WO2000022656A1 - Exposure system - Google Patents

Exposure system Download PDF

Info

Publication number
WO2000022656A1
WO2000022656A1 PCT/JP1999/005633 JP9905633W WO0022656A1 WO 2000022656 A1 WO2000022656 A1 WO 2000022656A1 JP 9905633 W JP9905633 W JP 9905633W WO 0022656 A1 WO0022656 A1 WO 0022656A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
illumination light
exposure apparatus
optical system
helium
Prior art date
Application number
PCT/JP1999/005633
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Yamashita
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU61218/99A priority Critical patent/AU6121899A/en
Publication of WO2000022656A1 publication Critical patent/WO2000022656A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Definitions

  • the present invention relates to an exposure apparatus used for transferring a mask pattern onto a substrate in a lithographic process for producing, for example, a semiconductor device, a liquid crystal display device, or a thin film magnetic head.
  • the exposure apparatus such as a stepper used for manufacturing a semiconductor device
  • it is required to particularly increase a resolution in order to cope with an improvement in the degree of integration and fineness of the semiconductor device.
  • the resolution is almost proportional to the wavelength of the illumination light
  • the exposure wavelength has been gradually shortened conventionally.
  • the illumination light is changed from the visible g-line (wavelength 436 nm) by the mercury lamp to the ultraviolet i-line (wavelength 365 nm), and recently KrF excimer laser light (wavelength 248 nm) is used. It's swelling.
  • a r F excimer one laser light (wavelength 193 nm), F 2 laser beam (wavelength 157 nm), has been further studied using the Ar 2 laser beam (wavelength 126 nm).
  • conventional: X-ray lithography studies have shown that 13-nm or 7-nm light, which is very close to X-rays in the so-called extreme ultraviolet (EUV or XUV) region, and even 1-nm X-rays Use is also being considered.
  • the optical path of the illumination light is partially or entirely configured to be a sealed space, and an inert gas with high transmittance of the exposure light (for example, helium Gas) or pressurized supply of the gas into the sealed space in consideration of leakage.
  • an inert gas with high transmittance of the exposure light for example, helium Gas
  • the helm may be used in an exposure apparatus using an ArF excimer laser.
  • an optical element unit that is used in illumination optical systems and projection optical systems and has multiple optical elements such as lenses and mirrors arranged in a lens barrel
  • antireflection coating on the inner surface of the lens barrel and fixing of the optical elements are fixed.
  • Contaminants such as organic substances and water are generated from adhesives and fillers used for cleaning, and condensed and adhere to the surface of the optical element, causing a reduction in the illuminance of illumination light and uneven illuminance. May deteriorate.
  • helium has the highest performance as an inert and safe gas, but its extremely low abundance in the earth's crust and the atmosphere, and its small atomic weight means that the above-mentioned sealed space cannot be used.
  • the operating cost of the exposure apparatus is increased because it is easy to leak from gaps between the cover and the lens barrel, etc., which constitute the lens, and the amount of consumption is large. Disclosure of the invention
  • an object of the present invention is to prevent the surface of an optical element or the like existing on the optical path of the illumination light from being contaminated when a gas having a high transmittance (inert) is supplied to at least a part of the optical path of the illumination light.
  • An object of the present invention is to provide an exposure apparatus that can sufficiently prevent the gas consumption and reduce the amount of gas used.
  • an exposure apparatus that irradiates an illumination light from a light source to a mask and transfers an image of a pattern formed on the mask onto a predetermined surface
  • at least a part of an optical path of the illumination light includes: A supply device that supplies a gas that transmits the illumination light, a recovery device that recovers at least a part of the gas supplied to the optical path of the illumination light, and an influence on transfer accuracy of the pattern image onto the predetermined surface.
  • An exposure apparatus comprising: a purifying apparatus that removes an applied substance from the collected gas.
  • the substance that affects the transfer accuracy of the image of the pattern on the predetermined surface includes, for example, a substance that changes optical characteristics.
  • the transfer accuracy refers to the line width accuracy of the pattern, the transfer position accuracy of the pattern, or the displacement accuracy between the patterns when the pattern is transferred onto the photosensitive substrate surface as a predetermined surface.
  • the substance that changes the optical properties is not particularly limited, but includes, for example, a substance that deteriorates the optical properties, a substance that changes the illuminance and the illuminance distribution of the illumination light, and more specifically, , Impurities generated from gases (air, nitrogen gas, helium gas, etc.) existing in the space in the optical path of illumination light, molecules of organic substances generated from adhesives or fillers for fixing the optical element to the lens barrel
  • gases air, nitrogen gas, helium gas, etc.
  • molecules of organic substances generated from adhesives or fillers for fixing the optical element to the lens barrel The impurities generated from the inner wall of the lens barrel (painted surface for anti-reflection, etc.) (for example, water molecules, molecules of carbon at the opening, or other substances that diffuse illumination light), or the surface of optical elements Purified liquid (ether, water, etc.) that has remained is vaporized.
  • the substance that changes the optical characteristics existing on the optical path is removed from the optical path, Variations in characteristics are prevented.
  • the substance that changes the optical characteristics is removed from the collected gas by the purifier to purify the gas, the gas can be reused (recycled). Therefore, the use amount of the gas can be saved, and the operation cost can be greatly reduced when the gas is expensive.
  • gas purified by the purification device Is supplied again to the optical path of the illumination light through the supply device, thereby forming a circulation system.
  • a new gas may be always supplied by the supply device, and the recovered gas may be recovered (purified) and injected (enclosed) into a cylinder or the like, or supplied to another exposure device or the like.
  • the supply destination of the gas by the supply device may be a space including the entire optical path of the illumination light (all the optical paths from the light source to the object to be exposed via the illumination system and the projection optical system).
  • the space may include a part thereof, and may be, for example, a light source, all or a part of an illumination system, or a whole or a part of a projection optical system.
  • a space between the projection optical system and the photosensitive substrate space between the projection optical system and the photosensitive substrate (so-called wafer chamber) or a space between the illumination optical system and the projection optical system (so-called mask chamber) may be used.
  • the operations of the supply device, the recovery device, and the purification device may be always performed. However, it is more efficient to provide a control device and control the operations according to the fluctuation of the optical characteristics.
  • a control device a storage device in which control data including a time and a time at which the purifying device should be operated is stored in advance, and the purifying device is operated according to the control data stored in the storage device.
  • a detection device for detecting the transmittance of a projection optical system that projects the pattern image of the mask onto the photosensitive substrate is provided, and when the amount of change in the detected transmittance exceeds a predetermined value, the purification is performed. The device can also be activated.
  • a chamber defined by the supply device to include at least a part of an optical element in an optical path of the illumination light for supplying the gas (for example, a chamber defined by a chamber, a lens barrel, or the like).
  • a supply port connected to the supply device and a discharge outlet connected to the recovery device, and an on-off valve controllable by the control device at each of the discharge port and the supply port. When not operated, the on-off valve can be closed. In this case, the gas present in the optical path is stabilized by opening the on-off valve to purify the gas at times other than the exposure processing, and closing the enclosing valve at the time of the exposure processing. A stable exposure process can be performed.
  • the contaminant is irradiated with the illumination light so that the contaminant attached to the surface of the optical element is floated using a light cleaning effect.
  • the re-adhesion of contaminants to the optical element is prevented, and the occurrence of reduced illuminance and uneven illuminance is reduced.
  • an inert gas such as helium (He) or nitrogen (N2) can be used as a gas to be supplied and recovered.
  • helium is safe and has high transmittance even when using illumination light in the wavelength range of about 150 nm or less, and has a thermal conductivity that is about 6 times that of nitrogen (N 2 ). Therefore, it has an excellent cooling effect on optical elements.
  • the purification device treats oxygen in the mixed gas with an oxygen absorbing material, and cools nitrogen to separate it from helium. Should be extracted.
  • the purification device treats oxygen in the mixed gas with an oxygen absorbing material, and cools nitrogen to separate it from helium. Should be extracted.
  • the cleaning device is shared by a plurality of exposure devices. Thereby, the equipment cost of the purification device is reduced.
  • FIG. 1 is a schematic configuration diagram in which a part of a projection exposure apparatus and a hair circulation apparatus according to a first embodiment of the present invention is shown in section.
  • FIG. 2 is a schematic configuration diagram in which a plurality of projection exposure apparatuses and one helium circulation apparatus according to a second embodiment of the present invention are partially sectioned,
  • FIG. 3 is a schematic configuration diagram in which a part of a main part of a projection exposure apparatus according to a third embodiment of the present invention is shown in cross section.
  • FIG. 4 is a flowchart of a cleaning process performed by the control device of the projection exposure apparatus according to the third embodiment of the present invention.
  • FIG. 5 is a flowchart of another cleaning process performed by the control device of the projection exposure apparatus according to the third embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of a projection exposure apparatus and a helium circulation apparatus of the present embodiment.
  • a projection exposure system is installed in a clean room on a floor F1 on a certain floor of a semiconductor manufacturing plant, and a projection is performed in a so-called machine room (utility space) on a floor F2 below that floor.
  • a helium circulation device is installed to supply helium gas to the exposure device and to collect and purify it.
  • an F 2 laser light source 3 is placed on the floor F 2, to reduce the occupied area of the floor F 1 by the apparatus main body (footprint), and may reduce the vibration of the apparatus main body.
  • the helium circulating apparatus of the present embodiment may be placed on the floor where the projection exposure apparatus is installed.
  • the supply device may be disposed on the floor F2
  • the recovery device may be disposed on the floor F1 or on the floor.
  • vibration isolation 2 A, 2 box-like case 1 through B is installed, F 2 laser light source 3 as an illumination light source in the casing 1 (oscillation wavelength 1 5 7 nm), a beam-matching unit (BMU) 4 including a movable mirror etc. for positionally matching the optical path with the exposure main body, and a light-blocking pipe 5 through which the illumination light passes.
  • BMU beam-matching unit
  • a box-shaped airtight environment chamber 7 is installed next to the case 1, and a vibration isolator 25 A, 2 is provided in the environment chamber 7 on the floor F1 to attenuate vibration from the floor.
  • the surface plate 24 is installed via 5 B, and the exposure main body 26 is installed on the surface plate 24.
  • a sub-chamber 6 having good airtightness is installed from the pipe 5 protruding from the case 1 to the inside of the environment chamber 7, and the sub-chamber 6 houses most of the illumination optical system.
  • the ultraviolet pulse light IL having a wavelength of 157 nm as illumination light emitted from the F 2 laser light source 3 in case 1 passes through the BMU 4 and the pipe 5 and is sub-channeled.
  • An aperture stop system 12 of an illumination system for changing illumination conditions in various ways is disposed on the exit surface of the fly-eye lens 11.
  • the ultraviolet pulse light IL emitted from the fly-eye lens 11 and passing through a predetermined aperture stop in the aperture stop system 12 passes through the reflection mirror 13 and the condenser lens system 14 and enters the reticle blind mechanism 16.
  • Fixed illumination field stop fixed blind
  • a movable blind 15 B for changing the width of the illumination visual field in the scanning direction is provided separately from the fixed blind 15 A.
  • the ultraviolet pulse light IL shaped like a slit by the reticle blind mechanism 16 passes through the imaging lens system 17, the reflection mirror 18, and the main condenser lens system 19 on the reticle R circuit pattern area.
  • the slit-shaped illumination area is illuminated with a uniform intensity distribution.
  • the space from the light-exiting surface of the light-blocking pipe 5 to the main condenser lens system 19 is housed in the sub-chamber 6, and the space from the inside of the pipe 5 to the light-emitting surface of the F 2 laser light source 3 is also sealed. And communicates with the space in the sub-chamber 6.
  • the piping 31 is provided with an opening / closing valve V11, and the control system 45 controls the opening and closing of the closing valve VI1 to switch between supplying and stopping helium gas to the projection exposure apparatus. be able to.
  • a closing valve VI 3 is provided in the branch pipe 31 a of the pipe 31, and an opening / closing valve VI 4 is provided between the branch pipe 31 b and the projection optical system PL.
  • the helium gas whose temperature is controlled to have a purity equal to or higher than a predetermined purity is contained in the case 1 containing the F 2 laser light source 3 and the BMU 4 via the branch pipe 3 1 c of the pipe 31 and the opening / closing valve VI 2. Is supplied.
  • the opening / closing valves V 12 to V 15 independently by the control system 45, at least one of the case 1, the sub-chamber 6 (illumination optical system), and the projection optical system PL is desired.
  • Helium It is possible to supply gas. Since helium has a small molecular weight and easily leaks, a part of the helium that naturally leaks from the sub-chamber 6 rises and accumulates in the space 7 a near the ceiling of the environmental chamber 7.
  • the projection optical system PL of the present embodiment is a dioptric system (refractive system). However, since glass materials that can transmit such short-wavelength ultraviolet light are limited, the projection optical system PL is connected to a power dioptric system. (The catadioptric system) or a reflective system may be used to increase the transmittance of the ultraviolet pulse light IL in the projection optical system PL.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken parallel to the plane of Figure 1 in a plane perpendicular to the Z axis
  • the Y axis is taken perpendicular to the plane of Figure 1 I do.
  • the reticle R is sucked and held on the reticle stage 20, and the reticle stage 20 can move at a constant speed in the X direction (scanning direction) on the reticle base 21 and the X, Y, and rotation directions. It is mounted so that it can be moved slightly.
  • the two-dimensional position and rotation angle of the reticle stage 20 (reticle R) are controlled by a drive control unit (not shown) equipped with a laser interferometer.
  • the wafer W is held by suction on the wafer holder 22, the wafer holder 22 is fixed on the wafer stage 23, and the wafer stage 23 is placed on the surface plate 24.
  • the wafer stage 23 adjusts the focus position (position in the Z direction) and the tilt angle of the wafer W by an autofocus method so that the surface of the wafer W is aligned with the image plane of the projection optical system PL, and Performs constant-speed scanning in the X direction and stepping in the X and Y directions.
  • the two-dimensional position and rotation angle of the wafer stage 23 (wafer W) are also controlled by a drive control unit (not shown) equipped with a laser interferometer.
  • the reticle R is scanned in the + X direction (or -X direction) at a speed Vr in the + X direction (or -X direction) through the reticle stage 20 through the reticle stage 20 to synchronize with the wafer stage.
  • the wafer W is scanned in the -X direction (or + X direction) at a speed /? Vr (? Is a projection magnification from the reticle R to the wafer W) with respect to the exposure area via 23.
  • the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) is also branched from the helium circulating device downstairs into the piping 31.
  • Helium gas whose temperature is controlled at a predetermined concentration or higher is supplied through the pipe 31b and the on-off valve V14.
  • the helm leaking from the projection optical system PL barrel also rises and accumulates in the space 7 a near the ceiling of the environmental chamber 7.
  • a nitrogen circulator (38 to 40, 82 to 88, 95, etc.) downstairs inside the environmental chamber 7 keeps the oxygen content extremely low and controls the temperature of nitrogen gas (N 2 ) is supplied. Then, the nitrogen gas circulated in the environmental chamber 7 is returned to the nitrogen circulating device through, for example, an exhaust hole on the bottom side of the environmental chamber 7, a pipe 95 connected to the side face thereof, and an opening / closing valve V19 thereof. ing.
  • the light path of the ultraviolet pulse light IL from the emission surface of the F 2 laser light source 3 to the main condenser lens system 19 and the light path of the ultraviolet pulse light IL in the projection optical system PL are: Helium gas, which has high transmittance even for light of about 0 nm or less, is supplied.
  • the transmittance for light of about 190 ⁇ m or less is very small.
  • the nitrogen gas is supplied with poor quality, the optical path passing through the nitrogen gas is extremely short, so the amount of absorption by the nitrogen gas is also small.
  • Helium has a thermal conductivity approximately six times better than that of nitrogen, so the thermal energy accumulated by the irradiation of the ultraviolet pulse light IL in the optical element in the illumination optical system and the optical element in the projection optical system PL Are efficiently transmitted to the cover of the sub-chamber 6 and the lens barrel of the projection optical system PL through the helm.
  • the thermal energy of the cover of the sub-chamber 6 and the lens barrel of the projection optical system PL is supplied to the outside such as downstairs by the temperature-controlled air in the clean room or the temperature-controlled nitrogen gas in the environment chamber 7. Efficiently waste heat. Accordingly, the temperature rise of the illumination optical system and the optical element of the projection optical system PL is extremely low, and the deterioration of the imaging performance is minimized.
  • helium has a very small change in refractive index with changes in atmospheric pressure. Therefore, for example, the amount of change in the refractive index in the projection optical system PL is extremely small, and also in this regard, stable imaging performance is maintained.
  • the helium circulation device of the present embodiment will be described in detail.
  • the helium leaked from the sub-chamber 6 and the helium leaked from the projection optical system PL rise because they are lighter than nitrogen and accumulate in the space 7a near the ceiling.
  • the gas in the space 7 a is a mixed gas containing helium, nitrogen, and air entering from outside the environmental chamber 7.
  • a pipe 33 is connected to the space ⁇ a from the outside of the environmental chamber 7, and the pipe 33 passes through an opening provided in the floor F 1 and communicates with the helium circulating device downstairs.
  • the case 1 is connected to the pipe 33 by the pipe 92, and the pipe 92 is provided with the closing valve V16.
  • the illumination optical system (sub channel, '6) and the projection optical system PL are also connected to the pipe 33 by pipes 93, 94, respectively, and the pipes 93, 94 are respectively provided with opening / closing valves V 17, VI 8 is provided.
  • a suction pump (or fan) 34 is disposed in the middle of the pipe 33 on the bottom side of the floor F 1, and the gas mixture sucked from the space 7 a by the pipe 33 and the pump 34 is Head downstairs to the helium circulator. Then, the mixed gas that has passed through the pump 34 reaches the dust collecting and draining device 35, where minute dust and moisture are removed to avoid clogging of the adiabatic compression / cooling passage.
  • the mixed gas that has passed through the dust collection and drainage device 35 reaches the refrigeration device 37 via the pipe 36, where it is cooled to the temperature of liquid nitrogen by adiabatic compression cooling.
  • the air component mainly composed of nitrogen (N 2 ) liquefied in the refrigerating device 37 is collected in a cylinder 40 via a pipe 38 and a suction pump 39 arranged in the middle of the pipe 38.
  • Air components such as nitrogen vaporized in the cylinder 40 can be reused (recycled), for example.
  • helium which remains as a gas in the refrigeration system 37, is supplied to the pipe 41 and a suction pump 5633
  • a purification device that removes and separates air, nitrogen, and other pollutants as impurities from helium gas by the dust collection and drainage device 35 and the refrigeration device 37 is configured.
  • the refrigeration unit 37 piping 36
  • the post-stage piping 41
  • a removing device 80 for removing impurities contained in the mixed gas is provided between the dust collecting and draining device 35 and the refrigerating device 37.
  • the removal device 80 is an activated carbon filter (for example, Giga Soap manufactured by Niyuyu Co., Ltd.), or Zeolite Filter Yuichi, or a combination thereof, and includes an environmental chamber 7, an illumination optical system, Silicon organic substances such as siloxane (a substance having a Si-0 chain as an axis) or silazane (a substance having a Si-N chain as an axis) existing in the projection optical system PL are removed.
  • one of the siloxanes a substance called “cyclic siloxane”, in which the chain of Si— ⁇ ⁇ ⁇ is formed into a ring, is included in the silicone adhesive, sealing agent, paint, etc. used in projection exposure equipment. This is generated as degassing due to aging. Cyclic siloxane easily adheres to the surface of a photosensitive substrate or an optical element (such as a lens), and when exposed to ultraviolet light, is oxidized to become a SiO 2 -based cloudy substance on the optical element surface.
  • silazane there is HMDS (hexamethyldisilazane) used as a pretreatment agent in the resist coating step.
  • HMDS reacts with water and changes (hydrolyzes) into a substance called silanol.
  • Silanol easily adheres to the surface of a photosensitive substrate, an optical element, or the like, and is further oxidized when exposed to ultraviolet light to become a SiO 2 -based cloudy substance on the surface of the optical element.
  • Silazane generates ammonia by the above-mentioned hydrolysis, and when this ammonia coexists with siloxane, the surface of the optical element is further easily clouded.
  • the removing device 80 also removes the hydroforce. Furthermore, in addition to the above-mentioned silicon-based organic substances, plasticizers (such as phthalsan esters) and flame retardants (phosphoric acid, chlorine-based substances) are also generated as degassed wiring and plastics in the environmental chamber 7. However, in the present embodiment, these plasticizers and flame retardants are also removed by the removal device 80. Even if ammonium ions, sulfate ions, and the like floating in the clean room enter the environment chamber 7, these ions are also removed by the removing device 80.
  • plasticizers such as phthalsan esters
  • flame retardants phosphoric acid, chlorine-based substances
  • High-purity helium gas is supplied from a cylinder 46 filled with high-purity helium gas at a high pressure to the second inlet of the mixing temperature controller 43 through a pipe 47 and an on-off valve 48. Supplied.
  • the liquefied helium may be stored in the cylinder 46.
  • a helium concentration meter for measuring the concentration (or purity) of helium in the pipe 41 through which the purified helium passes through the refrigerating device 37, etc., near the inlet to the mixing temperature control device 43. 44 is installed, and this measurement data is supplied to the control system 45.
  • the control system 45 opens the on-off valve 48 when the concentration of the collected helium measured by the helium concentration meter 44 does not reach the predetermined allowable value, and the mixing temperature is measured from the column 46. Add high-purity helium into the controller 43. Then, when the helium concentration measured by the helium concentration meter 44 is equal to or more than the allowable value, the control system 45 closes the on-off valve 48. In addition, the closing valve 48 is closed even during the period in which the exposure operation is not performed. Note that an oxygen concentration meter may be used instead of the helium concentration meter 44.
  • an impurity concentration sensor oxygen concentration sensor or helium concentration sensor, not shown
  • the measurement result of the impurity concentration sensor is supplied to the control system 45.
  • a factory pipe provided with a flow path switching valve (not shown) is connected between the pump 34 and the purification device. The flow path switching valve is switched by the control system 45 based on the measurement result of the impurity concentration sensor.
  • control system 45 determines that the collected gas contains impurities of a predetermined value or more based on the measurement result of the impurity concentration sensor, the control system 45 sets the collected gas The flow path is switched from the purification device to the factory piping, and the collected gas is discharged through the factory piping. On the other hand, when the concentration of the impurities contained in the recovered gas falls below a predetermined value, the control system 45 switches the flow path of the recovered gas from the factory piping to the purifier to purify the gas.
  • One possible reason for the contamination of the recovered gas with impurities is that after the exposure operation has been stopped for a period of time, the exposure light is applied to the optical elements that constitute the illumination optical system and projection optical system. Has just started. Immediately after exposure light exposure, organic impurities accumulated on the surface of the optical element for a certain period of time are decomposed by the light cleaning effect. As described above, if the gas recovered from the space contains many impurities exceeding the purifying range of the purifying device, not only the life of the purifying device is shortened, but also the purifying efficiency of the purifying device is deteriorated. there is a possibility.
  • the impurity concentration of the gas supplied to the purification device is monitored, and a gas having an impurity concentration corresponding to the allowable range of the purification device is supplied to the purification device, and the allowable range of the purification is determined. If it exceeds, exhausting it through the factory piping can improve the life and purification efficiency of the purification device.
  • the mixing temperature controller 43 mixes the purified helium and the helium from the cylinder 46 within a predetermined pressure range to control the temperature to a predetermined temperature, and controls the temperature and pressure-controlled helium.
  • the components from the dust collection and drainage device 35 to the mixing temperature control device 43 constitute the helium circulation device of the present embodiment.
  • the pipe 31 passes through the opening provided in the floor F 1 on the upper floor and reaches the inside of the clean room on the upper floor, and at the middle of the pipe 31 and on the bottom side of the floor F 1.
  • a blower (or fan) 32 is installed.
  • the helium gas having a concentration equal to or higher than a predetermined value within a predetermined atmospheric pressure range by the mixing temperature controller 43 and controlled to a predetermined temperature is supplied to a pipe 31 and then blown by a pump 32. While being supplied to the inside of the case 1 of the projection exposure apparatus on the floor F1, the inside of the sub-chamber 6, and the inside of the projection optical system PL via the branch pipes 31a, 31b and 31c of the pipe 31. I have.
  • the control system 45 closes the on-off valve VI 1 of the pipe 31 and opens the on-off valves V 16 to V 18 of the pipes 92 to 94, and the pump 3 4 The gas (helium) in case 1, subchamber 6, and projection optics PL Etc.).
  • the opening / closing valves V 16 to V 18 are closed, and the opening / closing valve VI 1 is opened to supply helmets to the case 1, the sub-chamber 6, and the projection optical system PL.
  • the on-off valves V12 to V15 are closed in order from the one at which the concentration reaches a predetermined value. After all the on-off valves VI2 to V15 are closed, the on-off valve V11 is closed.
  • a helium densitometer or an oximeter is provided in each of the case 1, the sub-chamber 6, and the projection optical system PL, and the control system 45 is based on the output of the densitometer. To control the opening and closing of the open / close valves V12 to V15.
  • the main control system (not shown), which controls the entire projection exposure apparatus, checks the operation of the apparatus itself. For example, when the exposure processing of the wafer is in progress, the supply of the helium is continued until the exposure processing is completed. The main control system sends an instruction to the control system 45 to wait for the start.
  • a cylinder for storing the collected helium (for example, a nitrogen cylinder similar to the nitrogen cylinder 40 described above) is provided between the refrigerating device 37 and the mixing temperature adjusting device 43 in FIG. ) May be further provided.
  • the helm in order to be able to store a large amount, it is desirable that the helm be compressed to about 100 to 200 atm by a compressor and stored in the cylinder. This reduces the volume to approximately 1/1000 to 1/200.
  • helium may be liquefied and stored by a liquefier using a turbine or the like. Liquefaction can reduce the volume of the helm to almost 1/700 / 05633.
  • an open / close valve is installed before (upstream) the mixing temperature controller 43 to adjust the amount of helium taken in from a cylinder (not shown) for storing the recovered helium, or to adjust its flow path (pipe 4).
  • the opening and closing of 1) may be controlled.
  • the Helium gas is supplied so as to circulate most of the optical path of the illumination light, but further covers the entire optical path, and also has the cooling efficiency of the reticle stage 20 and the wafer stage 23.
  • helium gas may be supplied to the entire inside of the environmental chamber 7. Even in this case, most of the helium is recovered, so the increase in operating costs is small.
  • the helium purified by the mixing temperature controller 43 and the high-purity helium are mixed, but when the concentration (purity) of the purified helium is low, However, there is a possibility that the density of the helium supplied to the projection exposure apparatus cannot be rapidly increased to an allowable level even if the lithography is simply mixed. In such a case, the purified helium is stored in another cylinder, and the purity is further increased in another recycling factory, etc., and the high-purity helium in the cylinder 46 is supplied to the projection exposure apparatus. May be supplied.
  • the case 1, the sub-champ 6, and the projection optical system PL are filled (filled) with helium using the opening / closing valves V11 to V18, respectively.
  • the helium circulation device is provided, for example, while the opening / closing valves V 16 to V 18 are closed, the amount of helm leaking from the case 1, the sub-chamber 6, and the projection optical system PL can be reduced.
  • the helium may be constantly supplied while adjusting the flow rate of the helium, or helium may be constantly supplied at a predetermined flow rate with the open / close valves V11 to V18 open. In the latter case, it is not particularly necessary to provide the on-off valves V11 to V18.
  • a Helium concentration sensor or an oxygen concentration sensor that measures the Helium concentration in each space of Case 1, Subchamber 6, and the projection optical system PL is placed. May be monitored to determine whether the helium concentration has reached an allowable value. If the helium concentration in each space is reduced, that is, if light-absorbing substances (oxygen or organic impurities, etc.) that absorb the exposure light in each space are present at a predetermined value or more, purification is performed. Helium of high purity instead of supplying helium again
  • helium of high purity is supplied from the cylinder 46 and the helium concentration in the space does not reach the predetermined value, there is a possibility that the helium leaks in the space.
  • a warning may be issued to notify the operator or the operation of the exposure apparatus may be automatically stopped.
  • the pipes 92 to 94 (and the on-off valves V 16 to V 18) connecting the case 1, the sub-chamber 6, and each of the projection optical system PL to the pipe 33 need not be provided.
  • the on-off valves V11 to V15 may not be further provided.
  • helium leaks from the case 1, the sub-chamber 6, and the projection optical system PL, so that the helium is replenished, that is, the helium is constantly maintained so that the helium concentration is maintained at an allowable value or more. Or it may be supplied at any time (regularly).
  • the housing and the F 2 laser light source 3 and the BMU 4 in case 1, apart from storage B MU 4 and the housing and the F 2 laser light source 3, F 2 laser light source 3 Helium may be supplied to the housing and the housing.
  • the F 2 laser light source 3 and the housing may be mechanically connected, and a glass plate through which the F 2 laser is transmitted may be provided as a partition plate for both.
  • the air pressure in case 1, the sub-chamber 6, and the environmental chamber 7 be set higher than the air pressure in the clean room. By doing so, it is possible to prevent impurities in the clean room from flowing into each space. Further, the air pressure in the sub-chamber 6 housed in the environmental chamber 7 and the projection optical system PL is set higher than the air pressure in the environmental chamber 7. Since drive mechanisms such as a reticle stage and a wafer stage are arranged in the environment chamber, impurities generated from these drive mechanisms can be prevented from flowing into the sub-chamber 6 and the projection optical system PL.
  • the nitrogen circulation device of the present embodiment while supplying nitrogen into the environmental chamber 7 through the piping 88, the piping 95, 33 The nitrogen is recovered from the chamber 7 through the chamber 7, that is, the nitrogen is circulated in the chamber 7.
  • the nitrogen concentration in the environmental chamber 7 reaches a predetermined value
  • the supply of nitrogen is stopped, and the piping 88 (or its branch passages 88a, 88b) and the piping 95 are deviated.
  • the valve is closed with the on-off valve V 2 3 (or V 24, V 25), and V 19, and when the nitrogen concentration in the environment chamber 7 becomes lower than a predetermined value, the on-off valve V 2 3 (and V 24 and V 25) may be opened to supply nitrogen.
  • the nitrogen separated from the helium or the like in the refrigerating device 37 is recovered by a pump 39 through a pipe 38 to a cylinder 40. Further, the nitrogen in the cylinder 40 is sent to the temperature controller 86 through the pipe 81 by the pump 83.
  • An open / close valve V 21 is provided in the pipe 81, and a nitrogen concentration meter (or oxygen concentration meter) 82 that measures the concentration of nitrogen sent to the temperature controller 86 is installed.
  • the measured value of 2 is supplied to the control system 45.
  • the control system 45 is an on-off valve for the piping 85 connecting the nitrogen cylinder 84 and the temperature controller 86 when the nitrogen concentration measured by the concentration meter 82 does not reach the predetermined value.
  • the control system 45 keeps the on-off valve V22 closed.
  • the on-off valve V 21 may be closed and only nitrogen from the cylinder 84 may be sent to the temperature controller 86.
  • the temperature controller 86 mixes the recovered and purified nitrogen with the nitrogen from the cylinder 84 to control the temperature and pressure to a predetermined value. To supply.
  • a pump (or fan) 87 is provided on the bottom side of the floor F1 for blowing air. Nitrogen is supplied by this pump 87 to the branch piping 88a, 88g of the piping 88. It is fed into the environmental chamber 7 through b.
  • the outlet of the branch pipe 88a is provided between the projection optical system PL and the wafer W so that nitrogen flows between the projection optical system PL and the wafer W.
  • the branch pipe 88b is branched into two, one outlet is installed between the condenser lens 19 and the reticle R, and the other outlet is connected between the reticle R and the projection optical system PL. is set up.
  • the illumination optical system condenser-one lens Since high-purity nitrogen can be supplied preferentially between 19
  • the projection optical system PL and between the projection optical system PL and the wafer W, the environment chamber 7 is filled with nitrogen and its concentration is increased.
  • the supply amount of nitrogen can be reduced as compared with the case where the pressure is maintained at a predetermined value or more.
  • the condenser lens 19 and the reticle R there may be a plurality of outlets arranged between the condenser lens 19 and the reticle R and a plurality of outlets arranged between the projection optical system PL and the wafer W.
  • nitrogen supplied between the condenser lens 19 and the reticle R and between the projection optical system PL and the wafer W is recovered from the chamber 7 through the pipes 95 and 33.
  • at least one gas recovery pipe is separately provided between the condenser lens 19 and the reticle R, and between the projection optical system PL and the wafer W. It may be provided.
  • the environment chamber 7 is set to a nitrogen atmosphere.
  • air from which impurities have been removed is supplied to the environment chamber 7 so that the space between the illumination optical system and the projection optical system PL and the It is only necessary to supply nitrogen between the optical system PL and the wafer W, and to make both spaces a nitrogen atmosphere.
  • helium may be supplied instead of nitrogen.
  • the pipe 31 and the branch pipes 88a and 88b may be connected, and helium may be supplied to the two spaces.
  • air to be supplied to the environment chamber 7 chemically clean dry air (for example, having a humidity of about 5% or less) from which the above-described organic substances have been removed may be used.
  • This configuration is particularly effective for a projection exposure apparatus using an ArF excimer laser as an exposure light source.
  • nitrogen may be supplied to the case 1, the sub-chamber 6, and the projection optical system PL, or nitrogen may be supplied to the case 1, the sub-chamber 6, and the projection optical system PL. May be supplied with helium.
  • the recovered nitrogen may be compressed to about 100 to 200 atm by a compressor, or may be liquefied by a liquefier using an evening bottle or the like and stored in a cylinder 40.
  • the opening / closing valves V 24 and V 25 provided in the branch pipes 88 a and 88 b are provided between the illumination optical system and the projection optical system PL, and between the projection optical system PL and the wafer W. Nitrogen can be supplied to only one of the two spaces. When supplying them simultaneously, the opening / closing valves V 24 and V 25 need not be provided.
  • nitrogen is caused to flow between the illumination optical system and the projection optical system PL, and between the projection optical system PL and the wafer W, but branch pipes 88a and 88b are provided.
  • a pipe 88 may be simply connected to the environmental chamber 7 to close the closing valve V23 when the nitrogen concentration in the environmental chamber 7 becomes equal to or higher than a predetermined value.
  • nitrogen is supplied at a predetermined flow rate with the on-off valves V23 and V19, and the nitrogen is circulated in the environmental chamber 7. May be. In this case, it is not particularly necessary to provide the on-off valves V23 and V19.
  • nitrogen (or helium) or the like is supplied into the environment chamber 7.
  • the environment chamber 7 is chemically clean and temperature controlled. It may be sufficient to supply supplied air.
  • the exposure wavelength is about 190 nm or more
  • the inside of the environmental chamber 7 may be an air atmosphere.
  • most of the illumination optical system is housed in the sub-chamber 6 and a part of the sub-chamber 6 is installed in the environment chamber ⁇ .
  • all of the sub-chamber 6 is installed in the environment chamber 7. You may. In this case, the recovery rate of the helium leaking from the sub-chamber 6 can be improved.
  • the sub-chamber 6 outside the environmental chamber 7 is covered with a housing, and a pipe 33 is connected to the upper part of the housing.
  • a single gas nitrogen, helium, etc.
  • nitrogen and helium are mixed at a predetermined ratio.
  • a gas may be supplied.
  • the piping 31 of the nitrogen circulation device may be connected to the piping 31 of the steam circulation device downstream of the on-off valve V11.
  • the mixed gas is not limited to the combination of nitrogen and helium, but may be combined with neon, hydrogen, or the like. Further, the gas supplied to the environment chamber 7 may be the above-mentioned mixed gas.
  • Second Embodiment a second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment helms from a plurality of projection exposure apparatuses are purified by a single helm circulation apparatus.
  • portions corresponding to FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the pipes 92-94 connecting the pipe 33 to each of the case 1, the sub-chamber 6, and the projection optical system PL shown in Fig. 1 and the pipe 95 connecting the pipe 33 to the environmental chamber 7 are shown. Omitted.
  • the items described in the first embodiment that are not described in the second embodiment can be similarly applied to the second embodiment.
  • FIG. 2 is a cross-sectional view showing a plurality of projection exposure apparatuses and one helical circulation apparatus of the present embodiment.
  • a plurality of environmental chambers 7A, 7B, and 7C are installed on a floor F1, and each of the environmental chambers 7A, 7B, and 7C has the same exposure as that of the exposure main unit 26 of FIG.
  • the main body is installed, and an unillustrated illumination light source is arranged in close proximity.
  • Helium gas of a predetermined purity or higher is supplied into the environmental chambers 7A, 7B, and 7C from a not-shown helm supply device (not shown).
  • the common pipe 49 passes through an opening in the floor F1 and communicates with the helm circulation device on the floor F2 below the floor.
  • the suction pump 34 is installed on the bottom side of the floor F 1 of the common pipe 49.
  • the helium, nitrogen, and air mixed gas collected through the common pipe 49 and the suction pump 34 in the lower-stage helm circulation device reaches the refrigerating device 37 via the dust collecting and draining device 35, and is refrigerated.
  • the nitrogen liquefied in 37 is sealed in a cylinder 40.
  • the helium that has not been liquefied in the refrigerating device 37 is further purified by a chemical filter (not shown) or the like, and compressed, for example, at a high pressure into a cylinder 50 for accumulating helium by a pipe 41 and a suction pump 42. Enclosed.
  • This helium is supplied via a pipe 51 provided in a cylinder 50 to a regeneration plant for further increasing the purity or to a helium supply device shown in FIG.
  • the helium recovery device (33A to 33C, 34 to 42, 49, 50, 80) in FIG. 2 also serves as the nitrogen recovery device. Therefore, a plurality of projection exposure units and one nitrogen supply unit (piping 81 in Fig. 1)
  • the nitrogen supply device supplies the nitrogen stored in the tank 40 to a plurality of projection exposure apparatuses. This makes it possible for a plurality of projection exposure apparatuses to double as one nitrogen circulation apparatus.
  • a single helium circulating device and a nitrogen circulating device are used for a plurality of exposure devices, so that the purification cost is reduced.
  • the third embodiment actively purifies helium gas while purifying helium gas with respect to a lens unit (projection lens unit) constituting a part or all of the projection optical system PL in the first embodiment and the second embodiment.
  • a lens unit projection lens unit
  • lens 63, 64, 65 are provided at predetermined intervals in a lens barrel 62 of the projection lens unit 61, and are fixed by a retaining ring 66.
  • Reference numeral 67 denotes a lens separating ring for maintaining a predetermined interval between the lens 64 and the lens 65.
  • the projection lens unit 61 has many lenses, but only three of them are shown in FIG. 3 to simplify the explanation.
  • Lens chambers R 1 and R 2 are defined between the lenses 63 and 64 and between the lenses 64 and 65 by these lenses and the inner wall of the lens barrel 62.
  • the lens chamber R1 is provided with a gas supply port G1 to which the quick force bra Q1 is mounted and a gas discharge port G2 to which the quick breaker Q2 is mounted.
  • the lens chamber R2 is provided with a gas supply port G3 to which the quick force bra Q3 is attached and a gas outlet G4 to which the quick coupler Q4 is attached.
  • Pipe L1 is connected to the output side of a supply device 72 including a pump, a control valve, and the like controlled by the control device 71, and the other end of the pipe L1 is branched into two ends.
  • Pipe L2 is connected to the gas supply port G1, and the other pipe L3 is connected to the gas supply port G3.
  • Pipe L 2 and pipe L 3 are each controlled by the control device 7 1 Open / close valves (control valves) VI and V3 are installed.
  • One end of a pipe L4 is connected to the input side of the purifier 73, and the other end of the pipe L4 is branched into two, one of which is connected to the gas outlet G2, and the other of which is connected to the gas outlet G2.
  • L 6 is connected to gas outlet G 4.
  • Opening / closing valves (control valves) V 2 and V 4 controlled by the control device 71 are interposed in the pipe L 5 and the pipe L 6, respectively.
  • the output side of the purification device 73 is connected to the input side of the supply device 72 via a pipe L7.
  • a cylinder 74 into which high-purity helium gas is press-fitted is connected to another input side of the supply device 72 via a pipe L8.
  • the purifying device 73 is a device for regenerating high-purity helium gas by separating and removing contaminants (solid fine particles, liquid fine particles, and gas) contained in the input helium gas as the gas to be purified.
  • contaminants solid fine particles, liquid fine particles, and gas
  • the gas initially present in each of the lens chambers R 1 and R 2 of the lens unit 61, impurities contained therein, and optical elements such as lenses are fixed to the lens barrel.
  • an ion-exchange resin, ion-exchange fiber, or the like can be used as the ion-removal filter, and the surface area and the reaction rate are large and the molding process is easy. Therefore, ion exchange fiber is suitable for gas treatment. Ion exchange fibers are made, for example, by radiation graph polymerization from polypropylene fibers. As a filter for removing water and the like, an adsorbent such as activated carbon, silica gel, and zeolite can be used.
  • the control device 71 is a device including a microcomputer for controlling the operation of the supply device 72, the purification device 73, and the valves V1 to V4 to perform the purification process at an appropriate timing. And a storage device 75 in which control data including the timing and time of performing the purification process is stored in advance. The control data is created so as to be most effective empirically, experimentally, or theoretically, and is stored in the storage device 75. Further, the storage device 75 stores the operation history of the exposure apparatus, that is, the exposure history such as the irradiation time of the illumination light to the illumination optical system or the projection optical system and the time during which the illumination light is not irradiated. Is also good.
  • control device 71 performs the processing shown in the flowchart of FIG.
  • the control data is read from the storage device 75 (ST 1), and it is determined whether or not it is time to perform the purification process based on the data on the time to perform the purification process (ST 2). If it is time to carry out the purification treatment, pre-irradiation of illumination light is performed to remove contaminants adhering to the surface of the lens etc. by utilizing the light cleaning effect of ultraviolet rays. Float (ST 3).
  • the preliminary illumination light irradiation time is determined in consideration of the past operation time of the exposure apparatus, that is, the exposure time of the illumination light to the optical system and the exposure history such as the time when the illumination light is not irradiated. .
  • a promoting gas such as ozone for promoting the light cleaning effect may be supplied into the optical path.
  • the on-off valves V1 to V4 of the lens unit 61 are closed, so here, the on-off valves VI to V4 are opened (ST4), and the supply device 72 and Activate the purifier 73 to start circulation and purification of helium gas (ST 5).
  • a new helium gas or purification device from the cylinder 74 is supplied by the supply device 72.
  • Can be The contaminants contained in the helium gas are separated and removed by the purification device 73, and the purified helium gas is sent to the supply device 72 via the pipe L7.
  • the control for performing the purification process by the controller 71 described above is performed in accordance with the control data stored and held in the storage device 75 in advance, but as shown in FIG. 5, the light transmittance is measured.
  • control can be performed so as to perform the purification process according to the actual pollution situation.
  • An illuminance sensor (detection device) 76 that detects the illuminance of the illumination light is provided on the wafer stage that holds the wafer to be exposed, and the illuminance of the illumination light is monitored to detect the light transmittance (ST 1).
  • the variation of the light transmittance is compared with a predetermined value stored in the storage device 75 in advance (ST2), and when the detected variation of the light transmittance exceeds the predetermined value (larger).
  • pre-irradiation of illumination light is carried out in advance to float contaminants adhering to the surface of the lens etc. using the light washing effect of ultraviolet rays (ST 3).
  • Preliminary illumination light irradiation time is obtained from a difference between a predetermined value stored and held in the storage device and the detected variation in light transmittance. In other words, when the difference between the fluctuations is large, the irradiation time is long, and when the difference between the fluctuations is small, the irradiation time is short.
  • the on-off valves V1 to V4 of the lens unit 61 are closed, the on-off valves VI to V4 are opened (ST4), and the supply device 72 and the purification device 73 are operated. Start gas circulation and purification (ST 5).
  • a new helm gas or a purification device from the cylinder 74 by the supply device 72 Either one of the purified gas or a mixture thereof is supplied to the piping LI, L2, L3, and the interior of each lens chamber R1, R2 of the lens unit 61 is cleaned with clean gas.
  • Sent to Contaminants contained in the helium gas are separated and removed by the purification device 73, and the purified helium gas is sent to the supply device 72 via the pipe L7, thereby circulating the helium gas in the same manner. Is performed.
  • the light transmittance is detected again by the illuminance sensor 76 on the wafer stage (ST 6), and the fluctuation amount of the detected light transmittance is set in advance, and the predetermined value stored in the storage device 75 is stored. (ST7) which is equal to or smaller than the predetermined value used for comparison in ST2, and when the detected light transmittance variation does not exceed the predetermined value (if small)
  • ST7 which is equal to or smaller than the predetermined value used for comparison in ST2, and when the detected light transmittance variation does not exceed the predetermined value (if small)
  • the operation of the supply device 72 and the purification device 73 is stopped (ST8), the on-off valves VI to V4 are closed (ST9), and the purification process ends.
  • the illuminance is detected by the illuminance sensor provided on the wafer stage, and the amount of change in light transmittance is obtained.
  • the variation is compared with a predetermined value, but a non-uniformity sensor for detecting the illuminance distribution of the illumination light is provided on the wafer stage, and the difference between the maximum value and the minimum value of the detected illuminance distribution is determined. Is compared with a predetermined value set in advance to perform the purification process, or the purification process can be terminated.
  • the position of the illuminance sensor is not limited to the position on the wafer stage.
  • Beam splitters are provided upstream and downstream of the lens unit 61 to monitor the illuminance of the branched light, and the illuminance and the illuminance distribution of the module are monitored. , The amount of change in illuminance, light transmittance, or the amount of change in light transmittance is compared with a predetermined value set correspondingly, and a purifying process is performed based on the result, or the purifying process is terminated. You may do so.
  • Either the control process shown in FIG. 4 or the control process shown in FIG. 5 can be selected and adopted, or a combination thereof can be used.
  • these control processes are performed at times other than the exposure process of exposing and transferring the reticle pattern onto the wafer, for example, immediately before the start of the operation of the exposure apparatus, and the exposure process for one lot is completed. It may be performed immediately before performing the exposure processing on the next lot, or may be performed immediately before the exposure processing on the next wafer is completed after the exposure processing on one wafer is completed. This is because, if gas is circulated during the exposure processing, exposure accuracy may be adversely affected by pressure fluctuations and temperature fluctuations in the lens chambers R 1 and R 2 of the lens unit 61.
  • the on-off valves V1 to V4 are opened only during the cleaning process, and the on-off valves V1 to V4 are closed during the exposure process, so that the inside of the lens chambers R1 and R2 of the lens unit 61 can be reduced. Is prevented from flowing and a stable state can be obtained.
  • an on-off valve is provided in each of the pipes L 2, L 3, L 5, and L 6 so that the flow of helium gas can be controlled in each of the lens chambers R 1 and R 2.
  • the closing valves V 1 to V 4 are deleted and piping valves L 1 and L 4 are provided with on-off valves respectively.
  • the flow of gas in each of the lens chambers Rl and R2 may be commonly controlled.
  • the gas supply ports G1, G3 and the gas discharge ports G2, G4 are not provided for all the lens chambers R1, R2. Piping may be provided only in the chamber.
  • the lens unit 61 shown in FIG. 3 is a lens unit used for the projection optical system.
  • the lens unit to be purified is not limited to the lens unit having such a configuration, but may be another configuration used for the projection optical system.
  • An exposure apparatus can be configured by applying the above-described gas purification system to a lens unit having a lens unit or a lens unit used in an illumination optical system.
  • the present invention is not limited to the lens unit, and can be similarly applied to an optical element unit using a lens and a reflecting mirror or an optical element unit using only a reflecting mirror.
  • helium gas is used as a gas having a high (inert) transmittance with respect to illumination light and a good thermal conductivity, but such a gas other than helium (
  • the present invention can be applied to the case where high-purity nitrogen, neon (Ne), or a mixed gas of helium and nitrogen is used.
  • the exposure apparatus that employs a device that emits F excimer laser light (wavelength 157 nm) as a light source has been described.
  • KrF excimer laser light wavelength 248 nm
  • a rF excimer laser beam wavelength: 19 3 nra
  • those employing what emits Ar 2 laser beam wavelength 126 nm
  • a so-called extreme ultraviolet (EUV, or XUV) wavelength close to almost X-ray of the area 13
  • EUV, or XUV extreme ultraviolet
  • the step-and-scan type reduced projection type scanning exposure apparatus (scanning stepper) has been described.
  • the entire surface of the reticle pattern is kept in a state where the reticle and the wafer are stationary. Irradiating the illuminating light for exposure to the reticle pattern
  • Step of Batch Exposure of (Shot Area) The present invention can be similarly applied to a reduction projection type exposure apparatus (stepper) of the repeat type, and further to an exposure apparatus of the mirror projection type or the proximity type. it can.
  • Projection optical systems are not limited to those in which all optical elements are refractive elements (lenses), but are reflective elements.
  • the optical system may include only a mirror (such as a mirror), or may be a catadioptric optical system including a refracting element and a reflecting element (such as a concave mirror or a mirror).
  • the projection optical system is not limited to the reduction optical system, but may be an equal-magnification optical system or an enlargement optical system.
  • a single-wavelength laser in the infrared or visible range emitted from a DFB semiconductor laser or a fiber laser is used as the exposure illumination light.
  • a fiber amplifier doped with erbium (or both erbium and dietary beams) is used.
  • a harmonic that has been amplified by and converted to ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 m, the 8th harmonic whose generation wavelength is in the range of 189 to 199 nm, or the generation wavelength of 151 to 159 nm The 10th harmonic within the range is output.
  • an 8th harmonic in the range of 193 to 194 nm that is, ultraviolet light having substantially the same wavelength as the ArF excimer laser can be obtained.
  • 1 5 7 ⁇ 1 1 0 fold higher harmonics in the range of 5 8 nm, i.e. F 2 laser and ultraviolet light having almost the same wavelength can be obtained.
  • the oscillation wavelength is in the range of 1.03 to 1.12 ⁇ 111
  • a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.0. 0 9 9-1.
  • the present invention is not limited to a projection exposure apparatus used for manufacturing a semiconductor device, a liquid crystal display, a thin film magnetic head, and an image pickup device (such as a CCD), but also includes a glass substrate or a silicon wafer for manufacturing a reticle or a mask.
  • the present invention can be applied to a projection exposure apparatus that transfers a circuit pattern.
  • DUV Fluor UV
  • VUV Vertical UV
  • a transmission type reticle In an exposure apparatus using light or the like, a transmission type reticle is generally used, and as a reticle substrate, quartz glass, quartz glass doped with fluorine, fluorite, magnesium fluoride, or quartz crystal is used. Are used.
  • a reflective mask is used in an EUV exposure apparatus, and a transmission mask (stencil mask, membrane mask) is used in a proximity type X-ray exposure apparatus or a mask projection type electron beam exposure apparatus.
  • a silicon wafer is used.
  • the illumination optical system composed of a plurality of lenses and the projection optical system are incorporated into the main body of the exposure apparatus for optical adjustment, and the reticle stage and wafer stage consisting of many mechanical parts are attached to the main body of the exposure apparatus and wired. And pipes, and connect Case 1, the illumination optical system (subchamber 6), the projection optical system PL, and the environmental chamber 7 to the helium circulator and nitrogen circulator, etc.
  • the operation of the exposure apparatus according to the above-described embodiment can be manufactured by performing the above operations. It is desirable to manufacture such an exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
  • helium gas and nitrogen gas Pipes supplied to the space should be made of a material with reduced generation of impurity gas (degas) (for example, stainless steel, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoride). It is desirable to use an ethylene-hexafluorobutene benzene copolymer or other various polymers).
  • degas impurity gas
  • a semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on this design step, a step of manufacturing a wafer from a silicon material, and a step of forming a reticle pattern by the exposure apparatus of the above-described embodiment. It is manufactured through the steps of exposing to the wafer, light transfer, device assembly steps (including dicing, bonding, and packaging processes), and inspection steps.
  • a gas that transmits the illumination light is supplied to at least a part of an optical path of the illumination light, and at least one of the gases is supplied. This is performed when the part is recovered and a substance that affects the transfer accuracy of the pattern image is removed from the recovered gas.
  • a gas that transmits illumination light is supplied between the projection optical system and the photosensitive substrate, and at least a part of the gas supplied to the space is recovered, and the gas is transmitted through the projection optical system. Then, the image of the pattern is transferred onto the photosensitive substrate.
  • a step of exposure transfer is performed while performing the operation described in the first, second, and third embodiments, or after the operation.

Abstract

An exposure system which is provided with an illuminating optical system for applying an illuminating light (IL) from a light source (1) to a reticle (R), which exposes a wafer (W) as a photosensitive substance to an illuminating light via the reticle (5), and which comprises a supply device (31, 32, 43, 46) for supplying a gas (e.g. helium gas) high in transmittance to an illuminating light to a sealed chamber (lens barrel, etc.) including at least a part (e.g. a projection optical system (PL), an illuminating optical system, the light source (1)) of an illuminating light path, a recovering device (33, 34) for recovering at least part of the supplied gas, and a purifying device (35, 37, 80) for removing from the recovered gas substances which change optical characteristics in a gas-supplied atmosphere.

Description

明 細 書 露 光 装 置 技術分野  Description of exposure equipment Technical field
本発明は、 例えば半導体素子、 液晶表示素子、 又は薄膜磁気ヘッド等を製造す るためのリソグラフイエ程でマスクパターンを基板上に転写するために使用され る露光装置に関する。 背景技術  The present invention relates to an exposure apparatus used for transferring a mask pattern onto a substrate in a lithographic process for producing, for example, a semiconductor device, a liquid crystal display device, or a thin film magnetic head. Background art
例えば半導体デバイスを製造する際に使用されるステッパー等の露光装置にお いては、 半導体デバイスの集積度及び微細度の向上に対応するため、 特に解像力 を高めることが要求されている。 その解像力は、 ほぼ照明光の波長に比例するた め、 従来より露光波長は次第に短波長化されている。 即ち、 照明光は水銀ランプ による可視域の g線 (波長 436 nm) から紫外域の i線 (波長 365 nm) へ と代わり、 最近では KrFエキシマレ一ザ光 (波長 248 nm) が使用されるよ うになつている。 そして、 現在は、 A r Fエキシマレ一ザ光 (波長 193 nm) 、 F2 レーザ光 (波長 157 nm) 、 更には Ar2 レーザ光 (波長 126 nm) の 使用が検討されている。 更に、 従来からの: X線リソグラフィの研究によって、 い わゆる極端紫外 (EUV、 又は XUV) 域の殆ど X線に近い波長 13nm、 又は 7 nmの光、 更には波長 1 nmの X線等の使用も検討されている。 For example, in an exposure apparatus such as a stepper used for manufacturing a semiconductor device, it is required to particularly increase a resolution in order to cope with an improvement in the degree of integration and fineness of the semiconductor device. Since the resolution is almost proportional to the wavelength of the illumination light, the exposure wavelength has been gradually shortened conventionally. In other words, the illumination light is changed from the visible g-line (wavelength 436 nm) by the mercury lamp to the ultraviolet i-line (wavelength 365 nm), and recently KrF excimer laser light (wavelength 248 nm) is used. It's swelling. And, now, A r F excimer one laser light (wavelength 193 nm), F 2 laser beam (wavelength 157 nm), has been further studied using the Ar 2 laser beam (wavelength 126 nm). In addition, conventional: X-ray lithography studies have shown that 13-nm or 7-nm light, which is very close to X-rays in the so-called extreme ultraviolet (EUV or XUV) region, and even 1-nm X-rays Use is also being considered.
しかし、 A rFエキシマレ一ザ光程度以下の波長域、 即ちほぼ 200 nm程度 以下の真空紫外域 (VUV) では、 空気中の酸素による吸収が起こってオゾンが 発生し、 透過率が低下してしまう。 そこで、 例えば A rFエキシマレーザ光を使 用する露光装置では、 照明光の光路の大部分の気体を窒素で置き換える、 いわゆ る窒素パージが行われる。 更に、 A rFエキシマレーザの波長よりも短い波長域 (190 nm程度以下) 、 特に F2 レーザ程度以下の波長域では窒素でも吸収が ある。 この場合、 窒素を通過する領域がごく狭い領域であれば、 その吸収量は少 なく露光には支障があまりないが、 長い光路では光量が減少して適正な露光量が 得られなくなる。 そこで、 1 9 0 n m程度以下の波長域の光を使用する場合には、 その光の光路の大部分をその光を透過する別の気体で置き換えるか、 又は真空に する必要がある。 However, in the wavelength range below the ArF excimer laser light, that is, in the vacuum ultraviolet range (VUV) below about 200 nm, absorption by oxygen in the air occurs, generating ozone and reducing the transmittance. . Therefore, for example, in an exposure apparatus using an ArF excimer laser beam, a so-called nitrogen purge is performed in which most of the gas in the optical path of the illumination light is replaced with nitrogen. Furthermore, a wavelength range shorter than the wavelength of A rF excimer laser (more than about 190 nm), an absorption at nitrogen, especially F 2 laser about a wavelength range. In this case, if the area passing through nitrogen is a very narrow area, the absorption amount is small and there is not much hindrance to the exposure. No longer available. Therefore, when using light in the wavelength range of about 190 nm or less, it is necessary to replace most of the optical path of the light with another gas that transmits the light, or to create a vacuum.
上記の如く、 露光装置において、 1 9 0 n m程度以下の波長域の照明光を使用 する場合には、 その光路の大部分を極めて純度の高い窒素あるいは窒素よりも吸 収率の小さい気体で置き換えるか、 又は真空にすることが望ましい。 ところが、 後者のように光路の大部分を真空にするのでは、 真空に耐える構造にしなければ ならないため、 露光装置の製造コストが上昇する。  As described above, when illuminating light in the wavelength range of about 190 nm or less is used in an exposure apparatus, most of the optical path is replaced with extremely pure nitrogen or a gas having a smaller absorption rate than nitrogen. Or a vacuum is desirable. However, if a large part of the optical path is evacuated as in the latter case, the structure must withstand the vacuum, which increases the manufacturing cost of the exposure apparatus.
このような問題に対処するため、 照明光の光路を部分的にあるいは全体的に密 封空間となるように構成して、 その内部に不活性で露光光の透過率が高い気体 (例えば、 ヘリウムガス) を封入し、 あるいは漏洩を考慮して当該気体を当該密 封空間に与圧供給することが行われている。 なお、 例えば投影光学系が反射屈折 系である場合などでは、 ヘリゥムは A r Fエキシマレーザを用いる露光装置で使 用されることもある。  In order to deal with such problems, the optical path of the illumination light is partially or entirely configured to be a sealed space, and an inert gas with high transmittance of the exposure light (for example, helium Gas) or pressurized supply of the gas into the sealed space in consideration of leakage. Note that, for example, when the projection optical system is a catadioptric system, the helm may be used in an exposure apparatus using an ArF excimer laser.
しかしながら、 例えば、 照明光学系や投影光学系に用いられる、 鏡筒内に複数 のレンズやミラー等の光学素子を配置してなる光学素子ュニットでは、 鏡筒内面 の反射防止塗装や光学素子を固定するための接着剤や充填材等から有機物質や水 分等の汚染物質が発生し、 光学素子の表面に凝集 ·付着して照明光の照度の低下 や照度ムラを発生させる等、 光学特性を劣化させる場合がある。  However, for example, in an optical element unit that is used in illumination optical systems and projection optical systems and has multiple optical elements such as lenses and mirrors arranged in a lens barrel, antireflection coating on the inner surface of the lens barrel and fixing of the optical elements are fixed. Contaminants such as organic substances and water are generated from adhesives and fillers used for cleaning, and condensed and adhere to the surface of the optical element, causing a reduction in the illuminance of illumination light and uneven illuminance. May deteriorate.
また、 特にヘリウム (H e ) は、 不活性でかつ安全な気体として最も高性能で あるものの、 地殻や大気中での存在度が極めて低く高価であり、 しかも原子量が 小さいために、 前記密封空間を構成するカバーや鏡筒等の隙間から漏れ易く消費 量が多いため、 露光装置の運転コス卜が上昇するという不都合がある。 発明の開示  In addition, helium (H e) has the highest performance as an inert and safe gas, but its extremely low abundance in the earth's crust and the atmosphere, and its small atomic weight means that the above-mentioned sealed space cannot be used. However, there is a disadvantage that the operating cost of the exposure apparatus is increased because it is easy to leak from gaps between the cover and the lens barrel, etc., which constitute the lens, and the amount of consumption is large. Disclosure of the invention
よって本発明の目的は、 照明光の光路の少なくとも一部に高透過率 (不活性) な気体を供給する場合に、 照明光の光路上に存在する光学素子等の表面が汚染さ れることを十分に防止するとともに、 その気体の使用量を節約することができる 露光装置を提供することである。 本発明によると、 光源からの照明光をマスクに照射し、 前記マスクに形成され たパターンの像を所定面上に転写する露光装置において、 前記照明光の光路の少 なくとも一部に、 前記照明光を透過する気体を供給する供給装置と、 前記照明光 の光路に供給された前記気体の少なくとも一部を回収する回収装置と、 前記所定 面上に対する前記パターンの像の転写精度に影響を及ぼす物質を、 前記回収され た気体から除去する浄化装置とを備えた露光装置が提供される。 Accordingly, an object of the present invention is to prevent the surface of an optical element or the like existing on the optical path of the illumination light from being contaminated when a gas having a high transmittance (inert) is supplied to at least a part of the optical path of the illumination light. An object of the present invention is to provide an exposure apparatus that can sufficiently prevent the gas consumption and reduce the amount of gas used. According to the present invention, in an exposure apparatus that irradiates an illumination light from a light source to a mask and transfers an image of a pattern formed on the mask onto a predetermined surface, at least a part of an optical path of the illumination light includes: A supply device that supplies a gas that transmits the illumination light, a recovery device that recovers at least a part of the gas supplied to the optical path of the illumination light, and an influence on transfer accuracy of the pattern image onto the predetermined surface. An exposure apparatus is provided, comprising: a purifying apparatus that removes an applied substance from the collected gas.
ここで、 所定面上に対する前記パターンの像の転写精度に影響を及ぼす物質と は、 例えば、 光学特性を変動させる物質などが挙げられる。 転写精度とは、 所定 面としての感光基板面上にパターンを転写した際の、 パターンの線幅精度ゃパ夕 —ンの転写位置精度、 又はパターン間の位置ずれ精度をいう。 また、 この光学特 性を変動させる物質とは、 特に限定されないが、 例えば、 光学特性を劣化させる 物質、 照明光の照度や照度分布を変動させる物質等をいい、 より具体的に例示す れば、 照明光の光路内の空間に存在する気体 (空気、 窒素ガス、 ヘリウムガス等) から発生する不純物、 光学素子を鏡筒に固定するための接着剤又は充填材等から 発生する有機物質の分子、 その鏡筒の内壁 (反射防止用の塗装面等) から発生す る不純物 (例えば水分子、 ハイ ド口カーボンの分子、 又はこれら以外の照明光を 拡散する物質) 、 光学素子等の表面に残存付着している浄化液 (エーテルや水分 等) が気化したもの等である。 これらの汚染物質若しくはこれらの汚染物質が照 明光と反応して生成された汚染物質は、 光学素子の表面に凝集 ·付着することに より、 当該光学素子の特性を劣化させ、 照明光の照度や照度分布を変動させる原 因となる。  Here, the substance that affects the transfer accuracy of the image of the pattern on the predetermined surface includes, for example, a substance that changes optical characteristics. The transfer accuracy refers to the line width accuracy of the pattern, the transfer position accuracy of the pattern, or the displacement accuracy between the patterns when the pattern is transferred onto the photosensitive substrate surface as a predetermined surface. The substance that changes the optical properties is not particularly limited, but includes, for example, a substance that deteriorates the optical properties, a substance that changes the illuminance and the illuminance distribution of the illumination light, and more specifically, , Impurities generated from gases (air, nitrogen gas, helium gas, etc.) existing in the space in the optical path of illumination light, molecules of organic substances generated from adhesives or fillers for fixing the optical element to the lens barrel The impurities generated from the inner wall of the lens barrel (painted surface for anti-reflection, etc.) (for example, water molecules, molecules of carbon at the opening, or other substances that diffuse illumination light), or the surface of optical elements Purified liquid (ether, water, etc.) that has remained is vaporized. These contaminants or contaminants generated by the reaction of these contaminants with the illumination light aggregate and adhere to the surface of the optical element, thereby deteriorating the characteristics of the optical element and reducing the illuminance of the illumination light and the like. This causes the illuminance distribution to fluctuate.
本発明によると、 その光路上に供給された気体の一部を回収装置により回収す るようにしたので、 該光路上に存在する光学特性を変動させる物質が該光路上か ら除去され、 光学特性の変動が防止される。 また、 回収した気体から光学特性を 変動させる物質を浄化装置により除去して当該気体を浄化するようにしたので、 当該気体を再使用 (リサイクル) することができる。 従って、 その気体の使用量 を節約でき、 その気体が高価である場合に運転コストを大幅に低下することがで きる。  According to the present invention, since a part of the gas supplied on the optical path is recovered by the recovery device, the substance that changes the optical characteristics existing on the optical path is removed from the optical path, Variations in characteristics are prevented. In addition, since the substance that changes the optical characteristics is removed from the collected gas by the purifier to purify the gas, the gas can be reused (recycled). Therefore, the use amount of the gas can be saved, and the operation cost can be greatly reduced when the gas is expensive.
前記構成において、 特に限定されないが、 前記浄化装置により浄化された気体 を前記供給装置を通して前記照明光の光路に再度供給することにより循環系を構 成することができる。 但し、 前記供給装置により常に新しい気体を供給して、 こ れを回収 '浄化した気体をボンべ等に圧入 (封入) し、 あるいは他の露光装置等 に供給するようにしてもよい。 前記供給装置による気体の供給先としては、 照明 光の光路の全部 (光源から照明系及び投影光学系を介して露光対象物に至るまで の全ての光路) を含む空間とすることもできるが、 その一部を含む空間であって もよく、 例えば、 光源、 照明系の全部又は一部、 投影光学系の全部又は一部でも よい。 また、 投影光学系と感光基板との間の空間 (いわゆるウェハ室) や照明光 学系と投影光学系との間の空間 (いわゆるマスク室) でもよい。 In the above configuration, although not particularly limited, gas purified by the purification device Is supplied again to the optical path of the illumination light through the supply device, thereby forming a circulation system. However, a new gas may be always supplied by the supply device, and the recovered gas may be recovered (purified) and injected (enclosed) into a cylinder or the like, or supplied to another exposure device or the like. The supply destination of the gas by the supply device may be a space including the entire optical path of the illumination light (all the optical paths from the light source to the object to be exposed via the illumination system and the projection optical system). The space may include a part thereof, and may be, for example, a light source, all or a part of an illumination system, or a whole or a part of a projection optical system. Further, a space between the projection optical system and the photosensitive substrate (so-called wafer chamber) or a space between the illumination optical system and the projection optical system (so-called mask chamber) may be used.
前記供給装置、 前記回収装置、 前記浄化装置の作動は、 勿論常に行ってもよい が、 制御装置を設けて前記光学特性の変動に応じてその作動を制御することがよ り効率的である。 前記制御装置による制御としては、 前記浄化装置を作動すべき 時期及び時間を含む制御データが予め記憶された記憶装置を設けて、 該記憶装置 に記憶された制御データに従って前記浄化装置を作動させるようにできる。 ある いは、 前記マスクのパターン像を前記感光基板上に投影する投影光学系の透過率 を検出する検出装置を設けて、 検出された透過率の変動量が所定値を越えたとき に前記浄化装置を作動させるようにすることもできる。  Of course, the operations of the supply device, the recovery device, and the purification device may be always performed. However, it is more efficient to provide a control device and control the operations according to the fluctuation of the optical characteristics. As the control by the control device, a storage device in which control data including a time and a time at which the purifying device should be operated is stored in advance, and the purifying device is operated according to the control data stored in the storage device. Can be. Alternatively, a detection device for detecting the transmittance of a projection optical system that projects the pattern image of the mask onto the photosensitive substrate is provided, and when the amount of change in the detected transmittance exceeds a predetermined value, the purification is performed. The device can also be activated.
また、 前記供給装置が前記気体を供給する前記照明光の光路中の光学素子の少 なくとも一部を含むように画成された室 (例えば、 チャンバ、 鏡筒等により画成 された室) に前記供給装置に接続された供給口及び前記回収装置に接続された排 出口を設けるとともに、 該排出口及び該供給口に前記制御装置により制御可能な 開閉弁をそれそれ設け、 前記浄化装置を作動させないときには前記開閉弁を閉塞 するようにできる。 この場合に、 露光処理時以外の時に該開閉弁を開放して気体 の浄化を行い、 露光処理時には該閧閉弁を閉塞することにより、 光路中に存在す る気体が安定した状態となるので、 安定した露光処理を行うことができる。 また、 この場合において、 前記浄化装置を作動させる前に、 前記照明光を照射して光学 素子の表面に付着した汚染物質を光洗浄効果を利用して浮遊させた状態で、 該汚 染物質を含む気体を回収 ·浄化することにより、 光学素子に汚染物質が再付着す ることが防止され、 照度低下や照度ムラの発生が少なくなる。 なお、 供給及び回収する気体としては、 例えば、 ヘリウム (H e ) や窒素 (N 2 ) 等の不活性ガスを使用することができる。 特に、 ヘリウムは、 安全であると 共に、 1 5 0 n m程度以下の波長域の照明光を使用する場合でも透過率が高く、 かつ熱伝導率が窒素 (N 2 ) の約 6倍程度と高いため、 光学素子に対する冷却効 果に優れている。 Further, a chamber defined by the supply device to include at least a part of an optical element in an optical path of the illumination light for supplying the gas (for example, a chamber defined by a chamber, a lens barrel, or the like). A supply port connected to the supply device and a discharge outlet connected to the recovery device, and an on-off valve controllable by the control device at each of the discharge port and the supply port. When not operated, the on-off valve can be closed. In this case, the gas present in the optical path is stabilized by opening the on-off valve to purify the gas at times other than the exposure processing, and closing the enclosing valve at the time of the exposure processing. A stable exposure process can be performed. In this case, before the cleaning device is operated, the contaminant is irradiated with the illumination light so that the contaminant attached to the surface of the optical element is floated using a light cleaning effect. By recovering and purifying the contained gas, the re-adhesion of contaminants to the optical element is prevented, and the occurrence of reduced illuminance and uneven illuminance is reduced. In addition, as a gas to be supplied and recovered, for example, an inert gas such as helium (He) or nitrogen (N2) can be used. In particular, helium is safe and has high transmittance even when using illumination light in the wavelength range of about 150 nm or less, and has a thermal conductivity that is about 6 times that of nitrogen (N 2 ). Therefore, it has an excellent cooling effect on optical elements.
また、 回収装置が例えばヘリウムが拡散した空気を回収する場合、 浄化装置は 混合気体中の酸素については酸素吸収材で処理し、 窒素については冷却すること でヘリウムと分離できるため、 残されたヘリウムを抽出すればよい。 又は、 その 混合気体を液体空気温度まで冷却し、 生成された液体を除去することで、 まだ気 体のままのヘリウムのみを容易に抽出できる。 浄化装置は、 複数の露光装置で共 用されることが望ましい。 これによつて、 その浄化装置の設備費が低減される。 図面の簡単な説明  In addition, when the recovery device recovers, for example, air in which helium is diffused, the purification device treats oxygen in the mixed gas with an oxygen absorbing material, and cools nitrogen to separate it from helium. Should be extracted. Alternatively, by cooling the gas mixture to the liquid air temperature and removing the generated liquid, it is possible to easily extract only helium still in a gaseous state. It is desirable that the cleaning device is shared by a plurality of exposure devices. Thereby, the equipment cost of the purification device is reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1実施形態の投影露光装置及びへリゥム循環装置を示す一部 を断面とした概略構成図、  FIG. 1 is a schematic configuration diagram in which a part of a projection exposure apparatus and a hair circulation apparatus according to a first embodiment of the present invention is shown in section.
図 2は本発明の第 2実施形態の複数台の投影露光装置及び 1台のへリウム循環 装置を示す一部を断面とした概略構成図、  FIG. 2 is a schematic configuration diagram in which a plurality of projection exposure apparatuses and one helium circulation apparatus according to a second embodiment of the present invention are partially sectioned,
図 3は本発明の第 3実施形態の投影露光装置の要部を示す一部を断面とした概 略構成図、  FIG. 3 is a schematic configuration diagram in which a part of a main part of a projection exposure apparatus according to a third embodiment of the present invention is shown in cross section.
図 4は本発明の第 3実施形態の投影露光装置の制御装置による浄化処理のフ口 一チャート、 並びに  FIG. 4 is a flowchart of a cleaning process performed by the control device of the projection exposure apparatus according to the third embodiment of the present invention;
図 5は本発明の第 3実施形態の投影露光装置の制御装置による他の浄化処理の フローチャートである。 発明を実施するための最良の形態  FIG. 5 is a flowchart of another cleaning process performed by the control device of the projection exposure apparatus according to the third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説明するために、 添付の図面に従って説明する。 第 1実施形態 本発明の第 1実施形態につき、 図 1を参照して説明する。 本第 1実施形態は、 照明光の光路の大部分にヘリゥムガスが供給される半導体製造用の投影露光装置 に本発明を適用したものである。 図 1は本実施形態の投影露光装置、 及びへリウ ム循環装置の概略構成を示している。 The present invention will be described in more detail with reference to the accompanying drawings. First embodiment A first embodiment of the present invention will be described with reference to FIG. In the first embodiment, the present invention is applied to a projection exposure apparatus for manufacturing a semiconductor in which a majority of the optical path of the illumination light is supplied with a Helium gas. FIG. 1 shows a schematic configuration of a projection exposure apparatus and a helium circulation apparatus of the present embodiment.
図 1において、 半導体製造工場の或る階の床 F 1上のクリーンルーム内に投影 露光装置が設置され、 その階下の床 F 2上のいわゆる機械室 (ユーティリティス ペース) 内に、 階上の投影露光装置にヘリウムガスを供給し、 更に回収 '浄化す るヘリウム循環装置が設置されている。 このように発塵し易いと共に、 振動発生 源となり易い装置を、 投影露光装置が設置されている階と別の階に設置すること によって、 投影露光装置が設置されているクリーンルーム内の清浄度を極めて高 く設定できると共に、 投影露光装置に対する振動の影響を小さくできる。 また、 F 2 レーザ光源 3を床 F 2上に配置し、 装置本体による床 F 1の占有面積 (フッ トプリント) を小さく し、 かつ装置本体への振動を小さくしてもよい。 但し、 へ リウムは軽くて上昇し易いため、 本実施形態のヘリウム循環装置を、 投影露光装 置が設置されている階の階上に置いても構わない。 また、 ヘリウム循環装置のう ち、 供給装置は床 F 2上に配置し、 回収装置は床 F 1又はその階上に配置するよ うにしてもよい。 In Fig. 1, a projection exposure system is installed in a clean room on a floor F1 on a certain floor of a semiconductor manufacturing plant, and a projection is performed in a so-called machine room (utility space) on a floor F2 below that floor. A helium circulation device is installed to supply helium gas to the exposure device and to collect and purify it. By installing a device that easily generates dust and is a source of vibration on a floor different from the floor where the projection exposure apparatus is installed, the cleanliness in the clean room where the projection exposure apparatus is installed is improved. It can be set very high and the effect of vibration on the projection exposure apparatus can be reduced. Also, an F 2 laser light source 3 is placed on the floor F 2, to reduce the occupied area of the floor F 1 by the apparatus main body (footprint), and may reduce the vibration of the apparatus main body. However, since helium is light and easily rises, the helium circulating apparatus of the present embodiment may be placed on the floor where the projection exposure apparatus is installed. In the helium circulation device, the supply device may be disposed on the floor F2, and the recovery device may be disposed on the floor F1 or on the floor.
まず、 床 F 1上のクリーンルーム内において、 防振台 2 A, 2 Bを介して箱状 のケース 1が設置され、 ケース 1内に照明光源としての F 2 レーザ光源 3 (発振 波長 1 5 7 n m) 、 露光本体部との間で光路を位置的にマッチングさせるための 可動ミラー等を含むビームマヅチングユニット (B MU ) 4、 及び内部を照明光 が通過する遮光性のパイブ 5が設置されている。 また、 ケース 1の隣に箱状の気 密性の良好な環境チャンバ 7が設置され、 環境チャンバ 7内で床 F 1上に床から の振動を減衰するための防振台 2 5 A, 2 5 Bを介して定盤 2 4が設置され、 定 盤 2 4上に露光本体部 2 6が設置されている。 また、 ケース 1内から突き出てい るパイプ 5から環境チャンバ 7の内部まで気密性の良好なサブチャンバ 6が架設 され、 サブチャンバ 6内に照明光学系の大部分が収納されている。 First, in a clean room on the floor F 1, vibration isolation 2 A, 2 box-like case 1 through B is installed, F 2 laser light source 3 as an illumination light source in the casing 1 (oscillation wavelength 1 5 7 nm), a beam-matching unit (BMU) 4 including a movable mirror etc. for positionally matching the optical path with the exposure main body, and a light-blocking pipe 5 through which the illumination light passes. Have been. In addition, a box-shaped airtight environment chamber 7 is installed next to the case 1, and a vibration isolator 25 A, 2 is provided in the environment chamber 7 on the floor F1 to attenuate vibration from the floor. The surface plate 24 is installed via 5 B, and the exposure main body 26 is installed on the surface plate 24. A sub-chamber 6 having good airtightness is installed from the pipe 5 protruding from the case 1 to the inside of the environment chamber 7, and the sub-chamber 6 houses most of the illumination optical system.
露光時に、 ケース 1内の F 2 レーザ光源 3から射出された照明光としての波長 1 5 7 nmの紫外パルス光 I Lは、 B MU 4及びパイブ 5の内部を経てサブチヤ ンバ 6内に至る。 サブチャンバ 6内において、 紫外パルス光 I Lは、 光アツテネ 一夕としての可変減光器 8、 レンズ系 9 A, 9 Bよりなるビーム整形光学系を経 てフライアイレンズ 1 1に入射する。 フライアイレンズ 1 1の射出面には照明条 件を種々に変更するための照明系の開口絞り系 1 2が配置されている。 At the time of exposure, the ultraviolet pulse light IL having a wavelength of 157 nm as illumination light emitted from the F 2 laser light source 3 in case 1 passes through the BMU 4 and the pipe 5 and is sub-channeled. Number 6 In the sub-chamber 6, the ultraviolet pulse light IL is incident on the fly-eye lens 11 through a variable attenuator 8 serving as an optical attenuator and a beam shaping optical system including lens systems 9A and 9B. An aperture stop system 12 of an illumination system for changing illumination conditions in various ways is disposed on the exit surface of the fly-eye lens 11.
フライアイレンズ 1 1から射出されて開口絞り系 1 2中の所定の開口絞りを通 過した紫外パルス光 I Lは、 反射ミラー 1 3、 及びコンデンサレンズ系 1 4を経 てレチクルブラインド機構 1 6内のスリット状の開口部を有する固定照明視野絞 り (固定ブラインド) 1 5 Aに入射する。 更に、 レチクルブラインド機構 1 6内 には、 固定ブラインド 1 5 Aとは別に照明視野領域の走査方向の幅を可変とする ための可動ブラインド 1 5 Bが設けられている。  The ultraviolet pulse light IL emitted from the fly-eye lens 11 and passing through a predetermined aperture stop in the aperture stop system 12 passes through the reflection mirror 13 and the condenser lens system 14 and enters the reticle blind mechanism 16. Fixed illumination field stop (fixed blind) having a slit-shaped opening of Further, in the reticle blind mechanism 16, a movable blind 15 B for changing the width of the illumination visual field in the scanning direction is provided separately from the fixed blind 15 A.
レチクルブラインド機構 1 6でスリヅト状に整形された紫外パルス光 I Lは、 結像用レンズ系 1 7、 反射ミラ一 1 8、 及び主コンデンサレンズ系 1 9を介して、 レチクル Rの回路パターン領域上のスリット状の照明領域を一様な強度分布で照 射する。 本実施形態では、 遮光性のパイブ 5の射出面から主コンデンサレンズ系 1 9までがサブチャンバ 6内に収納され、 更にパイプ 5の内部から F 2 レーザ光 源 3の射出面までの空間も密閉されて、 サブチャンバ 6内の空間に連通している。 そして、 サブチャンバ 6内の空間には、 階下のヘリウム循環装置から配管 3 1の 分岐管 3 1 a、 及び分岐管 3 1 bを介して 2箇所で所定の純度以上で温度制御さ れたヘリウムガス (H e ) が供給されている。 The ultraviolet pulse light IL shaped like a slit by the reticle blind mechanism 16 passes through the imaging lens system 17, the reflection mirror 18, and the main condenser lens system 19 on the reticle R circuit pattern area. The slit-shaped illumination area is illuminated with a uniform intensity distribution. In the present embodiment, the space from the light-exiting surface of the light-blocking pipe 5 to the main condenser lens system 19 is housed in the sub-chamber 6, and the space from the inside of the pipe 5 to the light-emitting surface of the F 2 laser light source 3 is also sealed. And communicates with the space in the sub-chamber 6. In the space inside the subchamber 6, helium whose temperature is controlled to a predetermined purity or more at two locations from a helium circulation device downstairs through a branch pipe 31a and a branch pipe 31b of a pipe 31 is provided. Gas (H e) is being supplied.
配管 3 1には開閉バルブ V 1 1が設けられており、 制御系 4 5によって閧閉バ ルブ V I 1の開閉を制御することで、 投影露光装置へのヘリウムガスの供給、 及 びその停止を切り替えることができる。 さらに、 配管 3 1の分岐管 3 1 aには閧 閉バルブ V I 3が設けられ、 分岐管 3 1 bには投影光学系 P Lとの間に開閉バル ブ V I 4が、 照明光学系 (サブチャンパ 6 ) との間に開閉バルブ V 1 5が設けら れている。 また、 配管 3 1の分岐管 3 1 c、 及び開閉バルブ V I 2を介して、 F 2 レーザ光源 3、 及び B M U 4などが収納されるケース 1内に、 所定純度以上で 温度制御されたヘリウムガスが供給される。 従って、 制御系 4 5によって開閉バ ルブ V 1 2 ~ V 1 5をそれそれ独立に開閉することで、 ケース 1、 サブチャンバ 6 (照明光学系) 、 及び投影光学系 P Lのうち所望の少なくとも 1つにヘリウム ガスを供給することが可能となっている。 なお、 ヘリウムは分子量が小さく漏れ 易いため、 サブチャンバ 6から自然に漏れ出たヘリゥムの一部は上昇して環境チ ヤンバ 7の天井近傍の空間 7 aに溜まる。 The piping 31 is provided with an opening / closing valve V11, and the control system 45 controls the opening and closing of the closing valve VI1 to switch between supplying and stopping helium gas to the projection exposure apparatus. be able to. Further, a closing valve VI 3 is provided in the branch pipe 31 a of the pipe 31, and an opening / closing valve VI 4 is provided between the branch pipe 31 b and the projection optical system PL. ) Is provided with an on-off valve V 15. In addition, the helium gas whose temperature is controlled to have a purity equal to or higher than a predetermined purity is contained in the case 1 containing the F 2 laser light source 3 and the BMU 4 via the branch pipe 3 1 c of the pipe 31 and the opening / closing valve VI 2. Is supplied. Therefore, by opening and closing the opening / closing valves V 12 to V 15 independently by the control system 45, at least one of the case 1, the sub-chamber 6 (illumination optical system), and the projection optical system PL is desired. Helium It is possible to supply gas. Since helium has a small molecular weight and easily leaks, a part of the helium that naturally leaks from the sub-chamber 6 rises and accumulates in the space 7 a near the ceiling of the environmental chamber 7.
紫外パルス光 I Lのもとで、 レチクル Rの照明領域内の回路パターンの像が投 影光学系 P Lを介してウェハ W上のレジスト層のスリット状の露光領域に転写さ れる。 その露光領域は、 ウェハ上の複数のショット領域のうちの 1つのショット 領域上に位置している。 本実施形態の投影光学系 P Lは、 ジォプトリック系 (屈 折系) であるが、 このような短波長の紫外光を透過できる硝材は限られているた め、 投影光学系 P Lを力夕ジォブトリヅク系 (反射屈折系) 、 又は反射系として、 投影光学系 P Lでの紫外パルス光 I Lの透過率を高めるようにしてもよい。 以下 では、 投影光学系 P Lの光軸 A Xに平行に Z軸をとり、 Z軸に垂直な平面内で図 1の紙面に平行に X軸、 図 1の紙面に垂直に Y軸をとつて説明する。  Under the ultraviolet pulse light IL, an image of the circuit pattern in the illumination area of the reticle R is transferred to the slit-shaped exposure area of the resist layer on the wafer W via the projection optical system PL. The exposure region is located on one of a plurality of shot regions on the wafer. The projection optical system PL of the present embodiment is a dioptric system (refractive system). However, since glass materials that can transmit such short-wavelength ultraviolet light are limited, the projection optical system PL is connected to a power dioptric system. (The catadioptric system) or a reflective system may be used to increase the transmittance of the ultraviolet pulse light IL in the projection optical system PL. In the following description, the Z axis is taken parallel to the optical axis AX of the projection optical system PL, the X axis is taken parallel to the plane of Figure 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Figure 1 I do.
このとき、 レチクル Rは、 レチクルステージ 2 0上に吸着保持され、 レチクル ステージ 2 0は、 レチクルベース 2 1上に X方向 (走査方向) に等速移動できる と共に、 X方向、 Y方向、 回転方向に微動できるように載置されている。 レチク ルステージ 2 0 (レチクル R ) の 2次元的な位置、 及び回転角は、 レーザ干渉計 を備えた不図示の駆動制御ュニッ卜に制御されている。  At this time, the reticle R is sucked and held on the reticle stage 20, and the reticle stage 20 can move at a constant speed in the X direction (scanning direction) on the reticle base 21 and the X, Y, and rotation directions. It is mounted so that it can be moved slightly. The two-dimensional position and rotation angle of the reticle stage 20 (reticle R) are controlled by a drive control unit (not shown) equipped with a laser interferometer.
一方、 ウェハ Wはウェハホルダ 2 2上に吸着保持され、 ウェハホルダ 2 2はゥ ェハステージ 2 3上に固定され、 ウェハステージ 2 3は定盤 2 4上に載置されて いる。 ウェハステージ 2 3は、 オートフォーカス方式でウェハ Wのフォーカス位 置 (Z方向の位置) 、 及び傾斜角を制御してウェハ Wの表面を投影光学系 P Lの 像面に合わせ込むと共に、 ウェハ Wの X方向への等速走査、 及び X方向、 Y方向 へのステッピングを行う。 ウェハステージ 2 3 (ウェハ W) の 2次元的な位置、 及び回転角も、 レーザ干渉計を備えた不図示の駆動制御ュニッ卜に制御されてい る。 走査露光時には、 レチクルステージ 2 0を介して紫外パルス光 I Lの照明領 域に対してレチクル Rが + X方向 (又は—X方向) に速度 V rで走査されるのに 同期して、 ウェハステージ 2 3を介して露光領域に対してウェハ Wがー X方向 (又は + X方向) に速度/? . V r ( ?はレチクル Rからウェハ Wへの投影倍率) で走査される。 T/JP99/05633 また、 サブチャンバ 6内と同様に投影光学系 P Lの鏡筒内部の空間 (複数のレ ンズ素子間の空間) の全体にも、 階下のヘリウム循環装置より配管 3 1の分岐管 3 1 b、 及び開閉バルブ V 1 4を介して、 所定の濃度以上で温度制御されたヘリ ゥムガスが供給されている。 投影光学系 P Lの鏡筒から漏れ出るヘリゥムも上昇 して、 環境チャンバ 7の天井付近の空間 7 aに溜まる。 On the other hand, the wafer W is held by suction on the wafer holder 22, the wafer holder 22 is fixed on the wafer stage 23, and the wafer stage 23 is placed on the surface plate 24. The wafer stage 23 adjusts the focus position (position in the Z direction) and the tilt angle of the wafer W by an autofocus method so that the surface of the wafer W is aligned with the image plane of the projection optical system PL, and Performs constant-speed scanning in the X direction and stepping in the X and Y directions. The two-dimensional position and rotation angle of the wafer stage 23 (wafer W) are also controlled by a drive control unit (not shown) equipped with a laser interferometer. At the time of scanning exposure, the reticle R is scanned in the + X direction (or -X direction) at a speed Vr in the + X direction (or -X direction) through the reticle stage 20 through the reticle stage 20 to synchronize with the wafer stage. The wafer W is scanned in the -X direction (or + X direction) at a speed /? Vr (? Is a projection magnification from the reticle R to the wafer W) with respect to the exposure area via 23. T / JP99 / 05633 Also, as in the sub-chamber 6, the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) is also branched from the helium circulating device downstairs into the piping 31. Helium gas whose temperature is controlled at a predetermined concentration or higher is supplied through the pipe 31b and the on-off valve V14. The helm leaking from the projection optical system PL barrel also rises and accumulates in the space 7 a near the ceiling of the environmental chamber 7.
更に、 環境チャンバ 7の内部に階下の窒素循環装置 (3 8〜4 0, 8 2〜8 8, 9 5など) から、 酸素の含有量を極めて低く抑えると共に、 温度制御された窒素 ガス (N 2 ) が供給されている。 そして、 環境チャンバ 7内を循環した窒素ガス は、 例えば環境チャンバ 7の底面側の排気孔、 その側面に接続される配管 9 5、 及びその開閉バルブ V 1 9を介して窒素循環装置に戻されている。 In addition, a nitrogen circulator (38 to 40, 82 to 88, 95, etc.) downstairs inside the environmental chamber 7 keeps the oxygen content extremely low and controls the temperature of nitrogen gas (N 2 ) is supplied. Then, the nitrogen gas circulated in the environmental chamber 7 is returned to the nitrogen circulating device through, for example, an exhaust hole on the bottom side of the environmental chamber 7, a pipe 95 connected to the side face thereof, and an opening / closing valve V19 thereof. ing.
このように本実施形態では、 F 2 レーザ光源 3の射出面から主コンデンサレン ズ系 1 9までの紫外パルス光 I Lの光路、 及び投影光学系 P L内の紫外パルス光 I Lの光路に、 1 9 0 n m程度以下の光に対しても高い透過率を有するヘリゥム ガスが供給されている。 また、 主コンデンサレンズ系 1 9から投影光学系 P Lの 入射面まで、 及び投影光学系 P Lの射出面からウェハ Wの表面までは、 1 9 0 η m程度以下の光に対してはあまり透過率の良くない窒素ガスが供給されているが、 その窒素ガス内を通過する光路は極めて短いため、 窒素ガスによる吸収量も僅か である。 従って、 F 2 レーザ光源 3から射出された紫外パルス光 I Lは、 全体と して高い透過率 (利用効率) でウェハ Wの表面に達するため、 露光時間 (走査露 光時間) を短縮でき、 露光工程のスループッ トが向上する。 As described above, in the present embodiment, the light path of the ultraviolet pulse light IL from the emission surface of the F 2 laser light source 3 to the main condenser lens system 19 and the light path of the ultraviolet pulse light IL in the projection optical system PL are: Helium gas, which has high transmittance even for light of about 0 nm or less, is supplied. In addition, from the main condenser lens system 19 to the entrance surface of the projection optical system PL, and from the exit surface of the projection optical system PL to the surface of the wafer W, the transmittance for light of about 190 ηm or less is very small. Although the nitrogen gas is supplied with poor quality, the optical path passing through the nitrogen gas is extremely short, so the amount of absorption by the nitrogen gas is also small. Thus, ultraviolet pulse light IL emitted from the F 2 laser light source 3, since the whole and to a high transmittance (efficiency) reaches the surface of the wafer W, can reduce the exposure time (scanning exposure time), the exposure The throughput of the process is improved.
また、 ヘリウムは窒素に比べて熱伝導率が 6倍程度良好であるため、 照明光学 系内の光学素子、 及び投影光学系 P Lの光学素子において紫外パルス光 I Lの照 射によって蓄積された熱エネルギーは、 ヘリゥムを介して効率的にそれそれサブ チャンバ 6のカバ一、 及び投影光学系 P Lの鏡筒に伝導する。 また、 サブチャン バ 6のカバー、 及び投影光学系 P Lの鏡筒の熱エネルギーは、 クリーンルーム内 の温度制御された空気、 又は環境チャンバ 7内の温度制御された窒素ガスによつ て階下等の外部に効率的に廃熱される。 従って、 照明光学系、 及び投影光学系 P Lの光学素子の温度上昇が極めて低く抑えられて、 結像性能の劣化が最小限に抑 制される。 更に、 ヘリウムは気圧変化に対する屈折率の変化量が極めて少ないた め、 例えば投影光学系 P L内での屈折率変化量が極めて少なくなり、 この点でも 安定な結像性能が維持される。 Helium has a thermal conductivity approximately six times better than that of nitrogen, so the thermal energy accumulated by the irradiation of the ultraviolet pulse light IL in the optical element in the illumination optical system and the optical element in the projection optical system PL Are efficiently transmitted to the cover of the sub-chamber 6 and the lens barrel of the projection optical system PL through the helm. In addition, the thermal energy of the cover of the sub-chamber 6 and the lens barrel of the projection optical system PL is supplied to the outside such as downstairs by the temperature-controlled air in the clean room or the temperature-controlled nitrogen gas in the environment chamber 7. Efficiently waste heat. Accordingly, the temperature rise of the illumination optical system and the optical element of the projection optical system PL is extremely low, and the deterioration of the imaging performance is minimized. Furthermore, helium has a very small change in refractive index with changes in atmospheric pressure. Therefore, for example, the amount of change in the refractive index in the projection optical system PL is extremely small, and also in this regard, stable imaging performance is maintained.
次に、 本実施形態のヘリウム循環装置につき詳細に説明する。 環境チャンバ 7 内で、 サブチャンバ 6から漏れ出たヘリウム、 及び投影光学系 P Lから漏れ出た ヘリウムは、 窒素に比べて軽いため上昇して天井近傍の空間 7 aに溜まる。 但し、 空間 7 a内の気体は、 ヘリウムの他に窒素や、 環境チャンバ 7の外部から入り込 む空気が混じった混合気体である。  Next, the helium circulation device of the present embodiment will be described in detail. In the environmental chamber 7, the helium leaked from the sub-chamber 6 and the helium leaked from the projection optical system PL rise because they are lighter than nitrogen and accumulate in the space 7a near the ceiling. However, the gas in the space 7 a is a mixed gas containing helium, nitrogen, and air entering from outside the environmental chamber 7.
本実施形態では、 環境チャンバ 7の外部からその空間 Ί aに配管 3 3が接続さ れ、 配管 3 3は、 床 F 1に設けられた開口を通過して階下のヘリウム循環装置に 通じている。 さらに、 ケース 1は配管 9 2によって配管 3 3と接続されており、 配管 9 2には閧閉バルブ V 1 6が設けられている。 また、 照明光学系 (サブチヤ ンノ、 ' 6 ) 及び投影光学系 P Lもそれそれ配管 9 3 , 9 4によって配管 3 3と接続 され、 配管 9 3, 9 4にはそれそれ開閉バルブ V 1 7 , V I 8が設けられている。 従って、 制御系 4 5によって開閉バルブ V I 6〜V 1 8をそれそれ独立に開閉す ることで、 ケース 1、 照明光学系 (サブチャンバ 6 ) 、 及び投影光学系 P Lのう ち所望の少なくとも 1つから、 有機物や塵埃などを含んだヘリゥムガスを回収す ることが可能となっている。 床 F 1の底面側の配管 3 3の途中に吸引用のポンプ (又はファン) 3 4が配置されており、 配管 3 3、 及びポンプ 3 4によってその 空間 7 aから吸引された混合気体は、 階下のヘリウム循環装置に向かう。 そして、 ポンプ 3 4を通過した混合気体は集塵排水装置 3 5に達し、 ここで後の断熱圧縮 冷却の通路の目詰まりを避けるために、 微少な塵埃、 及び水分が除去される。 集塵排水装置 3 5を通過した混合気体は、 配管 3 6を経て冷凍装置 3 7に達し、 ここで断熱圧縮冷却によって液体窒素温度まで冷却される。 これによつて、 窒素、 及び空気の成分は液化するため、 液化した窒素を含む空気の成分と気体のままの ヘリウムとを容易に分離できる。 冷凍装置 3 7内で液化した主に窒素 (N 2 ) よ りなる空気の成分は、 配管 3 8及びこの途中に配置された吸引用のポンプ 3 9を 介してボンべ 4 0に回収される。 ボンべ 4 0内で気化した窒素等の空気の成分は、 例えば再利用 (リサイクル) することができる。 一方、 冷凍装置 3 7内で気体の まま存在するヘリウムは、 配管 4 1及びこの途中に配置された吸引用のポンプ 5633 In the present embodiment, a pipe 33 is connected to the space Ίa from the outside of the environmental chamber 7, and the pipe 33 passes through an opening provided in the floor F 1 and communicates with the helium circulating device downstairs. . Further, the case 1 is connected to the pipe 33 by the pipe 92, and the pipe 92 is provided with the closing valve V16. In addition, the illumination optical system (sub channel, '6) and the projection optical system PL are also connected to the pipe 33 by pipes 93, 94, respectively, and the pipes 93, 94 are respectively provided with opening / closing valves V 17, VI 8 is provided. Therefore, by opening and closing the open / close valves VI 6 to V 18 independently by the control system 45, at least one of the case 1, the illumination optical system (sub-chamber 6), and the projection optical system PL is desired. As a result, it is possible to recover helium gas containing organic matter and dust. A suction pump (or fan) 34 is disposed in the middle of the pipe 33 on the bottom side of the floor F 1, and the gas mixture sucked from the space 7 a by the pipe 33 and the pump 34 is Head downstairs to the helium circulator. Then, the mixed gas that has passed through the pump 34 reaches the dust collecting and draining device 35, where minute dust and moisture are removed to avoid clogging of the adiabatic compression / cooling passage. The mixed gas that has passed through the dust collection and drainage device 35 reaches the refrigeration device 37 via the pipe 36, where it is cooled to the temperature of liquid nitrogen by adiabatic compression cooling. As a result, the components of nitrogen and air are liquefied, so that the components of air containing liquefied nitrogen and helium as gas can be easily separated. The air component mainly composed of nitrogen (N 2 ) liquefied in the refrigerating device 37 is collected in a cylinder 40 via a pipe 38 and a suction pump 39 arranged in the middle of the pipe 38. . Air components such as nitrogen vaporized in the cylinder 40 can be reused (recycled), for example. On the other hand, helium, which remains as a gas in the refrigeration system 37, is supplied to the pipe 41 and a suction pump 5633
(又はファン) 4 2を介して、 混合温調装置 4 3の第 1の流入口に向かう。 (Or a fan) 42 to the first inlet of the mixing temperature controller 43.
なお、 集塵排水装置 3 5、 冷凍装置 3 7等によりヘリウムガスから不純物とし ての空気、 窒素、 その他の汚染物質を除去 ·分離する浄化装置が構成されるが、 これらの装置によっても分離 ·除去しきれずに残存する場合がある汚染物質を更 に分離 ·除去して高純度のヘリゥムガスを再生すべく、 該ヘリゥムガスに含まれ ている汚染物質を分離 ·除去するのに適した化学フィルタ、 その他の濾過装置、 ヘリウムと汚染物質との化学的性質の違いを利用した分離装置等を単体であるい は組み合わせたものを、 冷凍装置 3 7の前段 (配管 3 6 ) 又は後段 (配管 4 1 ) に設けることが望ましい。  In addition, a purification device that removes and separates air, nitrogen, and other pollutants as impurities from helium gas by the dust collection and drainage device 35 and the refrigeration device 37 is configured. Chemical filters suitable for separating and removing contaminants contained in the helium gas in order to regenerate high-purity helium gas by further separating and removing contaminants that may remain without being removed, etc. Of the refrigeration unit 37 (piping 36) or the post-stage (piping 41) Is desirably provided.
本実施形態では、 集塵排水装置 3 5と冷凍装置 3 7との間に、 混合気体に含ま れる不純物を除去する除去装置 8 0が設けられている。 この除去装置 8 0は、 活 性炭フィルター (例えば、 ニヅ夕 (株) 製のギガソープ) 、 又はゼォライ トフィ ル夕一、 あるいはこれらを組み合わせたものであり、 環境チャンバ 7、 照明光学 系、 及び投影光学系 P Lの内部に存在するシロキサン (S i— 0の鎖が軸となる 物質) 又はシラザン (S i— Nの鎖が軸となる物質) などのシリコン系有機物を 除去する。  In the present embodiment, a removing device 80 for removing impurities contained in the mixed gas is provided between the dust collecting and draining device 35 and the refrigerating device 37. The removal device 80 is an activated carbon filter (for example, Giga Soap manufactured by Niyuyu Co., Ltd.), or Zeolite Filter Yuichi, or a combination thereof, and includes an environmental chamber 7, an illumination optical system, Silicon organic substances such as siloxane (a substance having a Si-0 chain as an axis) or silazane (a substance having a Si-N chain as an axis) existing in the projection optical system PL are removed.
ここで、 シロキサンの 1つである、 S i—〇の鎖が輪となった 「環状シロキサ ン」 という物質が、 投影露光装置で用いられるシリコン系の接着剤、 シーリング 剤、 塗料等に含まれており、 これが経年変化により脱ガスとして発生する。 環状 シロキサンは、 感光基板や光学素子 (レンズなど) の表面に付着し易く、 さらに 紫外光が当たると、 酸化されて、 光学素子表面における S i 0 2 系の曇り物質と なる。 また、 シラザンとしては、 レジスト塗布工程で前処理剤として用いられる HMD S (へキサ 'メチル .ジ .シラザン) がある。 HMD Sは、 水と反応して シラノールという物質に変化 (加水分解) する。 シラノールは、 感光基板や光学 素子などの表面に付着し易く、 さらに紫外光が当たると、 酸化されて、 光学素子 表面における S i 0 2 系の曇り物質となる。 なお、 シラザンは上記加水分解でァ ンモニァを発生するが、 このアンモニアがシロキサンと共存すると更に光学素子 表面を曇り易くする。 Here, one of the siloxanes, a substance called “cyclic siloxane”, in which the chain of Si— と な っ is formed into a ring, is included in the silicone adhesive, sealing agent, paint, etc. used in projection exposure equipment. This is generated as degassing due to aging. Cyclic siloxane easily adheres to the surface of a photosensitive substrate or an optical element (such as a lens), and when exposed to ultraviolet light, is oxidized to become a SiO 2 -based cloudy substance on the optical element surface. As silazane, there is HMDS (hexamethyldisilazane) used as a pretreatment agent in the resist coating step. HMDS reacts with water and changes (hydrolyzes) into a substance called silanol. Silanol easily adheres to the surface of a photosensitive substrate, an optical element, or the like, and is further oxidized when exposed to ultraviolet light to become a SiO 2 -based cloudy substance on the surface of the optical element. Silazane generates ammonia by the above-mentioned hydrolysis, and when this ammonia coexists with siloxane, the surface of the optical element is further easily clouded.
ところで、 照明光学系や投影光学系の光学素子の表面などに付着した有機物 633 By the way, organic substances adhering to the surface of the optical element of the illumination optical system or projection optical system, etc. 633
(ハイ ド口カーボン) が光洗浄によって分離され、 ヘリウムガスに混入するが、 本実施形態では除去装置 8 0によってこのハイ ドロ力一ボンも除去される。 さら に、 前述のシリコン系有機物だけでなく、 環境チャンバ 7内の配線やブラスチヅ クなどの脱ガスとして、 可塑剤 (フタルサンエステルなど) 、 難燃剤 (燐酸、 塩 素系物質) なども発生するが、 本実施形態ではこれら可塑剤や難燃剤なども除去 装置 8 0で除去される。 なお、 クリーンルーム内に浮遊するアンモニゥムイオン や硫酸イオンなどが環境チャンバ 7内に進入しても、 これらイオンも除去装置 8 0で除去される。 (Hide port carbon) is separated by light cleaning and is mixed into the helium gas. In the present embodiment, the removing device 80 also removes the hydroforce. Furthermore, in addition to the above-mentioned silicon-based organic substances, plasticizers (such as phthalsan esters) and flame retardants (phosphoric acid, chlorine-based substances) are also generated as degassed wiring and plastics in the environmental chamber 7. However, in the present embodiment, these plasticizers and flame retardants are also removed by the removal device 80. Even if ammonium ions, sulfate ions, and the like floating in the clean room enter the environment chamber 7, these ions are also removed by the removing device 80.
混合温調装置 4 3の第 2の流入口には、 高純度のヘリウムガスが高圧で封入さ れたボンべ 4 6から、 配管 4 7及び開閉バルブ 4 8を介して高純度のヘリゥムガ スが供給されている。 なお、 ボンべ 4 6内に液化したヘリウムを収納しておいて もよい。 更に、 冷凍装置 3 7等を介して浄化されたヘリウムが通過する配管 4 1 内の、 混合温調装置 4 3に対する流入口の近傍にヘリウムの濃度 (又は純度) を 計測するためのヘリウム濃度計 4 4が設置され、 この測定デ一夕が制御系 4 5に 供給されている。 制御系 4 5は、 ヘリウム濃度計 4 4で測定される回収されたへ リウムの濃度が所定の許容値に達しないときに、 開閉バルブ 4 8を開放して、 ポ ンべ 4 6から混合温調装置 4 3内に高純度のヘリウムを加える。 そして、 へリウ ム濃度計 4 4で測定されるヘリウム濃度がその許容値以上であるときには、 制御 系 4 5は開閉バルブ 4 8を閉じる。 また、 露光動作が行われない期間でも、 閧閉 バルブ 4 8は閉じられている。 なお、 ヘリウム濃度計 4 4の代わりに酸素濃度計 を用いてもよい。  High-purity helium gas is supplied from a cylinder 46 filled with high-purity helium gas at a high pressure to the second inlet of the mixing temperature controller 43 through a pipe 47 and an on-off valve 48. Supplied. The liquefied helium may be stored in the cylinder 46. Further, a helium concentration meter for measuring the concentration (or purity) of helium in the pipe 41 through which the purified helium passes through the refrigerating device 37, etc., near the inlet to the mixing temperature control device 43. 44 is installed, and this measurement data is supplied to the control system 45. The control system 45 opens the on-off valve 48 when the concentration of the collected helium measured by the helium concentration meter 44 does not reach the predetermined allowable value, and the mixing temperature is measured from the column 46. Add high-purity helium into the controller 43. Then, when the helium concentration measured by the helium concentration meter 44 is equal to or more than the allowable value, the control system 45 closes the on-off valve 48. In addition, the closing valve 48 is closed even during the period in which the exposure operation is not performed. Note that an oxygen concentration meter may be used instead of the helium concentration meter 44.
また、 集塵排水装置 3 5、 冷凍装置 3 7等から構成される浄化装置に対する流 入口の近傍には、 不図示の不純物濃度センサ (酸素濃度センサ又はヘリウム濃度 センサ) が設置されており、 この不純物濃度センサの測定結果が制御系 4 5に供 給されている。 ポンプ 3 4と浄化装置との間には、 不図示の流路切換えバルブを 備えた工場配管が接続されている。 流路切換えバルブは、 前記不純物濃度センサ の測定結果に基づいて、 制御系 4 5により切換えられる。  In addition, an impurity concentration sensor (oxygen concentration sensor or helium concentration sensor, not shown) is installed near the inlet to the purification device consisting of the dust collection / drainage device 35, refrigeration device 37, etc. The measurement result of the impurity concentration sensor is supplied to the control system 45. A factory pipe provided with a flow path switching valve (not shown) is connected between the pump 34 and the purification device. The flow path switching valve is switched by the control system 45 based on the measurement result of the impurity concentration sensor.
そして、 制御系 4 5は、 前記不純物濃度センサの測定結果に基づき、 回収され た気体に所定値以上の不純物が含まれていると判断した場合は、 回収された気体 の流路を浄化装置から工場配管へ切換え、 回収された気体を工場配管を介して排 出する。 一方、 制御系 4 5は、 回収された気体に含まれる不純物の濃度が所定値 以下になると、 回収された気体の流路を工場配管から浄化装置に切換え、 気体の 浄化を行う。 If the control system 45 determines that the collected gas contains impurities of a predetermined value or more based on the measurement result of the impurity concentration sensor, the control system 45 sets the collected gas The flow path is switched from the purification device to the factory piping, and the collected gas is discharged through the factory piping. On the other hand, when the concentration of the impurities contained in the recovered gas falls below a predetermined value, the control system 45 switches the flow path of the recovered gas from the factory piping to the purifier to purify the gas.
回収された気体に不純物の混入が多くなる場合として考えられるのは、 一定期 間露光動作を停止させていた後に、 照明光学系及び投影光学系を構成する光学素 子に対して露光光の照射を開始した直後である。 露光光を照射した直後は、 一定 期間の間に光学素子の表面に蓄積していた有機系の不純物が、 光洗浄効果によつ て分解されるからである。 このように、 空間から回収する気体に、 浄化装置の浄 化可能な許容範囲を超える不純物が多く含まれていると、 浄化装置の寿命が短く なるだけでなく、 浄化装置の浄化効率を悪くする可能性がある。 従って、 上記の ように、 浄化装置に供給される気体の不純物濃度を監視し、 浄化装置の浄化可能 な許容範囲に対応した不純物濃度の気体を浄化装置に供給し、 浄化可能な許容範 囲を超えている場合は、 工場配管を介して排出すれば、 浄化装置の寿命及び浄化 効率を向上させることができる。  One possible reason for the contamination of the recovered gas with impurities is that after the exposure operation has been stopped for a period of time, the exposure light is applied to the optical elements that constitute the illumination optical system and projection optical system. Has just started. Immediately after exposure light exposure, organic impurities accumulated on the surface of the optical element for a certain period of time are decomposed by the light cleaning effect. As described above, if the gas recovered from the space contains many impurities exceeding the purifying range of the purifying device, not only the life of the purifying device is shortened, but also the purifying efficiency of the purifying device is deteriorated. there is a possibility. Therefore, as described above, the impurity concentration of the gas supplied to the purification device is monitored, and a gas having an impurity concentration corresponding to the allowable range of the purification device is supplied to the purification device, and the allowable range of the purification is determined. If it exceeds, exhausting it through the factory piping can improve the life and purification efficiency of the purification device.
更に、 混合温調装置 4 3は、 浄化されたヘリウム、 及びボンべ 4 6からのヘリ ゥムを所定の気圧範囲内で混合して所定の温度に制御し、 温度制御及び圧力制御 されたヘリウムを配管 3 1に供給する。 集塵排水装置 3 5から混合温調装置 4 3 までが本実施形態のヘリウム循環装置を構成している。 また、 配管 3 1は、 上階 の床 F 1に設けられた開口を通過して上階のクリーンルーム内に達していると共 に、 配管 3 1の途中で、 かつ床 F 1の底面側に送風用のポンプ (又はファン) 3 2が設置されている。 そして、 混合温調装置 4 3によって所定の気圧の範囲内で、 所定の濃度以上であると共に、 所定の温度に制御されたヘリウムガスは、 配管 3 1に供給された後、 ポンプ 3 2によって送風されながら配管 3 1の分岐管 3 1 a、 3 1 b及び 3 1 cを介して床 F 1上の投影露光装置のケース 1内、 サブチャンバ 6内、 及び投影光学系 P L内に供給されている。  Further, the mixing temperature controller 43 mixes the purified helium and the helium from the cylinder 46 within a predetermined pressure range to control the temperature to a predetermined temperature, and controls the temperature and pressure-controlled helium. To pipe 31. The components from the dust collection and drainage device 35 to the mixing temperature control device 43 constitute the helium circulation device of the present embodiment. In addition, the pipe 31 passes through the opening provided in the floor F 1 on the upper floor and reaches the inside of the clean room on the upper floor, and at the middle of the pipe 31 and on the bottom side of the floor F 1. A blower (or fan) 32 is installed. The helium gas having a concentration equal to or higher than a predetermined value within a predetermined atmospheric pressure range by the mixing temperature controller 43 and controlled to a predetermined temperature is supplied to a pipe 31 and then blown by a pump 32. While being supplied to the inside of the case 1 of the projection exposure apparatus on the floor F1, the inside of the sub-chamber 6, and the inside of the projection optical system PL via the branch pipes 31a, 31b and 31c of the pipe 31. I have.
ここで、 本実施形態では制御系 4 5によって配管 3 1の開閉バルブ V I 1を閉 じ、 かつ配管 9 2〜9 4の開閉バルブ V 1 6〜V 1 8を開けた状態で、 ポンプ 3 4によってケース 1、 サブチャンバ 6、 及び投影光学系 P L内の気体 (ヘリウム など) を吸引する。 このとき、 環境チャンバ 7の上部空間 7 a内の混合気体が配 管 3 3に流入しないように、 配管 3 3の導入口付近に設けられる開閉バルブ (不 図示) を閉じておくことが望ましい。 しかる後、 開閉バルブ V 1 6〜V 1 8を閉 じるとともに、 開閉バルブ V I 1を開けてケース 1、 サブチャンバ 6、 及び投影 光学系 P Lにそれそれヘリゥムを供給し、 その内部でのヘリゥムの濃度が所定値 に達したものから順に開閉バルブ V 1 2〜V 1 5を閉じていき、 開閉バルブ V I 2〜V 1 5が全て閉じられた後で開閉バルブ V 1 1を閉じる。 図示していないが、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lの内部にはそれそれヘリウム濃 度計又は酸素濃度計が設けられており、 制御系 4 5はこの濃度計の出力に基づい て開閉バルブ V 1 2〜V 1 5の開閉を制御する。 また、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lの 1つ、 例えば投影光学系 P Lでのヘリゥム濃度が所定 値よりも低くなつたときは、 開閉バルブ V I I , V I 4を開けてヘリウムを供給 する。 このとき、 投影露光装置全体を統括制御する主制御系 (不図示) は装置本 体での動作を確認し、 例えばウェハの露光処理の途中であるときには、 その露光 処理が終了するまでヘリゥムの供給開始を待つように主制御系は制御系 4 5に指 令を送るようにする。 Here, in the present embodiment, the control system 45 closes the on-off valve VI 1 of the pipe 31 and opens the on-off valves V 16 to V 18 of the pipes 92 to 94, and the pump 3 4 The gas (helium) in case 1, subchamber 6, and projection optics PL Etc.). At this time, it is desirable to close an on-off valve (not shown) provided near the inlet of the pipe 33 so that the mixed gas in the upper space 7a of the environmental chamber 7 does not flow into the pipe 33. Thereafter, the opening / closing valves V 16 to V 18 are closed, and the opening / closing valve VI 1 is opened to supply helmets to the case 1, the sub-chamber 6, and the projection optical system PL. The on-off valves V12 to V15 are closed in order from the one at which the concentration reaches a predetermined value. After all the on-off valves VI2 to V15 are closed, the on-off valve V11 is closed. Although not shown, a helium densitometer or an oximeter is provided in each of the case 1, the sub-chamber 6, and the projection optical system PL, and the control system 45 is based on the output of the densitometer. To control the opening and closing of the open / close valves V12 to V15. Also, when the Helium concentration in Case 1, Sub-chamber 6, and one of the projection optical system PL, for example, the projection optical system PL, becomes lower than a predetermined value, open / close valves VII and VI 4 to supply helium. I do. At this time, the main control system (not shown), which controls the entire projection exposure apparatus, checks the operation of the apparatus itself. For example, when the exposure processing of the wafer is in progress, the supply of the helium is continued until the exposure processing is completed. The main control system sends an instruction to the control system 45 to wait for the start.
このように本実施形態では、 投影露光装置の照明光 (紫外パルス光 I L ) の光 路の大部分を流れるように供給されたヘリゥムガスの大部分は、 環境チャンバ 7 の上部から配管 3 3を介して階下のヘリウム循環装置に回収されているため、 高 価なヘリウムの使用量を減らすことができる。 従って、 照明光に対する透過率を 高め、 光学素子の冷却効率を高めた上で、 投影露光装置の運転コストを低減する ことができる。  As described above, in the present embodiment, most of the Helium gas supplied so as to flow through most of the optical path of the illumination light (ultraviolet pulse light IL) of the projection exposure apparatus passes through the pipe 33 from above the environmental chamber 7. As it is collected in the helium circulation device downstairs, the amount of expensive helium used can be reduced. Therefore, the operating cost of the projection exposure apparatus can be reduced while increasing the transmittance to the illumination light and increasing the cooling efficiency of the optical element.
なお、 上記の実施の形態において、 図 1の冷凍装置 3 7と混合温調装置 4 3と の閭に、 回収したヘリウムを保存するためのボンべ (例えば前述した窒素ボンべ 4 0と同様のもの) を更に設けてもよい。 この場合、 大量に保存できるようにす るために、 コンブレヅサによってヘリゥムを 1 0 0〜2 0 0気圧程度に圧縮して そのボンベに収納することが望ましい。 これによつて体積はほぼ 1 / 1 0 0〜 1 / 2 0 0に減少する。 更に、 タービン等を用いた液化機によってヘリウムを液化 して蓄積してもよい。 液化によってヘリゥムの体積はほぼ 1 / 7 0 0に減少でき /05633 る。 このように高圧縮、 又は液化したヘリウムを再利用する際に、 例えば 1気圧 程度の状態に戻したときには、 膨張によって温度が下がるため、 ヒ一夕等での加 熱温度管理が必要となる。 また、 圧力を一定にするためのバッファ空間を設ける ことが望ましい。 さらに、 混合温調装置 4 3の手前 (上流側) に開閉バルブを設 け、 回収したヘリウムを保存するボンべ (不図示) から取り込むヘリウムの量を 調整したり、 あるいはその流路 (配管 4 1 ) の開閉を制御するようにしてもよい。 この開閉バルブと配管 4 7の開閉バルブ 4 8とを併用することで、 配管 3 1に送 られるヘリゥムの濃度調整をより一層容易に行うことができる。 In the above embodiment, a cylinder for storing the collected helium (for example, a nitrogen cylinder similar to the nitrogen cylinder 40 described above) is provided between the refrigerating device 37 and the mixing temperature adjusting device 43 in FIG. ) May be further provided. In this case, in order to be able to store a large amount, it is desirable that the helm be compressed to about 100 to 200 atm by a compressor and stored in the cylinder. This reduces the volume to approximately 1/1000 to 1/200. Furthermore, helium may be liquefied and stored by a liquefier using a turbine or the like. Liquefaction can reduce the volume of the helm to almost 1/700 / 05633. When the highly compressed or liquefied helium is reused as described above, for example, when it is returned to a state of about 1 atm, the temperature decreases due to expansion. It is also desirable to provide a buffer space for keeping the pressure constant. In addition, an open / close valve is installed before (upstream) the mixing temperature controller 43 to adjust the amount of helium taken in from a cylinder (not shown) for storing the recovered helium, or to adjust its flow path (pipe 4). The opening and closing of 1) may be controlled. By using this on-off valve and the on-off valve 48 of the pipe 47 together, the concentration of the helm sent to the pipe 31 can be more easily adjusted.
上記の実施の形態では、 ヘリゥムガスは照明光の光路の大部分を流通するよう に供給されているが、 更にその光路の全部を覆うと共に、 かつレチクルステージ 2 0やウェハステージ 2 3の冷却効率も高めるために、 環境チャンバ 7内の全体 にヘリウムガスを供給するようにしてもよい。 この場合でも、 大部分のヘリウム は回収されるため、 運転コストの上昇は僅かである。 また、 上記の実施の形態で は、 混合温調装置 4 3によって浄化されたヘリゥムと高純度のへリウムとを混合 しているが、 浄化されたヘリウムの濃度 (純度) が低いような場合には、 単に混 合しても急速には投影露光装置側に供給されるヘリゥムの濃度を許容範囲まで高 められない恐れがある。 このような場合には、 浄化されたヘリウムは別のボンべ に蓄えて、 別の再生工場等で更に純度を高めるようにして、 投影露光装置にはポ ンべ 4 6内の高純度のヘリゥムを供給するようにしてもよい。  In the above embodiment, the Helium gas is supplied so as to circulate most of the optical path of the illumination light, but further covers the entire optical path, and also has the cooling efficiency of the reticle stage 20 and the wafer stage 23. In order to increase the pressure, helium gas may be supplied to the entire inside of the environmental chamber 7. Even in this case, most of the helium is recovered, so the increase in operating costs is small. Further, in the above embodiment, the helium purified by the mixing temperature controller 43 and the high-purity helium are mixed, but when the concentration (purity) of the purified helium is low, However, there is a possibility that the density of the helium supplied to the projection exposure apparatus cannot be rapidly increased to an allowable level even if the lithography is simply mixed. In such a case, the purified helium is stored in another cylinder, and the purity is further increased in another recycling factory, etc., and the high-purity helium in the cylinder 46 is supplied to the projection exposure apparatus. May be supplied.
なお、 前述の投影露光装置では開閉バルブ V 1 1〜V 1 8を用いてケース 1、 サブチャンパ 6、 及び投影光学系 P Lにそれそれヘリウムを充填 (封入) してお くものとしたが、 本実施形態ではヘリウム循環装置を備えているので、 例えば開 閉バルブ V 1 6〜V 1 8を閉じたまま、 ケース 1、 サブチャンバ 6、 及び投影光 学系 P Lからそれそれ漏れ出すヘリゥムの量に対応してヘリゥムの流量を調整し ながら常時供給するようにしてもよいし、 あるいは開閉バルブ V 1 1〜V 1 8を 開いたまま所定流量でヘリウムを常時供給するようにしてもよい。 後者では、 特 に開閉バルブ V 1 1〜V 1 8を設けなくてもよい。  In the above-described projection exposure apparatus, the case 1, the sub-champ 6, and the projection optical system PL are filled (filled) with helium using the opening / closing valves V11 to V18, respectively. In the embodiment, since the helium circulation device is provided, for example, while the opening / closing valves V 16 to V 18 are closed, the amount of helm leaking from the case 1, the sub-chamber 6, and the projection optical system PL can be reduced. Correspondingly, the helium may be constantly supplied while adjusting the flow rate of the helium, or helium may be constantly supplied at a predetermined flow rate with the open / close valves V11 to V18 open. In the latter case, it is not particularly necessary to provide the on-off valves V11 to V18.
この場合、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lの各空間内のヘリ ゥム濃度を計測するヘリゥム濃度センサ又は酸素濃度センサを配置し、 各空間内 のヘリウム濃度が許容値に達しているかどうかモニタしておけばよい。 もし、 各 空間内のヘリゥム濃度が低下している場合、 すなわち各空間内における露光光を 吸収する吸光物質 (酸素や有機系の不純物等) が所定値以上存在している場合に は、 浄化されたヘリウムを再度供給する代わりに、 純度が高いヘリウムをボンべIn this case, a Helium concentration sensor or an oxygen concentration sensor that measures the Helium concentration in each space of Case 1, Subchamber 6, and the projection optical system PL is placed. May be monitored to determine whether the helium concentration has reached an allowable value. If the helium concentration in each space is reduced, that is, if light-absorbing substances (oxygen or organic impurities, etc.) that absorb the exposure light in each space are present at a predetermined value or more, purification is performed. Helium of high purity instead of supplying helium again
4 6から供給すればよい。 ボンべ 4 6から純度が高いヘリウムを供給しても、 そ の空間のヘリゥム濃度が所定値に達しない場合は、 その空間におけるヘリゥムの 漏洩が大きい可能性があるため、 その旨を警報ブザーを発して作業者に知らせた り、 自動的に露光装置の動作を停止させてもよい。 It should be supplied from 4-6. If helium of high purity is supplied from the cylinder 46 and the helium concentration in the space does not reach the predetermined value, there is a possibility that the helium leaks in the space. A warning may be issued to notify the operator or the operation of the exposure apparatus may be automatically stopped.
また、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lの各々と配管 3 3とを 接続する配管 9 2〜9 4 (及び開閉バルブ V 1 6〜V 1 8 ) を設けなくてもよい。 このとき、 更に開閉バルブ V 1 1〜V 1 5を設けなくてもよい。 この場合、 ケー ス 1、 サブチャンバ 6、 及び投影光学系 P Lからそれそれヘリウムが漏れ出すの で、 それを補充する、 即ちヘリウム濃度が許容値以上に維持されるように、 ヘリ ゥムを常時又は随時 (定期的に) 供給すればよい。 さらに、 本実施形態では F 2 レーザ光源 3と B M U 4とをケース 1に収納するものとしたが、 F 2 レーザ光源 3とは別に B MU 4などを筐体に収納し、 F 2 レーザ光源 3と筐体とにそれそれ ヘリウムを供給するようにしてもよい。 このとき、 F 2 レーザ光源 3と筐体とを 機械的に接続し、 両者の仕切板として F 2 レーザが透過するガラスプレートを設 ければよい。 Also, the pipes 92 to 94 (and the on-off valves V 16 to V 18) connecting the case 1, the sub-chamber 6, and each of the projection optical system PL to the pipe 33 need not be provided. At this time, the on-off valves V11 to V15 may not be further provided. In this case, helium leaks from the case 1, the sub-chamber 6, and the projection optical system PL, so that the helium is replenished, that is, the helium is constantly maintained so that the helium concentration is maintained at an allowable value or more. Or it may be supplied at any time (regularly). Further, in the present embodiment has assumed that the housing and the F 2 laser light source 3 and the BMU 4 in case 1, apart from storage B MU 4 and the housing and the F 2 laser light source 3, F 2 laser light source 3 Helium may be supplied to the housing and the housing. At this time, the F 2 laser light source 3 and the housing may be mechanically connected, and a glass plate through which the F 2 laser is transmitted may be provided as a partition plate for both.
また、 上述した露光装置はクリーンルーム内に設置されるが、 ケース 1、 サブ チャンバ 6、 環境チャンバ 7の気圧は、 クリーンルーム内の気圧よりも高く設定 することが望ましい。 そうすることによって、 クリーンルーム内の不純物が各空 間内に流入することを防ぐことができる。 また、 環境チャンバ 7に収容されるサ ブチャンバ 6及び投影光学系 P L内の気圧を環境チャンバ 7の気圧より高く設定 する。 環境チャンバ内には、 レチクルステージやウェハステージ等の駆動機構が 配置されているので、 これら駆動機構から発生する不純物がサブチャンバ 6及び 投影光学系 P L内に流入することを防ぐことができる。  Although the above-described exposure apparatus is installed in a clean room, it is desirable that the air pressure in case 1, the sub-chamber 6, and the environmental chamber 7 be set higher than the air pressure in the clean room. By doing so, it is possible to prevent impurities in the clean room from flowing into each space. Further, the air pressure in the sub-chamber 6 housed in the environmental chamber 7 and the projection optical system PL is set higher than the air pressure in the environmental chamber 7. Since drive mechanisms such as a reticle stage and a wafer stage are arranged in the environment chamber, impurities generated from these drive mechanisms can be prevented from flowing into the sub-chamber 6 and the projection optical system PL.
次に、 本実施形態の窒素循環装置につき詳細に説明する。 本実施形態では、 配 管 8 8を介して環境チャンバ 7内に窒素を供給するとともに、 配管 9 5 , 3 3を 介してそのチャンバ 7から窒素を回収する、 即ちチャンバ 7内で窒素を循環させ ている。 なお、 環境チャンバ 7内での窒素濃度が所定値に達した時点で窒素の供 給を停止し、 配管 8 8 (又はその分岐路 8 8 a, 8 8 b ) 、 及び配管 9 5をそれ それ開閉バルブ V 2 3 (又は V 2 4 , V 2 5 ) 、 及び V 1 9で閉じるとともに、 環境チャンバ 7内での窒素濃度が所定値よりも低くなつたときに、 開閉バルブ V 2 3 (及び V 2 4, V 2 5 ) を開けて窒素を供給するようにしてもよい。 Next, the nitrogen circulation device of the present embodiment will be described in detail. In this embodiment, while supplying nitrogen into the environmental chamber 7 through the piping 88, the piping 95, 33 The nitrogen is recovered from the chamber 7 through the chamber 7, that is, the nitrogen is circulated in the chamber 7. When the nitrogen concentration in the environmental chamber 7 reaches a predetermined value, the supply of nitrogen is stopped, and the piping 88 (or its branch passages 88a, 88b) and the piping 95 are deviated. The valve is closed with the on-off valve V 2 3 (or V 24, V 25), and V 19, and when the nitrogen concentration in the environment chamber 7 becomes lower than a predetermined value, the on-off valve V 2 3 (and V 24 and V 25) may be opened to supply nitrogen.
さて、 冷凍装置 3 7でヘリウムなどと分離された窒素は、 ポンプ 3 9によって 配管 3 8を通ってボンべ 4 0に回収される。 さらに、 ボンべ 4 0内の窒素は、 ポ ンブ 8 3によって配管 8 1を通って温調装置 8 6に送られる。 配管 8 1には開閉 バルブ V 2 1が設けられるとともに、 温調装置 8 6に送られる窒素の濃度を計測 する窒素濃度計 (又は酸素濃度計) 8 2が設置されており、 この濃度計 8 2の測 定値が制御系 4 5に供給されている。 制御系 4 5は、 濃度計 8 2で計測される窒 素の濃度が所定値に達していないときに、 窒素ボンべ 8 4と温調装置 8 6とを接 続する配管 8 5の開閉バルブ V 2 2を開放して、 ボンべ 8 4から温調装置 8 6に 高純度の窒素を供給する。 一方、 窒素濃度がその所定値以上であるときには、 制 御系 4 5は開閉バルブ V 2 2を閉じておく。 なお、 濃度計 8 2で計測される窒素 濃度が極端に低いときは、 開閉バルブ V 2 1を閉じてボンべ 8 4からの窒素のみ を温調装置 8 6に送るようにしてもよい。 そして、 濃度計 8 2で計測される窒素 濃度が許容値 (前述の所定値よりも小さい値) に達した時点で開閉バルブ V 2 1 を開放する。 さらに温調装置 8 6は、 回収、 浄化された窒素とボンべ 8 4からの 窒素とを混合して所定の温度、 圧力に制御し、 この温度制御、 及び圧力制御され た窒素を配管 8 8に供給する。 配管 8 8の途中で、 床 F 1の底面側に送風用のポ ンプ (又はファン) 8 7が設けられており、 このポンプ 8 7によって窒素が配管 8 8の分岐管 8 8 a, 8 8 bを通って環境チャンバ 7内に供給される。  The nitrogen separated from the helium or the like in the refrigerating device 37 is recovered by a pump 39 through a pipe 38 to a cylinder 40. Further, the nitrogen in the cylinder 40 is sent to the temperature controller 86 through the pipe 81 by the pump 83. An open / close valve V 21 is provided in the pipe 81, and a nitrogen concentration meter (or oxygen concentration meter) 82 that measures the concentration of nitrogen sent to the temperature controller 86 is installed. The measured value of 2 is supplied to the control system 45. The control system 45 is an on-off valve for the piping 85 connecting the nitrogen cylinder 84 and the temperature controller 86 when the nitrogen concentration measured by the concentration meter 82 does not reach the predetermined value. V22 is released, and high-purity nitrogen is supplied from the cylinder 84 to the temperature controller 86. On the other hand, when the nitrogen concentration is equal to or higher than the predetermined value, the control system 45 keeps the on-off valve V22 closed. When the nitrogen concentration measured by the concentration meter 82 is extremely low, the on-off valve V 21 may be closed and only nitrogen from the cylinder 84 may be sent to the temperature controller 86. Then, when the nitrogen concentration measured by the concentration meter 82 reaches an allowable value (a value smaller than the above-mentioned predetermined value), the on-off valve V 21 is opened. Further, the temperature controller 86 mixes the recovered and purified nitrogen with the nitrogen from the cylinder 84 to control the temperature and pressure to a predetermined value. To supply. In the middle of the piping 88, a pump (or fan) 87 is provided on the bottom side of the floor F1 for blowing air. Nitrogen is supplied by this pump 87 to the branch piping 88a, 88g of the piping 88. It is fed into the environmental chamber 7 through b.
本実施形態では、 分岐管 8 8 aの排出口を投影光学系 P Lとウェハ Wとの間に 設置し、 投影光学系 P Lとウェハ Wとの間を窒素が流れるようにしている。 一方、 分岐管 8 8 bは 2つに分岐され、 一方の排出口はコンデンサーレンズ 1 9とレチ クル Rとの間に設置され、 他方の排出口はレチクル Rと投影光学系 P Lとの間に 設置されている。 このように本実施形態では、 照明光学系 (コンデンサ一レンズ 1 9 ) と投影光学系 P Lとの間、 及び投影光学系 P Lとウェハ Wとの間に純度の 高い窒素を優先的に供給することができるので、 環境チャンバ 7に窒素を充填し てその濃度を所定値以上に維持する場合に比べて窒素の供給量を少なくすること ができる。 In the present embodiment, the outlet of the branch pipe 88a is provided between the projection optical system PL and the wafer W so that nitrogen flows between the projection optical system PL and the wafer W. On the other hand, the branch pipe 88b is branched into two, one outlet is installed between the condenser lens 19 and the reticle R, and the other outlet is connected between the reticle R and the projection optical system PL. is set up. Thus, in the present embodiment, the illumination optical system (condenser-one lens Since high-purity nitrogen can be supplied preferentially between 19) and the projection optical system PL, and between the projection optical system PL and the wafer W, the environment chamber 7 is filled with nitrogen and its concentration is increased. The supply amount of nitrogen can be reduced as compared with the case where the pressure is maintained at a predetermined value or more.
なお、 コンデンサレンズ 1 9とレチクル Rとの間に配置される排出口及び投影 光学系 P Lとウェハ Wとの間に配置される排出口は、 複数あってもよい。 また、 本実施の形態では、 コンデンサレンズ 1 9とレチクル Rとの間及び投影光学系 P Lとウェハ Wとの間に供給される窒素は、 配管 9 5, 3 3を介してチャンバ 7か ら回収されるが、 コンデンサレンズ 1 9とレチクル Rとの間、 及び投影光学系 P Lとウェハ Wとの間に、 配管 9 5 , 3 3とは別に、 気体回収用の回収管を少なく とも 1つ別途設けてもよい。  Note that there may be a plurality of outlets arranged between the condenser lens 19 and the reticle R and a plurality of outlets arranged between the projection optical system PL and the wafer W. In the present embodiment, nitrogen supplied between the condenser lens 19 and the reticle R and between the projection optical system PL and the wafer W is recovered from the chamber 7 through the pipes 95 and 33. However, apart from the pipes 95 and 33, at least one gas recovery pipe is separately provided between the condenser lens 19 and the reticle R, and between the projection optical system PL and the wafer W. It may be provided.
本実施形態では、 環境チャンバ 7内を窒素雰囲気としたが、 例えば不純物が除 去された空気を環境チヤンバ 7に供給し、 前述のように照明光学系と投影光学系 P Lとの間、 及び投影光学系 P Lとウェハ Wとの間に窒素を供給してその両空間 を窒素雰囲気とするだけでもよい。 このとき、 窒素の代わりにヘリウムを供給す るようにしてもよい。 この場合、 窒素循環装置を設ける必要はなく、 例えば配管 3 1と分岐管 8 8 a , 8 8 bとを接続して、 上記両空間にそれそれヘリウムを供 給すればよい。 また、 環境チャンバ 7に供給する空気として、 前述の有機物など が除去された化学的にクリーンなドライエア (例えば湿度が 5 %程度以下) を用 いてもよい。 なお、 この構成は A r Fエキシマレーザを露光用光源として用いる 投影露光装置に対して特に有効である。 この場合、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lにそれそれ窒素を供給するようにしてもよいし、 あるいはケ —ス 1、 及びサブチャンバ 6には窒素を供給し、 投影光学系 P Lにはヘリウムを 供給するようにしてもよい。  In this embodiment, the environment chamber 7 is set to a nitrogen atmosphere. However, for example, air from which impurities have been removed is supplied to the environment chamber 7 so that the space between the illumination optical system and the projection optical system PL and the It is only necessary to supply nitrogen between the optical system PL and the wafer W, and to make both spaces a nitrogen atmosphere. At this time, helium may be supplied instead of nitrogen. In this case, it is not necessary to provide a nitrogen circulating device. For example, the pipe 31 and the branch pipes 88a and 88b may be connected, and helium may be supplied to the two spaces. Further, as the air to be supplied to the environment chamber 7, chemically clean dry air (for example, having a humidity of about 5% or less) from which the above-described organic substances have been removed may be used. This configuration is particularly effective for a projection exposure apparatus using an ArF excimer laser as an exposure light source. In this case, nitrogen may be supplied to the case 1, the sub-chamber 6, and the projection optical system PL, or nitrogen may be supplied to the case 1, the sub-chamber 6, and the projection optical system PL. May be supplied with helium.
また、 回収した窒素をコンブレヅサによって 1 0 0〜2 0 0気圧程度に圧縮す る、 あるいは夕一ビンなどを用いた液化機によって液化してボンべ 4 0に保存す るようにしてもよい。 なお、 分岐管 8 8 a , 8 8 bにそれそれ設けた開閉バルブ V 2 4, V 2 5は、 照明光学系と投影光学系 P Lとの間、 及び投影光学系 P Lと ウェハ Wとの間の一方のみに窒素を供給可能とするものであり、 両空間に窒素を 同時に供給する場合には開閉バルブ V 2 4 , V 2 5を設けなくてもよい。 Further, the recovered nitrogen may be compressed to about 100 to 200 atm by a compressor, or may be liquefied by a liquefier using an evening bottle or the like and stored in a cylinder 40. The opening / closing valves V 24 and V 25 provided in the branch pipes 88 a and 88 b are provided between the illumination optical system and the projection optical system PL, and between the projection optical system PL and the wafer W. Nitrogen can be supplied to only one of the two spaces. When supplying them simultaneously, the opening / closing valves V 24 and V 25 need not be provided.
本実施形態では、 照明光学系と投影光学系 P Lとの間、 及び投影光学系 P Lと ウェハ Wとの間にそれそれ窒素を流すようにしたが、 分岐管 8 8 a , 8 8 bを設 けず、 単に環境チャンバ 7に配管 8 8を接続して、 環境チャンバ 7内での窒素濃 度が所定値以上となった時点で閧閉バルブ V 2 3を閉じるようにしてもよい。 ま た、 分岐管 8 8 a, 8 8 bの有無にかかわらず、 開閉バルブ V 2 3 , V 1 9を閧 けたまま所定流量で窒素を供給して環境チャンバ 7内で窒素を循環させるように してもよい。 この場合、 特に開閉バルブ V 2 3, V 1 9を設けなくてもよい。 本実施形態では、 環境チャンバ 7内に窒素 (又はヘリウム) などを供給するも のとしたが、 露光用照明光の波長域によっては環境チヤンバ 7内に化学的にクリ —ンで、 かつ温度制御された空気を供給するだけでもよい。 例えば、 露光波長が 1 9 0 n m程度以上であれば、 環境チャンバ 7内を空気雰囲気としてもよい。 本実施形態では、 照明光学系の大部分をサブチャンバ 6に収納し、 サブチャン バ 6の一部を環境チャンバ Ί内に設置したが、 例えばサブチャンバ 6の全てを環 境チャンバ 7内に設置してもよい。 この場合、 サブチャンバ 6から漏れ出すヘリ ゥムの回収率を向上させることができる。 また、 環境チャンバ 7外に設置される サブチャンバ 6の一部から漏れ出すヘリゥムを回収するために、 環境チャンバ 7 外のサブチャンバ 6を筐体で覆い、 その筐体上部に配管 3 3を接続してもよい。 本実施形態では、 ケース 1、 サブチャンバ 6、 及び投影光学系 P Lにそれそれ 単一の気体 (窒素、 又はヘリウムなど) を供給するものとしたが、 例えば窒素と ヘリウムとを所定比で混合した気体を供給するようにしてもよい。 この場合、 へ リゥム循環装置の配管 3 1に対してその開閉バルブ V 1 1よりも下流側で窒素循 環装置の配管 8 8を接続すればよい。 なお、 混合気体は窒素とヘリウムとの組み 合わせに限られるものではなく、 ネオン、 水素などと組み合わせてもよい。 また、 環境チャンバ 7に供給する気体も前述の混合気体であってもよい。 第 2実施形態 次に、 本発明の第 2実施形態につき、 図 2を参照して説明する。 本第 2実施形 態は複数台の投影露光装置からのヘリゥムを 1台のヘリゥム循環装置で浄化する ものである。 図 2において、 図 1に対応する部分には同一符号を付してその詳細 説明を省略する。 なお、 図 1中に示したケース 1、 サブチャンバ 6、 及び投影光 学系 P Lの各々と配管 33とを接続する配管 92- 94, 及び環境チャンバ 7と 配管 33とを接続する配管 95は図示省略している。 また、 この第 2実施形態に 記載されておらず、 前記第 1実施形態に記載されている事項は、 この第 2実施形 態においても同様に適用可能である。 In the present embodiment, nitrogen is caused to flow between the illumination optical system and the projection optical system PL, and between the projection optical system PL and the wafer W, but branch pipes 88a and 88b are provided. Instead, a pipe 88 may be simply connected to the environmental chamber 7 to close the closing valve V23 when the nitrogen concentration in the environmental chamber 7 becomes equal to or higher than a predetermined value. Also, regardless of the presence or absence of the branch pipes 88a and 88b, nitrogen is supplied at a predetermined flow rate with the on-off valves V23 and V19, and the nitrogen is circulated in the environmental chamber 7. May be. In this case, it is not particularly necessary to provide the on-off valves V23 and V19. In this embodiment, nitrogen (or helium) or the like is supplied into the environment chamber 7. However, depending on the wavelength range of the illumination light for exposure, the environment chamber 7 is chemically clean and temperature controlled. It may be sufficient to supply supplied air. For example, if the exposure wavelength is about 190 nm or more, the inside of the environmental chamber 7 may be an air atmosphere. In this embodiment, most of the illumination optical system is housed in the sub-chamber 6 and a part of the sub-chamber 6 is installed in the environment chamber Ί. For example, all of the sub-chamber 6 is installed in the environment chamber 7. You may. In this case, the recovery rate of the helium leaking from the sub-chamber 6 can be improved. Also, in order to collect the helium leaking from a part of the sub-chamber 6 installed outside the environmental chamber 7, the sub-chamber 6 outside the environmental chamber 7 is covered with a housing, and a pipe 33 is connected to the upper part of the housing. May be. In this embodiment, a single gas (nitrogen, helium, etc.) is supplied to the case 1, the sub-chamber 6, and the projection optical system PL. However, for example, nitrogen and helium are mixed at a predetermined ratio. A gas may be supplied. In this case, the piping 31 of the nitrogen circulation device may be connected to the piping 31 of the steam circulation device downstream of the on-off valve V11. Note that the mixed gas is not limited to the combination of nitrogen and helium, but may be combined with neon, hydrogen, or the like. Further, the gas supplied to the environment chamber 7 may be the above-mentioned mixed gas. Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment In this embodiment, helms from a plurality of projection exposure apparatuses are purified by a single helm circulation apparatus. In FIG. 2, portions corresponding to FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. The pipes 92-94 connecting the pipe 33 to each of the case 1, the sub-chamber 6, and the projection optical system PL shown in Fig. 1 and the pipe 95 connecting the pipe 33 to the environmental chamber 7 are shown. Omitted. In addition, the items described in the first embodiment that are not described in the second embodiment can be similarly applied to the second embodiment.
図 2は、 本実施形態の複数台の投影露光装置及び 1台のへリゥム循環装置を示 す断面図である。 図 2において、 床 F 1上に複数個の環境チャンバ 7 A, 7B, 7 Cが設置され、 各環境チャンバ 7 A, 7B, 7 C内にそれそれ図 1の露光本体 部 26と同様の露光本体部が設置され、 かつ不図示の照明光源が近接して配置さ れている。 そして、 環境チャンバ 7 A, 7B, 7 C内にそれそれ階下の不図示の ヘリゥム供給装置から所定の純度以上のヘリゥムガスが供給されている。 環境チ ヤンバ 7A, 7 B, 7 C内に供給されて内部の天井近傍の空間に上昇したへリウ ムと空気と窒素との混合気体は、 それそれ配管 33 A, 33B, 33 Cを介して 共通配管 49に導かれている。 共通配管 49は、 床 F 1の開口を通過して階下の 床 F 2上のヘリゥム循環装置に通じている。 共通配管 49の床 F 1の底面側には 吸引用のポンプ 34が設置されている。  FIG. 2 is a cross-sectional view showing a plurality of projection exposure apparatuses and one helical circulation apparatus of the present embodiment. In FIG. 2, a plurality of environmental chambers 7A, 7B, and 7C are installed on a floor F1, and each of the environmental chambers 7A, 7B, and 7C has the same exposure as that of the exposure main unit 26 of FIG. The main body is installed, and an unillustrated illumination light source is arranged in close proximity. Helium gas of a predetermined purity or higher is supplied into the environmental chambers 7A, 7B, and 7C from a not-shown helm supply device (not shown). The mixed gas of helium, air, and nitrogen supplied to the environmental chambers 7A, 7B, and 7C and ascended to the space near the internal ceiling, flows through pipes 33A, 33B, and 33C, respectively. It is led to common piping 49. The common pipe 49 passes through an opening in the floor F1 and communicates with the helm circulation device on the floor F2 below the floor. The suction pump 34 is installed on the bottom side of the floor F 1 of the common pipe 49.
階下のヘリゥム循環装置において、 共通配管 49及び吸引用のポンプ 34を介 して回収されたヘリウム、 窒素、 及び空気の混合気体は、 集塵排水装置 35を経 て冷凍装置 37に達し、 冷凍装置 37で液化された窒素はボンべ 40に封入され る。 そして、 冷凍装置 37で液化されなかったヘリウムは、 不図示の化学フィル 夕等によって更に浄化され、 配管 41及び吸引用のポンプ 42によってヘリゥム を蓄積するためのボンべ 50に例えば高圧で圧縮されて封入される。 このへリウ ムは、 ボンべ 50に設けられた配管 51を介して、 更に純度を高めるための再生 工場、 又は図 1に示したヘリウム供給装置に供給される。  The helium, nitrogen, and air mixed gas collected through the common pipe 49 and the suction pump 34 in the lower-stage helm circulation device reaches the refrigerating device 37 via the dust collecting and draining device 35, and is refrigerated. The nitrogen liquefied in 37 is sealed in a cylinder 40. The helium that has not been liquefied in the refrigerating device 37 is further purified by a chemical filter (not shown) or the like, and compressed, for example, at a high pressure into a cylinder 50 for accumulating helium by a pipe 41 and a suction pump 42. Enclosed. This helium is supplied via a pipe 51 provided in a cylinder 50 to a regeneration plant for further increasing the purity or to a helium supply device shown in FIG.
前述の第 1実施形態 (図 1) で説明したように、 図 2中のヘリウム回収装置 (33A〜33 C, 34〜42, 49, 50, 80) は窒素回収装置を兼ねてい る。 そこで、 複数台の投影露光装置と 1台の窒素供給装置 (図 1中の配管 81か ら符号順に配管 8 8までに対応) とを接続し、 この窒素供給装置によってボ: 4 0に保存された窒素を複数台の投影露光装置にそれそれ供給する。 これにより、 複数台の投影露光装置で 1台の窒素循環装置を兼用することが可能となる。 この ように本実施形態では、 複数台の露光装置に対して 1台のヘリウム循環装置、 及 び窒素循環装置で対応しているため、 浄化コストが低減されている。 第 3実施形態 次に、 本発明の第 3実施形態につき、 図 3を参照して説明する。 本第 3実施形 態は、 第 1実施形態及び第 2実施形態における投影光学系 P Lの一部又は全部を 構成するレンズユニット (投影レンズユニット) に対してヘリウムガスを浄化し つつ積極的に循環させる構成を具体的に開示したものである。 なお、 この第 3実 施形態に記載されておらず、 前記第 1実施形態に記載されている事項は、 この第 3実施形態においても同様に適用可能である。 As described in the first embodiment (FIG. 1), the helium recovery device (33A to 33C, 34 to 42, 49, 50, 80) in FIG. 2 also serves as the nitrogen recovery device. Therefore, a plurality of projection exposure units and one nitrogen supply unit (piping 81 in Fig. 1) The nitrogen supply device supplies the nitrogen stored in the tank 40 to a plurality of projection exposure apparatuses. This makes it possible for a plurality of projection exposure apparatuses to double as one nitrogen circulation apparatus. As described above, in the present embodiment, a single helium circulating device and a nitrogen circulating device are used for a plurality of exposure devices, so that the purification cost is reduced. Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment actively purifies helium gas while purifying helium gas with respect to a lens unit (projection lens unit) constituting a part or all of the projection optical system PL in the first embodiment and the second embodiment. This specifically discloses the configuration to be performed. Note that the items described in the first embodiment, which are not described in the third embodiment, can be similarly applied to the third embodiment.
同図において、 投影レンズュニヅト 6 1の鏡筒 6 2内には 3枚のレンズ 6 3 , 6 4 , 6 5が所定の間隔で設けられており、 押さえ環 6 6によって固定される。 6 7はレンズ 6 4とレンズ 6 5との間を所定の間隔で保っためのレンズ分離環で ある。 実際には、 投影レンズュニヅト 6 1は多数のレンズを備えているが、 図 3 では説明を簡略化するためにその内の 3枚だけを示した。 レンズ 6 3 , 6 4間及 びレンズ 6 4, 6 5間には、 これらのレンズと鏡筒 6 2の内壁によりレンズ室 R 1、 R 2が画成されている。 レンズ室 R 1にはクイック力ブラ Q 1が取り付けら れているガス供給口 G 1とクイヅクカブラ Q 2が取り付けられているガス排出口 G 2とが設けられている。 一方、 レンズ室 R 2にはクイック力ブラ Q 3が取り付 けられているガス供給口 G 3とクイヅクカプラ Q 4が取り付けられているガス排 出口 G 4とが設けられている。  In the figure, three lenses 63, 64, 65 are provided at predetermined intervals in a lens barrel 62 of the projection lens unit 61, and are fixed by a retaining ring 66. Reference numeral 67 denotes a lens separating ring for maintaining a predetermined interval between the lens 64 and the lens 65. Actually, the projection lens unit 61 has many lenses, but only three of them are shown in FIG. 3 to simplify the explanation. Lens chambers R 1 and R 2 are defined between the lenses 63 and 64 and between the lenses 64 and 65 by these lenses and the inner wall of the lens barrel 62. The lens chamber R1 is provided with a gas supply port G1 to which the quick force bra Q1 is mounted and a gas discharge port G2 to which the quick breaker Q2 is mounted. On the other hand, the lens chamber R2 is provided with a gas supply port G3 to which the quick force bra Q3 is attached and a gas outlet G4 to which the quick coupler Q4 is attached.
制御装置 7 1により制御されるポンプや制御弁等からなる供給装置 7 2の出力 側には、 配管 L 1の一端が接続されており、 配管 L 1の他端は二分岐されてその —方の配管 L 2がガス供給口 G 1に接続され、 他方の配管 L 3がガス供給口 G 3 に接続されている。 配管 L 2及び配管 L 3にはそれそれ制御装置 7 1により制御 される開閉弁 (制御弁) V I , V 3が介装されている。 浄化装置 7 3の入力側に は配管 L 4の一端が接続されており、 配管 L 4の他端は二分岐されてその一方の 配管 L 5がガス排出口 G 2に接続され、 他方の配管 L 6がガス排出口 G 4に接続 されている。 配管 L 5及び配管 L 6にはそれそれ制御装置 7 1により制御される 開閉弁 (制御弁) V 2 , V 4が介装されている。 浄化装置 7 3の出力側は供給装 置 7 2の入力側に配管 L 7を介して接続されている。 供給装置 7 2の他の入力側 には高純度のヘリゥムガスが圧入されたボンべ 7 4が配管 L 8を介して接続され ている。 One end of a pipe L1 is connected to the output side of a supply device 72 including a pump, a control valve, and the like controlled by the control device 71, and the other end of the pipe L1 is branched into two ends. Pipe L2 is connected to the gas supply port G1, and the other pipe L3 is connected to the gas supply port G3. Pipe L 2 and pipe L 3 are each controlled by the control device 7 1 Open / close valves (control valves) VI and V3 are installed. One end of a pipe L4 is connected to the input side of the purifier 73, and the other end of the pipe L4 is branched into two, one of which is connected to the gas outlet G2, and the other of which is connected to the gas outlet G2. L 6 is connected to gas outlet G 4. Opening / closing valves (control valves) V 2 and V 4 controlled by the control device 71 are interposed in the pipe L 5 and the pipe L 6, respectively. The output side of the purification device 73 is connected to the input side of the supply device 72 via a pipe L7. A cylinder 74 into which high-purity helium gas is press-fitted is connected to another input side of the supply device 72 via a pipe L8.
浄化装置 7 3は、 入力される被浄化気体としてのヘリゥムガスに含まれている 汚染物質 (固体微粒子、 液体微粒子、 気体) を分離 ·除去して高純度のヘリウム ガスを再生する装置であり、 該ヘリゥムガスに含まれている下記に例示するよう な汚染物質を分離 ·除去するのに適した化学フィルタ、 その他の濾過装置、 ヘリ ゥムと汚染物質との化学的性質の違いを利用した分離装置等を単体であるいは組 み合わせたものから構成されている。 分離 ·除去すべき汚染物質を例示すれば、 レンズュニヅト 6 1の各レンズ室 R 1, R 2内に最初に存在する気体やそれに含 まれている不純物、 レンズ等の光学素子を鏡筒に固定するための接着剤又は充填 材等から発生する有機物質の分子、 鏡筒の内壁 (反射防止用の塗装面等) から発 生する不純物 (例えば水分子、 ハイ ドロ力一ボンの分子、 又はこれら以外の照明 光を拡散する物質) 、 光学素子等に残存付着している浄化液 (エーテルや水等) が気化したもの、 及びこれらが照明光と反応する等して生成された物質、 並びに これらがレンズの表面に凝集 ·付着したものが照明光の照射による光洗浄効果に より浮遊したもの、 さらには前述したシリコン系有機物、 可塑剤、 難燃剤等であ り、 これらの分離 ·除去に適した浄化装置が採用される。  The purifying device 73 is a device for regenerating high-purity helium gas by separating and removing contaminants (solid fine particles, liquid fine particles, and gas) contained in the input helium gas as the gas to be purified. Chemical filters suitable for separating / removing contaminants contained in helium gas as shown below, other filtration devices, separation devices utilizing differences in the chemical properties of helium and contaminants, etc. It consists of a single or a combination of these. As an example of the contaminants to be separated and removed, the gas initially present in each of the lens chambers R 1 and R 2 of the lens unit 61, impurities contained therein, and optical elements such as lenses are fixed to the lens barrel. Of organic substances generated from adhesives or fillers, and impurities generated from the inner wall of the lens barrel (painted surface for anti-reflection, etc.) (for example, water molecules, molecules of hydro force, or other substances) Substances that diffuse the illumination light), purified liquid (ether, water, etc.) adhering to the optical element, etc., and substances produced by reacting with the illumination light, etc. What aggregates and adheres to the lens surface floats due to the light cleaning effect of illumination light, and is also the aforementioned silicon-based organic matter, plasticizer, flame retardant, etc., and is suitable for separating and removing these. Purification device It is adopted.
なお、 浄化装置 7 3に採用される化学フィルタとしては、 イオン除去用フィル 夕としてのイオン交換樹脂、 イオン交換繊維等を採用することができ、 表面積及 び反応速度が大きく成形加工が容易なことから気体処理用としてはイオン交換繊 維が適当である。 イオン交換繊維は、 例えばポリプロピレン繊維から放射線グラ フ ト重合によって作られる。 また、 水分等を除去するためのフィルタとしては、 活性炭、 シリカゲル、 ゼォライ ト等の吸着材を用いることができる。 制御装置 7 1は、 供給装置 7 2、 浄化装置 7 3、 バルブ V 1〜V 4の作動を制 御して、 適宜なタイミングで浄化処理を行うためのマイクロコンピュー夕等から なる装置であり、 浄化処理を行う時期及び時間を含む制御データが予め記憶され た記憶装置 7 5を有している。 この制御データは、 経験的、 実験的、 あるいは理 論的に最も効果的となるように作成されて、 記憶装置 7 5に記憶保持される。 さ らに、 記憶装置 7 5は、 露光装置の作動時間、 すなわち、 照明光学系又は投影光 学系に対する照明光の照射時間や、 照明光が照射されていない時間等の露光履歴 を記憶してもよい。 例えば、 このレンズユニットが組立完了後初めて使用される ような場合には、 上述のように、 接着剤や充填剤、 塗装や浄化剤等による汚染物 質がレンズの表面に凝集 ·付着することにより、 光透過率が全体的にあるいは部 分的に低下する傾向が高いので、 比較的に頻繁に浄化処理を実施するよう制御デ 一夕を作成する。 そして、 このような現象は運転時間の経過に伴い徐々に少なく なる傾向にあるので、 運転時間に応じて浄化の頻度を少なくするようにし、 ある 程度の運転時間が経過したならば、 その後は比較的に散漫にかつ定期的に浄化処 理を実施するように制御データを作成する。 In addition, as the chemical filter used in the purifying device 73, an ion-exchange resin, ion-exchange fiber, or the like can be used as the ion-removal filter, and the surface area and the reaction rate are large and the molding process is easy. Therefore, ion exchange fiber is suitable for gas treatment. Ion exchange fibers are made, for example, by radiation graph polymerization from polypropylene fibers. As a filter for removing water and the like, an adsorbent such as activated carbon, silica gel, and zeolite can be used. The control device 71 is a device including a microcomputer for controlling the operation of the supply device 72, the purification device 73, and the valves V1 to V4 to perform the purification process at an appropriate timing. And a storage device 75 in which control data including the timing and time of performing the purification process is stored in advance. The control data is created so as to be most effective empirically, experimentally, or theoretically, and is stored in the storage device 75. Further, the storage device 75 stores the operation history of the exposure apparatus, that is, the exposure history such as the irradiation time of the illumination light to the illumination optical system or the projection optical system and the time during which the illumination light is not irradiated. Is also good. For example, when this lens unit is used for the first time after the completion of assembly, as described above, contaminants such as adhesives, fillers, paints, and cleaning agents may aggregate and adhere to the lens surface. However, since the light transmittance tends to decrease entirely or partially, a control system is created so that the purification process is performed relatively frequently. Since such phenomena tend to gradually decrease with the lapse of operation time, the frequency of purification is reduced according to the operation time, and after a certain amount of operation time has elapsed, The control data is created so that the purification process is performed diffusely and periodically.
このように作成された制御データに従って、 制御装置 7 1は図 4のフローチヤ 一卜に示すような処理を行う。 まず、 記憶装置 7 5から当該制御デ一夕を読み込 み (S T 1 ) 、 浄化処理を実施する時期についてのデータに基づき浄化処理を実 施する時期に至っているか否かを判断し (S T 2 ) 、 浄化処理を実施すべき時期 に至っている場合には、 予備的に照明光の照射を実施して、 レンズ等の表面に付 着している汚染物質を紫外線による光洗浄効果を利用して浮遊させる (S T 3 ) 。 予備的に照明光を照射する時間は、 過去の露光装置の作動時間、 すなわち、 光学 系に対する照明光の照射時間や、 照明光が照射されていない時間等の露光履歴を 考慮して決定される。 また、 予備的に照明光の照射を実施する際に、 光洗浄効果 を促進させるオゾン等の促進ガスを光路内に供給してもよい。 ここまでの状態で は、 レンズユニット 6 1の開閉弁 V 1〜V 4は閉塞されているので、 ここで、 開 閉弁 V I ~V 4を開放して (S T 4 ) 、 供給装置 7 2及び浄化装置 7 3を作動さ せ、 ヘリウムガスの循環 ·浄化を開始する (S T 5 ) 。  In accordance with the control data created in this way, the control device 71 performs the processing shown in the flowchart of FIG. First, the control data is read from the storage device 75 (ST 1), and it is determined whether or not it is time to perform the purification process based on the data on the time to perform the purification process (ST 2). If it is time to carry out the purification treatment, pre-irradiation of illumination light is performed to remove contaminants adhering to the surface of the lens etc. by utilizing the light cleaning effect of ultraviolet rays. Float (ST 3). The preliminary illumination light irradiation time is determined in consideration of the past operation time of the exposure apparatus, that is, the exposure time of the illumination light to the optical system and the exposure history such as the time when the illumination light is not irradiated. . When the illumination light is preliminarily irradiated, a promoting gas such as ozone for promoting the light cleaning effect may be supplied into the optical path. Up to this point, the on-off valves V1 to V4 of the lens unit 61 are closed, so here, the on-off valves VI to V4 are opened (ST4), and the supply device 72 and Activate the purifier 73 to start circulation and purification of helium gas (ST 5).
即ち、 供給装置 7 2によりボンべ 7 4からの新たなヘリウムガス又は浄化装置 73により浄化されたヘリゥムガスのいずれか一方又はこれらを混合したものを 配管 L I , L 2 , L 3に供給し、 レンズユニッ ト 6 1の各レンズ室 R 1, R2の 内部を清浄なヘリゥムガスで置換する。 レンズュニヅト 61の各レンズ室 R 1, R 2の内部にそれまで存在していた浮遊された汚染物質を含むヘリゥムガスは配 管 L 5, L 6 , L 4を介して回収され、 浄化装置 73に送られる。 浄化装置 73 により該ヘリゥムガスに含まれている汚染物質が分離 ·除去され、 清浄化された ヘリウムガスが供給装置 72に配管 L 7を介して送られることにより、 以下同様 にヘリウムガスの循環が行われる。 次いで、 前記制御データに設定されている浄 化処理を実施する時間 (浄化開始から終了までの時間) についてのデータに基づ き、 浄化開始から所定の時間が経過したか否かが判断され (ST 6) 、 所定の時 間が経過した場合には、 供給装置 72及び浄化装置 73の作動を停止し (ST7)、 開閉弁 V I ~V 4を閉塞し (ST8) 、 浄化処理を終了する。 That is, a new helium gas or purification device from the cylinder 74 is supplied by the supply device 72. Supply either one of the helium gas purified by 73 or a mixture thereof to the piping LI, L2, L3, and replace the inside of each lens chamber R1, R2 of the lens unit 61 with clean helium gas. I do. Helium gas containing suspended contaminants, which had been present in the lens chambers R 1 and R 2 of the lens unit 61, was recovered through the pipes L 5, L 6 and L 4 and sent to the purifier 73. Can be The contaminants contained in the helium gas are separated and removed by the purification device 73, and the purified helium gas is sent to the supply device 72 via the pipe L7. Will be Next, it is determined whether or not a predetermined time has elapsed from the start of the purification, based on the data on the time for performing the purification process (the time from the start to the end of the purification) set in the control data ( ST 6) When the predetermined time has elapsed, the operation of the supply device 72 and the purification device 73 is stopped (ST7), the on-off valves VI to V 4 are closed (ST8), and the purification process ends.
上述した制御装置 71による浄化処理を実施するための制御は、 記憶装置 75 に予め記憶保持された制御データに従って行うようしたものであるが、 図 5に示 すように、 光透過率を計測して、 現実の汚染状況に応じて浄化処理を実施するよ うに制御することもできる。 露光対象としてのウェハを保持するウェハステージ 上に照明光の照度を検出する照度センサ (検出装置) 76を設け、 照明光の照度 をモニタリングして光透過率を検出し (ST 1) 、 検出された光透過率の変動量 と予め設定されて記憶装置 75に記憶保持された所定値とを比較して (ST2) 、 検出された光透過率の変動量が前記所定値を越えた場合 (大きい場合) には、 予 備的に照明光の照射を実施して、 レンズ等の表面に付着している汚染物質を紫外 線による光洗浄効果を利用して浮遊させる (ST 3) 。 予備的に照明光を照射す る時間は、 記憶装置に記憶保持された所定値に対して、 検出された光透過率の変 動量との差から求められる。 すなわち、 変動量の差が大きい場合は、 照射時間が 長くなり、 変動量の差が小さい場合は、 照射時間は短くてすむ。 ここまでの状態 では、 レンズユニット 61の開閉弁 V 1〜V4は閉塞されているので、 ここで、 開閉弁 V I〜V 4を開放して (ST4) 、 供給装置 72及び浄化装置 73を作動 させ、 気体の循環 ·浄化を開始する (ST 5) 。  The control for performing the purification process by the controller 71 described above is performed in accordance with the control data stored and held in the storage device 75 in advance, but as shown in FIG. 5, the light transmittance is measured. Thus, control can be performed so as to perform the purification process according to the actual pollution situation. An illuminance sensor (detection device) 76 that detects the illuminance of the illumination light is provided on the wafer stage that holds the wafer to be exposed, and the illuminance of the illumination light is monitored to detect the light transmittance (ST 1). The variation of the light transmittance is compared with a predetermined value stored in the storage device 75 in advance (ST2), and when the detected variation of the light transmittance exceeds the predetermined value (larger). In this case, pre-irradiation of illumination light is carried out in advance to float contaminants adhering to the surface of the lens etc. using the light washing effect of ultraviolet rays (ST 3). Preliminary illumination light irradiation time is obtained from a difference between a predetermined value stored and held in the storage device and the detected variation in light transmittance. In other words, when the difference between the fluctuations is large, the irradiation time is long, and when the difference between the fluctuations is small, the irradiation time is short. In this state, since the on-off valves V1 to V4 of the lens unit 61 are closed, the on-off valves VI to V4 are opened (ST4), and the supply device 72 and the purification device 73 are operated. Start gas circulation and purification (ST 5).
即ち、 供給装置 72によりボンべ 74からの新たなヘリゥムガス又は浄化装置 7 3により浄化されたヘリゥムガスのいずれか一方又はこれらを混合したものを 配管 L I , L 2 , L 3に供給し、 レンズユニット 6 1の各レンズ室 R 1 , R 2の 内部を清浄なヘリゥムガスで置換する。 レンズュニヅト 6 1の各レンズ室 R 1, R 2の内部にそれまで存在していた浮遊された汚染物質を含むヘリゥムガスは配 管 L 5, L 6, L 4を介して回収され、 浄化装置 7 3に送られる。 浄化装置 7 3 により該ヘリゥムガスに含まれている汚染物質が分離 ·除去され、 清浄化された ヘリウムガスが配管 L 7を介して供給装置 7 2に送られることにより、 以下同様 にヘリウムガスの循環が行われる。 次いで、 ウェハステージ上の前記照度センサ 7 6により再度光透過率を検出し (S T 6 ) 、 検出された光透過率の変動量と予 め設定されて記憶装置 7 5に記憶保持された所定値 (S T 2において比較に使用 する所定値と同じかそれよりも小さい値) とを比較して (S T 7 ) 、 検出された 光透過率の変動量が前記所定値を越えない場合 (小さい場合) には、 供給装置 7 2及び浄化装置 7 3の作動を停止し (S T 8 ) 、 開閉弁 V I〜V 4を閉塞し (S T 9 ) 、 浄化処理を終了する。 That is, a new helm gas or a purification device from the cylinder 74 by the supply device 72. 73 Either one of the purified gas or a mixture thereof is supplied to the piping LI, L2, L3, and the interior of each lens chamber R1, R2 of the lens unit 61 is cleaned with clean gas. Replace. Helium gas containing suspended contaminants, which had been present in the lens chambers R 1 and R 2 of the lens unit 61, was recovered through the pipes L 5, L 6, and L 4, and was purified. Sent to Contaminants contained in the helium gas are separated and removed by the purification device 73, and the purified helium gas is sent to the supply device 72 via the pipe L7, thereby circulating the helium gas in the same manner. Is performed. Next, the light transmittance is detected again by the illuminance sensor 76 on the wafer stage (ST 6), and the fluctuation amount of the detected light transmittance is set in advance, and the predetermined value stored in the storage device 75 is stored. (ST7) which is equal to or smaller than the predetermined value used for comparison in ST2, and when the detected light transmittance variation does not exceed the predetermined value (if small) Next, the operation of the supply device 72 and the purification device 73 is stopped (ST8), the on-off valves VI to V4 are closed (ST9), and the purification process ends.
図 5に示した処理では、 S T 1及び S T 2又は S T 6及び S T 7において、 ゥ ェハステージ上に設けられた照度センサにより照度を検出して光透過率の変動量 を求め、 この光透過率の変動量と予め設定された所定値とを比較するようにして いるが、 ウェハステージ上に照明光の照度分布を検出するムラセンサを設けて、 検出された照度分布の最大値と最小値との差を予め設定された所定値と比較して 浄化処理を行い、 あるいは該浄化処理を終了するようにできる。 また、 照度セン ザの位置はウェハステージ上に限られず、 レンズュニット 6 1の上流側及び下流 側にそれそれビームスプリヅタを設けてその分岐光の照度をモニタリングし、 モ 二夕リングされた照度、 照度分布、 照度の変動量、 光透過率、 光透過率の変動量 のいずれかと、 対応して設定された所定値とを比較して、 その結果に基づき浄化 処理を行い、 あるいは該浄化処理を終了するようにしてもよい。  In the processing shown in FIG. 5, in ST1 and ST2 or ST6 and ST7, the illuminance is detected by the illuminance sensor provided on the wafer stage, and the amount of change in light transmittance is obtained. The variation is compared with a predetermined value, but a non-uniformity sensor for detecting the illuminance distribution of the illumination light is provided on the wafer stage, and the difference between the maximum value and the minimum value of the detected illuminance distribution is determined. Is compared with a predetermined value set in advance to perform the purification process, or the purification process can be terminated. The position of the illuminance sensor is not limited to the position on the wafer stage. Beam splitters are provided upstream and downstream of the lens unit 61 to monitor the illuminance of the branched light, and the illuminance and the illuminance distribution of the module are monitored. , The amount of change in illuminance, light transmittance, or the amount of change in light transmittance is compared with a predetermined value set correspondingly, and a purifying process is performed based on the result, or the purifying process is terminated. You may do so.
図 4に示した制御処理と、 図 5に示した制御処理はいずれか一方を選択して採 用することができ、 あるいはこれらを組み合わせてもよい。 また、 これらの制御 処理は、 ウェハ上にレチクルのパターンを露光転写する露光処理時以外の時、 例 えば、 露光装置の運転開始の直前に行い、 一のロットに対する露光処理が終わり、 次のロッ卜に対する露光処理を行う直前に行い、 あるいは一のウェハに対する露 光処理が終わり、 次のウェハに対する露光処理を行う直前に行うようにするとよ い。 露光処理中に気体の循環を実施すると、 レンズユニット 6 1のレンズ室 R 1 , R 2内の圧力変動や温度変動により露光精度に悪影響を及ぼす可能性があるから である。 上述のように、 浄化処理中にのみ開閉弁 V 1〜V 4を開放し、 露光処理 中は開閉弁 V 1〜V 4を閉塞することにより、 レンズュニヅト 6 1のレンズ室 R 1 , R 2内の気体の流動が防止されて安定性した状態とすることができる。 Either the control process shown in FIG. 4 or the control process shown in FIG. 5 can be selected and adopted, or a combination thereof can be used. In addition, these control processes are performed at times other than the exposure process of exposing and transferring the reticle pattern onto the wafer, for example, immediately before the start of the operation of the exposure apparatus, and the exposure process for one lot is completed. It may be performed immediately before performing the exposure processing on the next lot, or may be performed immediately before the exposure processing on the next wafer is completed after the exposure processing on one wafer is completed. This is because, if gas is circulated during the exposure processing, exposure accuracy may be adversely affected by pressure fluctuations and temperature fluctuations in the lens chambers R 1 and R 2 of the lens unit 61. As described above, the on-off valves V1 to V4 are opened only during the cleaning process, and the on-off valves V1 to V4 are closed during the exposure process, so that the inside of the lens chambers R1 and R2 of the lens unit 61 can be reduced. Is prevented from flowing and a stable state can be obtained.
図 3に示す例では、 各配管 L 2 , L 3 , L 5 , L 6の各々に開閉弁を設けてレ ンズ室 R l , R 2毎にヘリウムガスの流れを制御できるような構造としたが、 レ ンズ室 R l、 R 2を流れるガス流量が極端に低下しないような範囲において、 閧 閉弁 V 1〜V 4を削除して、 配管 L 1及び L 4にそれそれ開閉弁を設けて、 各レ ンズ室 R l , R 2の気体の流れを共通的に制御するようにしてもよい。 また、 図 3のように全てのレンズ室 R 1 , R 2に対してガス供給口 G 1 , G 3、 ガス排出 口 G 2 , G 4を設けないで、 設計的に最も効果の期待できるレンズ室のみに配管 を設けるようにしてもよい。  In the example shown in FIG. 3, an on-off valve is provided in each of the pipes L 2, L 3, L 5, and L 6 so that the flow of helium gas can be controlled in each of the lens chambers R 1 and R 2. However, within a range where the gas flow rate flowing through the lens chambers R l and R 2 does not extremely decrease, the closing valves V 1 to V 4 are deleted and piping valves L 1 and L 4 are provided with on-off valves respectively. Thus, the flow of gas in each of the lens chambers Rl and R2 may be commonly controlled. In addition, as shown in Fig. 3, the gas supply ports G1, G3 and the gas discharge ports G2, G4 are not provided for all the lens chambers R1, R2. Piping may be provided only in the chamber.
図 3に示したレンズュニヅ ト 6 1は投影光学系に用いられるレンズュニヅ卜で あるが、 浄化対象としてのレンズュニヅトはかかる構成のレンズュニヅ卜に限定 されることはなく、 投影光学系に用いられる他の構成を有するレンズュニットに、 あるいは照明光学系に用いられるレンズユニットに上記のような気体浄化系を適 用して露光装置を構成することができる。 また、 レンズユニットに限られず、 レ ンズと反射鏡を使用した光学素子ュニット、 反射鏡のみを使用した光学素子ュニ ヅ卜であっても同様に適用することができる。  The lens unit 61 shown in FIG. 3 is a lens unit used for the projection optical system. However, the lens unit to be purified is not limited to the lens unit having such a configuration, but may be another configuration used for the projection optical system. An exposure apparatus can be configured by applying the above-described gas purification system to a lens unit having a lens unit or a lens unit used in an illumination optical system. Further, the present invention is not limited to the lens unit, and can be similarly applied to an optical element unit using a lens and a reflecting mirror or an optical element unit using only a reflecting mirror.
上記の実施の形態では、 照明光に対する透過率が高く (不活性で) 、 かつ熱伝 導率が良好な気体としてヘリウムガスが使用されているが、 そのような気体とし てヘリウム以外の気体 (例えば、 高純度の窒素、 ネオン (N e ) 、 又はヘリウム と窒素との混合気体等) を使用する場合にも本発明が適用できる。  In the above embodiment, helium gas is used as a gas having a high (inert) transmittance with respect to illumination light and a good thermal conductivity, but such a gas other than helium ( For example, the present invention can be applied to the case where high-purity nitrogen, neon (Ne), or a mixed gas of helium and nitrogen is used.
なお、 以上説明した第 1〜第 3実施形態は、 本発明の理解を容易にするために 記載されたものであって、 本発明を限定するために記載されたものではない。 し たがって、 上記の実施形態に開示された各要素は、 本発明の技術的範囲に属する 全ての設計変更や均等物をも含む趣旨である。 The first to third embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment belongs to the technical scope of the present invention. It is intended to include all design changes and equivalents.
例えば、 上記の各実施形態においては、 光源として F エキシマレーザ光 (波 長 157nm) を射出するものを採用した露光装置について説明しているが、 K rFエキシマレ一ザ光 (波長 248 nm) 、 A rFエキシマレーザ光 (波長 19 3 nra) 、 Ar2 レーザ光 (波長 126 nm) を射出するものを採用したもの、 加えて、 いわゆる極端紫外 (EUV、 又は XUV) 域の殆ど X線に近い波長 13 nm、 又は 7 nmの光、 更には波長 1 nmの X線等を射出する光源を採用した露 光装置に適用することもできる。 For example, in each of the above embodiments, the exposure apparatus that employs a device that emits F excimer laser light (wavelength 157 nm) as a light source has been described. However, KrF excimer laser light (wavelength 248 nm) and A rF excimer laser beam (wavelength: 19 3 nra), those employing what emits Ar 2 laser beam (wavelength 126 nm), in addition, a so-called extreme ultraviolet (EUV, or XUV) wavelength close to almost X-ray of the area 13 It can also be applied to an exposure device that employs a light source that emits light at 7 nm or 7 nm, or even X-rays at a wavelength of 1 nm.
また、 上記の各実施形態では、 ステップ 'アンド ·スキャン方式の縮小投影型 走査露光装置 (スキャニング .ステヅパー) についての説明としたが、 例えばレ チクルとウェハとを静止させた状態でレチクルパターンの全面に露光用照明光を 照射して、 そのレチクルパターンが転写されるべきウェハ上の 1つの区画領域 In each of the above embodiments, the step-and-scan type reduced projection type scanning exposure apparatus (scanning stepper) has been described. However, for example, the entire surface of the reticle pattern is kept in a state where the reticle and the wafer are stationary. Irradiating the illuminating light for exposure to the reticle pattern
(ショット領域) を一括露光するステップ 'ァヅプ · リピート方式の縮小投影型 露光装置 (ステッパー) 、 更にはミラ一プロジェクシヨン方式やプロキシミティ 方式等の露光装置にも同様に本発明を適用することができる。 投影光学系として は、 その全ての光学素子が屈折素子 (レンズ) であるものに限られず、 反射素子Step of Batch Exposure of (Shot Area) The present invention can be similarly applied to a reduction projection type exposure apparatus (stepper) of the repeat type, and further to an exposure apparatus of the mirror projection type or the proximity type. it can. Projection optical systems are not limited to those in which all optical elements are refractive elements (lenses), but are reflective elements.
(ミラ一等) のみからなる光学系であってもよいし、 あるいは屈折素子と反射素 子 (凹面鏡、 ミラ一等) とからなるカタディオプトリヅク光学系であってもよい。 投影光学系は縮小光学系に限られるものではなく、 等倍光学系や拡大光学系であ つてもよい。 The optical system may include only a mirror (such as a mirror), or may be a catadioptric optical system including a refracting element and a reflecting element (such as a concave mirror or a mirror). The projection optical system is not limited to the reduction optical system, but may be an equal-magnification optical system or an enlargement optical system.
また、 露光用照明光として、 DFB半導体レーザ又はファイバ一レーザから発 振される赤外域、 又は可視域の単一波長レーザを、 例えばエルビウム (又はエル ビゥムとィヅトリビゥムの両方) がドーブされたファイバーアンプで増幅し、 非 線形光学結晶を用いて紫外光に波長変換した高調波を用いてもよい。 例えば、 単 一波長レーザの発振波長を 1. 51〜1. 59 mの範囲内とすると、 発生波長 が 189〜199 nmの範囲内である 8倍高調波、 又は発生波長が 15 1〜15 9nmの範囲内である 10倍高調波が出力される。 特に発振波長を 1. 544〜 1. 553 mの範囲内とすると、 193〜 194 nmの範囲内の 8倍高調波、 即ち A rFエキシマレーザとほぼ同一波長となる紫外光が得られ、 発振波長を 1. 5 7〜 1 . 5 8 mの範囲内とすると、 1 5 7〜 1 5 8 n mの範囲内の 1 0倍高 調波、 即ち F 2 レーザとほぼ同一波長となる紫外光が得られる。 発振波長を 1 . 0 3〜 1 . 1 2 ^ 111の範囲内とすると、 発生波長が 1 4 7〜 1 6 0 n mの範囲内 である 7倍高調波が出力され、 特に発振波長を 1 . 0 9 9〜 1 . 1 0 6 111の範 囲内とすると、 発生波長が 1 5 7〜 1 5 8 の範囲内の 7倍高調波、 即ち F 2 レーザとほぼ同一波長となる紫外光が得られる。 なお、 単一波長発振レーザとし てはィヅトリビゥム · ド一プ ·ファイバーレーザを用いる。 In addition, a single-wavelength laser in the infrared or visible range emitted from a DFB semiconductor laser or a fiber laser is used as the exposure illumination light. For example, a fiber amplifier doped with erbium (or both erbium and dietary beams) is used. A harmonic that has been amplified by and converted to ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 m, the 8th harmonic whose generation wavelength is in the range of 189 to 199 nm, or the generation wavelength of 151 to 159 nm The 10th harmonic within the range is output. In particular, if the oscillation wavelength is in the range of 1.544 to 1.553 m, an 8th harmonic in the range of 193 to 194 nm, that is, ultraviolet light having substantially the same wavelength as the ArF excimer laser can be obtained. To 1. 5 7-1. When the range of 5 8 m, 1 5 7~ 1 1 0 fold higher harmonics in the range of 5 8 nm, i.e. F 2 laser and ultraviolet light having almost the same wavelength can be obtained. Assuming that the oscillation wavelength is in the range of 1.03 to 1.12 ^ 111, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.0. 0 9 9-1. When 1 0 6 111 within range, 7 harmonic in the range generation wavelength of 1 5 7-1 5 8, i.e. F 2 laser and ultraviolet light having almost the same wavelength can be obtained . Note that a single-beam oscillation fiber laser is used as the single-wavelength oscillation laser.
本発明は、 半導体素子、 液晶ディスプレイ、 薄膜磁気ヘッド、 及び撮像素子 ( C C Dなど) の製造に用いられる投影露光装置だけでなく、 レチクル、 又はマ スクを製造するために、 ガラス基板、 又はシリコンウェハなどに回路パターンを 転写する投影露光装置にも適用できる。 ここで、 D U V (遠紫外) 光や V U V The present invention is not limited to a projection exposure apparatus used for manufacturing a semiconductor device, a liquid crystal display, a thin film magnetic head, and an image pickup device (such as a CCD), but also includes a glass substrate or a silicon wafer for manufacturing a reticle or a mask. For example, the present invention can be applied to a projection exposure apparatus that transfers a circuit pattern. Where DUV (Far UV) light or VUV
(真空紫外) 光などを用いる露光装置では一般的に透過型レチクルが用いられ、 レチクル基板としては石英ガラス、 フヅ素がド一プされた石英ガラス、 蛍石、 フ ヅ化マグネシウム、 又は水晶などが用いられる。 また、 E U V露光装置では反射 型マスクが用いられ、 プロキシミティ方式の X線露光装置、 又はマスク投影方式 の電子線露光装置などでは透過型マスク (ステンシルマスク、 メンプレンマスク) が用いられ、 マスク基板としてはシリコンウェハなどが用いられる。 (Vacuum ultraviolet light) In an exposure apparatus using light or the like, a transmission type reticle is generally used, and as a reticle substrate, quartz glass, quartz glass doped with fluorine, fluorite, magnesium fluoride, or quartz crystal is used. Are used. In addition, a reflective mask is used in an EUV exposure apparatus, and a transmission mask (stencil mask, membrane mask) is used in a proximity type X-ray exposure apparatus or a mask projection type electron beam exposure apparatus. For example, a silicon wafer is used.
ところで、 複数のレンズから構成される照明光学系、 及び投影光学系を露光装 置本体に組み込んで光学調整を行うとともに、 多数の機械部品からなるレチクル ステージやウェハステージを露光装置本体に取り付けて配線や配管を接続すると ともに、 ケース 1、 照明光学系 (サブチャンバ 6 ) 、 投影光学系 P L、 及び環境 チャンバ 7をそれそれヘリゥム循環装置や窒素循環装置などと接続し、 更に総合 調整 (電気調整、 動作確認等) をすることにより上記実施形態の露光装置を製造 することができる。 このような露光装置の製造は温度およびクリーン度等が管理 されたクリーンルームで行うことが望ましい。  By the way, the illumination optical system composed of a plurality of lenses and the projection optical system are incorporated into the main body of the exposure apparatus for optical adjustment, and the reticle stage and wafer stage consisting of many mechanical parts are attached to the main body of the exposure apparatus and wired. And pipes, and connect Case 1, the illumination optical system (subchamber 6), the projection optical system PL, and the environmental chamber 7 to the helium circulator and nitrogen circulator, etc. The operation of the exposure apparatus according to the above-described embodiment can be manufactured by performing the above operations. It is desirable to manufacture such an exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
本実施の形態で説明した各配管や、 チャンバの内壁には、 機械研磨、 電解研磨、 パフ研磨、 化学研磨等を施し、 表面粗さを低減し、 さらに、 この表面に対して真 空加熱脱ガス (ベ一キング) 等の処理を実施して、 構造材料表面からの脱ガス量 を低減しておくように工夫しておけばよい。 また、 ヘリウムガスや窒素ガスを各 空間に供給する配管は、 不純物ガス (脱ガス) の発生が低減された材料 (例えば、 ステンレス鋼、 四フヅ化工チレン、 テトラフルォロエチレン一テルフルォロ (ァ ルキルビニルエーテル) 、 又はテトラフルォロエチレン一へキサフルォロブ口べ ン共重合体等の各種ポリマー) で形成することが望ましい。 Mechanical polishing, electrolytic polishing, puff polishing, chemical polishing, etc., are performed on the pipes and inner walls of the chamber described in this embodiment to reduce the surface roughness. It is advisable to take measures such as performing gas (baking) treatment to reduce the amount of outgassing from the surface of the structural material. In addition, helium gas and nitrogen gas Pipes supplied to the space should be made of a material with reduced generation of impurity gas (degas) (for example, stainless steel, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoride). It is desirable to use an ethylene-hexafluorobutene benzene copolymer or other various polymers).
半導体デバイスは、 デバイスの機能 '性能設計を行うステップ、 この設計ステ ップに基づいたレチクルを製作するステヅブ、 シリコン材料からウェハを制作す るステヅプ、 前述の実施形態の露光装置によりレチクルのパターンをウェハに露. 光転写するステップ、 デバイス組み立てステヅブ (ダイシング工程、 ボンディン グ工程、 パッケージ工程を含む) 、 検査ステップ等を経て製造される。  A semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on this design step, a step of manufacturing a wafer from a silicon material, and a step of forming a reticle pattern by the exposure apparatus of the above-described embodiment. It is manufactured through the steps of exposing to the wafer, light transfer, device assembly steps (including dicing, bonding, and packaging processes), and inspection steps.
半導体デバイスを製造する際、 特にレチクルのパターンをウェハに露光転写す るステップにおいては、 照明光の光路の少なくとも一部に、 前記照明光を透過す る気体を供給し、 かつその気体の少なくとも一部を回収し、 そして、 その回収さ れた気体からパターンの像の転写精度に影響を及ぼす物質を除去している際に行 われる。 また、 同様に、 投影光学系と感光基板との間に、 照明光を透過する気体 を供給すると共に、 前記空間に供給された前記気体の少なくとも一部を回収しな がら、 投影光学系を介して、 前記感光基板上に前記パターンの像を転写して行わ れる。 なお、 この他に第 1、 第 2、 第 3の実施の形態に記載された動作を行いな がら、 又はその動作後に露光転写のステップが実施される。  In manufacturing a semiconductor device, in particular, in the step of exposing and transferring a reticle pattern onto a wafer, a gas that transmits the illumination light is supplied to at least a part of an optical path of the illumination light, and at least one of the gases is supplied. This is performed when the part is recovered and a substance that affects the transfer accuracy of the pattern image is removed from the recovered gas. Similarly, a gas that transmits illumination light is supplied between the projection optical system and the photosensitive substrate, and at least a part of the gas supplied to the space is recovered, and the gas is transmitted through the projection optical system. Then, the image of the pattern is transferred onto the photosensitive substrate. In addition, while performing the operation described in the first, second, and third embodiments, or after the operation, a step of exposure transfer is performed.
なお、 明細書、 特許請求の範囲、 図面、 及び要約を含む、 1 9 9 8年 1 0月 1 3日付提出の日本国特許出願第 1 0— 2 9 0 3 2 6号の全ての開示内容は、 そつ く りそのまま引用してここに組み込まれている。  In addition, all disclosure contents of Japanese Patent Application No. 10-290 326 26 filed on October 13, 1998, including the specification, claims, drawings and abstract Is hereby incorporated by reference in its entirety.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ夕 一ンの像を所定面上に転写する露光装置において、 1. An exposure apparatus that irradiates a mask with illumination light from a light source and transfers an image of a pattern formed on the mask onto a predetermined surface.
前記照明光の光路の少なくとも一部に、 前記照明光を透過する気体を供給する 供給装置と、  A supply device that supplies a gas that transmits the illumination light to at least a part of an optical path of the illumination light;
前記照明光の光路に供給された前記気体の少なくとも一部を回収する回収装置. と、  A recovery device that recovers at least a part of the gas supplied to the optical path of the illumination light.
前記所定面上に対する前記パターンの像の転写精度に影響を及ぼす物質を、 前 記回収された気体から除去する浄化装置とを備えたことを特徴とする露光装置。  An exposure apparatus, comprising: a purifying device that removes, from the collected gas, a substance that affects transfer accuracy of the image of the pattern onto the predetermined surface.
2 . 前記浄化装置は前記供給装置に接続され、 前記浄化装置により浄化 された気体が前記供給装置によって前記照明光の光路に再度供給されることを特 徴とする請求項 1に記載の露光装置。  2. The exposure apparatus according to claim 1, wherein the purification device is connected to the supply device, and the gas purified by the purification device is supplied again to the optical path of the illumination light by the supply device. .
3 . 前記供給装置によって前記照明系の少なくとも一部に前記気体を供 給することを特徴とする請求項 1に記載の露光装置。  3. The exposure apparatus according to claim 1, wherein the gas is supplied to at least a part of the illumination system by the supply device.
4 . 前記浄化装置によつて前記物質を前記気体から除去することを特徴 とする請求項 3に記載の露光装置。  4. The exposure apparatus according to claim 3, wherein the substance is removed from the gas by the purification device.
5 . 前記マスクのパターンの像を前記感光基板上に投影する投影光学系 を更に備え、  5. A projection optical system for projecting an image of the pattern of the mask onto the photosensitive substrate, further comprising:
前記供給装置によって前記投影光学系の少なくとも一部に前記気体を供給する ことを特徴とする請求項 1に記載の露光装置。  The exposure apparatus according to claim 1, wherein the supply device supplies the gas to at least a part of the projection optical system.
6 . 前記浄化装置によつて前記物質を前記気体から除去することを特徴 とする請求項 5に記載の露光装置。  6. The exposure apparatus according to claim 5, wherein the substance is removed from the gas by the cleaning device.
7 . 前記供給装置によって前記光源に前記気体を供給することを特徴と する請求項 1に記載の露光装置。  7. The exposure apparatus according to claim 1, wherein the supply device supplies the gas to the light source.
8 . 前記浄化装置によって前記照明光が照射される面上での照度又は照 度分布を変動させる物質を前記気体から除去することを特徴とする請求項 1に記 載の露光装置。  8. The exposure apparatus according to claim 1, wherein a substance that changes the illuminance or the illuminance distribution on the surface irradiated with the illumination light by the cleaning device is removed from the gas.
9 . 前記物質は、 前記光源と前記所定面との間に配置された複数の光学 素子のうち、 少なくとも一つの光学素子の光学特性を変化させ、 前記光学特性の変動に応じて前記浄化装置の作動を制御する制御装置を更に備 えたことを特徴とする請求項 1に記載の露光装置。 9. The substance includes a plurality of optics disposed between the light source and the predetermined surface. The exposure apparatus according to claim 1, further comprising: a control device that changes an optical characteristic of at least one optical element among the elements, and controls an operation of the purification device according to the change in the optical characteristic. apparatus.
1 0 . 前記浄化装置を作動すべき時期及び時間を含む制御データが予め 記憶された記憶装置を更に備え、  10. A storage device in which control data including a time and a time when the purification device should be operated is stored in advance,
前記制御装置は前記記憶装置に記憶された制御データに従って前記浄化装置を 作動させることを特徴とする請求項 9に記載の露光装置。  10. The exposure apparatus according to claim 9, wherein the control device operates the purifying device according to control data stored in the storage device.
1 1 . 前記マスクのパターンの像を前記感光基板上に投影する投影光学 系と、  11. A projection optical system for projecting an image of the pattern of the mask onto the photosensitive substrate;
前記投影光学系の透過率を検出する検出装置とを更に備え、  Further comprising a detection device for detecting the transmittance of the projection optical system,
前記制御装置は前記検出装置により検出された透過率の変動量が所定値を越え たときに前記浄化装置を作動させることを特徴とする請求項 9に記載の露光装置。  10. The exposure apparatus according to claim 9, wherein the control device activates the cleaning device when a variation amount of the transmittance detected by the detection device exceeds a predetermined value.
1 2 . 前記供給装置が前記気体を供給する前記照明光の光路中の光学素 子の少なくとも一部を含むように画成された室に、 前記供給装置に接続された供 給口及び前記回収装置に接続された排出口を設け、  12. A supply port connected to the supply device and the recovery port in a chamber defined so that the supply device includes at least a part of an optical element in an optical path of the illumination light that supplies the gas. Provide an outlet connected to the device,
前記排出口及び前記供給口に前記制御装置により制御可能な開閉弁をそれそれ 設け、  On-off valves controllable by the control device are provided at the discharge port and the supply port, respectively.
前記制御装置は前記'浄化装置を作動させないときには前記開閉弁を閉塞するこ とを特徴とする請求項 9に記載の露光装置。  10. The exposure apparatus according to claim 9, wherein the control device closes the on-off valve when not operating the purifying device.
1 3 . 前記制御装置は前記浄化装置を作動させる前に前記照明光を照射 して光学素子の表面に付着した汚染物質を浮遊させることを特徴とする請求項 1 2に記載の露光装置。  13. The exposure apparatus according to claim 12, wherein the control device irradiates the illumination light before operating the cleaning device to float contaminants attached to a surface of the optical element.
1 4 . 新たな気体を供給する気体供給源を更に備えたことを特徴とする 請求項 1 2に記載の露光装置。  14. The exposure apparatus according to claim 12, further comprising a gas supply source for supplying a new gas.
1 5 . 前記浄化装置は、 露光履歴に応じて作動することを特徴とする請 求項 1に記載の露光装置。  15. The exposure apparatus according to claim 1, wherein the cleaning apparatus operates according to an exposure history.
1 6 . 前記照明光の光路の少なくとも一部は、 前記マスク又は前記所定 面を含む空間であることを特徴とする請求項 1に記載の露光装置。  16. The exposure apparatus according to claim 1, wherein at least a part of an optical path of the illumination light is a space including the mask or the predetermined surface.
1 7 . 前記供給装置は、 前記照明光の光路内の第 1空間内に、 前記照明 光を透過する第 1の気体を供給する第 1供給機構と、 前記照明光の光路内の前記 第 1空間とは異なる第 2空間に、 前記照明光を透過する第 2の気体を供給する第 2供給機構とを有し、 17. The supply device includes: a light source that emits the illumination light in a first space in an optical path of the illumination light; A first supply mechanism that supplies a first gas that transmits light, and a second supply mechanism that supplies a second gas that transmits the illumination light to a second space different from the first space in an optical path of the illumination light. With 2 supply mechanism,
前記浄化装置は、 前記回収された気体から前記物質を除去すると共に、 前記第 1気体と前記第 2気体とを分離することを特徴とする請求項 1 6に記載の露光装 置。  17. The exposure apparatus according to claim 16, wherein the purification device removes the substance from the collected gas and separates the first gas and the second gas.
1 8 . 前記第 1空間は、 前記光源と前記所定面との間に配置された複数 の光学素子のうち、 少なくとも一つの光学素子を含む空間であり、  18. The first space is a space including at least one optical element among a plurality of optical elements arranged between the light source and the predetermined surface,
前記第 2の空間は、 前記マスク又は前記所定面を含む空間であることを特徴と する請求項 1 7に記載の露光装置。  The exposure apparatus according to claim 17, wherein the second space is a space including the mask or the predetermined surface.
1 9 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を投影光学系を介して感光基板上に転写する露光装置において、 前記投影光学系と前記感光基板との間の空間に、 前記照明光を透過する気体を 供給する供給装置と、  19. An exposure apparatus that irradiates a mask with illumination light from a light source and transfers an image of a pattern formed on the mask onto a photosensitive substrate via a projection optical system, wherein the projection optical system, the photosensitive substrate, A supply device for supplying a gas that transmits the illumination light to a space between
前記空間に供給された前記気体の少なくとも一部を回収する回収装置とを備え ることを特徴とする露光装置。  An exposure apparatus, comprising: a recovery device configured to recover at least a part of the gas supplied to the space.
2 0 . 前記回収装置が回収する前記気体には、 前記照明光を透過する気 体とは異なる他の種類の前記照明光を透過する気体を含むことを特徴とする請求 項 1 9に記載の露光装置。  20. The gas according to claim 19, wherein the gas recovered by the recovery device includes another type of gas that transmits the illumination light, which is different from the gas that transmits the illumination light. Exposure equipment.
2 1 . 前記照明光を透過する気体は、 窒素又はヘリウムの一方であり、 前記他の種類の照明光を透過する気体は、 前記窒素又はヘリゥムの他方であるこ とを特徴とする請求項 2 0に記載の露光装置。  21. The gas that transmits the illumination light is one of nitrogen and helium, and the gas that transmits the other type of illumination light is the other of the nitrogen and the helium. 3. The exposure apparatus according to claim 1.
2 2 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を所定面上に転写する露光方法において、  22. An exposure method for irradiating a mask with illumination light from a light source and transferring an image of a pattern formed on the mask onto a predetermined surface.
前記照明光の光路の少なくとも一部に、 前記照明光を透過する気体を供給し、 前記照明光の光路に供給された前記気体の少なくとも一部を回収し、 前記所定面上に対する前記パターンの像の転写精度に影響を及ぼす物質を、 前 記回収された気体から除去することを特徴とする露光方法。  Supplying a gas that transmits the illumination light to at least a part of an optical path of the illumination light; collecting at least a part of the gas supplied to the optical path of the illumination light; an image of the pattern on the predetermined surface; An exposure method characterized by removing, from the collected gas, substances that affect the transfer accuracy of the light.
2 3 . 前記物質が除去された前記気体を再度前記照明光の光路の少なく とも一部に供給することを特徴とする請求項 2 2に記載の露光方法。 23. Reduce the light path of the illumination light again by removing the gas from which the substance has been removed. 23. The exposure method according to claim 22, wherein both are supplied to a part.
2 4 . 前記回収される気体は、 前記マスク又は前記所定面を含む空間内 の気体であることを特徴とする請求項 2 3に記載の露光方法。  24. The exposure method according to claim 23, wherein the gas to be recovered is a gas in a space including the mask or the predetermined surface.
2 5 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を投影光学系を介して感光基板上に転写する露光方法において、 前記投影光学系と前記感光基板との間に、 前記照明光を透過する気体を供給し、 前記空間に供給された前記気体の少なくとも一部を回収することを特徴とする. 露光方法。  25. In an exposure method for irradiating an illumination light from a light source onto a mask and transferring an image of a pattern formed on the mask onto a photosensitive substrate via a projection optical system, the projection optical system, the photosensitive substrate, Supplying a gas that transmits the illumination light, and recovering at least a part of the gas supplied to the space.
2 6 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を感光基板上に転写する装置の製造方法において、  26. In a method for manufacturing an apparatus for irradiating an illumination light from a light source onto a mask and transferring an image of a pattern formed on the mask onto a photosensitive substrate,
前記照明光の光路の少なくとも一部を区画する気体室に、 前記照明光を透過す る気体を供給する供給管を接続し、  A supply pipe for supplying gas that transmits the illumination light is connected to a gas chamber that defines at least a part of an optical path of the illumination light,
前記気体室に供給される気体の少なくとも一部を回収する回収管を、 前記気体 室に接続し、  Connecting a collection pipe for collecting at least a part of the gas supplied to the gas chamber to the gas chamber;
前記回収管を、 前記所定面上に対する前記パターンの像の転写精度に影響を及 ぼす物質を除去する浄化装置に接続することを特徴とする製造方法。  The method according to claim 1, wherein the collection pipe is connected to a purifying device that removes a substance that affects transfer accuracy of the image of the pattern onto the predetermined surface.
2 7 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を所定面上に転写して半導体素子を製造する方法において、  27. A method for manufacturing a semiconductor device by irradiating illumination light from a light source onto a mask and transferring an image of a pattern formed on the mask onto a predetermined surface,
前記照明光の光路の少なくとも一部に、 前記照明光を透過する気体を供給する と共に、 前記照明光の光路に供給された前記気体の少なくとも一部を回収し、 前 記回収された気体から、 前記所定面上に対する前記パターンの像の転写精度に影 響を及ぼす物質の除去を行いながら、 前記パターンの像を所定面上に転写する製 造方法。  A gas that transmits the illumination light is supplied to at least a part of an optical path of the illumination light, and at least a part of the gas supplied to the optical path of the illumination light is recovered.From the recovered gas, A manufacturing method for transferring an image of the pattern onto a predetermined surface while removing a substance which affects the transfer accuracy of the image of the pattern onto the predetermined surface.
2 8 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を投影光学系を介して感光基板上に転写して半導体素子を製造する方 法において、  28. A method for manufacturing a semiconductor device by irradiating illumination light from a light source onto a mask and transferring an image of a pattern formed on the mask onto a photosensitive substrate via a projection optical system,
前記投影光学系と前記感光基板との間に、 前記照明光を透過する気体を供給す ると共に、 前記空間に供給された前記気体の少なくとも一部を回収しながら、 前 記投影光学系を介して、 前記感光基板上に前記パターンの像を転写することを特 徴とする製造方法。 A gas that transmits the illumination light is supplied between the projection optical system and the photosensitive substrate, and at least a part of the gas supplied to the space is recovered while passing through the projection optical system. Transferring the image of the pattern onto the photosensitive substrate. Manufacturing method
2 9 . 光源からの照明光をマスクに照射し、 前記マスクに形成されたパ ターンの像を所定面上に転写する露光装置本体を備える露光装置において、 前記照明光の光路の少なくとも一部に、 前記照明光を透過する気体を供給する 供給装置を有し、  29. An exposure apparatus including an exposure apparatus body that irradiates a mask with illumination light from a light source and transfers an image of a pattern formed on the mask onto a predetermined surface, wherein at least a part of an optical path of the illumination light is provided. A supply device for supplying a gas that transmits the illumination light,
前記供給装置は、 前記露光装置本体が設置される空間とは異なる空間に設置さ れることを特徴とする露光装置。  The exposure apparatus, wherein the supply device is installed in a space different from a space in which the exposure apparatus main body is installed.
3 0 . 前記所定面上に対する前記パターンの像の転写精度に影響を及ぼ す物質を、 前記回収された気体から除去する浄化装置を有し、  30. a purifying device for removing, from the recovered gas, a substance that affects the transfer accuracy of the pattern image onto the predetermined surface;
前記浄化装置は、 前記露光装置本体が設置される空間とは異なる空間に設置さ れることを特徴とする請求項 2 9に記載の露光装置。  30. The exposure apparatus according to claim 29, wherein the cleaning device is installed in a space different from a space in which the exposure device main body is installed.
3 1 . 前記露光装置本体は、 クリーンルーム内に設置され、 前記浄化装置又は前記回収装置は、 前記クリーンルームに隣接した空間に設置 されることを特徴とする請求項 1 9に記載の露光装置。  31. The exposure apparatus according to claim 19, wherein the exposure apparatus main body is installed in a clean room, and the cleaning device or the recovery device is installed in a space adjacent to the clean room.
PCT/JP1999/005633 1998-10-13 1999-10-13 Exposure system WO2000022656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61218/99A AU6121899A (en) 1998-10-13 1999-10-13 Exposure system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/290326 1998-10-13
JP29032698 1998-10-13

Publications (1)

Publication Number Publication Date
WO2000022656A1 true WO2000022656A1 (en) 2000-04-20

Family

ID=17754637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005633 WO2000022656A1 (en) 1998-10-13 1999-10-13 Exposure system

Country Status (3)

Country Link
AU (1) AU6121899A (en)
TW (1) TW439114B (en)
WO (1) WO2000022656A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075795A1 (en) * 2001-03-19 2002-09-26 Nikon Corporation Method and device for exposure, and method of manufacturing device
JP2003068629A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
JP2003068630A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
US6633364B2 (en) 2000-03-31 2003-10-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2008004969A (en) * 2002-09-13 2008-01-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008034740A (en) * 2006-07-31 2008-02-14 Dainippon Screen Mfg Co Ltd Load lock device, substrate processing apparatus and substrate processing system equipped therewith
JP2012089840A (en) * 2010-10-19 2012-05-10 Asml Netherlands Bv Gas manifold, module for lithographic apparatus, lithographic apparatus, and device manufacturing method
TWI720590B (en) 2017-03-15 2021-03-01 荷蘭商Asml荷蘭公司 Apparatus for delivering gas and illumination source for generating high harmonic radiation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929990B (en) * 2020-07-31 2023-02-07 中国科学院微电子研究所 Hydrogen ion trap, ammonium sulfate prevention system, photoetching system and ammonium sulfate prevention method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176998A (en) * 1992-12-10 1994-06-24 Canon Inc Semiconductor manufacturing apparatus
JPH0737783A (en) * 1993-07-20 1995-02-07 Fujitsu Ltd Aligner
US5430303A (en) * 1992-07-01 1995-07-04 Nikon Corporation Exposure apparatus
JPH09270385A (en) * 1996-03-29 1997-10-14 Nikon Corp Environmental control device for exposure device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430303A (en) * 1992-07-01 1995-07-04 Nikon Corporation Exposure apparatus
JPH06176998A (en) * 1992-12-10 1994-06-24 Canon Inc Semiconductor manufacturing apparatus
JPH0737783A (en) * 1993-07-20 1995-02-07 Fujitsu Ltd Aligner
JPH09270385A (en) * 1996-03-29 1997-10-14 Nikon Corp Environmental control device for exposure device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633364B2 (en) 2000-03-31 2003-10-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2002075795A1 (en) * 2001-03-19 2002-09-26 Nikon Corporation Method and device for exposure, and method of manufacturing device
JP2003068629A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
JP2003068630A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
JP4721575B2 (en) * 2001-08-29 2011-07-13 京セラ株式会社 Exposure equipment
JP2008004969A (en) * 2002-09-13 2008-01-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008034740A (en) * 2006-07-31 2008-02-14 Dainippon Screen Mfg Co Ltd Load lock device, substrate processing apparatus and substrate processing system equipped therewith
JP2012089840A (en) * 2010-10-19 2012-05-10 Asml Netherlands Bv Gas manifold, module for lithographic apparatus, lithographic apparatus, and device manufacturing method
US8675169B2 (en) 2010-10-19 2014-03-18 Asml Netherlands B.V. Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
TWI720590B (en) 2017-03-15 2021-03-01 荷蘭商Asml荷蘭公司 Apparatus for delivering gas and illumination source for generating high harmonic radiation

Also Published As

Publication number Publication date
TW439114B (en) 2001-06-07
AU6121899A (en) 2000-05-01

Similar Documents

Publication Publication Date Title
WO1999025010A1 (en) Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses
US6633364B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US6614504B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7416574B2 (en) Filter apparatus, exposure apparatus, and device-producing method
WO1998057213A1 (en) Optical device, method of cleaning the same, projection aligner, and method of producing the same
KR20010089431A (en) Optical device, exposure system, and laser beam source, and gas feed method, exposure method, and device manufacturing method
JP2001118783A (en) Exposure method and device, and device manufacturing method
US6707529B1 (en) Exposure method and apparatus
WO2000074120A1 (en) Exposure method and apparatus
WO2000022656A1 (en) Exposure system
JP2005142185A (en) Aligner and its environmental control method
JPH11219902A (en) Aligner and device manufacturing apparatus
JP2000306807A (en) Aligner, exposure method and manufacture of semiconductor device
JP2000208407A (en) Aligner
WO2005038887A1 (en) Environment-controlling apparatus, device-producing apparatus, device-producing method, and exposure apparatus
JPWO2003105203A1 (en) Exposure apparatus and exposure method
JP2001060548A (en) Exposure method and aligner
JP2001176770A (en) Aligner
KR20020019121A (en) Exposing method and apparatus
JP4174239B2 (en) Gas supply apparatus, exposure system, and device manufacturing method
JPWO2003036695A1 (en) Method for supplying purge gas to exposure apparatus, exposure apparatus, and device manufacturing method
JP2001102290A (en) Exposure method and aligner thereof
JP2003163159A (en) Method of supplying purge gas, exposure apparatus, and method of manufacturing devices
JP2005072076A (en) Aligner, chemical filter, and manufacturing method of device
JPWO2002049084A1 (en) Exposure method and apparatus, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 576477

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09807331

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase