WO2000026661A1 - Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten - Google Patents

Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten Download PDF

Info

Publication number
WO2000026661A1
WO2000026661A1 PCT/DE1999/003458 DE9903458W WO0026661A1 WO 2000026661 A1 WO2000026661 A1 WO 2000026661A1 DE 9903458 W DE9903458 W DE 9903458W WO 0026661 A1 WO0026661 A1 WO 0026661A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor arrangement
arrangement according
substrate
measurement
measuring
Prior art date
Application number
PCT/DE1999/003458
Other languages
English (en)
French (fr)
Inventor
Hans Hecht
Falk Herrmann
Martin Mast
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to AU15490/00A priority Critical patent/AU749057B2/en
Priority to JP2000579991A priority patent/JP2003502617A/ja
Priority to EP99957946A priority patent/EP1127273A1/de
Priority to KR1020017005559A priority patent/KR20010090813A/ko
Publication of WO2000026661A1 publication Critical patent/WO2000026661A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Definitions

  • the invention relates to a sensor arrangement for determining physical properties of liquids according to the preamble of the main claim.
  • SAW Surface Acoustic Wave
  • An important area here is the measurement of electrical quantities, such as the dielectric constant and / or the conductivity, the measurement of mechanical quantities, such as the density and / or the viscosity.
  • the known sensor arrangement is based on a measurement principle which is described, for example, in the article "A study of love-wave acoustic sensors", J.Du, GL Harding, PROgilvy and M.Lake in the specialist journal Sen- sors and Actuators A56 (1996), pages 211 to 219.
  • a sensor is implemented that works with horizontally polarized acoustic shear waves, so-called leakage waves or surface skimming bulk waves (SSBW waves) or love waves.
  • SSBW waves surface skimming bulk waves
  • interdigital transducers which are also known per se from the prior art mentioned above, so that the desired sensor signal can be obtained from the propagation behavior on a propagation or measurement path.
  • the sensor arrangement is used to determine the quality of engine or lubricating oils in a motor vehicle or comparable machines, it is often necessary to obtain a large number of measurement variables in order to evaluate them as input variables for corresponding control units. Above all, the viscosity, the temperature, the electrical conductivity and the dielectric constant of the oil are important for a useful statement, e.g. to monitor the oil change intervals.
  • the sensor arrangement mentioned at the outset for determining physical properties of liquids is advantageously further developed according to the invention with the characterizing features of the main claim.
  • a compact sensor arrangement is advantageously created, with which an integration of different individual measurement sensors on a substrate plate is made possible with low-cost production.
  • the electro-acoustic transducers which generate and detect the surface acoustic waves with predetermined wave modes are advantageously arranged together with further measuring arrangements.
  • a corresponding measured value is determined from the propagation behavior of the acoustic waves along a propagation path in the manner known per se.
  • the basic sensor element is, for example, a substrate made of certain quartz, lithium tantalate and lithium niobate sections which are particularly suitable for the acoustic shear modes described at the beginning.
  • a temperature-dependent resistor is advantageously attached adjacent to the substrate as a measuring arrangement for temperature measurement.
  • the conductor track structure on the substrate is produced from a metallization layer, advantageously from platinum, whereby both the temperature-dependent resistance and the transmission and reception conductor track structures of the electro-acoustic transducer can be produced from this platinum layer, so that only a single metallization layer on the substrate is necessary is. Platinum is extremely chemically resistant, so that cover layers can be dispensed with under certain circumstances.
  • a dielectric layer applied above the metallization layer on the substrate can, however, also be arranged as an acoustic waveguide layer for the electro-acoustic transducers in addition to the chemical passivation. It is also possible to use titanium or silicon or other intermediate layers as an adhesive layer between the substrate and the electro-acoustic wall learners as well as between the electro-acoustic transducers and other layers above.
  • an arrangement for electrical conductivity measurement can advantageously also be produced from the metallization layer by means of uncovered electrodes.
  • the conductivity measurement is carried out in a simple manner with a direct current or an alternating current which flows through the liquid.
  • an arrangement for measuring the dielectric constant can advantageously be created from the same metallization layer by means of a capacitor structure.
  • the capacitor structure can be in the form of an interdigital capacitor and, if appropriate, can be covered by an additional insulating layer; However, it is also possible to use it uncovered for better coupling to the liquid to be measured, wherein the chemical resistance of the metallization layer can be exploited.
  • all measuring arrangements for determining the individual physical quantities can be contacted individually in a simple manner, and thus all four measuring methods can be carried out on a corresponding evaluation electronics for sequential measurement with a single substrate, which can be used particularly for construction forms which are favorable for production. Furthermore, the good heat coupling on the substrate is also advantageous, since the temperature of the various measuring sensors is available with particularly small deviations during signal evaluation, so that very precise compensation methods can be used.
  • the schematic view according to the single figure shows the main component of the proposed sensor arrangement, namely a substrate plate 1 polished on one side from a piezoelectric material, in which horizontally polarized acoustic shear modes can be excited by an interdigital transducer 3 that can be contacted via electrical connections 2 and in an interdigital transducer 4 as an electro -acoustic transducers are detectable.
  • the measuring arrangement described above with the electro-acoustic transducers for measuring the viscosity of a measuring liquid via the propagation of a surface wave and the measuring arrangements described below are structured from a metallization layer, preferably from platinum, and optionally adhesive layers.
  • a dielectric layer (not shown here) can also be arranged above the electro-acoustic transducers 3 and 4 as an acoustic waveguide layer, which also enables chemical passivation.
  • electrodes 5 for conductivity measurement are present on the substrate 1 and are supplied with a direct or alternating current.
  • conductivity measurement could also be dispensed with in many application stalls.
  • the temperature measurement is carried out here via a resistance meander 6, which is likewise structured from the metallization layer.
  • the arrangement of the resistance meander 6 can also lie outside the propagation distance between the transducers 3 and 4, in a modification of the shape shown.
  • a capacitor structure 7 which, for better coupling to the liquid to be measured, is either uncovered or provided with a cover layer 8 shown here in broken lines in order to improve the chemical resistance.
  • the measurement of the dielectric constant and the conductivity can possibly also be carried out with the electro-acoustic transducers for determining the viscosity of the liquid a different excitation frequency than the frequency required to generate the surface wave is selected.
  • the measuring liquid e.g.
  • the engine oil of a motor vehicle flows past the substrate surface and possibly the cover layer to determine the physical properties, and the measurement signals obtained are taken at the contact points and an evaluation device (not shown here) for generating the necessary control and / or display signals, e.g. for the quality of the engine oil.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Es wird eine Sensoranordnung zur Ermittlung physikalischer Grössen von Flüssigkeiten vorgeschlagen mit elektro-akustischen Wandlern (3, 4), die akustische Oberflächenwellen mit vorgegebenen Wellenmoden erzeugen und detektieren, wobei aus deren Ausbreitungsverhalten ein Mass für physikalische Eigenschaften der Flüssigkeit, insbesondere die Viskosität, ermittelbar ist. Die Sensoranordnung ist auf einem Substrat (1) angebracht, auf dem Leiterbahnstrukturen derart angeordnet sind, dass neben den elektro-akustischen Wandlern (3, 4) zur Viskositätsmessung auch eine Anordnung zur elektrischen Leitfähigkeitsmessung (5), eine Anordnung zur Messung der Dielektrizitätskonstante (7) und eine Anordnung zur Temperaturmessung (6) gebildet ist.

Description

Sensoranordnung zur Ermittlung physikalischer Eigenschaften von Flüssigkeiten
Stand der Technik
Die Erfindung betrifft eine Sensoranordnung zur Ermittlung physikalischer Eigenschaften von Flüssigkeiten nach dem Oberbegriff des Hauptanspruchs.
Es werden beispielsweise mikroakustische Sensoranordnun- gen mit sogenannten akustischen SAW- oder Oberflächenwel- lenbauelementen (SAW = Surface Acoustic Wave) als Sensoren für verschiedenste physikalische Größen in Flüssigkeiten angewandt. Einen wichtigen Bereich bildet hierbei die Messung elektrischer Größen, wie die Dielektrizitätskonstante und/oder die Leitfähigkeit, die Messung mechanischer Größen, wie z.B. die Dichte und/oder die Viskosität.
Bei der bekannten Sensoranordnung wird von einem Mes- sprinzip ausgegangen, das beispielsweise in dem Aufsatz „A study of Love-wave acoustic sensors", J.Du, G.L. Hard- ling, P.R.Ogilvy und M.Lake in der Fachzeitschrift Sen- sors and Actuators A56(1996), Seiten 211 bis 219 beschrieben ist. Mit dem hier beschriebenen Messaufbau ist ein Sensor realisiert, bei dem mit horizontal polarisierten akustischen Scherwellen gearbeitet wird, sog. Leckwellen bzw. Surface Skimming Bulk Wave (SSBW-Wellen) oder Love-Wellen. Diese akustischen Wellenmoden werden mit sogenannten, für sich auch aus dem zuvor erwähnten Stand der Technik bekannten, Interdigitaltransducern erzeugt und auch detektiert, so dass aus dem Ausbreitungsverhalten auf einer Ausbreitungs- oder Messstrecke das gewünschte Sensorsignal gewonnen werden kann.
Insbesondere bei einer Anwendung der Sensoranordnung zur Bestimmung der Qualität von Motor- oder Schmierölen in einem Kraftfahrzeug oder vergleichbaren Maschinen ist es oft notwendig eine Vielzahl von Messgrößen zu gewinnen, um diese als Eingangsgrößen für entsprechende Steuergeräte auszuwerten. Hierbei sind vor allem die Viskosität, die Temperatur, die elektrische Leitfähigkeit und die Dielektrizitätskonstante des Öls von Bedeutung um eine brauchbare Aussage, z.B. zur Überwachung der Ölwechselintervalle, zu erhalten.
Vorteile der Erfindung
Die eingangs erwähnte Sensoranordnung zur Ermittlung von physikalischen Eigenschaften von Flüssigkeiten ist nach der Erfindung mit den kennzeichnenden Merkmalen des Hauptanspruchs in vorteilhafter Weise weitergebildet. Gemäß der Erfindung wird in vorteilhafter Weise eine kompakte Sensoranordnung geschaffen, mit der eine Integration verschiedener einzelner Messwertaufnehmer auf einem Substratplättchen bei kostengünstiger Herstellung ermöglicht ist. Beim der erfindungsgemäßen Sensoranordnung sind in vorteilhafter Weise die elektro-akustischen Wandler, die die akustischen Oberflächenwellen mit vorgegebenen Wellenmoden erzeugen und detektieren, zusammen mit weiteren Messanordnungen angeordnet. Zur Messung der Viskosität der Flüssigkeit wird hier aus dem Ausbreitungsverhalten der akustischen Wellen entlang einer Ausbreitungsstrecke ein entsprechender Messwert in der für sich gesehen bekannten Weise ermittelt. Das Sensorgrundelement ist beispielsweise ein Substrat aus bestimmten Quarz-, Lithiumtantalat- und Lithiumniobatschnitten, die für die eingangs beschriebenen akustischen Schermoden besonders geeignet sind.
Da die Viskosität der Flüssigkeit in der Regel stark temperaturabhängig ist, wird nach der Erfindung in vorteilhafter Weise auf dem Substrat benachbart ein temperaturabhängiger Widerstand als Messanordnung zur Temperaturmessung angebracht. Die Leiterbahnstruktur auf dem Substrat ist aus einer Metallisierungsschicht hergestellt, vorteilhafter Weise aus Platin, wobei sowohl der temperaturabhängige Widerstand als auch die Sende- und Empfangsleiterbahnstrukturen des elektro-akustischen Wandlers aus dieser Platinschicht hergestellt werden kann, so dass nur eine einzige Metallisierungsschicht auf dem Substrat notwendig ist. Platin ist hierbei chemisch außerordentlich resistent, so dass auf Abdeckschichten unter Umständen verzichtet werden kann.
Eine oberhalb der Metallisierungsschicht auf dem Substrat aufgebrachte dielektrische Schicht kann jedoch auch als akustische Wellenleiterschicht für die elektro- akustischen Wandler zusätzlich zur chemischen Passivie- rung angeordnet werden. Es ist auch möglich Titan oder Silizium oder andere Zwischenschichten als Haftschicht zwischen dem Substrat und den elektro-akustischen Wand- lern sowie zwischen den elektro-akustischen Wandlern und weiteren darüberliegenden Schichten vorzusehen.
Neben den elektro-akustischen Wandlern und dem temperaturabhängigen Widerstand kann in vorteilhafter Weise auch mittels unabgedeckter Elektroden eine Anordnung zur elektrischen Leitfähigkeitsmessung aus der Metallisierungsschicht hergestellt werden. Die Leitfähigkeitsmessung erfolgt auf einfache Weise mit einem Gleichstrom oder einem Wechselstrom, der die Flüssigkeit durchströmt.
Weiterhin kann in vorteilhafter Weise mittels einer Kondensatorstruktur aus derselben Metallisierungsschicht eine Anordnung zur Messung der Dielektrizitätskonstante geschaffen werden. Die Kondensatorstruktur kann ebenso wie der elektro-akustische Wandler die Form eines Interdigi- talkondensators haben und gegebenenfalls durch eine zusätzliche Isolierschicht abgedeckt werden; es ist aber auch möglich zur besseren Ankopplung an die zu messende Flüssigkeit diesen unabgedeckt einzusetzen, wobei die chemische Resistenz der Metallisierungsschicht ausgenutzt werden kann.
Auf einfache Weise sind bei der erfindungsgemäßen Anordnung alle Meεsanordnungen zur Ermittlung der einzelnen physikalischen Größen einzeln kontaktierbar und somit sind alle vier Messverfahren an einer entsprechenden Auswerteelektronik zur sequentiellen Messung mit einem einzigen Substrat durchführbar, was besonders für fertigungsgünstige Konstruktionsformen ausgenutzt werden kann. Weiterhin ist auch die gute Wärmekopplung auf dem Substrat vorteilhaft, da bei der Signalauswertung dadurch mit besonders geringen Abweichungen die Temperatur der verschiedenen Messwertaufnehmer zur Verfügung steht, so dass sehr genaue Kompensationsverfahren angewandt werden können . Diese und weitere Merkmale von bevorzugten Weiterbildungen der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei der Ausführungs- form der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird.
Zeichnung
Ein Ausführungsbeispiel einer erfindungsgemäßen Sensoranordnung wird anhand der einzigen Figur der Zeichnung erläutert, die eine schematische Draufsicht auf ein Substrat mit einzelnen Messwerterfassungsanordnungen zeigt.
Beschreibung des Ausführungsbeispiels
Die schematische Ansicht nach der einzigen Figur zeigt den Hauptbestandteil der vorgeschlagenen Sensoranordnung, nämlich ein einseitig poliertes Substratplättchen 1 aus einem piezoelektrischen Werkstoff, in dem horizontal polarisierte akustische Schermoden von einem, über elektrische Anschlüsse 2 kontaktierbaren Interdigitaltransducer 3. anregbar und in einem Interdigitaltransducer 4 als elektro-akustische Wandler detektierbar sind. Die Funktionsweise dieser Anordnung, beispielsweise zur Bestimmung der Viskosität einer Flüssigkeit, ist beispielsweise in dem eingangs zitierten Stand der Technik „ A study of Love-wave acoustic Sensors", J.Du, G.L.Hardling, P.R. Ogilvy und M.Lake in der Fachzeitschrift Sensors and Ac- tuators A5β(1996), Seiten 211 bis 219 beschrieben. Als Substratwerkstoffe für das Substratplattchen 1 sind Y-rotierte Quarzschnitte, einige Lithiumniobat- und Lithiumtantalatschnitte sowie entsprechend gepolte piezoelektrische Keramiken geeignet. Die zuvor beschriebene Messanordnung mit den elektro-akustischen Wandlern zur Messung der Viskosität einer Messflüssigkeit über die Ausbreitung einer Oberflächenwelle und die nachfolgend beschriebenen Messanordnungen sind aus einer Metallisierungsschicht, vorzugsweise aus Platin, und gegebenenfalls Haftschichten strukturiert. Über den elektro-akustischen Wandlern 3 und 4 kann dabei auch eine hier nicht ersichtliche dielektrische Schicht als akustische Wellenleiterschicht angeordnet werden, die auch eine chemische Passi- vierung ermöglicht.
Weiterhin sind auf dem Substrat 1 Elektroden 5 zur Leit- fähigkeitsmessung vorhanden, die mit einem Gleich- oder Wechselstrom beaufschlagt werden. Auf eine Leitfähigkeitsmessung könnte jedoch auch in vielen Anwendungstallen verzichtet werden. Die Temperaturmessung wird hier über ein ebenfalls aus der Metallisierungsschicht strukturierten Widerstandsmäander 6 durchgeführt. Die Anordnung des Widerstandsmäanders 6 kann dabei auch, in Abwandlung der dargestellten Form außerhalb der Ausbrei- tungsstrecke zwischen den Wandlern 3 und 4 liegen.
Für die Messung der Dielektrizitätskonstante ist eine Kondensatorstruktur 7 vorhanden, die zur besseren Ankopp- lung an die zu messende Flüssigkeit entweder unabgedeckt oder mit einer hier gestrichelt gezeichneten Abdeck- schicht 8 zur Verbesserung der chemischen Resistenz versehen ist. Die Messung der Dielektrizitätskonstante und der Leitfähigkeit kann eventuell auch mit den elektro- akustischen Wandlern zur Bestimmung der Viskosität der Flüssigkeit vorgenommen werden, wobei hierzu lediglich eine andere Anregungsfrequenz als die zur Erzeugung der Oberflächenwelle notwendige Frequenz gewählt wird.
Die Messflüssigkeit , z.B. das Motoröl eines Kraftfahrzeuges, fließt zur Bestimmung der physikalischen Eigenschaften an der Substratoberfläche und gegebenenfalls an der Abdeckschicht vorbei und die gewonnenen Messsignale werden an den Kontaktstellen abgenommen und einer hier nicht dargestellten Auswerteeinrichtung zur Erzeugung der notwendigen Steuer- und/oder Anzeigesignale, z.B. für die Qualität des Motoröls, zugeführt.

Claims

Patentansprüche
1) Sensoranordnung zur Ermittlung physikalischer Größen von Flüssigkeiten, mit
- mit elektro-akustischen Wandlern (3,4), die akustische Oberflächenwellen mit vorgegebenen Wellenmoden erzeugen und detektieren, wobei aus deren Ausbreitungsverhalten entlang einer Ausbreitungsstrecke ein Maß für physikalischen Eigenschaften der Flüssigkeit, insbesondere unter anderem der Viskosität der Flüssigkeit, ermittelbar ist, dadurch gekennzeichnet, dass
- die Sensoranordnung auf einem Substrat (1) angebracht ist, auf dem Leiterbahnstrukturen derart angeordnet sind, dass neben der Viskosität auch die Temperatur und mindestens auch die Dielektrizitätskonstante der Flüssigkeit ermittelbar ist.
2) Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass
- neben den elektro-akustischen Wandlern (3,4) mittels einer Kondensatorstruktur (7) eine Anordnung zur Messung der Dielektrizitätskonstante und mittels eines tempera- turabhängigen Widerstandes (6) eine Anordnung zur Temperaturmessung gebildet ist .
3) Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass
- die elektro-akustischen Wandlern (3,4) die Kondensatorstruktur (7) zur Messung der Dielektrizitätskonstante bilden, wobei die Messung bei einer von der Anregungsfrequenz der Oberflächenwellen abweichenden Frequenz erfolgt, und mittels eines temperaturabhängigen Widerstandes (6) eine Anordnung zur Temperaturmessung gebildet ist .
4) Sensoranordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass
- mittels unabgedeckter Elektroden (5) eine Anordnung zur elektrischen Leitfähigkeitsmessung angeordnet ist.
5) Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Leiterbahnstruktur aus einer Metallisierungsschicht auf dem Substrat (1) herstellbar ist.
6 ) Sensoranordnung nach Anspruch 5, dadurch gekennzeichnet, dass
- die Metallisierungsschicht aus Platin ist. und auf einer Haftschicht angeordnet ist. 7) Sensoranordnung nach Anspruch 5, dadurch gekennzeichnet, dass
- die Metallisierungsschicht auf einer Haftschicht angeordnet ist .
8) Sensoranordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass
- oberhalb der Metallisierungsschicht auf dem Substrat (1) eine dielektrische Schicht als akustische Wellenleiterschicht angeordnet ist.
9) Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- alle Anordnung zur Ermittlung der einzelnen physikalischen Größen einzeln kontaktierbar und an eine Auswerteelektronik zur sequentiellen Messung anschließbar sind.
10) Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Sensoranordnung in einem Kraftfahrzeug zur Bestimmung der Qualität des Motoröls eingesetzt wird, wobei das Substrat (1) direkt in das zu messende Öl eintauchbar ist .
PCT/DE1999/003458 1998-11-04 1999-10-28 Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten WO2000026661A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU15490/00A AU749057B2 (en) 1998-11-04 1999-10-28 Sensor arrangement for detecting the physical properties of liquids
JP2000579991A JP2003502617A (ja) 1998-11-04 1999-10-28 液体の物理的性質を測定するためのセンサー装置
EP99957946A EP1127273A1 (de) 1998-11-04 1999-10-28 Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten
KR1020017005559A KR20010090813A (ko) 1998-11-04 1999-10-28 액체의 물리적 성질을 검출하기 위한 센서 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19850799A DE19850799A1 (de) 1998-11-04 1998-11-04 Sensoranordnung zur Ermittlung physikalischer Eigenschaften von Flüssigkeiten
DE19850799.2 1998-11-04

Publications (1)

Publication Number Publication Date
WO2000026661A1 true WO2000026661A1 (de) 2000-05-11

Family

ID=7886644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003458 WO2000026661A1 (de) 1998-11-04 1999-10-28 Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten

Country Status (6)

Country Link
EP (1) EP1127273A1 (de)
JP (1) JP2003502617A (de)
KR (1) KR20010090813A (de)
AU (1) AU749057B2 (de)
DE (1) DE19850799A1 (de)
WO (1) WO2000026661A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667085A (zh) * 2009-11-26 2012-09-12 大陆汽车有限责任公司 用于确定还原剂箱中还原剂的状态的方法
GB2476317B (en) * 2009-12-21 2014-02-12 Wema System As Quality sensor apparatus
US9329163B2 (en) 2010-07-02 2016-05-03 Sartorius Stedim Fmt Sas Device for sensing a parameter related to an electrical phenomenon of biopharmaceutical content and biopharmaceutical container comprising such a sensing device
DE102015016887A1 (de) * 2015-12-22 2017-06-22 Dürr Somac GmbH Vorrichtung zur Messung des Wassergehaltes in Bremsflüssigkeiten

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152777A1 (de) 2001-10-29 2003-05-15 Hydac Electronic Gmbh Vorrichtung und Verfahren zur Bestimmung der Qualität eines Mediums, insbesondere eines Schmier- und/oder Kühlmittels
JP2005534894A (ja) * 2002-06-08 2005-11-17 エルジー イノテック カンパニー リミテッド スリット弾性波を用いたsawセンサ素子およびその方法
DE102004049580A1 (de) * 2004-10-12 2006-04-13 Robert Bosch Gmbh Verfahren zur Erfassung von Zustandsparametern einer Flüssigkeit
DE102006015111A1 (de) * 2006-03-31 2007-10-04 Schaeffler Kg Dreh-, Schwenk- oder Axiallager mit einem Schmierfett-Sensor
AU2010335058B2 (en) * 2009-12-21 2014-11-13 Wema System As Quality sensor apparatus
DE102013009370A1 (de) 2013-06-05 2014-12-11 Hochschule Karlsruhe Vorrichtung zur Messung von Fluideigenschaften und deren Verwendung
EP3156620B1 (de) 2015-10-13 2018-09-12 Plastic Omnium Advanced Innovation and Research Verfahren zur bestimmung der konzentration eines chemischen mittels in einer lösung basierend auf der geschwindigkeit einer druckwelle und system dafür
CN109844469B (zh) * 2016-09-13 2022-05-13 帕塞罗股份有限公司 用于确定和/或监控变压器油的击穿电压的方法和装置
NO20171589A1 (en) 2017-10-05 2019-02-18 Sentec As Level sensor assembly
DE102018210387B4 (de) * 2018-06-26 2023-03-23 Robert Bosch Gmbh Sensorvorrichtung und Verfahren zum Detektieren von Gasen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361729A2 (de) * 1988-09-29 1990-04-04 Hewlett-Packard Company Fühler und Messverfahren unter Benutzung von transversalen Oberflächenwellen
US5741961A (en) * 1993-08-18 1998-04-21 Sandia Corporation Quartz resonator fluid density and viscosity monitor
DE19710358A1 (de) * 1997-03-13 1998-09-24 Bosch Gmbh Robert Mikrostrukturierter Sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361729A2 (de) * 1988-09-29 1990-04-04 Hewlett-Packard Company Fühler und Messverfahren unter Benutzung von transversalen Oberflächenwellen
US5741961A (en) * 1993-08-18 1998-04-21 Sandia Corporation Quartz resonator fluid density and viscosity monitor
DE19710358A1 (de) * 1997-03-13 1998-09-24 Bosch Gmbh Robert Mikrostrukturierter Sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667085A (zh) * 2009-11-26 2012-09-12 大陆汽车有限责任公司 用于确定还原剂箱中还原剂的状态的方法
GB2476317B (en) * 2009-12-21 2014-02-12 Wema System As Quality sensor apparatus
US9329163B2 (en) 2010-07-02 2016-05-03 Sartorius Stedim Fmt Sas Device for sensing a parameter related to an electrical phenomenon of biopharmaceutical content and biopharmaceutical container comprising such a sensing device
DE102015016887A1 (de) * 2015-12-22 2017-06-22 Dürr Somac GmbH Vorrichtung zur Messung des Wassergehaltes in Bremsflüssigkeiten

Also Published As

Publication number Publication date
EP1127273A1 (de) 2001-08-29
DE19850799A1 (de) 2000-05-11
KR20010090813A (ko) 2001-10-19
AU749057B2 (en) 2002-06-20
JP2003502617A (ja) 2003-01-21
AU1549000A (en) 2000-05-22

Similar Documents

Publication Publication Date Title
WO2000026661A1 (de) Sensoranordnung zur ermittlung physikalischer eigenschaften von flüssigkeiten
EP1922809B1 (de) Vorrichtung mit piezoakustischem resonatorelement und deren verwendung zur ausgabe eines signals in abhängigkeit einer resonanzfrequenz
DE19804326B4 (de) Sensor insbesondere zur Messung der Viskosität und Dichte eines Mediums
DE4131969C2 (de) Schmierölüberwachungseinrichtung
DE19850803A1 (de) Sensoranordnung und ein Verfahren zur Ermittlung der Dichte und der Viskosität einer Flüssigkeit
DE19706486A1 (de) Vorrichtung und Verfahren zum Bestimmen des Alterungszustands flüssiger Medien
WO2007028810A1 (de) Vorrichtung mit piezoaküstischem resonatorelement und integriertem heizelement, verfahren zu dessen herstellung und verfahren zur ausgabe eines signals in abhängigkeit einer resonanzfrequenz
EP1127272B1 (de) Oberflächenwellensensor
WO2007087936A2 (de) Vorrichtung und verfahren zur detektion einer substanz in einer flüssigkeit
WO2006097382A1 (de) Verfahren und vorrichtung zur viskositätsmessung von nicht-newtonschen flüssigkeiten, insbesondere motorbetriebsstoffen
AT410737B (de) Piezoelektrisches resonatorelement der kristallographischen punktgruppe 32
EP1745272A1 (de) Sensor
DE10345253B4 (de) Verfahren zum Betreiben eines Zustandssensors für Flüssigkeiten
DE102006030657B4 (de) Fluidsensor zur Messung charakteristischer Eigenschaften eines Fluids
DE102005043036B4 (de) Vorrichtung zur Ermittlung der viskosen Eigenschaften einer Flüssigkeit
WO2007017383A1 (de) Verfahren und vorrichtung zum betreiben eines zustandssensors für flüssigkeiten
DE102004002138A1 (de) Verfahren und Vorrichtung zur Erfassung von physikalischen Eigenschaften eines Gases oder eines Gasgemisches im Bereich eines Hochfrequenz-Resonators
DE102015212257A1 (de) Feuchtesensor, Sensoranordnung und Verfahren zur Bestimmung eines Feuchtegehalts
DE10255943A1 (de) Verfahren zur In-situ-Bestimmung von Öleigenschaften
DE102006041854A1 (de) Sensor, System und Verfahren zur Messung einer Fluideigenschaft
EP1698882A2 (de) Vorrichtung und Verfahren zur Messung von Eigenschaften eines fluiden Mediums

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 15490

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999957946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09807314

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 579991

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017005559

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 15490/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999957946

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017005559

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999957946

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 15490/00

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1020017005559

Country of ref document: KR