WO2000024043A1 - Integrated polycrystalline silicon resistance with carbon or germanium - Google Patents

Integrated polycrystalline silicon resistance with carbon or germanium Download PDF

Info

Publication number
WO2000024043A1
WO2000024043A1 PCT/DE1999/003362 DE9903362W WO0024043A1 WO 2000024043 A1 WO2000024043 A1 WO 2000024043A1 DE 9903362 W DE9903362 W DE 9903362W WO 0024043 A1 WO0024043 A1 WO 0024043A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
polycrystalline
carbon
doping
germanium
Prior art date
Application number
PCT/DE1999/003362
Other languages
German (de)
French (fr)
Inventor
Wolfgang Mehr
Original Assignee
IHP GMBH Innovations for High Performance Microelectronics Institut für innovative Mikroelektronik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHP GMBH Innovations for High Performance Microelectronics Institut für innovative Mikroelektronik filed Critical IHP GMBH Innovations for High Performance Microelectronics Institut für innovative Mikroelektronik
Priority to JP2000577703A priority Critical patent/JP2003526896A/en
Priority to EP99970787A priority patent/EP1129475A1/en
Publication of WO2000024043A1 publication Critical patent/WO2000024043A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Definitions

  • the invention relates to an integrated high-resistance polycrystalline silicon resistor and a method for its production.
  • resistors are used in both analog and digital circuits. These resistances should have the smallest possible tolerances and high stability. Resistors based on polycrystalline materials are a particularly inexpensive variant, but do not achieve sufficient stability and tolerance values, in particular for high-resistance resistors, for many applications.
  • z. B. used by doping, semiconductor resistors. Both amorphous and polycrystalline semiconductor layers, in particular silicon, are used as the base material.
  • Resistance properties such as B. Resistance value, resistance tolerances and temperature stability are essentially by the geometric dimensions of the resistance layer, by the base material used, by the doping elements, by the doping method used, by the doping concentration and by subsequent processes, especially by the temperature / time loads that occur , certainly.
  • stability problems arise due to the grain structure. The reasons for this are in particular the diffusion of the dopants from the single-crystalline regions, the segregation of the dopants at the grain boundaries, the arrest of charge carriers in deep traps of the grain boundaries and the associated formation of polar barriers at the grain boundaries.
  • the resulting increase in the resistance tolerance in particular due to the temperature / time load in subsequent process steps, and the temperature coefficient leads to restrictions in the application of high-resistance polycrystalline resistors.
  • the object of the invention is to propose an integrated high-resistance polycrystalline silicon resistor and a method for its production, in which the tolerance sensitivity during the production process and thus the resistance tolerance value is improved and the temperature coefficient is reduced compared to previous such resistors. Furthermore, it is an object of the invention to increase the stability of such resistors.
  • this object is achieved by reducing the diffusion or the diffusion coefficient of the doping elements within the single-crystalline grains due to the incorporation of carbon and / or by using polycrystalline SiGe with or without the addition of carbon.
  • Diffusion coefficients of the doping elements in particular boron, and thus to reduce or prevent the segregation effects at the grain boundaries or
  • Diffusion of the doping elements leads from the single-crystalline regions. This causes one
  • SiGe as the base material also leads to a reduction in temperature dependence.
  • Carbon and / or germanium are added to the silicon, for example, in situ or by implantation with subsequent annealing.
  • FIG. 1 shows a schematic structure of an integrated polycrystalline resistor.
  • the resistor according to the invention consists of a substrate 1, a dielectric 2, a doped polycrystalline layer 3 and metallic contacts 4.
  • the polycrystalline layer 3 consists of SiGeC, but Si 1 -y C y or SiGe are also within the scope of the invention.
  • the geometric dimensions and the doping of the polycrystalline layer 3 depend on the resistance value to be achieved.
  • a dielectric 2 is deposited on a substrate 1 for the production. Subsequently, the polycrystalline or still amorphous layer 3 is deposited and structured. In addition to the boron doping, carbon and / or germanium are added to the silicon in situ or by implantation with subsequent annealing. The concentrations of boron, carbon and germanium also depend on the resistance value to be achieved.
  • the dielectric 2 is then further deposited and the metallic contacts 4 are produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The invention relates to an integrated high ohmic polycrystalline silicon resistance and to a corresponding production method. The invention aims at providing an integrated high ohmic polycrystalline silicon resistance and a method for the production of said resistance, wherein tolerance sensitivity during production and the value of resistance tolerance are improved and temperature coefficient is reduced in comparison with existing resistances. The invention also aims at enhancing the stability of said resistance. According to the invention, this is achieved by reducing the diffusion or the diffusion coefficients of the doping element in the monocrystalline grains by including carbon and/or by using polycrystalline SiGe with or without adding carbon. Instead of depositing pure, generally amorphous or polycrystalline Si layers and subsequently implanting and tempering or conducting in situ doping with doping elements, e.g. boron, phosphor, arsenic or antimony, Si1-yCy or SiGeC deposition is used.

