WO2000022295A1 - Fuel injection valve for diesel engine - Google Patents

Fuel injection valve for diesel engine Download PDF

Info

Publication number
WO2000022295A1
WO2000022295A1 PCT/JP1998/004566 JP9804566W WO0022295A1 WO 2000022295 A1 WO2000022295 A1 WO 2000022295A1 JP 9804566 W JP9804566 W JP 9804566W WO 0022295 A1 WO0022295 A1 WO 0022295A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel
needle valve
nozzle body
fuel injection
Prior art date
Application number
PCT/JP1998/004566
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Arimoto
Original Assignee
Jun Arimoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jun Arimoto filed Critical Jun Arimoto
Priority to JP2000576171A priority Critical patent/JP4223193B2/en
Priority to PCT/JP1998/004566 priority patent/WO2000022295A1/en
Priority to DE69841890T priority patent/DE69841890D1/en
Priority to EP98947804A priority patent/EP1041274B1/en
Publication of WO2000022295A1 publication Critical patent/WO2000022295A1/en
Priority to US10/020,170 priority patent/US6776358B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/29Fuel-injection apparatus having rotating means

Definitions

  • the present invention relates to a fuel injection valve for a diesel engine.
  • the general structure of a fuel injection valve for a diesel engine, especially for a direct injection engine, is as follows: a dollar valve is inserted into a nozzle body having a plurality of injection holes so that it can be freely lifted in the axial direction, and fuel is introduced into the nozzle body. When fuel is introduced from the passage, the fuel pressure causes the dollar valve to lift, and the fuel passes through the gap between the peripheral wall of the needle valve and the inner wall of the nozzle body from the plurality of injection holes into the combustion chamber (piston cavity). Injected to.
  • the area of the nozzle hole can be reduced in a low-load area.
  • a pulse motor increases the size and cost of the fuel injection valve, as well as complicates the structure and secures reliability. Difficult to do.
  • the present invention has been made in view of such a conventional problem. From the low load region to the high load region, the fuel spray quickly and sufficiently mixes with the air in the combustion chamber to obtain good flammability, The objective is to obtain exhaust emission performance, which can greatly contribute to performance improvement especially at idle and in low load areas.
  • An object of the present invention is to provide a fuel injection valve having a simple structure that does not involve an increase in size simply by forming an automatic mechanical rotation mechanism, and that the above performance can be obtained.
  • by efficiently using the penetration force and squish of the spray to mix fuel and air it is possible to promote the reduction of the piston height of the piston cavity and reduce the height of the engine. Aim.
  • the fuel injection valve of the diesel engine according to the present invention is configured such that when fuel is introduced into a nozzle holder and a fuel introduction passage formed inside the nozzle body, the fuel is injected into the nozzle body by fuel pressure.
  • the inserted diesel valve lifts in the axial direction, and fuel passes through the gap between the needle valve and the nozzle body to inject fuel into the combustion chamber from an injection hole formed in the nozzle body.
  • a first serration that is inclined with respect to the axial direction is provided at the edge of the end face opening that engages with the nozzle holder of the nozzle body, and
  • a second serration is formed on the outer peripheral surface of the base end portion of the needle valve, the second serration engaging with the first selection, and rotating the needle valve around the axis in accordance with the axial movement of the needle valve.
  • a tip portion of the needle valve on the injection hole side is formed with a gap between the tip end of the nozzle body and an inner surface of the tip portion on the injection hole side, and a bag-shaped rotary valve fitted to the tip portion of the needle valve is provided.
  • the tip outer peripheral surface of the needle valve and the inner peripheral surface of the rotary valve are engaged with each other with a space therebetween, and are axially aligned with the first selection and the second selection. Forming a third selection and a fourth serration, each of which slopes to the opposite side,
  • the overlapping area increases in accordance with the rotation amount of the rotary valve that increases as the axial lift amount of the needle valve increases. It is configured to have two holes. According to this configuration, when fuel is introduced into the fuel introduction passage formed inside the nozzle holder and the nozzle body, when the needle valve fitted into the nozzle body is lifted in the axial direction by the fuel pressure, the first The rotation of the needle valve in one direction around the axis by the engagement of the second selection and the second selection, and the rotary valve whose lift is regulated by the fuel pressure are the third serration and the fourth serration. The engagement with the serration causes the needle valve to rotate relative to the needle valve about the axis in the same direction as the rotation direction of the needle valve.
  • the rotary valve rotates around its axis by the amount of rotation obtained by adding the amount of rotation caused by the engagement of the first and second serrations and the amount of rotation caused by the engagement of the third and fourth serrations.
  • the amount of rotation is small in the low load region where the fuel injection amount is small, because the fuel pressure is low and the lift amount of the needle valve is small.
  • the fuel pressure increases due to the increase in load, and the lift amount of the needle valve increases. It increases with the increase of.
  • the fuel After passing through the gap between the needle valve and the nozzle body, the fuel passes through the gap between the third selection and the fourth selection and reaches the inside of the rotary valve. The fuel is injected into the combustion chamber from a portion where the second injection hole and the first hole of the nozzle body overlap.
  • the overlapping area between the injection holes increases continuously, so the injection zone is expanded while maintaining the penetration force, and the injection amount is increased according to the injection amount. Since it mixes with air, optimal fuel spray is obtained over the entire area, fuel and air are mixed well, and good combustibility and exhaust emission performance are obtained. Can be
  • the improvement in performance was achieved with a simple structure without increasing the size by simply forming an automatic mechanical rotation mechanism using fuel pressure without providing a separate drive device such as a pulse motor. can do.
  • the rotary valve can rotate the engagement amount between the first and second serrations, the third serration and the fourth serration. It can be rotated with a large amount of rotation, including the amount of rotation due to engagement with one part, so that the dynamic range of the overlapping area between the injection holes can be sufficiently large, and the optimal overlapping area can be adjusted according to the load. Obtainable.
  • the second injection hole is elongated and opened in the rotating direction of the rotary valve, and the first injection hole is opened in a substantially circular shape having a diameter larger than the width of the second injection hole on the short side. Is also good.
  • the fuel spray from the first injection hole is formed to spread flat in the circumferential direction, and efficiently collides with the squish generated in the combustion chamber in the compression stroke, so that the fuel and the air are more effectively used.
  • the flammability, quietness, exhaust emission performance, etc. can be enhanced as much as possible.
  • the amount of fuel spray that spreads in the circumferential direction increases with an increase in the amount of fuel injection. You can get the status.
  • this method mainly uses the strong penetration force and squish of the spray to enhance the mixability of fuel and air, it can promote a shallower cavity, which in turn results in higher piston height and engine height. Can be reduced.
  • the first serration is formed on an inner peripheral surface of a guide ring which is engaged with a groove formed on an opening edge of the nozzle body in a direction around an axis so as to prevent rotation.
  • the guide ring which has the first selection formed on the inner peripheral surface of the guide ring, can be manufactured at a low cost simply by engaging the groove that can be easily machined into the opening edge of the nozzle body. It can be implemented at low cost with a simple configuration, and accuracy can be easily secured.
  • the first serration is formed on an inner peripheral surface of a guide ring that freely engages with a groove formed in an opening edge of the nozzle body in a direction around an axis by a predetermined angle.
  • a guide ring spring for biasing the guide ring in a direction opposite to the rotation direction of the needle valve during the axial lift
  • a slit is provided in the peripheral wall of the needle valve, the depth of which increases in the rotation direction when the needle valve is lifted in the axial direction, and the rotation force in the rotation direction acts on the needle valve by the received fuel pressure. It may be configured.
  • the rotational force in the rotational direction at the time of the axial lift acting on the needle valve increases in accordance with the increase in the fuel pressure received by the slit formed in the peripheral wall of the needle valve, and the guide ring is moved.
  • the guide ring spring rotates in the same direction as the rotation direction against the urging force of the guide ring spring, and rotates the dollar valve in the same direction integrally with the guide ring.
  • the rotation amount can be made sufficiently large compared to the fuel pressure, and at the same time, the fuel injection valve with low fuel pressure is closed by the action of the guide ring spring.
  • the guide ring, the needle valve, and the rotary valve can be surely kept in the closed position.
  • a cone taper that is in close contact with the needle valve at the base end side of the third selection forming portion and the base end side of the nozzle body ⁇ peripheral surface with respect to the rotary valve mounting portion when the needle valve is not lifted.
  • a surface may be formed.
  • FIG. 1 is a longitudinal sectional view of a main part showing a state when a fuel injection valve of a diesel engine according to an embodiment of the present invention is closed.
  • FIG. 2 shows a state where the fuel injection valve is opened, in which (A) is a longitudinal sectional view of a main part and (B) is a partial plan view.
  • Fig. 3 shows a sectional view taken along the line AA, a view taken in the direction of the arrow B and a fuel spray state of the combustion chamber in Fig. 1 or Fig. 2 at each operating position of the fuel injection valve.
  • B shows the state at low load such as when the injection hole is slightly open, such as at idle
  • C shows the state at medium load when the injection hole is half open
  • D shows the state at full load when the injection hole is fully open.
  • FIG. 4 shows a fuel injection valve of a diesel engine according to a second embodiment of the present invention.
  • A is a longitudinal sectional view of a main part
  • B is a partial plan view
  • C is a partial cross section.
  • FIG. FIG. 5 is a partial plan view of a fuel injection valve of a diesel engine according to a modification of the second embodiment.
  • FIGS. 1 (when the valve is closed) and FIG. 2 (when the valve is open) showing the tip structure of the fuel injection valve of the diesel engine according to the present invention the nozzle body 1 is axially detented by a nozzle holder (not shown). And are fastened via bolts and nuts arranged outside.
  • a fuel introduction passage 11 is formed inside the nozzle body 1 so as to overlap with a fuel passage formed inside the nozzle holder, and a downstream end of the fuel introduction passage 11 is formed in a fuel reservoir 12 formed on an inner peripheral surface of an intermediate portion of the nozzle body 1. Reach.
  • a plurality of injection holes (first injection holes) 13 are formed at the tip of the nozzle body 1 at intervals in the circumferential direction.
  • a groove 14 is formed at the opening edge on the base end side of the nozzle body 1 formed in the same manner as in the related art, and a first selection 15a inclined on the inner peripheral surface with respect to the axial direction is formed.
  • the guide ring 15 is locked in the groove 14 by turning it around the axis as shown in the figure. Combine.
  • the outer peripheral surface of the proximal end of the needle valve 2 fitted into the nozzle body 1 is engaged with the first selection 15a of the guide ring 15, and the axial direction of the needle valve 2 is A second serration 21 for rotating the needle valve 2 about an axis in accordance with the movement is formed.
  • the tip of the injection valve side of the needle valve 2 is formed with a gap between the tip end of the nozzle body 1 and the surface of the injection port side of the nozzle body 1, and the bag is fitted to the tip of the needle valve 2.
  • a rotary valve 3 is installed.
  • the tip outer peripheral surface of the needle valve 2 and the inner peripheral surface of the rotary valve 3 are engaged with each other with a gap therebetween, so that the first serration 15a and the second serration 21 are axially engaged with each other.
  • a third serration 22 and a fourth serration 31 are formed, respectively, which are inclined to the opposite sides with respect to.
  • the gap between the third serration 22 and the fourth serration 31 is formed along the longitudinal direction of the serration only between the peaks of the projections and the valleys of the grooves, so that fuel can pass through this gap.
  • there should be almost no gap in the circumferential direction so that there is no backlash in rotation.
  • a plurality of injection holes 13 (first injection holes) formed in the nozzle body 1 are located on the injection hole side of the fourth serration 31 of the rotary valve 3 in the axial direction of the needle valve 2.
  • the injection holes 32 (second holes) formed in the rotary valve 3 open in an elongated ellipse (only both ends are circular) in the rotation direction of the rotary valve 3, and the nozzle body 1
  • the injection hole 13 (first injection hole) formed in the opening is formed in a circular shape having a diameter larger than the width of the short side of the injection hole 32 (second injection hole).
  • the needle valve 2 is located on the base end side from the portion where the third selection 22 is formed, and on the inner peripheral surface of the nozzle body 1 on the base end side with respect to the rotary valve 3 mounting portion when the needle valve is not lifted. Cone taper surfaces 23 and 16 are formed in close contact with the surface.
  • the return valve urges the needle valve 2 toward the injection hole side by a return spring.
  • the cone taper surface 23 of the needle valve 2 and the cone taper surface 16 of the nozzle body 1 are in pressure contact with each other, and completely shut off the fuel introduction passage 11 from the injection hole side.
  • valve-closed state As shown in FIG. 3 (A), the injection hole 13 (first injection hole) and the injection hole 32 (second injection hole) are rotated so as not to overlap at all. Rotation position of valve 3 is set. As a result, it is possible to reliably maintain the valve-closed state, and it is also possible to prevent the fuel from being left behind.
  • the needle valve 2 When the needle valve 2 is lifted, the needle valve 2 rotates in one direction around the axis by the engagement between the first serration 15a and the second serration 21.
  • the single tally valve 3 whose lift is regulated by receiving the fuel pressure, rotates the needle valve 2 by engagement of the third serration 22 and the fourth selection 31. In the same direction as the direction, relative rotation about the axis with respect to the dollar valve 2. That is, the rotary valve is rotated by adding a rotation amount due to the engagement between the first serration and the second selection and a rotation amount due to the engagement between the third serration and the fourth selection. Rotate around the axis by the amount.
  • the overlap area is controlled to be small when the fuel pressure is low at idle or in a low load region, and the overlap area is controlled to increase as the fuel pressure increases as the load increases.
  • the lift of the needle valve 2 causes the conical taper surfaces 23 and 16 to mutually reciprocate.
  • the fuel is guided to the injection hole side through the gap between the needle valve 2 and the nozzle body 1 as it separates, and is further passed through the gap between the third serration 22 and the fourth selection 31 to form a tally valve.
  • the fuel reaches the inner space of 3 and is injected into the combustion chamber from the overlapping portion of the injection holes 32 and 13.
  • the inner hole 32 is elongated in the rotation direction of the rotary valve 3, and the outer hole 13 is open in a circular shape having a diameter larger than the width of the shorter side of the hole 32. Therefore, the fuel spray is formed to spread flat in the circumferential direction, and efficiently collides with the squish generated in the combustion chamber in the compression stroke, so that the fuel and the air can be more effectively mixed.
  • FIG. 3 (C) shows a state in which the degree of polymerization between the pores is about 50%
  • FIG. 3 (D) shows a state in which 100% of the polymerization has been performed at full load.
  • the design of the fuel injection valve of the conventional type only requires additional processing of four types of serrations, grooves 14, etc., and a design change that only installs the guide ring 15, the guide ring spring 33, and the single valve 3 Therefore, there is no need to provide a separate drive device such as a pulse motor, and it can be implemented at low cost without increasing the size, and has excellent reliability.
  • squish is mainly used to enhance the mixability between fuel and air, and the spray position is farther away, so the maximum amount of intake air is secured without considering intake swirl
  • intake port By using the intake port to It is possible to promote a shallower dish, which in turn reduces the height of the piston and engine, and increases the specific output by increasing the amount of fuel injected by holding more air in the combustion chamber.
  • a groove 41 for engaging the guide ring 15 formed on the opening edge on the base end side of the nozzle body 1 is engaged with the guide ring 15 so as to rotate freely by a predetermined angle around the axis.
  • the guide ring 15 is formed so that the engagement portion with the protrusion 15b is larger in the circumferential direction than the circumferential width of the protrusion 15b, and the guide ring 15 has an axial direction for accommodating a guide ring spring 16 described later. The depth has been increased.
  • the guide ring spring 42 consisting of a torsion coil panel is urged in the opposite direction (clockwise as viewed from above).
  • a plurality of slits 43 having a windmill-like cross section whose depth increases in the rotation direction during the axial lift of the needle valve 2 are formed on the peripheral wall of the needle valve 2 at equal intervals in the circumferential direction. .
  • the windmill-shaped slit 43 causes the needle valve 2 to exert a rotational force in the rotational direction (counterclockwise as viewed from above) on the needle valve 2 by the fuel pressure received through the fuel reservoir 12.
  • Other configurations are the same as those of the first embodiment. With such a configuration, as the fuel pressure received by the slit 43 of the twenty-one valve 2 via the fuel reservoir 12 increases, the rotational force in the rotational direction at the time of the axial lift acting on the needle valve 2 as the fuel pressure increases.
  • the guide ring 15 rotates in the same direction as the above-mentioned rotation direction by staking the urging force of the guide ring spring 42, and rotates the needle valve 2 in the same direction as the guide ring 15 integrally.
  • FIG. 5 shows a modification of the second embodiment, in which a groove 51 for engaging a guide ring 15 is provided at an opening edge of the nozzle body 1, and the guide ring 15 is rotated by a predetermined angle around an axis.
  • the engagement portion of the guide ring 15 with the protrusion 15b is formed to be larger in the circumferential direction than the circumferential width of the protrusion 15b so that the guide ring 15 can be freely engaged.
  • the guide ring spring 52 that urges in the direction opposite to the rotation direction of the guide ring is attached to a portion of the groove 51 that engages the protrusion 15 b of the guide ring 15. And a leaf spring or the like.
  • the present invention can be applied as a fuel injection valve of a direct injection type diesel engine for an automobile or the like, and can be applied to a pipeline type fuel injection device or a recent common rail type fuel injection device or a unit type fuel injection device. Applicable as a fuel injection valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel direct injection valve for diesel engines, in which a needle valve is rotated by first and second serrations formed in an edge portion of an opening of a nozzle body and in a base portion of the needle valve and by third and fourth serrations formed on the axially opposite side to the first and second serrations, and in which as the needle valve rotates, the area of the portion where a first nozzle hole formed in the nozzle body overlaps with second nozzle hole formed in a rotary valve increases. In the low load operation region, the area is small. In the high load operation, the area increases with the fuel injection pressure, so that the complete penetration force of the fuel injection can be large and constant, and the fuel effectively contacts and strikes squished air and satisfactory mixes with the air. This minimizes the delay of ignition and enhances the combustion, low-noise, and exhaust emission performances.

Description

m 糸田  m Itoda
ディーゼルエンジンの燃料噴射弁 Diesel engine fuel injection valve
〈技術分野〉  <Technical field>
本発明は、 ディーゼルエンジンの燃料噴射弁に関する。  The present invention relates to a fuel injection valve for a diesel engine.
〈背景技術〉  <Background technology>
ディーゼルエンジン特に直噴式エンジンの燃料噴射弁の一般的な構造は、 複数 の噴孔を有したノズルボディ内に-一ドルバルブが軸方向リフト自由に嵌挿され 、 ノズルボディ内部に形成された燃料導入通路から燃料が導入されると、 燃料圧 力によって二一ドルバルブがリフトし、 燃料は該ニードルバルブ周壁とノズルボ ディ内壁との隙間を通って前記複数の噴孔から燃焼室 (ピストンキヤビティ) 内 に噴射される。  The general structure of a fuel injection valve for a diesel engine, especially for a direct injection engine, is as follows: a dollar valve is inserted into a nozzle body having a plurality of injection holes so that it can be freely lifted in the axial direction, and fuel is introduced into the nozzle body. When fuel is introduced from the passage, the fuel pressure causes the dollar valve to lift, and the fuel passes through the gap between the peripheral wall of the needle valve and the inner wall of the nozzle body from the plurality of injection holes into the combustion chamber (piston cavity). Injected to.
前記従来のディ一ゼルェンジンの燃料噴射弁では、 噴孔の開口面積が一定であ るため、 燃料圧力の高い高負荷時は、 十分大きな貫徹力が得られるものの、 燃料 圧力の低い低負荷時には貫徹力が弱くなるため、 燃料が十分に微粒化, 霧化され ず、 燃料が空気と十分に混合しづらく燃焼してしまい、 その結果、 着火遅れが増 大して燃焼騒音の増大を招いたり、 排気ェミッション性能 (特にスモーク) を悪 化させたりしていた。  In the conventional diesel fuel injection valve, since the opening area of the injection hole is constant, a sufficiently large penetration force can be obtained when the fuel pressure is high and the load is high, but the penetration is performed when the fuel pressure is low and the load is low. Since the power is weak, the fuel is not sufficiently atomized and atomized, and the fuel is not sufficiently mixed with air and burns. As a result, ignition delay is increased, resulting in an increase in combustion noise and exhaust gas. Mission performance (especially smoke) was degraded.
また、 回転によってノズルボディの噴孔との間で絞り量が変わるように燃料通 路を形成したロータリー式のバルブを、 パルスモータ等を用いて回転させること により、 低負荷領域で噴孔面積を絞って貫徹力を高めることを図ったものがある しかし、 このようなパルスモータ等を設けることは、 燃料噴射弁を大型化し、 コストも増大する上に、 構造が複雑となって信頼性も確保することが難しい。 本発明は、 このような従来の課題に着目してなされたもので、 低負荷領域から 高負荷領域の全域にわたって、 燃料噴霧が燃焼室内の空気と迅速に十分混合して 、 良好な燃焼性, 排気ェミッション性能が得られ、 特に、 アイ ドル時や低負荷領 域での性能改善に大きく寄与できることを目的とする。  In addition, by rotating a rotary valve using a pulse motor or the like that forms a fuel passage so that the amount of throttle between the nozzle hole of the nozzle body and the nozzle hole changes with rotation, the area of the nozzle hole can be reduced in a low-load area. However, the provision of such a pulse motor increases the size and cost of the fuel injection valve, as well as complicates the structure and secures reliability. Difficult to do. The present invention has been made in view of such a conventional problem. From the low load region to the high load region, the fuel spray quickly and sufficiently mixes with the air in the combustion chamber to obtain good flammability, The objective is to obtain exhaust emission performance, which can greatly contribute to performance improvement especially at idle and in low load areas.
また、 パルスモータ等の駆動装置を別途設けることなく、 燃料圧力を利用した 自動的なメカニカル回転機構を形成するだけで、 大型化を伴うことのないシンプ ルな構造の燃料噴射弁で前記の性能が得られるようにすることを目的とする。 また、 噴霧の貫徹力とスキッシュを効率的に利用して燃料と空気との混合を行 うことにより、 ピストンキヤビティの浅皿化を促進でき、 エンジン高さを減少で きるようにすることを目的とする。 In addition, fuel pressure was used without providing a separate drive device such as a pulse motor. An object of the present invention is to provide a fuel injection valve having a simple structure that does not involve an increase in size simply by forming an automatic mechanical rotation mechanism, and that the above performance can be obtained. In addition, by efficiently using the penetration force and squish of the spray to mix fuel and air, it is possible to promote the reduction of the piston height of the piston cavity and reduce the height of the engine. Aim.
〈発明の開示〉  <Disclosure of the Invention>
上記の目的を達成するため、 本発明に係るディ一ゼルェンジンの燃料噴射弁は ノズルホルダ及びノズルボディ内部に形成された燃料導入通路に燃料が導入さ れたときに、 燃料圧力によってノズルボディ内に嵌揷された-—ドルバルブが軸 方向にリフトし、 燃料が前記ニードルバルブとノズルボディとの間隙を通ってノ ズルボディに形成された噴孔から燃焼室内に燃料が噴射される構造のディーゼル エンジンの燃料噴射弁であって、  In order to achieve the above object, the fuel injection valve of the diesel engine according to the present invention is configured such that when fuel is introduced into a nozzle holder and a fuel introduction passage formed inside the nozzle body, the fuel is injected into the nozzle body by fuel pressure. The inserted diesel valve lifts in the axial direction, and fuel passes through the gap between the needle valve and the nozzle body to inject fuel into the combustion chamber from an injection hole formed in the nozzle body. A fuel injection valve,
ノズルボディのノズルホルダと係合する端面開口縁部に、 軸方向に対して傾斜 する第 1のセレーションを設けると共に、  A first serration that is inclined with respect to the axial direction is provided at the edge of the end face opening that engages with the nozzle holder of the nozzle body, and
前記二一ドルバルブの基端部外周面に、 前記第 1のセレ一ションと係合し、 該 ニードルバルブの軸方向の移動に応じてニードルバルブを軸回りに回転させる第 2のセレーションを形成し、  A second serration is formed on the outer peripheral surface of the base end portion of the needle valve, the second serration engaging with the first selection, and rotating the needle valve around the axis in accordance with the axial movement of the needle valve. ,
前記二一ドルバルブの噴孔側の先端部をノズルボディの噴孔側の先端部内面と の間に間隙を有して形成し、 該ニードルバルブの先端部に嵌合する袋状のロータ リーバルブを配設し、  A tip portion of the needle valve on the injection hole side is formed with a gap between the tip end of the nozzle body and an inner surface of the tip portion on the injection hole side, and a bag-shaped rotary valve fitted to the tip portion of the needle valve is provided. Arrange,
前記ニードルバルブの先端部外周面と前記ロータリ一バルブの内周面とに、 間 隙を有して相互に係合しあい、 前記第 1のセレ一シヨン及び第 2のセレーシヨン と軸方向に対して反対側に傾斜する第 3のセレ一シヨン, 第 4のセレーションを それぞれ形成し、  The tip outer peripheral surface of the needle valve and the inner peripheral surface of the rotary valve are engaged with each other with a space therebetween, and are axially aligned with the first selection and the second selection. Forming a third selection and a fourth serration, each of which slopes to the opposite side,
かつ、 ノズルボディに形成した複数の第 1の噴孔に対し、 前記ニードルバルブ の軸方向のリフト量が増大するにしたがって増大するロータリーバルブの回転量 に応じて、 重合面積が増大する複数の第 2の孔を配設した構成とする。 このようにすれば、 ノズルホルダ及びノズルボディ内部に形成された燃料導入 通路に燃料が導入されたときに、 燃料圧力によってノズルボディ内に嵌揷された ニードルバルブが軸方向にリフトすると、 第 1のセレ一シヨンと第 2のセレ一シ ヨンとの係合によってニードルバルブが軸回り一方向に回転すると共に、 燃料圧 力によりリフトが規制されるロータリーバルブは、 第 3のセレーションと第 4の セレーションとの係合によって、 前記ニードルバルブの回転方向と同一方向に、 二一ドルバルブに対して軸回りに相対回転する。 And, with respect to the plurality of first injection holes formed in the nozzle body, the overlapping area increases in accordance with the rotation amount of the rotary valve that increases as the axial lift amount of the needle valve increases. It is configured to have two holes. According to this configuration, when fuel is introduced into the fuel introduction passage formed inside the nozzle holder and the nozzle body, when the needle valve fitted into the nozzle body is lifted in the axial direction by the fuel pressure, the first The rotation of the needle valve in one direction around the axis by the engagement of the second selection and the second selection, and the rotary valve whose lift is regulated by the fuel pressure are the third serration and the fourth serration. The engagement with the serration causes the needle valve to rotate relative to the needle valve about the axis in the same direction as the rotation direction of the needle valve.
即ち、 ロータリーバルブは、 第 1のセレーシヨンと第 2のセレーシヨンとの係 合による回転量と、 第 3のセレーシヨンと第 4のセレーシヨンとの係合による回 転量とを加えた回転量で軸回りに回転され、 かつ、 この回転量は、 燃料噴射量の 小さい低負荷領域では燃料圧力が低くニードルバルブのリフト量が小さいため小 さく、 負荷の増大により燃料圧力が増大し、 ニードルバルブのリフト量が増大す ることに伴い増大する。  In other words, the rotary valve rotates around its axis by the amount of rotation obtained by adding the amount of rotation caused by the engagement of the first and second serrations and the amount of rotation caused by the engagement of the third and fourth serrations. The amount of rotation is small in the low load region where the fuel injection amount is small, because the fuel pressure is low and the lift amount of the needle valve is small. The fuel pressure increases due to the increase in load, and the lift amount of the needle valve increases. It increases with the increase of.
そして、 前記ロータリーバルブの回転量の増大に応じて、 第 1の噴孔と第 2の 噴孔との重合面積が増大する。  Then, as the amount of rotation of the rotary valve increases, the overlapping area between the first injection hole and the second injection hole increases.
燃料は、 ニードルバルブとノズルボディとの間隙を経た後、 第 3のセレ一ショ ンと第 4のセレ一ションとの間隙を通ってロータリーバルブの内側に到り、 該ロ —タリ一バルブの第 2の噴孔とノズルボディの第 1の嘖孔との重合する部分から 燃焼室に噴射される。  After passing through the gap between the needle valve and the nozzle body, the fuel passes through the gap between the third selection and the fourth selection and reaches the inside of the rotary valve. The fuel is injected into the combustion chamber from a portion where the second injection hole and the first hole of the nozzle body overlap.
ここで、 燃料圧力の低い低負荷領域では噴孔同士の重合面積を小さくすること によって、 燃料の貫徹力が増大して微粒化, 霧化が促進され、 接触する空気量も 増大するので、 空気と迅速に十分混合して燃焼される。 これにより、 着火遅れを 小さくすることができ、 良好な燃焼性が得られ、 静粛性、 排気ェミッション (特 にスモーク) 性能も向上する。  Here, in the low-load region where the fuel pressure is low, by reducing the overlapping area between the injection holes, the penetration force of the fuel increases, atomization and atomization are promoted, and the amount of air that comes into contact increases. It is quickly mixed and burned. As a result, ignition delay can be reduced, good combustion properties can be obtained, and quietness and exhaust emission (especially smoke) performance are also improved.
また、 負荷が増大して燃料噴射量が増大するにしたがって、 噴孔同士の重合面 積が連続的に増大するので、 貫徹力を保持しつつ噴射ゾーンが拡大され、 噴射量 に応じた量の空気と接触して混合するので、 全域にわたって最適な燃料噴霧が得 られて燃料と空気とが良好に混合し、 良好な燃焼性, 排気ェミッション性能が得 られる。 In addition, as the load increases and the fuel injection amount increases, the overlapping area between the injection holes increases continuously, so the injection zone is expanded while maintaining the penetration force, and the injection amount is increased according to the injection amount. Since it mixes with air, optimal fuel spray is obtained over the entire area, fuel and air are mixed well, and good combustibility and exhaust emission performance are obtained. Can be
そして、 かかる性能の改善を、 パルスモータ等の駆動装置を別途設けることな く、 燃料圧力を利用した自動的なメカニカル回転機構を形成するだけで、 大型化 を伴うことのないシンプルな構造で達成することができる。  The improvement in performance was achieved with a simple structure without increasing the size by simply forming an automatic mechanical rotation mechanism using fuel pressure without providing a separate drive device such as a pulse motor. can do.
なお、 ニードルバルブの最大リフト量が比較的小さく制限されていても、 ロー タリーバルブは、 第 1のセレーシヨンと第 2のセレーシヨンとの係合による回転 量と、 第 3のセレーションと第 4のセレ一ションとの係合による回転量とを加え た大きな回転量で回転させることができるので、 噴孔同士の重合面積のダイナミ ックレンジを十分大きく採ることができ、 負荷に応じて最適な重合面積を得るこ とができる。  Even if the maximum lift amount of the needle valve is limited to a relatively small value, the rotary valve can rotate the engagement amount between the first and second serrations, the third serration and the fourth serration. It can be rotated with a large amount of rotation, including the amount of rotation due to engagement with one part, so that the dynamic range of the overlapping area between the injection holes can be sufficiently large, and the optimal overlapping area can be adjusted according to the load. Obtainable.
また、 前記第 2の噴孔はロータリ一バルブの回転方向に細長に開口され、 前記 第 1の噴孔は第 2の噴孔の短い側の幅より大径の略円形に開口するようにしても よい。  Further, the second injection hole is elongated and opened in the rotating direction of the rotary valve, and the first injection hole is opened in a substantially circular shape having a diameter larger than the width of the second injection hole on the short side. Is also good.
このようにすれば、 第 1の噴孔からの燃料噴霧は周方向に偏平に拡がって形成 され、 圧縮行程で燃焼室内に生じるスキッシュと効率よく接触衝突し、 燃料と空 気とがより効果的に混合しあって、 燃焼性, 静粛性, 排気ェミッション性能等を 可及的に高めることができる。  With this configuration, the fuel spray from the first injection hole is formed to spread flat in the circumferential direction, and efficiently collides with the squish generated in the combustion chamber in the compression stroke, so that the fuel and the air are more effectively used. The flammability, quietness, exhaust emission performance, etc. can be enhanced as much as possible.
また、 燃料噴射量の増大に応じて、 燃料噴霧の周方向への拡がり量が増大する ので、 燃料噴射量に応じた量のスキッシュ空気と接触することができ、 運転領域 の全域にわたって良好な混合状態を得ることができる。  In addition, the amount of fuel spray that spreads in the circumferential direction increases with an increase in the amount of fuel injection. You can get the status.
さらに、 このように主として噴霧の強い貫徹力とスキッシュを利用して燃料と 空気との混合性を高める方式であるため、 キヤビティの浅皿化を促進でき、 ひい ては、 ピストン高さ, エンジン高さを減少することが可能となる。  In addition, since this method mainly uses the strong penetration force and squish of the spray to enhance the mixability of fuel and air, it can promote a shallower cavity, which in turn results in higher piston height and engine height. Can be reduced.
また、 前記第 1のセレーションは、 ノズルボディの開口端縁部に形成した溝に 、 軸回り方向に回り止めして係合するガイドリングの内周面に形成されるように  Further, the first serration is formed on an inner peripheral surface of a guide ring which is engaged with a groove formed on an opening edge of the nozzle body in a direction around an axis so as to prevent rotation.
.のようにすれば、 第 1のセレーショ 縁部に直接加 ェすることも可能ではあるが、 加工精度を高めるのが難しく、 コスト高についた りするのに対し、 ガイドリングの内周面に第 1のセレ一シヨンを形成した安価に 製造できるガイドリングを、 ノズルボディの開口端縁部に容易に加工できる溝に 係合するだけでよく、 シンプルな構成で低コストに実施でき、 精度も容易に確保 することができる。 In this way, it is possible to add directly to the edge of the first serration, but it is difficult to increase the machining accuracy and the cost is increased. On the other hand, the guide ring, which has the first selection formed on the inner peripheral surface of the guide ring, can be manufactured at a low cost simply by engaging the groove that can be easily machined into the opening edge of the nozzle body. It can be implemented at low cost with a simple configuration, and accuracy can be easily secured.
また、 前記第 1のセレーションは、 ノズルボディの開口端縁部に形成した溝に 、 軸回り方向に所定角度回転自由に係合するガイドリングの内周面に形成される と共に、  In addition, the first serration is formed on an inner peripheral surface of a guide ring that freely engages with a groove formed in an opening edge of the nozzle body in a direction around an axis by a predetermined angle.
該ガイドリングをニードルバルブの軸方向リフト時の回転方向と反対方向に付 勢するガイ ドリングスプリングを設け、  A guide ring spring for biasing the guide ring in a direction opposite to the rotation direction of the needle valve during the axial lift;
かつ、 ニードルバルブの周壁に、 前記ニードルバルブの軸方向リフト時の回転 方向に向かって深さが増大し、 受圧される燃料圧力によってニードルバルブに前 記回転方向の回転力を作用させるスリットを設ける構成としてもよい。  In addition, a slit is provided in the peripheral wall of the needle valve, the depth of which increases in the rotation direction when the needle valve is lifted in the axial direction, and the rotation force in the rotation direction acts on the needle valve by the received fuel pressure. It may be configured.
このようにすれば、 前記ニードルバルブの周壁に形成されたスリットに受圧さ れる燃料圧力の増大に応じてニードルバルブに作用する軸方向リフト時の回転方 向の回転力が増大し、 ガイドリングがガイドリングスプリングの付勢力に抗して 前記回転方向と同一方向に回転し、 該ガイドリングと一体に二一ドルバルブを同 一方向に回転させる。  According to this configuration, the rotational force in the rotational direction at the time of the axial lift acting on the needle valve increases in accordance with the increase in the fuel pressure received by the slit formed in the peripheral wall of the needle valve, and the guide ring is moved. The guide ring spring rotates in the same direction as the rotation direction against the urging force of the guide ring spring, and rotates the dollar valve in the same direction integrally with the guide ring.
これにより、 ニードルバルブのリフト量が大きく取れない場合でも、 燃料圧力 に比して回転量を十分大きく取ることができると同時に、 ガイドリングスプリン グの作用によって、 燃料圧力の低い燃料噴射弁の閉弁時に、 ガイドリング、 二一 ドルバルブ及びロータリ一バルブを確実に閉弁位置に回転保持させることができ る。  As a result, even if the lift amount of the needle valve cannot be made large, the rotation amount can be made sufficiently large compared to the fuel pressure, and at the same time, the fuel injection valve with low fuel pressure is closed by the action of the guide ring spring. At the time of valve opening, the guide ring, the needle valve, and the rotary valve can be surely kept in the closed position.
また、 ニードルバルブの第 3のセレ一ション形成部分より基端部側と、 ノズル ボディ內周面のロータリ一バルブ装着部より基端部側とに、 ニードルバルブの非 リフト時に相互に密着するコーンテーパ面が形成されているようにしてもよい。 このようにすれば、 燃料噴射弁の閉弁時には、 ニードルバルブとノズルボディ に形成したコーンテ一パ面同士が密着して、 噴孔への燃料の導通を遮断し、 確実 に閉弁することができる。 Also, a cone taper that is in close contact with the needle valve at the base end side of the third selection forming portion and the base end side of the nozzle body 內 peripheral surface with respect to the rotary valve mounting portion when the needle valve is not lifted. A surface may be formed. In this way, when the fuel injection valve is closed, the needle valve and the cone taper surface formed on the nozzle body are in close contact with each other, and the conduction of fuel to the injection hole is cut off. Can be closed.
〈図面の簡単な説明〉  <Brief description of drawings>
第 1図は、 本発明の一実施例に係るディーゼルエンジンの燃料噴射弁の閉弁時 の状態を示す要部縦断面図である。  FIG. 1 is a longitudinal sectional view of a main part showing a state when a fuel injection valve of a diesel engine according to an embodiment of the present invention is closed.
第 2図は、 同上の燃料噴射弁の開弁時の状態を示し、 (A) は要部縦断面図、 ( B ) は一部平面図である。  FIG. 2 shows a state where the fuel injection valve is opened, in which (A) is a longitudinal sectional view of a main part and (B) is a partial plan view.
第 3図は、 同上の燃料噴射弁の各動作位置における前記第 1図又は第 2図の A A断面図, B矢視図及び燃焼室の燃料噴霧状態を示し、 (A) は閉弁時, (B ) は噴孔が僅かに開くアイドル時等の低負荷時, (C) は噴孔が半開となる中負荷 時, (D) は噴孔が全開となる全負荷時の状態をそれぞれ示す図である。  Fig. 3 shows a sectional view taken along the line AA, a view taken in the direction of the arrow B and a fuel spray state of the combustion chamber in Fig. 1 or Fig. 2 at each operating position of the fuel injection valve. (B) shows the state at low load such as when the injection hole is slightly open, such as at idle, (C) shows the state at medium load when the injection hole is half open, and (D) shows the state at full load when the injection hole is fully open. FIG.
第 4図は、 本発明の第 2の実施例に係るディーゼルエンジンの燃料噴射弁を示 し、 (A) は要部縦断面図、 (B ) は一部平面図 (C) は一部横断面図である。 第 5図は、 前記第 2の実施例の変形例に係るディーゼルエンジンの燃料噴射弁 の一部平面図である。  FIG. 4 shows a fuel injection valve of a diesel engine according to a second embodiment of the present invention. (A) is a longitudinal sectional view of a main part, (B) is a partial plan view, and (C) is a partial cross section. FIG. FIG. 5 is a partial plan view of a fuel injection valve of a diesel engine according to a modification of the second embodiment.
〈実施例〉  <Example>
以下に、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明に係るディーゼルエンジンの燃料噴射弁の先端部構造を示す第 1図 (閉 弁時) , 第 2図 (開弁時) において、 ノズルボディ 1は、 図示しないノズルホル ダに軸方向に回り止めされて係合し、 外側に配設されたボルト, ナットを介して 締結されている。  In FIGS. 1 (when the valve is closed) and FIG. 2 (when the valve is open) showing the tip structure of the fuel injection valve of the diesel engine according to the present invention, the nozzle body 1 is axially detented by a nozzle holder (not shown). And are fastened via bolts and nuts arranged outside.
ノズルボディ 1の内部には、 ノズルホルダ内部に形成された燃料通路と重合す る燃料導入通路 11が形成され、 その下流端部はノズルボディ 1中間部内周面に形 成された燃料溜まり 12に至る。 また、 ノズルボディ 1の先端部には周方向に間隔 をおいて複数の噴孔 (第 1の噴孔) 13が形成されている。  A fuel introduction passage 11 is formed inside the nozzle body 1 so as to overlap with a fuel passage formed inside the nozzle holder, and a downstream end of the fuel introduction passage 11 is formed in a fuel reservoir 12 formed on an inner peripheral surface of an intermediate portion of the nozzle body 1. Reach. In addition, a plurality of injection holes (first injection holes) 13 are formed at the tip of the nozzle body 1 at intervals in the circumferential direction.
かかる従来同様に形成されたノズルボディ 1の基端部側の開口端縁部に溝 14を 形成すると共に、 内周面に軸方向に対して傾斜する第 1のセレ一ション 15 aを形 成したガイ ドリング 15を、 前記溝 14に図示のように軸回り方向に回り止めして係 合する。 A groove 14 is formed at the opening edge on the base end side of the nozzle body 1 formed in the same manner as in the related art, and a first selection 15a inclined on the inner peripheral surface with respect to the axial direction is formed. The guide ring 15 is locked in the groove 14 by turning it around the axis as shown in the figure. Combine.
一方、 前記ノズルボディ 1内に嵌挿されるニードルバルブ 2の基端部外周面に は、 前記ガイ ドリング 15の第 1のセレ一ション 15 aと係合し、 該-—ドルバルブ 2の軸方向の移動に応じてニードルバルブ 2を軸回りに回転させる第 2のセレー シヨン 21を形成する。  On the other hand, the outer peripheral surface of the proximal end of the needle valve 2 fitted into the nozzle body 1 is engaged with the first selection 15a of the guide ring 15, and the axial direction of the needle valve 2 is A second serration 21 for rotating the needle valve 2 about an axis in accordance with the movement is formed.
一方、 前記ニードルバルブ 2の噴孔側の先端部をノズルボディ 1の噴孔側の先 端部內面との間に間隙を有して形成し、 該ニードルバルブ 2の先端部に嵌合する 袋状のロータリーバルブ 3を配設する。  On the other hand, the tip of the injection valve side of the needle valve 2 is formed with a gap between the tip end of the nozzle body 1 and the surface of the injection port side of the nozzle body 1, and the bag is fitted to the tip of the needle valve 2. A rotary valve 3 is installed.
そして、 前記ニードルバルブ 2の先端部外周面と前記ロータリーバルブ 3の内 周面とに、 間隙を有して相互に係合しあい、 前記第 1のセレーシヨン 15 a及び第 2のセレーシヨン 21と軸方向に対して反対側に傾斜する第 3のセレーション 22, 第 4のセレーシヨン 31を、 それぞれ形成する。 ここで、 第 3のセレーシヨン 22と 第 4のセレーション 31との間隙は、 突起の山と溝の谷との間にのみセレーシヨン の長手方向に沿って形成され、 この間隙を通じて燃料を通すようにすると共に、 周方向には間隙を殆ど持たせないようにして、 回転のガタを無くすようにする。 また、 前記ロータリ一バルブ 3の第 4のセレーシヨン 31より噴孔側に、 前記ノ ズルボデ 1に形成した複数の噴孔 13 (第 1の噴孔) に対し、 前記ニードルバルブ 2の軸方向のリフト量が増大するにしたがって増大するロータリーバルブ 3の回 転量に応じて、 重合面積が増大する複数の噴孔 32 (第 2の噴孔) を配設した構成 とする。  The tip outer peripheral surface of the needle valve 2 and the inner peripheral surface of the rotary valve 3 are engaged with each other with a gap therebetween, so that the first serration 15a and the second serration 21 are axially engaged with each other. A third serration 22 and a fourth serration 31 are formed, respectively, which are inclined to the opposite sides with respect to. Here, the gap between the third serration 22 and the fourth serration 31 is formed along the longitudinal direction of the serration only between the peaks of the projections and the valleys of the grooves, so that fuel can pass through this gap. At the same time, there should be almost no gap in the circumferential direction so that there is no backlash in rotation. Further, a plurality of injection holes 13 (first injection holes) formed in the nozzle body 1 are located on the injection hole side of the fourth serration 31 of the rotary valve 3 in the axial direction of the needle valve 2. A configuration in which a plurality of injection holes 32 (second injection holes) whose overlapping area increases according to the rotation amount of the rotary valve 3 that increases as the amount increases.
ここで、 前記ロータリーバルブ 3に形成される噴孔 32 (第 2の嘖孔) は、 該ロ 一タリーバルブ 3の回転方向に細長の長円 (両端のみ円形) に開口し、 前記ノズ ルボディ 1に形成される噴孔 13 (第 1の噴孔) は前記噴孔 32 (第 2の噴孔) の短 い側の幅より大径の円形に開口してある。  Here, the injection holes 32 (second holes) formed in the rotary valve 3 open in an elongated ellipse (only both ends are circular) in the rotation direction of the rotary valve 3, and the nozzle body 1 The injection hole 13 (first injection hole) formed in the opening is formed in a circular shape having a diameter larger than the width of the short side of the injection hole 32 (second injection hole).
また、 ニードルバルブ 2の第 3のセレ一ション 22形成部分より基端部側と、 ノ ズルボディ 1内周面のロータリ一バルブ 3装着部より基端部側とに、 ニードルバ ルブの非リフト時に相互に密着するコーンテーパ面 23, 16が形成される。 次に、 このように構成された本発明に係る燃料噴射弁の作用を説明する。 燃料噴射弁の閉弁時、 つまり燃料導入通路 11への燃料供給圧力が燃料噴射を起 こさない低圧のときは、 図示しないリタ一ンスプリングによってニードルバルブ 2が噴孔側に付勢され、 前記ニードルバルブ 2のコーンテーパ面 23と、 ノズルボ ディ 1のコーンテーパ面 16とが圧接密着し、 燃料導入通路 11と噴孔側とを完全に 遮断する。 In addition, the needle valve 2 is located on the base end side from the portion where the third selection 22 is formed, and on the inner peripheral surface of the nozzle body 1 on the base end side with respect to the rotary valve 3 mounting portion when the needle valve is not lifted. Cone taper surfaces 23 and 16 are formed in close contact with the surface. Next, the operation of the fuel injection valve thus configured according to the present invention will be described. When the fuel injection valve is closed, that is, when the fuel supply pressure to the fuel introduction passage 11 is low enough not to cause fuel injection, the return valve (not shown) urges the needle valve 2 toward the injection hole side by a return spring. The cone taper surface 23 of the needle valve 2 and the cone taper surface 16 of the nozzle body 1 are in pressure contact with each other, and completely shut off the fuel introduction passage 11 from the injection hole side.
一方、 閉弁状態では、 第 3図 (A) に示すように、 前記噴孔 13 (第 1の噴孔) と前記噴孔 32 (第 2の噴孔) とは、 全く重合しないようにロータリーバルブ 3の 回転位置がセットされている。 これにより、 確実な閉弁状態を保持でき、 燃料の 後たれ等の発生も防止できる。  On the other hand, in the valve-closed state, as shown in FIG. 3 (A), the injection hole 13 (first injection hole) and the injection hole 32 (second injection hole) are rotated so as not to overlap at all. Rotation position of valve 3 is set. As a result, it is possible to reliably maintain the valve-closed state, and it is also possible to prevent the fuel from being left behind.
燃料導入通路 11に所定以上の圧力で燃料が供給されると、 前記燃料溜まり 12で のニードルバルブ 2の段付の受圧面で燃料圧力を受けることなどにより、 図示し ないリターンスプリングの付勢力に抗して、 ニードルバルブ 2が軸方向にリフト する。  When fuel is supplied to the fuel introduction passage 11 at a pressure equal to or higher than a predetermined pressure, the fuel pressure is applied to the stepped pressure receiving surface of the needle valve 2 in the fuel reservoir 12, thereby reducing the urging force of a return spring (not shown). In response, needle valve 2 lifts in the axial direction.
二一ドルバルブ 2がリフトすると、 第 1のセレーション 15 a と第 2のセレーシ ヨン 21との係合によってニードルバルブ 2が軸回り一方向に回転する。 また、 後 述するように燃料圧力を受けてリフトが規制される口一タリーバルブ 3は、 第 3 のセレーション 22と第 4のセレ一ション 31との係合によって、 前記ニードルバル ブ 2の回転方向と同一方向に、 二一ドルバルブ 2に対して軸回りに相対回転する 。 即ち、 ロータリーバルブは、 第 1のセレーシヨンと第 2のセレ一シヨンとの係 合による回転量と、 第 3のセレーションと第 4のセレ一シヨンとの係合による回 転量とを加えた回転量で軸回りを回転する。  When the needle valve 2 is lifted, the needle valve 2 rotates in one direction around the axis by the engagement between the first serration 15a and the second serration 21. In addition, as will be described later, the single tally valve 3 whose lift is regulated by receiving the fuel pressure, rotates the needle valve 2 by engagement of the third serration 22 and the fourth selection 31. In the same direction as the direction, relative rotation about the axis with respect to the dollar valve 2. That is, the rotary valve is rotated by adding a rotation amount due to the engagement between the first serration and the second selection and a rotation amount due to the engagement between the third serration and the fourth selection. Rotate around the axis by the amount.
このようにして口一タリーバルブ 3が軸回りに回転することにより、 前記噴孔 32と噴孔 13とが重合し、 該重合面積は、 燃料圧力の増大によりニードルバルブ 2 のリフト量が増大するにしたがって増大する。 つまり、 燃料圧力の低いアイ ドル 時や低負荷領域では、 重合面積が小さく制御され、 負荷の増大と共に燃料圧力が 増大するにしたがって、 重合面積が増大するように制御される。  When the single tally valve 3 rotates around the axis in this manner, the injection hole 32 and the injection hole 13 overlap, and the overlap area increases the lift amount of the needle valve 2 due to an increase in fuel pressure. Increase according to In other words, the overlap area is controlled to be small when the fuel pressure is low at idle or in a low load region, and the overlap area is controlled to increase as the fuel pressure increases as the load increases.
一方、 前記ニードルバルブ 2のリフ トにより前記コーンテーパ面 23、 16相互が 離れるので、 燃料はニードルバルブ 2とノズルボディ 1との間隙を通って噴孔側 に導かれ、 さらに第 3のセレーション 22と第 4のセレ一シヨン 31との間隙を通つ て口一タリーバルブ 3の内側空間に達し、 噴孔 32と噴孔 13との重合部分から燃焼 室内に噴射される。 On the other hand, the lift of the needle valve 2 causes the conical taper surfaces 23 and 16 to mutually reciprocate. The fuel is guided to the injection hole side through the gap between the needle valve 2 and the nozzle body 1 as it separates, and is further passed through the gap between the third serration 22 and the fourth selection 31 to form a tally valve. The fuel reaches the inner space of 3 and is injected into the combustion chamber from the overlapping portion of the injection holes 32 and 13.
ここで、 燃料圧力の低いアイドル時や低負荷領域では第 3図 (B ) に示すよう に、 噴孔同士の重合面積を小さくすることによって、 燃料の貫徹力が増大して微 粒化, 霧化が促進され、 接触する空気量も増大するので、 空気と迅速に十分混合 して燃焼される。 特に、 本実施例では、 内側の嘖孔 32は、 ロータリーバルブ 3の 回転方向に細長に開口し、 外側の噴孔 13は噴孔 32の短い側の幅より大径の円形に 開口しているため、 燃料噴霧は周方向に偏平に拡がって形成され、 圧縮行程で燃 焼室内に生じるスキッシュと効率よく接触衝突し、 燃料と空気とをより効果的に 混合させることができる。  Here, when the fuel pressure is low at idle or in a low load region, as shown in Fig. 3 (B), by reducing the overlapping area between the injection holes, the penetration force of the fuel increases, resulting in atomization and atomization. This promotes gasification and increases the amount of air that comes in contact with it. In particular, in the present embodiment, the inner hole 32 is elongated in the rotation direction of the rotary valve 3, and the outer hole 13 is open in a circular shape having a diameter larger than the width of the shorter side of the hole 32. Therefore, the fuel spray is formed to spread flat in the circumferential direction, and efficiently collides with the squish generated in the combustion chamber in the compression stroke, so that the fuel and the air can be more effectively mixed.
これにより、 着火遅れを十分小さくすることができ、 良好な燃焼性が得られ、 静粛性、 排気ェミッション (特にスモーク) 性能も向上する。 また、 負荷が増大して燃料噴射量が増大するにしたがって、 噴孔同士の重合面 積が連続的に増大するので、 貫徹力を保持しつつ噴射ゾーンが拡大され、 噴射量 に応じた量の空気と接触して混合するので、 全域にわたって最適な燃料噴霧が得 られて燃料と空気とが良好に混合し、 良好な燃焼性, 排気ェミッション性能が得 られる。 第 3図の (C) は、 嘖孔同士の重合度合いが約 5 0 %の状態を示し、 同 図 (D) は、 1 0 0 %重合した全負荷時の状態を示す。  As a result, the ignition delay can be sufficiently reduced, good combustion properties can be obtained, and quietness and exhaust emission (especially, smoke) performance are also improved. In addition, as the load increases and the fuel injection amount increases, the overlapping area between the injection holes increases continuously, so the injection zone is expanded while maintaining the penetration force, and the injection amount is increased according to the injection amount. Since it mixes in contact with air, the optimum fuel spray is obtained over the entire area, and the fuel and air mix well, resulting in good combustion performance and exhaust emission performance. FIG. 3 (C) shows a state in which the degree of polymerization between the pores is about 50%, and FIG. 3 (D) shows a state in which 100% of the polymerization has been performed at full load.
また、 従来型の燃料噴射弁の構造に、 4種類のセレーシヨンや溝 14等の追加工 とガイ ドリング 15, ガイ ドリングスプリング 33, 口一タリ一バルブ 3を配設する だけの設計変更を行うだけですみ、 パルスモータ等の駆動装置を別途設ける必要 がなく、 大型化を伴わず、 低コストで実施でき、 信頼性にも優れる。  In addition, the design of the fuel injection valve of the conventional type only requires additional processing of four types of serrations, grooves 14, etc., and a design change that only installs the guide ring 15, the guide ring spring 33, and the single valve 3 Therefore, there is no need to provide a separate drive device such as a pulse motor, and it can be implemented at low cost without increasing the size, and has excellent reliability.
また、 前記のように主としてスキッシュを利用して燃料と空気との混合性を高 め、 なおかつ、 噴霧の到達位置を遠くする方式であるため、 吸気スワールを考慮 することなく最も吸入空気量を確保する吸気ポートを用いることによって、 キヤ ビティの浅皿化を促進でき、 ひいては、 ピストン高さ, エンジン高さを減少し、 なおかつ、 より多くの空気を燃焼室内に保持することにより燃料噴射量を増やし て比出力を増大させることが可能となる。 In addition, as described above, squish is mainly used to enhance the mixability between fuel and air, and the spray position is farther away, so the maximum amount of intake air is secured without considering intake swirl By using the intake port to It is possible to promote a shallower dish, which in turn reduces the height of the piston and engine, and increases the specific output by increasing the amount of fuel injected by holding more air in the combustion chamber. Becomes
次に、 本発明の第 2の実施例について図 4を参照して説明する。 なお、 同図に おいて前記第 1の実施例と同一の構成要素には同一符号を付してある。  Next, a second embodiment of the present invention will be described with reference to FIG. In the figure, the same components as those of the first embodiment are denoted by the same reference numerals.
本実施例では、 ノズルボディ 1の基端部側の開口端縁部に形成されるガイドリ ング 15を係合するための溝 41を、 該ガイドリング 15が軸回りに所定角度回転自由 に係合するように、 ガイドリング 15の突出部 15 bとの係合部分が該突出部 15 bの 周方向の幅より周方向に大きく形成すると共に、 後述するガイ ドリングスプリン グ 16を収納するため軸方向の深さを大きくしてある。  In the present embodiment, a groove 41 for engaging the guide ring 15 formed on the opening edge on the base end side of the nozzle body 1 is engaged with the guide ring 15 so as to rotate freely by a predetermined angle around the axis. The guide ring 15 is formed so that the engagement portion with the protrusion 15b is larger in the circumferential direction than the circumferential width of the protrusion 15b, and the guide ring 15 has an axial direction for accommodating a guide ring spring 16 described later. The depth has been increased.
そして、 前記ガイドリング 15下方の溝 41内に、 一端が該ガイドリング 15に係合 し、 他端が溝 41内に位置決め係合して、 該ガイドリング 15をニードルバルブ 2の 軸方向リフト時の回転方向と反対方向 (上方からみて時計回り方向) に付勢する 捩じりコイルパネからなるガイドリングスプリング 42を装着する。  One end engages with the guide ring 15 in the groove 41 below the guide ring 15, and the other end positions and engages with the groove 41. When the guide ring 15 is lifted in the axial direction of the needle valve 2, The guide ring spring 42 consisting of a torsion coil panel is urged in the opposite direction (clockwise as viewed from above).
また、 ニードルバルブ 2の周壁に、 該ニードルバルブ 2の軸方向リフト時の回 転方向に向かって深さが増大する横断面が風車状のスリツト 43を、 周方向等間隔 に複数加工して設ける。 該風車状のスリット 43は、 燃料溜まり 12を介して受圧さ れる燃料圧力によってニードルバルブ 2に前記回転方向 (上方からみて反時計回 り方向) の回転力を作用させる。 その他の構成は、 第 1の実施例と同様である。 かかる構成とすることにより、 燃料溜まり 12を介して二一ドルバルブ 2のスリ ット 43に受圧される燃料圧力が増大するにしたがってニードルバルブ 2に作用す る軸方向リフト時の回転方向の回転力が増大し、 ガイ ドリング 15がガイ ドリング スプリング 42の付勢力に杭して前記回転方向と同一方向に回転し、 該ガイドリン グ 15と一体にニードルバルブ 2を同一方向に回転させる。  Further, a plurality of slits 43 having a windmill-like cross section whose depth increases in the rotation direction during the axial lift of the needle valve 2 are formed on the peripheral wall of the needle valve 2 at equal intervals in the circumferential direction. . The windmill-shaped slit 43 causes the needle valve 2 to exert a rotational force in the rotational direction (counterclockwise as viewed from above) on the needle valve 2 by the fuel pressure received through the fuel reservoir 12. Other configurations are the same as those of the first embodiment. With such a configuration, as the fuel pressure received by the slit 43 of the twenty-one valve 2 via the fuel reservoir 12 increases, the rotational force in the rotational direction at the time of the axial lift acting on the needle valve 2 as the fuel pressure increases. The guide ring 15 rotates in the same direction as the above-mentioned rotation direction by staking the urging force of the guide ring spring 42, and rotates the needle valve 2 in the same direction as the guide ring 15 integrally.
これにより、 ニードルバルブ 2のリフト量が大きく取れない場合でも、 燃料圧 力に比して回転量を十分大きく取ることができると同時に、 ガイ ドリングスプリ ング 42の作用によって、 燃料圧力の低い燃料噴射弁の閉弁時に、 ガイ ドリング 15 、 ニードルバルブ 2及びロータリ一バルブ 3を確実に閉弁位置に回転保持させる ことができる。 As a result, even when the lift amount of the needle valve 2 cannot be increased, the rotation amount can be sufficiently increased compared to the fuel pressure, and at the same time, the fuel injection valve having a low fuel pressure can be provided by the action of the guiding spring 42. Guide ring 15 when valve is closed Thus, the needle valve 2 and the rotary valve 3 can be reliably rotated and held at the valve closing position.
図 5は、 前記第 2の実施例の変形例を示し、 ノズルボディ 1の開口端縁部にガ ィドリング 15を係合するための溝 51を、 該ガイドリング 15が軸回りに所定角度回 転自由に係合するように、 ガイドリング 15の突出部 15 bとの係合部分が該突出部 15 bの周方向の幅より周方向に大きく形成し、 ガイドリング 15をニードルバルブ 2のリフト時の回転方向と反対方向に付勢するガイドリングスプリング 52を、 前 記溝 51のガイドリング 15の突出部 15 bを係合する部分に装着するようにしたもの であり、 該ガイドリングスプリング 52は、 板ばね等で構成することができる。 FIG. 5 shows a modification of the second embodiment, in which a groove 51 for engaging a guide ring 15 is provided at an opening edge of the nozzle body 1, and the guide ring 15 is rotated by a predetermined angle around an axis. The engagement portion of the guide ring 15 with the protrusion 15b is formed to be larger in the circumferential direction than the circumferential width of the protrusion 15b so that the guide ring 15 can be freely engaged. The guide ring spring 52 that urges in the direction opposite to the rotation direction of the guide ring is attached to a portion of the groove 51 that engages the protrusion 15 b of the guide ring 15. And a leaf spring or the like.
〈産業上の利用可能性〉 <Industrial applicability>
以上説明したように、 本発明は自動車用等の直噴式ディーゼルエンジンの燃料 噴射弁として適用でき、 パイプライン型燃料噴射装置や最近のコモンレール型燃 料噴射装置に装着される燃料噴射弁あるいはュニット型燃料噴射弁として適用で きる。  As described above, the present invention can be applied as a fuel injection valve of a direct injection type diesel engine for an automobile or the like, and can be applied to a pipeline type fuel injection device or a recent common rail type fuel injection device or a unit type fuel injection device. Applicable as a fuel injection valve.

Claims

言青求の範囲 Scope of word blue
(1) ノズルホルダ及びノズルボディ内部に形成された燃料導入通路に燃料が導 入されたときに、 燃料圧力によってノズルボディ内に嵌挿された二一ドルバルブ が軸方向にリフトし、 燃料が前記ニードルバルブとノズルボディとの間隙を通つ てノズルボディに形成された噴孔から燃焼室内に燃料が噴射される構造のディ一 ゼルェンジンの燃料噴射弁であって、  (1) When fuel is introduced into the fuel introduction passage formed inside the nozzle holder and the nozzle body, the fuel pressure causes the 21 dollar valve inserted into the nozzle body to be lifted in the axial direction, and the fuel A diesel fuel injection valve having a structure in which fuel is injected into a combustion chamber from an injection hole formed in a nozzle body through a gap between a needle valve and a nozzle body,
ノズルボディのノズルホルダと係合する端面開口縁部に、 軸方向に対して傾斜 する第 1のセレーションを設けると共に、  A first serration that is inclined with respect to the axial direction is provided at the edge of the end face opening that engages with the nozzle holder of the nozzle body, and
前記ニードルバルブの基端部外周面に、 前記第 1のセレ一ションと係合し、 該 ニードルバルブの軸方向の移動に応じてニードルバルブを軸回りに回転させる第 A second engagement portion that engages with the first selection on an outer peripheral surface of a base end portion of the needle valve, and rotates the needle valve around an axis in accordance with the axial movement of the needle valve;
2のセレーションを形成し、 Form two serrations,
前記ニードルバルブの噴孔側の先端部をノズルボディの噴孔側の先端部内面と の間に間隙を有して形成し、 該ニードルバルブの先端部に嵌合する袋状のロータ リーバルブを配設し、  A tip portion on the injection hole side of the needle valve is formed so as to have a gap between the inner surface of the tip portion on the injection hole side of the nozzle body, and a bag-shaped rotary valve fitted to the tip portion of the needle valve is provided. Set up
前記ニードルバルブの先端部外周面と前記ロータリ一バルブの内周面とに、 間 隙を有して相互に係合しあい、 前記第 1のセレーシヨン及び第 2のセレーシヨン と軸方向に対して反対側に傾斜する第 3のセレ一シヨン, 第 4のセレーシヨンを それぞれ形成し、  The tip outer peripheral surface of the needle valve and the inner peripheral surface of the rotary valve are engaged with each other with a gap therebetween, and are opposite to the first and second serrations with respect to the axial direction. Forming a third selection and a fourth selection, respectively,
かつ、 ノズノレボディに形成した複数の第 1の噴孔に対し、 前記-—ドルバルブ の軸方向のリフト量が増大するにしたがって増大する口一タリーバルブの回転量 に応じて、 重合面積が増大する複数の第 2の噴孔を配設したことを特徴とするデ ィーゼルエンジンの燃料噴射弁。  In addition, for a plurality of first injection holes formed in the nose body, a polymerization area increases according to a rotation amount of a single tally valve which increases as an axial lift amount of the needle valve increases. A fuel injection valve for a diesel engine, wherein a second injection hole is provided.
(2) 前記第 2の噴孔はロータリ一バルブの回転方向に細長に開口され、 前記第 1の噴孔は第 2の噴孔の短い側の幅より大径の略円形に開口されていることを特 徴とする請求項 1に記載のディ一ゼルェンジンの燃料噴射弁。  (2) The second injection hole is elongated in the rotation direction of the rotary valve, and the first injection hole is opened in a substantially circular shape having a diameter larger than the width of the short side of the second injection hole. 2. The fuel injection valve according to claim 1, wherein the fuel injection valve is a fuel injection valve.
(3) 前記第 1のセレ一ションは、 ノズルボディの開口端縁部に形成した溝に、 軸回り方向に回り止めして係合するガイドリングの内周面に形成されることを特 徴とする請求項 1又は請求項 2に記載のディーゼルエンジンの燃料噴射弁。 (3) The first selection is formed on an inner peripheral surface of a guide ring which is engaged with a groove formed in an opening edge of the nozzle body in a direction around an axis so as to prevent rotation. 3. The fuel injection valve for a diesel engine according to claim 1 or claim 2.
(4) 前記第 1のセレーションは、 ノズルボディの開口端縁部に形成した溝に、 軸回り方向に所定角度回転自由に係合するガイドリングの内周面に形成されると 共に、 (4) The first serration is formed on an inner peripheral surface of a guide ring which freely engages with a groove formed on an opening edge of the nozzle body in a direction around an axis by a predetermined angle.
該ガイドリングをニードルバルブの軸方向リフト時の回転方向と反対方向に付 勢するガイドリングスプリングを設け、  A guide ring spring for biasing the guide ring in a direction opposite to a rotation direction of the needle valve during an axial lift;
かつ、 ニードルバルブの周壁に、 前記ニードルバルブの軸方向リフト時の回転 方向に向かって深さが増大し、 受圧される燃料圧力によって二一ドルバルブに前 記回転方向の回転力を作用させるスリツトを設けたことを特徴とする請求項 1又 は請求項 2に記載のディーゼルエンジンの燃料噴射弁。  And a slit on the peripheral wall of the needle valve, the depth of which increases in the rotation direction when the needle valve is lifted in the axial direction, and which applies a rotational force in the rotational direction to the needle valve by the received fuel pressure. The fuel injection valve for a diesel engine according to claim 1 or 2, wherein the fuel injection valve is provided.
(5) ニードルバルブの第 3のセレーション形成部分より基端部側と、 ノズルボ ディ内周面のロータリ一バルブ装着部より基端部側とに、 ニードルバルブの非リ フト時に相互に密着するコ一ンテーパ面が形成されていることを特徴とする請求 項 1〜請求項 4のいずれか 1つに記載のディーゼルエンジンの燃料噴射弁。  (5) At the base end side of the third serration forming part of the needle valve, and at the base end side of the inner surface of the nozzle body with respect to the rotary valve mounting part, the needle valve is in close contact with each other when the needle valve is not lifted. The fuel injection valve for a diesel engine according to any one of claims 1 to 4, wherein a single tapered surface is formed.
PCT/JP1998/004566 1998-10-09 1998-10-09 Fuel injection valve for diesel engine WO2000022295A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000576171A JP4223193B2 (en) 1998-10-09 1998-10-09 Fuel injection valve for diesel engine
PCT/JP1998/004566 WO2000022295A1 (en) 1998-10-09 1998-10-09 Fuel injection valve for diesel engine
DE69841890T DE69841890D1 (en) 1998-10-09 1998-10-09 FUEL INJECTION VALVE FOR DIESEL ENGINES
EP98947804A EP1041274B1 (en) 1998-10-09 1998-10-09 Fuel injection valve for diesel engine
US10/020,170 US6776358B2 (en) 1998-10-09 2001-12-18 Fuel injection nozzle for a diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/004566 WO2000022295A1 (en) 1998-10-09 1998-10-09 Fuel injection valve for diesel engine

Publications (1)

Publication Number Publication Date
WO2000022295A1 true WO2000022295A1 (en) 2000-04-20

Family

ID=14209164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004566 WO2000022295A1 (en) 1998-10-09 1998-10-09 Fuel injection valve for diesel engine

Country Status (4)

Country Link
EP (1) EP1041274B1 (en)
JP (1) JP4223193B2 (en)
DE (1) DE69841890D1 (en)
WO (1) WO2000022295A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329884B1 (en) 2006-01-24 2013-11-15 제너럴 일렉트릭 캄파니 Fuel injector
KR102180408B1 (en) * 2019-07-25 2020-11-18 주식회사 현대케피코 Fuel injector for vehicle
CN114992025A (en) * 2022-06-09 2022-09-02 北京航空航天大学 Aero-engine fuel injector matching part adapting to fuel supply of carbon-negative biofuel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059263B4 (en) * 2000-11-29 2007-10-18 Robert Bosch Gmbh Process for the production or assembly of a fuel injection valve
DE10063261B4 (en) 2000-12-19 2005-09-01 Robert Bosch Gmbh Fuel injector
DE10063258A1 (en) * 2000-12-19 2002-07-11 Bosch Gmbh Robert Fuel injector
DE10102234A1 (en) 2001-01-19 2002-07-25 Bosch Gmbh Robert High pressure fuel supply unit, for an IC motor with fuel injection, has a drilling through the valve body to take a piston with a sealing section against the guide section of the drilling, with a hydraulic piston centering action
FR2857702B1 (en) * 2003-07-16 2005-09-09 Renault Sa FUEL INJECTOR FOR CONTROLLABLE FLOW ENGINE
DE602004003212T3 (en) * 2004-01-28 2011-03-17 Continental Automotive Italy S.P.A., Fauglia Injector with means to prevent valve needle rotation
DE102010030344A1 (en) * 2010-06-22 2011-12-22 Robert Bosch Gmbh Injector, in particular common-rail injector, as well as fuel injection system with an injector
JP5218583B2 (en) 2011-03-09 2013-06-26 株式会社デンソー Injector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476266A (en) * 1990-07-18 1992-03-11 Isuzu Motors Ltd Fuel injection nozzle
WO1996041948A1 (en) * 1995-06-09 1996-12-27 Zexel Corporation Fuel injection nozzle having a variable nozzle hole area
JPH09280134A (en) * 1996-04-15 1997-10-28 Zexel Corp Variable injection hole type fuel injection nozzle
JPH10184495A (en) * 1996-12-24 1998-07-14 Zexel Corp Fuel injection control method by variable nozzle hole type fuel injection nozzle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193560A (en) * 1994-11-15 1996-07-30 Zexel Corp Variable nozzle hole type fuel injection nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476266A (en) * 1990-07-18 1992-03-11 Isuzu Motors Ltd Fuel injection nozzle
WO1996041948A1 (en) * 1995-06-09 1996-12-27 Zexel Corporation Fuel injection nozzle having a variable nozzle hole area
JPH09280134A (en) * 1996-04-15 1997-10-28 Zexel Corp Variable injection hole type fuel injection nozzle
JPH10184495A (en) * 1996-12-24 1998-07-14 Zexel Corp Fuel injection control method by variable nozzle hole type fuel injection nozzle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1041274A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329884B1 (en) 2006-01-24 2013-11-15 제너럴 일렉트릭 캄파니 Fuel injector
KR102180408B1 (en) * 2019-07-25 2020-11-18 주식회사 현대케피코 Fuel injector for vehicle
US11022084B2 (en) 2019-07-25 2021-06-01 Hyundai Kefico Corporation Vehicle fuel injector
CN114992025A (en) * 2022-06-09 2022-09-02 北京航空航天大学 Aero-engine fuel injector matching part adapting to fuel supply of carbon-negative biofuel
CN114992025B (en) * 2022-06-09 2023-10-31 北京航空航天大学 Aeroengine fuel injector matching part adapting to carbon-negative biofuel supply

Also Published As

Publication number Publication date
JP4223193B2 (en) 2009-02-12
EP1041274B1 (en) 2010-09-08
DE69841890D1 (en) 2010-10-21
EP1041274A1 (en) 2000-10-04
EP1041274A4 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US6776358B2 (en) Fuel injection nozzle for a diesel engine
US4721253A (en) Intermittent type swirl injection nozzle
WO2000022295A1 (en) Fuel injection valve for diesel engine
GB2024936A (en) An air-compression direct- injection internal combustion engine
JP3797019B2 (en) Fuel injection valve for direct-injection spark ignition internal combustion engine
EP0226941B1 (en) Combustion chamber for internal combustion engines
JPH11200994A (en) Variable nozzle hole type fuel injection nozzle
JP2002357129A (en) Fuel injection equipment for internal combustion engine
JP4103291B2 (en) Fuel injection nozzle
JPH0425432B2 (en)
JPH0861188A (en) Hole type injection nozzle
JP2006242159A (en) Fuel injection valve
JPH0583732B2 (en)
JP2689762B2 (en) Fuel injection nozzle
JPH0531218Y2 (en)
JPH089421Y2 (en) Fuel injector
KR100189457B1 (en) Fuel injection nozzle having the structure of 2-stage injection
JPH0494452A (en) Fuel injection nozzle
JPS5993958A (en) Fuel injection nozzle
KR200161086Y1 (en) Pilot fuel injection valve for a diesel engine
JPH0512549B2 (en)
JPH09222061A (en) Variable injection hole type fuel injection nozzle
JPH0217179Y2 (en)
JP2000179431A (en) Variable nozzle hole mechanism of variable nozzle hole type fuel injection nozzle
JPS6143215A (en) Combustion chamber of diesel engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998947804

Country of ref document: EP

Ref document number: 09555963

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998947804

Country of ref document: EP