WO2000036023A1 - Compound for energy conversion - Google Patents

Compound for energy conversion Download PDF

Info

Publication number
WO2000036023A1
WO2000036023A1 PCT/JP1999/000907 JP9900907W WO0036023A1 WO 2000036023 A1 WO2000036023 A1 WO 2000036023A1 JP 9900907 W JP9900907 W JP 9900907W WO 0036023 A1 WO0036023 A1 WO 0036023A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy conversion
energy
absorbing material
dipole
sound absorbing
Prior art date
Application number
PCT/JP1999/000907
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1999/003491 priority Critical patent/WO2000036022A1/en
Publication of WO2000036023A1 publication Critical patent/WO2000036023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/41Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by carboxyl groups, other than cyano groups

Definitions

  • the present invention relates to an energy conversion compound having a function of absorbing and converting mechanical energy, thermal energy, light energy, or electric energy.
  • a material for absorbing vibration energy such as a vibration damping material
  • a soft vinyl chloride resin obtained by adding a plasticizer to a vinyl chloride resin has been known.
  • This soft vinyl chloride resin was designed to measure its attenuation by consuming vibrational energy as frictional heat inside the resin.
  • this material could not absorb and attenuate vibration sufficiently.
  • a material for absorbing sound energy such as a sound absorbing material, a material made of glass wool is known.
  • this sound absorbing material In this sound absorbing material, the sound was consumed as frictional heat when passing through the fiber surface while colliding with the fiber surface, so that the attenuation was measured.
  • this sound-absorbing material required a certain thickness in order to ensure sufficient sound-absorbing properties, and could not reliably absorb low-frequency sounds of 500 Hz or less.
  • a material for absorbing impact energy such as a shock absorber
  • a material in which short fibers are dispersed in a foam as disclosed in Japanese Patent Application Laid-Open No. Hei 6-300071 has been proposed. ing. This shock absorbing material absorbs the shock when the foam gradually collapses in response to the shock, and the short fibers contained in the foam act like a binder to pull the foam.
  • this shock-absorbing material required a certain thickness and volume to ensure sufficient shock-absorbing performance, and could not be used for applications where the space could not be secured.
  • an electromagnetic wave shielding material there is, for example, a material disclosed in Japanese Patent Application Laid-Open No. 5-255521. This material absorbs ultraviolet light with a wavelength of 250 to 400 nm, and once absorbed, the molecules that make up the material are excited into an excited state, converted to thermal energy, and released.
  • an ultraviolet absorbing compound having the following formula:
  • the thickness is generally at least about 10 to 20 microns in order to secure sufficient absorption. For this reason, the transmittance of visible light was impaired, and there was a problem that sufficient brightness could not be obtained. Under such circumstances, there has been a demand between the industries for a sheet that is thinner and does not impair brightness.
  • ceramics and the like are examples of electrical energy conversion materials constituting an actuator applied to dot printing and the like. The piezoelectric effect (displacement) derived from these materials is extremely small, and higher performance has been required. Further, as a material that absorbs and converts thermal energy, such as heat absorbing fibers,
  • Japanese Patent Publication No. 5-5215 This endothermic material is a polymer composed of a linear aliphatic carboxylic acid component such as polyethylene adduct, polypentamethylene adipate, and polytetramethylene glulate, and a linear aliphatic diol component. Endothermicity is developed by the heat of fusion absorbed when melting. However, this endothermic material required a large amount of polymer to secure sufficient endothermic properties.
  • a liquid material that absorbs and converts vibrational energy for example, as shown in JP-A-5-332407, there is a viscous fluid mainly composed of glycols or the like.
  • the viscosity of the viscous fluid is changed as appropriate in accordance with the seismic dynamics, thereby absorbing the vibration energy most effectively and surely.
  • a large amount of liquid material was needed to cope with huge vibration energy applied to the structure, such as a large earthquake.
  • the performance of the liquid material deteriorates due to oxidative deterioration with the passage of time, and the material must be replaced after a predetermined period of time. Therefore, the amount of use has been enormous. Under such circumstances, there has been a demand for a material that is more effective and can absorb sufficient vibration energy even with a small amount.
  • high-latent heat media such as transformer cooling fluid, engine coolant, mold cooling fluid, etc., are mainly composed of glycols. As shown in the following equation, the cooling capacity of these coolants is higher as the latent heat is higher.
  • SP SP value (over solubility parameter) SP value indicates polarity, and increases as the number of dipoles increases. This SP value is the largest This is water, but it is unsuitable for use because it freezes within Laje night. On the other hand, glycols have a low freezing temperature, so they can be prevented from freezing in Laje overnight. However, they have a problem in that cooling capacity is reduced due to low latent heat. As described above, materials having a conventionally known energy conversion function have inadequate performance or require a certain amount of thickness or volume to obtain a predetermined performance. Restrictions).
  • the present inventors have conducted research and found that the amount of dipole moment in a material has a deep relationship with the energy absorption and conversion functions of the material. By increasing the amount of dipole moment, we have found that the energy absorption and conversion function of a material can be dramatically improved. Based on this finding, the present inventors have proposed an energy conversion composition in WO97 / 42844, in which an active ingredient that increases the amount of dipole moment is added to the material. Furthermore, the present inventors have conducted intensive studies on the above-mentioned energy conversion composition. As a result, the active ingredient in the composition is dipole-bonded to the component constituting the material, and this compound has an unprecedented superiority. They found that the energy conversion function was derived, and completed the present invention.
  • the energy conversion compound of the present invention includes, for example, an unrestrained damping sheet, a restrained damping sheet, a damping paint, a damping paper, an asphalt-based damping material (automobile floor), an asphalt road ( Damping materials used for applications such as quiet roads) Sound-absorbing sheet, sound-absorbing fiber (fibre, strand), sound-absorbing foam, sound-absorbing film, sound-absorbing material used for applications such as sound-absorbing molded products, shoe soles such as training shoes, protective shoes, headgear, casts, etc.
  • Handles for grips, saddles, front forks, tennis racquets, no-domingtons, baseball bats, golf clubs, and other sporting goods such as mats, sabo nights, bicycle or motorcycle grips, and bicycle bikes.
  • Absorbing materials used in a wide range of applications such as tape, slippers, gun bottoms, shoulder pads, bulletproof vests, and seismic isolation rubber and vibration proofing, which are wrapped around the grip end of a gripper or the lip end of a tool such as a hammer to reduce impact vibration Anti-vibration rubber materials used for molded products
  • Electromagnetic shielding materials used for applications such as X-ray absorption sheets and ultraviolet absorption sheets, piezoelectric materials that convert mechanical energy into electrical energy, or electrical energy into mechanical energy, heat-absorbing fibers, and heat-absorbing pellets
  • Heat-absorbing materials used viscous fluids in seismic isolation devices, engine mounting fluid, shock absorber oil, power transformer cooling fluid, engine coolant, polar liquids used in applications such as floor heating media, solar heating media, etc., or batteries It can be applied as an energy conversion material in a wide range of fields such as materials.
  • This energy conversion compound is a component that constitutes a material having an energy conversion function. And an active component that increases the amount of dipole moment in the material is formed by dipole bonding.
  • Materials having an energy conversion function to which the energy conversion compound of the present invention is applied are, as described above, vibration damping materials, sound absorbing materials, shock absorbing materials, vibration damping rubber materials, electromagnetic wave shield materials, piezoelectric materials, heat absorbing materials, and viscous materials.
  • the components that make up these materials span a very wide range of fields, including fluids, polar liquids, and battery materials.
  • the components that make up the material include polyvinyl chloride (PVC), chlorinated polyethylene (CPE), acryl nitrile polyethylene (AN PE), polyethylene (PE), and polypropylene (PP).
  • Ethylene-vinyl acetate copolymer polymethyl methacrylate, polyvinylidene fluoride, polyisoprene, polystyrene (PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS) , Acrylonitrile lube Gen rubber (NBR), Acrylic rubber (ACR), Styrene-butadiene rubber
  • Polymer materials such as (SBR), butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR), chloroprene rubber (CR), and blends of these can be used.
  • polyvinyl chloride is preferable because it has good moldability and is inexpensive.
  • the components that make up these materials include the above-mentioned polymer materials that make up the damping material, polyester (PET), polyurethane Polymer materials such as polyamide, polyamide, polyvinylidene chloride, polyacrylonitrile, polyvinyl alcohol (PVA), and cellulose can also be used.
  • sound absorbing properties can be further improved by adding a foaming agent to the above-described polymer material and foaming the polymer material to form an open-cell foam or a fibrous body.
  • a foaming agent such as anti-vibration rubber
  • the components constituting the material are acrylonitrile -Rubbers such as butadiene rubber (NBR), styrene-butadiene rubber (SBR), butyl rubber (BR), natural rubber (NR), and isoprene rubber (IR) can be used.
  • NBR butadiene rubber
  • SBR styrene-butadiene rubber
  • BR butyl rubber
  • NR natural rubber
  • IR isoprene rubber
  • a viscous fluid or a polar liquid glycols and water can be mentioned as constituent components.
  • the material in addition to the above-mentioned constituents, for example, substances such as my scales, glass flakes, Dallas fiber, carbon fiber, calcium carbonate, barite, precipitated sulfuric acid barium, corrosion inhibitors, Dyes, antioxidants, antistatic agents, stabilizers, wetting agents and the like can be added as needed.
  • the material composed of the above components is displaced by the dipoles 12 inside the material 11 as shown in Fig. 2 when energy such as vibration, sound, impact, electricity, pressure, light, and heat is applied. Occurs.
  • the displacement of the dipole 1 2 means that each dipole 12 in the material 11 rotates or shifts in phase.
  • Each dipole 1 2 inside 1 will be placed in an unstable state, and each dipole 1
  • the amount of dipole moment generated in the material changes depending on the temperature when energy is applied.
  • the amount of dipole moment also depends on the type and magnitude of energy applied to the material. For this reason, it is desirable to appropriately select and use a material component having the largest amount of dipole moment in consideration of the temperature at which energy is applied, the type of energy, the size, and the like.
  • the components that make up the material not only the amount of dipole moment in the material, but also the handleability, moldability, and availability according to the material (use) and usage form to which the energy conversion compound is applied. It is desirable to consider ease, temperature performance (heat resistance and cold resistance), weather resistance, and price.
  • Active components that increase the amount of dipole moment in the material are dipole-bonded to the components that make up this material.
  • the active component is a component that dramatically increases the amount of dipole moment in the material.
  • the active component itself has a large dipole moment amount, or the active component itself has a small dipole moment amount. However, it refers to a component that can dramatically increase the amount of dipole moment in a material by being dipole-coupled to a component constituting the material.
  • active ingredients having such an action and effect include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazyl sulfide ( MBTS), N-
  • CBS 2-Sulfenamide
  • BBS N-tert Sulfenamide
  • N-oxyxeti -Benzotriazole which is a compound containing a benzothiazyl group such as 2-sulfenamide (OBS) and N, N-diisopropyl-1,2-sulfenamide (DPBS), with a benzene ring bound to an azole group, To this, a phenyl group is bonded.
  • HMBP 2-hydroxy 4-methoxybenzophenone
  • HMBPS 2-hydroxy x-1-methoxybenzophenone-5-sulfonic acid
  • dicyclohexylfur One or more selected from phthalic acid esters having a structure represented by the following chemical formula, such as evening rate, may be mentioned.
  • R is any one of a phenyl group, a cyclohexyl group, a cyclopentyl group, a cyclooctyl group, a 4-methylcyclohexyl group, or any two of these groups.
  • the amount of the dipole moment in the active component varies depending on the type of the active component, similarly to the amount of the dipole moment in the material. Even when the same active ingredient is used, the amount of dipole moment generated in the material changes depending on the temperature when energy is applied. Also, the amount of dipole moment changes depending on the type and magnitude of energy applied to the material.
  • the dipole bond in the energy conversion compound refers to a bond by electric or magnetic energy acting between the dipoles.
  • one component or one component constituting the material described above can be used.
  • Multiple active components are dipole-coupled at one or more locations, and the amount of dipole moment, i.e., the number of dipoles, the magnitude of the dipole charge, or the distance between the positive and negative dipoles Or all of them will increase exponentially.
  • the amount of the dipole moment generated in the material 11 under the predetermined temperature conditions and the magnitude of the energy is shown in FIG. 3 by the dipole coupling between the component constituting the material and the active component.
  • the amount will increase by a factor of three or ten.
  • the mechanism of energy absorption and conversion mentioned above will change greatly.
  • when energy is added if only the material is used, the phase of the dipole itself shifts, and the energy is consumed to restore the original state, whereas the energy conversion consisting of dipole coupling
  • each dipole rotates or shifts about the coupling part, so that a very large amount of energy is consumed for its restoration. .
  • energy conversion compound of the present invention energy such as vibration, sound, or impact is received and absorbed like a vibration damping material, a sound absorbing material, or a shock absorbing material. It is not limited to heat, and its attenuation is performed. Electric energy is converted into mechanical energy, such as piezoelectric material, or mechanical energy is converted into electric energy, and electric energy is converted, such as battery material. Includes those that are stored temporarily and released again when needed.
  • the following is an example of the energy conversion compound.
  • Those represented by the following chemical formulas (1) to (4) represent DCHBSA, This is an example of an energy conversion compound in which four active components of ECDPA, 2HPMMB and DCHP are dipole-bonded. 1 (PVC-DCHBSA)
  • CPE-DCHBSA i dipole coupling 5
  • FIG. 1 is a schematic diagram showing dipoles in a material.
  • FIG. 2 is a schematic diagram showing the state of a dipole in a material when energy is applied.
  • FIG. 3 is a schematic diagram showing a state of a dipole in a material when a component constituting the material and an active component are dipole-bonded.
  • FIG. 4 is a graph showing the relationship between the temperature and the elastic tangent (ta ⁇ ) of Examples 1 to 3 and Comparative Example 1.
  • FIG. 5 is a graph showing the loss coefficient ( ⁇ ?) Of each test piece of Examples 4 to 5 and Comparative Example 2 at each temperature.
  • FIG. 6 is a schematic diagram showing a sound absorbing film made of a sound absorbing material.
  • FIG. 7 is a schematic diagram showing a sound absorbing sheet including sound absorbing fibers made of a sound absorbing material.
  • FIG. ⁇ is a schematic view showing a sound-absorbing molded foam containing a sound-absorbing material.
  • Fig. 9 is a schematic diagram showing a state where a sound absorbing sheet made of a sound absorbing material is arranged inside the sound absorbing material.
  • FIG. 10 is a schematic diagram showing an open-cell foamed polyurethane molded article containing sound-absorbing fibers made of a sound-absorbing material.
  • FIG. 11 is a schematic diagram showing a paper made by using sound absorbing fibers made of a sound absorbing material as a part of constituent fibers.
  • FIG. 12 is a schematic diagram showing a woven fabric in which sound absorbing fibers made of a sound absorbing material are woven as a part of constituent fibers.
  • FIG. 13 is a graph showing the relationship between the thickness and the rebound resilience of each sample of Example 6 and Comparative Examples 3 to 7.
  • FIG. 14 is a side view showing a rebound resilience measuring device.
  • FIG. 15 is an enlarged cross-sectional view showing a main part of the rebound resilience measuring device.
  • FIG. 16 is also a front view.
  • FIG. 17 is a front view showing a main part of the rebound resilience measuring device.
  • FIG. 18 is a graph showing the relationship between the thickness of each sample of Examples 6 to 9 and Comparative Example 8 and the rebound resilience.
  • FIG. 19 is a graph showing the electromagnetic wave absorption performance of the test pieces of Examples 10 to 13 and Comparative Example 9 at each frequency.
  • FIG. 20 is a schematic diagram schematically showing an apparatus for measuring the piezoelectric performance of each piezoelectric material.
  • FIG. 21 is a schematic diagram showing an endothermic pellet.
  • BEST MODE FOR CARRYING OUT THE INVENTION examples in which the energy conversion compound of the present invention is applied to a vibration damping material, a sound absorbing material, a shock absorbing material, an electromagnetic wave absorbing material, a vibration damping material, and a piezoelectric material will be described. The present invention will be described more specifically according to application examples. First, an example of application to a vibration damping material is shown.
  • Example 1 0 parts by weight of DCHBSA (Comparative Example 1), 100 parts by weight of CPE (Eraslene 35 2 NA manufactured by Showa Denko KK) 0 parts by weight (Example 1), 50 parts by weight (Example 2) and 100 parts by weight (Example 3) were blended, and these were put into a kneading roll set at 160 ° C. to form a sheet. A sample sheet having a thickness of 1 mm was obtained. The structures of the polymers constituting each of the obtained sample sheets of Examples 1 to 3 and Comparative Example 1 were analyzed. The vibration damping sheets of Examples 1 to 3 were represented by the following chemical formulas. Thus, it was confirmed that a compound in which CPE and DCHBSA were dipole-bonded was contained.
  • CPE Eraslene 35 2 NA manufactured by Showa Denko KK
  • the mixture was put into a roll set at 60 ° C and kneaded, and then the obtained kneaded material was sandwiched between molds heated to 180 ° C, heated for 180 seconds, and then pressed with a press at 80 kg ⁇ ⁇ / cm. Press for 30 seconds to form a sheet of 1mm thickness.
  • the obtained sheet is cut into a size of 67 mm x 9 mm for loss factor measurement, and used as a test piece (Example 4).
  • Example 5 65.0 parts by weight of My power scale pieces (Clarite My Power, 30 C, manufactured by Kuraray Co., Ltd.), 10.4 parts by weight of DCHP, 10.4 parts by weight of DCHBSA, 5.2 parts by weight of ECDPA
  • the test pieces (Example 5) were obtained in the same manner as in Example 4.
  • the loss factor (7) was measured.
  • the loss factor (7) was measured using a dynamic viscoelasticity measurement tester (Leoviveron DDV-25FP, manufactured by Orientec Co., Ltd.).
  • Figure 5 shows the measurement results of the loss factor (71) of each test piece. From Fig. 5, the test pieces of Examples 4 and 5 show that the absorption performance of vibration energy, that is, the loss coefficient (7?), Is about 5 to 7 times that of Comparative Example 2. Therefore, the non-constrained vibration damping material of the present invention far exceeds the absorption performance of the conventional non-constrained vibration damping material, and has excellent vibration energy absorption performance comparable to that of the constrained vibration damping material. I understand that you are doing. 24 Next, an example of application to a sound absorbing material is shown.
  • FIG. 6 to 8 show the sound absorbing material
  • FIG. 6 shows a sound absorbing film 13 formed by adding 100 parts by weight of DCHB SA to 100 parts by weight of PVC and forming a film to a thickness of 1 mm.
  • FIG. 8 shows an open-cell foamed polyurethane molded product 16 to which 100 parts by weight of DCHBSA was added. Analysis of the polymer structure of the sound-absorbing film 13, the sound-absorbing short fiber 14, and the open-cell foamed polyolefin foam 16 shown in Figs. 6 to 8 above, all of which are represented by the following chemical formulas Thus, it was confirmed that a compound in which PVC and DCHBSA were dipole-bonded was contained.
  • FIG. 9 the sound absorbing film 13 of FIG. 6 is disposed inside a sound absorbing material 18 made of glass fiber 17 which has been used conventionally.
  • the thickness of the sound-absorbing material 18 can be reduced significantly, and low-frequency sounds of 500 Hz or less, which cannot be absorbed by the conventional sound-absorbing material, can be reliably captured and absorbed.
  • FIG. 10 shows the sound absorbing short fibers 14 contained in the open-cell foamed polyurethane molding 16.
  • FIGS. 11 and 12 show a paper 19 or a woven fabric 20 made or woven as a part of the sound absorbing short fiber 14 shown in FIG. These have excellent sound absorption properties and are extremely useful as wall materials and floor materials.
  • a mixture of 100 parts by weight of CPE and 100 parts by weight of DCHB SA is 6 types of 29.0 mm in diameter, 2 mm, 3 mm, 5 mm, 6 mm, 9 mm and 12.7 mm in thickness. It was formed into a right circular cylinder (Example 6).
  • the structure of the volimer constituting the molded article was analyzed, and the structure was represented by the following chemical formula. It was confirmed that the compound contained a dipole-bond between £ and 0,183,188.
  • a urethane resin was used in place of CPE, and DCHB SA was not blended, and these were molded into six types of right circular cylinders having the same thickness as in Example 6 (Comparative Example 3), and NBR was used in place of CPE. However, this was molded into six types of right circular cylinders having different thicknesses as in Example 6 without blending DCHB SA (Comparative Example 4). BR was used instead of CPE, and DCHB SA was not blended. Formed into six types of right circular cylinders having different thicknesses as in Example 6 (Comparative Example 5), an acrylic resin was used instead of CPE, and the same thickness as in Example 6 was used without mixing DCHBSA.
  • the scale plate in the test equipment shall be 625 mm in horizontal length and 2,000 mm in radius of the circular arc, and the pointer shall be at the position of 0 when the iron bar is freely suspended, and the striking end shall just touch the surface of the test piece.
  • the rebound resilience of the shock absorbing material of Example 6 is about 2%, which is very good, whereas the shock absorbing material of Comparative Example 7, which has been conventionally used as a shock absorbing material, is about 8%. It was 18%, which was about 30 to 55% in other Comparative Examples 3 to 6, indicating that sufficient impact absorption performance was not exhibited.
  • Example 7 the amount of DCHBSA in Example 6 was changed to 70 parts by weight (Example 7), 50 parts by weight (Example 8), 30 parts by weight (Example 9), and 0 parts by weight (Comparative Example 8). Except for this, six samples were obtained in the same manner as in Example 6. The rebound resilience was measured for each of the obtained samples in the same manner as in Example 6, and the results are shown in FIG. 18 together with the measurement results for the sample of Example 6.
  • Example 7 the structure of the polymer constituting each molded product (shock absorber) was analyzed in the same manner as in Example 6, and although the content was different, all of Examples 6 to 9 were used. A compound in which the same CPE and DCHBS A were dipole-bound was confirmed.
  • the shock absorbing material of Comparative Example 8 not containing DCHBS A has a rebound resilience of about 13 to 26%, whereas the shock absorbing material of Example 9 has a rebound of about 6 to 17%.
  • Example 8 Approximately 4 to 11% of the shock absorbers in Example 8, approximately 3 to 8% of the shock absorbers of Example 7, approximately 2 to 3% of the shock absorbers of Example 6, and a dipole of CPE and DCHBS A It can be seen that the performance increases as the content of the bound compound increases. In addition, it was confirmed that as the content of the compound increased from Example 9 to Example 6, excellent impact absorption performance was exhibited regardless of the thickness variation.
  • DCHBS A is blended with CPE and kneaded, and the kneaded material is formed into a lmm-thick sheet between rollers.
  • the obtained sheet was cut into a size of 20 Omm X 20 Omm to obtain a test piece.
  • the mixing ratio (parts by weight) of CPE and DCHBSA was 100Z0 (Example 9), 100/30 (Example 10), 100Z50 (Example 11), 100Z70 (Example 12). , 100/100 (Example 13).
  • the electromagnetic wave absorption performance (db) of each of the test pieces of Examples 11 to 13 and Comparative Example 9 was measured. The result is shown in FIG.
  • the measurement of the electromagnetic wave absorption performance (db) was performed using an electromagnetic wave shielding property evaluation device (TR-17301 manufactured by Advantest Corporation). The conditions used were an electric field of 10 MHz to 1000 MHz. From FIG. 19, it was confirmed that as the content of the compound in which CPE and DCHBSA are dipole-bonded increases, the electromagnetic wave absorption performance (db) also increases.
  • an example applied to a piezoelectric material will be described.
  • Example 14 100 parts by weight of PVC was mixed with 100 parts by weight of DCHBS A (at this time, the sample temperature was 22 ° C), and the mixture was formed into a plate having a thickness of lmm, 15 Omm in length and 5 Omm in width, Electrodes of silver paste (Asahi Chemical Laboratory Co., Ltd., LS-506J, length 14 OmmX width 4 Omm) were formed on both surfaces to obtain a sample (Example 14).
  • Example 15 Except for blending 2HPMMB with 100 parts by weight of PVC per 100 parts by weight In the same manner as in Example 14, a sample (Example 15) was produced.
  • Example 16 A sample (Example 16) was produced in the same manner as in Example 14 except that 100 parts by weight of ECDP A was mixed with 100 parts by weight of PVC.
  • Example 10 A sample (Comparative Example 10) was produced using PVC alone in the same manner as in Example 14. First, for the samples of Examples 14 to 16 and Comparative Example 10, the structure of the polymer constituting each sample was analyzed. The sample according to Example 14 was PVC and DCHBSA represented by the following chemical formulas. It was confirmed that the compound contained a dipole-bonded compound.
  • Example 15 contained a compound represented by the following chemical formula, in which PVC and 2HPMMB were coupled together.
  • 3 PVC—2HPMMB
  • Example 16 contained a compound represented by the following chemical formula, in which PVC and ECDPA were dipole-bonded.
  • Comparative Example 10 had a low value of 1.36: 11 or 1.88 mV, regardless of the presence or absence of polarization, while those of Examples 14 to 16 that were not polarized However, it showed an extraordinarily high value of about 90 to 11 OmV. Also polling The numerical value of the treated example 15 is about 70 times that of the comparative example 10 similarly subjected to the polling treatment, and the above-mentioned compound (material components and DCHBSA or 2 Dipole-bonding with active components such as HPMMB) greatly contributed to the improvement of piezoelectric performance.
  • FIG. 21 shows a pellet formed by adding 100 parts by weight of DCHBSA to 100 parts by weight of PVC, and analyzing the structure of the polymer constituting the pellet 25. It was confirmed that a compound represented by the following formula, in which PVC and DCHB SA were dipole-bonded, was contained.
  • Endothermic fibers can be obtained by melt-spinning the pellet 25 of

Abstract

An energy-converting compound which has a function to absorb one or more of various types of energy such as mechanical energy, heat energy, optical energy and electric energy and to convert it to another one. The energy-converting compound can be used in a wide variety of applications such as a damping material, a noise absorbing material, a shock absorber, an electromagnetic wave absorbing material, a vibration isolator, a piezoelectric material, a viscous fluid and an electrode material, and is characterized in that a component constituting a material having energy conversion function and an active component increasing a dipole moment of the material are bonded by dipole interaction.

Description

糸田 ¾ エネルギー変換化合物 技術分野 本発明は、 力学的エネルギーや熱エネルギー、 光エネルギーあるいは電気エネ ルギ一といつたエネルギーを吸収し、 変換する機能を持つエネルギー変換化合物 に関する。 景技 従来、 制振材のような振動エネルギーを吸収する材料として、 塩化ビニル系樹 脂に可塑剤を添加した軟質の塩化ビニル系樹脂が知られている。 この軟質塩化ビニル系樹脂は、 振動エネルギーを樹脂内部において摩擦熱とし て消費することで、 その減衰が計られるようになつていた。 しかしながらこの材料では、 十分な振動の吸収、 減衰ができなかった。 また、 吸音材料のような音のエネルギーを吸収する材料としては、 グラスウー ルよりなるものが知られている。 この吸音材料にあっては、 音が繊維表面に衝突 しながら通り抜ける際に摩擦熱として消費することで、 その減衰が計られるよう になっていた。 ところがこの吸音材料では、 十分な吸音性を確保しょうとしたとき、 ある程度 の厚みを必要とし、 更には 5 0 0 H z以下のような低周波の音を確実に吸音する ことはできなかった。 また、 衝撃吸収材のような衝擊エネルギーを吸収する材料としては、 特開平 6 - 3 0 0 0 7 1号公報に示されているような発泡体中に短繊維を分散させたもの が提案されている。 この衝撃吸収材は、 衝撃に対し発泡体が徐々に崩壊していく ときに衝撃の吸収がなされると共に、 発泡体中に含まれる短繊維がバインダ一の ように作用して該発泡体の引っ張り強度を高め、 局部に集中する衝撃荷重による 発泡体の割れを抑制するようになっている。 ところが、 この衝撃吸収材にあっては、 十分な衝撃吸収性能を確保するために は一定の厚み、 体積を必要とし、 そのスペースが確保できない用途には使用でき なかった。 また、 電磁波シールド材のような電磁波エネルギーを吸収する材料としては、 例えば特開平 5— 2 5 5 5 2 1号公報に示されたものがある。 この材料は、 2 5 0〜4 0 0 n mの波長の紫外線を吸収し、 一旦吸収した紫外線によって材料を構 成する分子が励起状態に励起して熱エネルギーに変換して放出するといつたシス テムを持つ紫外線吸収性化合物よりなるものである。 この材料を用いて紫外線吸収シートを作製するとき、 一般には十分な吸収性を 確保するため、 少なくとも 1 0〜2 0ミクロン程度の厚みとしていた。 このため、 可視光線の透過度が損なわれてしまい、 十分な明るさが得られないという不具合 があった。 このような事情から、 業界間ではより薄く明るさを損なわないシー卜が求めら れていた。 また、 例えばドッ卜プリン夕などに適用されるァクチユエ一夕一を構成する電 気エネルギーの変換材料としてはセラミックスなどがある。 これらの材料によつ て引き出される圧電効果 (変位量) は、 きわめて小さく、 より高性能化が求めら れていた。 また、 吸熱繊維のような熱エネルギーを吸収し変換する材料としては、 特開平Itoda ¾ Energy conversion compound TECHNICAL FIELD The present invention relates to an energy conversion compound having a function of absorbing and converting mechanical energy, thermal energy, light energy, or electric energy. BACKGROUND ART Conventionally, as a material for absorbing vibration energy, such as a vibration damping material, a soft vinyl chloride resin obtained by adding a plasticizer to a vinyl chloride resin has been known. This soft vinyl chloride resin was designed to measure its attenuation by consuming vibrational energy as frictional heat inside the resin. However, this material could not absorb and attenuate vibration sufficiently. As a material for absorbing sound energy such as a sound absorbing material, a material made of glass wool is known. In this sound absorbing material, the sound was consumed as frictional heat when passing through the fiber surface while colliding with the fiber surface, so that the attenuation was measured. However, this sound-absorbing material required a certain thickness in order to ensure sufficient sound-absorbing properties, and could not reliably absorb low-frequency sounds of 500 Hz or less. Further, as a material for absorbing impact energy such as a shock absorber, a material in which short fibers are dispersed in a foam as disclosed in Japanese Patent Application Laid-Open No. Hei 6-300071 has been proposed. ing. This shock absorbing material absorbs the shock when the foam gradually collapses in response to the shock, and the short fibers contained in the foam act like a binder to pull the foam. It is designed to increase the strength and suppress cracking of the foam due to the impact load concentrated on the local area. However, this shock-absorbing material required a certain thickness and volume to ensure sufficient shock-absorbing performance, and could not be used for applications where the space could not be secured. Further, as a material that absorbs electromagnetic wave energy such as an electromagnetic wave shielding material, there is, for example, a material disclosed in Japanese Patent Application Laid-Open No. 5-255521. This material absorbs ultraviolet light with a wavelength of 250 to 400 nm, and once absorbed, the molecules that make up the material are excited into an excited state, converted to thermal energy, and released. Of an ultraviolet absorbing compound having the following formula: When producing an ultraviolet absorbing sheet using this material, the thickness is generally at least about 10 to 20 microns in order to secure sufficient absorption. For this reason, the transmittance of visible light was impaired, and there was a problem that sufficient brightness could not be obtained. Under such circumstances, there has been a demand between the industries for a sheet that is thinner and does not impair brightness. In addition, ceramics and the like are examples of electrical energy conversion materials constituting an actuator applied to dot printing and the like. The piezoelectric effect (displacement) derived from these materials is extremely small, and higher performance has been required. Further, as a material that absorbs and converts thermal energy, such as heat absorbing fibers,
5— 5 2 1 5号公報に示されたものがある。 この吸熱材料は、 ポリエチレンアジ ぺ一卜やポリペンタメチレンアジペート、 ポリテ卜ラメチレングル夕レートなど の直鎖脂肪族カルボン酸成分と直鎖脂肪族ジオール成分とからなる重合体であつ て、 当該重合体が融解するときに吸収する融解熱によつて吸熱性が発現するよう になっている。 ところがこの吸熱材料にあっては、 十分な吸熱性を確保するためには、 多量の 重合体を必要としていた。 また、 振動エネルギーを吸収し変換する液体材料としては、 例えば特開平 5— 3 3 2 0 4 7号に示されているように、 グリコール類などを主成分とする粘性流 体があり、 この粘性流体に電場を形成することで、 当該粘性流体の粘度を震動態 様に応じて適宜変化させることにより、 最も効果的かつ確実に震動エネルギーを 吸収するようにしたものである。 ところがこの液体材料にあっては、 大地震など巨大な震動エネルギーが構造物 に加わったとき、 これに対応するため、 多量の液体材料が必要であった。 しかも 当該液体材料は、 経時とともに酸化劣化して性能が低下するため、 所定の期間の 経過後、 当該材料を入れ換えなければならないことから、 その使用量は莫大な量 となっていた。 このような事情から、 より効果的で少量でも十分な震動エネルギ 一吸収性が得られる材料が求められていた。 また、 トランス冷却液、 エンジンクーラント、 金型冷却液などの高潜熱媒体に は、 グリコール類などを主成分とするものが使用されている。 これらの冷却液で は、 次式に示すように潜熱が高いほど冷却能力も高いとされている。 There is one disclosed in Japanese Patent Publication No. 5-5215. This endothermic material is a polymer composed of a linear aliphatic carboxylic acid component such as polyethylene adduct, polypentamethylene adipate, and polytetramethylene glulate, and a linear aliphatic diol component. Endothermicity is developed by the heat of fusion absorbed when melting. However, this endothermic material required a large amount of polymer to secure sufficient endothermic properties. As a liquid material that absorbs and converts vibrational energy, for example, as shown in JP-A-5-332407, there is a viscous fluid mainly composed of glycols or the like. By forming an electric field in the fluid, the viscosity of the viscous fluid is changed as appropriate in accordance with the seismic dynamics, thereby absorbing the vibration energy most effectively and surely. However, with this liquid material, a large amount of liquid material was needed to cope with huge vibration energy applied to the structure, such as a large earthquake. Moreover, the performance of the liquid material deteriorates due to oxidative deterioration with the passage of time, and the material must be replaced after a predetermined period of time. Therefore, the amount of use has been enormous. Under such circumstances, there has been a demand for a material that is more effective and can absorb sufficient vibration energy even with a small amount. In addition, high-latent heat media such as transformer cooling fluid, engine coolant, mold cooling fluid, etc., are mainly composed of glycols. As shown in the following equation, the cooling capacity of these coolants is higher as the latent heat is higher.
(ΔΗ - R T) /V ( S P ) J Δ Η :潜熱、 S P : S P値 (溶解度パラメ一 夕) S P値は極性を示し、 双極子が多い程大きくなる。 この S P値が最も大きい のが水であるが、 水はラジェ一夕内で凍結してしまうという弊害を招くことから 使用に適さない。 一方、 グリコール類は、 凍結温度が低いため、 ラジェ一夕内で の凍結を避けることができるものの、 潜熱が低いため冷却能力が落ちるといった 課題があった。 以上述べたように、 従来公知のエネルギー変換機能を持つ材料にあっては、 性 能が不十分であったり、 所定の性能を得るために、 ある程度の厚みや容積を必要 とするなどの不具合 (制限) があった。 本発明者らは、 このような技術的課題に鑑み、 研究を重ねた結果、 材料におけ る双極子モーメント量が、 当該材料のエネルギー吸収、 変換機能に深い関係を持 つており、 当該材料における双極子モーメント量を多くすることで、 材料のエネ ルギー吸収性、 変換機能を飛躍的に向上させることができることを見い出した。 この知見に基づいて、 本発明者らは、 WO 9 7 / 4 2 8 4 4において、 材料中 に双極子モーメント量を増加させる活性成分を配合したエネルギー変換組成物を 提案した。 さらに本発明者らは、 上記エネルギー変換組成物について、 鋭意研究を重ねた ところ、 当該組成物における活性成分が材料を構成する成分と双極子結合してお り、 この化合物が、 従来にない優れたエネルギー変換機能を導き出していること を突き止め、 本発明を完成させるに至ったのである。 発明の開示 本発明のエネルギー変換化合物は、 例えば非拘束型制振シート、 拘束型制振シ ート、 制振塗料、 制振紙、 アスファルト系制振材 (自動車フロアー) 、 ァスファ ル卜道路 (静音道路) などの用途に用いられる制振材料、 吸音シート、 吸音繊維 (ファイバ一、 ス卜ランド) 、 吸音発泡体、 吸音フィル ム、 吸音成型体などの用途に用いられる吸音材料、 卜レーニングシューズなどの靴ソール、 プロテク夕一、 ヘッドギア、 ギプス、 マット、 サボ一夕、 自転車用またはバイク用のグリップやサドル、 フロン卜フォ —ク、 テニス用ラケット、 ノ 'ドミントン、 野球のバット、 ゴルフクラブなどのス ボーッ用具のグリップェンド、 自転車ゃォートバイなどのハンドルのグリップェ ンド、 あるいはハンマーなどの工具のダリップエンドなどに巻き付けて衝撃振動 を緩和するテープ、 スリッパ、 銃底、 肩パット、 防弾チョッキなど広範な用途に 用いられる衝撃吸収材料、 免震ゴムや防振用成型品などの用途に用いられる防振ゴム材料、 (ΔΗ-RT) / V (SP) J Δ :: latent heat, SP: SP value (over solubility parameter) SP value indicates polarity, and increases as the number of dipoles increases. This SP value is the largest This is water, but it is unsuitable for use because it freezes within Laje night. On the other hand, glycols have a low freezing temperature, so they can be prevented from freezing in Laje overnight. However, they have a problem in that cooling capacity is reduced due to low latent heat. As described above, materials having a conventionally known energy conversion function have inadequate performance or require a certain amount of thickness or volume to obtain a predetermined performance. Restrictions). In view of such technical problems, the present inventors have conducted research and found that the amount of dipole moment in a material has a deep relationship with the energy absorption and conversion functions of the material. By increasing the amount of dipole moment, we have found that the energy absorption and conversion function of a material can be dramatically improved. Based on this finding, the present inventors have proposed an energy conversion composition in WO97 / 42844, in which an active ingredient that increases the amount of dipole moment is added to the material. Furthermore, the present inventors have conducted intensive studies on the above-mentioned energy conversion composition. As a result, the active ingredient in the composition is dipole-bonded to the component constituting the material, and this compound has an unprecedented superiority. They found that the energy conversion function was derived, and completed the present invention. DISCLOSURE OF THE INVENTION The energy conversion compound of the present invention includes, for example, an unrestrained damping sheet, a restrained damping sheet, a damping paint, a damping paper, an asphalt-based damping material (automobile floor), an asphalt road ( Damping materials used for applications such as quiet roads) Sound-absorbing sheet, sound-absorbing fiber (fibre, strand), sound-absorbing foam, sound-absorbing film, sound-absorbing material used for applications such as sound-absorbing molded products, shoe soles such as training shoes, protective shoes, headgear, casts, etc. Handles for grips, saddles, front forks, tennis racquets, no-domingtons, baseball bats, golf clubs, and other sporting goods such as mats, sabo nights, bicycle or motorcycle grips, and bicycle bikes. Absorbing materials used in a wide range of applications, such as tape, slippers, gun bottoms, shoulder pads, bulletproof vests, and seismic isolation rubber and vibration proofing, which are wrapped around the grip end of a gripper or the lip end of a tool such as a hammer to reduce impact vibration Anti-vibration rubber materials used for molded products
X線吸収シートや紫外線吸収シートなどの用途に用いられる電磁波シールド材 料、 機械エネルギーを電気エネルギーに、 あるいは電気エネルギーを機械工ネルギ 一に変換する圧電材料、 吸熱繊維、 吸熱性ペレツトなどの用途に用いられる吸熱材料、 免震装置における粘性流体、 エンジンマウント液、 ショックアブソーバーオイル、 電源トランス冷却液、 ェ ンジンクーラント、 床暖房用熱媒体、 ソーラー用熱媒体などの用途に用いられる 極性液体、 あるいは電池材料など、 広範な分野におけるエネルギー変換材料とし て適用することができる。 このエネルギー変換化合物は、 エネルギー変換機能を持つ材料を構成する成分 と、 前記材料における双極子モーメント量を増加させる活性成分とが双極子結合 してなることを特徴とするものである。 本発明のエネルギー変換化合物が適用されるエネルギー変換機能を持つ材料は、 前述の如く、 制振材料、 吸音材料、 衝撃吸収材料、 防振ゴム材料、 電磁波シール ド材料、 圧電材料、 吸熱材料、 粘性流体、 極性液体、 あるいは電池材料など非常 に広範な分野に渡り、 その材料を構成する成分も様々である。 例えば制振材料の場合、 当該材料を構成する成分には、 ポリ塩化ビニル (PV C) 、 塩素化ポリエチレン (CPE) 、 アクリル二トリル化ポリエチレン (AN PE) 、 ポリエチレン (PE) 、 ポリプロピレン (PP) 、 エチレン一酢ビ共重 合体、 ポリメ夕クリル酸メチル、 ポリフッ化ピニリデン、 ポリイソプレン、 ポリ スチレン (PS) 、 スチレン一ブタジエン一アクリロニトリル共重合体 (AB S) 、 スチレン一アクリロニトリル共重合体 (AS) 、 アクリロニトリルーブ夕 ジェンゴム (NBR) 、 アクリルゴム (ACR) 、 スチレン一ブタジエンゴムElectromagnetic shielding materials used for applications such as X-ray absorption sheets and ultraviolet absorption sheets, piezoelectric materials that convert mechanical energy into electrical energy, or electrical energy into mechanical energy, heat-absorbing fibers, and heat-absorbing pellets Heat-absorbing materials used, viscous fluids in seismic isolation devices, engine mounting fluid, shock absorber oil, power transformer cooling fluid, engine coolant, polar liquids used in applications such as floor heating media, solar heating media, etc., or batteries It can be applied as an energy conversion material in a wide range of fields such as materials. This energy conversion compound is a component that constitutes a material having an energy conversion function. And an active component that increases the amount of dipole moment in the material is formed by dipole bonding. Materials having an energy conversion function to which the energy conversion compound of the present invention is applied are, as described above, vibration damping materials, sound absorbing materials, shock absorbing materials, vibration damping rubber materials, electromagnetic wave shield materials, piezoelectric materials, heat absorbing materials, and viscous materials. The components that make up these materials span a very wide range of fields, including fluids, polar liquids, and battery materials. For example, in the case of a vibration damping material, the components that make up the material include polyvinyl chloride (PVC), chlorinated polyethylene (CPE), acryl nitrile polyethylene (AN PE), polyethylene (PE), and polypropylene (PP). , Ethylene-vinyl acetate copolymer, polymethyl methacrylate, polyvinylidene fluoride, polyisoprene, polystyrene (PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS) , Acrylonitrile lube Gen rubber (NBR), Acrylic rubber (ACR), Styrene-butadiene rubber
(SBR) 、 ブタジエンゴム (BR) 、 天然ゴム (NR) 、 イソプレンゴム (I R) 、 クロロプレンゴム (CR) などの高分子材料、 これらをブレンドしたもの などを用いることができる。 中でもポリ塩化ビニルは、 成形性がよく、 安価であ る点で好ましい。 また吸音材料や衝撃吸収材、 電磁波吸収材、 あるいは吸熱材料の場合、 それら の材料を構成する成分には、 上述の制振材料を構成する高分子材料に加えて、 ポ リエステル (PET) 、 ポリウレタン、 ポリアミド、 ポリ塩化ビニリデン、 ポリ アクリロニトリル、 ボリビニルアルコール (PVA) 、 セルロースなどの高分子 材料も用いることができる。 特に吸音材料として用いる場合には、 上述の高分子 材料に発泡剤を加えて発泡させて連続気泡型発泡体とすることで、 または繊維体 とすることで、 吸音性をより高めることができる。 また防振ゴムなどの防振材料の場合、 その材料を構成する成分は、 ァクリロ二 -ブタジエンゴム (N B R) 、 スチレン一ブタジエンゴム (S B R ) 、 ブ 夕ジェンゴム (B R) 、 天然ゴム (N R) 、 イソプレンゴム ( I R) などのゴム 類を用いることができる。 また粘性流体や極性液体の場合、 構成成分として、 グリコール類や水を挙げる ことができる。 尚、 材料中には、 上述の構成成分の他に、 例えばマイ力鱗片、 ガラス片、 ダラ スフアイバー、 力一ボンファイバー、 炭酸カルシウム、 バライト、 沈降硫酸バリ ゥム等の物質や、 腐食防止剤、 染料、 酸化防止剤、 制電剤、 安定剤、 湿潤剤など を必要に応じて適宜加えることができる。 上述の成分により構成される材料は、 振動、 音、 衝撃、 電気、 圧力、 光、 熱な どのエネルギーが加わることで、 図 2に示すように材料 1 1内部の存在する双極 子 1 2に変位が生じる。 双極子 1 2に変位が生じるとは、 材料 1 1内部における 各双極子 1 2が回転したり、 位相がズレれたりすることをいう。 図 1に示すようなエネルギーが加わる前の材料 1 1内部における双極子 1 2の 配置状態は安定な状態にあると言える。 ところが、 図 2に示すように、 エネルギ 一が加わることで、 材料内部に存在する双極子 1 2に変位が生じたとき、 材料 1Polymer materials such as (SBR), butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR), chloroprene rubber (CR), and blends of these can be used. Among them, polyvinyl chloride is preferable because it has good moldability and is inexpensive. In the case of sound-absorbing materials, shock-absorbing materials, electromagnetic wave absorbing materials, or heat-absorbing materials, the components that make up these materials include the above-mentioned polymer materials that make up the damping material, polyester (PET), polyurethane Polymer materials such as polyamide, polyamide, polyvinylidene chloride, polyacrylonitrile, polyvinyl alcohol (PVA), and cellulose can also be used. In particular, when used as a sound absorbing material, sound absorbing properties can be further improved by adding a foaming agent to the above-described polymer material and foaming the polymer material to form an open-cell foam or a fibrous body. In the case of an anti-vibration material such as anti-vibration rubber, the components constituting the material are acrylonitrile -Rubbers such as butadiene rubber (NBR), styrene-butadiene rubber (SBR), butyl rubber (BR), natural rubber (NR), and isoprene rubber (IR) can be used. In the case of a viscous fluid or a polar liquid, glycols and water can be mentioned as constituent components. In addition, in the material, in addition to the above-mentioned constituents, for example, substances such as my scales, glass flakes, Dallas fiber, carbon fiber, calcium carbonate, barite, precipitated sulfuric acid barium, corrosion inhibitors, Dyes, antioxidants, antistatic agents, stabilizers, wetting agents and the like can be added as needed. As shown in Fig. 2, the material composed of the above components is displaced by the dipoles 12 inside the material 11 as shown in Fig. 2 when energy such as vibration, sound, impact, electricity, pressure, light, and heat is applied. Occurs. The displacement of the dipole 1 2 means that each dipole 12 in the material 11 rotates or shifts in phase. It can be said that the arrangement state of the dipoles 12 inside the material 11 before the energy is applied as shown in FIG. 1 is in a stable state. However, as shown in Fig. 2, when a displacement occurs in the dipole 12 existing inside the material due to the addition of energy, the material 1
1内部における各双極子 1 2は不安定な状態に置かれることになり、 各双極子 1Each dipole 1 2 inside 1 will be placed in an unstable state, and each dipole 1
2は、 図 1に示す安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じるのである。 こうした、 材料内部における 双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 振動減衰、 吸 音、 衝撃吸収、 防振、 電磁波吸収、 光の吸収あるいは吸熱といった効果が生じる ものと考えられる。 このようなエネルギーの吸収、 変換のメカニズムを考えるとき、 図 1及び図 2 に示すような材料 1 1内部における双極子モーメントの量が大きく関与している ことが解る。 すなわち材料 1 1内部における双極子モーメントの量が大きいとき、 その材料 1 1の持つエネルギー吸収性、 変換機能は高くなるのである。 材料における双極子モーメントの量は、 上述した材料を構成する成分の種類に より様々に異なっている。 また、 同一の材料成分を用いたとしても、 エネルギー が加わったときの温度により、 材料に生じる双極子モーメントの量は変わる。 ま た、 材料に加わるエネルギーの種類、 大小によっても、 双極子モーメントの量は 変わる。 このため、 エネルギーを作用させるときの温度、 エネルギーの種類、 大 きさなどを考慮して、 そのとき最も大きな双極子モーメント量となる材料成分を 適宜選択して用いるのが望ましい。 ただ、 材料を構成する成分の選択に際しては、 材料における双極子モーメント 量だけに限らず、 当該エネルギー変換化合物の適用される材料 (用途) や使用形 態に応じて、 取り扱い性、 成形性、 入手容易性、 温度性能 (耐熱性や耐寒性) 、 耐候性、 価格なども考慮するのが望ましい。 この材料を構成する成分に、 材料における双極子モーメント量を増加させる活 性成分が双極子結合しているのである。 活性成分とは、 材料における双極子モー メントの量を飛躍的に増加させる成分であり、 当該活性成分そのものが双極子モ 一メント量が大きいもの、 あるいは活性成分そのものの双極子モーメント量は小 さいが、 材料を構成する成分と双極子結合することで、 材料における双極子モ一 メント量を飛躍的に増加させることができる成分をいう。 このような作用効果を持つ活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジルー 2—スルフェンアミド (D C H B S A) 、 2—メルカプトべ ンゾチアゾ一ル (M B T) 、 ジベンゾチアジルスルフイ ド (M B T S ) 、 N—シ 2 tries to return to the stable state shown in Figure 1. At this time, energy is consumed. It is thought that such effects as vibration damping, sound absorption, shock absorption, vibration proofing, electromagnetic wave absorption, light absorption or heat absorption are generated through the displacement of the dipole inside the material and the energy consumption due to the dipole restoring action. When considering the mechanism of energy absorption and conversion, Fig. 1 and Fig. 2 It can be seen that the amount of the dipole moment inside the material 11 as shown in Fig. 1 is greatly involved. That is, when the amount of the dipole moment inside the material 11 is large, the energy absorption and conversion function of the material 11 increases. The amount of dipole moment in a material varies depending on the types of components constituting the material described above. Also, even if the same material components are used, the amount of dipole moment generated in the material changes depending on the temperature when energy is applied. The amount of dipole moment also depends on the type and magnitude of energy applied to the material. For this reason, it is desirable to appropriately select and use a material component having the largest amount of dipole moment in consideration of the temperature at which energy is applied, the type of energy, the size, and the like. However, when selecting the components that make up the material, not only the amount of dipole moment in the material, but also the handleability, moldability, and availability according to the material (use) and usage form to which the energy conversion compound is applied. It is desirable to consider ease, temperature performance (heat resistance and cold resistance), weather resistance, and price. Active components that increase the amount of dipole moment in the material are dipole-bonded to the components that make up this material. The active component is a component that dramatically increases the amount of dipole moment in the material.The active component itself has a large dipole moment amount, or the active component itself has a small dipole moment amount. However, it refers to a component that can dramatically increase the amount of dipole moment in a material by being dipole-coupled to a component constituting the material. Examples of active ingredients having such an action and effect include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazyl sulfide ( MBTS), N-
2—スルフェンアミド (C B S ) 、 N - t e r t
Figure imgf000010_0001
スルフェンアミド (B B S ) 、 N—ォキシジェチ - 2—スルフェンアミド (OBS) 、 N、 N—ジイソプロピ '一 2—スルフェンアミド (DPBS) などのベンゾチアジル基 を含む化合物、 ベンゼン環にァゾール基が結合したべンゾトリアゾールを母核とし、 これにフ ェニル基が結合した 2— { 2 ' —ハイド口キシ— 3 ' - (3" , " , 5" , 6 " テトラハイド口フ夕リミデメチル) 一 5 ' —メチルフエ二ル} 一べンゾ卜リア ゾール (2HPMMB) 、 2 - { 2 ' —ハイド口キシ— 5 ' —メチルフエ二ル} 一べンゾトリアゾ一ル (2HMPB) 、 2 - { 2 ' —ハイド口キシー 3 ' — t— ブチル一 5 ' —メチルフエ二ル} 一 5—クロ口べンゾトリアゾ一ル (2HBMP CB) 、 2— { 2 ' —ハイド口キシー 3 ' , 5 ' —ジー t一ブチルフエ二ル} - 5—クロ口べンゾトリアゾール (2HDBPCB) などのベンゾトリアゾール基 を持つ化合物、 ェチルー 2—シァノー 3, 3—ジーフエ二ルァクリレートなどのジフエ二ルァ クリレー卜基を含む化合物、
2-Sulfenamide (CBS), N-tert
Figure imgf000010_0001
Sulfenamide (BBS), N-oxyxeti -Benzotriazole, which is a compound containing a benzothiazyl group such as 2-sulfenamide (OBS) and N, N-diisopropyl-1,2-sulfenamide (DPBS), with a benzene ring bound to an azole group, To this, a phenyl group is bonded. 2— {2′—Hyd-open xy—3 ′-(3 ”,“, 5 ”, 6” Tetrahide-opened limidemethyl) 1 5′—Methylphenyl} Zotriazole (2HPMMB), 2- {2'-hydroxy-oxy-5'-methylphenyl} -benzotriazole (2HMPB), 2-{2'-hydroxy-oxy3'-t-butyl-1 5'-Methylphenyl} 1-5-Benzotriazole (2HBMP CB), 2- {2'-Hydroxy 3 ', 5'-Di-butylphenyl} -5-Chlorobenzo Compounds having a benzotriazole group, such as zotriazole (2HDBPCB), ethyl 2-cyano 3, 3- Compounds containing Jifue two Rua Kurire Bokumoto such Fue two Ruakurireto,
2—ハイド口キシー 4—メトキシベンゾフエノン (HMBP) 、 2—ハイド口 キシ一 4—メトキシベンゾフエノンー 5—スルフォニックァシド (HMB P S) などのベンゾフエノン基を持つ化合物、 あるいはジシクロへキシルフ夕レートなど、 下記化学式で表される構造を有す るフタル酸エステルの中から選ばれた 1種若しくは 2種以上を挙げることができ る。 Compounds having a benzophenone group, such as 2-hydroxy 4-methoxybenzophenone (HMBP), 2-hydroxy x-1-methoxybenzophenone-5-sulfonic acid (HMBPS), or dicyclohexylfur One or more selected from phthalic acid esters having a structure represented by the following chemical formula, such as evening rate, may be mentioned.
(以下余白) 化学式 (Hereinafter the margin) Chemical formula
Figure imgf000012_0001
Figure imgf000012_0001
(尚、 式中 Rは、 フエニル基、 シクロへキシル基、 シクロペンチル基、 シクロ ぺクチル基、 4—メチルシクロへキシル基のいずれか、 またはこれらの基のいず れか 2種である。 ) 尚、 活性成分における双極子モーメント量は、 材料における双極子モーメント 量と同様に活性成分の種類により様々に異なる。 また、 同一の活性成分を用いた としても、 エネルギーが加わったときの温度により、 材料に生じる双極子モーメ ントの量も変わる。 また、 材料に加わるエネルギーの種類、 大小によっても、 双 極子モーメントの量は変わる。 このため、 エネルギー変換化合物を適用する材料 (分野) の使用時の温度、 エネルギーの種類、 大きさを考慮して、 そのとき最も 大きな双極子モーメント量となる活性成分を選択して用いるのが望ましい。 このエネルギー変換化合物における双極子結合とは、 双極子間に作用する電気 的または磁気的なエネルギーによる結合をいい、 このような結合力によって、 前 記材料を構成する 1つの成分に、 1つまたは複数個の活性成分が、 1または複数 の箇所で双極子結合し、 双極子モーメントの量、 すなわち双極子の数、 双極子の 電荷の大きさ、 双極子の正負のわき出しの距離のいずれか、 またはそれら全てが 飛躍的に増加することになる。 例えば所定の温度条件、 エネルギーの大きさとしたときの、 材料 1 1に生じる 双極子モーメントの量が、 この材料を構成する成分と前記活性成分とが双極子結 合することで、 図 3に示すように、 同じ条件の下で 3倍とか、 1 0倍とかいった 量に増加することになるのである。 また、 前述のエネルギーの吸収、 変換のメカニズムも、 大きく変わることにな る。 すなわちエネルギーが加わったとき、 材料のみの場合は、 単に双極子自体の 位相がズレ、 そのズレが元の状態に復元するだけのエネルギーの消費であつたの に対し、 双極子結合よりなるエネルギー変換化合物の場合は、 エネルギーが加わ つたとき、 各双極子が結合部分を中心にして回転したり、 位置がずれたりするこ とになるので、 その復元には極めて大きなエネルギーが消費されることになる。 この結果、 前述の双極子モーメントの量の増加と相俟って、 ここに予測を遥かに 超えたエネルギーの吸収、 変換性能が生じることになると考えられる。 尚、 前述の如く、 双極子モーメント量の増加、 これに伴うエネルギーの吸収、 変換性能の飛躍的な向上という効果は、 材料を構成する成分と活性成分とが単に 共存しているのではなく、 両者が双極子結合し、 「エネルギー変換化合物」 とな ることで、 初めて生じることになるため、 前述の材料を構成する成分と活性成分 の選択に際しては、 両者が互いに双極子結合し易いもの同志であることを考慮す るのが望ましい。 また両者が、 双極子結合し易い環境 (温度、 圧力など) におく ことも重要である。 尚、 前述の如く、 本発明のエネルギー変換化合物の範疇には、 制振材料や吸音 材料、 あるいは衝撃吸収材料のように、 振動や音、 あるいは衝撃などのエネルギ —を受けて、 これを吸収し、 熱に変えて、 その減衰が行われるものに限らず、 圧 電材料のように、 電気エネルギーを機械エネルギーに、 または機械エネルギーを 電気エネルギーに変換するもの、 電池材料のように、 電気エネルギーを一時蓄え ておき、 必要なときに再度放出するようにしたものも含まれる。 以下にエネルギー変換化合物の一例を挙げる。 下記化学式①〜⑮で表したものは, 制振材料や吸音材料、 衝撃吸収材、 電磁波吸収材、 あるいは吸熱材料を構成する 成分として多用されている P V C、 C P E、 P E及び A N P Eに、 それぞれ D C H B S A、 E C D P A、 2 H P MM B、 D C H Pの 4種の活性成分が双極子結合 したエネルギー変換化合物の例である。 ① (PVC- DCHBSA) (In the formula, R is any one of a phenyl group, a cyclohexyl group, a cyclopentyl group, a cyclooctyl group, a 4-methylcyclohexyl group, or any two of these groups.) The amount of the dipole moment in the active component varies depending on the type of the active component, similarly to the amount of the dipole moment in the material. Even when the same active ingredient is used, the amount of dipole moment generated in the material changes depending on the temperature when energy is applied. Also, the amount of dipole moment changes depending on the type and magnitude of energy applied to the material. For this reason, it is desirable to select and use the active component that gives the largest amount of dipole moment in consideration of the temperature, type of energy, and size of the material (field) to which the energy conversion compound is applied. . The dipole bond in the energy conversion compound refers to a bond by electric or magnetic energy acting between the dipoles. By such a bonding force, one component or one component constituting the material described above can be used. Multiple active components are dipole-coupled at one or more locations, and the amount of dipole moment, i.e., the number of dipoles, the magnitude of the dipole charge, or the distance between the positive and negative dipoles Or all of them will increase exponentially. For example, the amount of the dipole moment generated in the material 11 under the predetermined temperature conditions and the magnitude of the energy is shown in FIG. 3 by the dipole coupling between the component constituting the material and the active component. Thus, under the same conditions, the amount will increase by a factor of three or ten. In addition, the mechanism of energy absorption and conversion mentioned above will change greatly. In other words, when energy is added, if only the material is used, the phase of the dipole itself shifts, and the energy is consumed to restore the original state, whereas the energy conversion consisting of dipole coupling In the case of a compound, when energy is added, each dipole rotates or shifts about the coupling part, so that a very large amount of energy is consumed for its restoration. . As a result, coupled with the above-mentioned increase in the amount of the dipole moment, it is thought that the energy absorption and conversion performance far exceeds the prediction here. As described above, the effect of increasing the amount of dipole moment, absorbing energy, and dramatically improving conversion performance is not because the components constituting the material and the active component coexist simply. This occurs for the first time when the two are dipole-bonded to form an “energy conversion compound”. Therefore, when selecting the components that make up the above-mentioned materials and the active component, the two are likely to be dipole-bonded to each other. It is desirable to consider that It is also important that both are placed in an environment (temperature, pressure, etc.) where dipole coupling easily occurs. As described above, in the category of the energy conversion compound of the present invention, energy such as vibration, sound, or impact is received and absorbed like a vibration damping material, a sound absorbing material, or a shock absorbing material. It is not limited to heat, and its attenuation is performed. Electric energy is converted into mechanical energy, such as piezoelectric material, or mechanical energy is converted into electric energy, and electric energy is converted, such as battery material. Includes those that are stored temporarily and released again when needed. The following is an example of the energy conversion compound. Those represented by the following chemical formulas (1) to (4) represent DCHBSA, This is an example of an energy conversion compound in which four active components of ECDPA, 2HPMMB and DCHP are dipole-bonded. ① (PVC-DCHBSA)
H H
C  C
Figure imgf000014_0001
H
Figure imgf000014_0001
H
② (PVC - ECDPA) H H H H H H H H H ② (PVC-ECDPA) H H H H H H H H H
一 C一 C一 C一 C一 C一 C一 C一 C一 C一 C2H,
Figure imgf000014_0002
One C one C one C one C one C one C one C one C one C one C 2 H,
Figure imgf000014_0002
双極孑結合 ③ (PVC - 2HPMMB) Bipolar mosquito binding ③ (PVC-2HPMMB)
HH
I  I
c c
H H
Figure imgf000015_0001
Figure imgf000015_0001
双極子結合 Dipole coupling
④ (PVC- DCHP) ④ (PVC-DCHP)
One
Figure imgf000015_0002
Figure imgf000015_0002
i 双極子結合 ⑤ (CPE - DCHBSA) i dipole coupling ⑤ (CPE-DCHBSA)
H H H H H  H H H H H
cc
Figure imgf000016_0001
Figure imgf000016_0001
H 双極子結合H dipole coupling
⑥ (CPE - ECDPA) ⑥ (CPE-ECDPA)
H H H H H H H H H 一 C一 c;一 C一 C一 C一 C一 C一 C一 C一 H H H H H H H H H 1 C-1 c; 1 C-1 C-1 C-1 C-1 C-1 C-1 C-1
Ρ· H CI H CI H H H CIH · H CI H CI H H H CI
CN C CN C
\ l 0 \ l 0
c cへ  c to c
II o
Figure imgf000016_0002
一b
II o
Figure imgf000016_0002
One b
双極子結合 ⑦ (CPE— 2HPMMB) Dipole coupling ⑦ (CPE—2HPMMB)
H H H H H H H H H  H H H H H H H H H H
C一 C一 C一 C一 C一 C一 C一 C一 C一
Figure imgf000017_0001
C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1
Figure imgf000017_0001
双極子結合 Dipole coupling
⑧ (CPE-DCHP) H H H H H H H H H ⑧ (CPE-DCHP) H H H H H H H H H
一 C一 C一 C一 C一 C一 C一 C— C一 C一  One C one C one C one C one C one C one C— C one C one
Figure imgf000017_0002
Figure imgf000017_0002
双極子結合
Figure imgf000018_0001
Dipole coupling
Figure imgf000018_0001
A SC @ D (ΕΪ" ⑪ (P E- 2 HPMMB) A SC @ D (ΕΪ " ⑪ (P E-2 HPMMB)
Figure imgf000019_0001
Figure imgf000019_0001
双極子結合  Dipole coupling
⑫ (ANPE-DCHBSA) ⑫ (ANPE-DCHBSA)
H H H H H  H H H H H
極子結合
Figure imgf000019_0002
Polar coupling
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000020_0001
HHHHHHHH H  HHHHHHHH H
® ()AMt AE ECD-— ⑮ (ANP E-DCHP) ® () AMt AE ECD-— ⑮ (ANP E-DCHP)
H H H H H H H H H  H H H H H H H H H H
C一 C一 C一 C一 C一 C一 C一 C一 C一  C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1
H H CN  H H CN
o 0
Figure imgf000021_0001
双極子結合 図面の簡単な説明 図 1は、 材料における双極子を示した模式図である。
o 0
Figure imgf000021_0001
Dipole coupling BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing dipoles in a material.
図 2は、 エネルギーが加わったときの材料における双極子の状態を示した模式 図である。  FIG. 2 is a schematic diagram showing the state of a dipole in a material when energy is applied.
図 3は、 材料を構成する成分と活性成分とが双極子結合したときの材料におけ る双極子の状態を示した模式図である。  FIG. 3 is a schematic diagram showing a state of a dipole in a material when a component constituting the material and an active component are dipole-bonded.
図 4は、 実施例 1〜 3及び比較例 1の温度と弾性正接 ( t a η δ ) との関係を 示したグラフである。  FIG. 4 is a graph showing the relationship between the temperature and the elastic tangent (ta ηδ) of Examples 1 to 3 and Comparative Example 1.
図 5は、 実施例 4〜5、 並びに比較例 2の各試験片の各温度における損失係数 (τ?) を示したグラフである。  FIG. 5 is a graph showing the loss coefficient (τ?) Of each test piece of Examples 4 to 5 and Comparative Example 2 at each temperature.
図 6は、 吸音材料よりなる吸音フィルムを示した模式図である。  FIG. 6 is a schematic diagram showing a sound absorbing film made of a sound absorbing material.
図 7は、 吸音材料よりなる吸音繊維を含む吸音シートを示した模式図である。 図 δは、 吸音材料を含む吸音発泡成形物を示した模式図である。  FIG. 7 is a schematic diagram showing a sound absorbing sheet including sound absorbing fibers made of a sound absorbing material. FIG. Δ is a schematic view showing a sound-absorbing molded foam containing a sound-absorbing material.
図 9は、 吸音材料よりなる吸音シートを吸音材内部に配置した状態を示す模式 図である。 Fig. 9 is a schematic diagram showing a state where a sound absorbing sheet made of a sound absorbing material is arranged inside the sound absorbing material. FIG.
図 1 0は、 吸音材料よりなる吸音繊維を含む連続気泡型発泡ポリウレタン成形 物を示す模式図である。  FIG. 10 is a schematic diagram showing an open-cell foamed polyurethane molded article containing sound-absorbing fibers made of a sound-absorbing material.
図 1 1は、 吸音材料よりなる吸音繊維を構成繊維の一部として抄造した紙を示 す模式図である。  FIG. 11 is a schematic diagram showing a paper made by using sound absorbing fibers made of a sound absorbing material as a part of constituent fibers.
図 1 2は、 吸音材料よりなる吸音繊維を構成繊維の一部として織成した織物を 示す模式図である。  FIG. 12 is a schematic diagram showing a woven fabric in which sound absorbing fibers made of a sound absorbing material are woven as a part of constituent fibers.
図 1 3は、 実施例 6、 並びに比較例 3〜 7の各サンプルの厚さと反発弾性との 関係を示したグラフである。  FIG. 13 is a graph showing the relationship between the thickness and the rebound resilience of each sample of Example 6 and Comparative Examples 3 to 7.
図 1 4は、 反発弾性の測定装置を示した側面図である。  FIG. 14 is a side view showing a rebound resilience measuring device.
図 1 5は、 反発弾性の測定装置の要部を示した拡大断面図である。  FIG. 15 is an enlarged cross-sectional view showing a main part of the rebound resilience measuring device.
図 1 6は、 同じく正面図である。  FIG. 16 is also a front view.
図 1 7は、 反発弾性の測定装置の要部を示した正面図である。  FIG. 17 is a front view showing a main part of the rebound resilience measuring device.
図 1 8は、 実施例 6〜9、 並びに比較例 8の各サンプルの厚さと反発弾性との 関係を示したグラフである。  FIG. 18 is a graph showing the relationship between the thickness of each sample of Examples 6 to 9 and Comparative Example 8 and the rebound resilience.
図 1 9は、 実施例 1 0〜 1 3及び比較例 9の試験片の各周波数における電磁波 吸収性能を示したグラフである。  FIG. 19 is a graph showing the electromagnetic wave absorption performance of the test pieces of Examples 10 to 13 and Comparative Example 9 at each frequency.
図 2 0は、 各圧電材料の圧電性能を測定する装置を模式的に示した模式図であ る。  FIG. 20 is a schematic diagram schematically showing an apparatus for measuring the piezoelectric performance of each piezoelectric material.
図 2 1は、 吸熱性ペレットを示す模式図である。 発明を実施するための最良の形態 以下、 本発明のエネルギー変換化合物を、 制振材料、 吸音材料、 衝撃吸収材、 電磁波吸収材、 防振材料、 及び圧電材料に適用した例を示し、 これら各適用例に 従って、 本発明をさらに具体的に説明する。 まず、 制振材料に適用した例を示す。 C P E (エラスレン 3 5 2 N A 昭和電 ェ株式会社製) 1 0 0重量部に対し、 D C H B S Aを 0重量部 (比較例 1 ) 、 3 0重量部 (実施例 1 ) 、 50重量部 (実施例 2 ) 、 100重量部 (実施例 3 ) の 割合で各々配合し、 これらを 160°Cに設定した混練ロールに投入してシート化 し、 厚さ 1 mmのサンプルシートを得た。 得られた実施例 1〜 3及び比較例 1のサンプルシートについて、 それら各シ一 卜を構成するポリマーの構造を解析したところ、 実施例 1〜 3の制振シートには、 下記化学式で表される、 C P Eと D CHB S Aとが双極子結合した化合物が含ま れていることが確認された。 FIG. 21 is a schematic diagram showing an endothermic pellet. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, examples in which the energy conversion compound of the present invention is applied to a vibration damping material, a sound absorbing material, a shock absorbing material, an electromagnetic wave absorbing material, a vibration damping material, and a piezoelectric material will be described. The present invention will be described more specifically according to application examples. First, an example of application to a vibration damping material is shown. 0 parts by weight of DCHBSA (Comparative Example 1), 100 parts by weight of CPE (Eraslene 35 2 NA manufactured by Showa Denko KK) 0 parts by weight (Example 1), 50 parts by weight (Example 2) and 100 parts by weight (Example 3) were blended, and these were put into a kneading roll set at 160 ° C. to form a sheet. A sample sheet having a thickness of 1 mm was obtained. The structures of the polymers constituting each of the obtained sample sheets of Examples 1 to 3 and Comparative Example 1 were analyzed. The vibration damping sheets of Examples 1 to 3 were represented by the following chemical formulas. Thus, it was confirmed that a compound in which CPE and DCHBSA were dipole-bonded was contained.
⑤ (CPE— DCHBSA) ⑤ (CPE—DCHBSA)
H H H H H  H H H H H
Figure imgf000023_0001
Figure imgf000023_0001
双極子結合 また、 上記実施例 1〜 3及び比較例 1のシートについて、 各温度における弾性 正接 ( t a n (5) を測定した。 弾性正接 ( t a η δ) の測定は、 レオバイブロン、 DDV— 2 5 FP、 株式会社オリエンテイツク製の測定装置を用いて行った。 こ の結果を図 4に示す。 図 4から明らかなように、 DCHB S Aが未配合の比較例 1のサンプルシ一ト の弾性正接 ( t a n 5) に対して、 CPEと DCHBSAとが双極子結合した上 記化学式で示す化合物を含む実施例 1〜 3のサンプルシートは、 いずれも制振レ ベルが格段に向上していることが解る。 また実施例 1〜3の中でも、 当該化合物 が最も多く含まれる実施例 3に係るサンプルシートが最も高い性能を示していた。 次に、 非拘束型の制振材料についての例を示す。 PVC9重量部に対し、 マイ 力鱗片 (クラライトマイ力、 30 C、 株式会社クラレ製) 65. 0重量部、 DC HP 1 3. 0重量部、 DCHBSA 13. 0重量部の割合で配合し、 これらを 1 Dipole Coupling The elastic tangent (tan (5)) at each temperature was measured for the sheets of Examples 1 to 3 and Comparative Example 1. The elastic tangent (ta η δ) was measured by using Leovibron, DDV—25 FP was performed using a measuring device manufactured by Orientec, Inc. The results are shown in FIG. As is clear from FIG. 4, the compound represented by the above chemical formula in which CPE and DCHBSA are dipole-bonded to the elastic tangent (tan 5) of the sample sheet of Comparative Example 1 containing no DCHBSA is included. It can be seen that all of the sample sheets of Examples 1 to 3 have significantly improved vibration suppression levels. In addition, among Examples 1 to 3, the sample sheet according to Example 3 containing the largest amount of the compound showed the highest performance. Next, an example of an unconstrained damping material will be described. For 9 parts by weight of PVC, mix my scales (Clarite My Power, 30 C, manufactured by Kuraray Co., Ltd.) at a ratio of 65.0 parts by weight, 13.0 parts by weight of DCHP, and 13.0 parts by weight of DCHBSA. These 1
2  Two
60°Cに設定したロールに投入して混練し、 次いで得られた混練物を、 180°C に加熱した金型間に挟んで 180秒間加熱し、 この後プレス機で 80 k g · ί / cm の圧力で 30秒間加圧し、 1mmの厚さにシート化する。 得られたシ一ト を損失係数測定用として 67 mmx 9 mmの寸法に切断し、 試験片 (実施例 4) とする。 The mixture was put into a roll set at 60 ° C and kneaded, and then the obtained kneaded material was sandwiched between molds heated to 180 ° C, heated for 180 seconds, and then pressed with a press at 80 kg · ί / cm. Press for 30 seconds to form a sheet of 1mm thickness. The obtained sheet is cut into a size of 67 mm x 9 mm for loss factor measurement, and used as a test piece (Example 4).
PCV9重量部に対し、 マイ力鱗片 (クラライトマイ力、 30 C、 株式会社ク ラレ製) 65. 0重量部、 DCHP 10. 4重量部、 DCHBSA 10. 4重量 部、 ECDPA5. 2重量部の割合で配合し、 これらを実施例 4と同様にして試 験片 (実施例 5) を得た。 65.0 parts by weight of My power scale pieces (Clarite My Power, 30 C, manufactured by Kuraray Co., Ltd.), 10.4 parts by weight of DCHP, 10.4 parts by weight of DCHBSA, 5.2 parts by weight of ECDPA The test pieces (Example 5) were obtained in the same manner as in Example 4.
DOPを添加した P VC 50重量部に対し、 マイ力鱗片 (クラライトマイ力、 30 C、 株式会社クラレ製) 50. 0重量部を配合し、 これらを実施例 4と同様 にして試験片 (比較例 2) を得た。 上記実施例 4〜 5、 並びに比較例 2の各試験片について、 それらの試験片を構 成するポリマーの構造を解析したところ、 実施例 1〜3の試験片 (非拘束型制振 シート) には、 下記化学式で表される、 PVCと DCHBSAとが双極子結合し た化合物と、 ¥じと13(:ト1?とが双極子結合した化合物とが含まれていること が確認された。 ① (PVC-DCHBSA) To 50 parts by weight of the PVC added with DOP, 50.0 parts by weight of my ryaku scale (Kuraray Co., Ltd., 30 C, manufactured by Kuraray Co., Ltd.) was added. Comparative Example 2) was obtained. The structures of the polymers constituting the test pieces of Examples 4 to 5 and Comparative Example 2 were analyzed. As a result, the test pieces of Examples 1 to 3 (unconstrained vibration damping sheets) were obtained. It was confirmed that the compound represented by the following chemical formula contained a compound in which PVC and DCHBSA were dipole-bonded and a compound in which PVC and DCHBSA were dipole-bonded. ① (PVC-DCHBSA)
Figure imgf000025_0001
Figure imgf000025_0001
④ (PVC— DCHP) ④ (PVC—DCHP)
Figure imgf000025_0002
Figure imgf000025_0002
= 双極子結合 また、' 上記実施例 4及び 5、 並びに比較例 2の各試験片について、 損失係数= Dipole coupling In addition, the loss factor was determined for each of the test pieces of Examples 4 and 5 and Comparative Example 2.
( 7 ) を測定した。 損失係数 (7] ) の測定は、 動的粘弾性測定試験装置 (レオバ イブロン DDV— 25 FP、 株式会社オリエンテック製) を用いて行った。 各試 験片の損失係数 (71) の測定結果を図 5に示した。 図 5から、 実施例 4及び 5の試験片は、 比較例 2のものに比べて、 その振動ェ ネルギ一の吸収性能、 すなわち損失係数 (7? ) は約 5倍から 7倍の値を示してお り、 本発明の非拘束型制振材料が従来の非拘束型制振材料の吸収性能を遥かに超 え、 拘束型の制振材料に匹敵するような優れた振動エネルギー吸収性能を有して いることが解った。 2 4 次に、 吸音材料に適用した例を示す。 図 6〜図 8は吸音材料を示し、 図 6は P VC 100重量部に対し、 DCHB S A 100重量部を添加し、 1mmの厚さに フィルム化した吸音フィルム 13であり、 図 7には、 P VC 100重量部に対し、 DCHB S Aを 100重量部添加したものを紡糸した吸音短繊維 14をシ一ト内 に含ませた吸音シート 15である。 図 8は、 DCHB S Aを 100重量部添加し た連続気泡型発泡ポリウレタン成形物 16である。 上記図 6〜図 8に示す吸音フィルム 13、 吸音短繊維 14、 連続気泡型発泡ポ リウレ夕ン成形物 16について、 それらを構成するポリマーの構造を解析したと ころ、 いずれも下記化学式で表される、 PVCと DCHB S Aとが双極子結合し た化合物が含まれていることが確認された。 (7) was measured. The loss factor (7) was measured using a dynamic viscoelasticity measurement tester (Leoviveron DDV-25FP, manufactured by Orientec Co., Ltd.). Figure 5 shows the measurement results of the loss factor (71) of each test piece. From Fig. 5, the test pieces of Examples 4 and 5 show that the absorption performance of vibration energy, that is, the loss coefficient (7?), Is about 5 to 7 times that of Comparative Example 2. Therefore, the non-constrained vibration damping material of the present invention far exceeds the absorption performance of the conventional non-constrained vibration damping material, and has excellent vibration energy absorption performance comparable to that of the constrained vibration damping material. I understand that you are doing. 24 Next, an example of application to a sound absorbing material is shown. 6 to 8 show the sound absorbing material, and FIG. 6 shows a sound absorbing film 13 formed by adding 100 parts by weight of DCHB SA to 100 parts by weight of PVC and forming a film to a thickness of 1 mm. A sound-absorbing sheet 15 in which a sound-absorbing short fiber 14 obtained by adding 100 parts by weight of DCHBSA to 100 parts by weight of PVC is spun. FIG. 8 shows an open-cell foamed polyurethane molded product 16 to which 100 parts by weight of DCHBSA was added. Analysis of the polymer structure of the sound-absorbing film 13, the sound-absorbing short fiber 14, and the open-cell foamed polyolefin foam 16 shown in Figs. 6 to 8 above, all of which are represented by the following chemical formulas Thus, it was confirmed that a compound in which PVC and DCHBSA were dipole-bonded was contained.
(以下余白) O 00/36023 (Hereinafter the margin) O 00/36023
① (PVC— DCHBSA) ① (PVC—DCHBSA)
H H H H  H H H H
Figure imgf000027_0001
図 9に示すものは、 図 6の吸音フィルム 13を、 従来より用いられているガラ ス繊維 1 7からなる吸音材 18の内部に配置したものである。 この場合、 吸音材 1 8の厚さを大幅に薄くすることができ、 しかも従来の吸音材では吸収できなか つた 500 HZ以下の低周波の音も確実に捕らえて吸収することができた。 図 1 0は、 前記吸音短繊維 14を連続気泡型発泡ポリウレタン成形物 16内部 に含ませたものである。 図 1 1及び図 12は、 図 7に示す吸音短繊維 14を構成 繊維の一部として抄造または織成した紙 19または織物 20である。 これらは優 れた吸音性を有しており、 壁材ゃ床材としてきわめて有用である。 次に、 衝撃吸収材に適用した例を示す。 CPE 100重量部に対して DCHB SAを 100重量部配合したものを、 直径が 29. 0mmであって、 厚さが 2m m、 3mm、 5mm、 6 mm, 9mm、 12. 7 mmの 6種の直円柱に成形した (実施例 6) 。 実施例 6に係る成形物 (衝撃吸収材) について、 それを構成するボリマーの構 造を解析したところ、 下記化学式で表される、 じ?£と0じ1183八とが双極子 結合した化合物が含まれていることが確認された。
Figure imgf000027_0001
In FIG. 9, the sound absorbing film 13 of FIG. 6 is disposed inside a sound absorbing material 18 made of glass fiber 17 which has been used conventionally. In this case, the thickness of the sound-absorbing material 18 can be reduced significantly, and low-frequency sounds of 500 Hz or less, which cannot be absorbed by the conventional sound-absorbing material, can be reliably captured and absorbed. FIG. 10 shows the sound absorbing short fibers 14 contained in the open-cell foamed polyurethane molding 16. FIGS. 11 and 12 show a paper 19 or a woven fabric 20 made or woven as a part of the sound absorbing short fiber 14 shown in FIG. These have excellent sound absorption properties and are extremely useful as wall materials and floor materials. Next, an example in which the present invention is applied to a shock absorbing material will be described. A mixture of 100 parts by weight of CPE and 100 parts by weight of DCHB SA is 6 types of 29.0 mm in diameter, 2 mm, 3 mm, 5 mm, 6 mm, 9 mm and 12.7 mm in thickness. It was formed into a right circular cylinder (Example 6). With respect to the molded article (shock absorbing material) according to Example 6, the structure of the volimer constituting the molded article was analyzed, and the structure was represented by the following chemical formula. It was confirmed that the compound contained a dipole-bond between £ and 0,183,188.
⑤ (CPE— DCHBSA) ⑤ (CPE—DCHBSA)
H H H H H  H H H H H
双極子結合
Figure imgf000028_0001
Dipole coupling
Figure imgf000028_0001
CP Eに代えてウレタン樹脂を用い、 これに DCHB SAを配合しないで実施 例 6と同じく厚さの異なる 6種の直円柱形に成形したもの (比較例 3) 、 CPE に代えて NBRを用い、 これに DCHB S Aを配合しないで実施例 6と同じく厚 さの異なる 6種の直円柱形に成形したもの (比較例 4) 、 CPEに代えて BRを 用い、 これに DCHB S Aを配合しないで実施例 6と同じく厚さの異なる 6種の 直円柱形に成形したもの (比較例 5) 、 CPEに代えてアクリル樹脂を用い、 こ れに DCHB S Aを配合しないで実施例 6と同じく厚さの異なる 6種の直円柱形 に成形したもの (比較例 6) 、 CPEに代えてソルボセイン (エーテル系ポリウ レタン) を用い、 これに DCHB SAを配合しないで実施例 6と同じく厚さの異 なる' 6種の直円柱形に成形したもの (比較例 7) の各サンプルについて、 J I SA urethane resin was used in place of CPE, and DCHB SA was not blended, and these were molded into six types of right circular cylinders having the same thickness as in Example 6 (Comparative Example 3), and NBR was used in place of CPE. However, this was molded into six types of right circular cylinders having different thicknesses as in Example 6 without blending DCHB SA (Comparative Example 4). BR was used instead of CPE, and DCHB SA was not blended. Formed into six types of right circular cylinders having different thicknesses as in Example 6 (Comparative Example 5), an acrylic resin was used instead of CPE, and the same thickness as in Example 6 was used without mixing DCHBSA. Molded into six types of right circular cylinders of different shapes (Comparative Example 6), using sorbosein (ether-based polyurethane) instead of CPE, and having the same thickness as in Example 6 without blending DCHBSA. '' JIS for each sample of 6 types of straight cylinders (Comparative Example 7)
K 630 1— 1975に規定された反発弾性試験に基づいて反発弾性を測定 した。 その結果を図 13に示す。 尚、 反発弾性の測定は、 図 14〜図 1 7に示す試験装置を用いた。 試験装置に おける鉄棒は、 4本の吊り糸により水平に懸垂され、 その打撃端は 12. 7mm の直径を有する半球形をなし、 他端には指針を設けた。 鉄棒の長さは、 約 356 mm. 直径 12. 7mm、 質量 350 gの丸棒を用いた。 鉄棒の懸垂高さは 20 00mm、 落下高さは垂直方向に 100mmとした。 試験装置における目盛板は、 水平長さ 625mm、 円弧の半径 2000mmと し、 指針は前記鉄棒を自由に懸垂させたとき、 目盛が 0の位置にあり、 打撃端が ちょうど試験片の面に触れるように調整した。 図 1 3から、 実施例 6の衝撃吸収材の反発弾性が約 2 %前後と、 頗る良いのに 対して、 従来より衝撃吸収材として多用されている比較例 7の衝撃吸収材が約 8 から 18%となり、 その他の比較例 3〜 6にあっては、 約 30から 55%と十分 な衝撃吸収性能が発揮されていないことが明らかとなった。 またこの試験結果か ら、 実施例 6の衝撃吸収材が厚さの変動に関わりなく、 優れた衝撃吸収性能を発 揮していることから、 薄くても厚くても優れた衝撃吸収性能が確保できるので、 幅広い用途、 箇所に適用可能であることが予測される。 次に、 実施例 6における DCHB S Aの配合量を 70重量部 (実施例 7 ) 、 5 0重量部 (実施例 8) 、 30重量部 (実施例 9) 、 0重量部 (比較例 8) とした こと以外は実施例 6と同様にして各々 6種のサンプルを得た。 得られた各サンプ ルについて、 前述の反発弾性を実施例 6と同様に測定し、 その結果を前記実施例 6のサンプルの測定結果と共に図 18に示した。 尚、 上記実施例 7〜9についても、 実施例 6と同様に、 各成形物 (衝撃吸収 材) を構成するポリマーの構造を解析したところ、 含有量は異なるものの、 いず れも実施例 6と同じ CPEと DCHBS Aとが双極子結合した化合物が確認され た。 図 18から、 DCHBS Aが未配合の比較例 8の衝撃吸収材が約 13から 26 %の反発弾性となっているのに対し、 実施例 9の衝撃吸収材が約 6から 17%、 実施例 8の衝撃吸収材が約 4から 1 1 %、 実施例 7の衝撃吸収材が約 3から 8 %、 実施例 6の衝撃吸収材が約 2から 3%と、 CPEと DCHBS Aとが双極子結合 した化合物の含有量が多くなるにつれて性能が上がつていることが解る。 また、 実施例 9から実施例 6へと化合物の含有量が多くなるのに従って、 厚さの変動に 関わりなく、 優れた衝撃吸収性能を発揮されることが確認された。 Measures rebound resilience based on the rebound resilience test specified in K 630 1—1975 did. Figure 13 shows the results. The rebound resilience was measured using the test equipment shown in Figs. The iron bar in the test apparatus was hung horizontally by four suspension strings, the striking end of which was in the form of a hemisphere with a diameter of 12.7 mm and the other end provided with a pointer. The length of the iron bar was about 356 mm. A round bar with a diameter of 12.7 mm and a mass of 350 g was used. The suspension height of the horizontal bar was 2000 mm, and the drop height was 100 mm vertically. The scale plate in the test equipment shall be 625 mm in horizontal length and 2,000 mm in radius of the circular arc, and the pointer shall be at the position of 0 when the iron bar is freely suspended, and the striking end shall just touch the surface of the test piece. Was adjusted. From Fig. 13 it can be seen that the rebound resilience of the shock absorbing material of Example 6 is about 2%, which is very good, whereas the shock absorbing material of Comparative Example 7, which has been conventionally used as a shock absorbing material, is about 8%. It was 18%, which was about 30 to 55% in other Comparative Examples 3 to 6, indicating that sufficient impact absorption performance was not exhibited. In addition, the test results show that the shock absorbing material of Example 6 exhibited excellent shock absorbing performance regardless of thickness variation, so that excellent shock absorbing performance was ensured regardless of whether it was thin or thick. It can be expected to be applicable to a wide range of applications and locations. Next, the amount of DCHBSA in Example 6 was changed to 70 parts by weight (Example 7), 50 parts by weight (Example 8), 30 parts by weight (Example 9), and 0 parts by weight (Comparative Example 8). Except for this, six samples were obtained in the same manner as in Example 6. The rebound resilience was measured for each of the obtained samples in the same manner as in Example 6, and the results are shown in FIG. 18 together with the measurement results for the sample of Example 6. Incidentally, also in Examples 7 to 9 described above, the structure of the polymer constituting each molded product (shock absorber) was analyzed in the same manner as in Example 6, and although the content was different, all of Examples 6 to 9 were used. A compound in which the same CPE and DCHBS A were dipole-bound was confirmed. Was. From Fig. 18, the shock absorbing material of Comparative Example 8 not containing DCHBS A has a rebound resilience of about 13 to 26%, whereas the shock absorbing material of Example 9 has a rebound of about 6 to 17%. Approximately 4 to 11% of the shock absorbers in Example 8, approximately 3 to 8% of the shock absorbers of Example 7, approximately 2 to 3% of the shock absorbers of Example 6, and a dipole of CPE and DCHBS A It can be seen that the performance increases as the content of the bound compound increases. In addition, it was confirmed that as the content of the compound increased from Example 9 to Example 6, excellent impact absorption performance was exhibited regardless of the thickness variation.
2  Two
8  8
次に、 電磁波吸収材に適用した例を示す。 CPEに DCHBS Aを配合し、 こ れを混練し、 この混練物にローラ間で lmmの厚さのシート状に成形する。 得ら れたシートを 20 OmmX 20 Ommの大きさに裁断し、 試験片とした。 尚、 CPEと DCHBSAの配合割合 (重量部) は、 100Z0 (比蛟例 9) 、 100/30 (実施例 10) 、 100 Z 50 (実施例 1 1) 、 100 Z 70 (実 施例 12) 、 100/ 100 (実施例 1 3) とした。 上記実施例 1 1〜 13及び比較例 9の各試験片について、 それらを構成するポ リマ一の構造を解析したところ、 含有量は異なるものの、 下記化学式で表される、 CPEと DCHBSAとが双極子結合した化合物が含まれていることが確認され た。  Next, an example in which the present invention is applied to an electromagnetic wave absorber will be described. DCHBS A is blended with CPE and kneaded, and the kneaded material is formed into a lmm-thick sheet between rollers. The obtained sheet was cut into a size of 20 Omm X 20 Omm to obtain a test piece. The mixing ratio (parts by weight) of CPE and DCHBSA was 100Z0 (Example 9), 100/30 (Example 10), 100Z50 (Example 11), 100Z70 (Example 12). , 100/100 (Example 13). When the structures of the polymers constituting each of the test pieces of Examples 11 to 13 and Comparative Example 9 were analyzed, the CPE and DCHBSA represented by the following chemical formula, although their contents differed, were bipolar. It was confirmed that the compound contained a child bond.
(以下余白) ⑤ (CPE— DCHBSA) (Hereinafter the margin) ⑤ (CPE—DCHBSA)
H H H H H  H H H H H
双極子結合 Dipole coupling
Figure imgf000031_0001
Figure imgf000031_0001
また、 上記実施例 1 1〜13及び比較例 9の各試験片について、 電磁波吸収性 能 (d b) を測定した。 この結果を図 19に示した。 尚、 電磁波吸収性能 (d b) の測定は、 電磁波シールド性評価器 (TR— 17301 株式会社ァドバン テス卜製) を用いて行った。 条件は電界 10M〜 1000MHzを使用した。 図 1 9から、 CPEと DCHBSAとが双極子結合した化合物の含有量が多く なるのに従って、 電磁波吸収性能 (db) も高くなつていることが確認された。 次に、 圧電材料に適用した例を示す。 PVC 100重量部に対し、 DCHBS A (この時の試料温度は 22 ° C) を 100重量部の割合で配合し、 これを厚さ lmm、 縦 1 5 OmmX横 5 Ommの板形状に成形し、 その両表面に銀ペースト による電極 (株式会社アサヒ化学研究所、 LS— 506 J、 縦 14 OmmX横 4 Omm) を形成してサンプル (実施例 14) とした。  The electromagnetic wave absorption performance (db) of each of the test pieces of Examples 11 to 13 and Comparative Example 9 was measured. The result is shown in FIG. In addition, the measurement of the electromagnetic wave absorption performance (db) was performed using an electromagnetic wave shielding property evaluation device (TR-17301 manufactured by Advantest Corporation). The conditions used were an electric field of 10 MHz to 1000 MHz. From FIG. 19, it was confirmed that as the content of the compound in which CPE and DCHBSA are dipole-bonded increases, the electromagnetic wave absorption performance (db) also increases. Next, an example applied to a piezoelectric material will be described. 100 parts by weight of PVC was mixed with 100 parts by weight of DCHBS A (at this time, the sample temperature was 22 ° C), and the mixture was formed into a plate having a thickness of lmm, 15 Omm in length and 5 Omm in width, Electrodes of silver paste (Asahi Chemical Laboratory Co., Ltd., LS-506J, length 14 OmmX width 4 Omm) were formed on both surfaces to obtain a sample (Example 14).
P VC 1 00重量部に対し 2HPMMBを 100重量都の割合で配合した以外 は実施例 14と同様にしてサンプル (実施例 1 5) を作製した。 Except for blending 2HPMMB with 100 parts by weight of PVC per 100 parts by weight In the same manner as in Example 14, a sample (Example 15) was produced.
PVC 100重量部に対し ECDP Aを 100重量部の割合で配合した以外は 実施例 14と同様にしてサンプル (実施例 16) を作製した。 A sample (Example 16) was produced in the same manner as in Example 14 except that 100 parts by weight of ECDP A was mixed with 100 parts by weight of PVC.
PVC単独で実施例 14と同様にしてサンプル (比較例 10) を作製した。 まず、 上記実施例 14〜16、 並びに比較例 10の各サンプルについて、 各サ ンプルを構成するポリマーの構造を解析したところ、 実施例 14に係るサンプル は、 下記化学式で表される、 PVCと DCHBSAとが双極子結合した化合物が 含まれていることが確認された。 A sample (Comparative Example 10) was produced using PVC alone in the same manner as in Example 14. First, for the samples of Examples 14 to 16 and Comparative Example 10, the structure of the polymer constituting each sample was analyzed. The sample according to Example 14 was PVC and DCHBSA represented by the following chemical formulas. It was confirmed that the compound contained a dipole-bonded compound.
① (PVC— DCHBSA) ① (PVC—DCHBSA)
H H H H  H H H H
子钴合 Child bond
Figure imgf000032_0001
実施例 1 5に係るサンプルは、 下記化学式で表される、 PVCと 2HPMMB とが奴極子結合した化合物が含まれていることが確認された。 ③ (PVC— 2HPMMB) H H H H H H H H H 一 C一 C一 C一 C一 C一 C一 C一 C一 C一
Figure imgf000032_0001
It was confirmed that the sample according to Example 15 contained a compound represented by the following chemical formula, in which PVC and 2HPMMB were coupled together. ③ (PVC—2HPMMB) HHHHHHHHH One C One C One C One C One C One C One C One C One C One
Figure imgf000033_0001
c. cミ- o o
Figure imgf000033_0001
c. c-oo
 Combination
H 8  H 8
実施例 1 6に係るサンプルは、 下記化学式で表される、 PVCと ECDPAと が双極子結合した化合物が含まれていることが確認された。  It was confirmed that the sample according to Example 16 contained a compound represented by the following chemical formula, in which PVC and ECDPA were dipole-bonded.
② (PVC--ECDPA) ② (PVC--ECDPA)
H H H H H H H H H 一 C一 C一 C一 C一 C一 C一 C一 C一 C一  H H H H H H H H H One C one C one C one C one C one C one C one C one C one
H GI H CI H CI H GI H CI H CI
^  ^
CM ハ0C"2H, c C CM C 0C " 2 H, c C
双極^锆合 上記実施例 14〜 16、 並びに比較例 10の各サンプルについて、 その圧電性 能を測定した。 測定は、 図 20に示すように、 サンプル 21両面の電極と電圧計 22とを電気的に接続し、 これを基台 23上に置き、 このサンプル 2 1上に 20 0mmの高さから、 鉄球 24 (径 20mm、 重さ 32. 6 g) を落下させ、 その ときにサンプル 2 1に生じた最大電圧を電圧計 22により読みとるという操作を 5回行い、 その平均値を圧電性能を表示する値として表 1に示した。 尚、 比較の ため、 上記実施例 14〜 16、 並びに比較例 10の各サンプルについてポ一リン グ処理 (分極処理) を行い、 これらについて同様に圧電性能を測定した。 尚、 ポ 一リング処理は、 各サンプルを 100° Cのオイルバス中で 1 KVの直流電流を 1時間印荷し、 その状態のまま室温まで冷却し印荷を外すという方法で行った。 表 1 Bipolar ^ 锆 The piezoelectric performance of each of the samples of Examples 14 to 16 and Comparative Example 10 was measured. As shown in Fig. 20, the electrodes on both sides of the sample 21 were electrically connected to the voltmeter 22 as shown in Fig. 20, and this was placed on the base 23. A ball 24 (diameter 20 mm, weight 32.6 g) is dropped, and the maximum voltage generated at sample 21 is read by a voltmeter 22 times at that time.The average value is displayed as the piezoelectric performance. The values are shown in Table 1. For comparison, each of the samples of Examples 14 to 16 and Comparative Example 10 was subjected to a polling treatment (polarization treatment), and the piezoelectric performance was measured in the same manner. The polling treatment was performed by applying a 1 KV DC current to each sample for 1 hour in an oil bath at 100 ° C, cooling to room temperature in that state, and removing the imprint. table 1
Figure imgf000034_0001
表 1から、 比較例 10のものが 1. 36:11 または1. 88mVと、 分極の有 無に拘わらず、 低い値となっているのに対し、 分極していない実施例 14〜 16 のものが、 約 90から 1 1 OmVと桁外れの高い値を示した。 また、 ポーリング 処理を行った実施例 15のもの数値は、 同じくポ一リング処理を行った比較例 1 0のものに比べて約 70倍となっており、 該圧電材料における上記化合物 (材料 成分と D C H B S Aや 2 H P MM Bなどの活性成分と双極子結合した化合物) が、 圧電性能の向上に大きく寄与していることが解った。 図 2 1に示すものは、 PVC 100重量部に対し、 DCHBSAを 100重量 部添加したものをペレツト状に成形したものであり、 このペレツト 25を構成す るポリマーの構造を解析したところ、 下記化学式で表される、 PVCと DCHB S Aとが双極子結合した化合物が含まれていることが確認された。
Figure imgf000034_0001
Table 1 shows that Comparative Example 10 had a low value of 1.36: 11 or 1.88 mV, regardless of the presence or absence of polarization, while those of Examples 14 to 16 that were not polarized However, it showed an extraordinarily high value of about 90 to 11 OmV. Also polling The numerical value of the treated example 15 is about 70 times that of the comparative example 10 similarly subjected to the polling treatment, and the above-mentioned compound (material components and DCHBSA or 2 Dipole-bonding with active components such as HPMMB) greatly contributed to the improvement of piezoelectric performance. FIG. 21 shows a pellet formed by adding 100 parts by weight of DCHBSA to 100 parts by weight of PVC, and analyzing the structure of the polymer constituting the pellet 25. It was confirmed that a compound represented by the following formula, in which PVC and DCHB SA were dipole-bonded, was contained.
① (PVC - DCHBSA) ① (PVC-DCHBSA)
H H H H  H H H H
Figure imgf000035_0001
のペレツト 25を溶融紡糸することで吸熱性繊維を得ることができる,
Figure imgf000035_0001
Endothermic fibers can be obtained by melt-spinning the pellet 25 of

Claims

言青求の範囲 Scope of word blue
1. エネルギー変換機能を持つ材料を構成する成分と、 前記材料における 双極子モーメント量を増加させる活性成分とが双極子結合してなることを特徴と するエネルギー変換化合物。 1. An energy conversion compound characterized in that a component constituting a material having an energy conversion function and an active component that increases the amount of dipole moment in the material are dipole-bonded.
2. 前記エネルギー変換機能を持つ材料が、 ポリ塩化ビニル (PVC) 、 塩素化ポリエチレン (CPE) 、 アクリル二トリル化ポリエチレン (ANPE) 、 ポリエチレン (PE) 、 ポリプロピレン (PP) 、 エチレン—酢ビ共重合体、 ポ リメタクリル酸メチル、 ポリフッ化ビニリデン、 ポリイソプレン、 ポリスチレン2. Materials with energy conversion function are polyvinyl chloride (PVC), chlorinated polyethylene (CPE), acryl nitrile polyethylene (ANPE), polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate Coalescing, methyl polymethacrylate, polyvinylidene fluoride, polyisoprene, polystyrene
(P S) 、 スチレン—ブタジエン一アクリロニトリル共重合体 (ABS) 、 スチ レン一アクリロニトリル共重合体 (AS) 、 アクリロニトリル—ブタジエンゴム(PS), styrene-butadiene-acrylonitrile copolymer (ABS), styrene-acrylonitrile copolymer (AS), acrylonitrile-butadiene rubber
(NBR) 、 アクリルゴム (ACR) 、 スチレン一ブタジエンゴム (SBR) 、 ブタジエンゴム (BR) 、 天然ゴム (NR) 、 イソプレンゴム (I R) 、 クロ口 プレンゴム (CR) 、 ポリエステル (PET) 、 ポリウレタン、 ポリアミド、 ポ リ塩ィ匕ビニリデン、 ポリアクリロニトリル、 ボリビニルアルコール (PVA) 、 セルロースからなる高分子の群から選ばれる 1種若しくは 2種以上であることを 特徴とする請求項 1記載のエネルギー変換化合物。 (NBR), Acrylic rubber (ACR), Styrene-butadiene rubber (SBR), Butadiene rubber (BR), Natural rubber (NR), Isoprene rubber (IR), Black rubber (CR), Polyester (PET), Polyurethane, The energy conversion compound according to claim 1, wherein the energy conversion compound is at least one selected from the group consisting of a polyamide, a polymer, a polyvinylidene, a polyacrylonitrile, a polyvinyl alcohol (PVA), and a cellulose. .
3. 前記エネルギー変換機能を持つ材料がグリコール類であることを特徴 とする請求項 1記載のエネルギー変換化合物。 3. The energy conversion compound according to claim 1, wherein the material having the energy conversion function is a glycol.
4. 前記エネルギー変換機能を持つ材料が水であることを特徴とする請求 項 1記載のエネルギー変換化合物。 4. The energy conversion compound according to claim 1, wherein the material having the energy conversion function is water.
5. 前記活性成分が、 ベンゾチアジル基を持つ化合物の中から選ばれた 1 種若しくは 2種以上であることを特徴とする請求項 1〜4のいずれかに記載のェ ネルギ一変換化合物。 5. The energy conversion compound according to claim 1, wherein the active ingredient is one or more selected from compounds having a benzothiazyl group.
6 . 前記活性成分が、 ベンゾトリァゾ一ル基を持つ化合物の中から選ばれ た 1種若しくは 2種以上であることを特徴とする請求項 1〜 4のいずれかに記載 のエネルギー変換化合物。 6. The energy conversion compound according to any one of claims 1 to 4, wherein the active ingredient is one or more selected from compounds having a benzotriazole group.
7 . 前記活性成分が、 ジフエ二ルァクリレー卜基を持つ化合物の中から選 ばれた 1種若しくは 2種以上であることを特徴とする請求項 1〜4のいずれかに 記載のエネルギー変換化合物。 7. The energy conversion compound according to claim 1, wherein the active ingredient is at least one compound selected from compounds having a diphenylacrylate group.
8 . 前記活性成分が、 ベンゾフエノン基を持つ化合物の中から選ばれた 1 種若しくは 2種以上であることを特徴とする請求項 1〜 4のいずれかに記載のェ ネルギー変換化合物。 8. The energy conversion compound according to any one of claims 1 to 4, wherein the active ingredient is one or more selected from compounds having a benzophenone group.
9 . 前記活性成分が、 下記化学式で表される構造を有する、フ夕ル酸エステ ルの中から選ばれた 1種若しくは 2種以上であることを特徴とする請求項 1〜4 のいずれかに記載のエネルギー変換化合物。 化学式 9. The active ingredient is one or more selected from esters of fluoric acid having a structure represented by the following chemical formula: 12. The energy conversion compound according to item 1. Chemical formula
Figure imgf000037_0001
Figure imgf000037_0001
(尚、 式中 Rは、 フエニル基、 シクロへキシル基、 シクロペンチル基、 シクロ ぺクチル基、 4ーメチルシクロへキシル基のいずれか、 またはこれらの基のいず れか 2種である。 ) (In the formula, R is any one of a phenyl group, a cyclohexyl group, a cyclopentyl group, a cyclooctyl group, a 4-methylcyclohexyl group, or any two of these groups.)
1 0 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギー 変換化合物が含まれていることを特徴とする制振材料。 10. A vibration damping material comprising one or more energy conversion compounds according to any one of claims 1 to 9.
1 1 . 前記制振材料が非拘束型制振材料であることを特徴とする請求項 1 0 記載の制振材料。 11. The damping material according to claim 10, wherein the damping material is an unconstrained damping material.
1 2 . 前記制振材料が制振塗料であることを特徴とする請求項 1 0記載の制 振材料。 12. The damping material according to claim 10, wherein the damping material is a damping paint.
1 3 . 請求項 1〜 9のいずれかに記載の 1種若しくは 2種以上のエネルギー 変換化合物が含まれていることを特徴とする吸音材料。 13. A sound-absorbing material comprising one or more energy conversion compounds according to any one of claims 1 to 9.
1 4 . 前記吸音材料が吸音フィルムであることを特徴とする請求項 1 3記載 の吸音材料。 14. The sound absorbing material according to claim 13, wherein the sound absorbing material is a sound absorbing film.
1 5 . 前記吸音材料が発泡吸音体であることを特徴とする請求項 1 3記載の 吸音材料。 15. The sound absorbing material according to claim 13, wherein the sound absorbing material is a foamed sound absorbing body.
1 6 . 前記吸音材料が吸音繊維であることを特徴とする請求項 1 3記載の吸 音材料。 16. The sound absorbing material according to claim 13, wherein the sound absorbing material is a sound absorbing fiber.
1 7 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギー 変換化合物が含まれていることを特徴とする衝撃吸収材。 17. An impact-absorbing material comprising one or more energy conversion compounds according to any one of claims 1 to 9.
1 8 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギー 変換化合物が含まれていることを特徴とする電磁波吸収材。 18. An electromagnetic wave absorbing material comprising one or more energy conversion compounds according to any one of claims 1 to 9.
1 9 . 前記電磁波吸収材が電磁波吸収塗料であることを特徴とする請求項 1 8記載の電磁波吸収材。 19. The electromagnetic wave absorbing material according to claim 18, wherein the electromagnetic wave absorbing material is an electromagnetic wave absorbing paint.
2 0 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギ一 変換化合物が含まれていることを特徴とする防振材料。 20. An anti-vibration material comprising one or more energy conversion compounds according to any one of claims 1 to 9.
2 1 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギ - 変換化合物が含まれていることを特徴とする圧電材料。 21. A piezoelectric material comprising one or more energy-converting compounds according to any one of claims 1 to 9.
2 2 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギ - 変換化合物が含まれていることを特徴とする粘性流体。  22. A viscous fluid comprising one or more energy-converting compounds according to any one of claims 1 to 9.
2 3 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギ - 変換化合物が含まれていることを特徴とする極性液体。  23. A polar liquid comprising one or more energy-converting compounds according to any one of claims 1 to 9.
2 4 . 請求項 1〜9のいずれかに記載の 1種若しくは 2種以上のエネルギ - 変換化合物が含まれていることを特徴とする電池材料。  24. A battery material comprising one or more energy-converting compounds according to any one of claims 1 to 9.
PCT/JP1999/000907 1998-12-11 1999-02-25 Compound for energy conversion WO2000036023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003491 WO2000036022A1 (en) 1998-12-11 1999-06-28 Energy converting compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP98/05633 1998-12-11
PCT/JP1998/005633 WO2000036044A1 (en) 1998-12-11 1998-12-11 Energy conversion compound

Publications (1)

Publication Number Publication Date
WO2000036023A1 true WO2000036023A1 (en) 2000-06-22

Family

ID=14209600

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP1998/005633 WO2000036044A1 (en) 1998-12-11 1998-12-11 Energy conversion compound
PCT/JP1999/000907 WO2000036023A1 (en) 1998-12-11 1999-02-25 Compound for energy conversion
PCT/JP1999/003491 WO2000036022A1 (en) 1998-12-11 1999-06-28 Energy converting compound

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005633 WO2000036044A1 (en) 1998-12-11 1998-12-11 Energy conversion compound

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003491 WO2000036022A1 (en) 1998-12-11 1999-06-28 Energy converting compound

Country Status (1)

Country Link
WO (3) WO2000036044A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091340A1 (en) * 2002-04-26 2003-11-06 Cci Corporation Energy conversion composition and its molding
WO2004055116A1 (en) * 2002-12-13 2004-07-01 Shishiai-Kabushikigaisha Vibration-damping engineering plastic
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702417B2 (en) * 2000-12-05 2005-10-05 独立行政法人科学技術振興機構 A novel damping material using selective compatibility
JP2002179908A (en) * 2000-12-15 2002-06-26 Cci Corp Vibration suppressive resin composition
JP4766741B2 (en) * 2000-12-15 2011-09-07 シーシーアイ株式会社 Non-rebound resilience / damping polymer composition
JP2002294208A (en) * 2001-03-29 2002-10-09 Cci Corp Vibration-damping adhesive composition, and vibration- damping steel plate using vibration-damping adhesive composition
JP2003199183A (en) * 2001-12-27 2003-07-11 Cci Corp Voice response robot
JP4314508B2 (en) * 2002-04-15 2009-08-19 日本電気株式会社 Radical battery
JP2006073991A (en) 2004-08-02 2006-03-16 Sony Corp Electromagnetic wave suppressing material, electromagnetic wave suppressing device and electronic equipment
JP2007326896A (en) * 2006-06-06 2007-12-20 Yokohama Rubber Co Ltd:The Energy-converting thermoplastic elastomer composition
JP5729701B2 (en) * 2010-02-18 2015-06-03 高圧ガス工業株式会社 Composite dielectric element
JP5844050B2 (en) * 2011-02-03 2016-01-13 シーシーアイ株式会社 Damping agent and damping material
CN102702900A (en) * 2012-05-17 2012-10-03 青岛爱尔家佳新材料有限公司 Novel water-based damping sound-absorbing paint and preparation method thereof
KR20150143538A (en) * 2013-04-05 2015-12-23 렘바가 게타 말레이시아 Rubber composition for sound insulation
FR3004718B1 (en) * 2013-04-18 2016-05-06 Inst Nat Sciences Appliquees Lyon METHOD FOR MANUFACTURING POLARIZABLE COMPOSITE MATERIAL UNDER THE ACTION OF A LOW ELECTRIC FIELD
JP2017181375A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Foam and method for producing foam
CN106800684A (en) * 2016-12-16 2017-06-06 吴中区穹窿山师匠新材料技术咨询服务部 A kind of EVA foaming damping shock absorption material
CN107383477A (en) * 2017-08-15 2017-11-24 浙江中泰绝热材料有限公司 A kind of rubber-plastic foamed insulation material of noise reducing type and preparation method thereof
CN108440854A (en) * 2018-04-17 2018-08-24 徐州工业职业技术学院 Environmental friendly regenerated matrix thermoplastic elastomer (TPE) magnetically damped material of a kind of width temperature range and preparation method thereof
CN108997665B (en) * 2018-08-21 2021-04-13 江苏工程职业技术学院 Low-cost high-performance damping vibration attenuation composite material and manufacturing method thereof
CN110218409B (en) * 2019-06-20 2021-05-28 中原工学院 Preparation method of polyacrylonitrile electromagnetic shielding film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241461A (en) * 1996-03-05 1997-09-16 Cci Corp Vibration-damping vinyl chloride resin composition
JPH09302139A (en) * 1996-05-10 1997-11-25 Cci Corp Damping material
JPH09316295A (en) * 1996-05-30 1997-12-09 Cci Corp Energy conversion composition
JPH107845A (en) * 1996-06-28 1998-01-13 Cci Corp Vibration-damping material
JPH1077417A (en) * 1996-09-03 1998-03-24 Cci Corp Shock-absorbing material
JPH10138365A (en) * 1996-11-12 1998-05-26 Cci Corp Laminated damping steel material of unconstrained type
JPH10139933A (en) * 1996-11-07 1998-05-26 Cci Corp Vibration-proofing material
JPH10143164A (en) * 1996-11-07 1998-05-29 Cci Corp Sound absorbing sheet
JPH10149171A (en) * 1996-11-19 1998-06-02 Cci Corp Foamed sound absorbing material
JPH10161663A (en) * 1996-12-03 1998-06-19 Cci Corp Sound absorbing fiber, sound absorbing thread and sound absorbing fiber body using it
JPH10190280A (en) * 1996-12-27 1998-07-21 Cci Corp Electromagnetic wave absorbing coating
JPH10195339A (en) * 1996-11-14 1998-07-28 Cci Corp Vibration-damping coating material
JPH10231430A (en) * 1997-02-20 1998-09-02 Cci Corp Piezoelectric material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126910A (en) * 1992-10-20 1994-05-10 Mitsui Eng & Shipbuild Co Ltd Damping composite materials
JP3117394B2 (en) * 1994-11-29 2000-12-11 帝人製機株式会社 Optical three-dimensional molding resin composition
EP1564245A3 (en) * 1996-05-10 2005-11-09 Shishiai-Kabushikigaisha Energy conversion composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241461A (en) * 1996-03-05 1997-09-16 Cci Corp Vibration-damping vinyl chloride resin composition
JPH09302139A (en) * 1996-05-10 1997-11-25 Cci Corp Damping material
JPH09316295A (en) * 1996-05-30 1997-12-09 Cci Corp Energy conversion composition
JPH107845A (en) * 1996-06-28 1998-01-13 Cci Corp Vibration-damping material
JPH1077417A (en) * 1996-09-03 1998-03-24 Cci Corp Shock-absorbing material
JPH10139933A (en) * 1996-11-07 1998-05-26 Cci Corp Vibration-proofing material
JPH10143164A (en) * 1996-11-07 1998-05-29 Cci Corp Sound absorbing sheet
JPH10138365A (en) * 1996-11-12 1998-05-26 Cci Corp Laminated damping steel material of unconstrained type
JPH10195339A (en) * 1996-11-14 1998-07-28 Cci Corp Vibration-damping coating material
JPH10149171A (en) * 1996-11-19 1998-06-02 Cci Corp Foamed sound absorbing material
JPH10161663A (en) * 1996-12-03 1998-06-19 Cci Corp Sound absorbing fiber, sound absorbing thread and sound absorbing fiber body using it
JPH10190280A (en) * 1996-12-27 1998-07-21 Cci Corp Electromagnetic wave absorbing coating
JPH10231430A (en) * 1997-02-20 1998-09-02 Cci Corp Piezoelectric material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091340A1 (en) * 2002-04-26 2003-11-06 Cci Corporation Energy conversion composition and its molding
WO2004055116A1 (en) * 2002-12-13 2004-07-01 Shishiai-Kabushikigaisha Vibration-damping engineering plastic
US7351757B2 (en) 2002-12-13 2008-04-01 Shishiai-Kabushikigaisha Vibration-damping engineering plastics
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating

Also Published As

Publication number Publication date
WO2000036022A1 (en) 2000-06-22
WO2000036044A1 (en) 2000-06-22

Similar Documents

Publication Publication Date Title
WO2000036023A1 (en) Compound for energy conversion
WO1997042844A1 (en) Energy conversion composition
KR20170115525A (en) Seismic Retention Device
KR20170128337A (en) Seismic Retention Device
CN108081726A (en) A kind of antistatic protection film and application thereof
Barreneche et al. Use of PCM–polymer composite dense sheet including EAFD in constructive systems
JPH10139933A (en) Vibration-proofing material
JP5396130B2 (en) Damping material
JPH09316295A (en) Energy conversion composition
JPH107845A (en) Vibration-damping material
JPH10138365A (en) Laminated damping steel material of unconstrained type
JPH02113138A (en) Damper
WO2001051564A1 (en) Energy converting composition
Giri et al. Electronic applications of ethylene vinyl acetate and its composites
JPH1077417A (en) Shock-absorbing material
JP2002179927A (en) Low impact resilient, vibration-damping polymer composition
AU5433301A (en) Energy conversion composition
CA2241885C (en) Energy conversion composition
CN218969148U (en) Heat dissipation bubble cotton pad
JP2007063327A (en) Highly damping rubber composition
JP4658761B2 (en) Damper material for seismic isolation devices
WO1999064535A1 (en) Damping self-adhesive
JPH09330086A (en) Sound absorbing material
JP2004162061A (en) Vibration-damping material composition
JPH09291191A (en) Impact-absorbing gel material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)