Description

INTEGRIERTER POLYKRISTALLINER SILIZIUMWDERSTAND MIT KOHLENSTOFF ODER GERMANIUM INTEGRATED POLYCRYSTALLINE SILICON RESISTANCE WITH CARBON OR GERMANIUM
Die Erfindung bezieht sich auf einen integrierten hochohmigen polykristallinen Siliziumwiderstand und ein Verfahren zu seiner Herstellung.The invention relates to an integrated high-resistance polycrystalline silicon resistor and a method for its production.
In der Mikroelektronik werden integrierte Widerstände sowohl in analogen als auch in digitalen Schaltungen bzw. Schaltkreisen verwendet. Diese Widerstände sollten möglichst geringe Toleranzen und eine hohe Stabilität aufweisen. Widerstände auf der Basis polykristalliner Materialien sind eine besonders kostengünstige Variante, erreichen aber insbesondere bei hochohmigen Widerständen für viele Anwendungszwecke keine ausreichenden Slabilitäts- und Toleranzwerte.In microelectronics, integrated resistors are used in both analog and digital circuits. These resistances should have the smallest possible tolerances and high stability. Resistors based on polycrystalline materials are a particularly inexpensive variant, but do not achieve sufficient stability and tolerance values, in particular for high-resistance resistors, for many applications.
In integrierten Schaltkreisen werden aufgrund der Kompatibilität zu den üblichen technologischen Herstellungsverfahren und der relativ einfachen Variationsmöglichkeit, z. B. durch Dotierung, Halbleiterwiderstände verwendet. Als Grundmaterial werden sowohl amorphe als auch polykristalline Halbleiterschichten, insbesondere Silizium, benutzt.In integrated circuits are due to the compatibility with the usual technological manufacturing processes and the relatively easy variation, z. B. used by doping, semiconductor resistors. Both amorphous and polycrystalline semiconductor layers, in particular silicon, are used as the base material.
Widerstandseigenschaften wie z. B. Widerstandswert, Widerstandstoleranzen und Temperaturstabilität werden im wesentlichen durch die geometrischen Abmessungen der Widerstandsschicht, durch das verwendete Grundmaterial, durch die Dotierelemente, durch das verwendete Dotierungsverfahren, durch die Dotierungskonzentration und durch nachfolgende Prozesse, vor allem durch die dabei auftretenden Temperatur/Zeit-Belastungen, bestimmt. Bei hochohmigen Polysiliziumschichten treten aufgrund der Komstruktur Stabilitätsprobleme auf. Die Ursachen hierfür sind insbesondere die Ausdiffusion der Dotanden aus den einkristallinen Gebieten, die Segregation der Dotierstoffe an den Korngrenzen, die Verhaftung von Ladungsträgern in tiefen Traps der Korngrenzen sowie die damit verbundene Bildung von Polentialbarrieren an den Korngrenzen. Die daraus resultierende Erhöhung der Widerstandstoleranz, insbesondere durch die Temperatur/Zeit-Belastung bei nachfolgenden Prozeßschritten, und des Temperaturkoeffizienten führt zu Einschränkungen der Applikation von hochohmigen polykristallinen Widerständen.Resistance properties such as B. Resistance value, resistance tolerances and temperature stability are essentially by the geometric dimensions of the resistance layer, by the base material used, by the doping elements, by the doping method used, by the doping concentration and by subsequent processes, especially by the temperature / time loads that occur , certainly. With high-resistance polysilicon layers, stability problems arise due to the grain structure. The reasons for this are in particular the diffusion of the dopants from the single-crystalline regions, the segregation of the dopants at the grain boundaries, the arrest of charge carriers in deep traps of the grain boundaries and the associated formation of polar barriers at the grain boundaries. The resulting increase in the resistance tolerance, in particular due to the temperature / time load in subsequent process steps, and the temperature coefficient leads to restrictions in the application of high-resistance polycrystalline resistors.
Aufgabe der Erfindung ist es, einen integrierten hochohmigen polykristallinen Siliziumwiderstand und ein Verfahren zu seiner Herstellung vorzuschlagen, bei dem die Toleranzempfindlichkeit während des Herstellungsprozesses und damit der Widerstandstoleranzwert verbessert sowie der Temperaturkoeffizient gegenüber bisherigen derartigen Widerständen verringert wird. Weiterhin ist es Aufgabe der Erfindung, die Stabilität derartiger Widerstände zu erhöhen.The object of the invention is to propose an integrated high-resistance polycrystalline silicon resistor and a method for its production, in which the tolerance sensitivity during the production process and thus the resistance tolerance value is improved and the temperature coefficient is reduced compared to previous such resistors. Furthermore, it is an object of the invention to increase the stability of such resistors.
Erfindungemäß wird diese Aufgabe durch die Reduzierung der Diffusion bzw. des Diffusionskoeffizienten der Dotierelemente innerhalb der einkristallinen Körner aufgrund des Einbaus von Kohlenstoff und/oder durch die Anwendung von polykristallinem SiGe mit oder ohne Kohlenstoffbeigabe erreicht.According to the invention, this object is achieved by reducing the diffusion or the diffusion coefficient of the doping elements within the single-crystalline grains due to the incorporation of carbon and / or by using polycrystalline SiGe with or without the addition of carbon.
Damit ist es möglich, hochohmige Polysiliziumwiderstände, insbesondere mitThis makes it possible to use high-resistance polysilicon resistors, in particular
Schichtwiderständen Rs ≥ 103 Ω/ mit verbesserten Toleranz- und Stabilitätswerten herzustellen.Sheet resistances Rs ≥ 10 3 Ω / with improved tolerance and stability values.
Anstelle der bisher üblichen Abscheidung von reinen, meist amorphen oder polykristallinen Si-Schichten und anschließender Implantation und Temperung oder auch in-situ-Dotierung mit Dotierelementen, z. B. Bor, Phosphor, Arsen oder Antimon, wird eine Abscheidung vonInstead of the usual deposition of pure, mostly amorphous or polycrystalline Si layers and subsequent implantation and tempering or also in-situ doping with doping elements, e.g. B. boron, phosphorus, arsenic or antimony, is a deposition of
Sii.yCy oder SiGeC angewandt.Sii. y Cy or SiGeC applied.
Dabei wird der Effekt ausgenutzt, daß eine Kohlenstoffbeigabe zu einer Reduzierung derThe effect is exploited that a carbon addition leads to a reduction in the
Diffusionskoeffizienten der Dotierelemente, insbesondere Bor, und damit zu einer Reduzierung bzw. Verhinderung der Segrationseffekte an den Korngrenzen bzw. derDiffusion coefficients of the doping elements, in particular boron, and thus to reduce or prevent the segregation effects at the grain boundaries or
Ausdiffusion der Dotierelemente aus den einkristallinen Bereichen führt. Dies bewirkt eineDiffusion of the doping elements leads from the single-crystalline regions. This causes one
Stabilisierung der Potentialbarriere und führt damit zu einer Reduzierung derStabilization of the potential barrier and thus leads to a reduction in
Temperaturabhängigkeit des Widerstandes.Temperature dependence of the resistance.
Die Verwendung von SiGe als Grundmaterial führt ebenfalls zu einer Reduzierung der Temperaturabhängigkeit.The use of SiGe as the base material also leads to a reduction in temperature dependence.
Die Zugabe von Kohlenstoff und/oder Germanium in das Silizium erfolgt beispielsweise in situ oder durch eine Implantation mit anschließender Temperung.Carbon and / or germanium are added to the silicon, for example, in situ or by implantation with subsequent annealing.
Durch die Kombination beider Beigaben in Form einer SiGeC-Schicht verstärken sich die obengenannten Effekte. Mit dem angegebenen Verfahren lassen sich somit hochohmige polykristallineThe combination of both additions in the form of a SiGeC layer increases the effects mentioned above. With the specified method, high-resistance polycrystalline can thus be obtained
Siliziumwiderstände mit reduziertem Temperaturkoeffizienten, erhöhter Stabilität und verbesserten Toleranzwerten herstellen.Manufacture silicon resistors with reduced temperature coefficient, increased stability and improved tolerance values.
Die Merkmale der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen schutzfähige Ausführungen darstellen, für die hier Schutz beansprucht wird.In addition to the claims, the features of the invention also emerge from the description and the drawings, the individual features each representing protectable versions, individually or in a plurality in the form of sub-combinations, for which protection is claimed here.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher erläutert. Fig. 1 zeigt einen schematischen Aufbau eines integrierten polykristallinen Widerstandes. Der erfindungsgemäße Widerstand besteht aus einem Substrat 1 , einem Dielektrikum 2, einer dotierten polykristallinen Schicht 3 und metallischen Kontakten 4. Die polykristalline Schicht 3 besteht aus SiGeC, aber auch Si1 -yCy oder SiGe liegen im Bereich der Erfindung. Die geometrischen Abmessungen und die Dotierung der polykristallincn Schicht 3 richten sich nach dem zu erzielenden Widerstandswert.An embodiment of the invention is shown in the drawing and is explained in more detail below. 1 shows a schematic structure of an integrated polycrystalline resistor. The resistor according to the invention consists of a substrate 1, a dielectric 2, a doped polycrystalline layer 3 and metallic contacts 4. The polycrystalline layer 3 consists of SiGeC, but Si 1 -y C y or SiGe are also within the scope of the invention. The geometric dimensions and the doping of the polycrystalline layer 3 depend on the resistance value to be achieved.
Zur Herstellung wird auf ein Substrat 1 ein Dielektrikum 2 abgeschieden. Anschließend erfolgt eine Abscheidung und Strukturierung der polykristallinen bzw. noch amorphen Schicht 3. Neben der Bor-Dotierung erfolgt die Zugabe von Kohlenstoff und/oder Germanium in das Silizium in situ oder durch eine Implantation mit anschließender Temperung. Die Konzentrationen von Bor, Kohlenstoff und Germanium richten sich ebenfalls nach dem zu erzielenden Widerstandswert. Anschließend erfolgt die weitere Abscheidung des Dielektrikums 2 und die Herstellung der metallischen Kontakte 4.A dielectric 2 is deposited on a substrate 1 for the production. Subsequently, the polycrystalline or still amorphous layer 3 is deposited and structured. In addition to the boron doping, carbon and / or germanium are added to the silicon in situ or by implantation with subsequent annealing. The concentrations of boron, carbon and germanium also depend on the resistance value to be achieved. The dielectric 2 is then further deposited and the metallic contacts 4 are produced.
In der vorliegenden Erfindung wurde anhand eines konkreten Ausführungsbeispiels ein integrierter hochohmiger polykristalliner Siliziumwiderstand und ein Verfahren zu seiner Herstellung erläutert. Es sei aber vermerkt, daß die vorliegende Erfindung nicht auf die Einzelheiten der Beschreibung im Ausführungsbeispiel eingeschränkt ist, da im Rahmen der Patentansprüche Änderungen und Abwandlungen beansprucht werden. In the present invention, an integrated high-resistance polycrystalline silicon resistor and a method for its production were explained on the basis of a specific exemplary embodiment. However, it should be noted that the present invention is not restricted to the details of the description in the exemplary embodiment, since changes and modifications are claimed within the scope of the patent claims.

Claims

Patentansprüche claims
1. Integrierter hochohmiger polykristalliner Siliziumwiderstand, der ein Substrat (1), ein Dielektrikum (2), eine Widerstandsschicht und Kontakte (4) beinhaltet, dadurch gekennzeichnet, daß die Widerstandsschicht aus einer polykristallinen Schicht (3) aus SiC, SiGe oder SiGeC besteht.1. Integrated high-resistance polycrystalline silicon resistor, which includes a substrate (1), a dielectric (2), a resistance layer and contacts (4), characterized in that the resistance layer consists of a polycrystalline layer (3) made of SiC, SiGe or SiGeC.
2. Integrierter hochohmiger Siliziumwiderstand nach Anspruch 1 , dadurch gekennzeichnet, daß die polykristalline Schicht (3) mit Dotierelementen, insbesondere Bor, dotiert ist.2. Integrated high-resistance silicon resistor according to claim 1, characterized in that the polycrystalline layer (3) is doped with doping elements, in particular boron.
3. Integrierter hochohmiger Siliziumwiderstand nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Substrat (1) Kohlenstoff und/oder Germanium enthält.3. Integrated high-resistance silicon resistor according to claim 1 or 2, characterized in that the substrate (1) contains carbon and / or germanium.
4. Verfahren zur Herstellung eines integrierten hochohmigen polykristallinen Siliziumwiderstandes, gekennzeichnet durch die Verfahrensschritte:4. Process for producing an integrated high-resistance polycrystalline silicon resistor, characterized by the process steps:
- Abscheidung eines Dielektrikums (2) auf ein Substrat (1), insbesondere einen Si- Wafer,- Deposition of a dielectric (2) on a substrate (1), in particular a Si wafer,
- Abscheidung und Dotierung einer amorphen oder polykristallinen Schicht (3) aus SiC, SiGe oder SiGeC,Deposition and doping of an amorphous or polycrystalline layer (3) made of SiC, SiGe or SiGeC,
- weitere Abscheidung des Dielektrikums (2) und Herstellung der metallischen Kontakte (4). - Further deposition of the dielectric (2) and production of the metallic contacts (4).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß neben einer Bor-Dotierung die Zugabe von Kohlenstoff und/oder Germanium in das Silizium in situ erfolgt.5. The method according to claim 4, characterized in that in addition to a boron doping, the addition of carbon and / or germanium in the silicon takes place in situ.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß neben der Bor-Dotierung die Zugabe von Kohlenstoff und/oder Germanium in das Silizium durch eine Implantation mit anschließender Temperung erfolgt. 6. The method according to claim 4, characterized in that in addition to the boron doping, the addition of carbon and / or germanium into the silicon is carried out by an implantation with subsequent annealing.
PCT/DE1999/003362 1998-10-21 1999-10-16 Integrated polycrystalline silicon resistance with carbon or germanium WO2000024043A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000577703A JP2003526896A (en) 1998-10-21 1999-10-16 Polycrystalline silicon integrated resistor containing carbon or germanium
EP99970787A EP1129475A1 (en) 1998-10-21 1999-10-16 Integrated polycrystalline silicon resistance with carbon or germanium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19849471.8 1998-10-21
DE1998149471 DE19849471A1 (en) 1998-10-21 1998-10-21 Integrated high ohmic polycrystalline resistor, used in analog and digital circuits, comprises a polycrystalline resistive layer of silicon containing carbon and-or germanium

Publications (1)

Publication Number Publication Date
WO2000024043A1 true WO2000024043A1 (en) 2000-04-27

Family

ID=7885779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003362 WO2000024043A1 (en) 1998-10-21 1999-10-16 Integrated polycrystalline silicon resistance with carbon or germanium

Country Status (4)

Country Link
EP (1) EP1129475A1 (en)
JP (1) JP2003526896A (en)
DE (1) DE19849471A1 (en)
WO (1) WO2000024043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837415B2 (en) 2015-06-25 2017-12-05 International Business Machines Corporation FinFET structures having silicon germanium and silicon fins with suppressed dopant diffusion
CN114284432A (en) * 2021-12-14 2022-04-05 武汉新芯集成电路制造有限公司 Polycrystalline silicon resistor device and manufacturing method thereof, and photon detection device and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001397A1 (en) * 2010-01-29 2011-08-04 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG, 01109 Semiconductor resistors fabricated in a semiconductor device having metal gate structures by reducing the conductivity of a metal-containing cladding material
JP6541620B2 (en) * 2016-06-03 2019-07-10 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558026A (en) * 1978-06-30 1980-01-21 Matsushita Electric Ind Co Ltd Semi-conductor device manufacturing method
JPS5948952A (en) * 1982-09-14 1984-03-21 Sony Corp Manufacture of resistor
EP0116702A2 (en) * 1983-02-18 1984-08-29 International Business Machines Corporation Method for forming polycrystalline silicon resistors having reproducible and controllable resistivities
JPS647549A (en) * 1987-06-30 1989-01-11 Fujitsu Ltd Integrated circuit
EP0859402A2 (en) * 1997-01-21 1998-08-19 Texas Instruments Incorporated Method of manufacturing a MOS electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7501811A (en) * 1975-02-17 1976-08-19 Philips Nv ELECTRICAL RESISTOR WITH A SILICON CARBIDE RESISTANCE BODY WITH NEGATIVE TEMPERATURE COEFFICIENT.
JPS62245602A (en) * 1986-04-17 1987-10-26 鐘淵化学工業株式会社 Temperature detector
EP0688026A1 (en) * 1994-06-17 1995-12-20 General Electric Company Resistor coated on diamond substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558026A (en) * 1978-06-30 1980-01-21 Matsushita Electric Ind Co Ltd Semi-conductor device manufacturing method
JPS5948952A (en) * 1982-09-14 1984-03-21 Sony Corp Manufacture of resistor
EP0116702A2 (en) * 1983-02-18 1984-08-29 International Business Machines Corporation Method for forming polycrystalline silicon resistors having reproducible and controllable resistivities
JPS647549A (en) * 1987-06-30 1989-01-11 Fujitsu Ltd Integrated circuit
EP0859402A2 (en) * 1997-01-21 1998-08-19 Texas Instruments Incorporated Method of manufacturing a MOS electrode

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI V Z-Q ET AL: "Structure and properties of rapid thermal chemical vapor deposited polycrystalline silicon-germanium films on SiO2 using Si2H6, GeH4, and B2H6 gases", JOURNAL OF APPLIED PHYSICS, vol. 83, no. 10, 15 May 1998 (1998-05-15), pages 5469 - 5476, XP000769723, ISSN: 0021-8979 *
PATENT ABSTRACTS OF JAPAN vol. 004, no. 036 (E - 003) 26 March 1980 (1980-03-26) *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 139 (E - 253) 28 June 1984 (1984-06-28) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 181 (E - 750) 27 April 1989 (1989-04-27) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837415B2 (en) 2015-06-25 2017-12-05 International Business Machines Corporation FinFET structures having silicon germanium and silicon fins with suppressed dopant diffusion
CN114284432A (en) * 2021-12-14 2022-04-05 武汉新芯集成电路制造有限公司 Polycrystalline silicon resistor device and manufacturing method thereof, and photon detection device and manufacturing method thereof

Also Published As

Publication number Publication date
DE19849471A1 (en) 2000-04-27
JP2003526896A (en) 2003-09-09
EP1129475A1 (en) 2001-09-05

Similar Documents

Publication Publication Date Title
DE4336135C1 (en) Method for forming n-type conducting and p-type conducting gates in a layer of polycrystalline silicon
EP1597770A1 (en) Bipolar transistor with an improved base emitter junction and method for the production thereof
DE69734456T2 (en) A STABILIZED POLYSILICIDE RESISTANT AND ITS MANUFACTURING METHOD
EP0825638B1 (en) Method of manufacturing fine structures
DE2236279A1 (en) METHOD FOR PRODUCING SURFACE FIELD EFFECT TRANSISTORS, PREFERABLY COMPLEMENTARY SURFACE FIELD EFFECT TRANSISTORS
DE112019007609T5 (en) SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
DE2808645A1 (en) PROCEDURE FOR ADJUSTING THE LEAKAGE CURRENT OF SOS INSULATION FIELD EFFECT TRANSISTORS
DE19841402B4 (en) Method for producing a capacitor of a semiconductor component
EP1129475A1 (en) Integrated polycrystalline silicon resistance with carbon or germanium
DE60120897T2 (en) Production of a CMOS capacitor
DE1947334A1 (en) Semiconductor component and method for its manufacture
DE2515431A1 (en) METHOD OF MANUFACTURING INTEGRATED CIRCUITS
EP1701386A1 (en) Method for intergration of two bilopar transistors on an semiconductor substrate, semiconductor structure in an semiconductor body and an cascod circuit
EP0831520B1 (en) Method of manufacturing a MIS structure on silicon carbide (SiC)
EP0308940A2 (en) Method of manufacturing ohmic contacts having low transfer resistances
EP1050076A1 (en) Method for producing diodes
EP0520214A1 (en) Method of forming a doped region in a substrate and use in the fabrication of a bipolar transistor
WO2003007361A2 (en) Method for producing a bipolar transistor comprising a polysilicon emitter
DE3402188C2 (en)
DE1942239A1 (en) Flat transistor and method of making the same
DE3831555A1 (en) METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE
WO2001063644A2 (en) Method for producing bipolar transistors in a bicmos process
DE10254663A1 (en) Transistor with low-resistance base connection
DE4244771C2 (en) Method for producing a semiconductor device with polysilicon resistance layers
DE19614876C1 (en) Simple mass production of integrated semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999970787

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 577703

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09807947

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999970787

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999970787

Country of ref document: EP