JP4658761B2 - Damper material for seismic isolation devices - Google Patents

Damper material for seismic isolation devices Download PDF

Info

Publication number
JP4658761B2
JP4658761B2 JP2005280728A JP2005280728A JP4658761B2 JP 4658761 B2 JP4658761 B2 JP 4658761B2 JP 2005280728 A JP2005280728 A JP 2005280728A JP 2005280728 A JP2005280728 A JP 2005280728A JP 4658761 B2 JP4658761 B2 JP 4658761B2
Authority
JP
Japan
Prior art keywords
melting point
resin
seismic isolation
damper material
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005280728A
Other languages
Japanese (ja)
Other versions
JP2007092818A (en
Inventor
萩原  勲
宏典 濱崎
相澤  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005280728A priority Critical patent/JP4658761B2/en
Publication of JP2007092818A publication Critical patent/JP2007092818A/en
Application granted granted Critical
Publication of JP4658761B2 publication Critical patent/JP4658761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、建物とその基礎との間に設置して地震の衝撃と振動とを吸収する免震装置に用いられるダンパー材料に関する。   The present invention relates to a damper material used in a seismic isolation device that is installed between a building and its foundation to absorb the shock and vibration of an earthquake.

建物とその基礎との間に設置して地震の衝撃や振動を吸収することにより建物を保護する免震装置は、一般に、積層ゴム(鋼板等の硬質板とゴム等の粘弾性的性質を有する軟質板とを積層した免震ゴム:アイソレータ)とダンパーとで主に構成される。免震装置の免震ゴムは、ゴムの剪断剛性の柔らかさと大きな変形能力を利用して、水平方向に対して基礎と建物との滑りを作り、地震力を低減する作用を奏する。また、ダンパーは、振動時のエネルギーを吸収し、免震構造に減衰性能を付与して、地震時に生じる建物と地盤との過大な相対変位を抑制する作用を奏する。   Seismic isolation devices that are installed between a building and its foundation to protect the building by absorbing earthquake shocks and vibrations generally have laminated rubber (hard plates such as steel plates and viscoelastic properties such as rubber) It consists mainly of a base-isolated rubber (isolator) laminated with a soft plate and a damper. The seismic isolation rubber of the seismic isolation device uses the softness of the shear rigidity of the rubber and the large deformation capability to create a slip between the foundation and the building in the horizontal direction, thereby reducing the seismic force. The damper also absorbs energy during vibration and imparts damping performance to the seismic isolation structure, thereby suppressing excessive relative displacement between the building and the ground that occurs during the earthquake.

このような免震装置のダンパーを構成する材料としては、従来、主に鉛が使用されている。また、アスファルト系熱可塑材料(例えば、特許文献1参照)も提案されている。   Conventionally, lead is mainly used as a material constituting the damper of such a seismic isolation device. An asphalt thermoplastic material (see, for example, Patent Document 1) has also been proposed.

しかし、現在、免震装置用ダンパー材料として主として用いられている鉛は、環境問題の観点から製造及び設計上大きな制約を受ける。また、将来的に免震装置を廃棄する際の処分の問題も予測されることから、鉛に代わる免震装置用ダンパー材料が求められている。   However, lead that is currently mainly used as a damper material for seismic isolation devices is greatly restricted in manufacturing and design from the viewpoint of environmental problems. Moreover, since the problem of the disposal at the time of discarding a seismic isolation apparatus is also anticipated in the future, the damper material for seismic isolation apparatuses which replaces lead is calculated | required.

一方、アスファルト系熱可塑材料は、その性能の温度依存性が著しく大きく、温度調整がなされている屋内での使用には有効ではある。しかし、建築物の下部などの外気に曝された環境では安定した性能を発揮し得ない。
特許第2987888号公報
On the other hand, the asphalt-based thermoplastic material has a remarkably large temperature dependency of its performance, and is effective for indoor use where the temperature is adjusted. However, stable performance cannot be exhibited in an environment exposed to outside air such as the lower part of a building.
Japanese Patent No. 2998788

本発明は上記従来の免震装置用ダンパー材料の問題点を解決することを目的とする。すなわち、本発明は、制振効果に優れ、鉛代替のダンパー材料として有効な免震装置用ダンパー材料を提供することを目的とする。   An object of the present invention is to solve the problems of the conventional damper material for a seismic isolation device. That is, an object of the present invention is to provide a damper material for a seismic isolation device that has an excellent vibration damping effect and is effective as a lead substitute damper material.

上記従来の課題を解決するため鋭意検討した結果、本発明者らは、鉛代替のダンパー材料として、樹脂材料を使用することを考えた。しかし、樹脂材料を溶融して成型したダンパー材料では、樹脂本来の特性が失われることがあることを見出した。これは、樹脂を溶融させて成型したダンパー材料は、シートやフィルムといった薄いものを作製する場合と異なり、冷却速度が遅くなるため性能に変化が生じるためと考えられる。そこで、本発明者らは、溶融させることなくダンパー材料を成型することができる圧縮成型法に着目し、下記のような本発明に想到した。   As a result of intensive studies to solve the above-described conventional problems, the present inventors have considered using a resin material as a damper material in place of lead. However, it has been found that the original properties of the resin may be lost in the damper material formed by melting and molding the resin material. This is probably because the damper material formed by melting the resin is different from the case of producing a thin material such as a sheet or a film, and the performance is changed because the cooling rate is slow. Accordingly, the present inventors have focused on a compression molding method capable of molding a damper material without melting, and have arrived at the present invention as described below.

すなわち、本発明は、融点の異なる少なくとも2種の樹脂を含有する組成物からなり、前記樹脂のうち最も融点の低い低融点樹脂の当該融点より高い温度で、かつ、前記樹脂のうち最も融点の高い高融点樹脂の当該融点より低い温度で圧縮成型されてなることを特徴とする免震装置用ダンパー材料である。   That is, the present invention comprises a composition containing at least two types of resins having different melting points, and is at a temperature higher than the melting point of the low melting point resin having the lowest melting point among the resins, and has the highest melting point among the resins. A damper material for a seismic isolation device, which is compression-molded at a temperature lower than the melting point of a high melting point resin.

本発明の免震装置用ダンパー材料は、下記第1〜第4の態様のうち少なくともいずれかの態様を具備することが好ましい。   The damper material for a seismic isolation device of the present invention preferably includes at least one of the following first to fourth aspects.

(1)第1の態様は、前記高融点樹脂がポリエチレンテレフタレート樹脂であり、前記低融点樹脂がポリエチレン樹脂である態様である。
(2)第2の態様は、前記高融点樹脂よりも低融点の樹脂パウダーを含有する態様である。
(3)第3の態様は、前記樹脂パウダーが、超高分子量ポリエチレン、低密度ポリエチレン、直鎖状ポリエチレン、エチレンビニルアセテート、エチレンエチルアクリレートおよびポリプロピレンからなる群より選択される少なくとも1種である態様である。
(4)第4の態様は、前記樹脂パウダーの配合量が0.01〜5質量%である態様である。
(1) The first aspect is an aspect in which the high melting point resin is a polyethylene terephthalate resin and the low melting point resin is a polyethylene resin.
(2) A 2nd aspect is an aspect containing resin powder of low melting | fusing point rather than the said high melting point resin.
(3) In the third aspect, the resin powder is at least one selected from the group consisting of ultrahigh molecular weight polyethylene, low density polyethylene, linear polyethylene, ethylene vinyl acetate, ethylene ethyl acrylate, and polypropylene. It is.
(4) A 4th aspect is an aspect whose compounding quantity of the said resin powder is 0.01-5 mass%.

本発明によれば、制振効果に優れ、鉛代替のダンパー材料として有効な免震装置用ダンパー材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the damping effect and can provide the damper material for seismic isolation devices effective as a damper material of lead substitution.

本発明の免震装置用ダンパー材料融点の異なる少なくとも2種の樹脂を含有する組成物からなり、前記樹脂のうち最も融点の低い低融点樹脂の当該融点より高い温度で、かつ、前記樹脂のうち最も融点の高い高融点樹脂の当該融点より低い温度で圧縮成型されてなる。かかる温度範囲で圧縮成型されることで、溶融状態で成型される射出成型等の場合と異なり、樹脂本来の特性を維持することができる。そのため、鉛代替のダンパー材料として取り扱い性に優れ、優れて制振効果を発揮することができる。   The damper material for the seismic isolation device of the present invention comprises a composition containing at least two types of resins having different melting points, and is at a temperature higher than the melting point of the low melting point resin having the lowest melting point among the resins, and among the resins It is compression molded at a temperature lower than the melting point of the high melting point resin having the highest melting point. By compression molding in such a temperature range, the original characteristics of the resin can be maintained, unlike the case of injection molding that is molded in a molten state. Therefore, it is excellent in handleability as a lead substitute damper material, and can exhibit an excellent vibration damping effect.

成型する際の圧縮成型の条件は、以下の通りであることが好ましい。すなわち、金型温度は、使用する樹脂材料のうち高融点樹脂の溶融温度未満とすることを必須とするが、120〜250℃とすることが好ましく、150〜250℃とすることがより好ましい。高融点樹脂の溶融温度以上であると、溶融が生じるため樹脂本来の特性を維持することが困難となる。   The conditions of compression molding at the time of molding are preferably as follows. That is, the mold temperature is required to be lower than the melting temperature of the high melting point resin among the resin materials to be used, but is preferably 120 to 250 ° C, more preferably 150 to 250 ° C. If the melting point is higher than the melting point of the high melting point resin, melting occurs and it is difficult to maintain the original characteristics of the resin.

加圧力は、1〜100MPaであることが好ましく、5〜80MPaであることがより好ましい。1MPa未満では、所望の形状に成型できない場合があり、100MPaを超えると成型装置が大掛かりなものとなってしまい、現実的でない。   The applied pressure is preferably 1 to 100 MPa, and more preferably 5 to 80 MPa. If it is less than 1 MPa, it may be impossible to mold into a desired shape. If it exceeds 100 MPa, the molding apparatus becomes large, which is not realistic.

以上のような圧縮成型により成型された免震装置用ダンパー材料は、溶融により成型された場合と異なり、樹脂の粒子同士が圧接したような状態となっている。すなわち、免震装置用ダンパー材料には粒界が存在することになる。   Unlike the case where it is molded by melting, the damper material for a seismic isolation device molded by compression molding as described above is in a state where resin particles are in pressure contact with each other. That is, grain boundaries exist in the damper material for the seismic isolation device.

本発明の免震装置用ダンパー材料が棒状の場合、軸方向の長さは、50〜1000mmであることが好ましく、100〜800mmであることが好ましい。また、直径は、20〜600mmであることが好ましく、50〜500mmであることがより好ましい。   When the damper material for a seismic isolation device of the present invention is rod-shaped, the axial length is preferably 50 to 1000 mm, and more preferably 100 to 800 mm. Moreover, it is preferable that a diameter is 20-600 mm, and it is more preferable that it is 50-500 mm.

樹脂材料として使用される高融点樹脂としては、ポリエチレンテレフタレート(PET)、ポリアミド(ナイロン)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。また、低融点樹脂としては、ポリエチレン(PE)、エチレンビニルアセテート(EVA)、ポリプロピレン(PP)、ポリビニルアセテート(PVAc)、エチレンエチルアクリレート(EEA)等が挙げられる。   High melting point resins used as resin materials include polyethylene terephthalate (PET), polyamide (nylon), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyvinyl chloride (PVC), poly Tetrafluoroethylene (PTFE) etc. are mentioned. Examples of the low melting point resin include polyethylene (PE), ethylene vinyl acetate (EVA), polypropylene (PP), polyvinyl acetate (PVAc), and ethylene ethyl acrylate (EEA).

なかでも、高融点樹脂としてポリエチレンテレフタレート樹脂を使用し、低融点樹脂としてポリエチレン樹脂を使用することが好ましい。かかる樹脂を使用することで、高い延性を発現させることができる。また、この組み合わせの場合、ポリエチレン樹脂の配合量は、ポリエチレンテレフタレート樹脂100質量部に対して3〜120質量部とすることが好ましい。3〜120質量部とすることで、ポリエチレンテレフタレートを海相とした高い延性を発現する樹脂とすることができる。さらに、樹脂の融点は、DSC(示差熱分析装置)を使用し昇温速度10℃/minで測定することができる。   Especially, it is preferable to use a polyethylene terephthalate resin as a high melting point resin and to use a polyethylene resin as a low melting point resin. By using such a resin, high ductility can be expressed. Moreover, in the case of this combination, it is preferable that the compounding quantity of a polyethylene resin shall be 3-120 mass parts with respect to 100 mass parts of polyethylene terephthalate resins. By setting it as 3-120 mass parts, it can be set as resin which expresses the high ductility which made polyethylene terephthalate the sea phase. Furthermore, the melting point of the resin can be measured using a DSC (differential thermal analyzer) at a heating rate of 10 ° C./min.

また、必要に応じてバインダーを含有させてもよい。具体的には、超高分子量ポリエチレン、低密度ポリエチレン、直鎖状ポリエチレン、エチレンビニルアセテート、エチレンエチルアクリレートおよびポリプロピレンからなる群より選択される少なくとも1種のパウダーであることが好ましい。当該バインダーは、本発明の免震装置用ダンパー材料中に0.01〜5質量%含有されていることが好ましく、0.1〜3質量%含有されていることがより好ましい。   Moreover, you may contain a binder as needed. Specifically, at least one powder selected from the group consisting of ultra high molecular weight polyethylene, low density polyethylene, linear polyethylene, ethylene vinyl acetate, ethylene ethyl acrylate and polypropylene is preferable. The binder is preferably contained in the damper material for a seismic isolation device of the present invention in an amount of 0.01 to 5% by mass, and more preferably 0.1 to 3% by mass.

以下、図面を参照して本発明の免震装置用ダンパー材料を用いたダンパーについて説明する。   Hereinafter, a damper using the damper material for a seismic isolation device of the present invention will be described with reference to the drawings.

まず、本発明の免震装置用ダンパー材料は、硬質材の間に挟み込んで用いることができる。例えば、拘束タイプ制振材や制振鋼板としての使用方法であるが、より効果的かつ有効な使用方法は、本発明の免震装置用ダンパー材料を硬質材の間に挟み、その剪断変形時のエネルギー吸収能力を利用する方法である。   First, the damper material for a seismic isolation device of the present invention can be used by being sandwiched between hard materials. For example, it is a usage method as a restraint type damping material or a damping steel plate, but a more effective and effective usage method is to sandwich the damper material for a seismic isolation device of the present invention between hard materials and at the time of shear deformation It is a method of using the energy absorption capacity of

図1に示すように、硬質材2と一般ゴム9との積層構造体6Aの中心部をくり抜き、この部分に本発明の免震装置用ダンパー材料1として、棒状の免震装置用ダンパー材料を充填し、上下にフランジ7,8を取り付けた免震装置20として有効に使用することができる。この免震装置20を一般ゴムと硬質材とを交互に積層してなる免震ゴムと併用して建物と基礎との間に配置することができる。   As shown in FIG. 1, the center part of the laminated structure 6A of the hard material 2 and the general rubber 9 is cut out, and a rod-like damper material for a seismic isolation device is used as the damper material 1 for the seismic isolation device of the present invention in this portion. It can be effectively used as a seismic isolation device 20 that is filled and has flanges 7 and 8 attached to the top and bottom. This seismic isolation device 20 can be disposed between a building and a foundation using a seismic isolation rubber formed by alternately laminating general rubber and hard material.

なお、硬質材2としては、特に制限されないが、例えば、金属、セラミックス、ガラス、FRP、プラスチックス、ポリウレタン、高硬度ゴム、木材、岩石、紙、革等を用いることができる。   The hard material 2 is not particularly limited, and for example, metal, ceramics, glass, FRP, plastics, polyurethane, high hardness rubber, wood, rock, paper, leather and the like can be used.

図1は、本発明の免震装置用ダンパー材料の適用例にすぎず、本発明は、その剪断変形時のエネルギー吸収能力を原理的に利用するものであれば、どのような形態の免震装置にも有効に適用することができる。   FIG. 1 is only an application example of the damper material for a seismic isolation device of the present invention, and the present invention is not limited to any form of seismic isolation as long as it uses the energy absorption capability at the time of shear deformation. The present invention can be effectively applied to an apparatus.

また、本発明のダンパー材料を用いたダンパーは、免震装置の大きさに応じてペレット(粉末)を充填し成形してもよく、また、溶融して成型した一体の棒状の樹脂を充填し隙間にペレット(粉末)を充填して成形してもよい。   The damper using the damper material of the present invention may be filled with a pellet (powder) according to the size of the seismic isolation device, or may be filled with an integral rod-shaped resin that is melted and molded. The gap may be filled with pellets (powder) and molded.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下の実施例及び比較例で用いた材料は次の通りである。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The materials used in the following examples and comparative examples are as follows.

[実施例1]
(サンプルの作製)
アズシャイン#5(未来化成(株)製)を樹脂材料とし、金型温度230℃、加圧力3.5tonとし、30分間圧縮成型を行った。その後、室温(25℃)まで空冷してペレット(免震装置用ダンパー材料)を作製した。サンプルの形状は、径が45mmで軸方向の長さが75mmの円柱形とした。なお、樹脂の熱膨張により加圧初期に比べて時間とともに圧力表示は上昇した。また、空冷の際には、樹脂の収縮により時間とともに圧力表示は下降した。
[Example 1]
(Sample preparation)
Asshine # 5 (manufactured by Mirai Kasei Co., Ltd.) was used as the resin material, compression molding was performed for 30 minutes at a mold temperature of 230 ° C. and a pressure of 3.5 ton. Then, it air-cooled to room temperature (25 degreeC), and produced the pellet (damper material for seismic isolation devices). The shape of the sample was a cylindrical shape with a diameter of 45 mm and an axial length of 75 mm. In addition, the pressure display increased with time compared with the initial stage of pressurization due to the thermal expansion of the resin. Further, during air cooling, the pressure display decreased with time due to the shrinkage of the resin.

(サンプルの復元力試験)
作製したペレットを図1に示す積層体の中心孔に装着し、復元力試験を行った。なお、使用した積層構造体6Aは、外径が225mm、内径が45mm、一般ゴムのゴム層の数は25で、各々のゴム層の厚みは1.8mmであった。サンプルの充填率は104%であった。また、周波数は0.3Hzで、せん断歪み100%とした。結果を図2に示す。
(Sample resilience test)
The prepared pellets were mounted in the center hole of the laminate shown in FIG. 1, and a restoring force test was performed. The laminated structure 6A used had an outer diameter of 225 mm, an inner diameter of 45 mm, the number of rubber layers of general rubber was 25, and the thickness of each rubber layer was 1.8 mm. The sample filling factor was 104%. The frequency was 0.3 Hz and the shear strain was 100%. The results are shown in FIG.

図2の結果から、大きな減衰力が得られ、履歴曲線が安定していることからダンパー材料として有効であることが確認できた。   From the results shown in FIG. 2, it was confirmed that a large damping force was obtained and the hysteresis curve was stable, so that it was effective as a damper material.

[比較例1]
アズシャイン#5(未来化成(株)製)を樹脂材料とし、当該樹脂材料を溶融させた状態で押し出し成型により実施例1のサンプルと同一形状のサンプルを作製した。
[Comparative Example 1]
A sample having the same shape as the sample of Example 1 was produced by extrusion molding with Asshine # 5 (manufactured by Mirai Kasei Co., Ltd.) as the resin material in a molten state.

実施例1と同様の条件で、作製したサンプルの復元力試験を行ったところ、棒が折れてしまい、大きな減衰力は得られなかった。実施例1のペレットの場合と比較すると、実用面で劣っていた。   When the restoring force test of the produced sample was performed under the same conditions as in Example 1, the rod was broken and a large damping force was not obtained. Compared with the pellet of Example 1, it was inferior in practical use.

本発明のダンパー材料を用いた免震装置の一例を示す断面図である。It is sectional drawing which shows an example of the seismic isolation apparatus using the damper material of this invention. 実施例のペレットの復元力試験(変位量と荷重との関係)の結果を示す図である。It is a figure which shows the result of the restoring force test (The relationship between a displacement amount and a load) of the pellet of an Example.

符号の説明Explanation of symbols

1・・・ダンパー材料
2・・・硬質材
6A・・・積層構造体
7,8・・・フランジ
9・・・一般ゴム
20・・・免震装置
DESCRIPTION OF SYMBOLS 1 ... Damper material 2 ... Hard material 6A ... Laminated structure 7, 8 ... Flange 9 ... General rubber 20 ... Seismic isolation device

Claims (5)

融点の異なる少なくとも2種の樹脂を含有する組成物からなり、前記樹脂のうち最も融点の低い低融点樹脂の当該融点より高い温度で、かつ、前記樹脂のうち最も融点の高い高融点樹脂の当該融点より低い温度で圧縮成型されてなることを特徴とする免震装置用ダンパー材料。   A composition containing at least two types of resins having different melting points, a temperature higher than the melting point of the low melting point resin having the lowest melting point among the resins, and the high melting point resin having the highest melting point among the resins. A damper material for a seismic isolation device, which is compression-molded at a temperature lower than the melting point. 前記高融点樹脂がポリエチレンテレフタレート樹脂であり、前記低融点樹脂がポリエチレン樹脂であることを特徴とする請求項1に記載の免震装置用ダンパー材料。   The damper material for a seismic isolation device according to claim 1, wherein the high melting point resin is a polyethylene terephthalate resin, and the low melting point resin is a polyethylene resin. 前記高融点樹脂よりも低融点の樹脂パウダーを含有することを特徴とする請求項1または2に記載の免震装置用ダンパー材料。   The damper material for a seismic isolation device according to claim 1 or 2, comprising a resin powder having a melting point lower than that of the high melting point resin. 前記樹脂パウダーが、超高分子量ポリエチレン、低密度ポリエチレン、直鎖状ポリエチレン、エチレンビニルアセテート、エチレンエチルアクリレートおよびポリプロピレンからなる群より選択される少なくとも1種であることを特徴とする請求項1〜3のいずれか1項に記載の免震装置用ダンパー材料。   The resin powder is at least one selected from the group consisting of ultra high molecular weight polyethylene, low density polyethylene, linear polyethylene, ethylene vinyl acetate, ethylene ethyl acrylate, and polypropylene. The damper material for a seismic isolation device according to any one of the above. 前記樹脂パウダーの配合量が0.01〜5質量%であることを特徴とする免震装置用ダンパー材料。   A damper material for a seismic isolation device, wherein the amount of the resin powder is 0.01 to 5% by mass.
JP2005280728A 2005-09-27 2005-09-27 Damper material for seismic isolation devices Expired - Fee Related JP4658761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280728A JP4658761B2 (en) 2005-09-27 2005-09-27 Damper material for seismic isolation devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280728A JP4658761B2 (en) 2005-09-27 2005-09-27 Damper material for seismic isolation devices

Publications (2)

Publication Number Publication Date
JP2007092818A JP2007092818A (en) 2007-04-12
JP4658761B2 true JP4658761B2 (en) 2011-03-23

Family

ID=37978788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280728A Expired - Fee Related JP4658761B2 (en) 2005-09-27 2005-09-27 Damper material for seismic isolation devices

Country Status (1)

Country Link
JP (1) JP4658761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126003A (en) * 2007-11-21 2009-06-11 Bridgestone Corp Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065114A (en) * 1998-08-21 2000-03-03 Sumitomo Chem Co Ltd Impact absorbing part, manufacture therefor and use therefor
JP2001322137A (en) * 2000-05-17 2001-11-20 Shikoku Seni Hanbai Kk Method for thermoforming molding using thermoplastic binding material as binder
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065114A (en) * 1998-08-21 2000-03-03 Sumitomo Chem Co Ltd Impact absorbing part, manufacture therefor and use therefor
JP2001322137A (en) * 2000-05-17 2001-11-20 Shikoku Seni Hanbai Kk Method for thermoforming molding using thermoplastic binding material as binder
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body

Also Published As

Publication number Publication date
JP2007092818A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US4899323A (en) Anti-seismic device
US10443678B2 (en) Composite layer material for dampening external load, obtaining process, and uses thereof
JP5113672B2 (en) Tombstone or monument with fall prevention
TWI627336B (en) Seismic isolation device
JP6891305B2 (en) Seismic isolation device
JP2010506120A (en) Impact energy management method and system
JP4851425B2 (en) Laminated support
CN102114723A (en) Composite buffer sheet
JP4658761B2 (en) Damper material for seismic isolation devices
JP2010096243A (en) Base isolation structure and method for manufacturing the same
JP2008121822A (en) Vibration-isolation structure and its manufacturing method
Li et al. Construction of soft polyurethane cushioning composites based on integral fabric air layer: Reaching new levels in compression and cushioning behaviors
JPH09177367A (en) Base insulation structure
JP4416564B2 (en) Sound-absorbing shock absorbing member
JP2006023423A (en) Sound absorptive impact absorber
JP2005248076A (en) Polymer composition and molding of the same
JP4360133B2 (en) Damper material for seismic isolation devices
US11101518B2 (en) Multilayer sheet and battery
KR20110108516A (en) Polyurethane containing cork powder for vibration isolation
JP2008204585A (en) Shock absorbing material for electronic equipment
Li et al. Preparation and mechanical properties characterization: plasma‐modified expanded vermiculite/fabric‐reinforced foam composite materials
KR102162516B1 (en) Polyurethane foam filled with cork, and method thereof
Sheikhi et al. Cork-Based Structures in Energy Absorption Applications
KR101916036B1 (en) Furniture Materials Including Polyester Resin Foam
CN208247652U (en) A kind of memory can restore buffering energy-absorbing product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees