 100°Cで 8分間処 理することにより、 電気泳動用サンプルとした。  ロ ッ Stamp lotting was performed to confirm the expression of malaria antigen. First, recombinant BCG was isolated and seeded on a 7H11 medium supplemented with 0.5% glycerol and kanamycin at 30 g / ml. After 14 days from the culture, the cells were recovered using a protease. The collected cells were suspended in water and collected by centrifugation. The recovered cells were weighed, and 5 // I of sample buffer per mg was added. The cells were treated with an ultrasonic homogenizer for 60 seconds and centrifuged again. The supernatant was collected and treated at 100 ° C. for 8 minutes to obtain a sample for electrophoresis.
電気泳動は 15%分離ゲル及び 3. 9%スタッキングゲルを用いて行った。 分離した蛋 白質は PVDF転写膜である I匪 obilonT"-P(Millipore Corporation, A, USA)に蛋白質ブ ロッティング装置である TRANS BLOT SD(BioRad Laboratories, CA, USA)を用いて転 写した。 具体的には転写膜を MeOHで 20秒処理後、 48mM Tris-HCl, 39mM Glycin (pH9. 2)の溶液に 20%になるように MeOHを加えた Blotting Buffer中に 10分間浸して おいた。 同様に電気泳動を行ったゲルも Blotting Bufferに浸し、 10分間保持した。 このゲルを転写膜と重ね合わせ、 TRANS BLOT SDを用いて 10Vで 30分間処理をした。 転写を終えた膜は PBS(137mM NaCl, 2. 7mM KC1, 4. 3mM Na2HP04 - 7H20, 1. 4m KH2P 04)に 0. 05%Tween20を加えた Washing bufferに 10分間振とうし、 Block Ace中に入れ、 1時間保持した。 その後、 Washing bufferで 10分間 3回洗浄を行い、 0. 5%になる ようにアルブミンを加えた Washing buffer中に 1次抗体とメンブランを入れ、 4 °Cで一晩放置した。 1次抗体としては抗 MDP1抗体、 抗 NANP抗体を用いた。 1次抗 体で処理した転写膜は Washing bufferで 10分間 3回洗浄を行い、 0. 5%になるよう にカゼィンを加えた Washing buffer中にパーォキシダーゼコンジユゲート抗マウ ス IgG抗体もしくは抗ゥサギ IgG抗体とメンブランを入れ、 1時間 4 °Cで保持した。 さらに Washing bufferで 10分間 3回洗浄を行い、 PBSで 10分間洗浄した後、 コニカ ィムノスティン HRP- 1000を用いて組換え蛋白質の発現を検出し、 組換え蛋白質の 発現を確認した。 結果を図 1 7に示す。 Electrophoresis was performed using 15% separation gel and 3.9% stacking gel. The separated proteins were transferred to PVDF transfer membrane I obilon T "-P (Millipore Corporation, A, USA) using a protein blotting device, TRANS BLOT SD (BioRad Laboratories, CA, USA). Specifically, the transfer membrane was treated with MeOH for 20 seconds, and then immersed in a solution of 48 mM Tris-HCl, 39 mM Glycin (pH 9.2) in Blotting Buffer containing MeOH to 20% for 10 minutes. Similarly, the gel that had been subjected to electrophoresis was immersed in Blotting Buffer and held for 10 minutes.This gel was overlaid on the transfer membrane, and treated with TRANS BLOT SD at 10 V for 30 minutes. (137mM NaCl, 2. 7mM KC1, 4. 3mM Na 2 HP0 4 - 7H 2 0, 1. 4m KH 2 P 0 4) in 0. 05% Tween20 for 10 minutes shaken in Washing buffer was added, Block Ace After washing for 3 minutes for 10 minutes with the washing buffer, the primary antibody and membrane were added to a washing buffer containing albumin so that the concentration became 0.5%. Placed, with anti MDP1 antibody, anti-NANP antibodies as overnight standing were. Primary antibodies 4 ° C. 1 Tsugiko The transfer membrane treated with the body was washed 3 times for 10 minutes with Washing buffer, and then added to the Washing buffer to which 0.5% of casein had been added in a peroxidase conjugate anti-mouse IgG antibody or anti-Egret IgG antibody. And a membrane, and kept at 4 ° C for 1 hour. Further, the cells were washed three times with a washing buffer for 10 minutes, and then washed with PBS for 10 minutes. Then, the expression of the recombinant protein was detected using Konica Immunstein HRP-1000, and the expression of the recombinant protein was confirmed. The results are shown in FIG.
実験 1 1 :組換え BCGによるマウスへの免疫 Experiment 1 1: Immunization of mice with recombinant BCG
上記で得られた組換え BCGを、 0. 5%グリセロール及び 30 μ g/mlになるようにカナ マイシンを加えた 7H11培地を用い、 培養から 14日後にェ一ゼを用いて菌体を回収 した。 回収した菌体を水に懸濁し、 ガラスホモジナイザーを用いて均一になるよ うに処理した。 その菌体を 108個/1111になるように調製し、 C3H/Heの皮下に 200 】 の菌体液を注入し、 感作を行った。 また 3PYBも 50 g/mouseになるように、 同様に 皮下に感作を行った。 初感作から 3週間後に、 同様な菌体または抗原ペプチドを 腹腔内に投与し、 その 3週間後に血清を回収した。 Cells were collected from the recombinant BCG obtained above using 7H11 medium supplemented with 0.5% glycerol and 30 μg / ml of kanamycin, and 14 days after culturing. did. The collected cells were suspended in water and treated using a glass homogenizer so as to be uniform. Its cells were prepared to be 10 8/1111, injected bacteria body fluid 200] subcutaneously C3H / the He, were sensitized. 3PYB was also sensitized subcutaneously to 50 g / mouse. Three weeks after the initial sensitization, similar cells or antigenic peptides were intraperitoneally administered, and three weeks later, serum was collected.
実験 1 2 :前記感作マウス血清中の感染防御抗体の検出 Experiment 12: Detection of protective antibodies in the serum of the sensitized mice
上記で得られた血清を適当に段階希釈し、 抗原コ一ティングした 96wellプレー 卜に上記希釈血清を 100 1ずつ分注し、 室温で 2時間反応後、 Washing buffer (400 // l/well) で 5回洗浄を行い、 パーォキシダーゼコンジユゲート抗マウス I gG抗体を 100 ^ 1添加し、 室温で 30分間反応させ、 同様に Washing bufferで 5回洗 浄後、 ペルォキシダーゼ用発色キッ 卜 (住友べ一クライ ト株式会社) を用いて感 染防御抗体の存在を確認した。 その結果を図 1 8に示す。 即ち、 抗原(3PYB)単独 免疫群 (No. l〜No. 10)では、 抗体の上昇が見られないが、 3PYBを MDP1内に発現させ た rBCG pMDPlMutant- 3PYBM及び同じく C末に発現させた rBCG pMDPl utant -3PYBC を免疫した群、 それぞれ No. l l〜No. 20、 No. 21〜No. 30については抗体価の上昇が 確認された。  The serum obtained above was diluted serially appropriately, and the above-mentioned diluted serum was dispensed in 100 1 portions each into a 96-well plate coated with antigen, and reacted at room temperature for 2 hours.Washing buffer (400 // l / well) 5 times, add 100 ^ 1 of peroxidase conjugated anti-mouse IgG antibody, react at room temperature for 30 minutes, wash 5 times with Washing buffer, and wash with Peroxidase Color Kit (Sumitomo). (Bec Client Co.) was used to confirm the presence of protective antibodies. Figure 18 shows the results. That is, in the immunization group (No. 1 to No. 10) alone with the antigen (3PYB), no increase in the antibody was observed, but rBCG in which 3PYB was expressed in MDP1 In the group immunized with pMDPlutant-3PYBC, an increase in antibody titer was confirmed for No. II to No. 20, and No. 21 to No. 30, respectively.
実験で使用したプライマーの配列を下記に示す。  The sequences of the primers used in the experiment are shown below.
3PYB-3 3PYB-3
5' -GGG ACG CGT CCG CAA GGC CCG GGT GCT CCG CAA GGC CCG GGT GCT CCG CAA G GC CCG GGT GCT CCG-3' 3PYB-b 5 '-GGG ACG CGT CCG CAA GGC CCG GGT GCT CCG CAA GGC CCG GGT GCT CCG CAA G GC CCG GGT GCT CCG-3' 3PYB-b
5' -CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC T 5 '-CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC T
TG CGG ACG CGT CCC- 3' TG CGG ACG CGT CCC-3 '
3PYB-C  3PYB-C
5' -TCC GCA AGG CCC GGG TGC TCC GCA AGG CCC GGG TGC TCC GCA AGG CCC GGG T 5 '-TCC GCA AGG CCC GGG TGC TCC GCA AGG CCC GGG TGC TCC GCA AGG CCC GGG T
GC TCC GTA G - 3' GC TCC GTA G-3 '
3PYB-d  3PYB-d
5' - CTA CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG G 5 '-CTA CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG GCC TTG CGG AGC ACC CGG G
CC TTG CGG A-3'CC TTG CGG A-3 '
DPl-f  DPl-f
5' -GGGaagcttTTTGAGGGTGCGTGCGCGTAC-3'  5 '-GGGaagcttTTTGAGGGTGCGTGCGCGTAC-3'
MDPl-r MDPl-r
5' -GGGggatccAGCACGTGGGTGTTGTCGTTG-3'  5 '-GGGggatccAGCACGTGGGTGTTGTCGTTG-3'
MDPl-a MDPl-a
5' -GGG ACG CGT CAT CCC AAC CCT CCG AAA CC-3'  5 '-GGG ACG CGT CAT CCC AAC CCT CCG AAA CC-3'
MDPl-b MDPl-b
5' -GAC AAA GCA GAG CTC ATT GAC G- 3' 5 '-GAC AAA GCA GAG CTC ATT GAC G- 3'
DPl-c  DPl-c
5' -GGG ACG CGT GGC GGG CGC CTT GGT CGC-3'  5 '-GGG ACG CGT GGC GGG CGC CTT GGT CGC-3'
MDPl-d MDPl-d
5' -ACC GCG GTC AAG GCA TCG GTG CG- 3'  5 '-ACC GCG GTC AAG GCA TCG GTG CG- 3'
MSPlF-f MSPlF-f
5' -GATACGAAAAAAGATATGCTTGGCAAATTAC-3'  5 '-GATACGAAAAAAGATATGCTTGGCAAATTAC-3'
MSPlF-r MSPlF-r
5' -TTATCCTAAGAAGTTAGAGGAACTGCAG-3'  5 '-TTATCCTAAGAAGTTAGAGGAACTGCAG-3'
MSPlY-f MSPlY-f
5' - CACATAGCCTCAATAGCTTTAAACAACTTA- 3'  5 '-CACATAGCCTCAATAGCTTTAAACAACTTA- 3'
MSPlY-r MSPlY-r
5' -TTATCCCATAAAGCTGGAAGAACTACAG-3' 以上の結果から、 マラリア抗原を MDP1と融合タンパク質として BCG内で発現させ ることで、 マラリアワクチンの作成が可能であることが証明された。 また、 同様 の方法を用いることで、 他の疾患に対する新しい安全な持続性のあるヮクチンを 作製することができる。 5 '-TTATCCCATAAAGCTGGAAGAACTACAG-3' From the above results, it was proved that a malaria vaccine could be prepared by expressing the malaria antigen as a fusion protein with MDP1 in BCG. Also, by using the same method, a new safe and persistent pectin against other diseases can be produced.

Claims

請求の範囲 The scope of the claims
1. 1又は複数個のアミノ酸が置換、 付加又は欠失していてもよい配列番号 2 (205個のアミノ酸) で表される病原性抗酸菌に対する免疫原性を有するポリ ぺプチド。  1. A polypeptide having immunogenicity against pathogenic mycobacteria represented by SEQ ID NO: 2 (205 amino acids), in which one or more amino acids may be substituted, added or deleted.
2. リン酸化された請求項 1に記載のポリべプチド。  2. The phosphorylated polypeptide of claim 1.
3. 請求項 1に記載のポリべプチドをコ一ドしている DNA。  3. A DNA encoding the polypeptide of claim 1.
4. 請求項 3に記載の D N Aを含むべク夕一  4. One day containing DNA according to claim 3
5. 請求項 4に記載の該ベクターを含む形質転換体。  5. A transformant containing the vector according to claim 4.
6. 請求項 5に記載の形質転換体を培養することを特徴とする請求項 1に記載 のポリべプチドの製造法。  6. The method for producing a polypeptide according to claim 1, wherein the transformant according to claim 5 is cultured.
7. 請求項 1に記載のポリべプチドまたは請求項 3に記載の DN Aを含むワク チン。  7. A vaccine comprising the polypeptide of claim 1 or the DNA of claim 3.
8. 請求項 1に記載のポリぺプチドに対する抗体を検出することを特徴とする 病原性抗酸菌症の診断法。  8. A method for diagnosing pathogenic mycobacteriosis, comprising detecting an antibody against the polypeptide according to claim 1.
9. 病原性抗酸菌症が結核ヽ M A C (Mycobacterium avium - intracellulare co mplex)、 ハンセン氏病からなる群から選ばれる請求項 8に記載の診断法。  9. The diagnostic method according to claim 8, wherein the pathogenic mycobacteriosis is selected from the group consisting of Mycobacterium avium-intracellulare complex (M. tuberculosis) and Hansen's disease.
PCT/JP2000/000455 1999-01-29 2000-01-28 Slow growing acid-fast bacterium polypeptide WO2000044905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU23207/00A AU2320700A (en) 1999-01-29 2000-01-28 Slow growing acid-fast bacterium polypeptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/22588 1999-01-29
JP02258899A JP4415200B2 (en) 1999-01-29 1999-01-29 Late-growing mycobacterial polypeptide

Publications (1)

Publication Number Publication Date
WO2000044905A1 true WO2000044905A1 (en) 2000-08-03

Family

ID=12087024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000455 WO2000044905A1 (en) 1999-01-29 2000-01-28 Slow growing acid-fast bacterium polypeptide

Country Status (3)

Country Link
JP (1) JP4415200B2 (en)
AU (1) AU2320700A (en)
WO (1) WO2000044905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304625A (en) * 2012-03-14 2013-09-18 天津大学 Method for extracting internal and external proteomes of penicillium cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009066502A1 (en) * 2007-11-20 2011-04-07 コニカミノルタエムジー株式会社 Solid support
JPWO2010001841A1 (en) * 2008-07-01 2011-12-22 コニカミノルタホールディングス株式会社 Method for aggregating and / or precipitating microorganisms with MDP1
JP5906019B2 (en) * 2011-03-31 2016-04-20 国立大学法人福井大学 Application of immunostimulation G9.1 to creation of anti-tuberculosis booster vaccine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008488A1 (en) * 1990-11-08 1992-05-29 University College London Mycobacterium as adjuvant for antigens
WO1999032634A2 (en) * 1997-12-23 1999-07-01 Genesis Research & Development Corporation Limited Compositions derived from mycobacterium vaccae and methods for their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008488A1 (en) * 1990-11-08 1992-05-29 University College London Mycobacterium as adjuvant for antigens
WO1999032634A2 (en) * 1997-12-23 1999-07-01 Genesis Research & Development Corporation Limited Compositions derived from mycobacterium vaccae and methods for their use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B.H. LEE ET AL.: "Upregulation of a histone-like protein in dormant Mycobacterium smegmatis", MOL. GEN. GENET.,, vol. 260, no. 5, 1998, pages 475 - 479, XP002927627 *
K. EIGLMEIER ET AL.: "Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae", MOLECULAR MICROBIOLOGY,, vol. 7, no. 2, 1993, pages 197 - 206, XP002927628 *
YOSHIHIRO SHIMOJI ET AL.: "A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion", PROC. NATL. ACAD. SCI. USA,, vol. 96, August 1999 (1999-08-01), pages 9857 - 9862, XP002927629 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304625A (en) * 2012-03-14 2013-09-18 天津大学 Method for extracting internal and external proteomes of penicillium cells
CN103304625B (en) * 2012-03-14 2015-09-30 天津大学 The extraction of protein group inside and outside Penicillium cell

Also Published As

Publication number Publication date
JP2000219699A (en) 2000-08-08
JP4415200B2 (en) 2010-02-17
AU2320700A (en) 2000-08-18

Similar Documents

Publication Publication Date Title
KR101916290B1 (en) Capsular gram-positive bacteria bioconjugate vaccines
US20080260763A1 (en) High Throughput Proteomics
EA001789B1 (en) Isolated, substantially pure surface antigen of protein neisseria meningitidis and neisseria gonorrhoeae, fragments thereof and dna sequences
KR20150058152A (en) Mycobacterial antigen vaccine
CZ20012161A3 (en) Isolated polynucleotide, vector, host cell, production process, isolated polypeptide, chimeric polypeptide, vaccination preparation and use
HU228354B1 (en) Fusion proteins of mycobacterium tuberculosis antigens and their uses
JP2001204482A (en) Structural gene of pneumococcal protein
US20180016299A1 (en) Methods for making arrays for high throughput proteomics
Matsumoto et al. Identification of a novel DNA‐binding protein from Mycobacterium bovis bacillus Calmette‐Guérin
JP2001515359A (en) Nucleic acid fragments and polypeptide fragments derived from Mycobacterium tuberculosis
KR20070068455A (en) Immunogenic compositions of staphylococcus epidermidis polypeptide antigens
EP0419355A1 (en) Recombinant polypeptides and peptides, nucleic acids coding for the same and use of these polypeptides and peptides in the diagnostic of tuberculosis
JP2009173667A (en) Hp90: host membrane receptor for pathogenic bacteria, encoded by bacterial tir gene
CN107551264B (en) Use of L3 and/or L5 sources as vaccines or diagnostics for parasitic diseases
JP2000501621A (en) Nucleic acid and amino acid sequences related to Helicobacter pylori and vaccine compositions thereof
JP2010235606A (en) Immunogenic glycopeptide, screening, production and use
WO2000044905A1 (en) Slow growing acid-fast bacterium polypeptide
AU6078499A (en) Tuberculosis vaccine and diagnostic reagents based on antigens from the mycobacterium tuberculosis cell
US20060127959A1 (en) Antibodies that bind M. tuberculosis polypeptides
US20220226455A1 (en) Vaccine against necrotic enteritis in poultry
WO2007107323A2 (en) Novel genes and proteins of brachyspira hyodysenteriae and use of same for diagnosis and therapy
JP2004537299A (en) Leishmania parasite virulence-related genes
Matsuba et al. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG
JPH11511032A (en) IceA gene and related methods
WO2000044392A2 (en) Identification of specific differentially expressed mycobacterial antigens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IN KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase