WO2000020405A1 - Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof - Google Patents

Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof Download PDF

Info

Publication number
WO2000020405A1
WO2000020405A1 PCT/JP1999/005511 JP9905511W WO0020405A1 WO 2000020405 A1 WO2000020405 A1 WO 2000020405A1 JP 9905511 W JP9905511 W JP 9905511W WO 0020405 A1 WO0020405 A1 WO 0020405A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
represented
carbon atoms
disubstituted
general formula
Prior art date
Application number
PCT/JP1999/005511
Other languages
French (fr)
Japanese (ja)
Other versions
WO2000020405A8 (en
Inventor
Ken Tanaka
Kenji Yoshida
Akemi Hosokawa
Noriko Katagiri
Osamu Ikeda
Hiroki Kano
Chizuko Sasaki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19860499A external-priority patent/JP2002027997A/en
Priority claimed from JP21966999A external-priority patent/JP2002030017A/en
Priority claimed from JP21966799A external-priority patent/JP2002030019A/en
Priority claimed from JP21966899A external-priority patent/JP2002030079A/en
Priority claimed from JP26837299A external-priority patent/JP2002030023A/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU60040/99A priority Critical patent/AU6004099A/en
Priority to KR1020007014133A priority patent/KR20010052811A/en
Publication of WO2000020405A1 publication Critical patent/WO2000020405A1/en
Publication of WO2000020405A8 publication Critical patent/WO2000020405A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/20Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom three- or four-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention resides in a novel optical isomer mixture, a method for producing the same, a herbicide containing the same as an active ingredient, and a production intermediate and a method for producing the same.
  • the present invention relates to an optically active 1,2-disubstituted compound.
  • herbicides have been used in the cultivation of important crops, such as rice, wheat, and corn. Desirable properties of herbicides include high herbicidal activity at a low dose, broad herbicidal spectrum, adequate residual efficacy, and sufficient safety for crops. Are mentioned. Many of the existing herbicides cannot be said to satisfy these conditions sufficiently. In particular, in recent years, effective herbicides at low doses have been desired due to environmental problems.
  • Japanese Patent Application Laid-Open No. 2-30443 discloses that 1,2-disubstituted 1,2,3-epoxypropanes having a certain substituent have herbicidal activity.
  • these compounds have low water solubility (systemic transferability), so their application as herbicides is limited to paddy fields.
  • the 1,2-disubstituted 1,2,3-epoxypropanes described in the patent publication have an asymmetric carbon atom in their structure, the existence of optical isomers is expected, but the patent publication discloses There is no specific description on the herbicidal activity of the optical isomer or the production method.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an active ingredient of a pesticide having high activity at a low dose and to provide a method for producing the same.
  • the present invention provides an active ingredient of an excellent herbicide having properties such as a high herbicidal activity and a broad herbicidal spectrum at a low dose and an inexpensive active ingredient suitable for an industrial production method.
  • an optical isomer mixture of an optically active 1,2-disubstituted 1,2,3-epoxypropane having a specific substituent and its optical enantiomer An optical isomer mixture containing a specific optical isomer in a specific ratio or more shows much higher herbicidal activity than the corresponding racemic form, and the racemic form has a low permeation / translocation property, so it is difficult to produce an effect.
  • the present inventors have found that they can also be used as herbicides for soil treatment for upland fields, and that they show excellent effects, and have completed the present invention.
  • the present inventors have found a method for producing this optical isomer mixture, and an intermediate for the production thereof, which is inexpensive and industrially suitable, and have completed the present invention.
  • the present invention provides an optical isomer mixture of an optically active 1,2-disubstituted-2,3-epoxypropane represented by the following general formula (1) and its optical antipode, a process for producing the same, A herbicide, a production intermediate and a production method thereof.
  • R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, or an alkynyl group
  • Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, or a carbon atom having 1 to 3 carbon atoms.
  • n represents an integer of 0 to 4.
  • optically active 1,2-disubstituted-2,3-epoxypropanes in the optical isomer mixture of the present invention are represented by the general formula (1).
  • A is a group represented by the general formula (2) or (3).
  • R 1 is a hydrogen atom; a lower alkyl group such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group; an alkenyl group such as a vinyl group or an aryl group.
  • An alkynyl group such as an ethynyl group and a propargyl group;
  • Q is a halogen atom such as a chlorine atom, a bromine atom, and a fluorine atom; an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; a chloromethyl group, a dichloromethyl group, and a trifluoromethyl group
  • a haloalkyl group having 1 to 3 carbon atoms such as a fluoromethyl group or a fluoroethyl group
  • an alkoxy group having 1 to 5 carbon atoms such as a methoxy group or an ethoxy group
  • a nitro group or a cyano group
  • X 1 and X 2 represent a hydrogen atom or a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, and p represents an integer of 0 to 2.
  • B represents a halogen atom such as a chlorine atom, a fluorine atom or a bromine atom; a carbon atom having a carbon number of 1 to 1 such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group and an n-butyl group.
  • an aryl group such as a phenyl group and a pyridyl group which may be substituted with a nitro group, a cyano group and the like.
  • R 1 is preferably a lower alkyl group, more preferably a methyl group or an ethyl group, particularly preferably an ethyl group.
  • N is preferably 0.
  • X 1 and X 2 are preferably a halogen atom, especially a chlorine atom or a fluorine atom, particularly preferably a chlorine atom.
  • p is preferably 0.
  • B is preferably a phenyl group substituted with a halogen atom, especially a chlorine atom, and more preferably a 3-chlorophenyl group or a 3,5-dichlorophenyl group.
  • each of the substituents described above is a combination of preferred individuals.
  • is a group represented by the aforementioned general formula (2), and n is preferably 0, and further, a phenyl group in which B is substituted with a chlorine atom, — It is preferably a phenyl group.
  • the compound represented by the above-mentioned general formula (1) is (-)-2- [2- (3-chlorophenyl) -1,2,3-epoxypropyl] 1-2-ethyl
  • Particularly preferred is 1,1,3-dione (in another nomenclature, (1-1) -1- [2- (3-chlorophenyl) -11- (2-ethylindazione)]-12,3-epoxypropane).
  • the optical isomer mixture of the present invention comprises an optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the aforementioned general formula (1) and an optical antipode thereof.
  • the content of the optical isomer represented by the general formula (1) is 40% ee or more in enantiomer excess% ee.
  • the herbicidal activity is much higher than that of the corresponding racemate, and the water solubility of the optical isomer mixture is 30 ppm or more, preferably 35 ppm or more. This makes it possible to use it as a herbicide for soil treatment for upland fields, which has been difficult to exhibit its effects due to its low systemic transferability in a racemic form, and it is preferable because it shows an excellent effect.
  • This content in the optical isomer mixture of the present invention is preferably at least 70% ee, more preferably at least 80% ee, particularly preferably at least 90% ee.
  • This content is preferably as close to 100% ee as possible, but generally 100% ee requires many purification steps and may possibly reduce the yield. Therefore, the content in the present invention is preferably 40 to 98 ee, and more preferably 70 to 98% ee, as long as the effect of the pesticidal activity exhibited by the optical isomer mixture is sufficiently low industrially.
  • 8 0 Preferably it is ⁇ 98% ee.
  • the water solubility in the present invention indicates the solubility (ppm) in water at 25 ° C.
  • optically active 1,2-disubstituted-2,3-epoxypropanes represented by the aforementioned general formula (1) are shown below.
  • the optical activity in the optical isomer mixture of the present invention is shown below.
  • the body is not limited to these.
  • the pesticide of the present invention contains the above-mentioned optical isomer mixture of the present invention as an active ingredient, and exhibits excellent herbicidal activity and broad herbicidal spectrum especially as a herbicide. It is particularly preferable to use it as a soil treatment agent because the effect is remarkable.
  • the content of the optically active compound represented by the general formula (1) in the optical isomer mixture of the present invention is 40% ee or more, preferably 70% ee or more, and especially 80% ee or more. It is preferably at least 90% ee.
  • the application rate of the pesticide of the present invention is appropriately selected depending on the above-mentioned content in the optical isomer mixture of the present invention used as an active ingredient, the object to be used as a pesticide, and processing conditions. Just do it.
  • the optical isomer mixture of the present invention When used as an active ingredient of a herbicide, the mixture may be used as it is for administration. It is usually preferable to formulate the active ingredient and an agricultural chemical adjuvant commonly used in the art and use it in the form of a composition.
  • the form of the preparation is not particularly limited, but is preferably in the form of, for example, emulsion, wettable powder, powder, floor pull, fine granule, granule, jumbo, tablet, oil, spray, aerosol, etc. It is.
  • a mixture of two or more optical isomers may be used as the active ingredient.
  • a pesticide adjuvant may be used for the purpose of improving the effect of the herbicide, stabilizing it, improving dispersibility, and the like.
  • the pesticide adjuvant include a carrier (diluent), a spreading agent, an emulsifier, a wetting agent, a dispersant, a disintegrant and the like.
  • the carrier includes a liquid carrier and a solid carrier.
  • liquid carriers examples include water, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, butanol, and glycol, ketones such as acetone, and amides such as dimethylformamide; Examples thereof include sulfoxides such as dimethyl sulfoxide, methylnaphthylene, cyclohexane, animal and vegetable oils, and fatty acids.
  • solid carrier clay, kaolin, talc, diatomaceous earth, silica, calcium carbonate, montmorillonite, bentonite, feldspar, quartz, alumina, sawdust, nitrocellulose, starch, arabia rubber and the like can be used.
  • Usable surfactants can be used as emulsifiers and dispersants.
  • anionic surfactants such as higher alcohol sodium sulfate, stearyltrimethylammonium chloride, polyoxyethylene alkyl phenyl ether, lauryl betaine, cationic surfactants, nonionic surfactants, amphoteric An ionic surfactant or the like can be used.
  • the spreading agent include polyoxyethylene nonyl phenyl ether and polyoxyethylene lauryl ether
  • examples of the wetting agent include polyoxyethylene nonyl phenyl ether and dialkyl sulfosuccinate
  • the fixing agent include carboxy.
  • Methyl cellulose, polyvinyl alcohol and the like can be used, and as a disintegrant, sodium ligninsulfonate, sodium lauryl sulfate and the like can be used.
  • other pesticide adjuvants for example, those described in JP-A-60-259886 can be used.
  • the content of the active ingredient in the formulation is usually 0.5 to 90% by weight, and the content of the pesticide adjuvant is 10 to 99.5% by weight. It may be appropriately selected depending on various conditions such as the preparation form, application method and the like.
  • the herbicide of the present invention may be any other active ingredient or the above-mentioned pesticide adjuvant, or any other agricultural or horticultural fungicide, insecticide, herbicide, plant growth regulator, fertilizer, soil conditioner, acaricide, etc. May be contained. Furthermore, such mixed application with other pesticides or simultaneous application may be possible.
  • the application rate of the herbicide of the present invention may be appropriately selected depending on conditions such as the type of the active ingredient, the target weed, the treatment period, the treatment method, and the properties of the soil. It may be used in the range of 20 to 2000 grams, preferably 50 to 1000 grams.
  • the optical isomer mixture of the present invention has an excellent herbicidal activity as compared with the corresponding racemate as described in JP-A-2-30443. In addition, it has particularly good upland soil treatment activity due to its markedly improved water solubility relative to the racemate.
  • the herbicide of the present invention which comprises the optical isomer mixture of the present invention having such excellent herbicidal activity as an active ingredient, is a powerful herbicide against annual weeds of Poaceae such as Meechishiba, Nobie and Enokorogosa. It is active and has very little phytotoxicity to crops such as soybean, wheat, corn, wheat, corn and beet.
  • the herbicide of the present invention effectively acts on annual broadleaf weeds such as sedges, sedges, sorghum, sorghum, sorghum, sorghum, sylvia, aobu, inuyude, kikasigusa, konagi etc. I do.
  • the width of the herbicidal spectrum can be significantly increased. This can provide, for example, a herbicide that effectively acts on the growing annual broadleaf weed and perennial weed, and can further stabilize the herbicidal effect.
  • the herbicide that can be suitably mixed with the herbicide of the present invention include those having the common names described in the following mixture list. However, the herbicides that can be suitably mixed are not limited to those listed below.
  • Phenoxypropionet dichlof op-methyl, fenoxaprop-ethyl
  • Chloroacetamides butachlor, pretilachlor, tenylchlor
  • Cano mate type bentniocarb, esprocarb, molinate, pyributicarb
  • the herbicide for soil treatment of the present invention it is preferable to use the herbicide in combination with the herbicide in the C group or the E group or as a mixed herbicide among the above-mentioned compounds.
  • optical activity 1, 2 represented by the general formula (1)
  • Disubstituted 1-32-epoxypropanes Disubstituted 1-32-epoxypropanes.
  • the compound can be produced by asymmetric epoxidation of a 23-disubstituted 1-port pen represented by the following formula:
  • the method for asymmetric epoxidation of the 23-disubstituted 1-propenes represented by the general formula (4) is not particularly limited.
  • the oxidizing agent is reacted in the presence of an optically active manganese complex. A method or the like is used.
  • optically active manganese complex for example, the following general formula (5)
  • R 2 each independently represents an alkyl group or aryl group having 110 carbon atoms, or may be mutually bonded to form a hydrocarbon ring
  • R 3 and R 4 each independently represent a carbon atom.
  • t-Bu represents an unsaturated butyl group
  • i-Pr represents an isopropyl group
  • Ph represents a phenyl group.
  • the amount of the optically active manganese complex used is 0.0001 to 1.5 mole times the molar amount of the c- oxidation based on the reaction raw material represented by the general formula (4).
  • the agent any conventionally known agent can be used, and preferably, a highly coordinated iodine compound such as C 6 H 5 I 0, or an inorganic compound such as sodium hypochlorite, hydrogen peroxide or the like is used.
  • An oxidizing agent, a percarboxylic acid such as metabenzo-perbenzoic acid and the like can be used.
  • the amount of the oxidizing agent may be appropriately selected depending on the reaction conditions, but usually, the amount of the oxidizing agent to be used is equal to or more than 2,3-disubstituted 1-1-propene.
  • the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (1) is obtained. It is preferable because the optical purity of the compounds is high.
  • the N-oxide compound to be used any conventionally known one can be used.
  • N-oxide, N-methyl of heterocyclic amines such as 4-phenylpyridine-N-oxide and the like can be used. Examples include aliphatic amines such as morpholine-N-oxide.
  • the N-oxide compound is used in an amount of 0.0001 to 1.5 moles per 2,3-disubstituted 11-propene.
  • the asymmetric epoxidation reaction may be performed in the presence of a solvent.
  • a solvent can be used at this time.
  • Preferable examples include aliphatic hydrocarbon solvents such as hexane and heptane, aromatic solvents such as benzene, toluene, and xylene, halogen solvents such as dichloromethane, chloroform, and benzene, and water. . These may be used alone or as a mixed solvent.
  • the amount of the solvent used is 0 to 100 times, especially 1 to 20 times, the weight of the 2,3-disubstituted-1-propene represented by the general formula (4) used in the reaction. Is preferred.
  • the reaction temperature of the asymmetric epoxidation reaction is in the range of 50 to 100 ° (preferably, in the range of 120 to 70 ° C., and the reaction time is usually within 100 hours.
  • the optically active manganese complex was used. In this case, after completion of the reaction, extraction with an organic solvent, crystallization, distillation, Alternatively, purification by column chromatography or the like yields optically active 1,2-disubstituted 1,2,3-epoxypropanes with high optical purity.
  • optically active 1,2-disubstituted-2,3-epoxy's represented by the aforementioned general formula (1) are represented by the following general formula (6)
  • the compound can be produced by stereoselectively ring-closing an optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the formula: it can.
  • the method of stereoselectively closing the ring is not particularly limited.
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the aforementioned general formula (6) is A method of forming an optically active sulfonic acid ester represented by the general formula (7) and closing the optically active sulfonic acid ester in the presence of a base is preferred because it is simple and low cost.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms or an aryl group which may have a substituent.
  • Examples of the optionally substituted alkyl group having 1 to 10 carbon atoms represented by R 5 in the general formula (7) include a methyl group, a chloromethyl group, an ethyl group, an n-propyl group, and an n- A butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and the like.
  • Examples of the aryl group which may have a substituent include a phenyl group, a tolyl group, a nitrophenyl group, a cyclophenyl group and a naphthyl group.
  • R 5 is preferably a methyl group or a p-tolyl group.
  • any conventionally known base can be used. Specifically, amines such as triethylamine, N, N-dimethylaniline and the like, Pyridines such as sodium, picoline and lutidine; metal alkoxides such as sodium methoxide and sodium ethoxide; inorganic bases such as sodium hydroxide, hydroxylated lime, carbonated lime, and sodium carbonate. Rara. Among them, metal alkoxides and inorganic bases are preferred.
  • the base may be used in an amount of at least the equivalent of the optically active sulfonate represented by the general formula (7), preferably 1.0 to 1.5 equivalent.
  • this ring closing reaction may be carried out in the presence of a solvent as appropriate.
  • a solvent for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as dimethyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate.
  • Halogen solvents such as chlorobenzene, chloroform, and chlorobenzene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol and butanol; acetate nitrile and propionitol; And nitriles such as ptyronitrile, and polar solvents such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and water. These may be used alone or as a mixed solvent. The amount of the solvent used may be 0 to 10 times the weight of the optically active sulfonic acid ester.
  • Reaction temperature 50-100. It is preferably in the range of 0 to 70 ° C, and the reaction time is usually within 30 hours.
  • optically active sulfonic acid ester represented by the above-mentioned general formula (7) is a novel compound, and is, for example, an optically active 1,2-disubstituted 2,3-di-substituted compound represented by the aforementioned general formula (6). It can be produced by reacting dihydroxypropanes with a sulfonic acid derivative represented by the following general formula (8) or (9) in the presence of a base.
  • R 5 has the same meaning as in the general formula (7), and Y represents a halogen atom.
  • sulfonic acid derivative represented by the general formula (8) or (9) any one can be used.
  • methanesulfonyl chloride is preferable. ⁇ p-toluenesulfonyl chloride; and sulfonic acid derivatives represented by the general formula (9) include methanesulfonic anhydride and p-toluenesulfonic anhydride. Among them, inexpensive methanesulfonyl chloride. p-Toluenesulfonyl chloride is preferred.
  • the sulfonic acid derivative may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6), preferably from 1.0 to 1.0. It is sufficient to use 5 equivalents.
  • Any base can be used, for example, amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicholine and lutidine, sodium methoxide and sodium ethoxide.
  • examples thereof include inorganic bases such as metal alkoxide, sodium hydroxide, hydroxylated lime, potassium carbonate, and sodium carbonate, and preferably, amines and pyridines.
  • the base may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted-2,3-dihydroxypropane, and usually used in an amount of 1.0 to 2.0 equivalents.
  • the reaction may be appropriately performed in the presence of a solvent.
  • a solvent can be used, for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as getyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate.
  • Halogenated solvents such as chloroform, benzene, etc., ketones such as acetone, methylethylketone, methylisobutylketone, nitriles such as acetonitrile, propionitrile, butyronitrile, dimethylformamide, N- Examples include polar solvents such as methylpyrrolidone, dimethyl sulfoxide, and water. These may be used alone or as a mixed solvent.
  • amines or pyridines are used as the base, the reaction may be carried out using the base itself as a solvent.
  • the solvent may be used in an amount of 0 to 10 times the weight of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane.
  • the reaction temperature is in the range of ⁇ 50 to 100 ° C., preferably ⁇ 20 to 50 ° C., and the reaction time is usually within 30 hours.
  • the optically active 1,2-disubstituted-2,3-dihydroxypropanes are converted into optically active sulfonic acid esters and then closed in the presence of a base to obtain the optically active 1,2-dithiopropanes.
  • Substituted 1,2,3-epoxypropanes can be produced.
  • the ring closure reaction may be continuously performed without isolating the optically active sulfonic acid esters.
  • reaction of converting optically active 1,2-disubstituted 1,2,3-dihydroxypropanes into optically active sulfonic acid esters, and the conversion of optically active sulfonic acid esters into optically active 1,2-disubstituted 1,2,3 may be performed competitively at the same time.
  • an inorganic base such as sodium hydroxide as the base.
  • a compound represented by the following general formula (6) which is an intermediate for producing 1,2-disubstituted-2,3-epoxypropanes represented by the general formula (1) in the optical isomer mixture of the present invention.
  • the present invention also provides a method for efficiently producing optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the formula (1) with high optical purity.
  • the optical isomer mixture of the present invention and a pesticide containing the same as an active ingredient, in particular, a herbicide can be produced industrially superiorly.
  • a method for producing the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6) will be described.
  • the compound can be produced by asymmetric dihydroxylation of 2,3-disubstituted-11-substituted benzenes represented by the formula:
  • the method of asymmetrically dihydroxylating the 2,3-disubstituted 11-propenes is optional, but the method of asymmetric dihydroxylation using an osmium compound is preferred.
  • a reducing agent such as sodium sulfite is added after the reaction is completed, and the product is extracted with an organic solvent and then washed with an acid.
  • a reducing agent such as sodium sulfite
  • the product is extracted with an organic solvent and then washed with an acid.
  • the osmium compound used for the asymmetric dihydroxylation reaction preferably 8 monovalent or hexavalent Osumisumu compounds, for example, and specific examples thereof include K 2 0 s 0 2 (OH ) 4 or tetroxide Osumiumu like.
  • the amount of the osmium compound used may be 0.00001 to 1.5 mole times the amount of the reaction raw material 2,3-disubstituted-1-propene.
  • optically active tertiary amines can be used.
  • specific examples include optically active isomers of amines such as N, N, monosubstituted ethylenediamines, N, N, tetrasubstituted 1,4-butanediamines, and 1,4-phthalazinediyl diethers.
  • optically active isomers of 1,4-phthalazinediyl diethers are preferable.
  • hydroquinine 1,4-phthalazinediyl diether represented by the following general formula (23) is preferred. t better.
  • the optically active tertiary amines may be used in an amount of 0.0001 to 1.5 times the molar amount of the 2,3-disubstituted 1-1-probenes as the reaction raw materials.
  • any one can be used, and preferably, N-oxide of tertiary amine or potassium ferricyanide [K 3 Fe (CN) 6 ] is used.
  • the amount of co-oxidant used should be at least equimolar amount of 2,3-disubstituted-1-propene.
  • Any base can be used, and specific examples include metal alkoxides such as sodium methoxide and sodium ethoxide, and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate.
  • inorganic bases, particularly carbonates, are preferred, and potassium carbonate is particularly preferred.
  • the base may be used in an amount of at least the equivalent of 2,3-disubstituted 1-1-propenes.
  • This asymmetric dihydroxylation reaction may be carried out appropriately in the presence of a solvent.
  • a solvent can be used as the solvent for this reaction.
  • examples include getyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, tetrahydropyran, dioxane, ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, and ethylene glycol.
  • Ether solvents such as dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dibutyl ether, and ethylene glycol dibutyl ether; aliphatic hydrocarbon solvents such as hexane and heptane; benzene, toluene, xylene, and benzene Aromatic hydrocarbon solvents such as acetone, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogen solvents such as dichloromethane and chloroform Solvents, nitrile solvents such as acetonitrile, propionitrile, ptyronitrile, amide solvents such as dimethylformamide and N-methylpyrrolidone, and ester solvents such as methyl acetate, ethyl acetate, and methyl propionate Solvent, alcoholic solvent such as methanol, ethanol, propanol, t-but
  • Methyl sulfoxide and the like may be used alone or as a mixed solvent.
  • a mixed solvent of an alcohol solvent and water is preferably used, and a mixed solvent of t-butyl alcohol and water is particularly preferable.
  • the amount of the solvent to be used is preferably 0 to 100 times, more preferably 1 to 20 times the weight of the reaction raw material 2,3-disubstituted-1-propene.
  • the reaction temperature is in the range of -50 to 100 ° C, preferably 120 to 70 ° C, and the reaction time is usually within 100 hours.
  • optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) are represented by the following general formula (10)
  • R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group, or an aryl group
  • R 7 may have a substituent.
  • the compound is reacted with a carboxylic acid ester or an acid anhydride represented by the following formula to form an optically active 1,2-disubstituted-2-hydroxy-3-amine represented by the following general formula (12).
  • Siloxypropanes and compounds represented by the general formula (12) are optically enantiomers and are optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the following general formula (13) which is an optical isomer having a desired steric structure, represented by the general formula (13): , 2-Disubstituted 1,2,3-dihydroxypro Breads (that is, the same as general formula (6)) can be fractionated and manufactured.
  • the optically active 1,2-disubstituted-2-hydroxy-13-acyloxypropanes have a desired steric structure, they are further solvolyzed after the reaction and are represented by the general formula (6).
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes can be also produced by fractionation.
  • the stereostructure (R, S) of the compound to be produced is exchanged depending on the stereoselectivity of the enzyme used in the reaction. Therefore, an appropriate one of the above-mentioned methods may be selected.
  • the chemical structure is described as a chemical structure in which an asymmetric carbon atom is marked with “*”. The same applies to (IV-3) described later.
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes of the optically enantiomeric compound and the enantiomer are new compounds, and the optically active 1,2-disubstituted It is an important intermediate for the production of 2,3-epoxypropanes.
  • any enzyme can be used as long as it has a stereoselective transesterification ability with respect to the aforementioned racemic 1,2-disubstituted-2,3-dihydroxypropanes.
  • Specific examples include the genus Penicillium, the genus Pseudomonas, the genus Alcaligenes, the genus Rhizopus, and the genus Aspergilus (such as lipases derived from microorganisms such as the genus Penicillium). And lipases derived from such enzymes.
  • the enzyme may be used as it is, or may be subjected to a treatment such as acetone treatment or freeze-drying, or may be a product obtained by immobilizing these enzymes on a carrier. Furthermore, an enzyme obtained by an appropriate expression system by genetic recombination may be used.
  • Examples of the lipases derived from microorganisms belonging to the genus Pe ci Ilium, Pseudomonas, Alcaligenes, Rhizopus, or Aspergilus include Lipase R (Penicillium, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AK (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AKG (genus of Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Toyozyme LIP (genus of Pseudomonas, manufactured by Toyobo Co., Ltd.), Lipase QL (genus of Alcaligenes, name sugar industry ( Co., Ltd.), Lipase PL (genus Alkaligenes, manufactured by Meito Sangyo Co., Ltd.) Lipase D (genus Rhizopus, manufactured by Amano Pharmaceutical Co., Ltd.), Lipas
  • the amount of enzyme used may be appropriately set. Usually, it is preferably used in an amount of 0.01 to 5 times, more preferably 0.05 to 2 times the weight of the reaction raw material.
  • 6 is a methyl group, an ethyl group, an n-propyl group, i-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n- pentadecyl group, n-tridecyl group, n-pentydecyl group, n-heptydecyl group, a linear or branched alkyl group having 1 to 20 carbon atoms such as t-butyl group and 2-ethylpentyl group; and a carbon atom having 2 to 2 carbon atoms such as vinyl group, isoprobenyl, 2-pentenyl group and 8-heptanecenyl group.
  • alkenyl groups phenyl groups, naphthyl groups, etc., preferably aryl groups having 6 to 20 carbon atoms; benzyl groups, phenethyl groups, etc., preferably carbon numbers? And 20 aralkyl groups.
  • R 7 in addition to the group in R 6 in the above, a formyl group, Asechiru group, propionic group, a butyryl group, Isopuchiriru group, pivaloyl group, force Puroiru group, lauroyl group, myristoyl group, Roh palmitoyl group, Examples thereof include an acyl group having 1 to 20 carbon atoms such as a stearoyl group, an acryloyl group, a methacryloyl group, a crotonyl group, an isocrotonyl group, and an oleoyl group.
  • R G and R 7 further have a substituent May be.
  • m represents an integer of 1 to 3. That is, the carboxylic acid ester represented by the general formula (11) may be any of a monocarboxylic acid ester, a dicarboxylic acid ester, and glyceride.
  • carboxylate examples include vinyl acetate, vinyl acetate, vinyl probionate, vinyl butyrate, vinyl caprolate, vinyl caprylate, vinyl caprylate, vinyl laurate, vinyl myristate, and normitic acid.
  • Examples of the acid anhydride include the anhydrides of the above-mentioned carboxylic acid esters, specifically, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, and cabron anhydride.
  • vinyl esters and acid anhydrides are preferable, and vinyl esters such as vinyl acetate, vinyl butyrate, and vinyl caproate, which are inexpensive and highly reactive, and caproic anhydride and benzoic anhydride are preferred. preferable.
  • vinyl butyrate is preferred because it is inexpensive, has high stereoselectivity in the enzymatic reaction, and has a high reaction rate.
  • the amount of the carboxylic acid ester or acid anhydride to be used may be 0.5 equivalent or more based on the racemic 1,2-disubstituted-2,3-dihydroxypropane used in the reaction.
  • the enzyme is suspended in a solvent in which racemic 1,2-disubstituted 1,2,3-dihydroxypropanes and a carboxylic acid ester or acid anhydride are dissolved, and the suspension is stirred or shaken.
  • a solvent in which racemic 1,2-disubstituted 1,2,3-dihydroxypropanes and a carboxylic acid ester or acid anhydride are dissolved, and the suspension is stirred or shaken.
  • only one optical isomer of racemic 1,2-disubstituted-2,3-dihydroxypropane reacts with the carboxylic acid ester or acid anhydride to give Ester And optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes.
  • the ester is an optical isomer having a desired steric structure
  • the enzyme is filtered off or centrifuged to remove the enzyme after completion of the enzyme reaction.
  • optically active substance having a desired steric structure is formed without esterification after the enzymatic reaction, that is, the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6)
  • the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6) When such compounds are obtained, they may be separated from the reaction solution by crystallization or the like.
  • the optical purity of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (6) can be further increased. preferable.
  • any solvent can be used as the solvent used in the enzymatic reaction, and examples thereof include ether solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; aliphatic hydrocarbon solvents such as hexane and heptane; toluene; Aromatic hydrocarbon solvents such as xylene, ester solvents such as methyl acetate and ethyl acetate, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogen solvents such as chloroform and benzene.
  • ether solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran
  • aliphatic hydrocarbon solvents such as hexane and heptane
  • toluene toluene
  • Aromatic hydrocarbon solvents such as xylene, ester solvents such as
  • nitriles such as acetonitrile, propionitrile and ptyronitrile; amide solvents such as dimethylformamide and N-methylpyrrolidone; and dimethylsulfoxide.
  • amide solvents such as dimethylformamide and N-methylpyrrolidone
  • dimethylsulfoxide it is preferable to carry out the reaction using a carboxylic acid ester or an acid anhydride used in this enzymatic reaction as a solvent, since the reaction rate is increased.
  • the solvent may be used in an amount of 0 to 20 times the weight of the racemic 1,2-disubstituted-2,3-dihydroxypropane as a reaction raw material.
  • the reaction is performed at 0 to 100 ° (preferably at a temperature of 10 to 50 ° C, and the reaction time is 5 o'clock.
  • the reaction may be carried out for several days.
  • the racemic 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the general formula (10) used in this enzyme reaction may be produced by a known production method. As described in, for example, JP-A-2-304043, the production method can be easily produced by oxidizing a corresponding olefin derivative. (IV— 3) Enzymatic Production by Stereoselective Solvolysis
  • optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the above-mentioned general formula (6) are represented by the following general formula (14)
  • a racemic 1,2-disubstituted 1-2-hydroxy-3 —Acyloxypropanes can be prepared by the following general formula in the presence of an enzyme having stereoselective solvolysis ability
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • the compound is reacted with the compound represented by the above formula (IV-2).
  • the optically active 1,2-disubstituted-2-hydroxy-3-acyloxypropane represented by the general formula (12) and the compound represented by the general formula (12) are optically enantiomers.
  • An optically active 1,2-disubstituted_2,3-dihydroxypropane represented by the general formula (13) represented by the general formula (13) It can be produced by fractionating optically active 1,2-disubstituted 1,2,3-dihydroxypropanes (ie, the same as general formula (6)) represented by 13).
  • optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes have a desired steric structure, they are further solvolyzed after the reaction to give a compound of the general formula
  • optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by (6) can also be produced by fractionation.
  • racemic 1,2-disubstituted 1,2-hydroxy xy-3-acyloxypropanes, which are raw materials for the enzymatic reaction, are novel compounds, and the production method thereof will be described later.
  • R 6 in the general formula (14) are as described in the above (IV-2).
  • an n-propyl group, an i-propyl group or an n-pentyl group is preferred as R 6 because of its high reaction rate and stereoselectivity.
  • any enzyme can be used as long as it has a stereoselective solvolysis ability to racemic 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes. it can.
  • Specific examples include the genus Penicillium, the genus Pseudomonas, the genus Alcaligenes, the genus Rhizopus, and the genus Aspergilus (a lipase derived from a microorganism belonging to the genus, and particularly, a microorganism derived from the genus Penicillium or Pseudomonas.
  • These enzymes may be raw enzymes, or those treated with acetone, freeze-drying, or the like, or those obtained by immobilizing these enzymes on a carrier. Those obtained by a suitable expression system by genetic recombination may be used.
  • Examples of the above-mentioned rivase derived from a microorganism belonging to the genus Penicillium, Pseudomonas, Alcaiigenes, Rhizopus, or A spergilus include Lipase R (Penicillium genus, Amano Pharmaceutical Co., Ltd.) , Lipase AK (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AKG (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Toyozyme LIP (genus Pseudomonas, manufactured by Toyobo Co., Ltd.), Lipase QL (genus, Alcaligenes, name sugar) Industrial Co., Ltd.), Lipase PL (genus Alkaligenes, manufactured by Meito Sangyo Co., Ltd.) Lipase D (Rhiz alphabet, manufactured by Amano
  • enzymes have different reactivities and selectivities depending on the type of racemic 1,2-disubstituted 1,2-hydroxy-3-acyloxypropanes used as the starting material for the reaction. Usually, it is preferably used in an amount of 0.01 to 5 times, more preferably 0.05 to 2 times the weight of the reaction raw material.
  • R 8 is a hydrogen atom; a methyl group, an ethyl group , N-propyl, i-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-pentyl, n-tridecyl, n-pentyldecyl
  • a hydrogen atom a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • a hydrogen atom that is, water may be used as the compound represented by the general formula (15). It is preferable because it is inexpensive and has high reaction rate and stereoselectivity.
  • the amount of the compound represented by the general formula (15) may be at least 0.5 times the molar amount of the racemic 1,2-disubstituted-2-hydroxy-1-acyloxypropane.
  • optically active compounds are 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes.
  • the enzyme is separated by filtration, centrifuged, or separated by adding water.A conventional procedure such as separation and concentration of the filtrate or organic layer, followed by extraction, crystallization, purification by column chromatography, etc. Then, optically active 1,2-disubstituted 1-2-hydroxy-13-acyloxypropanes represented by the general formula (12) can be obtained. At this time, it is preferable to isolate the optically active 1,2-disubstituted-2,3-dihydroxypropanes, which are optical enantiomers, by crystallization or the like, since the above-mentioned purification operation is simplified.
  • ester When the ester is an optically active substance having a desired steric structure, it is purified and then subjected to solvolysis with an acid or an alkaline solvent to obtain an optically active 1,2-disubstituted 1 2 having a high optical purity. , 3-Dihydroxypropanes can be obtained.
  • optically active substance having a desired steric structure is formed without esterification after the enzymatic reaction, that is, the optically active 1,2-disubstituted 2,3-disubstituted compound represented by the general formula (6)
  • dihydroxypropanes When dihydroxypropanes are obtained, they may be separated from the reaction solution by crystallization or the like.
  • the optical purity of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (6) can be further increased. preferable.
  • any solvent can be used as the solvent used in the enzymatic reaction, for example, ether solvents such as getyl ether, diisopropyl ether and tetrahydrofuran, aliphatic hydrocarbon solvents such as hexane and heptane, toluene, xylene and the like.
  • ether solvents such as getyl ether, diisopropyl ether and tetrahydrofuran
  • aliphatic hydrocarbon solvents such as hexane and heptane, toluene, xylene and the like.
  • Aromatic hydrocarbon solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, halogen solvents such as chloroform and benzene, etc., and acetone solvents such as acetonitrile, propionitrile and ptyronitrile
  • amide solvents such as tolyls, dimethylformamide, and N-methylbiopenidone, and dimethyl sulfoxide.
  • the compound represented by the general formula (15) when water is used as the compound represented by the general formula (15), when this enzymatic reaction is carried out in the presence of an organic solvent, preferably a water-insoluble organic solvent, 1,2-disubstitution is performed. It is preferable because the 2-hydroxy-3-acyloxypropanes can be effectively dispersed in the reaction system, and the operability and reactivity can be improved. Particularly, it is preferable to use an ether solvent, an aromatic hydrocarbon solvent, a ketone solvent, a halogen solvent, or the like as the water-insoluble organic solvent because the enzyme reaction rate is increased.
  • the solvent is used in an amount of 0 to 10 times, preferably 0 to 5 times, the weight of the racemic 1,2-disubstituted 1,2-hydroxy-3-acyloxypropane as the reaction raw material. Good.
  • This reaction may be carried out at 0 to 100 ° (preferably at 10 to 50 ° C) for 5 hours to several days.
  • the racemic 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (10) used in this enzyme reaction may be produced by a known production method. As described in, for example, Japanese Patent Application Laid-Open No. 2-30443, such a production method can be easily produced by oxidizing a corresponding olefin derivative.
  • water is used as the compound represented by the general formula (15)
  • the enzyme species Depending on the type, it is preferable to carry out the reaction while maintaining the optimum pH, and it is usually preferable to maintain the pH in the range of 6 to 10, preferably in the range of 7 to 8.
  • a reaction is carried out while neutralizing the carboxylic acid generated from the 1,2-disubstituted-2-hydroxy-3-acyloxypropanes by an enzymatic reaction by adding a base.
  • a suitable buffer solution is used.
  • any base can be used.
  • amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicoline, lutidine, sodium methoxide, sodium methoxide, etc.
  • metal alkoxides such as muethoxide
  • inorganic bases such as sodium hydroxide, hydroxylated lime, carbonated lime, and sodium carbonate.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate are preferable because they are inexpensive and easily available.
  • racemic 1,2-disubstituted 1-2-hydroxy-13-hydroxylpropanes which are raw materials for the enzymatic reaction in (IV-3), are novel compounds.
  • This novel compound can be produced, for example, as follows.
  • a racemic 1,2-disubstituted 2,3-dihydroxypropane represented by the aforementioned general formula (10) is represented by the following general formula (16) or (17) It can be produced by reacting a carboxylic acid derivative.
  • R 6 has the same meaning as in the general formula (11), and Y represents a halogen atom.
  • This reaction is carried out under strong acylation conditions using acid chloride as a carboxylic acid derivative and triethylamine as a base. This is an excellent production method in which only one of the hydroxy groups of the racemic 1,2-disubstituted 1,2,3-dihydroxypropanes is acylated to produce the desired product.
  • Y is preferably a chlorine atom or a bromine atom, particularly preferably a chlorine atom.
  • carboxylic acid derivative represented by the general formula (16) examples include acetyl chloride, acetyl bromide, propionyl chloride, propionyl chloride, n-butyryl chloride, i-butyryl chloride, and n-valeryl chloride.
  • carboxylic acid halides such as i-valeryl chloride, n-caprolactyl, n-octanoylchloride, n-decanoylchloride, n-lauroylglolide and benVylchloride.
  • carboxylic acid derivative represented by the general formula (17) examples include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, caproic anhydride, and anhydrous prill.
  • carboxylic anhydrides such as acids, anhydrous pric acid, lauric anhydride, and benzoic anhydride.
  • acetyl chloride, propionyl chloride, n-butyryl chloride, i-butyryl chloride, n-cubic yl chloride, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, and cabronic anhydride are preferred, and n is particularly preferred.
  • Butyryl chloride, i-butyryl chloride, butyric anhydride, isobutyric anhydride are preferred.
  • the carboxylic acid derivative may be used in an amount of at least the equivalent of 1,2-disubstituted 1,2,3-dihydroxypropanes, preferably 1.0 to 1.5 equivalents.
  • Any base can be used, for example, amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, picoline, lutidine, sodium hydroxide, and hydroxylated water. And inorganic bases such as carbon dioxide carbonate and sodium carbonate. Among them, amines or pyridines are preferred.
  • the base may be used in an amount of at least the equivalent of 1,2-disubstituted-2,3-dihydroxypropanes, and is preferably used in an amount of 1.0 to 2.0 equivalents.
  • any solvent can be used for this reaction, for example, ether solvents such as ethyl ether, diisopropyl ether, and tetrahydrofuran; aliphatic hydrocarbon solvents such as hexane and heptane; and toluene and xylene.
  • Nitril, propionitrile, petit Examples include nitriles such as lonitolil, dimethylformamide, dimethylsulfoxide, N-methylbirolidone, and the like. These may be used alone or as a mixture.
  • the solvent may be used in an amount of 0 to 10 times the weight of the racemic 1,2-disubstituted 1,2,3-dihydroxypropane.
  • the reaction temperature is in the range of from 150 to 150 ° C, preferably from 120 to: 00 ° C, and the reaction time is usually within 30 hours.
  • optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) are represented by the following general formula (18)
  • the epoxy group is hydrolyzed by reacting an optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) with an acid in the presence of water. This is done by disassembly. After completion of the reaction, the product was appropriately extracted with an organic solvent, and the product was purified from the organic layer by crystallization, distillation, column chromatography, or the like. Thus, optically active 1,2-disubstituted 1,2,3-dihydroxypropanes having high optical purity can be obtained.
  • the production method (a), which is a hydrolysis reaction has the advantage that the target product is formed in a single-step reaction and the optical yield is good.
  • the acid used for the hydrolysis include sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid.
  • Organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid, boron trifluoride, titanium tetrachloride, tin tetrachloride, and aluminum chloride Minium, iron chloride, antimony pentafluoride, Louis acid such as ytterbium triflate and the like.
  • the use of an inorganic acid is preferred, and sulfuric acid is particularly preferred, since both the optical purity and the yield of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes, which are products, are increased.
  • the amount of the acid to be used is 0.01 to 100 with respect to the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (18) as a reaction raw material. It is preferable to use equivalents, especially 0.1 to 10 equivalents.
  • the amount of water used may be at least the equivalent of the above-mentioned reaction raw materials, but the use of 1 to 10 equivalents, especially 1 to 5 equivalents, increases both the optical purity and the yield of the product. preferable.
  • an inorganic acid is used as the acid, especially when sulfuric acid is used, it is preferable to use 3 to 6 equivalents of water based on the reaction raw material. At this time, if the amount of water used exceeds this range, the optical purity of the product may decrease. Furthermore, when sulfuric acid is used as the acid, the use of a mixture of water and acid sulfuric acid in advance to form a sulfuric acid solution, compared to the case where water and sulfuric acid are used separately, results in a higher optical quality of the product. It is preferable because the purity is high.
  • Any solvent can be used as a solvent for this enzymatic reaction, for example, dimethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, etc., tetrahydropyran, dioxane, ethylene glycol dimethyl ether, ethylene glycol gel, etc.
  • Ether solvents such as butyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and diethylene glycol dibutyl ether; ester solvents such as ethyl acetate, methyl acetate, and methyl propionate; t-butyl alcohol Alcohol solvents such as tert-amyl alcohol, aliphatic hydrocarbon solvents such as hexane and heptane, aromatic hydrocarbon solvents such as toluene and xylene, acetone, Ketone solvents such as rutile ketone and methyl isobutyl ketone; halogen solvents such as dichloromethane, chloroform, and benzene; nitriles such as acetonitrile, propionitrile, and ptyronitrile; dimethylformamide; N-methylpyrrolidone; And dimethyl sulfoxide. These may be used alone or as a mixed
  • the product optically active 1,2_disubstituted 1,2,3-di
  • an ether-based solvent a ketone-based solvent, an ester-based solvent, or an amide-based solvent because of the high optical purity and yield of hydroxypropanes.
  • ether solvents, ketone solvents and ester solvents are preferred because both the optical purity and the yield of the product are increased.
  • ethylene glycol ethers or ethers having a 6-membered ring structure are preferred. And particularly preferably diethylene glycol ethyl ether.
  • the amount of the solvent used is 0 to 100 times the weight of the optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) as the reaction raw material, and especially 1 to 20 times. It is preferable to use it by weight.
  • the reaction temperature is in the range of from 50 to: 00 ° C, preferably from -20 to 70 ° C, and the reaction time is usually within 48 hours.
  • the optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) was ring-opened in the presence of a carboxylic acid, and then obtained. It is carried out by solvolysis of carboxylic esters.
  • the production method (b) involves a two-stage reaction of a ring opening reaction and a solvolysis reaction, and the optical yield may be lower than that of the production method (a). It is characterized by not necessarily requiring a hydrophilic solvent.
  • optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (18), which is a reaction raw material of the production method (b), is produced using a hydrophobic solvent. Even if it is used, it is possible to continue the production method (b) in the same solvent system without isolating it from the reaction system.
  • the production of the optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by (6) is an industrially advantageous production method because the total number of reaction steps can be reduced.
  • carboxylic acid used in the production method (b) any one can be used. Specifically, for example, formic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid vinegar Acid, trifluoroacetic acid, propionic acid, butyric acid, valeric acid, caproic acid and the like.
  • the product is optically active 1, 2 - disubstituted one 2, 3 Jihido since Rokishipuropan such optical purity and yield of the are both high, as the amount of formic acid is preferably c carboxylic acid It is sufficient to use at least the equivalent of the above-mentioned reaction raw materials.
  • the use of 1 to 10 equivalents makes it possible to obtain the optically active 1,2-disubstituted 1,2,3-substituted product represented by the general formula (6). It is preferable because the optical purity and the yield of dihydroxypropanes are both increased.
  • an acid other than a carboxylic acid may be appropriately co-present.
  • the acid used in combination include inorganic acids such as sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid.
  • Methanesulfonate, trifluoromethanesulfonic acid organic acids such as P-toluenesulfonic acid, boron trifluoride, titanium tetrachloride, tin tetrachloride, aluminum chloride, iron chloride, antimony pentafluoride, ytterbium triflate And Lewis acids.
  • the amount of the acid to be used in combination is preferably from 0 to 100 equivalents, more preferably from 0 to 10 equivalents, based on the optically active 1,2-disubstituted 1,2,3-epoxypropane of the reaction raw material.
  • the ring-opening reaction in the production method (b) may be further carried out in the presence of a solvent as appropriate.
  • a solvent any solvent can be used, specific examples include the solvents exemplified in the above-mentioned production method (a), and these may be used alone or as a mixed solvent. Further, water may be used in combination as a solvent.
  • aromatic solvents such as benzene, toluene, xylene, and benzene are preferable. Particularly, when benzene is used, the optical purity and yield of the product are increased, and the post-treatment of the reaction is easy. Is preferred.
  • the amount of the solvent to be used is 0 to 100 times by weight, especially 1 to 20 times by weight, based on the weight of the optically active 1,2-disubstituted 1,2,3-epoxypropane as the above-mentioned reaction raw material. Is preferred.
  • the production method (b) is to open the ring of the optically active 1,2-disubstituted 1,2,3-epoxypropane as a reaction raw material in the presence of a carboxylic acid, and then obtain the obtained carboxylic acid ester.
  • Solvents for the solvolysis reaction include water or methanol, ethanol, propanol, butanol It is preferable to use a protonic solvent such as toluene.
  • the solvolysis reaction may be performed under either acidic conditions or basic conditions, but is preferably performed under basic conditions because of the high reaction rate and reaction yield.
  • any acid may be used.
  • the acid include inorganic acids such as sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid, and methanesulfonic acid.
  • organic acids such as P-toluenesulfonic acid and formic acid.
  • sulfuric acid is preferred.
  • the amount of the acid used in the solvolysis reaction may be 0.01 to 10 equivalents of the optically active 1,2-disubstituted 1,2,3-epoxypropane which is a reaction raw material in the ring opening reaction.
  • the reaction temperature is in the range of ⁇ 50 to 100 ° C., preferably ⁇ 20 to 70 ° C., and the reaction time is usually within 48 hours.
  • any base may be used.
  • the base include amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicholine, lutidine, metal alkoxides such as sodium methoxide and sodium ethoxide, sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • inorganic bases such as sodium carbonate. Among them, metal alkoxides and inorganic bases are preferred.
  • the amount of the base used in the solvolysis reaction is determined by neutralizing the excess carboxylic acid remaining after the ring-opening reaction and then reacting the optically active 1,2-disubstituted-2,3-epoxypropane, which is the starting material for the ring-opening reaction. Or more, more preferably 1 to 5 equivalents.
  • the reaction temperature is in the range of ⁇ 50 to 150 ° C., preferably ⁇ 20 to 100 ° C., and the reaction time is usually within 48 hours.
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropane compound represented by the general formula (20) is first used as the reaction (1) by the above-mentioned production method (W-2). And producing an optically active 1,2-disubstituted 1,2-hydroxy-3-acyloxypropane represented by the general formula (24), which is an optical antipode thereof.
  • W-2 the optically active 1,2-disubstituted 1,2-hydroxy-3-acyloxypropane represented by the general formula (24), which is an optical antipode thereof.
  • the compound (20) is isolated from the obtained mixture of the compound represented by the general formula (20) and the compound represented by the general formula (24) or in the presence of a base without isolation.
  • the compound of the general formula (19) is produced by reacting with a sulfonic acid derivative (reaction 1). This is because even when the compound of the general formula (24) coexists in the reaction (1), it does not substantially react with the sulfonic acid derivative, and is hydrolyzed as it is or partially and represented by the general formula (6). Optically active 1,2-disubstituted 1,2,3-dihydroxypropanes.
  • sulfonic acid derivative a sulfonic acid derivative represented by the general formula (8) or (9) as described in (III-12) above may be used.
  • any one can be used.
  • the sulfonic acid derivative represented by the general formula (8) methanesulfonyl chloride is preferable. ⁇ p-toluenesulfonyl chloride and the like.
  • Examples of the sulfonic acid derivative represented by the general formula (9) include methanesulfonic anhydride and P-toluenesulfonic anhydride, and among them, inexpensive methanesulfonyl chloride-p-toluenesulfonyl chloride is preferable.
  • the amount of the sulfonic acid derivative to be used may be at least the equivalent of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (20), and particularly preferably from 1.0 to 1.5. It is preferable to use an equivalent amount.
  • Any base can be used, for example, amines such as triethylamine and N, N-dimethylaniline, pyridines such as pyridine, picoline and lutidine, sodium methoxide and sodium ethoxide.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium carbonate and the like, and preferably amines and pyridines.
  • the base may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes, and usually from 1.0 to 2.0 equivalents.
  • this reaction (2) may be carried out appropriately in the presence of a solvent.
  • a solvent can be used, for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as getyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate.
  • Black mouth Holm Black Halogen solvents such as benzene, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, nitriles such as acetonitrile, propionitol, butyronitrile, dimethylformamide, N-methylbiopenidone, dimethyl sulfoxide And polar solvents such as water. These may be used alone or as a mixed solvent.
  • amines or pyridines are used as the base, the reaction may be carried out using the base itself as a solvent.
  • the amount of the solvent used may be 0 to 10 times the weight of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane.
  • the reaction temperature is in the range of 50 to 100 ° C, preferably -20 to 50 ° C, and the reaction time is usually within 30 hours.
  • optically active sulfonic acid ester represented by the general formula (19) is isolated from the reaction product of the reaction (1) or without isolation, and by allowing a base to act thereon, the target compound represented by the general formula (18)
  • the optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by are obtained (reaction 3).
  • any base can be used as the base used in the reaction (3).
  • the base include amines such as triethylamine and N, N-dimethylaniline, pyridines such as pyridine, bicoline and lutidine, sodium methoxide and sodium ethoxy.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate. Among them, metal alkoxides and inorganic bases are preferred.
  • the base may be used in an amount of at least the equivalent of the optically active sulfonic acid ester, and among them, it is preferable to use 1.0 to 1.5 equivalent.
  • the reaction temperature is in the range of ⁇ 50 to 100 ° C., preferably 0 to 70 ° C., and the reaction time is usually within 30 hours.
  • the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (20) is produced by the above-mentioned production method (IV-3). And producing an optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropane represented by the general formula (24) having the optically enantiomeric stereostructure c In 4, it is preferable to use a lipase derived from a microorganism belonging to the genus Penicillium as the enzyme. Thereafter, the compound represented by the general formula (18) can be produced according to the reactions (2) and (3) of the above-mentioned production route (1), and the effect is the same.
  • optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the aforementioned general formula (6) can also be produced by the following method.
  • optically active 1,2-disubstituted-2-hydroxy-13-acyloxypropanes when they have a desired steric structure, they are further solvolyzed after the reaction and are represented by the general formula (6).
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes may be fractionated and produced.
  • nucleophilic catalyst can be used as the nucleophilic catalyst used in this reaction.
  • examples thereof include optically active 1,2-diamines, optically active pyridines, optically active pyrroles, optically active peptides, and optically active peptides.
  • phosphines Specifically, for example, as the optically active 1,2-diamines, a pyrrolidine derivative represented by the following general formula (25) is preferable.
  • D represents —N (R 10 ) R 11 , and R 9 , R 1Q , and R 11 have a substituent. And represents an alkyl group, alkenyl group, aralkyl group, or aryl group having 1 to 20 carbon atoms. However, R 1Q and R 11 may combine to form a ring. * Indicates an asymmetric carbon atom. )
  • an alkyl group having 1 to 20 carbon atoms an alkenyl group having 2 to 20 carbon atoms, preferably an aralkyl group having 7 to 20 carbon atoms, and preferably an aryl group having 6 to 20 carbon atoms in R 9 , 10 and R 11 .
  • the specific group of is the same as that described for R 6 described in (IV-2) above.
  • R 9 an alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is particularly preferable.
  • R 1Q and R 11 an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms is preferable, and among them, it is preferable that R 1Q and R 11 are bonded to form a ring.
  • it is particularly preferably an N-alkylbenzyl group which may have a substituent, a pyrrolidyl group, a biperidyl group, a dihydroisoindolyl group, or a tetrahydridoisoquinolyl group.
  • optically active pyridines and optically active pyrroles are not particularly limited.
  • optically active pyridines and optically active pyrroles are not particularly limited.
  • R 12 represents an aryl group having 6 to 10 carbon atoms which may have a substituent, and * represents an asymmetric carbon atom.
  • R 13 , R 14 , R 15 , and R 16 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a substituent or an aryl group, and R 17 and R 18 represent It represents an alkyl group having 1 to 10 carbon atoms which may have a substituent, or R 17 and R 18 may combine to form a ring.
  • R 13 , R ′′, and R 15 are preferably a methyl group, an ethyl group, a t-butyl group, a phenyl group, and the like, and R 16 is a methyl group, R 17 and R 18 are preferably a methyl group, an ethyl group, or a group in which R 17 and R 18 are bonded to form a bi-open lysine ring.
  • optically active peptides can be used, and examples thereof include an optically active tetrapeptide derivative represented by the following general formula (29).
  • Examples of the amino acid residue represented by Z and represented by a peptide bond include racemic or optically active forms such as phenylalanine, norin, and glycine.
  • optically active nucleophilic catalysts optically active 1,2-diamines are preferred from the viewpoints of reaction rate, raw material cost, and stereoselectivity. Optics used in this reaction
  • the amount of the active nucleophilic catalyst is 0.001 to 1.0 to 1.0 with respect to the racemic 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It is preferably used in a molar amount of 5 times, especially 0.0001 to 1.0 times.
  • carboxylic acid derivatives include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, caproic anhydride, chloroacetic anhydride, benzoic anhydride, and benzoic anhydride.
  • benzoic acid derivatives are preferable, and among them, benzoic acid chloride, toluic acid chloride, dimethyl benzoic acid chloride, chloro benzoic acid chloride, dichlorobenzoic acid chloride, benzoic acid promide, Preferred are toluic acid bromide, dimethylbenzoic acid promide, black benzoic acid promide, dichlorobenzoic acid bromide, etc., especially benzoic acid chloride, toluic acid chloride, dimethyl benzoic acid chloride, and black benzoic acid. Acid chloride, dichlorobenzoic acid chloride and the like are preferred.
  • the amount of the carboxylic acid derivative to be used may be usually 0.01 to 1.0 mole times the amount of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It may be appropriately selected depending on the stereoselectivity of the reaction. That is, the optically active substance formed without reacting with the carboxylic acid derivative represented by the general formula (16) or (17) (that is, the optically active substance 1, 2— represented by the general formula (20)) When it is desired to obtain disubstituted 1,2,3-dihydroxypropanes with high optical purity, the amount of the carboxylic acid derivative to be charged may be increased to increase the conversion of the reaction.
  • the amount of the carboxylic acid derivative to be charged is reduced to lower the conversion of the reaction, and the optically active 1,2-disubstituted 1-2-hydroxyl represented by the aforementioned general formula (24), which is a reaction product, is obtained.
  • 3-Acyloxypropanes can also be obtained with high optical purity.
  • the reaction may be appropriately performed using a solvent.
  • Solvents used include halogenated solvents such as dichloromethane, chloroform, dichloroethane, and benzene, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, n-hexane, n-heptane, and isooctane.
  • Aliphatic solvents such as methyl acetate, ethyl acetate, etc., ketone solvents such as acetone, methyl ethyl ketone, methyl isopropyl ketone, geethyl ether, diisopropyl ether, tetrahydrofuran, diglyme, diethylene glycol jet Ether solvents such as toluene ether, nitrile solvents such as acetonitrile, propionitrile and ptyronitrile, tertiary alcohols such as t-butanol and t-amyl alcohol, dimethylformamide, dimethylacetamide Amide solvents such as N, N-methylpyrrolidone and N, N-dimethylimidazolinone; nitroalkanes such as nitromethane, nitrethane and nitropropane; and sulfoxides such as dimethylsulfoxide.
  • ketone solvents such as ace
  • halogen-based solvents ether-based solvents, ketone-based solvents, nitrile-based solvents, ester-based solvents, amide-based solvents, and nitroalkanes are preferred, and particularly ketone-based solvents, nitrile-based solvents, amide-based solvents, and the like. Nitroalcohols are preferred.
  • the reaction when tertiary amines or pyridine bases are used as bases described below, the reaction may be carried out using these as solvents.
  • the solvent is used in an amount of 0 to 100 times, especially 0 to 50 times the weight of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). Is preferred.
  • achiral base any one can be used.
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, N, N-dimethylaniline, N, N-jetylaniline, pyridine, 2 -Bicolin, 3-picoline, 4-bicholine, 2,6-lutidine, 2,4,6-collidine, 2-cyclopyridine, 4-pyridine pyridine, cesium carbonate, potassium carbonate, sodium carbonate
  • inorganic bases such as sodium hydrogencarbonate, lithium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, and the like.
  • tertiary amines or inorganic bases are used, and more preferably, inorganic bases are used.
  • a base is used, high stereoselectivity is obtained.
  • the amount of the optically active nucleophilic catalyst used is based on the amount of the 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (10). It is preferably used in a molar amount of 0.0001 to 0.2, particularly preferably in a molar amount of 0.001 to 0.1.
  • the amount of the achiral base to be used is usually 0.01 to 1.0 mole times the amount of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It may be appropriately selected depending on the stereoselectivity of the reaction. That is, the optically active substance formed without reacting with the carboxylic acid derivative represented by the general formula (16) or (17) (that is, the optically active substance 1,2— represented by the general formula (20)) When it is desired to obtain disubstituted-2,3-dihydroxypropanes with high optical purity, the conversion of the reaction can be increased by increasing the amount of base added.
  • the amount of the base to be charged is reduced to lower the conversion of the reaction, and the optically active 1,2-disubstituted-2-hydroxy-13-acyloxy represented by the above-mentioned general formula (24), which is the reaction product, is obtained.
  • Propanes can be obtained with high optical purity.
  • This reaction is preferably performed at a low temperature in order to obtain high stereoselectivity.
  • this reaction is a production method that can obtain high stereoselectivity in an industrially preferable temperature range and is industrially low cost.
  • the temperature is preferably ⁇ 150 to 100 ° C., and especially ⁇ 100 to 50 ° C. What to do with preferable.
  • an inorganic base is used as the achiral base, it is preferably carried out at a temperature of from 150 to 100 ° C, especially from a temperature of from 110 to 50 ° C.
  • zeolite an inorganic porous substance such as zeolite (hereinafter collectively referred to as "zeolite") because the reaction yield can be improved.
  • zeolite any inorganic porous substance such as zeolite can be used.
  • a zeolite having a pore diameter of 1 A or more, particularly 3 A or more is preferable.
  • a molecular sieve 4A manufactured by Linde
  • the zeolite coexisting in the reaction system may be in any form such as a powder or a pellet, but is preferably in the form of a powder.
  • Zeolite may be used in an amount of 1% by weight or more based on the weight of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10), which is a reaction raw material. It may be used in an amount of about 5 to 100% by weight.
  • optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) can also be produced according to the following production route (3).
  • the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (20) is prepared by the production method of the above (IV-5).
  • optically active 1,2-disubstituted-2-hydroxy-3-acyloxypropanes represented by the general formula (24), which is an enantiomer thereof is prepared in this reaction 2, as described above.
  • an optically active nucleophilic catalyst is used in this reaction 2, as described above.
  • the compound represented by the general formula (18) can be produced according to the reactions (1) and (3) of the production route (1) described in (IV-4-1), and the effect is the same. is there.
  • the compounds represented by the general formulas (6), (7), (10), (12), (13), (14), (19), (20) and (24) Is intended to include such ring-structured compounds, and can be used in the method for purifying optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the following general formula (6). The same shall apply.
  • C Optically active organic compounds can be broadly classified into a) Optically enantiomeric optical isomers grow and crystallize in pairs (those having such properties are hereinafter referred to as “racemic compounds”) and b) — optical isomers It is known that there is a property that only the body grows and crystallizes (a substance having such a property is hereinafter referred to as a “racemic mixture”).
  • a method of increasing the purity of a solution containing a solute to be crystallized has been adopted.
  • a crystal having a low optical purity such as a racemic crystal is precipitated, removed, and filtered.
  • a crystal of high optical purity was obtained.
  • 1,2-disubstituted 1,2,3-epoxypropanes are excellent pesticidal active ingredients that exhibit excellent herbicidal effects, and this compound may have an asymmetric carbon in some cases.
  • various methods for producing 1,2-disubstituted 1,2,3-epoxypropanes For example, 1,2-disubstituted 1,2,3-dihydroxypropanes are used as intermediate materials and are cyclized. There is a method of manufacturing. In this production method, improving the optical purity of 1,2-disubstituted-2,3-dihydroxypropanes is important for obtaining 1,2-disubstituted-2,3-epoxypropanes having high optical purity. What is important in this case is as described above.
  • Resolving agents are generally unsatisfactory as an industrial production method because they are generally expensive and have slow processing speeds.
  • a racemic compound is chemically modified, a derivative having the property of a racemic mixture is once separated by crystallizing the optical isomer of this derivative, and then the chemical modification is removed.
  • a method for obtaining an optically active substance of a target substance with high optical purity by the step of (1) is known.
  • this method also requires a large number of steps, and there is still a problem in that it is industrially inexpensive and easy to manufacture.
  • the present inventors have studied the optical intermediates 1, 2 2-disubstituted 2,3-dihydroxypropanes were studied simplistically and without using an expensive optical resolving agent, etc., in order to obtain high optical purity in a small number of steps.
  • a mixture of optical isomers of 1,2-disubstituted 1,2,3-dihydroxypropanes having a specific structure is crystallized using an aromatic compound which may have a substituent as a solvent.
  • the solvate obtained is a novel compound, and the 1,2-disubstituted-2,3-epoxypropane, which is the active ingredient of the herbicide, can be produced with high optical purity by using this solvate crystal. I can do it.
  • the preferable compounds described in the above (I) as the compounds represented by the general formula (13) are preferable, and in particular, (1) 12- [2- (3-chlorophenol) ) 1,2,3-dihydroxypropyl] 1,2-ethyl On is preferred.
  • aromatic compound which may have a substituent
  • any compound may be used as long as it exhibits aromaticity.
  • aromatic compound any compound may be used as long as it exhibits aromaticity.
  • Ar represents a phenyl group
  • A is an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, and an alkyl group having 2 to 5 carbon atoms.
  • n represents an integer of 0 to 6, and when there are a plurality of substituents, the substituents may be bonded to each other to form a ring
  • the benzene compounds represented by the following formulas are preferred.
  • Examples of ⁇ ′ include an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, an ⁇ -propyl group, an i-propyl group, an n-butyl group, a pentyl group; a methoxy group, an ethoxy group, an n- C1-C5 alkoxy groups such as propoxy, i-propoxy and n-butoxy; C2-C5 alkenyl such as vinyl and aryl; C2-carbon such as ethynyl and propargyl; An alkynyl group of 5 to 5; a haloalkyl group having 1 to 5 carbon atoms such as a chloromethyl group, a dichloromethyl group, a trifluoromethyl group, a fluoroethyl group; a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom; An alkyl group having 1 to
  • aromatic compound which may have a substituent examples include benzene, toluene, 0-xylene, m-xylene, p-xylene, ethylbenzene, isopropylbenzene, tetralin, cyclobenzene, dichlorobenzene, bromobenzene, Styrene, anisol, etc., among which benzene, toluene, 0-xylene, m-xylene, and benzene are particularly preferred.
  • 0-xylene, m-xylene, and benzene are particularly high in optical purity and stable. It is preferable because it becomes a solvate.
  • the solvate consists of optically active 1,2-disubstituted-2,3-dihydroxypropanes and aromatic compounds, and the ratio of both is 2: 1 to obtain high optical purity crystals.
  • hydrogen-bonded 1,2- The crystal is formed by stacking two molecules of 2,3-dihydroxypropanes and one molecule of an aromatic compound.
  • the compound represented by the above-mentioned general formula (13) has a B (aryl group) and an aromatic compound. It is considered that the compound forms some bond. In the present invention, even if such an apparent bond is not formed, it is referred to as a solvate.
  • the solvate of the present invention contains 1,2-disubstituted-2,3-dihydroxypropanes having high optical purity, specifically, 80% ee or more.
  • the compound in which A is a group having an indandione structure represented by the general formula (2) is in equilibrium with the ⁇ structural compound which has become a hemikeru.
  • the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (13) has the same ring structure. It also includes a compound or a mixture thereof.
  • the optical isomer mixture of 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the general formula (13) used in this production method (hereinafter sometimes simply referred to as an optical isomer mixture) is , D-isomer and L-isomer. It is a mixture of two optical isomers, and the mixing ratio of each optical isomer is arbitrary. Preferably, the content of the desired optical isomer is higher. For example, the optical purity is preferably 60% ee or more.
  • the aromatic compound used in this production method is the same as the aromatic compound constituting the solvate, and the preferred compounds are also the same. It is preferable to use the aromatic compound in an amount of 0.5 mol times or more, preferably 0.7 to 30 mol times, of the 1,2-disubstituted-2,3-dihydroxypropane.
  • a mixture of optical isomers of 1,2-disubstituted 1,2,3-dihydroxypropanes is taken out as a crystal, dissolved in an aromatic compound, and cooled to obtain a high optical
  • An aromatic compound may be used as a solvent for producing a solvate having a high purity or for synthesizing 1,2-disubstituted 1,2,3-dihydroxypropanes.
  • the 1,2-disubstituted 1,2,3-dihydroxypropanes can be highly luminous.
  • a solvate of chemical purity may be produced.
  • a solvate may be produced using a mixed solvent with a solvent other than the aromatic compound.
  • the solvent to be used in addition to the aromatic compound getyl ether, diisopropyl ether, dibutyl ether , Ether solvents such as tetrahydrofuran, aliphatic hydrocarbon solvents such as hexane, heptane, octane and isooctane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; And nitriles such as acetonitrile, propionitrile and butyronitrile, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and the like.
  • aliphatic hydrocarbon solvents such as hexane, heptane, octane and isooctane are preferred.
  • the amount of the solvent to be used is preferably an amount capable of completely dissolving the optical isomer mixture, and more specifically, 0 to 100 times, preferably 0 to 50 times the weight of the optical isomer mixture.
  • the temperature at which the optical isomer mixture is completely dissolved in the aromatic compound-containing solvent may be generally set at a temperature in the range of 0 ° C. to the boiling point of the mixture or lower, but from the viewpoint of solvate yield,
  • the dissolution is preferably performed at room temperature or higher, more preferably 30 ° C or higher, and particularly preferably 60 ° C or higher.
  • the cooling rate of the optical isomer mixture solution is usually 1 to 50 ° C per hour, preferably 3 to 20 ° C.
  • the cooling rate does not need to be constant, and may be changed continuously or stepwise.
  • the temperature at which the solution reaches by cooling may be appropriately set, but is usually from 130 to 30 ° C, preferably from —10 to 30 ° C, and more preferably from 0 to 30 ° C. ° C.
  • the obtained solvate contains 1,2-disubstituted_2,3-dihydroxypropanes having high optical purity, specifically, 80% ee or more.
  • Dissolve in an alcoholic system such as acetic acid and cyclize through reactions such as decomposition with percarboxylic acid or persolvent to give 1,2-disubstituted 2,3-epoxypropane, a herbicide component, with high optical purity. Can be easily obtained.
  • an alcoholic system such as acetic acid
  • percarboxylic acid or persolvent to give 1,2-disubstituted 2,3-epoxypropane, a herbicide component, with high optical purity. Can be easily obtained.
  • the present invention will be described in detail with reference to Examples, Formulation Examples and Test Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.
  • the analysis conditions used in the examples are as follows.
  • reaction mixture was analyzed by high performance liquid chromatography (column: Inertsil 0DS 2, elution solvent: solvent: water (70:30), flow rate: 0.6 ml / min, detection: 22 Onm), and 2-[2-( 3-chlorophenyl) -2-propene] -2-ethylindan-1,3-dione conversion is 94%.
  • reaction mixture was analyzed by high performance liquid chromatography (column: Inertsil 0DS2, elution solvent: solvent: water (70:30), flow rate 0.6 mL / min, detection 220 nm).
  • solvent solvent: water (70:30)
  • flow rate 0.6 mL / min, detection 220 nm.
  • [2- (3-chlorophenyl) -1,2,3-dihydroxylpropyl] 2-ethylindan-1,1,3-dione was produced in a yield of 14%.
  • Add sodium sulfite, extract with dichloromethane wash the organic layer with aqueous sulfuric acid, aqueous sodium bicarbonate, and brine, dry over anhydrous sodium sulfate, concentrate, and separate the residue by silica gel column chromatography.
  • Example 4 The reaction was carried out in the same manner as in Example 4 except that the enzyme (100 mg) shown in Table 15 was used instead of 100 m of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) used in Example 4. After completion of the reaction, the enzyme was separated by filtration, and the filtrate was analyzed by high performance liquid chromatography. The results are shown in Table 1-5.
  • Esters shown in Table 6 in place of 1.0 ml of vinyl acetate used in Example 14 The reaction was carried out in the same manner as in Example 14 using 1.0 ml of the enzyme. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography to obtain the results shown in Table 6.
  • Example 26 ⁇ Optical Resolution of Compound No. ( ⁇ ) -1 (15) to (19)>
  • Example 25 was repeated except that 1.0 ml of the solvent shown in Table 17 was used instead of 1.0 ml of diisopropyl ether. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography to obtain the results shown in Table 17.
  • Example 41 Synthesis of Compound No. (-)-14> 387 mg of compound No. (-)-l (optical purity> 99 ee) was dissolved in 8.0 ml of pyridine, and 186 mg of methanesulfonyl chloride was added dropwise under ice cooling. After completion of the dropwise addition, the reaction was carried out at room temperature for 1 hour.Ethyl acetate was added, and the mixture was washed with water, 10% hydrochloric acid, water, and saturated saline in that order, and concentrated.Compound No. (-)-14 (473 mg, Yield 100%, optical purity> 993 ⁇ 4ee, yellow liquid).
  • Example 45 Synthesis of Compound No. (-)-1>
  • Compound No., ( ⁇ ) -1 was dissolved in 160 g of vinyl acetate in 160 g, and Lipase R 160 g was added to this solution, followed by stirring at 30 ° C. for 2 days. After completion of the reaction, the enzyme was filtered off, and the filtrate was washed successively with saturated aqueous sodium hydrogen carbonate, water and saturated saline. After evaporating the solvent under reduced pressure, toluene 1601111 and 480 ml of 1-hexane were added to the concentrate, and the mixture was ice-cooled.
  • (+) -7 OH -OCOCH 2 CH (CH 3 ) 2
  • Example 51 Optical Resolution of Compound No. ( ⁇ ) -3> 2- (2- (3-chlorophenyl) 1-2-hydroxy-3-propionyloxyprovir) -2-ethylindan-1,3-dione (Compound No. ( ⁇ ) -3) except using 10 Omg Was reacted in the same manner as in Example 50. After completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography. The result was (-) 1-2-[2--(3- Methyl phenyl) 1-2-hydroxy-13-propionyloxypropyl] 1-2-ethylindane-1,3-dione (Compound No.
  • (+)-1 Yield 6%, optical purity 97% ee.
  • the organic layer was concentrated, and Compound No. (-)-7 was separated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain Compound No. (-)-1 (optical purity 6% ee).
  • a reaction vessel is charged with 500 mg of compound No. ( ⁇ ) -4, 50 mg of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.), 1.0 ml of diisopropyl ether, and 2.5 ml of a phosphate buffer solution (pH 7.2). The mixture was stirred at room temperature for 24 hours. After completion of the reaction, the reaction mixture was extracted with ethyl acetate, and the organic layer was analyzed by high-performance liquid chromatography.
  • Butyric acid chloride (35.2 g) was added dropwise to a solution consisting of 107.6 g of compound No. ( ⁇ ) -1 (107.6 g), 36.4 g of triethylamine, and 30 Oml of tetrahydrofuran under ice-cooling. After completion, the mixture was stirred at room temperature for 1 hour. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline, and dried over anhydrous sodium sulfate. The sodium sulfate was filtered off and concentrated to obtain Compound No. ( ⁇ ) -4 (129.1 g, colorless liquid).
  • Table 19 shows the results of Examples 70 to 74.
  • Example 77 The reaction was carried out in the same manner as in Example 77 using the solvents shown in Table 1-10. The obtained results are shown in Table 1 along with Example 77.
  • Compound No. (-)-1 was dissolved by heating 5.0 g (81% ee, chemical purity 86%, toluene 8%) and toluene 20 ml to 70 ° C, and then cooled to 0 ° C. . The precipitated crystals were filtered and dried to obtain 4.1 g (85% e e) of solvated crystals of the compound No. (-)-1.
  • Crystallization was carried out in the same manner as in Example 100 except that 20 ml of the solvent shown in Table 11 was used instead of 20 ml of toluene, and cooling was performed to the temperature shown in Table 11 and the results shown in Table 11 were obtained. Obtained.
  • the solvate crystals obtained here contained no other impurities than 5 to 15% by weight of the aromatic compounds shown in Table 11.
  • Example 100 to 106 described above the obtained crystals were analyzed by single-crystal X-ray analysis to confirm that they were solvates.
  • the crystal of a solvate with 0-xylene obtained in Example 104 was analyzed, and as a result, the ratio of the compound No. (-)-1 to 0-xylene was 2: 1.
  • the NMR data and melting point of this crystal are shown.
  • (+)-1 (optical purity 82% ee) were formed.
  • 30 g of pyridine was added to the benzene solution of the mouth, and 30 g of methanesulfonyl chloride was added dropwise under ice cooling. After the completion of the dropwise addition, the mixture was reacted at room temperature for 24 hours, washed with water and aqueous hydrochloric acid, and the organic layer was analyzed by high performance liquid chromatography.
  • Compound No. (-)-4 (optical purity 82% ee )
  • (+)-14 (optical purity 82% ee).
  • Compound No. ( ⁇ ) -16 was treated with a mixture of 102 g (0.30 Omo 1), benzene (600 g) and water (81.1 g (4.50 mol)) at 50 ° C in a mixture of 207 g of formic acid (4.5 Omo 1) was added dropwise. After completion of the dropwise addition, the mixture was reacted at 50 ° C. for 2 hours. Then, 768 g (4.8 Omo 1) of a 25% aqueous sodium hydroxide solution was added, and the mixture was reacted at 50 for 1 hour. After the reaction, the organic layer was separated and washed with brine and water.
  • Example 110 except that (-)-2-(N-benzyl-1-N-methylaminomethyl) -11-methylbirolidine (5.0 mol%) was replaced by optically active diamines (5.0 mol%) shown in Table 12.
  • the reaction was carried out in the same manner as described above.
  • Table 12 shows the results. From the results in Table 12, it can be seen that any of the optically active diamines can be optically resolved.
  • any of the achiral bases can be optically resolved. It can be seen that the resolving efficiency is lower when pyridine is used than when triethylamine is used, and is improved when an inorganic base is used. Among the bases, it can be seen that sodium carbonate and sodium hydrogen carbonate exhibit particularly high resolution.
  • Example 129-135 In the same manner as in Example 11 except that benzoyl chloride (75 mol%) was replaced with the acylating agent (75 mol%) shown in Table 15 and the achiral base, reaction solvent and reaction temperature shown in Table 15 were used. The reaction was performed. The results are shown in Table 15.
  • Example 11 The reaction was carried out in the same manner as in Example 110, except that the amount of diamine used was changed to the amount shown in Table 16 and the achiral base shown in Table 16 and the reaction temperature were used. The results are shown in Table 16. From the results in Table 16, it can be seen that even if the amount of optically active diamines used is reduced, the separation efficiency does not decrease.
  • an optical isomer mixture of the present invention compound No. (-)-16 has an optical purity of 99% ee; the same applies to the following production examples
  • Carplex # 80 Shinogi Pharmaceutical Co., Ltd. 20 parts, N, N-kaolin clay (trade name, manufactured by Tsuchiya Kaolin Co., Ltd.) 35 parts, higher alcohol sulfate ester surfactant Solpol 800,700 (Toho Chemical Co., Ltd.) (Trade name) was mixed and homogenously mixed and pulverized to obtain a wettable powder containing 40% of the active ingredient.
  • 1 part of the optical isomer mixture of the present invention 45 parts of clay (manufactured by Nippon Talc), 52 parts of bentonite (manufactured by Toyoko Yoko Co., Ltd.) 52 parts of succinate surfactant Jarol CT-1 (Toho Chemical Co., Ltd.) was mixed and ground, and then kneaded with 20 parts of water. Further, this was extruded from a hole having a diameter of 0.6 mm using an extruder and dried at 60 ° C for 2 hours. By cutting to a length of 1 to 2 mm, granules containing 1% of the active ingredient were obtained.
  • the optical isomer mixture of the present invention is dissolved in a mixed solvent consisting of 30 parts, 30 parts of xylene, and 25 parts of dimethylformamide, and the resulting solution is mixed with a polyoxyethylene surfactant, Solpol 300 X ( An emulsion containing 30% of the active ingredient was obtained by adding 15 parts of Toho Chemical Co., Ltd. (trade name).
  • optical isomer mixture of the present invention 30 parts of the optical isomer mixture of the present invention, 8 parts of ethylene glycol preliminarily mixed, 5 parts of Solpol AC3032 (trade name, manufactured by Toho Chemical Co., Ltd.), 0.1 part of xantholangum, The mixture was well mixed and dispersed in 56.9 parts of water. Next, this slurry-like mixture was wet-milled using a Dino-mill (manufactured by Shinmaru Enterprises) to obtain a stable flowable agent containing 30% of the active ingredient.
  • Dino-mill manufactured by Shinmaru Enterprises
  • Test example 1 Upland soil treatment test
  • a field of 200 cm 2 resin batter is filled with upland volcanic ash soil and fertilized.
  • the soil containing uniformly mixed seeds of P. brassicae, Enokologza, Suzumeoka-bira and Suzumetsubo was put on the soil surface, and the herbicide (wettable powder) of the present invention obtained in Formulation Example 1 was diluted with water and adjusted.
  • the quantitation was processed uniformly with a small power pressurized sprayer.
  • the dose of the above-mentioned weeds showing 90% inhibition (the dose of the active ingredient: g / ha) was calculated, and the results are shown in Table 17. (That is, 90% inhibition means that the living body weight of the above-ground weeds in the pesticide-treated area is 10% of that in the untreated area.)
  • Comparative agent A 348.4 374.0 417.8 354.8 Comparative agent B 275.8 456.9 538: 8 1984.3 Comparative agent C 319.0 196.7 422.3 761.7 Comparative agent A: Compound (Sat)-16
  • Comparative agent B Alachl or
  • the herbicide of the present invention has an excellent herbicidal activity at a remarkably low dose in comparison with a comparative example which is a broad spectrum and conventionally known herbicide for soil treatment. It is clear that
  • the herbicidal effect of the pesticide of the present invention was tested in the same manner as in Test Example 1 except that the optical purity (% ee) and the amount of the pesticide of the present invention were changed as shown in Table 18.
  • the herbicidal effect coefficient Y was calculated by the following formula, and this was used as an 11-level evaluation, and the average of the three points of the evaluation results was used. The results are shown in Table 18.
  • the herbicide containing the optical isomer mixture of the present invention as an active ingredient has a wide range of herbicidal spectrum and exhibits excellent herbicidal effect at a low dose. This is because the content of a specific optical isomer with respect to a racemate is set to a specific level or more (at least 40% ee), thereby improving water solubility and exhibiting an excellent effect as a soil treatment agent for upland fields. is there. Industrial applicability
  • optically isomeric mixture of the optically active 1,2-disubstituted 1,2,3-epoxypropanes and their optical enantiomers of the present invention exhibits excellent herbicidal activity, as shown in the above Test Examples, In addition, since the water solubility is remarkably improved, it is useful because it shows an excellent herbicidal effect especially in soil treatment.
  • the production method of the present invention is excellent in that the target compound can be produced industrially at low cost and with simple steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

Optical isomer mixtures of optically active 1,2-disubstituted-2,3-epoxypropanes represented by general formula (1) with optical antipodes thereof show an excellent herbicidal activity and a considerably improved solubility in water, thereby showing a remarkable herbicidal effect particularly in soil treatment. In formula (1) A represents a group of general formula (2) (wherein R1 represents hydrogen, lower alkyl, alkenyl or alkynyl; Q represents halogeno, C¿1-3? alkyl, C1-3 haloalkyl, C1-5 alkoxy, nitro or cyano; and n is an integer of 0 to 4); or a group of general formula (3): CX?13(CX22)¿p- (wherein X?1 and X2¿ independently represent each halogeno or hydrogen; and p is 0 to 2); and B represents optionally substituted aryl.

Description

明 細 書  Specification
1 , 2—二置換- 2, 3—エポキシプロパン類の光学異性術昆^/とその I ^法及びこ れを有効成分とする M¾、 並びに中間体 技術分野 Optical isomerism of 1,2-disubstituted-2,3-epoxypropanes, its I ^ method, its active ingredient M¾, and intermediates
本発明は新規な光学異性体混合物、 その製造法、 及びこれを有効成分とする除 草剤、 並びに製造中間体とその製造方法に存し、 具体的には、 光学活性 1 , 2— 二置換一 2, 3—エポキシプロパン類の光学異性体混合物とその製造方法及びこ れを有効成分とする除草剤、 並びに製造中間体とその製造法に存する。 背景技術  The present invention resides in a novel optical isomer mixture, a method for producing the same, a herbicide containing the same as an active ingredient, and a production intermediate and a method for producing the same. Specifically, the present invention relates to an optically active 1,2-disubstituted compound. (I) An optical isomer mixture of 2,3-epoxypropanes, a method for producing the same, a herbicide containing the mixture as an active ingredient, a production intermediate, and a method for producing the same. Background art
従来より、 重要な作物、 例えば、 イネ、 ムギ、 トウモロコシ等の栽培において、 多くの農薬、 例えば除草剤が使用されている。 除草剤に望まれる性能としては、 低薬量で高い除草活性を有すること、 広い殺草スペクトラムを有すること、 適度 な残効性を有すること、 および作物に対して十分な安全性を有すること等が挙げ られる。 既存の除草剤の多くは、 これらの諸条件を十分に満たしているとは言え ず、 特に、 近年、 環境問題から低薬量で有効な除草剤が望まれている。  Conventionally, many pesticides, such as herbicides, have been used in the cultivation of important crops, such as rice, wheat, and corn. Desirable properties of herbicides include high herbicidal activity at a low dose, broad herbicidal spectrum, adequate residual efficacy, and sufficient safety for crops. Are mentioned. Many of the existing herbicides cannot be said to satisfy these conditions sufficiently. In particular, in recent years, effective herbicides at low doses have been desired due to environmental problems.
一方、 特開平 2— 3 0 4 0 4 3号公報には、 ある種の置換基を有する 1, 2— 二置換一 2, 3—エポキシプロパン類が除草活性を有することが開示されている。 しかし、 これらの化合物は水溶性 (浸透移行性) が低いので、 除草剤としての適 用場面が水田用等に限られている。 また当該特許公報記載の 1, 2—二置換一 2, 3—エポキシプロパン類には、 その構造に不斉炭素原子を有するので、 光学異性 体の存在が予測されるものの、 当該特許公報には光学異性体の除草活性や製造法 に関して何ら具体的な記載はない。  On the other hand, Japanese Patent Application Laid-Open No. 2-30443 discloses that 1,2-disubstituted 1,2,3-epoxypropanes having a certain substituent have herbicidal activity. However, these compounds have low water solubility (systemic transferability), so their application as herbicides is limited to paddy fields. Also, although the 1,2-disubstituted 1,2,3-epoxypropanes described in the patent publication have an asymmetric carbon atom in their structure, the existence of optical isomers is expected, but the patent publication discloses There is no specific description on the herbicidal activity of the optical isomer or the production method.
本発明は、 かかる状況に鑑みてなされたものであり、 低薬量で高い活性を示す 農薬の有効成分の提供、 およびその製造方法を提供することにある。 具体的には、 例えば低薬量で高殺草活性、 広殺草スぺクトル等の性質を有する優れた除草剤の 有効成分の提供と、 安価で工業的製造法に適した、 該有効成分の製造法を提供す ることにある, 発明の開示 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an active ingredient of a pesticide having high activity at a low dose and to provide a method for producing the same. Specifically, for example, the present invention provides an active ingredient of an excellent herbicide having properties such as a high herbicidal activity and a broad herbicidal spectrum at a low dose and an inexpensive active ingredient suitable for an industrial production method. Provide a manufacturing method for Disclosure of the invention
本発明者らは鋭意検討を重ねた結果、 特定の置換基を有する光学活性 1 , 2— 二置換一 2, 3—エポキシプロパン類とその光学対掌体との光学異性体混合物に おいて、 特定の片方の光学異性体を特定割合以上含有した光学異性体混合物が、 対応するラセミ体よりも遥かに高い除草活性を示し、 且つラセミ体ではその浸透 移行性が低いため効果を奏することが困難であった、 畑地用の土壌処理用除草剤 としても使用可能であり、 且つ卓越した効果を示すことを見出し、 本発明を完成 させた。  As a result of intensive studies, the present inventors have found that, in an optical isomer mixture of an optically active 1,2-disubstituted 1,2,3-epoxypropane having a specific substituent and its optical enantiomer, An optical isomer mixture containing a specific optical isomer in a specific ratio or more shows much higher herbicidal activity than the corresponding racemic form, and the racemic form has a low permeation / translocation property, so it is difficult to produce an effect. The present inventors have found that they can also be used as herbicides for soil treatment for upland fields, and that they show excellent effects, and have completed the present invention.
更には、 この光学異性体混合物の製造法に関して、 並びにその製造中間体にお いて、 安価であり工業的に適した製造法をも見出し、 本発明を完成させた。  Further, the present inventors have found a method for producing this optical isomer mixture, and an intermediate for the production thereof, which is inexpensive and industrially suitable, and have completed the present invention.
すなわち本発明は、 下記一般式 ( 1 ) で表される光学活性 1 , 2—二置換— 2, 3—エポキシプロパン類とその光学対掌体との光学異性体混合物、 その製造法、 及びこれを有効成分とする除草剤、 並びに製造中間体とその製造法に存する。  That is, the present invention provides an optical isomer mixture of an optically active 1,2-disubstituted-2,3-epoxypropane represented by the following general formula (1) and its optical antipode, a process for producing the same, A herbicide, a production intermediate and a production method thereof.
0、 0,
( 1 )  (1)
B  B
{式中、 Aは下記一般式 (2 )
Figure imgf000004_0001
{Where A is the following general formula (2)
Figure imgf000004_0001
(式中、 R 1は水素原子または低級アルキル基、 アルケニル基、 アルキニル基を 示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基、 炭素数 1〜3のハロアル キル基、 炭素数 1〜5のアルコキシ基、 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示す。 ) で表される基又は、 下記一般式 (3 ) (In the formula, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, or an alkynyl group; Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, or a carbon atom having 1 to 3 carbon atoms. Represents an alkoxy group, a nitro group or a cyano group of 5. n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
C X C X 2 ' p ( 3 ) (式中、 X 1、 X 2はそれぞれ独立にハロゲン原子又は水素原子を示す。 pは 0〜 2を示す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を 示す。 } 。 発明を実施するための最良の形態 CXCX 2 'p (3) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom. P represents 0 to 2.), and B represents an aryl which may have a substituent. Represents a group. }. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
( I ) 光学異性体混合物  (I) optical isomer mixture
本発明の光学異性体混合物における光学活性 1, 2—二置換— 2 , 3 —ェポキ シプロパン類は、 前記一般式 ( 1 ) で表されるものである。  The optically active 1,2-disubstituted-2,3-epoxypropanes in the optical isomer mixture of the present invention are represented by the general formula (1).
前記一般式 ( 1 ) において、 Aは一般式 (2 ) または (3 ) で表される基であ る。 一般式 (2 ) において、 R 1は、 水素原子;メチル基、 ェチル基、 n—プロ ビル基、 i—プロピル基、 n—ブチル基等の低級アルキル基; ビニル基、 ァリル 基等のアルケニル基;ェチニル基、 プロパルギル基等のアルキニル基を示す。 In the general formula (1), A is a group represented by the general formula (2) or (3). In the general formula (2), R 1 is a hydrogen atom; a lower alkyl group such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group; an alkenyl group such as a vinyl group or an aryl group. An alkynyl group such as an ethynyl group and a propargyl group;
Qは塩素原子、 臭素原子、 フッ素原子などのハロゲン原子;メチル基、 ェチル 基、 n—プロピル基、 i —プロピル基等の炭素数 1〜3のアルキル基; クロロメ チル基、 ジクロロメチル基、 トリフルォロメチル基、 フルォロェチル基等の炭素 数 1 ~ 3のハロアルキル基;メ トキシ基、 ェトキシ基等の炭素数 1 ~ 5のアルコ キシ基;ニトロ基; またはシァノ基を示し、 nは 0〜4の整数を示す。  Q is a halogen atom such as a chlorine atom, a bromine atom, and a fluorine atom; an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; a chloromethyl group, a dichloromethyl group, and a trifluoromethyl group A haloalkyl group having 1 to 3 carbon atoms such as a fluoromethyl group or a fluoroethyl group; an alkoxy group having 1 to 5 carbon atoms such as a methoxy group or an ethoxy group; a nitro group; or a cyano group; Indicates an integer.
一般式 (3 ) において X 1、 X 2は水素原子又は塩素原子、 臭素原子、 フッ素原 子等のハロゲン原子を示し、 pは 0〜2の整数を示す。 In the general formula (3), X 1 and X 2 represent a hydrogen atom or a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, and p represents an integer of 0 to 2.
一般式 ( 1 ) における Bとしては、 塩素原子、 フッ素原子、 臭素原子等のハロ ゲン原子;メチル基、 ェチル基、 n—プロピル基、 i—プロピル基、 n—ブチル 基等の炭素数 1〜 4のアルキル基; クロロメチル基、 ジクロロメチル基、 トリフ ルォロメチル基、 フルォロェチル基等の炭素数 1〜 3のハロアルキル基;メ トキ シ基、 エトキシ基、 クロロメ トキシ基、 フルォロエトキシ基等のハロゲン原子で 置換されていてもよいアルコキシル基;二ト口基、 シァノ基等で置換されていて もよいフエニル基、 ピリジル基等のァリール基等が挙げられる。  In the general formula (1), B represents a halogen atom such as a chlorine atom, a fluorine atom or a bromine atom; a carbon atom having a carbon number of 1 to 1 such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group and an n-butyl group. 4 alkyl groups; haloalkyl groups having 1 to 3 carbon atoms such as chloromethyl group, dichloromethyl group, trifluoromethyl group, and fluoroethyl group; substituted with halogen atoms such as methoxy group, ethoxy group, chloromethoxy group, and fluoroethoxy group. And an aryl group such as a phenyl group and a pyridyl group which may be substituted with a nitro group, a cyano group and the like.
一般式 (2 ) において R 1としては低級アルキル基が好ましく、 中でもメチル 基、 ェチル基が好ましく、 特にェチル基が好ましい。 また nは 0が好ましい。 一 般式 (3) において X1、 X2としてはハロゲン原子、 中でも塩素原子又はフッ素 原子が好ましく、 特に塩素原子が好ましい。 そして pとしては 0が好ましい。 In the general formula (2), R 1 is preferably a lower alkyl group, more preferably a methyl group or an ethyl group, particularly preferably an ethyl group. N is preferably 0. one In the general formula (3), X 1 and X 2 are preferably a halogen atom, especially a chlorine atom or a fluorine atom, particularly preferably a chlorine atom. And p is preferably 0.
Bとしてはハロゲン原子、 中でも塩素原子で置換されたフ: ϋニル基が好ましく、 特に 3—クロ口フエ二ル基、 3, 5—ジクロロフェニル基が好ましい。  B is preferably a phenyl group substituted with a halogen atom, especially a chlorine atom, and more preferably a 3-chlorophenyl group or a 3,5-dichlorophenyl group.
本発明の光学異性体混合物における光学活性 1 , 2—二置換一 2 , 3—ェポキ シプロパン類においては、 以上述べてきた各置換基において、 各々好ましい者同 士を組み合わせたものであることが好ましく、 中でも、 一般式 ( 1 ) においては Αが先述の一般式 (2) で表される基であり nが 0であることが好ましく、 更に は Bが塩素原子で置換されたフエニル基、 特に 3—クロ口フエニル基であること が好ましい。 具体的には、 先述の一般式 ( 1 ) で表されるものとしては、 (―) - 2 - 〔2— (3—クロ口フエニル) 一 2, 3—エポキシプロピル〕 一 2—ェチ ルーインダン一 1 , 3—ジオン (別の命名法では (一) 一 〔2— (3—クロロフ ェニル) 一 1— ( 2—ェチルインダジオン) 〕 一 2 , 3—エポキシプロパン) が 特に好ましい。  In the optically active 1,2-disubstituted 1,2,3-epoxy propanes in the optical isomer mixture of the present invention, it is preferable that each of the substituents described above is a combination of preferred individuals. In particular, in the general formula (1), Α is a group represented by the aforementioned general formula (2), and n is preferably 0, and further, a phenyl group in which B is substituted with a chlorine atom, — It is preferably a phenyl group. Specifically, the compound represented by the above-mentioned general formula (1) is (-)-2- [2- (3-chlorophenyl) -1,2,3-epoxypropyl] 1-2-ethyl Particularly preferred is 1,1,3-dione (in another nomenclature, (1-1) -1- [2- (3-chlorophenyl) -11- (2-ethylindazione)]-12,3-epoxypropane).
本発明の光学異性体混合物は、 先述の一般式 ( 1 ) で表される光学活性 1 , 2 —二置換一 2 , 3—エポキシプロパン類とその光学対掌体からなるものであって、 この一般式 ( 1 ) で表される光学異性体の含有量が、 鏡像体過剰率 (enantiomer excess %e e) で 40%e e以上である。 この含有量が 4 0%e e以上であ ることによって、 対応するラセミ体よりも遥かに高い除草活性を示し、 更に光学 異性体混合物の水溶解度が 3 0 p p m以上、 好ましくは 3 5 pp m以上であるこ とによって、 ラセミ体ではその浸透移行性が低いために効果を奏することが困難 であった畑地用の土壌処理用除草剤としても使用可能となり、 卓越した効果を示 すので好ましい。  The optical isomer mixture of the present invention comprises an optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the aforementioned general formula (1) and an optical antipode thereof. The content of the optical isomer represented by the general formula (1) is 40% ee or more in enantiomer excess% ee. When the content is 40% ee or more, the herbicidal activity is much higher than that of the corresponding racemate, and the water solubility of the optical isomer mixture is 30 ppm or more, preferably 35 ppm or more. This makes it possible to use it as a herbicide for soil treatment for upland fields, which has been difficult to exhibit its effects due to its low systemic transferability in a racemic form, and it is preferable because it shows an excellent effect.
本発明の光学異性体混合物におけるこの含有量は、 好ましくは 7 0%e e以上、 中でも 8 0 %e e以上、 特に 9 0 % e e以上であることが好ましい。 この含有量 は 1 0 0%e eに近い程好ましいが、 一般的には 1 00 %e eとするには多くの 精製工程を必要とし、 また収率も下がる可能性がある。 よって工業的に安価で、 且つ光学異性体混合物が示す農薬活性の効果が充分な範囲として、 本発明におけ る該含有率は 40〜9 8 e eが好ましく、 中でも 7 0~9 8%e e、 特に 8 0 〜98%e eであることが好ましい。 尚、 本発明における水溶解度とは、 25°C における水への溶解度 (ppm) を示す。 This content in the optical isomer mixture of the present invention is preferably at least 70% ee, more preferably at least 80% ee, particularly preferably at least 90% ee. This content is preferably as close to 100% ee as possible, but generally 100% ee requires many purification steps and may possibly reduce the yield. Therefore, the content in the present invention is preferably 40 to 98 ee, and more preferably 70 to 98% ee, as long as the effect of the pesticidal activity exhibited by the optical isomer mixture is sufficiently low industrially. Especially 8 0 Preferably it is ~ 98% ee. The water solubility in the present invention indicates the solubility (ppm) in water at 25 ° C.
以下に、 先述の一般式 ( 1) で表される光学活性 1, 2- 二置換— 2, 3—ェ ポキシプロパン類の具体例を以下に示すが、 本発明の光学異性体混合物における 光学活性体はこれらに限定されるものではない。 Specific examples of the optically active 1,2-disubstituted-2,3-epoxypropanes represented by the aforementioned general formula (1) are shown below. The optical activity in the optical isomer mixture of the present invention is shown below. The body is not limited to these.
> >
Figure imgf000008_0001
Figure imgf000008_0001
表一"! (つづき) Table 1 "(continued)
9ゝ  9 ゝ
B B
A B A B
0
Figure imgf000009_0001
0
Figure imgf000009_0001
9TCH3 9T CH3
Figure imgf000009_0002
Figure imgf000009_0002
0 表一 1 (つづき) 0 Table 1 (continued)
π π
Figure imgf000010_0001
Figure imgf000010_0001
A Β  A Β
Figure imgf000010_0002
Figure imgf000010_0002
C1
Figure imgf000011_0001
Figure imgf000012_0001
表一 1 (つづき)
Figure imgf000013_0001
C1
Figure imgf000011_0001
Figure imgf000012_0001
Table 1 (continued)
Figure imgf000013_0001
A B A B
Figure imgf000013_0002
Figure imgf000013_0002
(II) 農薬 (II) Pesticides
本発明の農薬について説明する。 本発明の農薬は、 先述の本願発明の光学異性 体混合物を有効成分とするものであり、 特に除草剤として優れた除草活性と広殺 草スべクトラムを示すものである。 特に土壌処理剤として使用することで効果が 顕著に現れるので好ましい。 除草剤として用いる際には、 本発明の光学異性体混 合物における一般式 ( 1) で表される光学活性体の含有率が 40%e e以上、 好 ましくは 70%e e以上、 中でも 80%e e以上、 特に 90%e e以上であるこ とが好ましい。  The pesticide of the present invention will be described. The pesticide of the present invention contains the above-mentioned optical isomer mixture of the present invention as an active ingredient, and exhibits excellent herbicidal activity and broad herbicidal spectrum especially as a herbicide. It is particularly preferable to use it as a soil treatment agent because the effect is remarkable. When used as a herbicide, the content of the optically active compound represented by the general formula (1) in the optical isomer mixture of the present invention is 40% ee or more, preferably 70% ee or more, and especially 80% ee or more. It is preferably at least 90% ee.
本発明の農薬の施用量は、 有効成分として用いる本発明の光学異性体混合物に おける上述の含有量や、 農薬として使用する対象や処理条件によつて適宜選択す ればよい。 The application rate of the pesticide of the present invention is appropriately selected depending on the above-mentioned content in the optical isomer mixture of the present invention used as an active ingredient, the object to be used as a pesticide, and processing conditions. Just do it.
本発明の光学異性体混合物を除草剤の有効成分として用いる場合には、 この混 合物をそのまま用いて施薬してもよい。 通常は有効成分と、 当業界で汎用される 農薬補助剤を用いて製剤化し、 組成物の形態で用いることが好ましい。 製剤の形 態は特に限定されないが、 例えば乳剤、 水和剤、 粉剤、 フロアプル剤、 細粒剤、 粒剤、 ジャンボ剤、 錠剤、 油剤、 噴霧剤、 煙霧剤等などの形態とすることが好適 である。 尚、 有効成分として二種以上の光学異性体混合物を用いてもよい。  When the optical isomer mixture of the present invention is used as an active ingredient of a herbicide, the mixture may be used as it is for administration. It is usually preferable to formulate the active ingredient and an agricultural chemical adjuvant commonly used in the art and use it in the form of a composition. The form of the preparation is not particularly limited, but is preferably in the form of, for example, emulsion, wettable powder, powder, floor pull, fine granule, granule, jumbo, tablet, oil, spray, aerosol, etc. It is. Incidentally, a mixture of two or more optical isomers may be used as the active ingredient.
本発明の除草剤の製造においては、 除草剤の効果の向上、 安定化、 分散性の向 上等の目的で農薬補助剤を用いてもよい。 農薬補助剤としては、 例えば担体 (希 釈剤) 、 展着剤、 乳化剤、 湿展剤、 分散剤、 崩壊剤等が挙げられる。 さらに具体 的に説明すると、 担体としては液体担体と固体担体がある。 液体担体としては、 水、 トルエン、 キシレン等の芳香族炭化水素類、 メタノール、 ブ夕ノール、 グリ コール等のアルコール類、 アセトン等のケ卜ン類、 ジメチルホルムアミ ド等のァ ミ ド類、 ジメチルスルホキシド等のスルホキシド類、 メチルナフ夕レン、 シクロ へキサン、 動植物油、 脂肪酸等を挙げることができる。 また固体担体としてはク レー、 カオリン、 タルク、 珪藻土、 シリカ、 炭酸カルシウム、 モンモリロナイ ト、 ベントナイ ト、 長石、 石英、 アルミナ、 鋸屑、 ニトロセルロース、 デンプン、 ァ ラビアゴム等を用いることができる。  In the production of the herbicide of the present invention, a pesticide adjuvant may be used for the purpose of improving the effect of the herbicide, stabilizing it, improving dispersibility, and the like. Examples of the pesticide adjuvant include a carrier (diluent), a spreading agent, an emulsifier, a wetting agent, a dispersant, a disintegrant and the like. More specifically, the carrier includes a liquid carrier and a solid carrier. Examples of liquid carriers include water, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, butanol, and glycol, ketones such as acetone, and amides such as dimethylformamide; Examples thereof include sulfoxides such as dimethyl sulfoxide, methylnaphthylene, cyclohexane, animal and vegetable oils, and fatty acids. As the solid carrier, clay, kaolin, talc, diatomaceous earth, silica, calcium carbonate, montmorillonite, bentonite, feldspar, quartz, alumina, sawdust, nitrocellulose, starch, arabia rubber and the like can be used.
乳化剤、 分散剤としては通常の界面活性剤を使用することができる。 例えば高 級アルコール硫酸ナトリウム、 ステアリルトリメチルアンモニゥムクロライ ド、 ポリオキシエチレンアルキルフエニルエーテル、 ラウリルべタイン等の陰イオン 系界面活性剤、 陽イオン系界面活性剤、 非イオン系界面活性剤、 両性イオン系界 面活性剤等を用いることができる。 また展着剤としてはポリオキシエチレンノニ ルフエニルエーテル、 ポリオキシエチレンラウリルェ一テル等が、 湿展剤として はポリオキシエチレンノニルフエニルエーテル、 ジアルキルスルホサクシネー卜 等が、 固着剤としてはカルボキシメチルセルロース、 ポリビニルアルコール等が、 そして崩壊剤としてはリグニンスルホン酸ナトリゥム、 ラウリル硫酸ナトリゥム 等を用いることができる。 その他の農薬補助剤としては、 例えば特開昭 6 0— 2 5 9 8 6号公報に記載のものを用いることが出来る。 本発明の農薬を農薬製剤とする際に、 該製剤における有効成分の含有量は通常、 0 . 5〜9 0重量%、 農薬補助剤の含有量は 1 0〜 9 9 . 5重量%であり、 製剤 形態、 施用方法等の種々の条件により適宜選択すればよい。 Usable surfactants can be used as emulsifiers and dispersants. For example, anionic surfactants such as higher alcohol sodium sulfate, stearyltrimethylammonium chloride, polyoxyethylene alkyl phenyl ether, lauryl betaine, cationic surfactants, nonionic surfactants, amphoteric An ionic surfactant or the like can be used. Examples of the spreading agent include polyoxyethylene nonyl phenyl ether and polyoxyethylene lauryl ether, examples of the wetting agent include polyoxyethylene nonyl phenyl ether and dialkyl sulfosuccinate, and examples of the fixing agent include carboxy. Methyl cellulose, polyvinyl alcohol and the like can be used, and as a disintegrant, sodium ligninsulfonate, sodium lauryl sulfate and the like can be used. As other pesticide adjuvants, for example, those described in JP-A-60-259886 can be used. When the pesticide of the present invention is used as a pesticide formulation, the content of the active ingredient in the formulation is usually 0.5 to 90% by weight, and the content of the pesticide adjuvant is 10 to 99.5% by weight. It may be appropriately selected depending on various conditions such as the preparation form, application method and the like.
本発明の除草剤は、 有効成分や先述の農薬補助剤以外に、 他の農園芸用の殺菌 剤、 殺虫剤、 除草剤、 植物成長調節剤、 肥料、 土壌改良剤、 殺ダニ剤等の任意の 有効成分を含有していてもよい。 更には、 このような他の農薬との混合施用ない しは同時施用してもよい。 本発明の除草剤の施用量は、 有効成分の種類、 対象雑 草、 処理期間、 処理方法、 または土壌の性質などの条件によって適宜選択すれば よいが、 通常 1ヘクタール当たりの有効成分量としては 2 0〜2 0 0 0グラム、 好ましくは 5 0〜 1 0 0 0グラムの範囲で使用すればよい。  The herbicide of the present invention may be any other active ingredient or the above-mentioned pesticide adjuvant, or any other agricultural or horticultural fungicide, insecticide, herbicide, plant growth regulator, fertilizer, soil conditioner, acaricide, etc. May be contained. Furthermore, such mixed application with other pesticides or simultaneous application may be possible. The application rate of the herbicide of the present invention may be appropriately selected depending on conditions such as the type of the active ingredient, the target weed, the treatment period, the treatment method, and the properties of the soil. It may be used in the range of 20 to 2000 grams, preferably 50 to 1000 grams.
本発明の光学異性体混合物は、 特開平 2— 3 0 4 0 4 3に記載されているよう な、 対応するラセミ体に比べて優れた除草活性を有している。 さらにラセミ体に 対して水溶性が著しく改良されたことによって、 特に優れた畑地土壌処理活性を 有する。 この様に優れた除草活性を有する本発明の光学異性体混合物を有効成分 とする、 本発明の除草剤は、 メヒシバ、 ノビエ、 ェノコログサ等のイネ科の一年 生雑草に対して強力な殺草活性を示し、 且つダイズ、 ヮ夕、 トウモロコシ、 コム ギ、 ォォムギ、 ビート等の作物に対する薬害が著しく少ないのが特徴である。 更 には、 本発明の除草剤はカャヅリグサ、 夕マガヤッリ、 ホ夕ルイ、 マツバイなど のカャッリグサ科雑草、 シロザ、 ァオビュ、 ィヌ夕デ、 キカシグサ、 コナギ等の 一年生広葉雑草に対しても有効に作用する。  The optical isomer mixture of the present invention has an excellent herbicidal activity as compared with the corresponding racemate as described in JP-A-2-30443. In addition, it has particularly good upland soil treatment activity due to its markedly improved water solubility relative to the racemate. The herbicide of the present invention, which comprises the optical isomer mixture of the present invention having such excellent herbicidal activity as an active ingredient, is a powerful herbicide against annual weeds of Poaceae such as Meechishiba, Nobie and Enokorogosa. It is active and has very little phytotoxicity to crops such as soybean, wheat, corn, wheat, corn and beet. Furthermore, the herbicide of the present invention effectively acts on annual broadleaf weeds such as sedges, sedges, sorghum, sorghum, sorghum, sorghum, sylvia, aobu, inuyude, kikasigusa, konagi etc. I do.
本発明の除草剤は、 他の除草剤と併用することにより殺草スぺクトラムの幅を 著しく拡大させることができる。 これによつて例えば、 生育の進んだ一年生広葉 雑草および多年生雑草等にも有効に作用する除草剤を提供でき、 且つ殺草効果を より安定化させることができる。 本発明の除草剤と好適に混合することができる 除草剤としては、 例えば以下の混合剤リス卜に記載されている一般名のものが挙 げられる。 ただし、 好適に混合することが出来る除草剤は以下のリストに挙げら れたものに限定させるものではない。  When the herbicide of the present invention is used in combination with other herbicides, the width of the herbicidal spectrum can be significantly increased. This can provide, for example, a herbicide that effectively acts on the growing annual broadleaf weed and perennial weed, and can further stabilize the herbicidal effect. Examples of the herbicide that can be suitably mixed with the herbicide of the present invention include those having the common names described in the following mixture list. However, the herbicides that can be suitably mixed are not limited to those listed below.
<混合剤リスト〉 <List of mixture>
|Αグループ I クロロアセ 卜アミ ド系; alachlor,metorachlor, acetochlor 力一ノ メ一卜系 ; triallate | ΑGroup I Chloroacetamide; alachlor, metorachlor, acetochlor
ジニトロア二リン系 ; trifluralin,pendimethalin  Dinitroaniline; trifluralin, pendimethalin
Bグループ  B group
フエノキシプロビオネ一卜系; dichlof op-methyl , f enoxaprop-ethyl ,  Phenoxypropionet; dichlof op-methyl, fenoxaprop-ethyl,
fluazif oop-buty l,quizalof op-ethyl シクロへキサンジオン系; s e toxydim , c 1 ethod im , t ra 1 koxy d im , butroxyd im fluazif oop-buty l, quizalof op-ethyl cyclohexanedione; se toxydim, c 1 ethod im, tr 1 koxy d im, butroxyd im
Cグループ C group
アミ ド系 ; diflufenican, UBH-820  Amides; diflufenican, UBH-820
スルホンアミ ド系 ; flumetsulam  Sulfonamide type; flumetsulam
ス レホニノレウレァ系 ; harosulfuron  Haresulfuron
ィミダゾリノン系; imazaquin  Imidazolinone; imazaquin
Dグループ  D group
スゾレホニノレウレァ系 ; chlorimuron,thifensuliuron,prosulfuron,  Szolehoninoleurea; chlorimuron, thifensuliuron, prosulfuron,
metsulfuronmethyl , amidosulfuron, indosulfuron スルホンアミ ド系; diclosulam  metsulfuronmethyl, amidosulfuron, indosulfuron sulfonamide; diclosulam
フエノ一ノレ系; bromoxynil , loxynil  Phenolic; bromoxynil, loxynil
フエノキシ系; 2,4-D,mecoprop  Phenoxy; 2,4-D, mecoprop
ジフェニノレエ一テゾレ系 ; lactofen, ac if luorf en-sodium, bifenox, oxyf luorf en その他; dicamba,bentazone, flupoxam, f lumiclorac-pentyl,pyraf luien-ethyL pyrithiobac-sodium, carfentrazone-ethyl , BAS 61500H  Difeninolee-tezore; lactofen, ac if luorf en-sodium, bifenox, oxyf luorf en Others; dicamba, bentazone, flupoxam, f lumiclorac-pentyl, pyraf luien-ethyL pyrithiobac-sodium, carfentrazone-ethyl, BAS 61500H
Eグループ  E group
卜 Uアジン系; atrazine, cyanazine,metribuzin  Atrazine, cyanazine, metribuzin
ウレァ系 ; chlorotoluron, isoproturon, diuron, linuron, tiuometuron スノレホニノレゥレァ系 ; chlorsulfuron, rimsulfuron,nicosulfuron,  Urea; chlorotoluron, isoproturon, diuron, linuron, tiuometuron snorehoninoreurea; chlorsulfuron, rimsulfuron, nicosulfuron,
flupyrsulfuron  flupyrsulfuron
イミタソリノン糸 ; imazethapyr, imazamox, imazamethapyr  Imazethapyr, imazamox, imazamethapyr
アミ ド系 ; dimethenamid  Amide type; dimethenamid
その他; f limioxazin, isoxaf lutole, sulcotrione,norflurazone, clomazone, JV 485( isopropazol ) Others: f limioxazin, isoxaf lutole, sulcotrione, norflurazone, clomazone, JV 485 (isopropazol)
Fグループ  F group
有機1リン系; lyphosate , gluf oshinate , b iaraf os Organic 1 phosphorus-based; lyphosate, gluf oshinate, b iaraf os
その他; paraquat  Other; paraquat
Gグループ G group
クロロアセ卜アミ ド系; butachlor,pretilachlor, tenylchlor  Chloroacetamides; butachlor, pretilachlor, tenylchlor
アミ ド系; mef enacet , caf enstrole, ethobenzanid, NBA-061 ( f entrazamide ) , propanil,  Amides; mef enacet, caf enstrole, ethobenzanid, NBA-061 (f entrazamide), propanil,
フエノキシプロピオネート系; cyhalofop- buthyl  Phenoxypropionate; cyhalofop-buthyl
カーノ メ一ト系; bentniocarb, esprocarb,molinate,pyributicarb  Cano mate type; bentniocarb, esprocarb, molinate, pyributicarb
その他; oxaz i c 1 omef ne , py r imi nobac -me th 1  Others: oxaz i c 1 omef ne, pyr imi nobac -me th 1
Hグループ I  H group I
スノレホニノレウレァ系; bensulfuron— methyl, pyrazosulfuron— ethyl ,  Benosulfuron- methyl, pyrazosulfuron- ethyl,
imazosulfuron, c c 1 osu 1 f amurn , c inosu 1 f uron , ethoxysulfuron,azimsulfuron,halosulfuron フエノキシ系; naproani 1 ide, c lomeprop, henothiol , MCPB , MCPA  imazosulfuron, c c 1 osu 1 f amurn, c inosu 1 f uron, ethoxysulfuron, azimsulfuron, halosulfuron phenoxy; naproani 1 ide, clomeprop, henothiol, MCPB, MCPA
ビラソレー卜系; pyrazolate,pyrazoxyien,benzofenap  Vilasolates; pyrazolate, pyrazoxyien, benzofenap
ジフエ二ルェ一テル系; bifenox  Bifenox; bifenox
その他; oxadiargyl , pentoxazone  Others: oxadiargyl, pentoxazone
Iグループ I group
アミ ド系; buromobutide  Amides; buromobutide
ウレァ系; daimuron(dimuron), cumyluron  Urea; daimuron (dimuron), cumyluron
その他; benfuresate,SB-500  Others: benfuresate, SB-500
本発明の土壌処理用除草剤においては、 上述したもののうち、 特に Cグループ または Eグループにおける除草剤との併用または混合除草剤として用いることが 好ましい。  In the herbicide for soil treatment of the present invention, it is preferable to use the herbicide in combination with the herbicide in the C group or the E group or as a mixed herbicide among the above-mentioned compounds.
( III) 光学活性 1 , 2—二置換— 2, 3 —エポキシプロパン類の製造方法  (III) Method for producing optically active 1,2-disubstituted-2,3-epoxypropanes
( III - 1 ) ォレフィンの不斉エポキシ化による製造  (III-1) Production of Olefin by Asymmetric Epoxidation
本発明の光学異性体混合物 (以下、 一般式 ( 1 ) で表される光学活性 1 , 2— 二置換一 2 3—エポキシプロパン類と言うことがある。 ) は例えば下記一般式 (4)The optical isomer mixture of the present invention (hereinafter referred to as an optical activity 1, 2— represented by the general formula (1)) Disubstituted 1-32-epoxypropanes. ) Is, for example, the following general formula (4)
Figure imgf000018_0001
Figure imgf000018_0001
)
(式中、 A及び Bは一般式 (1) と同義。 ) で表される 2 3—二置換— 1ーブ 口ペン類を、 不斉エポキシ化することにより製造することができる。 (Wherein, A and B have the same meanings as in the general formula (1).) The compound can be produced by asymmetric epoxidation of a 23-disubstituted 1-port pen represented by the following formula:
一般式 (4)で表される 2 3—二置換一 1—プロペン類を不斉エポキシ化す る方法は特に限定されるものでは無いが、 例えば光学活性マンガン錯体の存在下、 酸化剤を反応させる方法等が用いられる。  The method for asymmetric epoxidation of the 23-disubstituted 1-propenes represented by the general formula (4) is not particularly limited. For example, the oxidizing agent is reacted in the presence of an optically active manganese complex. A method or the like is used.
光学活性マンガン錯体としては、 例えば、 下記一般式 (5)
Figure imgf000018_0002
As the optically active manganese complex, for example, the following general formula (5)
Figure imgf000018_0002
(式中、 ; R 2はそれぞれ独立に炭素数 1 10のアルキル基又はァリール基を示 すか、 互いに結合して炭化水素環を形成していてもよく、 R3及び R4はそれぞれ 独立に炭素数 1~ 10のアルキル基、 アルコキシ基、 トリアルキルシロキシ基、 又はァリール基を示す。 ) で表される光学活性サレン- マンガン錯体等が挙げら れる。 中でも、 下記一般式 (21) または (22)で表されるものが好ましい。 (Wherein, R 2 each independently represents an alkyl group or aryl group having 110 carbon atoms, or may be mutually bonded to form a hydrocarbon ring, and R 3 and R 4 each independently represent a carbon atom. Represents an alkyl group, an alkoxy group, a trialkylsiloxy group, or an aryl group represented by the formulas 1 to 10.) and an optically active salen-manganese complex represented by the formula: Especially, what is represented by the following general formula (21) or (22) is preferable.
Figure imgf000018_0003
Figure imgf000018_0003
Figure imgf000018_0004
(式中、 t—Buは夕一シヤリブチル基を、 i一 Prはイソプロピル基を、 Ph はフエ二ル基を示す。 )
Figure imgf000018_0004
(In the formula, t-Bu represents an unsaturated butyl group, i-Pr represents an isopropyl group, and Ph represents a phenyl group.)
光学活性マンガン錯体の使用量は、 反応原料である一般式 (4) で表される 2: 3—二置換一 1一プロベン類に対して 0. 0001~1. 5モル倍量用いられる c 酸化剤としては従来公知の、 任意のものを使用することが可能であり、 好まし くは、 C6H5I 0等の高配位ヨウ素化合物、 次亜塩素酸ナトリウム、 過酸化水素 等の無機酸化剤、 メタクロ口過安息香酸等の過カルボン酸等を用いることができ る。 酸化剤の使用量は反応条件によって適宜選択すればよいが、 通常は 2, 3— 二置換一 1—プロペン類の当量以上用いればよい。 The amount of the optically active manganese complex used is 0.0001 to 1.5 mole times the molar amount of the c- oxidation based on the reaction raw material represented by the general formula (4). As the agent, any conventionally known agent can be used, and preferably, a highly coordinated iodine compound such as C 6 H 5 I 0, or an inorganic compound such as sodium hypochlorite, hydrogen peroxide or the like is used. An oxidizing agent, a percarboxylic acid such as metabenzo-perbenzoic acid and the like can be used. The amount of the oxidizing agent may be appropriately selected depending on the reaction conditions, but usually, the amount of the oxidizing agent to be used is equal to or more than 2,3-disubstituted 1-1-propene.
更に、 上述の光学活性マンガン錯体による酸化反応において N—ォキシド化合 物の共存下反応を行うことによって、 一般式 (1)で表される光学活性 1, 2— 二置換一 2, 3—エポキシプロパン類の光学純度が高くなるので好ましい。 用い る N—ォキシド化合物としては従来公知の任意のものを使用することが可能であ り、 例えば 4—フエ二ルビリジン一 N—ォキシド等の複素環ァミン類の N—ォキ シド、 N—メチルモルホリン- N—ォキシド等の脂肪族ァミンの N—才キシド等 が挙げられる。 N—ォキシド化合物の使用量は 2, 3—二置換一 1一プロペン類 に対して 0. 0001〜1. 5モル倍量用いられる。  Further, by carrying out the reaction in the co-presence of an N-oxide compound in the above-mentioned oxidation reaction with the optically active manganese complex, the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (1) is obtained. It is preferable because the optical purity of the compounds is high. As the N-oxide compound to be used, any conventionally known one can be used. For example, N-oxide, N-methyl of heterocyclic amines such as 4-phenylpyridine-N-oxide and the like can be used. Examples include aliphatic amines such as morpholine-N-oxide. The N-oxide compound is used in an amount of 0.0001 to 1.5 moles per 2,3-disubstituted 11-propene.
不斉エポキシ化反応は溶媒の共存下に実施してもよい。 このとき用いる溶媒と しては、 任意のものを使用できる。 好ましくはへキサン、 ヘプタン等の脂肪族炭 化水素系溶媒、 ベンゼン、 トルエン、 キシレン等の芳香族系溶媒、 ジクロロメ夕 ン、 クロ口ホルム、 クロ口ベンゼン等のハロゲン系溶媒や水等が挙げられる。 こ れらは単一でも混合溶媒として用いてもよい。 溶媒の使用量は、 反応に用いる一 般式 (4) で表される 2, 3—二置換— 1—プロペン類の重量に対して 0〜 10 0重量倍、 中でも 1〜20重量倍用いるのが好ましい。 溶媒として含水溶媒を使 用する場合には、 反応をアルカリ性下で行うと、 生成物である光学活性 1, 2— 二置換— 2, 3—エポキシプロパン類の分解が抑制されるので好ましい。  The asymmetric epoxidation reaction may be performed in the presence of a solvent. Any solvent can be used at this time. Preferable examples include aliphatic hydrocarbon solvents such as hexane and heptane, aromatic solvents such as benzene, toluene, and xylene, halogen solvents such as dichloromethane, chloroform, and benzene, and water. . These may be used alone or as a mixed solvent. The amount of the solvent used is 0 to 100 times, especially 1 to 20 times, the weight of the 2,3-disubstituted-1-propene represented by the general formula (4) used in the reaction. Is preferred. When a water-containing solvent is used as the solvent, it is preferable to carry out the reaction under alkaline conditions, since the decomposition of the product, optically active 1,2-disubstituted-2,3-epoxypropane, is suppressed.
不斉エポキシ化反応の反応温度は、 一 50~100° (:、 好ましくは一 20〜 7 0°Cの範囲であり、 反応時間は通常 100時間以内である。 光学活性マンガン錯 体を使用した場合には、 反応終了後、 有機溶媒で抽出した後、 結晶化、 蒸留、 あ るいはカラムクロマトグラフィー等により精製することで、 高光学純度の光学活 性 1, 2—二置換一 2, 3—エポキシプロパン類が得られる。 The reaction temperature of the asymmetric epoxidation reaction is in the range of 50 to 100 ° (preferably, in the range of 120 to 70 ° C., and the reaction time is usually within 100 hours. The optically active manganese complex was used. In this case, after completion of the reaction, extraction with an organic solvent, crystallization, distillation, Alternatively, purification by column chromatography or the like yields optically active 1,2-disubstituted 1,2,3-epoxypropanes with high optical purity.
(III一 2) 光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の閉環 による製造  (III-1-2) Production of optically active 1,2-disubstituted 1,2,3-dihydroxypropanes by ring closure
また先述の一般式 ( 1) で表される光学活性 1 , 2—二置換— 2, 3—ェポキ '類は、 下記一般式 (6)  The optically active 1,2-disubstituted-2,3-epoxy's represented by the aforementioned general formula (1) are represented by the following general formula (6)
(6) (6)
Figure imgf000020_0001
Figure imgf000020_0001
(式中、 A及び Bは一般式 ( 1) と同義。 ) で表される光学活性 1, 2—二置換 -2, 3—ジヒドロキシプロパン類を立体選択的に閉環することにより製造する ことができる。  (Wherein A and B have the same meanings as in the general formula (1).) The compound can be produced by stereoselectively ring-closing an optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the formula: it can.
立体選択的に閉環する方法は特に限定されるものではないが、 例えば、 先述の —般式 (6) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパ ン類を下記一般式 (7) で表される光学活性スルホン酸エステル類とし、 これを 塩基の存在下に閉璟する方法が簡便かつ低コストであり好ましい。
Figure imgf000020_0002
The method of stereoselectively closing the ring is not particularly limited. For example, the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the aforementioned general formula (6) is A method of forming an optically active sulfonic acid ester represented by the general formula (7) and closing the optically active sulfonic acid ester in the presence of a base is preferred because it is simple and low cost.
Figure imgf000020_0002
(式中、 A、 Bは一般式 ( 1) と同義であり、 R 5は置換基を有していてもよい 炭素数 1〜 10のアルキル基又はァリ一ル基を示す。 ) (In the formula, A and B have the same meanings as in the general formula (1), and R 5 represents an alkyl group having 1 to 10 carbon atoms or an aryl group which may have a substituent.)
一般式 (7) において R5で示される、 置換基を有していてもよい炭素数 1〜 10のアルキル基としては、 メチル基、 クロロメチル基、 ェチル基、 n—プロビ ル基、 n—プチル基、 n—ペンチル基、 n—へキシル基、 n—ヘプチル基等が挙 げられる。 そして置換基を有していてもよいァリール基(好ましくは炭素数が 6 から 10 )としてはフエニル基、 トリル基、 ニトロフエニル基、 クロ口フエニル 基、 ナフチル基等が挙げられる。 R5としてはメチル基または p—トリル基が好 ましい。 Examples of the optionally substituted alkyl group having 1 to 10 carbon atoms represented by R 5 in the general formula (7) include a methyl group, a chloromethyl group, an ethyl group, an n-propyl group, and an n- A butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and the like. Examples of the aryl group which may have a substituent (preferably having 6 to 10 carbon atoms) include a phenyl group, a tolyl group, a nitrophenyl group, a cyclophenyl group and a naphthyl group. R 5 is preferably a methyl group or a p-tolyl group.
反応に用いる塩基として、 従来公知の任意のものを使用することが可能である 具体的にはトリエチルァミン、 N, N—ジメチルァニリン等のアミン類、 ピリジ ン、 ピコリン、 ルチジン等のピリジン類、 ナトリウムメ 卜キシド、 ナトリウムェ 卜キシド等の金属アルコキシド、 水酸化ナ卜リウム、 水酸化力リゥム、 炭酸力リ ゥム、 炭酸ナトリウム等の無機塩基等が挙げらる。 中でも金属アルコキシドゃ無 機塩基等が好ましい。 塩基の使用量は、 一般式 (7) で表される光学活性スルホ ン酸エステル類の当量以上用いればよく、 好ましくは 1. 0〜1. 5当量用いれ ばよい。 As the base used in the reaction, any conventionally known base can be used. Specifically, amines such as triethylamine, N, N-dimethylaniline and the like, Pyridines such as sodium, picoline and lutidine; metal alkoxides such as sodium methoxide and sodium ethoxide; inorganic bases such as sodium hydroxide, hydroxylated lime, carbonated lime, and sodium carbonate. Rara. Among them, metal alkoxides and inorganic bases are preferred. The base may be used in an amount of at least the equivalent of the optically active sulfonate represented by the general formula (7), preferably 1.0 to 1.5 equivalent.
さらにこの閉環反応は、 適宜溶媒の存在下で実施してもよい。 用いる溶媒とし ては任意のものが使用でき、 例えばトルエン、 キシレン、 へキサン、 ヘプタン等 の炭化水素類、 ジェチルェ一テル、 ジイソプロピルエーテル、 テトラヒドロフラ ン等のエーテル類、 酢酸メチル、 酢酸ェチル等のエステル類、 クロ口ホルム、 ク ロロベンゼン等のハロゲン系溶媒、 アセトン、 メチルェチルケトン、 メチルイソ ブチルケトン等のケトン類、 メタノール、 エタノール、 ブ夕ノール等のアルコー ル類、 ァセ卜二トリル、 プロピオ二卜リル、 プチロニトリル等の二トリル類、 ジ メチルホルムアミ ド、 N- メチルピロリ ドン、 ジメチルスルホキシド、 水等の極 性溶媒等が挙げられる。 これらは単一でも、 混合溶媒として用いてもよい。 溶媒 の使用量は光学活性スルホン酸エステルの重量に対して 0~ 10倍量用いればよ い。  Further, this ring closing reaction may be carried out in the presence of a solvent as appropriate. Any solvent can be used, for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as dimethyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate. Halogen solvents such as chlorobenzene, chloroform, and chlorobenzene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol and butanol; acetate nitrile and propionitol; And nitriles such as ptyronitrile, and polar solvents such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and water. These may be used alone or as a mixed solvent. The amount of the solvent used may be 0 to 10 times the weight of the optically active sulfonic acid ester.
反応温度は— 50〜 100。 好ましくは 0〜 70 °Cの範囲であり、 反応時間 は通常 30時間以内である。  Reaction temperature — 50-100. It is preferably in the range of 0 to 70 ° C, and the reaction time is usually within 30 hours.
先述の一般式 (7) で表される光学活性スルホン酸エステル類は新規化合物で あり、 これは例えば先述の一般式 (6) で表される光学活性 1, 2—二置換— 2, 3—ジヒドロキシプロパン類を塩基の存在下で下記一般式 (8) 又は (9) で表 されるスルホン酸誘導体と反応させることにより製造することができる。 R5S〇2Y (8) The optically active sulfonic acid ester represented by the above-mentioned general formula (7) is a novel compound, and is, for example, an optically active 1,2-disubstituted 2,3-di-substituted compound represented by the aforementioned general formula (6). It can be produced by reacting dihydroxypropanes with a sulfonic acid derivative represented by the following general formula (8) or (9) in the presence of a base. R 5 S〇 2 Y (8)
(R5S 02) 20 ( 9 ) (R 5 S 0 2 ) 2 0 (9)
(式中、 R5は一般式 (7) と同義であり、 Yはハロゲン原子を示す。 ) 一般式 (8 ) または (9 ) で表されるスルホン酸誘導体としては任意のもの を使用することが可能であり、 一般式 (8 ) で表されるスルホン酸誘導体として 好ましくは、 メタンスルホニルクロリ ドゃ p—トルエンスルホニルクロリ ド等が 挙げられ、 一般式 (9 ) で表されるスルホン酸誘導体としてはメタンスルホン酸 無水物や p—トルエンスルホン酸無水物が挙げられ、 中でも安価なメタンスルホ ニルクロリ ドゃ p—トルエンスルホニルクロリ ドが好ましい。 (Wherein, R 5 has the same meaning as in the general formula (7), and Y represents a halogen atom.) As the sulfonic acid derivative represented by the general formula (8) or (9), any one can be used. As the sulfonic acid derivative represented by the general formula (8), methanesulfonyl chloride is preferable.ゃ p-toluenesulfonyl chloride; and sulfonic acid derivatives represented by the general formula (9) include methanesulfonic anhydride and p-toluenesulfonic anhydride. Among them, inexpensive methanesulfonyl chloride. p-Toluenesulfonyl chloride is preferred.
スルホン酸誘導体の使用量は、 一般式 (6 ) で表される光学活性 1, 2—二置 換ー 2, 3—ジヒドロキシプロパン類の当量以上用ればよく、 好ましくは 1 . 0 〜1 . 5当量用ればよい。  The sulfonic acid derivative may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6), preferably from 1.0 to 1.0. It is sufficient to use 5 equivalents.
使用される塩基としては任意のものが使用可能であり、 例えばトリェチルアミ ン、 N , N—ジメチルァニリン等のアミン類、 ピリジン、 ビコリン、 ルチジン等 のピリジン類、 ナトリウムメ トキシド、 ナトリウムエトキシド等の金属アルコキ シド、 水酸化ナトリゥム、 水酸化力リゥム、 炭酸力リウム、 炭酸ナトリゥム等の 無機塩基等が挙げられ、 好ましくはァミン類ゃビリジン類が挙げられる。 塩基の 使用量は光学活性 1, 2—二置換— 2, 3—ジヒドロキシプロパン類の当量以上 用いればよく、 通常 1 . 0〜2 . 0当量用いればよい。  Any base can be used, for example, amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicholine and lutidine, sodium methoxide and sodium ethoxide. Examples thereof include inorganic bases such as metal alkoxide, sodium hydroxide, hydroxylated lime, potassium carbonate, and sodium carbonate, and preferably, amines and pyridines. The base may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted-2,3-dihydroxypropane, and usually used in an amount of 1.0 to 2.0 equivalents.
さらにこの反応においては、 適宜溶媒の存在下で実施してもよい。 用いる溶媒 としては任意のものが使用でき、 例えばトルエン、 キシレン、 へキサン、 ヘプ夕 ン等の炭化水素類、 ジェチルエーテル、 ジイソプロピルエーテル、 テトラヒドロ フラン等のエーテル類、 酢酸メチル、 酢酸ェチル等のエステル類、 クロ口ホルム、 クロ口ベンゼン等のハロゲン系溶媒、 アセトン、 メチルェチルケトン、 メチルイ ソプチルケトン等のケトン類、 ァセトニトリル、 プロピオ二トリル、 ブチロニト リル等の二トリル類、 ジメチルホルムアミ ド、 N- メチルピロリ ドン、 ジメチル スルホキシド、 水等の極性溶媒等が挙げらる。 これらは単一でも混合溶媒として 用いてもよい。 また塩基としてアミン類又はピリジン類を使用する場合には、 こ の塩基自身を溶媒として反応を実施してもよい。 溶媒の使用量は光学活性 1, 2 —二置換一 2, 3 —ジヒドロキシプロパン類の重量に対して 0 ~ 1 0倍量用いれ ばよい。 反応温度は— 5 0〜 1 0 0 °C、 好ましくは— 2 0〜 5 0 °Cの範囲であり、 反応時間は通常 3 0時間以内である。 先述したように、 光学活性 1, 2—二置換ー2, 3—ジヒドロキシプロパン類 を光学活性スルホン酸エステル類として、 次いで塩基の存在下にこれを閉環する ことで、 光学活性 1, 2—二置換一2, 3—エポキシプロパン類を製造すること ができる。 この際、 光学活性スルホン酸エステル類を単離せずに、 連続して閉環 反応を行ってもよい。 また光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロ パン類を光学活性スルホン酸エステル類にする反応、 及び光学活性スルホン酸ェ ステル類を光学活性 1, 2 _二置換一 2, 3—エポキシプロパン類へと閉環する 反応を同時に競争的に行ってもよい。 このように競争的に反応を行う場合には、 塩基として水酸化ナトリゥム等の無機塩基を用いることが好ましい。 Further, in this reaction, the reaction may be appropriately performed in the presence of a solvent. Any solvent can be used, for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as getyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate. , Halogenated solvents such as chloroform, benzene, etc., ketones such as acetone, methylethylketone, methylisobutylketone, nitriles such as acetonitrile, propionitrile, butyronitrile, dimethylformamide, N- Examples include polar solvents such as methylpyrrolidone, dimethyl sulfoxide, and water. These may be used alone or as a mixed solvent. When amines or pyridines are used as the base, the reaction may be carried out using the base itself as a solvent. The solvent may be used in an amount of 0 to 10 times the weight of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane. The reaction temperature is in the range of −50 to 100 ° C., preferably −20 to 50 ° C., and the reaction time is usually within 30 hours. As described above, the optically active 1,2-disubstituted-2,3-dihydroxypropanes are converted into optically active sulfonic acid esters and then closed in the presence of a base to obtain the optically active 1,2-dithiopropanes. Substituted 1,2,3-epoxypropanes can be produced. At this time, the ring closure reaction may be continuously performed without isolating the optically active sulfonic acid esters. Also, the reaction of converting optically active 1,2-disubstituted 1,2,3-dihydroxypropanes into optically active sulfonic acid esters, and the conversion of optically active sulfonic acid esters into optically active 1,2-disubstituted 1,2,3 —The reaction of ring closure to epoxypropanes may be performed competitively at the same time. When the reaction is performed competitively, it is preferable to use an inorganic base such as sodium hydroxide as the base.
(IV) 光学活性 1, 2_二置換一 2, 3—ジヒドロキシプロパン類の製造法 本発明の光学異性体混合物の製造方法については先述の通りである。 そして本 発明においては、 先述の一般式 (6) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類を立体選択的に閉璟することで、 効率よく且つ高い 光学純度の 1, 2—二置換一 2, 3—エポキシプロパン類を製造可能なことも先 述の通りである。  (IV) Method for Producing Optically Active 1, 2-Disubstituted 1,2,3-dihydroxypropanes The method for producing the optical isomer mixture of the present invention is as described above. In the present invention, the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the above-mentioned general formula (6) are stereoselectively closed to provide efficient and high optical purity. As described above, 1,2-disubstituted 1,2,3-epoxypropanes can be produced.
さらに本発明においては、 本発明の光学異性体混合物における、 一般式 ( 1) で表される 1 , 2—二置換— 2, 3—エポキシプロパン類の製造中間体である、 一般式 (6) で表される光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパ ン類を効率よく且つ高い光学純度で製造する方法をも提供するものである。 これ らの製造方法を組み合わせることによって、 本発明の光学異性体混合物およびこ れを有効成分とする農薬、 特に除草剤を工業的に優位に製造することが出来る。 以下、 一般式 (6) で表される 1, 2—二置換— 2, 3—ジヒドロキシプロパン 類の製造方法について説明する。  Further, in the present invention, there is provided a compound represented by the following general formula (6), which is an intermediate for producing 1,2-disubstituted-2,3-epoxypropanes represented by the general formula (1) in the optical isomer mixture of the present invention. The present invention also provides a method for efficiently producing optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the formula (1) with high optical purity. By combining these production methods, the optical isomer mixture of the present invention and a pesticide containing the same as an active ingredient, in particular, a herbicide can be produced industrially superiorly. Hereinafter, a method for producing the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6) will be described.
(IV— 1 ) ォレフィンの不斉ジヒドロキシ化による製造法  (IV-1) Preparation of Olefin by Asymmetric Dihydroxylation
先述の一般式 (6) で表される光学活性 1 , 2—二置換— 2, 3—ジヒドロキ  Optically active 1,2-disubstituted—2,3-dihydroxyl represented by general formula (6) above
'類は、 先述の下記一般式 (4)  'Is the above-mentioned general formula (4)
(4)(Four)
Figure imgf000023_0001
(式中、 A及び Bは一般式 ( 1 ) と同義。 ) で表される 2 , 3—二置換一 1ーブ 口ベン類を不斉ジヒドロキシ化することにより製造することができる。
Figure imgf000023_0001
(Wherein, A and B have the same meanings as in the general formula (1)). The compound can be produced by asymmetric dihydroxylation of 2,3-disubstituted-11-substituted benzenes represented by the formula:
この 2, 3—二置換一 1一プロペン類を不斉ジヒドロキシル化する方法は任意 であるが、 オスミウム化合物を用いて不斉ジヒドロキシ化する方法が好ましい。 中でも、 光学活性な第三級ァミン類及びオスミウム化合物の存在下でジヒドロキ シ化を行うことが好ましい。 更には、 第三級ァミン類の N—才キシドやフエリシ ァン化カリゥム等の共酸化剤を併用して酸化することにより不斉ジヒド口キシ化 を行うことが好ましい。  The method of asymmetrically dihydroxylating the 2,3-disubstituted 11-propenes is optional, but the method of asymmetric dihydroxylation using an osmium compound is preferred. In particular, it is preferable to carry out dihydroxylation in the presence of an optically active tertiary amine and an osmium compound. Furthermore, it is preferable to carry out asymmetric dihydric xylation by oxidizing the tertiary amines in combination with a co-oxidizing agent such as N-year-old oxide or potassium phenylate.
第三級ァミン類の存在下、 オスミウム化合物を使用した不斉ジヒドロキシ化反 応においては、 反応終了後に亜硫酸ナトリウム等の還元剤を加えて有機溶媒で生 成物を抽出した後、 これを酸洗浄して第三級アミン類を除去し、 結晶化、 蒸留、 あるいはカラムクロマトグラフィー等で精製することによって、 目的物である光 学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類を高光学純度で得るこ とができる。  In the asymmetric dihydroxylation reaction using an osmium compound in the presence of tertiary amines, a reducing agent such as sodium sulfite is added after the reaction is completed, and the product is extracted with an organic solvent and then washed with an acid. To remove the tertiary amines and purify by crystallization, distillation, column chromatography or the like to increase the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes as the target compound. It can be obtained with optical purity.
この不斉ジヒドロキシ化反応に用いるオスミウム化合物としては、 8価又は 6 価のォスミスム化合物が好ましく、 例えば具体的には K 20 s 0 2 ( O H ) 4や四 酸化ォスミゥム等が挙げられる。 ォスミゥム化合物の使用量は反応原料である 2, 3—二置換— 1—プロペン類に対して 0 . 0 0 0 1〜1 . 5モル倍量用いればよ い。 As the osmium compound used for the asymmetric dihydroxylation reaction, preferably 8 monovalent or hexavalent Osumisumu compounds, for example, and specific examples thereof include K 2 0 s 0 2 (OH ) 4 or tetroxide Osumiumu like. The amount of the osmium compound used may be 0.00001 to 1.5 mole times the amount of the reaction raw material 2,3-disubstituted-1-propene.
また光学活性な第三級ァミン類としては任意のものを使用できる。 例えば具体 的には N, N, 一四置換エチレンジァミン類、 N, N, 一四置換一 1 , 4—ブ夕 ンジァミン類、 1 ,4-phthalazinediyl diether類等のアミン類の光学活性体が挙 げられる。 中でも 1,4- phthalazinediyl diether類の光学活性体が好ましく、 特 に下記一般式 (2 3 ) で表されるヒドロキニン 1, 4—フタラジンジィルジェ一 テノレ (Hydroquimne 1 ,4— phthalazinediyl diether) が? tましレ、。 )
Figure imgf000024_0001
光学活性な第三級ァミン類の使用量は、 反応原料である 2 , 3—二置換一 1— プロベン類に対して 0 . 0 0 0 1〜 1 . 5モル倍量用いればよい。
Any optically active tertiary amines can be used. For example, specific examples include optically active isomers of amines such as N, N, monosubstituted ethylenediamines, N, N, tetrasubstituted 1,4-butanediamines, and 1,4-phthalazinediyl diethers. Can be Among them, optically active isomers of 1,4-phthalazinediyl diethers are preferable. In particular, hydroquinine 1,4-phthalazinediyl diether represented by the following general formula (23) is preferred. t better. )
Figure imgf000024_0001
The optically active tertiary amines may be used in an amount of 0.0001 to 1.5 times the molar amount of the 2,3-disubstituted 1-1-probenes as the reaction raw materials.
さらにこの不斉ジヒドロキシ化反応においては、 共酸化剤を併用することによ つてオスミウム化合物及び光学活性第三級ァミン類の使用量を削減することがで きるので好ましい。  Further, in this asymmetric dihydroxylation reaction, it is preferable to use a co-oxidizing agent in combination, since the amounts of the osmium compound and the optically active tertiary amine can be reduced.
共酸化剤としては任意のものを使用可能であるが、 好ましくは第三級ァミンの N—ォキシド又はフェリシアン化カリ [ K 3 F e ( C N ) 6] 等が挙げられる。 共 酸化剤の使用量は 2, 3—二置換— 1—プロペン類の当モル倍量以上用いればよ い。 更には共酸化剤に加えて、 不斉ジヒドロキシ化反応を塩基の存在下で行うこ とが好ましい。 塩基としては任意のものを使用可能であり、 例えば具体的にはナ トリウムメ トキシド、 ナトリウムエトキシド等の金属アルコキシド、 水酸化ナト リウム、 水酸化カリウム、 炭酸カリウム、 炭酸ナトリウム等の無機塩基等が挙げ られる。 これらのうち無機塩基、 中でも炭酸塩が好ましく、 特に炭酸カリウムが 好ましい。 塩基の使用量は 2 , 3—二置換一 1—プロペン類の当量以上用いれば よい。 As the co-oxidizing agent, any one can be used, and preferably, N-oxide of tertiary amine or potassium ferricyanide [K 3 Fe (CN) 6 ] is used. The amount of co-oxidant used should be at least equimolar amount of 2,3-disubstituted-1-propene. Further, in addition to the co-oxidizing agent, it is preferable to carry out the asymmetric dihydroxylation reaction in the presence of a base. Any base can be used, and specific examples include metal alkoxides such as sodium methoxide and sodium ethoxide, and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate. Can be Of these, inorganic bases, particularly carbonates, are preferred, and potassium carbonate is particularly preferred. The base may be used in an amount of at least the equivalent of 2,3-disubstituted 1-1-propenes.
この不斉ジヒドロキシ化反応は、 適宜溶媒の共存下に実施してもよい。 本反応 に用いられる溶媒としては任意のものが使用可能であるが、 例えばジェチルエー テル、 ジイソプロビルエーテル、 ジブチルェ一テル、 テトラヒドロフラン、 テト ラヒドロピラン、 ジォキサン、 エチレングリコールジメチルエーテル、 エチレン グリコールジェチルエーテル、 エチレングリコールジブチルエーテル、 ジェチレ ングリコールジメチルエーテル、 ジエチレングリコールジェチルェ一テル、 ジェ チレングリコールジブチルェ一テル等のエーテル系溶媒、 へキサン、 ヘプタン等 の脂肪族炭化水素系溶媒、 ベンゼン、 トルエン、 キシレン、 クロ口ベンゼン等の 芳香族炭化水素系溶媒、 アセトン、 メチルェチルケトン、 メチルイソプチルケト ン等のケトン系溶媒、 ジクロロメタン、 クロ口ホルム等のハロゲン系溶媒、 ァセ トニトリル、 プロピオ二トリル、 プチロニ卜リル等の二トリル系溶媒、 ジメチル ホルムアミ ド、 N - メチルピロリ ドン等のアミ ド系溶媒、 酢酸メチル、 酢酸ェチ ル、 プロピオン酸メチル等のエステル系溶媒、 メタノール、 エタノール、 プロパ ノール、 t—ブチルアルコール、 t—ァミルアルコール等のアルコール溶媒、 ジ メチルスルホキシド等が挙げられる。 これらは単一でも混合溶媒として使用して もよい。 中でもアルコール溶媒と水の混合溶媒を用いるのが好ましく、 特に t一 ブチルアルコールと水との混合溶媒が好ましい。 溶媒の使用量は反応原料である 2, 3—二置換— 1一プロペン類の重量に対して 0〜 100重量倍、 中でも 1〜 20重量倍用いるのが好ましい。 This asymmetric dihydroxylation reaction may be carried out appropriately in the presence of a solvent. Any solvent can be used as the solvent for this reaction.Examples include getyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, tetrahydropyran, dioxane, ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, and ethylene glycol. Ether solvents such as dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dibutyl ether, and ethylene glycol dibutyl ether; aliphatic hydrocarbon solvents such as hexane and heptane; benzene, toluene, xylene, and benzene Aromatic hydrocarbon solvents such as acetone, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogen solvents such as dichloromethane and chloroform Solvents, nitrile solvents such as acetonitrile, propionitrile, ptyronitrile, amide solvents such as dimethylformamide and N-methylpyrrolidone, and ester solvents such as methyl acetate, ethyl acetate, and methyl propionate Solvent, alcoholic solvent such as methanol, ethanol, propanol, t-butyl alcohol, t-amyl alcohol, etc. Methyl sulfoxide and the like. These may be used alone or as a mixed solvent. Among them, a mixed solvent of an alcohol solvent and water is preferably used, and a mixed solvent of t-butyl alcohol and water is particularly preferable. The amount of the solvent to be used is preferably 0 to 100 times, more preferably 1 to 20 times the weight of the reaction raw material 2,3-disubstituted-1-propene.
反応温度は— 50〜 100°C、 好ましくは一 20〜70°Cの範囲であり、 反応 時間は通常 100時間以内である。  The reaction temperature is in the range of -50 to 100 ° C, preferably 120 to 70 ° C, and the reaction time is usually within 100 hours.
(IV- 2) 酵素反応立体選択的エステル分割による製造法  (IV- 2) Enzymatic Reaction Production by Stereoselective Ester Resolution
先述の一般式 (6) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキ シプロパン類は、 下記一般式 ( 10)  The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) are represented by the following general formula (10)
OH  OH
( 10)  ( Ten)
B  B
(式中、 A、 Bは一般式 ( 1 ) と同義。 ) で表されるラセミ体の 1 , 2一二置換 一 2, 3—ジヒドロキシプロパン類を立体選択的エステル交換能を有する酵素の 存在下、 下記一般式 ( 11) (Wherein A and B have the same meanings as in the general formula (1)). The presence of an enzyme capable of stereoselective transesterification of a racemic 1,2-disubstituted 1,2,3-dihydroxypropane represented by the formula (1): Below, the following general formula (11)
(R6C02) mR7 ra ( 1 1) (R 6 C0 2 ) m R 7 ra (1 1)
(式中、 R6は置換基を有していても良い炭素数 1〜20のアルキル基、 ァルケ ニル基、 ァラルキル基、 又はァリール基を示し、 R 7は置換基を有していてもよ い炭素数 1〜20のアルキル基、 アルケニル基、 ァラルキル基、 ァリール基、 又 はァシル基を示すか或いは、 R6及び R7は結合して環を形成していてもよく、 m は 1〜3の整数を示す。 ) で表されるカルボン酸エステル類又は酸無水物と反応 させて、 下記一般式 ( 12) で表される光学活性 1 , 2—二置換— 2—ヒドロキ シー 3—ァシロキシプロパン類と、 一般式 ( 12) で表される化合物とは光学対 掌体である下記一般式 ( 13) で表される光学活性 1, 2—二置換— 2, 3—ジ ヒドロキシプロパン類を生成させ、 所望の立体構造を有する光学異性体である、 一般式 ( 13) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロ パン類 (つまり、 一般式 (6) に同じ。 ) を分取して製造することができる。 または、 光学活性 1, 2—二置換— 2—ヒドロキシ一 3—ァシロキシプロパン 類が所望の立体構造を有している際には、 反応後さらに加溶媒分解して一般式 (6) で表される光学活性 1 , 2—二置換一2, 3—ジヒドロキシプロパン類と し、 これを分取することによつても製造することができる。 (In the formula, R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group, or an aryl group, and R 7 may have a substituent. Represents an alkyl group, alkenyl group, aralkyl group, aryl group, or acyl group having 1 to 20 carbon atoms, or R 6 and R 7 may be bonded to form a ring; Is an integer of 3. The compound is reacted with a carboxylic acid ester or an acid anhydride represented by the following formula to form an optically active 1,2-disubstituted-2-hydroxy-3-amine represented by the following general formula (12). Siloxypropanes and compounds represented by the general formula (12) are optically enantiomers and are optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the following general formula (13) Which is an optical isomer having a desired steric structure, represented by the general formula (13): , 2-Disubstituted 1,2,3-dihydroxypro Breads (that is, the same as general formula (6)) can be fractionated and manufactured. Alternatively, when the optically active 1,2-disubstituted-2-hydroxy-13-acyloxypropanes have a desired steric structure, they are further solvolyzed after the reaction and are represented by the general formula (6). The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes can be also produced by fractionation.
この酵素反応においては、 反応に用いる酵素の立体選択性によって、 生成する 化合物の立体構造 (R、 S) が入れ替わるので、 上述した方法のうち、 適したも のを選択すればよい。 また化学構造の標記としては、 先述の通り立体構造が異な る場合もあるので、 不斉炭素原子に 「*」 を付記した化学構造として標記する。 このことは、 後述する (IV— 3) においても同様である。
Figure imgf000027_0001
In this enzymatic reaction, the stereostructure (R, S) of the compound to be produced is exchanged depending on the stereoselectivity of the enzyme used in the reaction. Therefore, an appropriate one of the above-mentioned methods may be selected. In addition, since the three-dimensional structure may be different as described above, the chemical structure is described as a chemical structure in which an asymmetric carbon atom is marked with “*”. The same applies to (IV-3) described later.
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
(式中、 Α及び Βは一般式 ( 1) と同義であり、 R 6は一般式 ( 11) と同義で あり、 *は不斉炭素原子を示す。 ) (In the formula, Α and 同 have the same meaning as in the general formula (1), R 6 has the same meaning as in the general formula (11), and * indicates an asymmetric carbon atom.)
ここで、 一般式 (12) で表される光学活性 1, 2—二置換一 2—ヒドロキシ — 3—ァシロキシプロパン類、 及び一般式 ( 13) で表される、 一般式 (12) で表される化合物と光学対掌体の、 光学活性 1, 2—二置換一 2, 3—ジヒドロ キシプロパン類は新規化合物であり、 本発明の光学異性体混合物における光学活 性 1, 2—二置換— 2, 3—エポキシプロパン類の重要な製造中間体である。 この酵素反応に用いられる酵素としては、 先述のラセミ体の 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類に対する立体選択的エステル交換能を有する酵 素であれば、 任意のものを用いることができる。 具体的には Penicillium属、 Ps eudomonas属、 Alcaligenes属、 Rhizopus属、 あるレヽ (ま Aspergilus属(こノ禹する微 生物由来のリパーゼ等が挙げられ、 中でも好ましくは Penicillium属又は Pseudo monas属に属する微生物由来のリパーゼ等が挙げられる。 またこれらの酵素は生 酵素のまま、 又はアセトン処理、 凍結乾燥等の処理を施したもの、 これらの酵素 を担体に固定化したものを用いてもよい。 更には、 遺伝子組換えによって適当な 発現系により得られた酵素を用いてもよい。 Here, an optically active 1,2-disubstituted 2-hydroxy-3-acyloxypropane represented by the general formula (12) and a compound represented by the general formula (13) represented by the general formula (13) The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes of the optically enantiomeric compound and the enantiomer are new compounds, and the optically active 1,2-disubstituted It is an important intermediate for the production of 2,3-epoxypropanes. As the enzyme used in this enzymatic reaction, any enzyme can be used as long as it has a stereoselective transesterification ability with respect to the aforementioned racemic 1,2-disubstituted-2,3-dihydroxypropanes. Can be. Specific examples include the genus Penicillium, the genus Pseudomonas, the genus Alcaligenes, the genus Rhizopus, and the genus Aspergilus (such as lipases derived from microorganisms such as the genus Penicillium). And lipases derived from such enzymes. The enzyme may be used as it is, or may be subjected to a treatment such as acetone treatment or freeze-drying, or may be a product obtained by immobilizing these enzymes on a carrier. Furthermore, an enzyme obtained by an appropriate expression system by genetic recombination may be used.
先述の Pe ci Ilium属、 Pseudomonas属、 Alcaligenes属、 Rhizopus属、 又は A spergilus属に属する微生物由来のリパーゼ等としては、 具体的には Lipase R (P enicillium属、 天野製薬 (株) 製) 、 Lipase AK (Pseudomonas 属、 天野製薬 (株) 製) 、 Lipase AKG (Pseudomonas属、 天野製薬 (株) 製) 、 Toyozyme LIP (Pseudomonas属、 東洋紡 (株) 製) 、 Lipase QL (Alcaligenes 属、 名糖産業 (株) 製) 、 Lipase PL (Alkaligenes属、 名糖産業 (株) 製) LipaseD (Rhiz opus属、 天野製薬 (株) 製) 、 Lipase AP6 (Asp ergillus属、 Fluka製) 等が挙 げられる。  Examples of the lipases derived from microorganisms belonging to the genus Pe ci Ilium, Pseudomonas, Alcaligenes, Rhizopus, or Aspergilus include Lipase R (Penicillium, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AK (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AKG (genus of Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Toyozyme LIP (genus of Pseudomonas, manufactured by Toyobo Co., Ltd.), Lipase QL (genus of Alcaligenes, name sugar industry ( Co., Ltd.), Lipase PL (genus Alkaligenes, manufactured by Meito Sangyo Co., Ltd.) Lipase D (genus Rhizopus, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AP6 (genus Aspergillus, manufactured by Fluka) and the like.
これらの酵素は、 反応原料であるラセミ体の 1 , 2—二置換— 2, 3—ジヒド ロキシプロパン類の種類によって反応性、 選択性が異なるので、 酵素の使用量は 適宜設定すればよいが、 通常、 反応原料に対して 0 . 0 1〜5重量倍、 中でも 0 . 0 5 ~ 2重量倍用いるのが好ましい。  These enzymes have different reactivities and selectivities depending on the type of racemic 1,2-disubstituted-2,3-dihydroxypropanes used as the raw material for the reaction. Therefore, the amount of enzyme used may be appropriately set. Usually, it is preferably used in an amount of 0.01 to 5 times, more preferably 0.05 to 2 times the weight of the reaction raw material.
この酵素反応に用いる、 一般式 ( 1 1 ) で表されるカルボン酸エステル又は酸 無水物において、 一般式 ( 1 1 ) における式中、 : 6としてはメチル基、 ェチル 基、 n—プロピル基、 i—プロピル基、 n—ブチル基、 n—ペンチル基、 n—へ キシル基、 n—ヘプチル基、 n—ゥンデシル基、 n—トリデシル基、 n—ペン夕 デシル基、 n—ヘプ夕デシル基、 t—ブチル基、 2—ェチルペンチル基等の炭素 数 1〜2 0の直鎖もしくは分岐鎖アルキル基; ビニル基、 イソプロべニル、 2— ペンテニル基、 8—ヘプ夕デセニル基等の炭素数 2 ~ 2 0のアルケニル基; フエ ニル基、 ナフチル基等、 好ましくは炭素数 6〜2 0のァリール基;ベンジル基、 フエネチル基等、 好ましくは炭素数?〜 2 0のァラルキル基が挙げられる。 R 7 にとしては上述の R 6における基に加えて、 ホルミル基、 ァセチル基、 プロピオ ニル基、 ブチリル基、 イソプチリル基、 ビバロイル基、 力プロィル基、 ラウロイ ル基、 ミリストイル基、 ノ ルミ トイル基、 ステアロイル基、 ァクリロイル基、 メ タクリロイル基、 クロトノィル基、 イソクロトノィル基、 ォレオイル基等の炭素 数 1 ~ 2 0のァシル基が挙げられる。 これら R Gおよび R 7はさらに置換基を有し ていても良い。 mは 1〜3の整数を示す。 即ち、 一般式 ( 1 1 ) で表されるカル ボン酸エステルとしては、 モノカルボン酸エステル、 ジカルボン酸エステル又は グリセライ ド等のいずれでもよい。 In the carboxylic acid ester or acid anhydride represented by the general formula (11) used in this enzyme reaction, in the formula in the general formula (11), 6 is a methyl group, an ethyl group, an n-propyl group, i-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n- pentadecyl group, n-tridecyl group, n-pentydecyl group, n-heptydecyl group, a linear or branched alkyl group having 1 to 20 carbon atoms such as t-butyl group and 2-ethylpentyl group; and a carbon atom having 2 to 2 carbon atoms such as vinyl group, isoprobenyl, 2-pentenyl group and 8-heptanecenyl group. 20 alkenyl groups; phenyl groups, naphthyl groups, etc., preferably aryl groups having 6 to 20 carbon atoms; benzyl groups, phenethyl groups, etc., preferably carbon numbers? And 20 aralkyl groups. As the R 7 in addition to the group in R 6 in the above, a formyl group, Asechiru group, propionic group, a butyryl group, Isopuchiriru group, pivaloyl group, force Puroiru group, lauroyl group, myristoyl group, Roh palmitoyl group, Examples thereof include an acyl group having 1 to 20 carbon atoms such as a stearoyl group, an acryloyl group, a methacryloyl group, a crotonyl group, an isocrotonyl group, and an oleoyl group. These R G and R 7 further have a substituent May be. m represents an integer of 1 to 3. That is, the carboxylic acid ester represented by the general formula (11) may be any of a monocarboxylic acid ester, a dicarboxylic acid ester, and glyceride.
カルボン酸エステルとしては、 具体的には酢酸ビニル、 クロ口酢酸ビニル、 プ ロビオン酸ビニル、 酪酸ビニル、 カブロン酸ビニル、 カプリル酸ビニル、 カプリ ン酸ビニル、 ラウリン酸ビニル、 ミリスチン酸ビニル、 ノ ルミチン酸ビニル、 ス テアリン酸ビニル、 ビバリン酸ビニル、 2 - ェチルへキサン酸ビニル、 メタクリ ル酸ビニル、 酢酸メチル、 プロビオン酸メチル、 酪酸メチル、 力プロン酸メチル、 カプリル酸メチル、 カプリン酸メチル、 ラウリン酸メチル、 ミリスチン酸メチル、 ミリスチン酸メチル、 ノ レミチン酸メチル、 ステアリン酸メチル、 ピノ リン酸メ チル、 2 - ェチルへキサン酸メチル、 メ夕クリル酸メチル、 酢酸イソプロべニル 等が挙げられる。  Specific examples of the carboxylate include vinyl acetate, vinyl acetate, vinyl probionate, vinyl butyrate, vinyl caprolate, vinyl caprylate, vinyl caprylate, vinyl laurate, vinyl myristate, and normitic acid. Vinyl, vinyl stearate, vinyl bivalate, vinyl 2-ethylhexanoate, vinyl methacrylate, methyl acetate, methyl propionate, methyl butyrate, methyl propylate, methyl caprylate, methyl caprate, methyl laurate And methyl myristate, methyl myristate, methyl noremitate, methyl stearate, methyl pinophosphate, methyl 2-ethylhexanoate, methyl methyl acrylate, isoprobenyl acetate, and the like.
また酸無水物としては、 先述のカルボン酸エステルを構成する酸の無水物、 具 体的には無水酢酸、 無水プロピオン酸、 無水酪酸、 無水イソ酪酸、 無水吉草酸、 無水イソ吉草酸、 無水カブロン酸、 無水力プリン酸、 無水力プリル酸、 無水ラウ リン酸、 無水コハク酸、 無水マレイン酸、 無水安息香酸等が挙げられる。  Examples of the acid anhydride include the anhydrides of the above-mentioned carboxylic acid esters, specifically, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, and cabron anhydride. Acid, anhydrous pric acid, anhydrous prillic acid, lauric anhydride, succinic anhydride, maleic anhydride, benzoic anhydride and the like.
これらカルボン酸エステルや酸無水物においては、 ビニルエステル及び酸無水 物が好ましく、 中でも安価で反応性に富む酢酸ビニル、 酪酸ビニル、 カブロン酸 ビニル等のビニルエステル類や無水カブロン酸、 無水安息香酸が好ましい。 特に、 安価で、 酵素反応において立体選択性が高く、 且つ反応速度が速いので酪酸ビニ ルが好ましい。  Among these carboxylic esters and acid anhydrides, vinyl esters and acid anhydrides are preferable, and vinyl esters such as vinyl acetate, vinyl butyrate, and vinyl caproate, which are inexpensive and highly reactive, and caproic anhydride and benzoic anhydride are preferred. preferable. In particular, vinyl butyrate is preferred because it is inexpensive, has high stereoselectivity in the enzymatic reaction, and has a high reaction rate.
これらカルボン酸エステルや酸無水物の使用量は、 反応に用いるラセミ体の 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類に対して 0 . 5当量以上用いれば よい。  The amount of the carboxylic acid ester or acid anhydride to be used may be 0.5 equivalent or more based on the racemic 1,2-disubstituted-2,3-dihydroxypropane used in the reaction.
この酵素反応においては、 例えばラセミ体の 1 , 2—二置換一 2, 3—ジヒド ロキシプロパン類とカルボン酸エステルまたは酸無水物を溶解した溶媒中に、 酵 素を懸濁させ、 攪拌あるいは振盪することにより行われ、 使用する酵素に応じて ラセミ体の 1 , 2—二置換— 2 , 3—ジヒドロキシプロパン類の一方の光学異性 体のみがカルボン酸エステル又は酸無水物と反応して、 対応するエステル体であ る、 光学活性 1, 2—二置換一 2 —ヒドロキシー 3 —ァシロキシプロパン類とな る。 このエステル体が、 所望の立体構造を有する光学異性体である場合には、 酵 素反応終了後に酵素を濾別あるいは遠心分離により除去して得られた濾液を必要 ならば濃縮し、 これから抽出、 結晶化、 あるいはカラムクロマトグラフィー等に よりエステル体を精製し、 次いで酸又はアルカリによって加溶媒分解することで、 高光学純度の光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類を得る ことができる。 また酵素反応終了後に、 未反応の (エステル体とは光学対掌体で ある) 光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類を結晶化等に より単離すると、 その後の操作が簡便となるので好ましい。 In this enzymatic reaction, for example, the enzyme is suspended in a solvent in which racemic 1,2-disubstituted 1,2,3-dihydroxypropanes and a carboxylic acid ester or acid anhydride are dissolved, and the suspension is stirred or shaken. Depending on the enzyme used, only one optical isomer of racemic 1,2-disubstituted-2,3-dihydroxypropane reacts with the carboxylic acid ester or acid anhydride to give Ester And optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes. When the ester is an optical isomer having a desired steric structure, the enzyme is filtered off or centrifuged to remove the enzyme after completion of the enzyme reaction. Purification of the ester by crystallization or column chromatography, etc., followed by solvolysis with an acid or alkali to obtain optically active 1,2-disubstituted-2,3-dihydroxypropanes with high optical purity be able to. After completion of the enzymatic reaction, unreacted optically active 1,2-disubstituted 1,2,3-dihydroxypropanes (esters are optically enantiomers) are isolated by crystallization or the like. Is preferred because of simplicity.
また酵素反応後、 所望の立体構造を有する光学活性体がエステル化されずに生 成する場合、 つまり一般式 (6 ) で表される光学活性 1, 2—二置換— 2 , 3— ジヒドロキシプロパン類が得られる場合には、 これを反応液から結晶化等により 分離すればよい。  Further, when an optically active substance having a desired steric structure is formed without esterification after the enzymatic reaction, that is, the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (6) When such compounds are obtained, they may be separated from the reaction solution by crystallization or the like.
更には、 この酵素反応を繰り返し行うことにより、 一般式 (6 ) で表される光 学活性 1 , 2—二置換一 2 , 3—ジヒドロキシプロパン類の光学純度をさらに高 めることもできるので好ましい。  Furthermore, by repeating this enzymatic reaction, the optical purity of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (6) can be further increased. preferable.
この酵素反応に用いられる溶媒としては任意のものが使用可能であり、 例えば ジェチルェ一テル、 ジイソプロビルエーテル、 テトラヒドロフラン等のエーテル 系溶媒、 へキサン、 ヘプタン等の脂肪族炭化水素系溶媒、 トルエン、 キシレン等 の芳香族炭化水素系溶媒、 酢酸メチル、 酢酸ェチル等のエステル系溶媒、 ァセト ン、 メチルェチルケトン、 メチルイソブチルケトン等のケトン溶媒、 クロ口ホル ム、 クロ口ベンゼン等のハロゲン系溶媒、 ァセトニトリル、 プロピオ二トリル、 プチロニトリル等の二トリル類、 ジメチルホルムアミ ド、 N—メチルピロリ ドン 等のアミ ド系溶媒、 ジメチルスルホキシド等が挙げられる。 またこの酵素反応に 使用されるカルボン酸エステルや酸無水物を溶媒として反応を行うと反応速度が 速くなるので好ましい。  Any solvent can be used as the solvent used in the enzymatic reaction, and examples thereof include ether solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; aliphatic hydrocarbon solvents such as hexane and heptane; toluene; Aromatic hydrocarbon solvents such as xylene, ester solvents such as methyl acetate and ethyl acetate, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and halogen solvents such as chloroform and benzene. And nitriles such as acetonitrile, propionitrile and ptyronitrile; amide solvents such as dimethylformamide and N-methylpyrrolidone; and dimethylsulfoxide. Further, it is preferable to carry out the reaction using a carboxylic acid ester or an acid anhydride used in this enzymatic reaction as a solvent, since the reaction rate is increased.
溶媒の使用量は反応原料であるラセミ体の 1 , 2—二置換— 2, 3—ジヒドロ キシプロパン類に対して 0〜 2 0重量倍用いればよい。  The solvent may be used in an amount of 0 to 20 times the weight of the racemic 1,2-disubstituted-2,3-dihydroxypropane as a reaction raw material.
反応は 0〜 1 0 0 ° (、 好ましくは 1 0〜5 0 °Cの範囲であり、 反応時間は 5時 間〜数日間反応させればよい。 The reaction is performed at 0 to 100 ° (preferably at a temperature of 10 to 50 ° C, and the reaction time is 5 o'clock. The reaction may be carried out for several days.
この酵素反応に用いる一般式 ( 10) で表されるラセミ体の 1, 2—二置換一 2, 3—ジヒドロキシプロパン類は公知の製造方法によって製造すればよい。 そ の製造方法は例えば、 特開平 2— 304043号公報等に記載されているとおり、 対応するォレフイン誘導体を酸化することにより容易に製造することができる。 ( IV— 3 ) 酵素反応立体選択的加溶媒分解による製造法  The racemic 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the general formula (10) used in this enzyme reaction may be produced by a known production method. As described in, for example, JP-A-2-304043, the production method can be easily produced by oxidizing a corresponding olefin derivative. (IV— 3) Enzymatic Production by Stereoselective Solvolysis
さらに、 先述の一般式 (6) で表される光学活性 1 , 2-二置換- 2, 3-ジヒ ドロキシプロパン類は、 下記一般式 ( 14)
Figure imgf000031_0001
Further, the optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the above-mentioned general formula (6) are represented by the following general formula (14)
Figure imgf000031_0001
(式中、 A 及び Bは一般式 ( 1) と同義であり、 R6は一般式 ( 11) と同義で ある。 ) で表されるラセミ体の 1 , 2—二置換一 2—ヒドロキシー 3—ァシロキ シプロパン類を、 立体選択的加溶媒分解能を有する酵素の存在下、 下記一般式(Wherein, A and B have the same meanings as in the general formula (1), and R 6 has the same meaning as the general formula (11).) A racemic 1,2-disubstituted 1-2-hydroxy-3 —Acyloxypropanes can be prepared by the following general formula in the presence of an enzyme having stereoselective solvolysis ability
( 15) (15)
R80H (15) R 8 0H (15)
(式中、 R 8は水素原子又は置換基を有していてもよい炭素数 1〜 20のアルキ ル基を示す。 ) で表される化合物と反応させて、 先述の (IV— 2) で述べたよう な、 一般式 ( 12) で表される光学活性 1, 2—二置換— 2—ヒドロキシ— 3— ァシロキシプロパン類と、 一般式 ( 12) で表される化合物とは光学対掌体であ る一般式 ( 13) で表される光学活性 1, 2—二置換 _ 2, 3—ジヒドロキシプ 口パン類を生成させ、 所望の立体構造を有する光学異性体である、 一般式 ( 1 3) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類 (つ まり、 一般式 (6) に同じ。 ) を分取して製造することができる。 (In the formula, R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a substituent.) The compound is reacted with the compound represented by the above formula (IV-2). As described above, the optically active 1,2-disubstituted-2-hydroxy-3-acyloxypropane represented by the general formula (12) and the compound represented by the general formula (12) are optically enantiomers. An optically active 1,2-disubstituted_2,3-dihydroxypropane represented by the general formula (13) represented by the general formula (13) It can be produced by fractionating optically active 1,2-disubstituted 1,2,3-dihydroxypropanes (ie, the same as general formula (6)) represented by 13).
または、 光学活性 1 , 2—二置換一 2—ヒドロキシー 3—ァシロキシプロパン 類が所望の立体構造を有している際には、 反応後さらに加溶媒分解して一般式 Alternatively, when the optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes have a desired steric structure, they are further solvolyzed after the reaction to give a compound of the general formula
( 6) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類と し、 これを分取することによつても製造することができる。 ここで、 この酵素反応の反応原料であるラセミ体の 1, 2—二置換一 2—ヒド 口キシ— 3—ァシロキシプロパン類は新規化合物であり、 この製造方法について は後述する。 The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by (6) can also be produced by fractionation. Here, racemic 1,2-disubstituted 1,2-hydroxy xy-3-acyloxypropanes, which are raw materials for the enzymatic reaction, are novel compounds, and the production method thereof will be described later.
一般式 ( 1 4 ) における R 6における具体的な基は、 先述の (IV— 2 ) にて記 載したとおりである。 この加溶媒分解に関する酵素反応においては、 R 6として n—プロピル基、 i一プロピル基、 または n—ペンチル基が反応速度及び立体選 択性が高く好ましい。 Specific groups of R 6 in the general formula (14) are as described in the above (IV-2). In the enzymatic reaction relating to the solvolysis, an n-propyl group, an i-propyl group or an n-pentyl group is preferred as R 6 because of its high reaction rate and stereoselectivity.
この酵素反応に用いられる酵素としては、 ラセミ体の 1 , 2—二置換一 2—ヒ ドロキシー 3—ァシロキシプロパン類に対する立体選択的加溶媒分解能を有する 酵素であれば任意のものを用いることができる。 具体的には Penicillium属、 Ps eudomonas 属、 Alcaligen es属、 Rhizopus属、 あるレヽ {ま Aspergilus属(こ属する微 生物由来のリパーゼ等が挙げられ、 中でも好ましくは Penicillium属又は Pseudo monas属に属する微生物由来のリパーゼ等が挙げられる。 またこれらの酵素は生 酵素のまま、 又はアセトン処理、 凍結乾燥等の処理を施したもの、 これらの酵素 を担体に固定化したものを用いてもよい。 更には、 遺伝子組換によって適当な発 現系により得られたものを用いてもよい。  As the enzyme used in this enzymatic reaction, any enzyme can be used as long as it has a stereoselective solvolysis ability to racemic 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes. it can. Specific examples include the genus Penicillium, the genus Pseudomonas, the genus Alcaligenes, the genus Rhizopus, and the genus Aspergilus (a lipase derived from a microorganism belonging to the genus, and particularly, a microorganism derived from the genus Penicillium or Pseudomonas. These enzymes may be raw enzymes, or those treated with acetone, freeze-drying, or the like, or those obtained by immobilizing these enzymes on a carrier. Those obtained by a suitable expression system by genetic recombination may be used.
先述の Penicill ium属、 Pseudomonas 属、 Alcaiigenes属、 Rhizopus属、 又は A spergilus属に属する微生物由来のリバ一ゼ等としては、 具体的には Lipase R (P enicill ium属、 天野製薬 (株) 製) 、 Lipase AK (Pseudomonas 属、 天野製薬 (株) 製) 、 Lipase AKG (Pseudomonas属、 天野製薬 (株) 製) 、 Toyozyme LIP (Pseudomonas 属、 東洋紡 (株) 製) 、 Lipase QL (Alcaligenes 属、 名糖産業 (株) 製) 、 Lipase PL (Alkaligenes 属、 名糖産業 (株) 製) LipaseD (Rhiz opus属、 天野製薬 (株) 製) 、 Lipase AP6 (A spergi l lus属、 Fluka 製) 等が挙 げられる。  Examples of the above-mentioned rivase derived from a microorganism belonging to the genus Penicillium, Pseudomonas, Alcaiigenes, Rhizopus, or A spergilus include Lipase R (Penicillium genus, Amano Pharmaceutical Co., Ltd.) , Lipase AK (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AKG (genus Pseudomonas, manufactured by Amano Pharmaceutical Co., Ltd.), Toyozyme LIP (genus Pseudomonas, manufactured by Toyobo Co., Ltd.), Lipase QL (genus, Alcaligenes, name sugar) Industrial Co., Ltd.), Lipase PL (genus Alkaligenes, manufactured by Meito Sangyo Co., Ltd.) Lipase D (Rhiz opus, manufactured by Amano Pharmaceutical Co., Ltd.), Lipase AP6 (genus Aspergillus, manufactured by Fluka), etc. I can do it.
これらの酵素は、 反応原料であるラセミ体の 1 , 2—二置換一 2—ヒドロキシ — 3—ァシロキシプロパン類の種類によって反応性、 選択性が異なるので、 酵素 の使用量は適宜設定すればよいが、 通常、 反応原料に対して 0 . 0 1〜5重量倍、 中でも 0 . 0 5〜 2重量倍用いるのが好ましい。  These enzymes have different reactivities and selectivities depending on the type of racemic 1,2-disubstituted 1,2-hydroxy-3-acyloxypropanes used as the starting material for the reaction. Usually, it is preferably used in an amount of 0.01 to 5 times, more preferably 0.05 to 2 times the weight of the reaction raw material.
一般式 ( 1 5 ) で表される化合物において、 R 8は水素原子;メチル基、 ェチ ル基、 n—プロピル基、 i—プロピル基、 n—ブチル基、 n—ペンチル基、 n— へキシル基、 n—ヘプチル基、 n—ゥンデシル基、 n—トリデシル基、 n—ペン 夕デシル基、 n—ヘプ夕デシル基、 t一ブチル基、 2—ェチルペンチル基等の炭 素数 1〜2 0の直鎖もしくは分岐鎖アルキル基を示す。 好ましくは、 水素原子、 メチル基、 ェチル基、 n—プロピル基、 n—ブチル基であり、 特に水素原子であ る場合、 即ち一般式 ( 1 5 ) で表される化合物として水を用いることが、 安価且 つ反応速度及び立体選択性が高いので好ましい。 In the compound represented by the general formula (15), R 8 is a hydrogen atom; a methyl group, an ethyl group , N-propyl, i-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-pentyl, n-tridecyl, n-pentyldecyl A straight-chain or branched-chain alkyl group having 1 to 20 carbon atoms, such as n-heptanyldecyl group, t-butyl group, 2-ethylpentyl group and the like. Preferred are a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. In particular, when a hydrogen atom is used, that is, water may be used as the compound represented by the general formula (15). It is preferable because it is inexpensive and has high reaction rate and stereoselectivity.
一般式 ( 1 5 ) で表される化合物の使用量は、 ラセミ体の 1 , 2—二置換— 2 —ヒドロキシ一 3—ァシロキシプロパン類に対して 0 . 5倍モル以上用いればよ い。  The amount of the compound represented by the general formula (15) may be at least 0.5 times the molar amount of the racemic 1,2-disubstituted-2-hydroxy-1-acyloxypropane.
この酵素反応においては、 例えばラセミ体の 1, 2—二置換一 2—ヒドロキシ 一 3—ァシロキシプロパン類と一般式 ( 1 5 ) で表される化合物を溶解または懸 濁させた溶液又は混合物中に酵素を添加し、 攪拌あるいは振盪することにより行 われる。  In this enzymatic reaction, for example, a solution or mixture in which racemic 1,2-disubstituted 1-2-hydroxy-13-acyloxypropanes and a compound represented by the general formula (15) are dissolved or suspended is used. This is done by adding the enzyme to the mixture and stirring or shaking.
使用する酵素に応じてラセミ体の 1, 2—二置換一 2, 3—ジヒドロキシプロ パン類の一方の光学異性体のみがカルボン酸エステル又は酸無水物と反応して、 対応するエステル体である、 光学活性 1 , 2—二置換一 2—ヒドロキシー 3—ァ シロキシプロパン類となる。  Depending on the enzyme used, only one optical isomer of the racemic 1,2-disubstituted 1,2,3-dihydroxypropane reacts with the carboxylic acid ester or acid anhydride to form the corresponding ester The resulting optically active compounds are 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes.
反応終了後、 酵素を濾別、 遠心分離、 又は水を加えて分液する等の慣用の操作 〖こより分離し、 濾液又は有機層を濃縮後、 抽出、 結晶化、 あるいはカラムクロマ トグラフィ一等により精製すれば、 一般式 ( 1 2 ) で表される光学活性 1, 2— 二置換一 2—ヒドロキシ一 3—ァシロキシプロパン類が得られる。 この際、 光学 対掌体である、 光学活性 1 , 2—二置換— 2、 3—ジヒドロキシプロパン類を結 晶化等によって単離しておくと、 上述の精製操作が簡便となるので好ましい。 このエステル体が、 所望の立体構造を有する光学活性体である場合には、 精製 した後に酸又はアル力リによって加溶媒分解することで、 高光学純度の光学活性 1 , 2—二置換一 2 , 3—ジヒドロキシプロパン類を得ることができる。  After the reaction is completed, the enzyme is separated by filtration, centrifuged, or separated by adding water.A conventional procedure such as separation and concentration of the filtrate or organic layer, followed by extraction, crystallization, purification by column chromatography, etc. Then, optically active 1,2-disubstituted 1-2-hydroxy-13-acyloxypropanes represented by the general formula (12) can be obtained. At this time, it is preferable to isolate the optically active 1,2-disubstituted-2,3-dihydroxypropanes, which are optical enantiomers, by crystallization or the like, since the above-mentioned purification operation is simplified. When the ester is an optically active substance having a desired steric structure, it is purified and then subjected to solvolysis with an acid or an alkaline solvent to obtain an optically active 1,2-disubstituted 1 2 having a high optical purity. , 3-Dihydroxypropanes can be obtained.
また酵素反応後、 所望の立体構造を有する光学活性体がエステル化されずに生 成する場合、 つまり一般式 ( 6 ) で表される光学活性 1 , 2—二置換— 2, 3— ジヒドロキシプロパン類が得られる場合には、 これを反応液から結晶化等により 分離すればよい。 When an optically active substance having a desired steric structure is formed without esterification after the enzymatic reaction, that is, the optically active 1,2-disubstituted 2,3-disubstituted compound represented by the general formula (6) When dihydroxypropanes are obtained, they may be separated from the reaction solution by crystallization or the like.
更には、 この酵素反応を繰り返し行うことにより、 一般式 (6 ) で表される光 学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の光学純度をさらに高 めることもできるので好ましい。  Further, by repeating this enzymatic reaction, the optical purity of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (6) can be further increased. preferable.
この酵素反応に用いられる溶媒としては任意のものが使用可能であり、 例えば ジェチルエーテル、 ジイソプロピルエーテル、 テトラヒドロフラン等のエーテル 系溶媒、 へキサン、 ヘプタン等の脂肪族炭化水素系溶媒、 トルエン、 キシレン等 の芳香族炭化水素系溶媒、 アセトン、 メチルェチルケトン、 メチルイソプチルケ トン等のケトン溶媒、 クロ口ホルム、 クロ口ベンゼン等のハロゲン系溶媒、 ァセ トニトリル、 プロピオ二トリル、 プチロニトリル等の二トリル類、 ジメチルホル ムアミ ド、 N—メチルビ口リ ドン等のアミ ド系溶媒、 ジメチルスルホキシド等が 挙げられる。  Any solvent can be used as the solvent used in the enzymatic reaction, for example, ether solvents such as getyl ether, diisopropyl ether and tetrahydrofuran, aliphatic hydrocarbon solvents such as hexane and heptane, toluene, xylene and the like. Aromatic hydrocarbon solvents, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, halogen solvents such as chloroform and benzene, etc., and acetone solvents such as acetonitrile, propionitrile and ptyronitrile Examples include amide solvents such as tolyls, dimethylformamide, and N-methylbiopenidone, and dimethyl sulfoxide.
中でも、 一般式 ( 1 5 ) で表される化合物として水を用いた場合には、 有機溶 媒、 好ましくは非水溶性有機溶媒の存在下でこの酵素反応を行うと、 1 , 2—二 置換一 2—ヒドロキシー 3—ァシロキシプロパン類を効果的に反応系中に分散さ せることができ、 操作性及び反応性を向上させることができるので好ましい。 特 に非水溶性の有機溶媒として、 エーテル系溶媒、 芳香族炭化水素系溶媒、 ケトン 溶媒、 ハロゲン系溶媒等を用いると、 酵素反応速度が速くなるので好ましい。 溶媒の使用量は反応原料であるラセミ体の 1, 2—二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類の重量に対して 0 ~ 1 0倍量、 好ましくは 0〜 5倍量 用いればよい。  In particular, when water is used as the compound represented by the general formula (15), when this enzymatic reaction is carried out in the presence of an organic solvent, preferably a water-insoluble organic solvent, 1,2-disubstitution is performed. It is preferable because the 2-hydroxy-3-acyloxypropanes can be effectively dispersed in the reaction system, and the operability and reactivity can be improved. Particularly, it is preferable to use an ether solvent, an aromatic hydrocarbon solvent, a ketone solvent, a halogen solvent, or the like as the water-insoluble organic solvent because the enzyme reaction rate is increased. The solvent is used in an amount of 0 to 10 times, preferably 0 to 5 times, the weight of the racemic 1,2-disubstituted 1,2-hydroxy-3-acyloxypropane as the reaction raw material. Good.
本反応は 0 ~ 1 0 0 ° (:、 好ましくは 1 0〜 5 0 °Cの範囲で、 5時間〜数日間反 応させればよい。  This reaction may be carried out at 0 to 100 ° (preferably at 10 to 50 ° C) for 5 hours to several days.
この酵素反応に用いる一般式 ( 1 0 ) で表されるラセミ体の 1, 2—二置換一 2 , 3—ジヒドロキシプロパン類は公知の製造方法によって製造すればよい。 そ の製造方法は例えば、 特開平 2— 3 0 4 0 4 3号公報等に記載されているとおり、 対応するォレフィン誘導体を酸化することにより容易に製造することができる。 また、 一般式 ( 1 5 ) で表される化合物として水を用いた場合には、 酵素の種 類により、 最適な pHを維持しながら反応を行うことが好ましく、 通常 pH6~ 10の範囲、 好ましくは 7~8の範囲に維持することが好ましい。 pHを維持す る方法としては、 酵素反応によって 1, 2—二置換ー2—ヒドロキシー 3—ァシ ロキシプロパン類から生成するカルボン酸を、 塩基の添加により中和しながら反 応を行うか、 適当な緩衝溶液を使用するのが好ましい。 使用される塩基としては 任意のものが使用可能であり、 例えば具体的にはトリエチルァミン、 N , N—ジ メチルァニリン等のアミン類、 ピリジン、 ビコリン、 ルチジン等のビリジン類、 ナトリゥムメ トキシド、 ナトリゥムエトキシド等の金属アルコキシド、 水酸化ナ トリウム、 水酸化力リゥム、 炭酸力リゥム、 炭酸ナトリゥム等の無機塩基等が挙 げられる。 中でも水酸化ナトリウム、 水酸化カリウム、 炭酸カリウム、 炭酸ナト リゥム等の無機塩基が安価で入手が容易であるので好ましい。 The racemic 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (10) used in this enzyme reaction may be produced by a known production method. As described in, for example, Japanese Patent Application Laid-Open No. 2-30443, such a production method can be easily produced by oxidizing a corresponding olefin derivative. When water is used as the compound represented by the general formula (15), the enzyme species Depending on the type, it is preferable to carry out the reaction while maintaining the optimum pH, and it is usually preferable to maintain the pH in the range of 6 to 10, preferably in the range of 7 to 8. As a method of maintaining the pH, a reaction is carried out while neutralizing the carboxylic acid generated from the 1,2-disubstituted-2-hydroxy-3-acyloxypropanes by an enzymatic reaction by adding a base. Preferably, a suitable buffer solution is used. As the base to be used, any base can be used. For example, specifically, amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicoline, lutidine, sodium methoxide, sodium methoxide, etc. Examples include metal alkoxides such as muethoxide, and inorganic bases such as sodium hydroxide, hydroxylated lime, carbonated lime, and sodium carbonate. Of these, inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate are preferable because they are inexpensive and easily available.
(IV- 3 - 1 ) 1, 2—二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類の  (IV-3-1) 1,2-disubstituted mono-2-hydroxy-3-acyloxypropanes
(IV- 3) における酵素反応の反応原料であるラセミ体の 1 , 2—二置換一 2 —ヒドロキシ一 3—ァシロキシプロパン類が新規化合物であることは先述の通り である。 この新規化合物の製造方法は、 例えば以下のようにして行えばよい。 先述の一般式 ( 10) で表されるラセミ体の 1, 2—二置換— 2, 3—ジヒド ロキシプロパン類に、 塩基の存在下、 下記一般式 ( 16)又は ( 17) で表され るカルボン酸誘導体を反応させることにより、 製造することができる。 As described above, racemic 1,2-disubstituted 1-2-hydroxy-13-hydroxylpropanes, which are raw materials for the enzymatic reaction in (IV-3), are novel compounds. This novel compound can be produced, for example, as follows. In the presence of a base, a racemic 1,2-disubstituted 2,3-dihydroxypropane represented by the aforementioned general formula (10) is represented by the following general formula (16) or (17) It can be produced by reacting a carboxylic acid derivative.
R6COY (16) R 6 COY (16)
(R6C〇) 20 (17) (R 6 C〇) 2 0 (17)
(式中、 R 6は一般式 (11) と同義であり、 Yはハロゲン原子を示す。 ) この反応は、 カルボン酸誘導体として酸クロライ ド、 塩基としてトリェチルァ ミンを用いた、 強いァシル化条件下においても、 ラセミ体の 1, 2—二置換一 2, 3—ジヒドロキシプロパン類のヒドロキシ基の一方のみがァシル化されて目的物 を生成する、 優れた製造法である。 一般式 ( 1 6 ) において、 Yとしては塩素原子又は臭素原子が好ましく、 特に 塩素原子が好ましい。 (In the formula, R 6 has the same meaning as in the general formula (11), and Y represents a halogen atom.) This reaction is carried out under strong acylation conditions using acid chloride as a carboxylic acid derivative and triethylamine as a base. This is an excellent production method in which only one of the hydroxy groups of the racemic 1,2-disubstituted 1,2,3-dihydroxypropanes is acylated to produce the desired product. In the general formula (16), Y is preferably a chlorine atom or a bromine atom, particularly preferably a chlorine atom.
—般式 ( 1 6 ) で表されるカルボン酸誘導体としては、 具体的にはァセチルク ロリ ド、 ァセチルブロミ ド、 プロピオニルクロリ ド、 プロピオニルクロリ ド、 n —プチリルクロリ ド、 i一プチリルクロリ ド、 n—バレリルクロリ ド、 i一バレ リルクロリ ド、 n—力プロイルク口リ ド、 n—ォクタノイルク口リ ド、 n—デカ ノイルク口リ ド、 n—ラウロイルグロリ ド、 ベン Vイルクロリ ド等のカルボン酸 ハライ ドが挙げられる。 一般式 ( 1 7 ) で表されるカルボン酸誘導体としては、 具体的には無水酢酸、 無水プロビオン酸、 無水酪酸、 無水イソ酪酸、 無水吉草酸、 無水イソ吉草酸、 無水カブロン酸、 無水力プリル酸、 無水力プリン酸、 無水ラウ リン酸、 無水安息香酸等のカルボン酸無水物が挙げられる。 中でもァセチルクロ リ ド、 プロピオニルクロリ ド、 n—ブチリルクロリ ド、 i—ブチリルクロリ ド、 n—カブ口イルクロリ ド、 無水酢酸、 無水プロビオン酸、 無水酪酸、 無水イソ酪 酸、 無水カブロン酸等が好ましく、 特に n—プチリルクロリ ド、 i一プチリルク ロリ ド、 無水酪酸、 無水イソ酪酸が好ましい。  — Specific examples of the carboxylic acid derivative represented by the general formula (16) include acetyl chloride, acetyl bromide, propionyl chloride, propionyl chloride, n-butyryl chloride, i-butyryl chloride, and n-valeryl chloride. And carboxylic acid halides such as i-valeryl chloride, n-caprolactyl, n-octanoylchloride, n-decanoylchloride, n-lauroylglolide and benVylchloride. Specific examples of the carboxylic acid derivative represented by the general formula (17) include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, caproic anhydride, and anhydrous prill. Examples include carboxylic anhydrides such as acids, anhydrous pric acid, lauric anhydride, and benzoic anhydride. Of these, acetyl chloride, propionyl chloride, n-butyryl chloride, i-butyryl chloride, n-cubic yl chloride, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, and cabronic anhydride are preferred, and n is particularly preferred. — Butyryl chloride, i-butyryl chloride, butyric anhydride, isobutyric anhydride are preferred.
カルボン酸誘導体の使用暈は 1, 2—二置換一 2, 3—ジヒドロキシプロパン 類の当量以上用いればよく、 1 . 0 ~ 1 . 5当量用いるのが好ましい。  The carboxylic acid derivative may be used in an amount of at least the equivalent of 1,2-disubstituted 1,2,3-dihydroxypropanes, preferably 1.0 to 1.5 equivalents.
使用される塩基としては任意のものを使用可能であるが、 例えばトリエチルァ ミン、 N, N—ジメチルァニリン等のアミン類、 ピリジン、 ピコリン、 ルチジン 等のピリジン類、 水酸化ナトリゥム、 水酸化力リゥム、 炭酸力リゥム、 炭酸ナト リゥム等の無機塩基等が挙げられる。 中でもァミン類又はピリジン類が好ましい。 塩基の使用量は 1 , 2—二置換— 2 , 3—ジヒドロキシプロパン類の当量以上用 いればよく、 1 . 0〜2 . 0当量用いるのが好ましい。  Any base can be used, for example, amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, picoline, lutidine, sodium hydroxide, and hydroxylated water. And inorganic bases such as carbon dioxide carbonate and sodium carbonate. Among them, amines or pyridines are preferred. The base may be used in an amount of at least the equivalent of 1,2-disubstituted-2,3-dihydroxypropanes, and is preferably used in an amount of 1.0 to 2.0 equivalents.
この反応に用いられる溶媒としては任意のものが使用可能であり、 例えばジェ チルエーテル、 ジイソプロピルエーテル、 テトラヒドロフラン等のエーテル系溶 媒、 へキサン、 ヘプタン等の脂肪族炭化水素系溶媒、 トルエン、 キシレン等の芳 香族炭化水素系溶媒、 酢酸メチル、 酢酸ェチル等のエステル系溶媒、 アセトン、 メチルェチルケトン、 メチルイソブチルケトン等のケトン溶媒、 クロ口ホルム、 クロ口ベンゼン等のハロゲン系溶媒、 ァセ 卜二ト リル、 プロピオ二トリル、 プチ ロニ卜リル等の二卜リル類、 ジメチルホルムアミ ド、 ジメチルスルホキシド、 N ーメチルビロリ ドン等が挙げられる。 これらは単独でも混合して用いてもよい。 溶媒の使用量は、 ラセミ体の 1 , 2—二置換一 2, 3—ジヒドロキシプロパン 類の重量に対して 0〜 10倍量用いればよい。 Any solvent can be used for this reaction, for example, ether solvents such as ethyl ether, diisopropyl ether, and tetrahydrofuran; aliphatic hydrocarbon solvents such as hexane and heptane; and toluene and xylene. Aromatic hydrocarbon solvents, ester solvents such as methyl acetate and ethyl acetate, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, halogen solvents such as chloroform and benzene, etc. Nitril, propionitrile, petit Examples include nitriles such as lonitolil, dimethylformamide, dimethylsulfoxide, N-methylbirolidone, and the like. These may be used alone or as a mixture. The solvent may be used in an amount of 0 to 10 times the weight of the racemic 1,2-disubstituted 1,2,3-dihydroxypropane.
反応温度は一 50〜 150°C、 好ましくは一 20〜: L 00°Cの範囲であり、 反 応時間は通常 30時間以内である。  The reaction temperature is in the range of from 150 to 150 ° C, preferably from 120 to: 00 ° C, and the reaction time is usually within 30 hours.
(IV— 4) 光学活性エポキシ化合物の立体構造反転開環による製造法  (IV-4) Preparation of Optically Active Epoxy Compounds by Ring Opening
先述の一般式 (6) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキ シプロパン類は、 下記一般式 ( 18)  The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) are represented by the following general formula (18)
A ( 18) A (18)
(式中、 A、 Bは一般式 ( 1) と同義。 ) で表される光学活性 1, 2—二置換一 2, 3—エポキシプロパン類を、 (a) 酸の存在下加水分解する、 又は (b) 力 ルボン酸の存在下にて開環させ、 次いで加溶媒分解することで製造することがで きる。 (Wherein A and B have the same meanings as in the general formula (1)), and hydrolyzes an optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the following formula (a): Or (b) Ring opening in the presence of rubonic acid, followed by solvolysis.
製造方法 (a) について Manufacturing method (a)
製造方法 (a) においては、 一般式 ( 18) で表される光学活性 1, 2—二置 換— 2, 3—エポキシプロパン類を水の存在下で酸と反応させて、 エポキシ基を 加水分解することにより行われる。 反応終了後、 適宜有機溶媒で生成物を抽出し、 この有機層から生成物を結晶化、 蒸留、 あるいはカラムクロマトグラフィー等に より精製することで、 一般式 ( 18) とは立体構造が反転した、 高光学純度の光 学活性 1、 2—二置換一 2, 3—ジヒドロキシプロパン類が得られる。 加水分解 反応である製造方法 (a) は、 一段の反応で目的物が生成し、 且つその光学的収 率が良いという利点を有する。  In the production method (a), the epoxy group is hydrolyzed by reacting an optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) with an acid in the presence of water. This is done by disassembly. After completion of the reaction, the product was appropriately extracted with an organic solvent, and the product was purified from the organic layer by crystallization, distillation, column chromatography, or the like. Thus, optically active 1,2-disubstituted 1,2,3-dihydroxypropanes having high optical purity can be obtained. The production method (a), which is a hydrolysis reaction, has the advantage that the target product is formed in a single-step reaction and the optical yield is good.
加水分解に用いる酸としては、 具体的には硫酸、 塩酸、 臭化水素酸、 ヨウ化水 素酸、 硝酸、 リン酸、 過塩素酸、 塩素酸、 亜塩素酸、 次亜塩素酸、 ホウ酸等の無 機酸、 メタンスルホン酸、 トリフルォロメ夕ンスルホン酸、 p- トルエンスルホ ン酸等の有機酸、 ボロントリフルオリ ド、 四塩化チタン、 四塩化スズ、 塩化アル ミニゥム、 塩化鉄、 五フッ化アンチモン、 イッテルビウムトリフラー卜等のルイ ス酸等が挙げられる。 中でも生成物である光学活性 1 , 2—二置換一 2 , 3—ジ ヒドロキシプロパン類の光学純度及び収率が共に高くなるので無機酸を用いるこ とが好ましく、 特に硫酸が好ましい。 使用する酸の量は、 反応原料である一般式 ( 1 8 ) で表される光学活性 1 , 2—二置換一 2, 3—エポキシプロパン類に対 して、 0 . 0 1〜1 0 0当量、 中でも 0 . 1〜 1 0当量用いるのが好ましい。 水の使用量は、 先述の反応原料の当量以上用いればよいが、 中でも 1 ~ 1 0当 量、 特に 1〜5当量用とすることで、 生成物の光学純度及び収率が共に高くなる ので好ましい。 特に酸として無機酸、 中でも硫酸を用いる場合には、 水を反応原 料に対して 3 ~ 6当量用いることが好ましい。 この際、 水の使用量がこの範囲を 越えると生成物の光学純度が低下する場合がある。 さらには、 酸として硫酸を用 いる場合には、 水と酸硫酸を予じめ混合して硫酸水としたものを使用すると、 水 と硫酸を別々に使用した場合に比べて、 生成物の光学純度が高くなるので好まし い。 Specific examples of the acid used for the hydrolysis include sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid. Organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid, boron trifluoride, titanium tetrachloride, tin tetrachloride, and aluminum chloride Minium, iron chloride, antimony pentafluoride, Louis acid such as ytterbium triflate and the like. Among them, the use of an inorganic acid is preferred, and sulfuric acid is particularly preferred, since both the optical purity and the yield of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes, which are products, are increased. The amount of the acid to be used is 0.01 to 100 with respect to the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (18) as a reaction raw material. It is preferable to use equivalents, especially 0.1 to 10 equivalents. The amount of water used may be at least the equivalent of the above-mentioned reaction raw materials, but the use of 1 to 10 equivalents, especially 1 to 5 equivalents, increases both the optical purity and the yield of the product. preferable. In particular, when an inorganic acid is used as the acid, especially when sulfuric acid is used, it is preferable to use 3 to 6 equivalents of water based on the reaction raw material. At this time, if the amount of water used exceeds this range, the optical purity of the product may decrease. Furthermore, when sulfuric acid is used as the acid, the use of a mixture of water and acid sulfuric acid in advance to form a sulfuric acid solution, compared to the case where water and sulfuric acid are used separately, results in a higher optical quality of the product. It is preferable because the purity is high.
この酵素反応に用いられる溶媒としては任意のものが使用可能であり、 例えば ジェチルエーテル、 ジイソプロビルエーテル、 ジブチルエーテル、 テトラヒドロ フラン等、 テトラヒドロピラン、 ジォキサン、 エチレングリコールジメチルェ一 テル、 エチレングリコールジェチルエーテル、 エチレングリコールジブチルエー テル、 ジエチレングリコールジメチルェ一テル、 ジエチレングリコールジェチル エーテル、 ジエチレングリコールジブチルエーテル等のエーテル系溶媒、 酢酸ェ チル、 酢酸メチル、 プロビオン酸メチル等のエステル系溶媒、 t—ブチルアルコ ール、 t—ァミルアルコール等のアルコール溶媒、 へキサン、 ヘプタン等の脂肪 族炭化水素系溶媒、 トルエン、 キシレン等の芳香族炭化水素系溶媒、 アセトン、 メチルェチルケトン、 メチルイソプチルケトン等のケトン溶媒、 ジクロロメタン、 クロ口ホルム、 クロ口ベンゼン等のハロゲン系溶媒、 ァセトニトリル、 プロピオ 二トリル、 プチロニトリル等の二トリル類、 ジメチルホルムアミ ド、 N—メチル ピロリ ドン等のアミ ド系溶媒、 ジメチルスルホキシド等が挙げられる。 これらは 単一でもまた混合溶媒として用いてもよい。  Any solvent can be used as a solvent for this enzymatic reaction, for example, dimethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, etc., tetrahydropyran, dioxane, ethylene glycol dimethyl ether, ethylene glycol gel, etc. Ether solvents such as butyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and diethylene glycol dibutyl ether; ester solvents such as ethyl acetate, methyl acetate, and methyl propionate; t-butyl alcohol Alcohol solvents such as tert-amyl alcohol, aliphatic hydrocarbon solvents such as hexane and heptane, aromatic hydrocarbon solvents such as toluene and xylene, acetone, Ketone solvents such as rutile ketone and methyl isobutyl ketone; halogen solvents such as dichloromethane, chloroform, and benzene; nitriles such as acetonitrile, propionitrile, and ptyronitrile; dimethylformamide; N-methylpyrrolidone; And dimethyl sulfoxide. These may be used alone or as a mixed solvent.
上述した溶媒においては、 生成物である光学活性 1 , 2 _二置換一 2, 3—ジ ヒドロキシプロパン類の光学純度や収率が高いことから、 エーテル系溶媒、 ケト ン系溶媒、 エステル系溶媒、 アミ ド系溶媒を用いることが好ましい。 これらのう ちエーテル系溶媒、 ケトン系溶媒、 エステル系溶媒を用いると、 生成物の光学純 度と収率が共に高くなるので好ましく、 中でもエチレングリコールエーテル類又 は 6員環構造を有するエーテル類が好ましく、 特にジエチレングリコールジェチ ルェ一テルが好ましい。 In the solvent described above, the product, optically active 1,2_disubstituted 1,2,3-di It is preferable to use an ether-based solvent, a ketone-based solvent, an ester-based solvent, or an amide-based solvent because of the high optical purity and yield of hydroxypropanes. Of these, ether solvents, ketone solvents and ester solvents are preferred because both the optical purity and the yield of the product are increased. Among them, ethylene glycol ethers or ethers having a 6-membered ring structure are preferred. And particularly preferably diethylene glycol ethyl ether.
溶媒の使用量は、 反応原料である一般式 ( 18) で表される光学活性 1、 2— 二置換— 2、 3—エポキシプロパン類の重量に対して 0〜 100重量倍、 中でも 1〜20重量倍用いるのが好ましい。  The amount of the solvent used is 0 to 100 times the weight of the optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) as the reaction raw material, and especially 1 to 20 times. It is preferable to use it by weight.
反応温度は一 50〜: L 00°C、 好ましくは— 20~70°Cの範囲であり、 反応 時間は通常 48時間以内である。  The reaction temperature is in the range of from 50 to: 00 ° C, preferably from -20 to 70 ° C, and the reaction time is usually within 48 hours.
製造方法 (b) について Manufacturing method (b)
製造方法 (b) においては、 一般式 ( 18) で表される光学活性 1, 2—二置 換ー 2, 3—エポキシプロパン類をカルボン酸の存在下で開環させて、 次いで得 られたカルボン酸エステル類を加溶媒分解をすることにより行われる。  In the production method (b), the optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (18) was ring-opened in the presence of a carboxylic acid, and then obtained. It is carried out by solvolysis of carboxylic esters.
これらの反応終了後、 適宜有機溶媒で生成物を抽出し、 この有機層から生成物 を結晶化、 蒸留、 あるいはカラムクロマトグラフィー等により精製することで、 一般式 ( 18) とは立体構造が反転した、 高光学純度の光学活性 1、 2—二置換 —2, 3—ジヒドロキシプロパン類が得られる。 製造方法 (b) は開環反応と加 溶媒分解反応の二段反応を含むものであり、 製造方法 (a) に比べて光学的収率 が低い場合があるが、 反応に溶媒を用いる場合、 必ずしも親水性溶媒を必要とし ないことが特徴である。 つまり、 製造方法 (b) の反応原料である、 一般式 ( 1 8) で表される光学活性 1, 2—二置換一 2, 3—エポキシプロパン類を疎水性 溶媒を用いて製造する場合であっても、 これを反応系から単離することなく、 引 き続き同じ溶媒系にて製造方法 (b) を実施することが可能であり、 一般式 After completion of these reactions, the product is appropriately extracted with an organic solvent, and the product is purified from the organic layer by crystallization, distillation, column chromatography, or the like, whereby the three-dimensional structure is inverted from the general formula (18). As a result, optically active 1,2-disubstituted-2,3-dihydroxypropanes having high optical purity can be obtained. The production method (b) involves a two-stage reaction of a ring opening reaction and a solvolysis reaction, and the optical yield may be lower than that of the production method (a). It is characterized by not necessarily requiring a hydrophilic solvent. In other words, when the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (18), which is a reaction raw material of the production method (b), is produced using a hydrophobic solvent. Even if it is used, it is possible to continue the production method (b) in the same solvent system without isolating it from the reaction system.
( 6 ) で表される光学活性 1, 2—二置換— 2, 3—ジヒドロキシプロパン類の 製造においては総反応工程数が削減できるので、 工業的に有利な製造方法である。 製造方法 (b) に用いられるカルボン酸としては任意のものを使用可能である。 具体的には例えば、 ギ酸、 酢酸、 モノクロ口酢酸、 ジクロロ酢酸、 トリクロ口酢 酸、 トリフルォロ酢酸、 プロビオン酸、 酪酸、 吉草酸、 カプロン酸等が挙げられ る。 中でも安価で、 且つ生成物である光学活性 1, 2 - 二置換一 2, 3—ジヒド ロキシプロパン類の光学純度及び収率が共に高くなることから、 ギ酸が好ましい c カルボン酸の使用量としては、 先述した反応原料の当量以上用いればよく、 中で も 1〜1 0当量用いることで、 生成物である一般式 (6 ) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の光学純度及び収率が共に高くな るので好ましい。 The production of the optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by (6) is an industrially advantageous production method because the total number of reaction steps can be reduced. As the carboxylic acid used in the production method (b), any one can be used. Specifically, for example, formic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid vinegar Acid, trifluoroacetic acid, propionic acid, butyric acid, valeric acid, caproic acid and the like. Among them inexpensive, and the product is optically active 1, 2 - disubstituted one 2, 3 Jihido since Rokishipuropan such optical purity and yield of the are both high, as the amount of formic acid is preferably c carboxylic acid It is sufficient to use at least the equivalent of the above-mentioned reaction raw materials. Among them, the use of 1 to 10 equivalents makes it possible to obtain the optically active 1,2-disubstituted 1,2,3-substituted product represented by the general formula (6). It is preferable because the optical purity and the yield of dihydroxypropanes are both increased.
製造方法 (b ) においては、 適宜カルボン酸以外の酸を共存させてもよい。 こ の併用する酸としては、 硫酸、 塩酸、 臭化水素酸、 ヨウ化水素酸、 硝酸、 リン酸、 過塩素酸、 塩素酸、 亜塩素酸、 次亜塩素酸、 ホウ酸等の無機酸や、 メタンスルホ ン酸、 トリフルォロメ夕ンスルホン酸、 P - トルエンスルホン酸等の有機酸、 ボ ロントリフルオリ ド、 四塩化チタン、 四塩化スズ、 塩化アルミニウム、 塩化鉄、 五フッ化アンチモン、 ィッテルビウムトリフラ一ト等のルイス酸が挙げられる。 この併用する酸の使用量としては、 反応原料の光学活性 1, 2 - 二置換一 2 , 3 —エポキシプロパン類に対して 0〜1 0 0当量、 中でも 0〜 1 0当量用いるのが 好ましい。  In the production method (b), an acid other than a carboxylic acid may be appropriately co-present. Examples of the acid used in combination include inorganic acids such as sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid. , Methanesulfonate, trifluoromethanesulfonic acid, organic acids such as P-toluenesulfonic acid, boron trifluoride, titanium tetrachloride, tin tetrachloride, aluminum chloride, iron chloride, antimony pentafluoride, ytterbium triflate And Lewis acids. The amount of the acid to be used in combination is preferably from 0 to 100 equivalents, more preferably from 0 to 10 equivalents, based on the optically active 1,2-disubstituted 1,2,3-epoxypropane of the reaction raw material.
製造方法 (b ) での開環反応は、 さらに適宜溶媒の共存下に行ってもよい。 用 いられる溶媒としては任意のものを使用可能であるが、 具体的には先述の製造方 法 (a ) で例示した溶媒が挙げられ、 これらは単一でも混合溶媒として用いても よく、 またさらに溶媒として水を併用してもよい。 溶媒としてはベンゼン、 トル ェン、 キシレン、 クロ口ベンゼン等の芳香族系溶媒が好ましく、 特にクロ口ベン ゼンを用いると生成物の光学純度や収率が高くなり、 且つ反応の後処理が簡便で あるので好ましい。 溶媒の使用量は、 先述の反応原料である光学活性 1 , 2—二 置換一 2 , 3—エポキシプロパン類の重量に対して 0 ~ 1 0 0重量倍、 中でも 1 〜 2 0重量倍用いるのが好ましい。  The ring-opening reaction in the production method (b) may be further carried out in the presence of a solvent as appropriate. Although any solvent can be used, specific examples include the solvents exemplified in the above-mentioned production method (a), and these may be used alone or as a mixed solvent. Further, water may be used in combination as a solvent. As the solvent, aromatic solvents such as benzene, toluene, xylene, and benzene are preferable. Particularly, when benzene is used, the optical purity and yield of the product are increased, and the post-treatment of the reaction is easy. Is preferred. The amount of the solvent to be used is 0 to 100 times by weight, especially 1 to 20 times by weight, based on the weight of the optically active 1,2-disubstituted 1,2,3-epoxypropane as the above-mentioned reaction raw material. Is preferred.
製造方法 (b ) は、 先述の通り、 反応原料である光学活性 1, 2—二置換一 2, 3一エポキシプロパン類をカルボン酸の存在下で開環させ、 次いで得られたカル ボン酸エステルを加溶媒分解することによって行われる。 加溶媒分解反応におけ る溶媒としては、 水あるいはメタノール、 エタノール、 プロパノール、 ブタノ一 ル等のプロ トン性溶媒を用いることが好ましい。 加溶媒分解反応は、 酸性条件下 又は塩基性条件下のいずれで行ってもよいが、 反応速度及び反応収率が高いこと から塩基性条件下で実施することが好ましい。 As described above, the production method (b) is to open the ring of the optically active 1,2-disubstituted 1,2,3-epoxypropane as a reaction raw material in the presence of a carboxylic acid, and then obtain the obtained carboxylic acid ester. Is carried out by solvolysis. Solvents for the solvolysis reaction include water or methanol, ethanol, propanol, butanol It is preferable to use a protonic solvent such as toluene. The solvolysis reaction may be performed under either acidic conditions or basic conditions, but is preferably performed under basic conditions because of the high reaction rate and reaction yield.
酸性条件下で実施する場合には、 任意の酸を用いればよい。 酸としては例えば 硫酸、 塩酸、 臭化水素酸、 ヨウ化水素酸、 硝酸、 リン酸、 過塩素酸、 塩素酸、 亜 塩素酸、 次亜塩素酸、 ホウ酸等の無機酸や、 メタンスルホン酸、 P- トルエンス ルホン酸、 ギ酸等の有機酸が挙げられる。 中でも硫酸が好ましい。  When the reaction is performed under acidic conditions, any acid may be used. Examples of the acid include inorganic acids such as sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, phosphoric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, and boric acid, and methanesulfonic acid. And organic acids such as P-toluenesulfonic acid and formic acid. Among them, sulfuric acid is preferred.
加溶媒分解反応に用いる酸の量は、 開環反応における反応原料である光学活性 1, 2—二置換一 2, 3—エポキシプロパン類の 0. 01〜 10当量用いればよ い。 反応温度は— 50〜; 100°C、 好ましくは— 20〜 70°Cの範囲であり、 反 応時間は通常 48時間以内である。  The amount of the acid used in the solvolysis reaction may be 0.01 to 10 equivalents of the optically active 1,2-disubstituted 1,2,3-epoxypropane which is a reaction raw material in the ring opening reaction. The reaction temperature is in the range of −50 to 100 ° C., preferably −20 to 70 ° C., and the reaction time is usually within 48 hours.
塩基性条件下で実施する場合には、 任意の塩基を用いればよい。 塩基としては 例えばトリェチルァミン、 N, N—ジメチルァニリン等のアミン類、 ビリジン、 ビコリン、 ルチジン等のピリジン類、 ナトリウムメ トキシド、 ナトリウムェトキ シド等の金属アルコキシド、 水酸化ナトリウム、 水酸化カリウム、 炭酸カリウム、 炭酸ナトリゥム等の無機塩基等が挙げられる。 中でも金属アルコキシドゃ無機塩 基が好ましい。  When the reaction is carried out under basic conditions, any base may be used. Examples of the base include amines such as triethylamine, N, N-dimethylaniline, pyridines such as pyridine, bicholine, lutidine, metal alkoxides such as sodium methoxide and sodium ethoxide, sodium hydroxide, potassium hydroxide, and potassium carbonate. And inorganic bases such as sodium carbonate. Among them, metal alkoxides and inorganic bases are preferred.
加溶媒分解反応に用いる塩基の量は、 開環反応後に残る過剰のカルボン酸を中 和した後、 閧環反応の反応原料である光学活性 1 , 2—二置換— 2, 3 -ェポキ シプロパン類の当量以上用いればよく、 中でも 1~5当量用いるのが好ましい。 反応温度は— 50~150°C、 好ましくは— 20〜100°Cの範囲であり、 反応 時間は通常 48時間以内である。  The amount of the base used in the solvolysis reaction is determined by neutralizing the excess carboxylic acid remaining after the ring-opening reaction and then reacting the optically active 1,2-disubstituted-2,3-epoxypropane, which is the starting material for the ring-opening reaction. Or more, more preferably 1 to 5 equivalents. The reaction temperature is in the range of −50 to 150 ° C., preferably −20 to 100 ° C., and the reaction time is usually within 48 hours.
(IV— 4一 1) 光学活性 1 , 2—二置換一 2, 3—エポキシプロパン類の製造法 先述の製造方法 (a)、 (b) で用いる、 一般式 ( 18) で表される光学活性 1, 2—二置換— 2, 3—エポキシプロパン類は、 新規化合物である。 この化合 物の製造法は、 例えば以下に示す製造経路 ( 1)、 (2) にて製造することで、 工業的に有利に製造できる。 以下に、 各製造経路について説明する。 製造経路 ( 1 )
Figure imgf000042_0001
(IV—4-1) Optically active 1,2-disubstituted 1,2,3-epoxypropanes production method The optical system represented by the general formula (18) used in the production methods (a) and (b) described above. Active 1,2-disubstituted-2,3-epoxypropanes are new compounds. This compound can be produced industrially advantageously by, for example, producing it according to the following production routes (1) and (2). Hereinafter, each manufacturing route will be described. Manufacturing route (1)
Figure imgf000042_0001
(10) (20) (24)  (10) (20) (24)
②スルホン酸 導体 ②Sulfonic acid conductor
塩基
Figure imgf000042_0002
base
Figure imgf000042_0002
③埴基
Figure imgf000042_0003
③ Hanki
Figure imgf000042_0003
(a) 加水分解 (a) Hydrolysis
又は  Or
(b) 開環'加溶媒分解 (b) Ring opening 'solvolysis
Figure imgf000042_0004
Figure imgf000042_0004
(6)  (6)
(式中、 A、 Bは一般式 ( 1) と同義であり、 R6、 R7は一般式 ( 1 1 ) と同義 であり、 R5は一般式 (7) と同義である。 ) (Where A and B have the same meanings as in general formula (1), R 6 and R 7 have the same meanings as in general formula (11), and R 5 has the same meaning as general formula (7).)
製造経路 ( 1) はまず、 反応①として、 先述の (W— 2) の製造法によって、 一般式 (20) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロ パン類と、 その光学対掌体である、 一般式 (24) で表される光学活性 1, 2— 二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類を製造する。 この反応①に おいては、 酵素として Pseudomonas 属に属する微生物由来のリパーゼを用いるの が好ましい。 ついで、 得られた、 一般式 (2 0 ) と一般式 (2 4 ) で表される化合物の混合 物から、 化合物 (2 0 ) を単離し、 又は単離することなく塩基の存在下にてスル ホン酸誘導体と反応させて、 一般式 ( 1 9 ) の化合物を製造する (反応②) 。 こ れは、 反応②において一般式 (2 4 ) の化合物が共存しても、 実質的にスルホン 酸誘導体と反応することは無く、 そのまま又は一部は加水分解されて一般式 ( 6 ) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類と なるためである。 In the production route (1), the optically active 1,2-disubstituted 1,2,3-dihydroxypropane compound represented by the general formula (20) is first used as the reaction (1) by the above-mentioned production method (W-2). And producing an optically active 1,2-disubstituted 1,2-hydroxy-3-acyloxypropane represented by the general formula (24), which is an optical antipode thereof. In this reaction, it is preferable to use a lipase derived from a microorganism belonging to the genus Pseudomonas as the enzyme. Then, the compound (20) is isolated from the obtained mixture of the compound represented by the general formula (20) and the compound represented by the general formula (24) or in the presence of a base without isolation. The compound of the general formula (19) is produced by reacting with a sulfonic acid derivative (reaction 1). This is because even when the compound of the general formula (24) coexists in the reaction (1), it does not substantially react with the sulfonic acid derivative, and is hydrolyzed as it is or partially and represented by the general formula (6). Optically active 1,2-disubstituted 1,2,3-dihydroxypropanes.
スルホン酸誘導体としては、 先述の (III一 2 ) にて述べた通りの一般式 (8 ) 又は (9 ) で表されるスルホン酸誘導体を用いればよい。  As the sulfonic acid derivative, a sulfonic acid derivative represented by the general formula (8) or (9) as described in (III-12) above may be used.
一般式 (8 ) または (9 ) で表されるスルホン酸誘導体としては任意のもの を使用することが可能であり、 一般式 (8 ) で表されるスルホン酸誘導体として 好ましくは、 メタンスルホニルクロリ ドゃ p—トルエンスルホニルクロリ ド等が 挙げられる。 一般式 (9 ) で表されるスルホン酸誘導体としてはメタンスルホン 酸無水物や P—トルエンスルホン酸無水物が挙げられ、 中でも安価なメタンスル ホニルクロリ ドゃ p—トルエンスルホニルクロリ ドが好ましい。  As the sulfonic acid derivative represented by the general formula (8) or (9), any one can be used. As the sulfonic acid derivative represented by the general formula (8), methanesulfonyl chloride is preferable.ゃ p-toluenesulfonyl chloride and the like. Examples of the sulfonic acid derivative represented by the general formula (9) include methanesulfonic anhydride and P-toluenesulfonic anhydride, and among them, inexpensive methanesulfonyl chloride-p-toluenesulfonyl chloride is preferable.
スルホン酸誘導体の使用量は、 一般式 (2 0 ) で表される光学活性 1, 2—二 置換一 2, 3—ジヒドロキシプロパン類の当量以上用ればよく、 中でも 1 . 0〜 1 . 5当量用いるのが好ましい。  The amount of the sulfonic acid derivative to be used may be at least the equivalent of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (20), and particularly preferably from 1.0 to 1.5. It is preferable to use an equivalent amount.
使用される塩基としては任意のものが使用可能であり、 例えばトリエチルアミ ン、 N , N—ジメチルァニリン等のアミン類、 ピリジン、 ピコリン、 ルチジン等 のピリジン類、 ナトリウムメ トキシド、 ナトリウムエトキシド等の金属アルコキ シド、 水酸化ナトリウム、 水酸化力リウム、 炭酸力リゥム、 炭酸ナトリゥム等の 無機塩基等が挙げられ、 好ましくはアミン類ゃピリジン類が挙げられる。 塩基の 使用量は光学活性 1, 2—二置換一 2 , 3—ジヒドロキシプロパン類の当量以上 用いればよく、 通常 1 . 0〜2 . 0当量用いればよい。  Any base can be used, for example, amines such as triethylamine and N, N-dimethylaniline, pyridines such as pyridine, picoline and lutidine, sodium methoxide and sodium ethoxide. And inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium carbonate and the like, and preferably amines and pyridines. The base may be used in an amount of at least the equivalent of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes, and usually from 1.0 to 2.0 equivalents.
さらにこの反応②は、 適宜溶媒の存在下で実施してもよい。 用いる溶媒として は任意のものが使用でき、 例えばトルエン、 キシレン、 へキサン、 ヘプタン等の 炭化水素類、 ジェチルエーテル、 ジイソプロビルエーテル、 テトラヒドロフラン 等のエーテル類、 酢酸メチル、 酢酸ェチル等のエステル類、 クロ口ホルム、 クロ 口ベンゼン等のハロゲン系溶媒、 アセトン、 メチルェチルケトン、 メチルイソブ チルケトン等のケトン類、 ァセトニトリル、 プロピオ二卜リル、 ブチロニトリル 等の二トリル類、 ジメチルホルムアミ ド、 N- メチルビ口リ ドン、 ジメチルスル ホキシド、 水等の極性溶媒等が挙げらる。 これらは単一でも混合溶媒として用い てもよい。 また塩基としてアミン類又はピリジン類を使用する場合には、 この塩 基自身を溶媒として反応を実施してもよい。 溶媒の使用量は光学活性 1, 2—二 置換一 2, 3—ジヒドロキシプロパン類の重量に対して 0〜 10倍量用いればよ い。 反応温度は一 50~100°C、 好ましくは— 20~ 50°Cの範囲であり、 反 応時間は通常 30時間以内である。 Further, this reaction (2) may be carried out appropriately in the presence of a solvent. Any solvent can be used, for example, hydrocarbons such as toluene, xylene, hexane, and heptane; ethers such as getyl ether, diisopropyl ether, and tetrahydrofuran; and esters such as methyl acetate and ethyl acetate. , Black mouth Holm, Black Halogen solvents such as benzene, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, nitriles such as acetonitrile, propionitol, butyronitrile, dimethylformamide, N-methylbiopenidone, dimethyl sulfoxide And polar solvents such as water. These may be used alone or as a mixed solvent. When amines or pyridines are used as the base, the reaction may be carried out using the base itself as a solvent. The amount of the solvent used may be 0 to 10 times the weight of the optically active 1,2-disubstituted 1,2,3-dihydroxypropane. The reaction temperature is in the range of 50 to 100 ° C, preferably -20 to 50 ° C, and the reaction time is usually within 30 hours.
そして、 反応②の反応生成物から一般式 ( 19) で表される光学活性スルホン 酸エステル類を単離し或いは単離することなく、 塩基を作用させることにより、 目的物である一般式 ( 18) で表される光学活性 1, 2—二置換— 2, 3—ジヒ ドロキシプロパン類が得られる (反応③) 。  Then, the optically active sulfonic acid ester represented by the general formula (19) is isolated from the reaction product of the reaction (1) or without isolation, and by allowing a base to act thereon, the target compound represented by the general formula (18) The optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by are obtained (reaction ③).
反応③で用いられる塩基としては任意のものが使用可能であるが、 例えばトリ ェチルァミン、 N, N—ジメチルァニリン等のアミン類、 ピリジン、 ビコリン、 ルチジン等のピリジン類、 ナトリウムメ トキシド、 ナトリウムエトキシド等の金 属アルコキシド、 水酸化ナトリウム、 水酸化カリウム、 炭酸カリウム、 炭酸ナト リゥム等の無機塩基等が挙げられる。 中でも金属アルコキシド又は無機塩基が好 ましい。  Any base can be used as the base used in the reaction (3). Examples of the base include amines such as triethylamine and N, N-dimethylaniline, pyridines such as pyridine, bicoline and lutidine, sodium methoxide and sodium ethoxy. And inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and sodium carbonate. Among them, metal alkoxides and inorganic bases are preferred.
塩基の使用量は、 光学活性スルホン酸エステル類の当量以上用いればよく、 中 でも 1. 0〜1. 5当量用いるのが好ましい。 反応温度は— 50〜100°C、 好 ましくは 0〜70°Cの範囲であり、 反応時間は通常 30時間以内である。  The base may be used in an amount of at least the equivalent of the optically active sulfonic acid ester, and among them, it is preferable to use 1.0 to 1.5 equivalent. The reaction temperature is in the range of −50 to 100 ° C., preferably 0 to 70 ° C., and the reaction time is usually within 30 hours.
反応③において一般式 (24) の化合物が共存する場合は、 先述の通りこれが 塩基の作用により加水分解されて一般式 (6) で表される化合物となるか又は一 部未反応のまま反応生成物中に共存する。 この共存物は、 一般式 ( 18) の化合 物を先述の (IV— 4) で述べた製造方法 (a) 又は (b) に用いる際に、 加水分 解または加溶媒分解されて一般式 (6) で表される化合物となるので問題はない。 むしろ、 一般式 (24) で表される化合物を単離しなくとも、 一連の反応によつ て一般式 ( 6) で表される化合物を、 効率的に且つ高い光学純度で得られるので、 単離工程を省略できる、 工業的に優れた製造経路である。 When the compound of the general formula (24) coexists in the reaction (3), as described above, this is hydrolyzed by the action of a base to become the compound represented by the general formula (6), or the reaction is generated in a partially unreacted state. Coexist in things. This coexisting material is hydrolyzed or solvolyzed when the compound of the general formula (18) is used in the production method (a) or (b) described in the above (IV-4). There is no problem because it becomes the compound represented by 6). Rather, the compound represented by the general formula (6) can be obtained efficiently and with high optical purity by a series of reactions without isolating the compound represented by the general formula (24). This is an industrially superior production route that can omit the isolation step.
従って製造経路 ( 1) は、 一般式 ( 10) で表される化合物を出発物質として、 目的物である一般式 (6) で表される化合物を製造する一連の工程に於て、 各ェ 程で生成物の分離 '精製をすることなく、 全工程を同一の反応器内で実施するこ とが可能であり、 工業的に極めて優れた製造経路である。  Therefore, in the production route (1), starting from the compound represented by the general formula (10) as a starting material, each step in a series of steps for producing the target compound represented by the general formula (6) is described. The entire process can be carried out in the same reactor without separating and purifying the product, which is an industrially excellent production route.
製造経路 ( 2 )  Manufacturing route (2)
0C0R(
Figure imgf000045_0001
0C0R (
Figure imgf000045_0001
(14) (20) (24)  (14) (20) (24)
② ③ (18) + I (6) : ② ③ (18) + I (6):
(式中、 A、 Bは一般式 ( 1) と同義であり、 R6は一般式 ( 1 1) と同義であ り、 R8は一般式 ( 15) と同義である。 ) (Where A and B have the same meanings as in general formula (1), R 6 has the same meaning as general formula (11), and R 8 has the same meaning as general formula (15).)
製造経路 (2) はまず、 反応④として、 先述の (IV— 3) の製造法によって一 般式 (20) で表される光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパ ン類と、 その光学的に対掌体の立体構造を有する、 一般式 (24) で表される光 学活性 1 , 2—二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類を製造する c この反応④においては、 酵素として Penicillium属に属する微生物由来のリパー ゼを用いるのが好ましい。 それ以降は、 先述の製造経路 ( 1) の反応②、 ③に従 つて一般式 ( 18) で表される化合物を製造することが出来、 その効果も同様で ある。  In the production route (2), first, as the reaction (1), the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (20) is produced by the above-mentioned production method (IV-3). And producing an optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropane represented by the general formula (24) having the optically enantiomeric stereostructure c In ④, it is preferable to use a lipase derived from a microorganism belonging to the genus Penicillium as the enzyme. Thereafter, the compound represented by the general formula (18) can be produced according to the reactions (2) and (3) of the above-mentioned production route (1), and the effect is the same.
(IV— 5) 光学活性な求核性触媒を用いたエステル化反応による製造法  (IV-5) Production method by esterification reaction using optically active nucleophilic catalyst
先述の一般式 (6) で表される光学活性 1, 2-二置換- 2, 3-ジヒドロキシ プロパン類は以下の方法によっても製造することができる。  The optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the aforementioned general formula (6) can also be produced by the following method.
先述の一般式 ( 10 ) で表されるラセミ体の 1, 2—二置換一 2, 3—ジヒド ロキシプロパン類を、 特定の光学活性な求核性触媒を用いて、 先述の (IV— 3— 1) に記載の一般式 (16) または ( 17) で表されるカルボン酸誘導体と反応 させて、 一般式 ( 12) で表される光学活性 1, 2—二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類と、 一般式 ( 12) で表される化合物とは光学対掌体 である一般式 ( 13) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキ シプロパン類を生成させ、 所望の立体構造を有する光学異性体である、 一般式 ( 13) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類 (つまり、 一般式 (6) に同じ。 ) を分取する製造方法である。 The racemic 1,2-disubstituted 1,2,3-dihydride represented by the general formula (10) described above. Roxypropanes are reacted with a carboxylic acid derivative represented by the general formula (16) or (17) described in the above (IV-3-1) using a specific optically active nucleophilic catalyst. The optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropanes represented by the general formula (12) and the compound represented by the general formula (12) are optically enantiomers. An optical isomer represented by the general formula (13), which is an optical isomer having a desired steric structure by producing an optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the formula (13) This is a process for preparing active 1,2-disubstituted 1,2,3-dihydroxypropanes (ie, the same as in the general formula (6)).
または、 光学活性 1, 2—二置換— 2—ヒドロキシ一 3—ァシロキシプロパン 類が所望の立体構造を有している際には、 反応後さらに加溶媒分解して一般式 (6) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類と し、 これを分取し製造してもよい。  Alternatively, when the optically active 1,2-disubstituted-2-hydroxy-13-acyloxypropanes have a desired steric structure, they are further solvolyzed after the reaction and are represented by the general formula (6). The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes may be fractionated and produced.
本反応は、 先述の (IV— 2) や (IV— 3) で述べたような、 一般的に高価であ る酵素を使用せずに、 安価に光学的にエステル分割を行うことが可能であり、 ェ 業的に優れた、 一般式 (6) で表される光学活性 1, 2—二置換一 2, 3—ジヒ ドロキシプロパン類の製造法である。 この化合物は先述の通り、 農薬、 特に除草 剤の有効成分である、 一般式 (1) で表される光学活性 1, 2—二置換— 2, 3 一エポキシプロパン類の重要な製造中間体であるので、 この光学活性な求核性触 媒を用いたエステル化反応は、 先述の (ΙΠ) で述べた製造法と組み合わせること で、 工業的に優れた農薬、 特に除草剤の有効成分の製造法となる。  In this reaction, as described in (IV-2) and (IV-3) above, it is possible to carry out optically inexpensive ester resolution without using generally expensive enzymes. This is a process for producing an optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (6), which is excellent in industry. As described above, this compound is an important production intermediate of an optically active 1,2-disubstituted-2,3-epoxypropane represented by the general formula (1), which is an active ingredient of pesticides, particularly herbicides. Therefore, the esterification reaction using this optically active nucleophilic catalyst can be combined with the production method described in the above (の) to produce industrially excellent agricultural chemicals, especially active ingredients for herbicides. Be the law.
本反応に用いられる求核性触媒としては任意のものが使用可能であり、 例えば 光学活性 1, 2—ジァミン類、 光学活性ピリジン類、 光学活性ピロ一ル類、 光学 活性ペプチド類、 及び光学活性ホスフィン類等が挙げられる。 具体的には例えば、 光学活性 1 , 2—ジァミン類としては、 下記一般式 (25) で表されるピロリジ ン誘導体が好ましい。
Figure imgf000046_0001
Any nucleophilic catalyst can be used as the nucleophilic catalyst used in this reaction. Examples thereof include optically active 1,2-diamines, optically active pyridines, optically active pyrroles, optically active peptides, and optically active peptides. And phosphines. Specifically, for example, as the optically active 1,2-diamines, a pyrrolidine derivative represented by the following general formula (25) is preferable.
Figure imgf000046_0001
(式中、 Dは— N (R10) R11を示し、 R9、 R1Q、 R11は置換基を有していて もよい炭素数 1〜20のアルキル基、 アルケニル基、 ァラルキル基、 又はァリ一 ル基を示す。 ただし R1Qと R11は結合して環を形成していてもよい。 *は不斉炭 素原子を示す。 ) (Wherein D represents —N (R 10 ) R 11 , and R 9 , R 1Q , and R 11 have a substituent. And represents an alkyl group, alkenyl group, aralkyl group, or aryl group having 1 to 20 carbon atoms. However, R 1Q and R 11 may combine to form a ring. * Indicates an asymmetric carbon atom. )
R910, R11における炭素数 1〜20のアルキル基、 炭素数 2〜20のアル ケニル基、 好ましくは炭素数 7〜20のァラルキル基、 および好ましくは炭素数 6~ 20のァリール基についての具体的な基については、 先述の (IV— 2) で述 ベた R 6に関する説明と同様である。 For an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, preferably an aralkyl group having 7 to 20 carbon atoms, and preferably an aryl group having 6 to 20 carbon atoms in R 9 , 10 and R 11 . The specific group of is the same as that described for R 6 described in (IV-2) above.
R 9としては、 中でも炭素数 1〜5のアルキル基が好ましく、 特にメチル基が 好ましい。 R1Q及び R11としては、 炭素数 1〜20のアルキル基、 又は炭素数 7 〜20のァラルキル基が好ましく、 中でも R1Qと R 11が結合して環を形成してい ることが好ましい。 具体的には置換基を有していても良い N—アルキルべンジル 基、 ピロリジル基、 ビペリジル基、 ジヒドロイソインドリル基、 又はテトラヒド 口イソキノリル基等であることが特に好ましい。 As R 9 , an alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group is particularly preferable. As R 1Q and R 11 , an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms is preferable, and among them, it is preferable that R 1Q and R 11 are bonded to form a ring. Specifically, it is particularly preferably an N-alkylbenzyl group which may have a substituent, a pyrrolidyl group, a biperidyl group, a dihydroisoindolyl group, or a tetrahydridoisoquinolyl group.
光学活性ビリジン類及び光学活性ピロ一ル類としては、 特に制限されないが、 例えば、 下記一般式 (26)  The optically active pyridines and optically active pyrroles are not particularly limited. For example, the following general formula (26)
Figure imgf000047_0001
Figure imgf000047_0001
(式中、 R12は置換基を有していてもよい炭素数 6〜 10のァリール基を示し、 *は不斉炭素原子を示す。 ) で表される光学活性 4—ピロリジノピリジン誘導体 や、 下記一般式 (27) 、 や (28) で表されるフヱロセン誘導体等が挙げられ る。 (Wherein, R 12 represents an aryl group having 6 to 10 carbon atoms which may have a substituent, and * represents an asymmetric carbon atom.) An optically active 4-pyrrolidinopyridine derivative represented by Fluorene derivatives represented by the following general formulas (27) and (28).
Figure imgf000047_0002
Figure imgf000048_0001
Figure imgf000047_0002
Figure imgf000048_0001
(式中、 R13、 R14、 R15、 および R 16はそれぞれ独立に、 置換基を有していて もよい炭素数 1~6のアルキル基またはァリール基を示し、 R17、 R18は置換基 を有していてもよい炭素数 1〜 10のアルキル基を示すか又は R 17と R 18は結合 して環を形成していてもよい。 ) (In the formula, R 13 , R 14 , R 15 , and R 16 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a substituent or an aryl group, and R 17 and R 18 represent It represents an alkyl group having 1 to 10 carbon atoms which may have a substituent, or R 17 and R 18 may combine to form a ring.)
反応速度、 立体選択性、 及びコス トの観点から、 R13、 R"、 R 15としてはメ チル基、 ェチル基、 t—ブチル基、 フエニル基等が好ましく、 R 16としてはメチ ル基、 フエニル基等が好ましい。 R 17および R 18としてはメチル基、 ェチル基、 や R 17と R 18が結合してビ口リジン環を形成しているもの等が好ましい。 From the viewpoints of reaction rate, stereoselectivity, and cost, R 13 , R ″, and R 15 are preferably a methyl group, an ethyl group, a t-butyl group, a phenyl group, and the like, and R 16 is a methyl group, R 17 and R 18 are preferably a methyl group, an ethyl group, or a group in which R 17 and R 18 are bonded to form a bi-open lysine ring.
光学活性べプチド類としては任意のものを使用可能であるが、 例えば下記一般 式 (29) で表される光学活性なテトラペプチド誘導体等が挙げられる。  Any optically active peptides can be used, and examples thereof include an optically active tetrapeptide derivative represented by the following general formula (29).
Figure imgf000048_0002
Figure imgf000048_0002
(式中、 Z, はペプチド結合により結合したアミノ酸残基を示し、 *は不斉炭素 原子を示す。 ) (In the formula, Z, represents an amino acid residue linked by a peptide bond, and * represents an asymmetric carbon atom.)
Z, で示される、 ペプチド結合により結合したアミノ酸残基としては、 フエ二 ルァラニン、 ノ リン、 グリシン等のラセミ体あるいは光学活性体が挙げられる。 光学活性な求核性触媒の中では、 反応速度、 原料コスト、 及び立体選択性の観 点から、 光学活性 1 , 2—ジァミン類が好ましい。 この反応において用いる光学 活性な求核性触媒の量は、 一般式 ( 1 0 ) で表されるラセミ体の 1, 2—二置換 —2, 3—ジヒドロキシプロパン類に対して 0 . 0 0 0 0 1〜1 . 5モル倍量、 中でも 0 . 0 0 0 1〜 1 . 0モル倍量用いるのが好ましい。 Examples of the amino acid residue represented by Z and represented by a peptide bond include racemic or optically active forms such as phenylalanine, norin, and glycine. Among the optically active nucleophilic catalysts, optically active 1,2-diamines are preferred from the viewpoints of reaction rate, raw material cost, and stereoselectivity. Optics used in this reaction The amount of the active nucleophilic catalyst is 0.001 to 1.0 to 1.0 with respect to the racemic 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It is preferably used in a molar amount of 5 times, especially 0.0001 to 1.0 times.
本反応において用いられる一般式 ( 1 6 ) または ( 1 7 ) で表されるカルボン 酸誘導体において、 ; 6として具体的には先述の (IV— 2 ) に記載の一般式 ( 1 1 ) における説明と同様であり、 中でも好ましくましくはメチル基、 ェチル基、 n—ブロビル基、 イソプロビル基、 n—ブチル基、 イソブチル基、 n—ペンチル 基、 クロロメチル基、 フエニル基、 クロ口フエ二ル基、 ジクロロフェニル基、 ベ ンジル基等が挙げられ、 Yとしては好ましくは塩素原子又は臭素原子が挙げられ る。 カルボン酸誘導体としては具体的に、 無水酢酸、 無水プロビオン酸、 無水酪 酸、 無水イソ酪酸、 無水吉草酸、 無水イソ吉草酸、 無水カブロン酸、 無水クロ口 酢酸、 無水安息香酸、 無水クロ口安息香酸、 無水ジクロロ安息香酸、 無水フエ二 ル酢酸、 ァセチルクロリ ド、 プロピオン酸クロリ ド、 酪酸クロリ ド、 イソ酪酸ク ロリ ド、 吉草酸クロリ ド、 イソ吉草酸クロリ ド、 カブロン酸クロリ ド、 ペンゾィ ルクロリ ド、 トルィル酸クロリ ド、 ジメチル安息香酸クロリ ド、 クロ口安息香酸 クロリ ド、 ジクロロ安息香酸クロリ ド、 フエニル酢酸クロリ ド、 ァセチルブロミ ド、 プロピオン酸ブロミ ド、 酪酸ブロミ ド、 イソ酪酸ブロミ ド、 吉草酸ブロミ ド、 イソ吉草酸プロミ ド、 力プロン酸ブ口ミ ド、 ペンゾィルプロミ ド、 トルィル酸ブ 口ミ ド、 ジメチル安息香酸プロミ ド、 クロ口安息香酸プロミ ド、 ジクロロ安息香 酸ブロミ ド、 フエニル酢酸ブロミ ド等が挙げられる。 In the carboxylic acid derivative represented by the general formula (16) or (17) used in the present reaction, 6 is specifically described in the general formula (11) described in the above-mentioned (IV-2). And preferably methyl, ethyl, n-bromo, isopropyl, n-butyl, isobutyl, n-pentyl, chloromethyl, phenyl, and chlorophenyl. Groups, a dichlorophenyl group, a benzyl group and the like, and Y is preferably a chlorine atom or a bromine atom. Specific examples of the carboxylic acid derivatives include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, caproic anhydride, chloroacetic anhydride, benzoic anhydride, and benzoic anhydride. Acid, dichlorobenzoic anhydride, phenylacetic anhydride, acetyl chloride, propionic chloride, butyric chloride, isobutyric chloride, valeric chloride, isovaleric chloride, cabrolic chloride, penzyl chloride , Toluic acid chloride, dimethyl benzoic acid chloride, black benzoic acid chloride, dichlorobenzoic acid chloride, phenylacetic acid chloride, acetyl bromide, propionic acid bromide, butyric acid bromide, isobutyric acid bromide, valeric acid bromide , Isovaleric acid promide, Hydroproic acid buccal, Penzoylp Mi de, Toruiru Sambu port Mi de, dimethyl benzoic acid Promise de, black hole benzoate Promise de, dichlorobenzoic acid Buromi de include phenylacetic acid Buromi de like.
これらのカルボン酸誘導体の中でも安息香酸誘導体が好ましく、 中でも、 安息 香酸クロリ ド、 トルィル酸クロリ ド、 ジメチル安息香酸クロリ ド、 クロ口安息香 酸クロリ ド、 ジクロロ安息香酸クロリ ド、 安息香酸プロミ ド、 トルィル酸ブロミ ド、 ジメチル安息香酸プロミ ド、 クロ口安息香酸プロミ ド、 ジクロロ安息香酸プ ロミ ド等が好ましく、 特に安息香酸クロリ ド、 トルィル酸クロリ ド、 ジメチル安 息香酸クロリ ド、 クロ口安息香酸クロリ ド、 ジクロロ安息香酸クロリ ド等が好ま しい。  Among these carboxylic acid derivatives, benzoic acid derivatives are preferable, and among them, benzoic acid chloride, toluic acid chloride, dimethyl benzoic acid chloride, chloro benzoic acid chloride, dichlorobenzoic acid chloride, benzoic acid promide, Preferred are toluic acid bromide, dimethylbenzoic acid promide, black benzoic acid promide, dichlorobenzoic acid bromide, etc., especially benzoic acid chloride, toluic acid chloride, dimethyl benzoic acid chloride, and black benzoic acid. Acid chloride, dichlorobenzoic acid chloride and the like are preferred.
カルボン酸誘導体の使用量は、 一般式 ( 1 0 ) で表される 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類に対して通常 0 . 0 1 ~ 1 . 0モル倍量用いればよ く、 反応の立体選択性により適宜選択すればよい。 すなわち、 一般式 ( 1 6 ) 又 は ( 1 7 ) で表されるカルボン酸誘導体と反応せずに生成する光学活性体 (つま り一般式 (2 0 ) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプ 口パン類) を高光学純度で得たい場合には、 カルボン酸誘導体の仕込み量を増や して反応の転化率を高くすればよい。 また、 カルボン酸誘導体の仕込み量を減ら し反応の転化率を低くし、 反応生成物である先述の一般式 (2 4 ) で表される光 学活性 1, 2—二置換一 2—ヒドロキシ— 3—ァシロキシプロパン類を高光学純 度で得ることもできる。 The amount of the carboxylic acid derivative to be used may be usually 0.01 to 1.0 mole times the amount of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It may be appropriately selected depending on the stereoselectivity of the reaction. That is, the optically active substance formed without reacting with the carboxylic acid derivative represented by the general formula (16) or (17) (that is, the optically active substance 1, 2— represented by the general formula (20)) When it is desired to obtain disubstituted 1,2,3-dihydroxypropanes with high optical purity, the amount of the carboxylic acid derivative to be charged may be increased to increase the conversion of the reaction. In addition, the amount of the carboxylic acid derivative to be charged is reduced to lower the conversion of the reaction, and the optically active 1,2-disubstituted 1-2-hydroxyl represented by the aforementioned general formula (24), which is a reaction product, is obtained. 3-Acyloxypropanes can also be obtained with high optical purity.
本反応においては、 適宜溶媒を用いて反応を行ってもよい。 用いる溶媒として は、 ジクロロメタン、 クロ口ホルム、 ジクロロェタン、 クロ口ベンゼン等のハロ ゲン系溶媒、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼン等の芳香族炭化水 素系溶媒、 n—へキサン、 n—ヘプタン、 イソオクタン等の脂肪族炭化水素系溶 媒、 酢酸メチル、 酢酸ェチル等のエステル系溶媒、 アセトン、 メチルェチルケト ン、 メチルイソブチルケトン等のケトン系溶媒、 ジェチルェ一テル、 ジイソプロ ピルエーテル、 テトラヒドロフラン、 ジグライム、 ジエチレングリコールジェチ ルエーテル等のエーテル系溶媒、 ァセトニトリル、 プロピオ二トリル、 プチロニ トリル等の二トリル系溶媒、 tーブ夕ノール、 t —ァミルアルコール等の第 3級 アルコール、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 N—メチルピロリ ドン、 N , N—ジメチルイミダゾリノン等のアミ ド系溶媒、 ニトロメタン、 ニト ロェタン、 ニトロプロパン等のニトロアルカン類、 ジメチルスルホキシド等のス ルホキシド類等が挙げられる。 中でも、 ハロゲン系溶媒、 エーテル系溶媒、 ケト ン系溶媒、 二トリル系溶媒、 エステル系溶媒、 アミ ド系溶媒、 ニトロアルカン類 が好ましく、 特にケトン系溶媒、 二トリル系溶媒、 アミ ド系溶媒、 ニトロアル力 ン類が好ましい。  In this reaction, the reaction may be appropriately performed using a solvent. Solvents used include halogenated solvents such as dichloromethane, chloroform, dichloroethane, and benzene, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, n-hexane, n-heptane, and isooctane. Aliphatic solvents such as methyl acetate, ethyl acetate, etc., ketone solvents such as acetone, methyl ethyl ketone, methyl isopropyl ketone, geethyl ether, diisopropyl ether, tetrahydrofuran, diglyme, diethylene glycol jet Ether solvents such as toluene ether, nitrile solvents such as acetonitrile, propionitrile and ptyronitrile, tertiary alcohols such as t-butanol and t-amyl alcohol, dimethylformamide, dimethylacetamide Amide solvents such as N, N-methylpyrrolidone and N, N-dimethylimidazolinone; nitroalkanes such as nitromethane, nitrethane and nitropropane; and sulfoxides such as dimethylsulfoxide. Of these, halogen-based solvents, ether-based solvents, ketone-based solvents, nitrile-based solvents, ester-based solvents, amide-based solvents, and nitroalkanes are preferred, and particularly ketone-based solvents, nitrile-based solvents, amide-based solvents, and the like. Nitroalcohols are preferred.
本反応においては、 さらに以下で述べる塩基として第三級ァミン類あるいはピ リジン塩基類を用いた場合には、 これらを溶媒として反応を行ってもよい。 溶媒の使用量は一般式 ( 1 0 ) で表される 1, 2—二置換— 2 , 3—ジヒドロ キシプロパン類の重量に対して 0 ~ 1 0 0重量倍、 中でも 0〜 5 0重量倍用いる のが好ましい。 さらに本反応においては、 塩基、 好ましくはアキラルな塩基の共存下で反応を 実施することにより、 反応速度が向上し、 また、 光学活性な求核触媒の使用量を 削減することができるので好ましい。 In the present reaction, when tertiary amines or pyridine bases are used as bases described below, the reaction may be carried out using these as solvents. The solvent is used in an amount of 0 to 100 times, especially 0 to 50 times the weight of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). Is preferred. Further, in this reaction, it is preferable to carry out the reaction in the co-presence of a base, preferably an achiral base, since the reaction rate can be improved and the amount of the optically active nucleophilic catalyst can be reduced.
アキラルな塩基としては任意のものを使用可能であるが、 例えばトリメチルァ ミン、 トリェチルァミン、 ジイソプロピルェチルァミン、 N, N—ジメチルァニ リン、 N, N—ジェチルァニリン等の第三級ァミン類、 ピリジン、 2—ビコリン、 3—ピコリン、 4一ビコリン、 2、 6—ルチジン、 2, 4 , 6—コリジン、 2— クロ口ピリジン、 4—クロ口ピリジン等のビリジン塩基類、 炭酸セシウム、 炭酸 カリウム、 炭酸ナトリウム、 炭酸水素ナトリウム、 炭酸リチウム、 炭酸マグネシ ゥム、 炭酸カルシウム、 炭酸ストロンチウム、 炭酸バリウム等の無機塩基類等が 挙げられ、 好ましくは、 第三級ァミン類又は無機塩基が用いられ、 更に好ましく は無機塩基を用いると高い立体選択性が得られる。 塩基の共存下で反応を行った 際の、 光学活性な求核性触媒の使用量は、 一般式 ( 1 0 ) で表される 1 , 2—二 置換一 2 , 3—ジヒドロキシプロパン類に対して 0 . 0 0 0 0 1〜0 . 2モル倍 量、 中でも 0 . 0 0 0 1〜0 . 1モル倍量用いるのが好ましい。  As the achiral base, any one can be used. For example, tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, N, N-dimethylaniline, N, N-jetylaniline, pyridine, 2 -Bicolin, 3-picoline, 4-bicholine, 2,6-lutidine, 2,4,6-collidine, 2-cyclopyridine, 4-pyridine pyridine, cesium carbonate, potassium carbonate, sodium carbonate And inorganic bases such as sodium hydrogencarbonate, lithium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, and the like. Preferably, tertiary amines or inorganic bases are used, and more preferably, inorganic bases are used. When a base is used, high stereoselectivity is obtained. When the reaction is carried out in the presence of a base, the amount of the optically active nucleophilic catalyst used is based on the amount of the 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (10). It is preferably used in a molar amount of 0.0001 to 0.2, particularly preferably in a molar amount of 0.001 to 0.1.
アキラルな塩基の使用量ば、 一般式 ( 1 0 ) で表される 1, 2—二置換— 2, 3—ジヒドロキシプロパン類に対して通常 0 . 0 1〜1 . 0モル倍量用いればよ く、 反応の立体選択性により適宜選択すればよい。 すなわち、 一般式 ( 1 6 ) 又 は ( 1 7 ) で表されるカルボン酸誘導体と反応せずに生成する光学活性体 (つま り一般式 (2 0 ) で表される光学活性 1, 2—二置換— 2 , 3—ジヒドロキシプ 口パン類) を高光学純度で得たい場合には、 塩基の仕込み量を増やして反応の転 化率を高くすればよい。 また、 塩基の仕込み量を減らし反応の転化率を低くして、 反応生成物である先述の一般式 (2 4 ) で表される光学活性 1, 2—二置換— 2 ーヒドロキシ一 3—ァシロキシプロパン類を高い光学純度で得ることもできる。 本反応は、 高い立体選択性を得るために低温で反応させることが好ましい。 さ らに本反応は、 工業的に好ましい温度範囲で高い立体選択性を得ることができ、 工業的に低コス卜な製造方法である。  The amount of the achiral base to be used is usually 0.01 to 1.0 mole times the amount of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10). It may be appropriately selected depending on the stereoselectivity of the reaction. That is, the optically active substance formed without reacting with the carboxylic acid derivative represented by the general formula (16) or (17) (that is, the optically active substance 1,2— represented by the general formula (20)) When it is desired to obtain disubstituted-2,3-dihydroxypropanes with high optical purity, the conversion of the reaction can be increased by increasing the amount of base added. In addition, the amount of the base to be charged is reduced to lower the conversion of the reaction, and the optically active 1,2-disubstituted-2-hydroxy-13-acyloxy represented by the above-mentioned general formula (24), which is the reaction product, is obtained. Propanes can be obtained with high optical purity. This reaction is preferably performed at a low temperature in order to obtain high stereoselectivity. Furthermore, this reaction is a production method that can obtain high stereoselectivity in an industrially preferable temperature range and is industrially low cost.
具体的には、 アキラルな塩基として有機塩基を用いた場合、 特に第三級ァミン 類を用いた場合には、 — 1 5 0〜1 0 0 °C、 中でも— 1 0 0〜 5 0 °Cで行うのが 好ましい。 一方、 アキラルな塩基として無機塩基を用いた場合には、 一 50~1 00°C、 中でも一 10〜 50°Cで行うのが好ましい。 Specifically, when an organic base is used as an achiral base, particularly when a tertiary amine is used, the temperature is preferably −150 to 100 ° C., and especially −100 to 50 ° C. What to do with preferable. On the other hand, when an inorganic base is used as the achiral base, it is preferably carried out at a temperature of from 150 to 100 ° C, especially from a temperature of from 110 to 50 ° C.
更に本反応においては、 ゼォライ 卜等の無機多孔性物質 (以下纏めて、 「ゼォ ライ 卜」 と略記する。 ) の存在下で行うことにより、 反応収率を向上させること ができるので好ましい。 ゼォライ トとしては任意のものが使用可能であり、 例え ば細孔径が 1 A以上、 特に 3 A以上のものが好ましく、 具体的にはモレキュラー シ一ブス 4 A (Linde社製) 等を用いればよい。 反応系に共存させるゼオラ ィ 卜の形状は粉末状、 ペレツト状など任意であるが、 粉末状のものが好ましい。 ゼォライ トの使用量は、 反応原料である一般式 (10) で表される 1, 2—二置 換ー 2, 3—ジヒドロキシプロパン類の重量に対して 1重量%以上用いればよく、 通常は 5〜 100重量%程度用いればよい。  Further, in the present reaction, it is preferable to carry out the reaction in the presence of an inorganic porous substance such as zeolite (hereinafter collectively referred to as "zeolite") because the reaction yield can be improved. Any zeolite can be used. For example, a zeolite having a pore diameter of 1 A or more, particularly 3 A or more is preferable. Specifically, when a molecular sieve 4A (manufactured by Linde) or the like is used, Good. The zeolite coexisting in the reaction system may be in any form such as a powder or a pellet, but is preferably in the form of a powder. Zeolite may be used in an amount of 1% by weight or more based on the weight of the 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (10), which is a reaction raw material. It may be used in an amount of about 5 to 100% by weight.
更には、 先述の一般式 (6) で表される光学活性 1, 2—二置換一 2, 3—ジ ヒドロキシプロパン類は、 以下に示す製造経路 (3) に従って製造することもで き 。  Furthermore, the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the aforementioned general formula (6) can also be produced according to the following production route (3).
製造経路 ( 3 ) C0R1 Manufacturing route (3) C0R 1
Figure imgf000052_0001
Figure imgf000052_0001
(上記式中、 Α、 Βは一般式 (1) と同義であり、 R6および Υは一般式 (1 6) と同義であり、 R5は一般式 (19) と同義である。 ) (In the above formula, Α and Β have the same meanings as in the general formula (1), R 6 and Υ have the same meanings as in the general formula (16), and R 5 has the same meaning as the general formula (19).)
製造経路 (3) はまず、 反応⑤として、 先述の (IV— 5) の製造法によって一 般式 (20) で表される光学活性 1, 2—二置換— 2, 3—ジヒドロキシプロパ ン類と、 その光学対掌体の、 一般式 (24) で表される光学活性 1, 2—二置換 — 2—ヒドロキシー 3—ァシロキシプロパン類を製造する。 この反応⑤において は、 先述の通り、 光学活性な求核性触媒を用いる。 それ以降は、 先述の (IV— 4 — 1) にて述べた製造経路 ( 1) の反応②、 ③に従って一般式 ( 18) で表され る化合物を製造することが出来、 その効果も同様である。 In the production route (3), first, as the reaction (1), the optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the general formula (20) is prepared by the production method of the above (IV-5). To produce optically active 1,2-disubstituted-2-hydroxy-3-acyloxypropanes represented by the general formula (24), which is an enantiomer thereof. In this reaction 2, as described above, an optically active nucleophilic catalyst is used. Thereafter, the compound represented by the general formula (18) can be produced according to the reactions (1) and (3) of the production route (1) described in (IV-4-1), and the effect is the same. is there.
つまり、 製造経路 (3) は、 一般式 (10) で表される化合物を出発物質とし て、 目的物である一般式 (6) で表される化合物を製造する一連の工程に於て、 各工程で生成物の分離 '精製をすることなく、 全工程を同一の反応器内で実施す ることが可能であり、 工業的に極めて優れた製造経路である。  In other words, in the production route (3), a compound represented by the general formula (10) is used as a starting material, and in a series of steps for producing a target compound represented by the general formula (6), It is possible to carry out all the steps in the same reactor without separating and purifying the products in the steps, which is an industrially excellent production route.
尚、 これまで述べてきた一般式 (6) 、 (7) 、 (10) 、 ( 12) 、 (1 3) 、 ( 14) 、 (19) 、 (20) および (24) で表される化合物において は、 その一般式における Aで示される基が一般式 (2) で示されるインダンジォ ン構造を有する基である場合に、 下記に示す如くへミケタールとなった環構造化 合物との平衡状態となり、 この平衡混合物となる場合がある。 具体的には、 先に 述べた一般式で表される化合物を反応に用いた際に、 その反応条件や反応に用い る溶媒等によっては、 その反応系中において不斉炭素原子に結合する水酸基とィ ンダンジオンのカルボニル基とが結合してへミケ夕一ルとなった璟構造化合物と の平衡状態となり、 また結晶化の際にへミケ夕一ルとして結晶化する場合がある。 よって本発明においては、 一般式 (6) 、 (7) 、 ( 10) 、 ( 12) 、 (1 3) 、 ( 14) 、 ( 19) 、 (20) 及び (24) で表される化合物においては、 このような環構造化合物をも包含するものとし、 以下に述べる一般式 (6) で表 される光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類の精製方法に おいても同様とする。  The compounds represented by the general formulas (6), (7), (10), (12), (13), (14), (19), (20) and (24) described above. In the above, when the group represented by A in the general formula is a group having an indandione structure represented by the general formula (2), the state of equilibrium with the ring structure compound which has become a hemicetal as shown below And this may be an equilibrium mixture. Specifically, when a compound represented by the general formula described above is used in a reaction, a hydroxyl group bonded to an asymmetric carbon atom in the reaction system may vary depending on the reaction conditions, the solvent used in the reaction, and the like. And the carbonyl group of the indandione combine to form a hemi-equilibrium. An equilibrium state may be established with the structural compound, and crystallization may occur as a hemi-emulsion during crystallization. Therefore, in the present invention, the compounds represented by the general formulas (6), (7), (10), (12), (13), (14), (19), (20) and (24) Is intended to include such ring-structured compounds, and can be used in the method for purifying optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the following general formula (6). The same shall apply.
Figure imgf000053_0001
Figure imgf000053_0001
ジオール へミケタ リレ Diol hemiceta lire
Figure imgf000054_0001
Figure imgf000054_0001
エステル  Ester
へミケタール  Hemiketal
スルホン酸エステル  Sulfonic acid ester
( V ) 光学活性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類の精製方法 先述の一般式 ( 1 3 ) で表される光学活性 1 , 2—二置換— 2, 3—ジヒドロ キシプロパン類 (一般式 (6 ) で表される化合物も当然含まれる) は、 本発明の 光学異性体混合物や一般式 ( 1 ) で表される光学活性 1, 2—二置換一 2, 3— エポキシプロパン類を製造する際の重要な中間体である。 この光学活性 1, 2— 二置換一 2, 3—ジヒドロキシプロパン類の光学純度を高めることは、 目的とす る光学異性体混合物等の光学純度を高める上で重要である。 以下に、 この光学活 性 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類の精製方法について述べる c 光学活性有機化合物には大きく分けて、 その性質として結晶化の際に、 a ) 互 いに光学的に対掌体の光学異性体同士が対になって成長し結晶化する性質 (この 様な性質を有するものを以下、 「ラセミ化合物」 という。 ) と、 b ) —方の光学 異性体のみが成長して結晶化する性質 (この様な性質を有するものを以下、 「ラ セミ混合物」 という。 ) とが存在することが知られている。 つまり、 a ) の性質 を有する物質 (ラセミ化合物) の結晶化においては一種類のラセミ体結晶が析出 するのに対し、 b ) の性質を有する物質 (ラセミ混合物) においては、 結晶化に 際して光学異性体のいずれか一方が析出するので、 所望の光学異性体を得るため には好都合な性質である。 (V) Method for purifying optically active 1,2-disubstituted 1,2,3-dihydroxypropanes Optically active 1,2-disubstituted-2,3-dihydroxypropanes represented by the aforementioned general formula (13) (Of course, the compound represented by the general formula (6) is included) is a mixture of the optical isomer of the present invention or the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (1). It is an important intermediate in the production of the class. It is important to increase the optical purity of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes in order to increase the optical purity of the target mixture of optical isomers. The following describes the method for purifying the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes. C Optically active organic compounds can be broadly classified into a) Optically enantiomeric optical isomers grow and crystallize in pairs (those having such properties are hereinafter referred to as “racemic compounds”) and b) — optical isomers It is known that there is a property that only the body grows and crystallizes (a substance having such a property is hereinafter referred to as a “racemic mixture”). That is, in the crystallization of a substance (racemic compound) having the property of a), one kind of racemic crystal is precipitated, whereas in the substance (racemic mixture) having the property of b), crystallization takes place. Thus, one of the optical isomers is precipitated, which is an advantageous property for obtaining a desired optical isomer.
ところで、 どちらかの光学異性体が富化されたラセミ化合物の結晶においては、 光学的に対掌体の光学異性体同士が対になって成長して結晶となったラセミ体の 結晶と、 一方の光学異性体のみが成長した結晶とが混在することが知られている c 従来より、 光学的に富化されたラセミ化合物をその溶液から結晶化して取り出 す際には、 まず光学的に対掌体の光学異性体同士が対になって成長したラセミ体 の結晶が析出し、 ついで一方の光学異性体のみが成長して結晶化し析出すること が一般的に知られている。 従って、 所望の高光学純度の結晶を得るには、 結晶化 させる溶質を含む溶液の純度を上げる方法が採られており、 例えばラセミ結晶等 の光学純度の低い結晶を析出させて除去し、 濾別する母液における光学異性体の 光学純度を上げてから、 高光学純度の結晶を得る事がなされていた。 By the way, in a crystal of a racemic compound enriched in either of the optical isomers, a racemic compound in which optically enantiomers of optically enantiomers grow as a pair and grow into crystals are obtained. It is known that crystals and crystals grown with only one optical isomer are mixed.c Conventionally, when crystallizing and extracting an optically enriched racemic compound from its solution, First, it is generally known that racemic crystals, which are formed by pairing optically enantiomeric optical isomers, precipitate, and then only one optical isomer grows, crystallizes and precipitates. I have. Therefore, in order to obtain a crystal having a desired high optical purity, a method of increasing the purity of a solution containing a solute to be crystallized has been adopted.For example, a crystal having a low optical purity such as a racemic crystal is precipitated, removed, and filtered. After increasing the optical purity of the optical isomer in another mother liquor, a crystal of high optical purity was obtained.
一方、 近年、 医薬品においては高活性、 薬量低減等の要請から、 有効成分に光 学活性化合物を利用することが増えてきている。 そしてその製造方法においても、 簡便で安価な製造方法の検討が行われている。 農薬においても同様であり、 有効 成分化合物の化学構造の中に不斉炭素原子を有する際には、 より高活性を示す光 学異性体のみを有効成分とする検討が盛んである。  On the other hand, in recent years, there has been an increasing use of optically active compounds as active ingredients due to demands for high activity and reduction of drug dosage. As for the manufacturing method, a simple and inexpensive manufacturing method is being studied. The same applies to pesticides, and when an active ingredient compound has an asymmetric carbon atom in its chemical structure, studies are being made on using only an optical isomer having higher activity as the active ingredient.
例えば先述の通り、 1 , 2—二置換一 2 , 3—エポキシプロパン類は優れた除 草効果を示す、 優れた農薬の有効成分であり、 この化合物は不斉炭素を有する場 合もある。 この 1 , 2—二置換一 2, 3—エポキシプロパン類の製造方法は様々 であるが、 例えば中間原料として 1 , 2—二置換一 2, 3—ジヒドロキシプロパ ン類を用い、 これを環化させて製造する方法がある。 この製造方法においては、 1 , 2—二置換ー 2, 3—ジヒドロキシプロパン類の光学純度を向上させること が、 高光学純度の 1 , 2—二置換— 2 , 3—エポキシプロパン類を得る上で重要 となることは、 先述の通りである。  For example, as described above, 1,2-disubstituted 1,2,3-epoxypropanes are excellent pesticidal active ingredients that exhibit excellent herbicidal effects, and this compound may have an asymmetric carbon in some cases. There are various methods for producing 1,2-disubstituted 1,2,3-epoxypropanes. For example, 1,2-disubstituted 1,2,3-dihydroxypropanes are used as intermediate materials and are cyclized. There is a method of manufacturing. In this production method, improving the optical purity of 1,2-disubstituted-2,3-dihydroxypropanes is important for obtaining 1,2-disubstituted-2,3-epoxypropanes having high optical purity. What is important in this case is as described above.
しかしながら、 上述した様に高光学純度の光学異性体を得る為には、 ラセミ体 の結晶を含む低純度結晶を繰り返し析出させて除去し、 母液における光学活性体 の光学純度を上げてから結晶化する為に多段階の工程数を必要としていた。 よつ て収率も高いものではなく、 工業的に安価にそして簡便に製造するには問題があ つた。 これは、 一般的に母液に残る光学活性体の方がラセミ体の結晶よりも溶解 度が高く、 ラセミ体の結晶が先に析出してしまうためであり、 先に高純度の光学 活性体の結晶を取り出すことは極めて困難であった。  However, as described above, in order to obtain optical isomers with high optical purity, low-purity crystals including racemic crystals are repeatedly precipitated and removed, and crystallization is performed after increasing the optical purity of the optically active substance in the mother liquor. Requires a multi-step process. Therefore, the yield was not high, and there was a problem in industrially inexpensive and simple production. This is because the optically active substance remaining in the mother liquor generally has higher solubility than the racemic crystal, and the racemic crystal precipitates first. It was extremely difficult to take out the crystals.
また光学活性分割剤等を用いて光学異性体を分離する方法もあるが、 光学活性 分割剤は一般的に高価であり、 且つ処理速度も遅いので、 工業的生産方法として は満足のいくものではなかった。 There is also a method of separating optical isomers using an optically active resolving agent, etc. Resolving agents are generally unsatisfactory as an industrial production method because they are generally expensive and have slow processing speeds.
さらには、 光学活性体の製造方法としてラセミ化合物を化学修飾し、 一旦ラセ ミ混合物の性質を有する誘導体として、 この誘導体の光学異性体を結晶化させる ことで分離し、 ついでこの化学修飾を外す等の工程によって目的物質の光学活性 体を高光学純度で得る方法が知られてはいる。 しかしこの方法でも工程数が多く なってしまい、 やはり工業的に安価に、 簡便に製造することには問題があった。 そこで本発明者らは、 本発明の光学異性体混合物や光学活性 1, 2—二置換一 2, 3—エポキシプロパン類を高光学純度で得るために、 その重要中間体である 光学活性 1 , 2—二置換— 2 , 3—ジヒドロキシプロパン類を簡便に、 且つ高価 な光学分割剤等を用いずに、 少ない工程数にて光学純度の高いものを得るべく鋭 意検討した。  Furthermore, as a method for producing an optically active substance, a racemic compound is chemically modified, a derivative having the property of a racemic mixture is once separated by crystallizing the optical isomer of this derivative, and then the chemical modification is removed. There is known a method for obtaining an optically active substance of a target substance with high optical purity by the step of (1). However, this method also requires a large number of steps, and there is still a problem in that it is industrially inexpensive and easy to manufacture. In order to obtain the optical isomer mixture and the optically active 1,2-disubstituted 1,2,3-epoxypropanes of the present invention with high optical purity, the present inventors have studied the optical intermediates 1, 2 2-disubstituted 2,3-dihydroxypropanes were studied simplistically and without using an expensive optical resolving agent, etc., in order to obtain high optical purity in a small number of steps.
その結果、 特定構造の 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の光 学異性体混合物を、 置換基を有していてもよい芳香族化合物を溶媒として用いて 結晶化することによって、 高光学純度の光学活性 1 , 2—二置換一 2 , 3—ジヒ ドロキシプロパン類の溶媒化物結晶として分離精製することに成功した。 得られ た溶媒化物は新規化合物であり、 この溶媒化物結晶を用いることで容易に、 除草 剤の有効成分である 1, 2—二置換— 2, 3—エポキシプロパン類を高光学純度 で製造することが出来る。  As a result, a mixture of optical isomers of 1,2-disubstituted 1,2,3-dihydroxypropanes having a specific structure is crystallized using an aromatic compound which may have a substituent as a solvent. We succeeded in the separation and purification of solvated crystals of optically active 1,2-disubstituted 1,2,3-dihydroxypropanes with high optical purity. The solvate obtained is a novel compound, and the 1,2-disubstituted-2,3-epoxypropane, which is the active ingredient of the herbicide, can be produced with high optical purity by using this solvate crystal. I can do it.
具体的には、 光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類の光 学異性体混合物を、 置換基を有していてもよい芳香族化合物を含有する溶媒中に 溶解させ、 次いで冷却することで、 光学活性 1 , 2—二置換— 2, 3—ジヒドロ キシプロパン類の溶媒化物のを高光学純度で精製する方法である。  Specifically, a mixture of optical isomers of optically active 1,2-disubstituted-2,3-dihydroxypropanes is dissolved in a solvent containing an aromatic compound which may have a substituent, This is a method of purifying the optically active 1,2-disubstituted-2,3-dihydroxypropane solvate with high optical purity by cooling.
以下に、 溶媒化物とその製造方法 (つまり光学活性 1, 2—二置換— 2, 3 - ジヒドロキシプロパン類の精製方法) について述べる。  The following describes the solvate and its production method (that is, the method for purifying optically active 1,2-disubstituted-2,3-dihydroxypropanes).
( V - 1 ) 溶媒化物  (V-1) solvate
溶媒化物としては、 一般式 ( 1 3 ) で表される化合物として先述の ( I ) にお いて述べた好ましいものが好ましく、 特に (一) 一 2— 〔2— (3—クロ口フエ 二ル) 一 2 , 3—ジヒ ドロキシプロピル〕 一 2—ェチル一インダン一 1 , 3—ジ オンが好ましい。 As the solvate, the preferable compounds described in the above (I) as the compounds represented by the general formula (13) are preferable, and in particular, (1) 12- [2- (3-chlorophenol) ) 1,2,3-dihydroxypropyl] 1,2-ethyl On is preferred.
精製方法において用いる、 置換基を有していてもよい芳香族化合物 (以下、 「芳香族系化合物」 と言うことがある。 ) としては、 芳香族性を示すものであれ ば任意のものでよく、 中でも以下の一般式 (3 0 )  As the aromatic compound which may have a substituent (hereinafter, may be referred to as “aromatic compound”) used in the purification method, any compound may be used as long as it exhibits aromaticity. , Among which the following general formula (30)
A r - A, n ( 3 0 ) A r-A, n (30)
(式中、 A rはフエ二ル基を示し、 A, は炭素数 1〜 5のアルキル基、 炭素数 1 〜5のアルコキシ基、 炭素数 2〜5のアルケニル基、 炭素数 2 ~ 5のアルキニル 基、 炭素数 1 ~ 5のハロアルキル基、 ハロゲン原子を示し、 nは 0〜6の整数を 示し、 置換基が複数有る場合は置換基どうしが結合して環を構成していてもよ い) で表されるベンゼン系化合物が好ましい。 (In the formula, Ar represents a phenyl group, A, is an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, and an alkyl group having 2 to 5 carbon atoms. Represents an alkynyl group, a haloalkyl group having 1 to 5 carbon atoms, or a halogen atom, n represents an integer of 0 to 6, and when there are a plurality of substituents, the substituents may be bonded to each other to form a ring The benzene compounds represented by the following formulas are preferred.
Α ' としては例えば、 メチル基、 ェチル基、 η—プロピル基、 i—プロピル基、 n—ブチル基、 ペンチル基等の炭素数 1 ~ 5のアルキル基;メ トキシ基、 ェトキ シ基、 n—プロポキシ基、 i—プロポキシ基、 n—ブトキシ基等の炭素数 1〜5 のアルコキシ基; ビニル基、 ァリル基等の炭素数 2〜 5のアルケニル基;ェチニ ル基、 プロパギル基等の炭素数 2〜5のアルキニル基; クロロメチル基、 ジクロ ロメチル基、 トリフルォロメチル基、 フルォロェチル基等の炭素数 1〜 5のハロ アルキル基; フッ素原子、 塩素原子、 臭素原子等のハロゲン原子を示し、 中でも 炭素数 1 ~ 5のアルキル基、 ハロゲン原子が好ましい。  Examples of Α ′ include an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, an η-propyl group, an i-propyl group, an n-butyl group, a pentyl group; a methoxy group, an ethoxy group, an n- C1-C5 alkoxy groups such as propoxy, i-propoxy and n-butoxy; C2-C5 alkenyl such as vinyl and aryl; C2-carbon such as ethynyl and propargyl; An alkynyl group of 5 to 5; a haloalkyl group having 1 to 5 carbon atoms such as a chloromethyl group, a dichloromethyl group, a trifluoromethyl group, a fluoroethyl group; a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom; An alkyl group having 1 to 5 carbon atoms and a halogen atom are preferred.
置換基を有していてもよい芳香族化合物としては、 例えばベンゼン、 トルエン、 0 —キシレン、 m—キシレン、 p—キシレン、 ェチルベンゼン、 イソプロピルべ ンゼン、 テトラリン、 クロ口ベンゼン、 ジクロロベンゼン、 ブロモベンゼン、 ス チレン、 ァニソ一ル等が挙げられ、 中でもベンゼン、 トルエン、 0 —キシレン、 m—キシレン、 クロ口ベンゼンが、 特に 0—キシレン、 m—キシレン、 クロ口べ ンゼンが高光学純度で、 安定した溶媒化物となるうえで好ましい。  Examples of the aromatic compound which may have a substituent include benzene, toluene, 0-xylene, m-xylene, p-xylene, ethylbenzene, isopropylbenzene, tetralin, cyclobenzene, dichlorobenzene, bromobenzene, Styrene, anisol, etc., among which benzene, toluene, 0-xylene, m-xylene, and benzene are particularly preferred. 0-xylene, m-xylene, and benzene are particularly high in optical purity and stable. It is preferable because it becomes a solvate.
溶媒化物は、 光学活性 1, 2—二置換— 2 , 3—ジヒドロキシプロパン類と芳 香族系化合物からなるものであり、 両者の比率は 2 : 1であるものが高光学純度 の結晶として得られるので好ましく、 この際には水素結合した 1 , 2—二 2, 3—ジヒドロキシプロパン類 2分子と芳香族系化合物 1分子がスタックした 形で結晶を構成しており、 先述の一般式 ( 13) で表される化合物の B (ァリー ル基) と芳香族化合物とが何らかの結合を形成していると考えられる。 本発明に おいては、 このように明らかな結合を形成していなくとも溶媒化物と表記する。 本発明の溶媒化物は高光学純度、 具体的には 80 % e e以上の 1, 2—二置換— 2, 3—ジヒドロキシプロパン類を含んだものである。 The solvate consists of optically active 1,2-disubstituted-2,3-dihydroxypropanes and aromatic compounds, and the ratio of both is 2: 1 to obtain high optical purity crystals. In this case, hydrogen-bonded 1,2- The crystal is formed by stacking two molecules of 2,3-dihydroxypropanes and one molecule of an aromatic compound. The compound represented by the above-mentioned general formula (13) has a B (aryl group) and an aromatic compound. It is considered that the compound forms some bond. In the present invention, even if such an apparent bond is not formed, it is referred to as a solvate. The solvate of the present invention contains 1,2-disubstituted-2,3-dihydroxypropanes having high optical purity, specifically, 80% ee or more.
尚、 先述の通り、 一般式 ( 13) において、 Aが一般式 (2) で示されるイン ダンジオン構造を有する基である化合物は、 へミケ夕一ルとなった璟構造化合物 との平衡状態となる場合があるので、 この精製方法および溶媒化物においても同 様に、 一般式 ( 13) で表される光学活性 1 , 2—二置換一 2, 3—ジヒドロキ シプロパン類は、 この様な環構造化合物又はこれとの混合物をも包含するもので ある。  In addition, as described above, in the general formula (13), the compound in which A is a group having an indandione structure represented by the general formula (2) is in equilibrium with the 璟 structural compound which has become a hemikeru. Similarly, in this purification method and solvate, the optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the general formula (13) has the same ring structure. It also includes a compound or a mixture thereof.
(V— 2) 溶媒化物の製造方法 (光学活性 1, 2—二置換一 2, 3—ジヒドロキ シプロパン類の精製方法)  (V-2) Method for producing solvates (Method for purifying optically active 1,2-disubstituted 1,2-dihydroxypropanes)
この製造方法で用いる一般式 ( 13) で表される 1 , 2—二置換一 2, 3—ジ ヒドロキシプロパン類の光学異性体混合物 (以下、 単に光学異性体混合物と略す る場合もある) は、 D—体および L—体の二種の光学異性体の混合物からなるも のであり、 各光学異性体の混合比は任意であるが、 好ましくは所望の光学異性体 の含有率が高い方がよく、 例えば光学純度としては 60%e e以上、 が好ましい。 この製造方法に用いる芳香族系化合物は、 溶媒化物を構成する芳香族系化合物 と同様であり、 好ましいものも同様である。 芳香族系化合物は、 1 , 2—二置換 —2, 3—ジヒドロキシプロパン類に対して 0. 5モル倍以上、 好ましくは 0. 7〜30モル倍用いることが好ましい。  The optical isomer mixture of 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the general formula (13) used in this production method (hereinafter sometimes simply referred to as an optical isomer mixture) is , D-isomer and L-isomer. It is a mixture of two optical isomers, and the mixing ratio of each optical isomer is arbitrary. Preferably, the content of the desired optical isomer is higher. For example, the optical purity is preferably 60% ee or more. The aromatic compound used in this production method is the same as the aromatic compound constituting the solvate, and the preferred compounds are also the same. It is preferable to use the aromatic compound in an amount of 0.5 mol times or more, preferably 0.7 to 30 mol times, of the 1,2-disubstituted-2,3-dihydroxypropane.
溶媒化物の製造方法としては、 1 , 2—二置換一 2, 3—ジヒドロキシプロパ ン類の光学異性体混合物を、 例えば結晶として取り出して芳香族系化合物中に溶 解させ、 冷却して高光学純度の溶媒化物を製造するか、 また 1 , 2—二置換一 2, 3—ジヒドロキシプロパン類を合成する際の溶媒として芳香族系化合物を用いて もよい。 又合成して得られた反応生成溶液に芳香族系化合物を添加し、 次いで冷 却することによって、 1, 2—二置換一 2 , 3—ジヒドロキシプロパン類を高光 学純度の溶媒化物を製造してもよい。 As a method for producing a solvate, a mixture of optical isomers of 1,2-disubstituted 1,2,3-dihydroxypropanes, for example, is taken out as a crystal, dissolved in an aromatic compound, and cooled to obtain a high optical An aromatic compound may be used as a solvent for producing a solvate having a high purity or for synthesizing 1,2-disubstituted 1,2,3-dihydroxypropanes. Also, by adding an aromatic compound to the reaction product solution obtained by the synthesis and then cooling, the 1,2-disubstituted 1,2,3-dihydroxypropanes can be highly luminous. A solvate of chemical purity may be produced.
従って、 芳香族系化合物以外の溶媒との混合溶媒を用いて溶媒化物を製造して もよく、 芳香族系化合物の他に使用する溶媒としては、 ジェチルエーテル、 ジィ ソプロピルエーテル、 ジブチルェ一テル、 テトラヒドロフラン等のエーテル系溶 媒、 へキサン、 ヘプ夕ン、 オクタン、 イソオクタン等の脂肪炭化水素系溶媒、 ァ セトン、 メチルェチルケトン、 メチルイソブチルケトン等のケトン溶媒、 クロ口 ホルム、 クロ口ベンゼン等のハロゲン系溶媒、 ァセトニトリル、 プロピオ二トリ ル、 ブチロニトリル等の二トリル類、 ジメチルホルムアミ ド、 ジメチルスルホキ シド、 N—メチルピロリ ドン等が挙げられる。 中でも、 へキサン、 ヘプタン、 ォ クタン、 イソオクタン等の脂肪族炭化水素系溶媒が好ましい。  Therefore, a solvate may be produced using a mixed solvent with a solvent other than the aromatic compound. As the solvent to be used in addition to the aromatic compound, getyl ether, diisopropyl ether, dibutyl ether , Ether solvents such as tetrahydrofuran, aliphatic hydrocarbon solvents such as hexane, heptane, octane and isooctane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; And nitriles such as acetonitrile, propionitrile and butyronitrile, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and the like. Among them, aliphatic hydrocarbon solvents such as hexane, heptane, octane and isooctane are preferred.
溶媒の使用量は光学異性体混合物を完全に溶解させ得る量が好ましく、 具体的 には光学異性体混合物の 0〜1 0 0重量倍、 好ましくは 0〜5 0重量倍用いられ る。  The amount of the solvent to be used is preferably an amount capable of completely dissolving the optical isomer mixture, and more specifically, 0 to 100 times, preferably 0 to 50 times the weight of the optical isomer mixture.
光学異性体混合物を、 芳香族系化合物含有溶媒に完全に溶解させる温度は、 通 常は 0 °C〜混合物の沸点以下の温度範囲で設定すればよいが、 溶媒化物の収率の 観点から、 室温以上で溶解させることが好ましく、 3 0 °C以上がより好ましく、 6 0 °C以上が特に好ましい。  The temperature at which the optical isomer mixture is completely dissolved in the aromatic compound-containing solvent may be generally set at a temperature in the range of 0 ° C. to the boiling point of the mixture or lower, but from the viewpoint of solvate yield, The dissolution is preferably performed at room temperature or higher, more preferably 30 ° C or higher, and particularly preferably 60 ° C or higher.
光学異性体混合物溶液の冷却速度は通常、 1時間当たり 1〜5 0 °Cであり、 好 ましくは 3〜2 0 °Cである。 また冷却速度は一定である必要はなく、 連続的に変 化させてもよく段階的に変化させてもよい。 該溶液が冷却により到達する温度 (冷却到達温度) は適宜設定すればよいが、 通常は一 3 0 ~ 3 0 °C、 好ましくは — 1 0〜3 0 °C、 さらに好ましくは 0 ~ 3 0 °Cの範囲である。  The cooling rate of the optical isomer mixture solution is usually 1 to 50 ° C per hour, preferably 3 to 20 ° C. The cooling rate does not need to be constant, and may be changed continuously or stepwise. The temperature at which the solution reaches by cooling (cooling reaching temperature) may be appropriately set, but is usually from 130 to 30 ° C, preferably from —10 to 30 ° C, and more preferably from 0 to 30 ° C. ° C.
得られた溶媒化物は、 先述の通り、 高光学純度、 具体的には 8 0 % e e以上の 1, 2—二置換 _ 2, 3—ジヒドロキシプロパン類を含んでおり、 この溶媒化物 を例えばエタノール等のアルコール系に溶解させ、 過カルボン酸分解又は過溶媒 分解等の反応によって環化させることによって、 除草剤成分である 1, 2—二置 換— 2 , 3—エポキシプロパン類を高光学純度で容易に得ることが出来る。 以下、 本発明を実施例、 製剤例及び試験例を用いて、 詳細に説明するが、 本発 明はその要旨を越えない限り、 以下の例に限定されるものではない。 以下の実施例で使用した化合物の構造を、 表— 2〜4に示した。 又、 実施例で 使用した分析条件は以下の通りである。 As described above, the obtained solvate contains 1,2-disubstituted_2,3-dihydroxypropanes having high optical purity, specifically, 80% ee or more. Dissolve in an alcoholic system such as acetic acid, and cyclize through reactions such as decomposition with percarboxylic acid or persolvent to give 1,2-disubstituted 2,3-epoxypropane, a herbicide component, with high optical purity. Can be easily obtained. Hereinafter, the present invention will be described in detail with reference to Examples, Formulation Examples and Test Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded. The structures of the compounds used in the following Examples are shown in Tables 2 to 4. The analysis conditions used in the examples are as follows.
反応結果の分析;  Analysis of reaction results;
高速液体クロマトグラフィー (カラム : Inertsil ODS 2、 溶出溶剤メタノール: 水混合溶剤 (70 : 30) 、 流速 0. 6mL/min、 検出 22 Onm) 。 High performance liquid chromatography (column: Inertsil ODS 2, elution solvent methanol: water mixed solvent (70:30), flow rate 0.6 mL / min, detection 22 Onm).
光学純度の分析; Analysis of optical purity;
高速液体クロマトグラフィー (カラム :ダイセル化学工業 (株) 製、 Chiralcel- 0J、 溶出溶剤 n-へキサン:イソブロパノール混合溶剤 (85 : 15〜90 : 1 0) 又は、 n-へキサン :エタノール:メタノール混合溶剤 (91 : 3 : 6) 、 流速 1. OmL/min、 検出 220 nm又は 254 nm) 。 High performance liquid chromatography (Column: Chicelcel-0J, manufactured by Daicel Chemical Industries, Ltd.) Elution solvent n-hexane: isopropanol mixed solvent (85: 15 to 90: 10) or n-hexane: ethanol: Methanol mixed solvent (91: 3: 6), flow rate 1. OmL / min, detection 220 nm or 254 nm).
そして速度論的光学分割効率の指標として、 公知文献 ( S.Chen,Y. Fujimoto, G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc. 104, 7294 (1982)等) に記 載の、 以下の式で表される値 (E) を用いた。  As an index of the kinetic optical resolution efficiency, known literature (S. Chen, Y. Fujimoto, G. Girdaukas, and CJ Sih, J. Am. Chem. Soc. 104, 7294 (1982), etc.) The value (E) represented by the following equation was used.
計算式: E=ln[l-c[l+ee(P)]] / ln[l-c[l-ee(P)]] Formula: E = ln [l-c [l + ee (P)]] / ln [l-c [l-ee (P)]]
実施例 1 Example 1
反応容器に、 2— [2— (3—クロ口フエニル) 一 2—プロペン] —2—ェチ ルインダン一 1 , 3—ジオン 1. 17 g、 ( ,R)- (-) -Ν,Ν' -Bis(3,5-di-tert-but ylsalicyliaene)-l,2- cyclohexanediaminomanganese(III)chloride (先述のー 般式 (21 ) で表される化合物) 57. 3m :、 4一フエ二ルビリジン一 N—ォ キシド 92. 4mg及びジクロロメタン 4. 5 m 1を仕込み、 氷冷した混合物に、 Buffered bleach ( pH 11.3, 0.6 M aq. NaOCl, 0.05 aq. Na2HP04, 1.0 aq. NaOH) 7. 5mlを加え、 0°Cで 10時間、 室温でさらに 14時間攪拌した。 反応液を高速液体クロマトグラフィー (カラム : Inertsil 0DS 2、 溶出溶剤メ 夕ノール:水 (70 : 30) 、 流速 0. 6ml/min、 検出 22 Onm) にて分析した ところ、 2— [2 - (3—クロ口フエニル) 一2—プロペン] —2—ェチルイン ダンー 1, 3—ジオンの転化率は 100%で、 (一) 一2— [2— (3—クロ口 フエニル) 一2, 3—エポキシプロピル] 一 2—ェチルインダン一 1, 3—ジォ ン [化合物 Νο·(-)- 16] が収率 95、 光学純度 40% eeで生成していた。  In a reaction vessel, add 2-[[2- (3-chlorophenyl) -1-2-propene] -2-ethylindane-1,3-dione 1.17 g, (, R)-(-) -Ν, Ν '-Bis (3,5-di-tert-butylsalicyliaene) -l, 2-cyclohexanediaminomanganese (III) chloride (compound represented by the above-mentioned general formula (21)) 57. 3m :, 4-phenylfuridine 92.4 mg of N-oxide and 4.5 ml of dichloromethane were charged, and 7.5 ml of Buffered bleach (pH 11.3, 0.6 M aq. NaOCl, 0.05 aq. Na2HP04, 1.0 aq. NaOH) was added to the ice-cooled mixture. In addition, the mixture was stirred at 0 ° C for 10 hours and at room temperature for further 14 hours. The reaction solution was analyzed by high performance liquid chromatography (column: Inertsil 0DS 2, elution solvent: solvent: water (70:30), flow rate: 0.6 ml / min, detection: 22 Onm). The conversion of 3- (2-chlorophenyl) -1-2-propene] -2-ethylindan-1,3-dione is 100%. (1) 12- [2- (3- (3-chlorophenyl) 1-2,3— Epoxypropyl] 1-2-ethylindane-1,3-dione [compound Νο · (-)-16] was produced in a yield of 95 and an optical purity of 40% ee.
この化合物の物性値は以下の通りであった : mp 52-56°C; [ひ] D25 -23.8 (C 0.566, CHC13 ) The physical properties of this compound were as follows: mp 52-56 ° C; [H] D25 -23.8 (C 0.566, CHC13)
実施例 2 Example 2
反応容器に、 2— [2— (3—クロ口フエニル) 一2—プロペン] —2—ェチ ルインダン一 1, 3—ジオン 235mg、 N—メチルモルホリン- N-ォキシド - 1水和物 487mg、 (R,R)- (-) - Ν,Ν' -Bis(3,5-di- tert-butylsalicylidene)- 1 , 2-cyc lohexanediaminomanganese (Ill)chlorideを 35 mg、 及びジクロロメ タン 8. 0mlを仕込み一 78 °Cに冷却した混合物に、 メタクロ口過安息香酸 2 51mgを加え、 — 78°Cで 5時間攪拌した。  In a reaction vessel, 2- [2- (3-chlorophenyl) -1-propene] -2-ethylindane-1,3-dione 235 mg, N-methylmorpholine-N-oxide-monohydrate 487 mg, (R, R)-(-)-Ν, Ν'-Bis (3,5-di-tert-butylsalicylidene) -1 and 2-cyclohexanediaminomanganese (Ill) chloride 35 mg and dichloromethane 8.0 ml To the mixture cooled to 78 ° C was added 251 mg of metabenzo-perbenzoic acid, and the mixture was stirred at -78 ° C for 5 hours.
反応液を高速液体クロマトグラフィー (カラム : Inertsil 0DS 2、 溶出溶剤メ 夕ノール:水 ( 70 : 30) 、 流速 0. 6ml/min、 検出 22 Onm) にて分析した ところ、 2 - [2 - (3—クロ口フエニル) ー2—プロペン] —2—ェチルイン ダンー 1, 3- ジオン転化率は 94%で、 (一) 一 2— [2— (3—クロ口フエ ニル) 一 2, 3—エポキシプロビル] — 2—ェチルインダン一 1 , 3- ジオン [化合物 Νο·(-)-16] が収率 92、 光学純度 62% ee で生成していた。  The reaction mixture was analyzed by high performance liquid chromatography (column: Inertsil 0DS 2, elution solvent: solvent: water (70:30), flow rate: 0.6 ml / min, detection: 22 Onm), and 2-[2-( 3-chlorophenyl) -2-propene] -2-ethylindan-1,3-dione conversion is 94%. (1) 1 2— [2— (3-chlorophenyl) 1, 2, 3— Epoxy propyl] —2-ethylindan-1,1,3-dione [compound Νο · (-)-16] was produced with a yield of 92 and an optical purity of 62% ee.
実施例 3 Example 3
反応容器に、 Aldrich社製の AD - mix -ひ [ Hydroquinine 1,4-phthalazinediyl di ether, K3F e (CN) 6、 K2C03、 K2 0 s 04 · 2H2〇を含む] を 28 0mg、 t—ブ夕ノール 1. 0ml、 及び水 1. 0mlを仕込み、 氷冷した混合 物に 2- [2— (3—クロ口フエニル) ー2—プロペン] —2—ェチルインダン一 1 , 3—ジオンを 65 mg加え、 0 °Cで 10時間、 室温でさらに 14時間攪拌し た。 To the reaction vessel, Aldrich Co. AD - mix - Facial Include Hydroquinine 1,4-phthalazinediyl di ether, K 3 F e (CN) 6, K 2 C0 3, K 2 0 s 0 4 · 2H 2 〇] 280 mg, 1.0 ml of t-butanol and 1.0 ml of water were added, and 2- [2- (3-chlorophenyl) -2-propene] -2-ethylindan-1 was added to the ice-cooled mixture. Then, 65 mg of 3,3-dione was added, and the mixture was stirred at 0 ° C for 10 hours and at room temperature for further 14 hours.
反応液を高速液体クロマトグラフィー (カラム : Inertsil 0DS 2、 溶出溶剤メ 夕ノール:水 ( 70 : 30 ) 、 流速 0. 6 mL/min、 検出 220 nm) にて分析した ところ、 (一) 一 2— [2— (3—クロ口フエニル) 一 2, 3—ジヒドロキシル プロピル] — 2—ェチルインダン一 1 , 3—ジオンが収率 14%で生成していた。 亜硫酸ナトリウムを加え、 ジクロロメタンで抽出し、 有機層を硫酸水、 重曹水、 食塩水で洗浄し、 無水硫酸ナトリウムで乾燥、 濃縮し、 残渣をシリカゲルカラム クロマトグラフィーにて分取し (一) ー2— [2— (3—クロ口フエニル) 一2, 3—ジヒドロキシプロピル] 一 2—ェチルインダン一 1 , 3—ジオン [化合物 No. (-)-1] の光学純度を高速液体クロマトグラフィー (カラム:ダイセル化学工業 (株) 製、 Chiralcel- 0J、 溶出溶剤 n-へキサン:エタノール:メタノール (9 1 : 3 : 6) 、 流速 1. 0mL/min、 検出 220 m) にて分析したところ、 29% ee であった。 この化合物の分析値は次の通りであった。 The reaction mixture was analyzed by high performance liquid chromatography (column: Inertsil 0DS2, elution solvent: solvent: water (70:30), flow rate 0.6 mL / min, detection 220 nm). — [2- (3-chlorophenyl) -1,2,3-dihydroxylpropyl] —2-ethylindan-1,1,3-dione was produced in a yield of 14%. Add sodium sulfite, extract with dichloromethane, wash the organic layer with aqueous sulfuric acid, aqueous sodium bicarbonate, and brine, dry over anhydrous sodium sulfate, concentrate, and separate the residue by silica gel column chromatography. (1) -2 — [2 -— (3-chlorophenyl) -1,2,3-dihydroxypropyl] -1-ethylindane-1,3-dione [Compound No. The optical purity of (-)-1] was determined by high performance liquid chromatography (column: Chiralcel-0J, manufactured by Daicel Chemical Industries, Ltd., elution solvent: n-hexane: ethanol: methanol (91: 3: 6), flow rate: 1). It was 29% ee when analyzed at 0.0 mL / min with a detection of 220 m). The analytical values of this compound were as follows.
[ひ] D25 -17.1 (C 0.507, CHC13 )  [H] D25 -17.1 (C 0.507, CHC13)
実施例 4 く化合物 No. (±)-1の光学分割 (1) > Example 4 Optical Resolution of Compound No. (±) -1 (1)>
(土) 2— [2 - (3—クロ口フエニル) 一2, 3—ジヒ ドロキシルプロピ ル] — 2—ェチルインダン一 1, 3—ジオン (化合物 No. (±)-1) 50mgに、 Lipase R (Penicillium roqueforti由来、 天野製薬株式会社製) 100mg、 酢 酸ビニル 5. 0mlを混合し、 室温で 5日間攪拌した。 反応終了後、 酵素を濾別 し、 濾液を高速液体クロマトグラフィーにて分析したところ、 (一) 2— [2- (3—クロ口フエニル) 一2, 3—ジヒドロキシルプロビル] 一 2—ェチルイン ダン- 1, 3—ジオン (化合物 No. (-)-1) (収率 50%、 光学純度 83%e e) 及び (+ ) — 2— [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—ァ セ トキシプロピル] — 2—ェチルインダン— 1 , 3—ジオン (化合物 No. (+)- 2) (収率 50%、 光学純度 83%ee ) が生成していた。  (Sat) 2- [2- (3-chlorophenyl) -1,2,3-dihydroxypropyl] —2-ethylindan-1,3-dione (Compound No. (±) -1) 50 mg, Lipase R ( 100 mg of Penicillium roqueforti (manufactured by Amano Pharmaceutical Co., Ltd.) and 5.0 ml of vinyl acetate were mixed and stirred at room temperature for 5 days. After completion of the reaction, the enzyme was separated by filtration, and the filtrate was analyzed by high performance liquid chromatography. (1) 2- (2- (3-chlorophenyl) -12,3-dihydroxylpropyl-12- Ethilindan-1,3-dione (Compound No. (-)-1) (Yield 50%, optical purity 83% ee) and (+) — 2— [2-(3- (3-chlorophenyl)) 1 2— Hydroxy-3-acetoxypropyl] —2-ethylindan-1,3-dione (Compound No. (+)-2) (yield 50%, optical purity 83% ee) was formed.
実施例 5〜13 く化合物 No.(±)- 1 の光学分割 (2) > Examples 5 to 13 Optical Resolution of Compound No. (±) -1 (2)>
実施例 4で使用した Lipase R (Penicillium roqueforti, 天野製薬株式会社 製) 100 mの代わりに表一 5に示す酵素 (100 mg) を使用した以外は実施例 4と 同様にして反応を行った。 反応終了後、 酵素を濾別し濾液を高速液体クロマトグ ラフィ一にて分析した。 結果を表一 5に示した。  The reaction was carried out in the same manner as in Example 4 except that the enzyme (100 mg) shown in Table 15 was used instead of 100 m of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) used in Example 4. After completion of the reaction, the enzyme was separated by filtration, and the filtrate was analyzed by high performance liquid chromatography. The results are shown in Table 1-5.
実施例 14 く化合物 No. ( ± )- 1 の光学分割 ( 3 ) > Example 14 Optical Resolution of Compound No. (±) -1 (3)>
フラスコに化合物 No. (±)- 1を 10 Omg、 Lipase Rを 10 Omg及び酢酸ビ ニル 1. 0mlを仕込み、 室温で 19時間攪拌した。 反応終了後、 酵素を濾別し 濾液を高速液体クロマトグラフィーにて分析したところ、 化合物 No. (-)-1 (収 率 75%、 光学純度 32 ee ) 及び化合物 No. ( + )-2 (収率 25%、 光学純度 95 ee ) が生成していた。  A flask was charged with 10 Omg of Compound No. (±) -1, 10 Omg of Lipase R, and 1.0 ml of vinyl acetate, and stirred at room temperature for 19 hours. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography. Compound No. (-)-1 (yield 75%, optical purity 32 ee) and compound No. (+)-2 ( The yield was 25% and the optical purity was 95 ee).
実施例 15~24 く化合物 No.(±)- 1 の光学分割 (4) 〜( 13) > Examples 15 to 24 Optical Resolution of Compound No. (±) -1 (4) to (13)>
実施例 14で使用した酢酸ビニル 1. 0mlの代わりに表— 6に示すエステル を 1. 0mlを使用し、 実施例 14と同様にして反応を行い、 反応終了後、 酵素 を濾別し濾液を高速液体クロマ卜グラフィ一にて分析し、 表— 6に示す結果を得Esters shown in Table 6 in place of 1.0 ml of vinyl acetate used in Example 14 The reaction was carried out in the same manner as in Example 14 using 1.0 ml of the enzyme. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography to obtain the results shown in Table 6.
/ ο / ο
実施例 25 <化合物 No.(±)- 1 の光学分割 (14) 〉 Example 25 <Optical Resolution of Compound No. (±) -1 (14)>
フラスコに化合物 No. (±)-1を 100mg、 Lipase R (Penicillium roquefor ti、 天野製薬株式会社製) 100mg、 酢酸ビニル 0. 2ml及びジイソプロビ ルェ一テル 1. 0mlを仕込み、 室温で 19時間攪拌した。 反応終了後、 酵素を 濾別し濾液を高速液体クロマトグラフィーにて分析したところ、 化合物 No. (-) -1 (収率 95% ) 及び化合物 No. ( + )-2 (収率 5%) が生成していた。  A flask was charged with 100 mg of compound No. (±) -1, 100 mg of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.), 0.2 ml of vinyl acetate, and 1.0 ml of diisopropyl ether, and the mixture was stirred at room temperature for 19 hours. . After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography. Compound No. (-)-1 (95% yield) and Compound No. (+)-2 (5% yield) Had been generated.
実施例 26〜 30 <化合物 No. (± )-1 の光学分割 ( 15 ) 〜 ( 19 ) > ジイソプロピルエーテル 1. 0mlの代わりに表一 7に示す溶媒 1. 0mlを 使用した以外は実施例 25と同様にして反応を行い、 反応終了後、 酵素を濾別し 濾液を高速液体クロマトグラフィーにて分析し、 表一 7に示す結果を得た。 Examples 26 to 30 <Optical Resolution of Compound No. (±) -1 (15) to (19)> Example 25 was repeated except that 1.0 ml of the solvent shown in Table 17 was used instead of 1.0 ml of diisopropyl ether. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography to obtain the results shown in Table 17.
実施例 31 <化合物 No.(±)- 1 の光学分割 (20) > Example 31 <Optical resolution of compound No. (±) -1 (20)>
フラスコに化合物 No. (±)- 1を 10 Om :、 Lipase R (Penicillium roquefor ti、 天野製薬株式会社製) 100mg、 ジイソプロビルエーテル 1. 0ml及び、 無水酢酸 0. 2mlを仕込み、 室温で 19時間攪拌した。 反応終了後、 酵素を濾 別し濾液を高速液体クロマトグラフィーにて分析したところ、 化合物 No. (- )-1 (収率 99% ) 及び化合物 No. ( + )-2 (収率 1%) が生成していた。  Compound No. (±) -1 was added to the flask at 10 Om: Lipase R (Penicillium roqueforti, Amano Pharmaceutical Co., Ltd.) 100 mg, diisopropyl ether 1.0 ml, and acetic anhydride 0.2 ml, and the mixture was charged at room temperature with 19 ml. Stirred for hours. After completion of the reaction, the enzyme was filtered off and the filtrate was analyzed by high performance liquid chromatography. Compound No. (-)-1 (99% yield) and compound No. (+)-2 (1% yield) Had been generated.
実施例 32〜38 く化合物 No.(±)-l の光学分割 (21) ~ (31) > 無水酢酸 0. 2 mlの代わりに、 表一 8に示す酸無水物 0. 2 mlを使用した 以外は実施例 31と同様にして反応を行い、 反応終了後、 酵素を濾別し、 濾液を 高速液体クロマトグラフィーにて分析し、 表一 8に示す結果を得た。 Examples 32 to 38 Optical Resolution of Compound No. (±) -l (21) to (31)> Instead of 0.2 ml of acetic anhydride, 0.2 ml of the acid anhydride shown in Table 1 was used. A reaction was carried out in the same manner as in Example 31 except for the above. After completion of the reaction, the enzyme was filtered off, and the filtrate was analyzed by high performance liquid chromatography to obtain the results shown in Table 18.
実施例 39 く化合物 No. (-)-1及び化合物 No. ( + )-2 の合成 > Example 39 Synthesis of Compound No. (-)-1 and Compound No. (+)-2>
化合物 No. (±)-1 (5.00 g) に Lipase R (5.00 g、 Penicillium roquefort i 、 天野製薬株式会社製) 、 酢酸ビニル (50 mL ) を仕込み室温で 5日間攪拌した。 反応終了後、 酵素を濾別し濾液を減圧下濃縮した。 残渣をシリカゲルカラムクロ マトグラフィー (n- へキサン:酢酸ェチル =4 : 1〜2 : 1 ) にて分取したと ころ、 化合物 No. (-)-1 (2.55 g、 収率 51% 、 光学純度 78¾ee 、 白色固体) 及び 化合物 No. ( + )-2 (2.73 g、 収率 49%、 光学純度 81 ee 、 黄色液体) を得た。 化合物 No. ( + )-2 の分析値は以下の通りであった: Compound No. (±) -1 (5.00 g) was charged with Lipase R (5.00 g, Penicillium roquefort i, manufactured by Amano Pharmaceutical Co., Ltd.) and vinyl acetate (50 mL) and stirred at room temperature for 5 days. After completion of the reaction, the enzyme was filtered off and the filtrate was concentrated under reduced pressure. The residue was separated by silica gel column chromatography (n-hexane: ethyl acetate = 4: 1 to 2: 1). Compound No. (-)-1 (2.55 g, 51% yield, optical yield) Purity 78¾ee, white solid) and Compound No. (+)-2 (2.73 g, yield 49%, optical purity 81 ee, yellow liquid) was obtained. Analytical values for Compound No. (+)-2 were as follows:
IR (KBr) 3450, 1720, 1710, 1700 cm- 1; 1H舰 (CDC13) d = 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 (1.2H, t, J = 7.5 Hz), 1.5 9-1.98 (4H, m), 1.78 (0.9H, s), 2.02 (0.9H, s), 2.12 (1.2H, s), 2.36 (0. 3H, d, J = 13.5 Hz), 2.38 (0.4H, d, J = 13.5 Hz), 2.56 (0.3H, d, J = 13. 5 Hz), 2.59 (0.3H, d, 13.5 Hz), 2.88 (0.4H, d, J = 13.5 Hz), 2.93 (0. 6H, s), 3.13 (0.4H, br), 3.14 (0.3H, d, J = 13.5 Hz), 3.74 (0.3H, d, J = 12.0 Hz), 3.9K0.3H, d, J = 12.0 Hz), 3.98 (0.3H, d, J二 11.4 Hz), 4.06 (0.4H, d, J = 11.8 Hz), 4.19 (0.3H, d, J = 11.4 Hz), 4.29 (0.4H, d, J二 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7.95 (4H, m).  IR (KBr) 3450, 1720, 1710, 1700 cm-1; 1H 舰 (CDC13) d = 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 ( 1.2H, t, J = 7.5 Hz), 1.5 9-1.98 (4H, m), 1.78 (0.9H, s), 2.02 (0.9H, s), 2.12 (1.2H, s), 2.36 (0.3H , D, J = 13.5 Hz), 2.38 (0.4H, d, J = 13.5 Hz), 2.56 (0.3H, d, J = 13.5 Hz), 2.59 (0.3H, d, 13.5 Hz), 2.88 ( 0.4H, d, J = 13.5 Hz), 2.93 (0.6H, s), 3.13 (0.4H, br), 3.14 (0.3H, d, J = 13.5 Hz), 3.74 (0.3H, d, J = 12.0 Hz), 3.9K 0.3H, d, J = 12.0 Hz), 3.98 (0.3H, d, J 2 11.4 Hz), 4.06 (0.4H, d, J = 11.8 Hz), 4.19 (0.3H, d, J = 11.4 Hz), 4.29 (0.4H, d, J 2 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7.95 (4H, m).
実施例 40 く化合物 No. (- )-1の合成 > Example 40 Synthesis of Compound No. (-)-1>
化合物 o. (-)-1 (1.00 g、 光学純度 78 ee ) に Lipase R (1.00 g、 Penicill ium roqueforti 、 天野製薬株式会社製) 、 酢酸ビニル (10 mL ) を仕込み室温 で 2日間攪拌した。 反応終了後、 酵素を濾別し濾液を減圧下濃縮した。 残渣をシ リカゲルカラムクロマトグラフィ一 (n- へキサン:酢酸ェチル =4: 1〜2 : 1 ) にて分取したところ、 化合物 No. ( + )-2 (279mg、 収率 25% 、 光学純度 40%ee 、 黄色液体) 、 化合物 No. (-)-1 (719 mg、 収率 72% 、 光学純度 95%ee 、 白色 固体) を得た。 こうして得た化合物 No. (- )- 1をトルエン/ n- へキサンで再結 晶して化合物 No. (-)-1 (738 mg、 収率 90% 、 光学純度 >99 ee、 白色固体) を得 た。  Lipase R (1.00 g, Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) and vinyl acetate (10 mL) were added to compound o. (-)-1 (1.00 g, optical purity 78 ee), and the mixture was stirred at room temperature for 2 days. After completion of the reaction, the enzyme was filtered off and the filtrate was concentrated under reduced pressure. The residue was fractionated by silica gel column chromatography (n-hexane: ethyl acetate = 4: 1 to 2: 1) to give Compound No. (+)-2 (279 mg, 25% yield, 40% optical purity). % ee, yellow liquid) and Compound No. (-)-1 (719 mg, yield 72%, optical purity 95% ee, white solid) were obtained. Compound No. (-)-1 thus obtained was recrystallized from toluene / n-hexane to give Compound No. (-)-1 (738 mg, 90% yield, optical purity> 99 ee, white solid) Was obtained.
化合物 No. (-)-1の分析値は以下の通りであった: The analytical values of the compound No. (-)-1 were as follows:
mp 98.2-99.0°C; [ひ] D25 -58.8 (C 0.507, CHC13) ; IR (KBr) 3470, 3320, 1720, 1700 cm -1; 1H腿 (CDC13); d: 0.60 (0.6H, t, J = 7.5 Hz), 0.84 (2.4H, t, J = 7. 5 Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0.2H, d, J = 14.4Hz), 2.62 (0.2H, d, J = 14.4 Hz), 2.65 (0.8H, d, J = 13.2 H z), 2.82 (0.8H, d, J : 13.2 Hz), 3.12 (1H, br), 3.60 (2H, s), 5.10 (1H, s), 6.83-7.07 (4H, m), 7.44-7.92 (4H, m). mp 98.2-99.0 ° C; [H] D 25 -58.8 (C 0.507, CHC13); IR (KBr) 3470, 3320, 1720, 1700 cm -1; 1H thigh (CDC13); d: 0.60 (0.6H, t , J = 7.5 Hz), 0.84 (2.4H, t, J = 7.5 Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0.2H, d, J = 14.4 Hz), 2.62 (0.2H, d, J = 14.4 Hz), 2.65 (0.8H, d, J = 13.2 Hz), 2.82 (0.8H, d, J: 13.2 Hz), 3.12 (1H, br), 3.60 (2H, s), 5.10 (1H, s), 6.83-7.07 (4H, m), 7.44-7.92 (4H, m).
実施例 41 く化合物 No. (-)-14 の合成〉 化合物 No. (-)-l ( 光学純度〉 99 ee) 387mgをピリジン 8. 0mlに溶 解し、 氷冷下にメタンスルホニルクロリ ド 186 mgを滴下した。 滴下終了後、 室温で 1時間反応させた後、 酢酸ェチルを加え、 水、 1 0%塩酸、 水、 飽和食塩 水で順次洗浄し濃縮したところ、 化合物 No. (-)-14 ( 473 mg、 収率 100%、 光学 純度 >99¾ee、 黄色液体) を得た。 Example 41 Synthesis of Compound No. (-)-14> 387 mg of compound No. (-)-l (optical purity> 99 ee) was dissolved in 8.0 ml of pyridine, and 186 mg of methanesulfonyl chloride was added dropwise under ice cooling. After completion of the dropwise addition, the reaction was carried out at room temperature for 1 hour.Ethyl acetate was added, and the mixture was washed with water, 10% hydrochloric acid, water, and saturated saline in that order, and concentrated.Compound No. (-)-14 (473 mg, Yield 100%, optical purity> 99¾ee, yellow liquid).
化合物 No. (-)-14 の分析値は以下の通りであった: The analytical values of the compound No. (-)-14 were as follows:
IR (KBr) 3500, 1720, 1350, 1180 cm-1; 1H NMR (CDC13); d = 0.59 (0.67H, t, J = 7.5 Hz), 0.81 (0.33H, t, J = 7.5Hz), 0.82 (2. OH, t, J = 7.5 Hz), 1.64-2.00 (2H, m), 2.38 (0.11H, d, J = 13.8Hz), 2.58 (0.67Ή, d, J = 12. 9 Hz), 2.58 (0.33H, s), 2.60 (0.22H, d, J =14.5 Hz), 2.74 (0.22H, d, J二 14.5 Hz), 2.85 (0.67H, d, J =12.9 Hz), 2.97(0.22H, s), 2.98 (0.67H, s), 3.11 (2. OH, s), 3.18 (0.11H, d, J = 13.8Hz), 3.42(0.67H, s), 3.84 (0.11 H, d, J = 10.8 Hz), 3.92 (0.11H, d, J = 10.8 Hz), 4.05 (0.67H, d, J = 12. 0 Hz), 4.09 (0.22H, d, J = 10.8 Hz), 4.27 (0.22H, d, J = 10.8 Hz), 4.35 (0.67H, d, J =12.0 Hz), 4.40 (0.11H, s), 6.79-7.07 (3H, m), 7.32-7.97 (5 H, m).  IR (KBr) 3500, 1720, 1350, 1180 cm-1; 1H NMR (CDC13); d = 0.59 (0.67H, t, J = 7.5 Hz), 0.81 (0.33H, t, J = 7.5Hz), 0.82 (2. OH, t, J = 7.5 Hz), 1.64-2.00 (2H, m), 2.38 (0.11H, d, J = 13.8 Hz), 2.58 (0.67Ή, d, J = 12.9 Hz), 2.58 (0.33H, s), 2.60 (0.22H, d, J = 14.5 Hz), 2.74 (0.22H, d, J2 14.5 Hz), 2.85 (0.67H, d, J = 12.9 Hz), 2.97 (0.22 H, s), 2.98 (0.67H, s), 3.11 (2.OH, s), 3.18 (0.11H, d, J = 13.8Hz), 3.42 (0.67H, s), 3.84 (0.11H, d, J = 10.8 Hz), 3.92 (0.11H, d, J = 10.8 Hz), 4.05 (0.67H, d, J = 12.0 Hz), 4.09 (0.22H, d, J = 10.8 Hz), 4.27 (0.22 H, d, J = 10.8 Hz), 4.35 (0.67H, d, J = 12.0 Hz), 4.40 (0.11H, s), 6.79-7.07 (3H, m), 7.32-7.97 (5 H, m).
実施例 42 < (化合物 No. (-)-16 ) の合成 > Example 42 <Synthesis of (Compound No. (-)-16)>
化合物 No. (-)-14 (光学純度〉 99%ee) 473 mgをメタノール 1 0 m 1に溶 解し、 室温で炭酸カリウム 2 18mgを加え、 そのまま 1時間静置し反応させた。 反応終了後、 減圧下で溶媒を留去し、 水および酢酸ェチルを加え、 分液した有機 層を水、 飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾燥後、 溶媒を 減圧下で留去した。 残渣をシリカゲルカラムクロマトグラフィ一 (へキサン :酢 酸ェチル =4 : 1 ) にて精製したところ、 化合物 No. (-)-16 (331 mg、 収率 9 0% 、 光学純度〉 99%ee、 黄色液体) を得た。 これを n—へキサンを加えて氷冷す ることにより、 白色固体を得た。  473 mg of Compound No. (-)-14 (optical purity: 99% ee) was dissolved in 10 ml of methanol, 218 mg of potassium carbonate was added at room temperature, and the mixture was allowed to stand for 1 hour to react. After completion of the reaction, the solvent was distilled off under reduced pressure, water and ethyl acetate were added, and the separated organic layer was washed with water and saturated saline. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to give compound No. (-)-16 (331 mg, yield 90%, optical purity> 99% ee, yellow Liquid). This was added with n-hexane and cooled with ice to obtain a white solid.
化合物 No. (-)-16 の分析値は以下の通りであった :  Analytical values for compound No. (-)-16 were as follows:
mp 41-42°C; [ひ] D 25 -59.5 (C 0.556, CHC13) ; IR (KBr) 1745, 1710, 160 0, 1250, 700 cm-1; 1H匪 (CDC13) d: 0.65 (3H, t, J二 7.5 Hz), 1.80 (2H, q, J二 7.5 Hz), 2.48 (1H, d, J = 5.4 Hz), 2.59 (1H, d, J = 14.4 Hz), 2. 75 (1H, d, J =14.4Hz), 2.83 (1H, d, J = 5.4 Hz), 6.82 (1H, s), 6.97-7.01mp 41-42 ° C; [H] D 25 -59.5 (C 0.556, CHC13); IR (KBr) 1745, 1710, 160 0, 1250, 700 cm-1; 1H marauder (CDC13) d: 0.65 (3H, t, J two 7.5 Hz), 1.80 (2H, q, J two 7.5 Hz), 2.48 (1H, d, J = 5.4 Hz), 2.59 (1H, d, J = 14.4 Hz), 2. 75 (1H, d, J = 14.4 Hz), 2.83 (1H, d, J = 5.4 Hz), 6.82 (1H, s), 6.97-7.01
(1H, m), 7.09-7.11 (2H, m), 7.71-7.84 (3H, m), 7.89-7.93 (1H, m). (1H, m), 7.09-7.11 (2H, m), 7.71-7.84 (3H, m), 7.89-7.93 (1H, m).
実施例 43 <化合物 No. (-)-15 ) 〉の合成 Example 43 Synthesis of <Compound No. (-)-15)>
化合物 No. (-)-1 (光学純度〉 99%ee) 1. 00 gをピリジン 4. 0mlに溶解 し、 氷冷下に P- トルエンスルホニルクロリ ド 640mgを滴下した。 滴下終了 後、 室温で 1時間反応させた後、 酢酸ェチルを加え、 水、 1 0%塩酸、 水、 飽和 食塩水で順次洗浄し、 次いで濃縮した。 残渣をシリカゲルカラムクロマトグラフ ィー (n- へキサン :酢酸ェチル =4 : 1) にて精製したところ、 化合物 No. (-) -15 (1.35 g、 収率 94% 、 光学純度 >99%ee、 無色液体) を得た。  1.00 g of Compound No. (-)-1 (optical purity: 99% ee) was dissolved in 4.0 ml of pyridine, and 640 mg of P-toluenesulfonyl chloride was added dropwise under ice cooling. After the completion of the dropwise addition, the mixture was reacted at room temperature for 1 hour, and ethyl acetate was added. The mixture was washed with water, 10% hydrochloric acid, water, and saturated saline in that order, and then concentrated. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 4: 1) to give compound No. (-)-15 (1.35 g, yield 94%, optical purity> 99% ee , A colorless liquid).
化合物 No. (-)-15 の分析値は以下の通りであった: Analytical values for Compound No. (-)-15 were as follows:
1H NMR (CDC13) d = 0.55 (0.4H, t, J = 7.5 Hz), 0.78 (0.6H, t, J ^ 7. 5 Hz), 0.81 (2. OH, t, J = 7.5 Hz), 1.56-2.02 (2H, m), 2.30 (0.2H, d, J =1 3.8 Hz), 2.41 (0.6H, s), 2.44 (0.4H, s), 2.46 (2. OH, s), 2.51 (0.13H, d, J = 13.8 Hz), 2.53 (0.67H, d, J = 13.2 Hz), 2.60 (0.13H, d, J= 13.8 Hz), 2.81 (0.67H, d, J二 13.2 Hz), 2.92 (0.13H, s), 3.05 (0.2H, d, J = 13.8 Hz), 3.19 (0.2H, s), 3.59 (0.2H, d, J = 11.1 Hz), 3.66 (0.2H, d, J = 11. 1 Hz), 3.81 (0.13H, d, 11.1 Hz), 3.99 (0.67H, d, J=ll.l Hz), 4.07 (0. 13H, d, J = 11.1 Hz), 4.08 (0.67H, d, J = 11.1 Hz), 4.17 (0.67H, s), 6.7 5-7.93 (12H, ).  1H NMR (CDC13) d = 0.55 (0.4H, t, J = 7.5 Hz), 0.78 (0.6H, t, J ^ 7.5 Hz), 0.81 (2.OH, t, J = 7.5 Hz), 1.56 -2.02 (2H, m), 2.30 (0.2H, d, J = 13.8 Hz), 2.41 (0.6H, s), 2.44 (0.4H, s), 2.46 (2.OH, s), 2.51 (0.13 H, d, J = 13.8 Hz), 2.53 (0.67H, d, J = 13.2 Hz), 2.60 (0.13H, d, J = 13.8 Hz), 2.81 (0.67H, d, J2 13.2 Hz), 2.92 (0.13H, s), 3.05 (0.2H, d, J = 13.8 Hz), 3.19 (0.2H, s), 3.59 (0.2H, d, J = 11.1 Hz), 3.66 (0.2H, d, J = 11.1 Hz), 3.81 (0.13H, d, 11.1 Hz), 3.99 (0.67H, d, J = ll.l Hz), 4.07 (0.13H, d, J = 11.1 Hz), 4.08 (0.67H , d, J = 11.1 Hz), 4.17 (0.67H, s), 6.7 5-7.93 (12H,).
実施例 44 <化合物 No. (-)-16 の合成 > Example 44 <Synthesis of Compound No. (-)-16>
化合物 No. (-)-15 (光学純度〉 99 ee) 500 m gをメタノール 5. Omlに 溶解し、 室温で炭酸カリウム 16 lmgを加え、 そのまま 1時間反応させた。 反 応終了後、 減圧下で溶媒を留去し、 水および酢酸ェチルを加え、 有機層を分液し、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾燥後、 溶媒を減圧 下で留去した。 残渣をシリカゲルカラムクロマトグラフィー (へキサン :酢酸ェ チル =4 : 1 ) にて精製したところ、 化合物 No. (-)-16 (306 mg、 収率 92%、 光学純度 >99%ee、 黄色液体) を得た。 これを n—へキサンを加えて氷冷すること により、 白色固体を得た。  500 mg of Compound No. (-)-15 (optical purity: 99 ee) was dissolved in 5.Oml of methanol, and 16 lmg of potassium carbonate was added at room temperature, followed by a reaction for 1 hour. After the reaction was completed, the solvent was distilled off under reduced pressure, water and ethyl acetate were added, the organic layer was separated, and washed with water and saturated saline. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to give compound No. (-)-16 (306 mg, yield 92%, optical purity> 99% ee, yellow liquid ) Got. This was added with n-hexane and cooled with ice to obtain a white solid.
実施例 45 く化合物 No. (- )- 1の合成〉 化合物 No, (±)-1 を 160 gに酢酸ビニル 1600mlを加え、 溶解し、 こ の溶液に、 Lipase R 160 gを加え、 30°Cで 2日間撹拌した。 反応終了後、 酵素を濾別し、 濾液を順次、 飽和重曹水、 水、 飽和食塩水で洗浄した。 溶媒を減 圧下留去した後、 濃縮物にトルエン 1601111及び1 - へキサン 480 mlをカロ え、 混合物を氷冷した。 析出した結晶を濾過し、 さらにトルエン 40mlと n— へキサン 120mlの混合溶媒で振りかけ洗浄を行った後、 乾燥し、 化合物 No. (-)-1 (64 g、 収率 40%、 光学純度 97%ee、 白色固体) を得た。 Example 45 Synthesis of Compound No. (-)-1> Compound No., (±) -1 was dissolved in 160 g of vinyl acetate in 160 g, and Lipase R 160 g was added to this solution, followed by stirring at 30 ° C. for 2 days. After completion of the reaction, the enzyme was filtered off, and the filtrate was washed successively with saturated aqueous sodium hydrogen carbonate, water and saturated saline. After evaporating the solvent under reduced pressure, toluene 1601111 and 480 ml of 1-hexane were added to the concentrate, and the mixture was ice-cooled. The precipitated crystals were filtered, washed by sprinkling with a mixed solvent of 40 ml of toluene and 120 ml of n-hexane, and then dried. Compound No. (-)-1 (64 g, yield 40%, optical purity 97 % ee, white solid) was obtained.
実施例 46 <化合物 No. (- )-14の合成 > Example 46 <Synthesis of Compound No. (-)-14>
化合物 No. (-)-1 (光学純度 97%ee ) 226 gをピリジン 750 m 1に溶解し、 氷冷下にメタンスルホニルクロリ ド 98 gを滴下した。 滴下終了後、 室温で 1時 間反応させた後、 酢酸ェチルを加え水、 10%塩酸、 水、 飽和食塩水で洗浄し濃 縮したところ、 粗な化合物 No. (-)-14 (290 g、 収率 100%、 光学純度 97¾ee、 黄色液体) を得た。  226 g of Compound No. (-)-1 (optical purity 97% ee) was dissolved in 750 ml of pyridine, and 98 g of methanesulfonyl chloride was added dropwise under ice cooling. After completion of the dropwise addition, the mixture was reacted at room temperature for 1 hour.After adding ethyl acetate, the mixture was washed with water, 10% hydrochloric acid, water, and saturated saline, and concentrated to obtain crude compound No. (-)-14 (290 g , Yield 100%, optical purity 97 純度 ee, yellow liquid).
実施例 47 <化合物 No.(- )-16>の合成 Example 47 Synthesis of <Compound No. (-)-16>
実施例 46で得られた粗な化合物 Νο·(- )- 14 ( 290 g) をメタノール 100 0 mlに溶解し、 室温で炭酸カリウム 1 19 gを加え、 そのまま 1時間反応させ た。 反応終了後、 減圧下で溶媒を留去し、 水および酢酸ェチルを加え抽出し有機 層を水、 飽和食塩水で洗浄した。 有機層を分取し、 溶媒を減圧下で留去したとこ ろ、 化合物 No.(- )- 16 (210 g、 収率 98%、 光学純度 97%ee 、 黄色液体) を得た。 これを n-へキサンを加えて氷冷することにより、 白色固体を得た。  The crude compound Νο (-)-14 (290 g) obtained in Example 46 was dissolved in 1000 ml of methanol, 119 g of potassium carbonate was added at room temperature, and the mixture was allowed to react for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure, water and ethyl acetate were added for extraction, and the organic layer was washed with water and saturated saline. The organic layer was separated, and the solvent was distilled off under reduced pressure to obtain Compound No. (-)-16 (210 g, yield 98%, optical purity 97% ee, yellow liquid). This was added with n-hexane and cooled with ice to obtain a white solid.
実施例 48 <化合物 No. (- )-16の合成 > Example 48 <Synthesis of Compound No. (-)-16>
化合物 No. (-)-1 (光学純度 85%ee ) 5. 0 g、 p— トルエンスルホニルクロ リ ド 2. 7 g及びクロロベンゼン 25mlの混合液に、 室温で 25 %水酸化ナト リウム水溶液 12 gを滴下した。 滴下終了後、 室温で 2時間反応させた後、 有機 層を分液し、 水及び飽和食塩水で洗浄し、 濃縮したところ、 化合物 No.(- )-16 (4.7 g、 収率 98%、 光学純度 85°ee ) を得た。 これを n—へキサンを加えて氷 冷することにより、 白色固体を得た。 表 一 2 Compound No. (-)-1 (optical purity 85% ee) 5.0 g, p-toluenesulfonyl chloride 2.7 g and chlorobenzene 25 ml at room temperature, 25% sodium hydroxide aqueous solution 12 g Was added dropwise. After completion of the dropwise addition, the mixture was reacted at room temperature for 2 hours. The organic layer was separated, washed with water and saturated saline, and concentrated.Compound No. (-)-16 (4.7 g, yield 98%, An optical purity of 85 ° ee) was obtained. This was added with n-hexane and cooled with ice to obtain a white solid. Table 1 2
化合物 Na
Figure imgf000068_0001
Compound Na
Figure imgf000068_0001
Ra Rb R a R b
(±) -1 一 OH 一 OH  (±) -1 one OH one OH
(土) - 2 -OH -OCOCH3  (Sat)-2 -OH -OCOCH3
(±) "3 —OH — OCOCH2CH3 (±) "3 —OH — OCOCH 2 CH 3
(±) -4 -OH -OCO(CH2)2CH3 (±) -4 -OH -OCO (CH2) 2 CH 3
(± ) -5 -OH — OCOCH(CH3)2 (±) -5 -OH - OCOCH ( CH 3) 2
(土) - 6 -OH -OCO(CH2)3CH3 (Sat)-6 -OH -OCO (CH 2 ) 3 CH 3
(土)一 7 一 OH — OCOCH2CH(CH3)2 (Sat) 1 7 1 OH — OCOCH 2 CH (CH 3 ) 2
(土) - B -OH — OCO(CH2)4CH3 (Sat)-B -OH — OCO (CH2) 4 CH 3
表一 2 (つづき) Table 1 2 (continued)
Figure imgf000069_0002
注) P-Tol
Figure imgf000069_0002
Note) P-Tol
Figure imgf000069_0001
Figure imgf000069_0001
表 一 3 Table 1 3
化合物 o. Compound o.
Ra Rb R a R b
(一) -1 -OH -OH  (I) -1 -OH -OH
(一) -2 -OH -OCOCH3  (I) -2 -OH -OCOCH3
(一) -3 —OH — OCOCH2CH3 (I) -3 —OH — OCOCH 2 CH 3
(一) -4 -OH — OCO(CH2)2CH3 (I) -4 -OH — OCO (CH2) 2 CH 3
(一) -5 一 OH -OCOCH(CH3)2 (1) -5 one OH -OCOCH (CH 3) 2
(一) - 6 一 OH -OCO(CH2)3CH3 (One)-6 one OH -OCO (CH2) 3 CH 3
(―) -7 —OH -OCOCH2CH(CH3)2 (-) -7 —OH -OCOCH 2 CH (CH 3 ) 2
(一) -8 -OH -OCO(CH2)4CH3 (I) -8 -OH -OCO (CH2) 4 CH 3
Figure imgf000071_0001
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0002
69 69
lTSS0/66df/X3d SOfOZ/00 O/W 4 lTSS0 / 66df / X3d SOfOZ / 00 O / W Four
化合物 Να
Figure imgf000072_0001
Compound Να
Figure imgf000072_0001
Ra Rb R a R b
(+ ) -1 —OH 一 OH  (+) -1 —OH-OH
( +) -2 一 OH -OCOCH3  (+) -2 OH -OCOCH3
(+ ) -3 -OH — OCOCH2CH3 (+) -3 -OH — OCOCH 2 CH 3
(+) -4 -OH -OCO(CH2)2CH3 (+) -4 -OH -OCO (CH2) 2 CH 3
(+ ) -5 —OH 一 OCOCHCCHA(+) -5 —OH-OCOCHCCHA
(+ ) - 6 -OH -OCO(CH2)3CH3 (+)-6 -OH -OCO (CH2) 3 CH 3
(+〉 -7 —OH -OCOCH2CH(CH3)2 (+) -7 —OH -OCOCH 2 CH (CH 3 ) 2
(+) -8 一 OH ~OCO(C¾)4CH3 (+) -8 OH ~ OCO (C¾) 4 CH 3
表一 4 . (つづき) Table 1 4. (continued)
Figure imgf000073_0002
注) P-Tol:
Figure imgf000073_0002
Note) P-Tol:
Figure imgf000073_0001
Figure imgf000073_0001
表 雄例 反応 ジ才一ル 収串 (%) ct (%) ァシル化 収率 (¾) ce (%J Table Male example Reaction Reaction (%) ct (%) Acylation yield (¾) ce (% J
時 M 化合物 No. 化合物 No.  Time M Compound No. Compound No.
(日)  (Day)
1、 . Lipase R 5 (-)-i 50 83 (+)-2 50 83 1, Lipase R 5 (-)-i 50 83 (+)-2 50 83
fPtnicillium roautforli ??¾1ί¾ (お ΜΊ  fPtnicillium roautforli? ? ¾1ί¾ (O ΜΊ
5 Lipase fij . 5 W-i 75 20 (-)-2 25 60  5 Lipase fij .5 W-i 75 20 (-)-2 25 60
(Pstiidoinonas fluorescent 天野 薬 (株) }ϋ)  (Pstiidoinonas fluorescent Amano Pharmaceutical Co., Ltd.} ϋ)
6 Lipase AKG 5 52 55 . (0-2 48 60  6 Lipase AKG 5 52 55. (0-2 48 60
CPstudornonas fluorescent 天野 架 (株) |ϋ)  CPstudornonas fluorescent Amano frame | ϋ)
7 Toyozymtし IP : 0.5 (小1 16 31 (+)-2 84 6  7 Toyozymt then IP: 0.5 (small 1 16 31 (+)-2 84 6
(Pscudomonas sp.> 束洋紡 (株) ίΰ) Cs3 (Pscudomonas sp.> Sukayobo Co., Ltd.ίΰ) Cs3
8 Lipase Qし 0.5 64 12 (-)-2 ■36 71 8 Lipase Q 0.5 64 12 (-)-2 ■ 36 71
(Alcaligcncs sp., 名¾産業 (抹) 製)  (Alcaligcncs sp., Made by Mei Sangyo Co., Ltd.)
Lipase PL  Lipase PL
9 0.5 38 23 (+)-2 • 62 14  9 0.5 38 23 (+)-2 • 62 14
(AlcaHgoics sp.、 名 ¾¾ (株) 製)  (AlcaHgoics sp., Manufactured by Mei Co., Ltd.)
1 0 Lipase D 5 90 11 (+)-2 10 95  1 0 Lipase D 5 90 11 (+)-2 10 95
(Rhizopus delcmar. 天野製架 (株) 製)  (Rhizopus delcmar. Manufactured by Amano Corporation)
1 1 Lipase AP6 5 59 29 (+)-2 41 35  1 1 Lipase AP6 5 59 29 (+)-2 41 35
(Aspergillus niger、 FIuka$i)  (Aspergillus niger, FIuka $ i)
1 2 Lipase AY 5 74 6 (十) -2 26 17  1 2 Lipase AY 5 74 6 (ten) -2 26 17
(Candida rugosa^ 天野 5¾¾ (株) 製)  (Candida rugosa ^ Amano 5¾¾ Co., Ltd.)
13 Lipase M 10 5 88 2 (+)-2 12.  13 Lipase M 10 5 88 2 (+)-2 12.
(Mucor javnnicus, Fluka$l!) (Mucor javnnicus, Fluka $ l!)
表 一 6 Table 1 6
実翻 エステル ジオール 収率 ) ee (%) ァシル化物 収^ (%) ec (%) α -eZ/PJO. 化合物 No. Actually translated ester diol yield) ee (%) Acylated compound yield ^ (%) ec (%) α-eZ / PJO. Compound No.
14 ft鼓ピニル (-)-i 75 32 (+)-2 25 9514 ft drum pinil (-)-i 75 32 (+)-2 25 95
15 -薛珐イソプロべニル (-)-i 99 - (+)-2 1 -15-Seol Isoprobenyl (-)-i 99-(+)-2 1-
16 酢酸メチル (-)-i 99 - (+)-2 1 -16 Methyl acetate (-)-i 99-(+)-2 1-
17 S酸ェチル (-)-i 99 - (+)-2 1 -17 S-Ethyl (-)-i 99-(+)-2 1-
18 プロピオン酸ビニル (-)-i 82 (十) -3 18 "18 Vinyl propionate (-)-i 82 (ten) -3 18 "
19 酪酸ビニル (-)-i 40 >9 (+)-4 60 6719 Vinyl butyrate (-)-i 40> 9 (+)-4 60 67
20 カブロン酸ビニル (-)-i 66 41 (+H 34 8020 Vinyl capronate (-)-i 66 41 (+ H 34 80
21 カプリル鼓ビニル (-)-i 71 21 (+)-9 29 52 21 Capryl drum vinyl (-)-i 71 21 (+)-9 29 52
22 カプリン ビニル (-)-i 80 11 (+)-10 20 8922 Caprin vinyl (-)-i 80 11 (+)-10 20 89
23 ラウリン ¾ビニル (-)-i 7フ 29 (+)-11 23 9723 Laurin ¾vinyl (-)-i 7F 29 (+)-11 23 97
24 · ク口 酸ビニル (-)-i 99 (+)-13 1 24Vinyl acetate (-)-i 99 (+)-13 1
表 一 7 Table 1 7
Figure imgf000076_0001
Figure imgf000076_0001
実施例 エステル ジオール 収率 (%) ec (%) ァシル化物 収率 (%) cc (%) 化合物 No. 化合物 No.Example Ester diol yield (%) ec (%) acylated compound yield (%) cc (%) Compound No. Compound No.
α  α
31 水酢 K . (-)-i 99 (+)-2 1 31 Water vinegar K. (-)-I 99 (+)-2 1
32 水ブロピオン ¾ (-)-ι 99 (+)-3 1  32 Water propion ¾ (-)-ι 99 (+)-3 1
33 無水 ¾¾ (-)-i 99 (+ I  33 Anhydrous ¾¾ (-)-i 99 (+ I
34 無水ィソ¾¾ (-)-i 85 15 (+)-5 15 85 34 Anhydrous (-)-i 85 15 (+)-5 15 85
35 水吉草鼓 (- フ】 33 (+Π 29 8135 Mizuyoshi Soko (-F) 33 (+ Π 29 81
36 き水ィソ吉萆 g (-)-i 99 (+)-7 1 36 Kisui Isokichi g (-)-i 99 (+)-7 1
37 水力プロン g (-)-1 63 42 (+)-8 37 7】 37 Hydropron g (-)-1 63 42 (+)-8 37 7)
38 水安息香 S ( 1 79 24 . (+)-12 21 92 実施例 49 く化合物 No. (±)-2の光学分割 ( 1 ) > 38 Mizubenzuka S (1 79 24. (+)-12 21 92 Example 49 Optical Resolution of Compound No. (±) -2 (1)>
2 - [2 - (3- クロ口フエニル) 一 2—ヒドロキシ一 3—ァセトキシプロビ ル] ― 2—ェチルインダン一 1, 3- ジオン (化合物 No. (±)-2 ) 10 Omg に、 Lipase R (100 mg、 Penicillium roqueforti、 天野製薬株式会社製) 100 mg、 n—ブ夕ノール 70mg、 ジイソプロピルエーテル 2 m 1を加え、 室温で 24時間攪拌した。 反応終了後、 酵素を濾別し、 濾液を高速液体クロマトグラフ ィ一にて分析したところ、 化合物 No. (-)-2 (収率 95% ) 及び (+ ) -2- [2 一 (3—クロ口フエニル) 一 2, 3—ジヒドロキシプロピル] —2—ェチルイン ダン— 1, 3—ジオン (化合物 No.( + )-l) (収率 5°ん 光学純度 77 ee ) が生成 していた。 濾液を濃縮し、 シリカゲルカラムクロマトグラフィーで化合物 No. (-)-2 を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学純度 4%ee) を得た。  2- [2- (3-chlorophenyl) 1-2-hydroxy-13-acetoxypropyl] -2-ethylindan-1,3-dione (Compound No. (±) -2) 10 Omg, Lipase R (100 mg, Penicillium roqueforti, Amano Pharmaceutical Co., Ltd.) 100 mg, n-butanol 70 mg, and diisopropyl ether 2 ml were added, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the enzyme was filtered off, and the filtrate was analyzed by high performance liquid chromatography. Compound No. (-)-2 (95% yield) and (+)-2- [2-1 (3 —Chlorophenyl) 1,2,3-dihydroxypropyl] —2-ethylindan—1,3-dione (Compound No. (+)-l) (yield 5 °, optical purity 77 ee) . The filtrate was concentrated, and Compound No. (-)-2 was separated by silica gel column chromatography, and treated with methanol and sodium hydroxide to obtain Compound No. (-)-1 (optical purity 4% ee). .
化合物 No. (-)-1 の分析値は以下の通りであった :  Analytical values for compound No. (-)-1 were as follows:
mp: 98.2-99.0 °C; [ ]D25 -58.8 (C 0.507, CHC13 ) ; IR (KBr ) 3470、 3 320、 1720、 1700 cm-1; 1H匿 (CDC13); d = 0.60 (0.6H, t, J = 7.5 Hz), 0. 84 (2.4H, t, J = 7.5 Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0. 2H, d, J = 14.4 Hz), 2.62 (0.2 H, d, J = 14.4 Hz), 2.65 (0.8H, d, J = 13. 2Hz), 2.82 (0.8H, d, J = 13.2 Hz), 3.12 (1H, br), 3.60 (2H, s), 5.10 (1H, s), 6.83-7.07 (4H, m), 7.44-7.92 (4H, m). mp: 98.2-99.0 ° C; [] D 25 -58.8 (C 0.507, CHC13); IR (KBr) 3470, 3320, 1720, 1700 cm-1; 1H concealed (CDC13); d = 0.60 (0.6H, t, J = 7.5 Hz), 0.84 (2.4H, t, J = 7.5 Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0.2H, d, J = 14.4 Hz), 2.62 (0.2 H, d, J = 14.4 Hz), 2.65 (0.8 H, d, J = 13.2 Hz), 2.82 (0.8 H, d, J = 13.2 Hz), 3.12 (1H, br ), 3.60 (2H, s), 5.10 (1H, s), 6.83-7.07 (4H, m), 7.44-7.92 (4H, m).
実施例 50 く化合物 No. (士)-2の光学分割 ( 2 ) > Example 50 Optical Resolution of Compound No. (K) -2 (2)>
化合物 No. (±)-2 を 10 Omgに Lipase R (Penicillium roqueforti, 天野製 薬株式会社製) 100mg、 ジイソプロピルエーテル 1. Oml、 リン酸緩衝溶 液 (pH 7.2) 1 Omlを加え、 室温で 72時間攪拌した。 反応終了後、 酢酸ェチ ルで抽出し有機層を高速液体クロマトグラフィーにて分析したところ、 化合物 N o.(-)-2 (収率 79% ) 及び化合物 No.( + )-l (収率 21% 、 光学純度 79%ee ) が生 成していた。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No. (-)-2 を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. Add 100 mg of Lipase R (Penicillium roqueforti, Amano Pharmaceutical Co., Ltd.) to 100 mg of compound No. (±) -2, 1.Oml of diisopropyl ether, 1 Oml of phosphate buffer solution (pH 7.2), and add 72 ml at room temperature. Stirred for hours. After completion of the reaction, extraction with ethyl acetate and analysis of the organic layer by high performance liquid chromatography revealed that Compound No. (-)-2 (79% yield) and Compound No. (+)-l (yield Rate 21%, optical purity 79% ee). The organic layer was concentrated, and compound No. (-)-2 was separated by silica gel column chromatography, and treated with methanol and sodium hydroxide to give compound No.
(光学純度 21¾ee ) を得た。  (Optical purity 21¾ee) was obtained.
実施例 51 く化合物 No. (±)-3 の光学分割 > 2— [2— (3—クロ口フエニル) 一2—ヒドロキシー 3—プロピオ二ルォキ シプロビル] 一 2—ェチルインダン— 1, 3—ジオン (化合物 No. (±)-3 ) 1 0 Omgを使用した以外は実施例 50と同様にして反応を行い、 反応終了後、 酢 酸ェチルで抽出し有機層を高速液体ク口マトグラフィ一にて分析したところ、 (-) 一 2— [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—プロピオ二 ルォキシプロピル] 一 2—ェチルインダン— 1, 3—ジオン (化合物 No. (-) - 3) (収率 72% ) 及び化合物 No. ( + )-1 (収率 28%、 光学純度 69%ee ) が生成し ていた。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No. (-) - 3 を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学 純度 27%ee ) を得た。 Example 51 Optical Resolution of Compound No. (±) -3> 2- (2- (3-chlorophenyl) 1-2-hydroxy-3-propionyloxyprovir) -2-ethylindan-1,3-dione (Compound No. (±) -3) except using 10 Omg Was reacted in the same manner as in Example 50. After completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography. The result was (-) 1-2-[2--(3- Methyl phenyl) 1-2-hydroxy-13-propionyloxypropyl] 1-2-ethylindane-1,3-dione (Compound No. (-)-3) (72% yield) and Compound No. (+)-1 ( The yield was 28%, and the optical purity was 69% ee). The organic layer was concentrated, and the compound No. (-)-3 was separated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain compound No. (-)-1 (optical purity 27% ee). .
実施例 52 <化合物 No. (±)-4 の光学分割〉 Example 52 <Optical resolution of compound No. (±) -4>
2— [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—プチリルォキシプ 口ビル] — 2—ェチルインダン一 1, 3—ジオン (化合物 No. (±)-4 ) 100 mgを使用した以外は実施例 50と同様にして反応を行い、 反応終了後、 酢酸ェ チルで抽出し、 有機層を高速液体クロマトグラフィーにて分析したところ、 2- [2- (3-chlorophenyl) 1-2-hydroxy-1-3-butyryloxylipobil] —2-ethylindan-1,3-dione (Compound No. (±) -4) Except for using 100 mg The reaction was carried out in the same manner as in Example 50.After the completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography.
(一) 一2— [2 - (3—クロ口フエニル) 一 2—ヒドロキシー 3—プチリルォ キシプロビル] 一 2—ェチルインダン— 1, 3—ジオン (化合物 No. (-)-4 ) (収率 36% ) 及び化合物 No.( + )- 1 (収率 64% 、 光学純度 56¾ee ) が生成してい た。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No.(- )- 4 を 分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学純度 >99¾ee) を得た。 (I) 1-2- [2- (3-chlorophenyl) -12-hydroxy-3-butyryloxyprobiyl] -1-ethylindane-1,3-dione (Compound No. (-)-4) (36% yield) ) And Compound No. (+)-1 (yield 64%, optical purity 56¾ee). The organic layer was concentrated, and the compound No. (-)-4 was fractionated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain compound No. (-)-1 (optical purity> 99¾ee).
実施例 53 く化合物 No. (±)-5 の光学分割 > Example 53 Optical Resolution of Compound No. (±) -5>
2— [2— (3—クロ口フエニル) 一 2—ヒドロキシ一 3—イソブチリルォキ シプロピル] — 2—ェチルインダン— 1 , 3—ジオン化合物 (No. (±)-5 ) 10 Omgを使用した以外は実施例 50と同様にして反応を行い、 反応終了後、 酢酸 ェチルで抽出し、 有機層を高速液体クロマトグラフィーにて分析したところ、 (-) -2- [2— (3—クロ口フエニル) 一 2—ヒドロキシ一 3—イソブチリ ルォキシプロピル] 一 2—ェチルインダン一 1 , 3—ジオン (化合物 No. (-) - 5 ) (収率 54% ) 及び化合物 No.( + )- 1 (収率 46% 、 光学純度 96%ee ) が生成し ていた。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No. (-) - 5 を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学 純度 82 ee ) を得た。 2- [2- (3-chlorophenyl) 1-2-hydroxy-13-isobutyryloxypropyl] —2-ethylindan-1,3-dione compound (No. (±) -5) Except for using 10 Omg. The reaction was carried out in the same manner as in Example 50. After the completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography to find that (-)-2- [2- (3- (3-methylphenyl)) 2-Hydroxy-3-isobutylyloxypropyl] -1-ethylindane-1,3-dione (Compound No. (-)-5) (54% yield) and Compound No. (+)-1 (46% yield) Optical purity 96% ee) I was The organic layer was concentrated, and Compound No. (-)-5 was separated by silica gel column chromatography, and treated with methanol and sodium hydroxide to obtain Compound No. (-)-1 (optical purity: 82 ee).
実施例 54 <化合物 No. (±)-6 の光学分割 > Example 54 <Optical resolution of compound No. (±) -6>
2 - [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—バレリルォキシプ 口ビル] — 2—ェチルインダン一 1 , 3—ジオン (化合物 No. (±)-6) を 10 Omgを使用した以外は実施例 5ひと同様にして反応を行い、 反応終了後、 酢酸 ェチルで抽出し、 有機層を高速液体クロマトグラフィーにて分析したところ、 2- [2- (3-chlorophenyl) 1-2-hydroxy-13-valeryloxypopenville] — 2-ethylindan-1,3-dione (Compound No. (±) -6) except using 10 Omg Was reacted in the same manner as in Example 5, and after the reaction was completed, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography.
(一) - 2 - [2— (3—クロ口フエニル) 一 2—ヒドロキシー 3—バレリルォ キシプロビル] — 2—ェチルインダン一 1, 3- ジオン (化合物 No. (-)-6 )(1-)-2- [3- (3-chlorophenyl) -1-2-hydroxy-3-valeryloxyprobiyl] —2-ethylindan-1,3-dione (Compound No. (-)-6)
(収率 96% ) 及び化合物 No.( + )-l (収率 4°ん 光学純度 92 ee ) が生成していた。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No. (-)-6 を分取 し、 メタノール及び水酸化ナトリウムで処理して化合物 No.(-)-l (光学純度 4¾e e) を得た。 (Yield 96%) and compound No. (+)-1 (yield 4 °, optical purity 92 ee). The organic layer was concentrated and the compound No. (-)-6 was fractionated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain compound No. (-)-1 (optical purity 4¾e e).
実施例 55 <化合物 No. (±)-7 の光学分割 > Example 55 <Optical resolution of compound No. (±) -7>
2 - [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—イソバレリルォキ シプロピル] — 2—ェチルインダン一 1, '3—ジオン (化合物 No. (±)-7) 1 0 Omgを使用した以外は実施例 50と同様にして反応を行い、 反応終了後、 酢 酸ェチルで抽出し、 有機層を高速液体クロマトグラフィ一にて分析したところ、 (-) - 2 - [2 - (3—クロ口フエニル) 一 2—ヒドロキシ一 3—イソパレリ ルォキシプロピル] ー 2—ェチルインダン- 1 , 3- ジオン (化合物 No. (-)-7 ) (収率 94% ) 及び化合物 No.( + )- 1 (収率 6%、 光学純度 97%ee ) が生成して いた。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No.(- )-7 を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学純 度 6%ee) を得た。  2- [2- (3-chlorophenyl) 1-2-hydroxy-13-isovaleryloxypropyl] — 2-ethylindan-1,1, '3-dione (Compound No. (±) -7) except using 10 Omg Was reacted in the same manner as in Example 50. After completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography. The result was (-)-2-[2--(3- Phenyl) 1-hydroxy-1-3-isopareryloxypropyl] -2-ethylindan-1,3-dione (compound No. (-)-7) (94% yield) and compound No. (+)-1 (yield 6%, optical purity 97% ee). The organic layer was concentrated, and Compound No. (-)-7 was separated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain Compound No. (-)-1 (optical purity 6% ee). Was.
実施例 56 く化合物 No. (±)-8 の光学分割 > Example 56 Optical Resolution of Compound No. (±) -8>
2 - [2 - (3—クロ口フエニル) 一2—ヒドロキシ一 3—力プロィルォキシ プロピル] — 2—ェチルインダン一 1 , 3— 6オン (化合物 No. (±)-8 ) 10 Omgを使用した以外は実施例 50と同様にして反応を行い、 反応終了後、 酢酸 ェチルで抽出し、 有機層を高速液体クロマトグラフィーにて分析したところ、 (一) 一2— [2— (3—クロ口フエニル) 一 2—ヒドロキシー 3—力プロィル ォキシプロピル] 一 2—ェチルインダン一 1, 3—ジオン (化合物 Νο·(-)- 8 ) (収率 20% ) 及び化合物 ο.( + )-1 (収率 80%、 光学純度 25 ee ) が生成してい た。 有機層を濃縮しシリカゲルカラムクロマトグラフィーで化合物 No. (-)-8を 分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-)-1 (光学純 度〉 99%ee) を得た。 2- [2- (3-chlorophenyl) 1-2-hydroxy-13-hydroxypropyl] -2-ethylindan-1,3,6-one (Compound No. (±) -8) except using 10 Omg Was reacted in the same manner as in Example 50. Extraction with ethyl acetate and analysis of the organic layer by high performance liquid chromatography revealed that (1) 1-2- [2- (3-chlorophenyl) -12-hydroxy-3-hydroxypropyl] 1-2-ethylindan-1 , 3-dione (compound Νο · (-)-8) (20% yield) and ο. (+)-1 (80% yield, 25 ee optical purity). The organic layer was concentrated, and Compound No. (-)-8 was separated by silica gel column chromatography, and treated with methanol and sodium hydroxide to obtain Compound No. (-)-1 (optical purity> 99% ee). Obtained.
実施例 57 <化合物 No. (±)-4の光学分割 > Example 57 <Optical resolution of compound No. (±) -4>
反応容器に化合物 No. (±)-4 を 500mg、 Lipase R (Penicillium roquef orti、 天野製薬株式会社製) 50mg、 ジイソプロピルエーテル 1. 0ml、 リ ン酸緩衝溶液 (pH 7.2、 ) 2. 5mlを仕込み、 室温で 24時間攪拌した。 反応 終了後、 酢酸ェチルで抽出し、 有機層を高速液体クロマトグラフィーにて分析し たところ、 (一) 一2— [—2— (3—クロ口フエニル) 一2—ヒドロキシー3 一プチリルォキシプロビル] — 2—ェチルインダン— 1, 3—ジオン (化合物 N o.(-)-4 ) (収率 84% ) 及び化合物 No.( + )- 1 (収率 16%、 光学純度 93 ee ) が 生成していた。 有機層を濃縮し、 シリカゲルカラムクロマトグラフィーで化合物 No. (-)- を分取し、 メタノール及び水酸化ナトリウムで処理して化合物 No. (-) A reaction vessel is charged with 500 mg of compound No. (±) -4, 50 mg of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.), 1.0 ml of diisopropyl ether, and 2.5 ml of a phosphate buffer solution (pH 7.2). The mixture was stirred at room temperature for 24 hours. After completion of the reaction, the reaction mixture was extracted with ethyl acetate, and the organic layer was analyzed by high-performance liquid chromatography. (1) 12-[— 2- (3-chlorophenyl) 1-2-hydroxy-3-ptyrilolo Xiprovir] — 2-ethylindan-1,3-dione (Compound No. (-)-4) (84% yield) and Compound No. (+)-1 (16% yield, 93 ee optical purity) ) Was generated. The organic layer is concentrated, and the compound No. (-)-is separated by silica gel column chromatography, and treated with methanol and sodium hydroxide to give the compound No. (-).
-1 (光学純度 18%ee ) を得た。 -1 (optical purity 18% ee) was obtained.
実施例 58 <化合物 No. (±)-5の光学分割〉 Example 58 <Optical resolution of compound No. (±) -5>
化合物 No. (±)-5 を 50 Omg使用した以外は実施例 57と同様にして反応 を行い、 反応終了後、 酢酸ェチルで抽出し、 有機層を高速液体クロマトグラフィ 一にて分析したところ、 (一) 一2— [2— (3—クロ口フエ二ル) 一 2—ヒド 口キシー 3—イソブチリルォキシプロピル] — 2—ェチルインダン一 1, 3—ジ オン (化合物 No. (-)-5) (収率 92% ) 及び化合物 No. ( + )-1 (収率 8、 光学純 度 98%ee ) が生成していた。 有機層を濃縮しシリカゲルカラムクロマトグラフィ 一で化合物 No.(- )- 5 を分取し、 メタノール及び水酸化ナトリウムで処理して化 合物 No.(- )- 1 (光学純度 ¾ee) を得た。  The reaction was carried out in the same manner as in Example 57 except that 50 Omg of compound No. (±) -5 was used. After completion of the reaction, the mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography. 1) 1—2— [2— (3-chlorophenol) 1—2-hydroxy 3-isobutyryloxypropyl] —2-ethylindan-1,1,3-dione (Compound No. (-)- 5) (92% yield) and Compound No. (+)-1 (8 yield, 98% ee optical purity). The organic layer was concentrated and the compound No. (-)-5 was separated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain compound No. (-)-1 (optical purity ¾ee). .
実施例 59 く化合物 No. (±)-8 の光学分割 > Example 59 Optical Resolution of Compound No. (±) -8>
化合物 No. (±)-8 (500 ing) を使用した以外は実施例 57と同様にして反応 を行い、 反応終了後、 酢酸ェチルで抽出し、 有機層を高速液体クロマトグラフィ —にて分析したところ、 (一) 一2— [2 - (3—クロ口フエニル) 一 2—ヒド 口キシ一 3—力プロィルォキシプロピル] 一 2—ェチルインダン一 1, 3—ジォ ン (化合物 No. (-)-8 ) (収率 64% ) 及び化合物 No.( + )- 1 (収率 36%、 光学純 度 91%ee ) が生成していた。 有機層を濃縮しシリカゲルカラムクロマトグラフィ 一で化合物 No. (-)-8を分取し、 メタノール及び水酸化ナトリウムで処理して 化合物 No. (-)-1 (光学純度 51 ee ) を得た。 Reaction was performed in the same manner as in Example 57 except that Compound No. (±) -8 (500 ing) was used. After completion of the reaction, the reaction mixture was extracted with ethyl acetate, and the organic layer was analyzed by high performance liquid chromatography. The results were as follows: (1) 1-2— [2- (3-chlorophenyl) 1-2—hydroxy3 —Caproloxypropyl] -1-2-ethylindan-1,3-dione (Compound No. (-)-8) (64% yield) and Compound No. (+)-1 (36% yield) , Optical purity 91% ee). The organic layer was concentrated, and the compound No. (-)-8 was separated by silica gel column chromatography and treated with methanol and sodium hydroxide to obtain compound No. (-)-1 (optical purity 51 ee).
実施例 60 く化合物 No. (±)-2 の合成〉 Example 60 Synthesis of Compound No. (±) -2>
化合物 No. (±)-1 を 3. 0 gとピリジン 30mlからなる溶液に、 無水酢酸 1. 7 gを仕込み、 室温で 24時間攪拌した。 反応終了後、 水を加え、 酢酸ェチ ルで抽出し、 有機層を水、 塩酸水、 水で順次洗浄した。 有機層を濃縮し、 シリカ ゲルカラムクロマトグラフィーで精製したところ化合物 No. (士) -2 (3.1 g、 無色液体) を得た。 化合物 No. (土) - の分析値は以下の通りであった: 1H腿 (CDC13) d 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 (1.2H, t, J = 7.5 Hz), 1.59-1.98 (4H, m), 1.78 (0.9H, s), 2.02 (0. 9H, s), 2.12 (1.2H, s), 2.36 (0.3H, d, J = 13.5 Hz), 2.38 (0.4H, d, J =1 3.5Hz), 2.56 (0.3H, d, J = 13.5 Hz), 2.59 (0.3H, d, J = 13.5 Hz), 2.88 (0.4H, d, J : 13.5 Hz), 2.93 (0.6H, s), 3.13 (0.4H, br), 3.14 (0.3H, d, J = 13.5Hz), 3.74 (0.3H, d, J = 12.0 Hz), 3.91 (0.3H, d, J二 12.0 Hz), 3. 98 (0.3H, d, J = 11.4 Hz), 4.06 (0.4H, d, J = 11.8 Hz), 4.19 (0.3H, d, J = 11.4 Hz), 4.29 (0.4H, d, J = 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7.95 (4H, m).  To a solution consisting of 3.0 g of compound No. (±) -1 and 30 ml of pyridine was added 1.7 g of acetic anhydride, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous hydrochloric acid, and water sequentially. The organic layer was concentrated and purified by silica gel column chromatography to obtain Compound No. (S) -2 (3.1 g, colorless liquid). Analytical values for Compound No. (Sat)-were as follows: 1H thigh (CDC13) d 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 (1.2H, t, J = 7.5 Hz), 1.59-1.98 (4H, m), 1.78 (0.9H, s), 2.02 (0.9H, s), 2.12 (1.2H, s), 2.36 (0.3 H, d, J = 13.5 Hz), 2.38 (0.4H, d, J = 13.5 Hz), 2.56 (0.3H, d, J = 13.5 Hz), 2.59 (0.3H, d, J = 13.5 Hz), 2.88 (0.4H, d, J: 13.5 Hz), 2.93 (0.6H, s), 3.13 (0.4H, br), 3.14 (0.3H, d, J = 13.5Hz), 3.74 (0.3H, d, J = 12.0 Hz), 3.91 (0.3H, d, J 2 12.0 Hz), 3.98 (0.3H, d, J = 11.4 Hz), 4.06 (0.4H, d, J = 11.8 Hz), 4.19 (0.3H , d, J = 11.4 Hz), 4.29 (0.4H, d, J = 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7.95 (4H, m).
実施例 6 1 <化合物 No. (±)-3 の合成 > Example 6 1 <Synthesis of Compound No. (±) -3>
化合物 No. (±)-1 を 0. 50 gとピリジン 5. 0 mlからなる溶液に、 無水 プロピオン酸 0. 37 gを仕込み、 室温で 24時間攪拌した。 反応終了後、 水を 加え、 酢酸ェチルで抽出し、 有機層を水、 塩酸水、 水で洗浄した。 有機層を濃縮 し、 シリカゲルカラムクロマトグラフィーで精製したところ化合物 No. (±)-3 (0.54 g、 無色液体) を得た。 この化合物の物性値は以下の通りであった。  A solution of 0.50 g of compound No. (±) -1 and 5.0 ml of pyridine was charged with 0.37 g of propionic anhydride and stirred at room temperature for 24 hours. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous hydrochloric acid, and water. The organic layer was concentrated and purified by silica gel column chromatography to obtain Compound No. (±) -3 (0.54 g, colorless liquid). Physical properties of this compound were as follows.
nD23: 1.5533 実施例 62 く化合物 No. (±)-4の合成〉 nD23: 1.5533 Example 62 Synthesis of Compound No. (±) -4>
化合物 No. (±)-1 を 0. 50 gとピリジン 5. 0mlからなる溶液に、 無水 酪酸 0. 44 gを仕込み、 室温で 24時間攪拌した。 反応終了後、 水を加え、 酢 酸ェチルで抽出し有機層を水、 塩酸水、 水で洗浄した。 有機層を濃縮し、 シリカ ゲルカラムクロマトグラフィーで精製したところ化合物 No. (±)-4 (0.56 g、 無色液体) を得た。 この化合物の分析値は以下の通りであった。 また、 この液体 をジィソプロビルエーテルから再結晶して得られた結晶の融点は mp: 100- 105°C であった。  A solution consisting of 0.50 g of compound No. (±) -1 and 5.0 ml of pyridine was charged with 0.44 g of butyric anhydride and stirred at room temperature for 24 hours. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate, and the organic layer was washed with water, hydrochloric acid, and water. The organic layer was concentrated and purified by silica gel column chromatography to obtain Compound No. (±) -4 (0.56 g, colorless liquid). The analytical values of this compound were as follows. The melting point of the crystal obtained by recrystallizing this liquid from disoprovir ether was mp: 100-105 ° C.
nD23: 1.5549  nD23: 1.5549
IR (neat) 3421, 2966, 2937, 1704, 1604, 1178 cm-1  IR (neat) 3421, 2966, 2937, 1704, 1604, 1178 cm-1
1H腿 (CD30D) d 0.47 (3H, t, J = 7.5 Hz, isomer-b), 0.68-0.77 (3H, m; 3H, m, isomer-a+c), 1.20-2.16 (4H, m), 2.27 (1H, d, J = 13.5 Hz, isomer -c), 2.28 (1H, d, J = 12.9 Hz, isomer-a), 2.49 (2H, s, isomer-b), 2.85 (1H, d, J = 12.9 Hz, isomer-a), 3.03 (1H, d, J = 13.5 Hz, isomer- c), 3.6 9 (1H, d, J = 11.4 Hz, isomer- c), 3.81 (1H, d, J = 11.4 Hz, isomer-c), 3. 98 (1H, d, J = 11.4 Hz, isomer-b), 4.05 (1H, d, J = 11.4 Hz, isomer - a), 4.11 (1H, d, J = 11.4 Hz, isomer-b), 4.28 (1H, d, J = 11.4 Hz, isomer-a), 6.73-7.88 (8H, m).  1H thigh (CD30D) d 0.47 (3H, t, J = 7.5 Hz, isomer-b), 0.68-0.77 (3H, m; 3H, m, isomer-a + c), 1.20-2.16 (4H, m), 2.27 (1H, d, J = 13.5 Hz, isomer -c), 2.28 (1H, d, J = 12.9 Hz, isomer-a), 2.49 (2H, s, isomer-b), 2.85 (1H, d, J = 12.9 Hz, isomer-a), 3.03 (1H, d, J = 13.5 Hz, isomer-c), 3.69 (1H, d, J = 11.4 Hz, isomer-c), 3.81 (1H, d, J = 11.4 Hz, isomer-c), 3.98 (1H, d, J = 11.4 Hz, isomer-b), 4.05 (1H, d, J = 11.4 Hz, isomer-a), 4.11 (1H, d, J = 11.4 Hz, isomer-b), 4.28 (1H, d, J = 11.4 Hz, isomer-a), 6.73-7.88 (8H, m).
実施例 63 <化合物 No. (±)-4の合成〉 Example 63 <Synthesis of Compound No. (±) -4>
化合物 No. (±)-1 (107.6 g ) を 107. 6 g、 トリェチルァミン 36. 4 g、 テトラヒドロフラン 30 Omlからなる溶液に、 氷冷下、 酪酸クロリ ド (35. 2 g) を滴下し、 滴下終了後、 室温で 1時間攪拌した。 反応終了後、 水を加え、 酢酸ェチルで抽出し有機層を水及び飽和食塩水で洗浄し、 無水硫酸ナ卜リウムで 乾燥した。 硫酸ナトリウムを濾別し濃縮したところ化合物 No. (±)-4 (129.1 g、 無色液体) を得た。  Butyric acid chloride (35.2 g) was added dropwise to a solution consisting of 107.6 g of compound No. (±) -1 (107.6 g), 36.4 g of triethylamine, and 30 Oml of tetrahydrofuran under ice-cooling. After completion, the mixture was stirred at room temperature for 1 hour. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated saline, and dried over anhydrous sodium sulfate. The sodium sulfate was filtered off and concentrated to obtain Compound No. (±) -4 (129.1 g, colorless liquid).
実施例 64 <化合物 No. (±)-5 の合成 > Example 64 <Synthesis of Compound No. (±) -5>
化合物 No. (±)-1 を 7. 2 g、 卜リエチルァミン 2. 53 gとテトラヒドロ フラン 2 Omlからなる溶液に、 氷冷下、 イソ酪酸クロリ ド (2.56 g) を滴下し、 滴下終了後、 室温で 1時間攪拌した。 反応終了後、 水を加え、 酢酸ェチルで抽出 し有機層を水及び飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。 硫酸ナ トリウムを濾別し濃縮したところ化合物 No. (±)-5 (8.5 g 、 無色液体) を得 た。 化合物 No. (±)-5 の分析値は下記の通りであった: Isobutyric acid chloride (2.56 g) was added dropwise to a solution consisting of 7.2 g of compound No. (±) -1 and 2.53 g of triethylamine and 2 Oml of tetrahydrofuran under ice-cooling. The mixture was stirred at room temperature for 1 hour. After the reaction, add water and extract with ethyl acetate The organic layer was washed with water and saturated saline, and dried over anhydrous sodium sulfate. The sodium sulfate was filtered off and concentrated to obtain Compound No. (±) -5 (8.5 g, colorless liquid). Analytical values for Compound No. (±) -5 were as follows:
nD23: 1.5542  nD23: 1.5542
IR (neat) 3417, 2972, 2939, 1705, 1604, 1468, 1196, 1076 cm-1  IR (neat) 3417, 2972, 2939, 1705, 1604, 1468, 1196, 1076 cm-1
実施例 6 5 <化合物 No. (±)-6 の合成 > Example 6 5 <Synthesis of Compound No. (±) -6>
化合物 No. (±)_1 を 0. 50 gとピリジン 5. 0mlからなる溶液に、 氷冷 下、 吉草酸クロリ ド (0.34 g) を滴下し、 滴下終了後、 室温で 2時間攪拌した。 反応終了後、 水を加え、 酢酸ェチルで抽出し有機層を水、 塩酸水、 水で洗浄した c 有機層を濃縮し、 シリカゲルカラムクロマトグラフィーで精製したところ化合物 No. (±)-6 (0.55 g、 無色液体) を得た。 化合物 No. (土) -6 の分析値は下 記の通りであった : nD23: 1.5525 To a solution consisting of 0.50 g of compound No. (±) _1 and 5.0 ml of pyridine, valeric acid chloride (0.34 g) was added dropwise under ice-cooling, and after completion of the addition, the mixture was stirred at room temperature for 2 hours. After completion of the reaction, water was added and the aqueous and the organic layer was extracted with acetic Echiru, aqueous hydrochloric acid, and c the organic layer was washed with water and concentrated, the compound was purified by silica gel column chromatography No. (±) -6 (0.55 g, a colorless liquid). The analysis values of the compound No. (Sat) -6 were as follows: nD23: 1.5525
実施例 6 6 <化合物 No. (±)-7 の合成 > Example 6 6 <Synthesis of Compound No. (±) -7>
化合物 No. (±)-1 を 0. 5 0 gとピリジン 5. Omlからなる溶液に、 氷冷 下、 イソ吉草酸クロリ ド 0. 34 gを滴下し、 滴下終了後、 室温で 2時間攪拌し た。 反応終了後、 水を加え、 酢酸ェチルで抽出し、 有機層を水、 飽和炭酸ナトリ ゥム水溶液、 塩酸水、 水で順次洗浄した。 有機層を濃縮し、 シリカゲルカラムク 口マトグラフィ一で精製したところ化合物 No. (±)-7 (0.50 g、 無色液体) を得 た。 化合物 No. (±)-7 の分析値は下記の通りであった: nD23: 1.5552 実施例 6 7 <化合物 No. (±)-8 の合成 >  0.34 g of isovaleric acid chloride was added dropwise to a solution of 0.50 g of compound No. (±) -1 and 5.Oml of pyridine under ice-cooling, and after the addition was completed, the mixture was stirred at room temperature for 2 hours. did. After the completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was concentrated and purified by silica gel column chromatography to obtain Compound No. (±) -7 (0.50 g, colorless liquid). Analytical values for Compound No. (±) -7 were as follows: nD23: 1.5552 Example 6 7 <Synthesis of Compound No. (±) -8>
化合物 No. (±)-1を 0. 5 0 gとピリジン 5. 0mlからなる溶液に、 無水 カプロン酸 0. 6 0 gを仕込み、 室温で 24時間攪拌した。 反応終了後、 水を加 え、 酢酸ェチルで抽出し、 有機層を水、 塩酸水、 水で順次洗浄した。 有機層を濃 縮し、 シリカゲルカラムクロマトグラフィーで精製したところ化合物 No. (±)-8 (0.56 g、 無色液体) を得た。 化合物 No, (±)-8 の分析値は下記の通りであつ た :  A solution of 0.50 g of compound No. (±) -1 and 5.0 ml of pyridine was charged with 0.60 g of caproic anhydride and stirred at room temperature for 24 hours. After completion of the reaction, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed sequentially with water, aqueous hydrochloric acid, and water. The organic layer was concentrated and purified by silica gel column chromatography to obtain Compound No. (±) -8 (0.56 g, colorless liquid). Analytical values for Compound No, (±) -8 were as follows:
nD22.5: 1.5541  nD22.5: 1.5541
IR (neat) 3430, 2958, 2933, 1705, 1604, 1159 cm - 1  IR (neat) 3430, 2958, 2933, 1705, 1604, 1159 cm-1
1H NMR (CD30D) d 0.47 (3H, t, J 二 7.5 Hz, isomer- b), 0.67-0.89 (3H, m; 3H, πι, isomer - a+c), 1.03-2.21 (8H, m), 2.27 (1H, d, J = 13.5 Hz, isomer -c), 2.27 (1H, d, J = 12.9 Hz, isomer-a), 2.48 (2H, s, isomer-b), 2.84 (1H, d, J = 12.9 Hz, isomer- a), 3.02 (1H, d, J = 13.5 Hz, isomer- c), 3.6 9 (1H, d, J = 11.4 Hz, isomer-c), 3.80 (1H, d, J = 11.4 Hz, isomer- c), 3. 97 (1H, d, J = 11.4 Hz, isomer-b), 4.06 (1H, d, J = 11.4 Hz, isomer-a), 4.13 (1H, d, J = 11.4 Hz, isomer-b), 4.29 (1H, d, J = 11.4 Hz, isomer-a),1H NMR (CD30D) d 0.47 (3H, t, J2 7.5 Hz, isomer-b), 0.67-0.89 (3H, m; 3H, πι, isomer-a + c), 1.03-2.21 (8H, m), 2.27 (1H, d, J = 13.5 Hz, isomer -c), 2.27 (1H, d, J = 12.9 Hz, isomer-a ), 2.48 (2H, s, isomer-b), 2.84 (1H, d, J = 12.9 Hz, isomer-a), 3.02 (1H, d, J = 13.5 Hz, isomer-c), 3.69 (1H, d, J = 11.4 Hz, isomer-c), 3.80 (1H, d, J = 11.4 Hz, isomer-c), 3.97 (1H, d, J = 11.4 Hz, isomer-b), 4.06 (1H, d, J = 11.4 Hz, isomer-a), 4.13 (1H, d, J = 11.4 Hz, isomer-b), 4.29 (1H, d, J = 11.4 Hz, isomer-a),
6.73-7.92 (8H, m). 6.73-7.92 (8H, m).
実施例 68 く化合物 No. (±)-8 の合成〉 Example 68 Synthesis of Compound No. (±) -8>
化合物 No. (±)-1を107. 6 s トリェチルァミン 36. 4 g及びテトラ ヒドロフラン 300mlからなる溶液に、 カブロン酸クロリ ド 44. 4 gを氷冷 下に滴下した。 滴下終了後、 室温で 1時間攪拌した。 反応終了後、 有機層を塩酸 水、 重曹水、 食塩水で順次洗浄した。 有機層を濃縮したところ化合物 No. (士) - 8 (133.8 g、 淡黄色液体) を得た。 To a solution of compound No. (±) -1 in 36.4 g of 107.6 s triethylamine and 300 ml of tetrahydrofuran was added dropwise 44.4 g of caproic acid chloride under ice cooling. After the completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the organic layer was washed successively with aqueous hydrochloric acid, aqueous sodium bicarbonate and brine. The organic layer was concentrated to obtain Compound No. (P) -8 (133.8 g, pale yellow liquid).
実施例 69 <化合物 No. ( + )-16 の合成 > Example 69 <Synthesis of Compound No. (+)-16>
化合物 No. (±)-1 を 5. 00 gに Lipase (Penicillium roqueforti、 天野 製薬株式会社製) 5. 00 g、 酢酸ビニル 50mlを仕込み、 室温で 5日間攪拌 した。 反応終了後、 酵素を濾別し、 濾液を減圧下濃縮した。 残渣をシリカゲル力 ラムクロマトグラフィー (へキサン:酢酸ェチル 二 4 : 1〜2 : 1 ) にて分取し て、 化合物 No.(- )- 1 (2.55 g、 収率 5 、 光学純度 78%ee 、 白色固体) 及び化 合物 No. (+)-2 (2.73 g、 収率 49%、 光学純度 81 ee 、 黄色液体) を得た。  To 5.00 g of Compound No. (±) -1 was added 5.00 g of Lipase (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) and 50 ml of vinyl acetate, and the mixture was stirred at room temperature for 5 days. After completion of the reaction, the enzyme was filtered off, and the filtrate was concentrated under reduced pressure. The residue was separated by silica gel column chromatography (hexane: ethyl acetate 2 4: 1-2: 1) to give Compound No. (-)-1 (2.55 g, yield 5, optical purity 78% ee , White solid) and Compound No. (+)-2 (2.73 g, yield 49%, optical purity 81 ee, yellow liquid) were obtained.
得られた化合物 No. ( + )-2 (光学純度 81%ee ) 840mgに、 室温で水酸化ナ トリウム 90mgとメタノール 1 Omlからなる溶液を滴下した。 そのまま 1時 間攪拌し反応を完結させた後、 メタノールを減圧下留去した。 脱塩水を加え酢酸 ェチルで抽出し有機層を飽和食塩水で洗浄後、 無水硫酸ナトリゥムで乾燥した。 硫酸ナトリウムを濾別し、 瀘液を減圧下濃縮したところ、 化合物 No.( + )- 1 (690 mg、 収率 92%、 光学純度 81 ee 、 白色固体) が得られた。  To 840 mg of the obtained compound No. (+)-2 (optical purity 81% ee), a solution consisting of 90 mg of sodium hydroxide and 1 Oml of methanol was added dropwise at room temperature. After stirring for 1 hour to complete the reaction, methanol was distilled off under reduced pressure. Demineralized water was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. The sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound No. (+)-1 (690 mg, yield 92%, optical purity 81 ee, white solid).
得られた化合物 No.( + )-l (光学純度 81%ee ) 67 Omgに、 Lipase R (Peni ci Ilium roqueforti, 天野製薬株式会社製) 670mg、 酢酸ビニル 7. 0ml を仕込み、 室温で 2日間攪拌した。 反応終了後、 酵素を濾別し、 濾液を減圧下濃 縮した。 残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル: 4 : 1〜2 : 1) にて分取して、 化合物 No. ( + )-2 (324 mg、 収率 43% 、 光学純 度〉 99%ee、 黄色液体) 及び化合物 No.( + )-l (382 mg、 収率 57% 、 光学純度 68%ee 、 白色固体) を得た。 To 67 Omg of the obtained compound No. (+)-l (optical purity 81% ee), 670 mg of Lipase R (Penici Ilium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) and 7.0 ml of vinyl acetate were charged, and the mixture was kept at room temperature for 2 days. Stirred. After completion of the reaction, the enzyme is filtered off, and the filtrate is concentrated under reduced pressure. Shrunk. The residue was separated by silica gel column chromatography (hexane: ethyl acetate: 4: 1 to 2: 1), and the compound No. (+)-2 (324 mg, yield 43%, optical purity) was 99. % ee, yellow liquid) and Compound No. (+)-l (382 mg, yield 57%, optical purity 68% ee, white solid) were obtained.
化合物 No. ( + )-2 の分析値は下記の通りであった: Analytical values for Compound No. (+)-2 were as follows:
[ひ] D25 +55.2 (C 0.502, CHC13); IR (KBr) 3450, 1720, 1710, 1700 cm - 1; 1H NMR (CDC13) d = 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 (1.2H, t, J = 7.5 Hz), 1.59-1.98 (4H, m), 1.78 (0.9H, s),2.02 (0.9H, s), 2.12 (1.2H, s), 2.36 (0.3H, d, J = 13.5 Hz), 2.38 (0.4H, d, J = 13.5 Hz), 2.56 (0.3H, d, J = 13.5 Hz), 2.59 (0.3H, d, J =13.5 Hz), 2.88 (0.4H, d, J = 13.5 Hz), 2.93 (0.6H, s), 3.13 (0.4H, br), 3.14 (0.3 H, d, J = 13.5 Hz), 3.74 (0.3H, d, J = 12.0 Hz), 3.91(0.3H, d, J = 12.0 Hz), 3.98 (0.3H, d, J = 11.4 Hz), 4.06 (0.4H, d, J =11.8 Hz), 4.19 (0.3H, d, J = 11.4 Hz), 4.29 (0.4H, d, J = 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7. 95 (4H, m). [H] D 25 +55.2 (C 0.502, CHC13); IR (KBr) 3450, 1720, 1710, 1700 cm-1; 1H NMR (CDC13) d = 0.58 (0.9H, t, J = 7.5 Hz), 0.81 (0.9H, t, J = 7.5 Hz), 0.83 (1.2H, t, J = 7.5 Hz), 1.59-1.98 (4H, m), 1.78 (0.9H, s), 2.02 (0.9H, s), 2.12 (1.2H, s), 2.36 (0.3H, d, J = 13.5 Hz), 2.38 (0.4H, d, J = 13.5 Hz), 2.56 (0.3H, d, J = 13.5 Hz), 2.59 (0.3 H, d, J = 13.5 Hz), 2.88 (0.4H, d, J = 13.5 Hz), 2.93 (0.6H, s), 3.13 (0.4H, br), 3.14 (0.3 H, d, J = 13.5 Hz) ), 3.74 (0.3H, d, J = 12.0 Hz), 3.91 (0.3H, d, J = 12.0 Hz), 3.98 (0.3H, d, J = 11.4 Hz), 4.06 (0.4H, d, J = 11.8 Hz), 4.19 (0.3H, d, J = 11.4 Hz), 4.29 (0.4H, d, J = 11.8 Hz), 6.83-7.33 (4H, m), 7.45-7.95 (4H, m).
こうして得られた化合物 No. ( + )-2 (光学純度〉 99%ee) 252mgに、 室温で 水酸化ナトリウム 9 Omgとメタノール 1 Omlからなる溶液を滴下した。 その まま 1時間攪拌し反応を完結させた後、 メタノールを減圧下留去した。 脱塩水を 加え、 酢酸ェチルで抽出し、 有機層を飽和食塩水で洗浄後、 無水硫酸ナトリウム で乾燥した。 硫酸ナトリウムを濾別し、 濾液を減圧下濃縮して、 化合物 No. ( + ) - 1 (219 mg、 収率 97%、 光学純度〉 99%ee、 白色固体) を得た。 化合物 No. ( + )-1 の分析値は次の通りであった : mp 97.3-98.9°C; [ひ] D25 +62.2 (C 0.460, CHC 13) A solution consisting of 9 Omg of sodium hydroxide and 1 Oml of methanol was added dropwise to 252 mg of the compound No. (+)-2 (optical purity: 99% ee) thus obtained at room temperature. After stirring for 1 hour to complete the reaction, methanol was distilled off under reduced pressure. Demineralized water was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. The sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound No. (+)-1 (219 mg, yield 97%, optical purity> 99% ee, white solid). Analytical values for compound No. (+)-1 were as follows: mp 97.3-98.9 ° C; [hi] D 25 +62.2 (C 0.460, CHC 13)
こうして得られた化合物 No. ( + )-1 (光学純度〉 99 ee) 1 68mgをピリジン 8 Omlに溶解し、 氷冷下にメタンスルホニルクロリ ド 8 lmgを滴下した。 滴 下終了後、 室温で 1時間反応させた後、 酢酸ェチルを加え水、 1 0%塩酸水、 水、 飽和食塩水で順次洗浄し、 濃縮して、 化合物 No. ( + )-14 (211 mg、 収率 100%、 光 学純度〉 99%ee、 黄色液体) を得た。  168 mg of the compound No. (+)-1 (optical purity> 99 ee) thus obtained was dissolved in 8 Oml of pyridine, and 8 lmg of methanesulfonyl chloride was added dropwise under ice cooling. After completion of the dropwise addition, the reaction was allowed to proceed at room temperature for 1 hour. Ethyl acetate was added, and the mixture was washed successively with water, 10% aqueous hydrochloric acid, water and saturated saline, and concentrated to give Compound No. (+)-14 (211 mg, 100% yield, optical purity> 99% ee, yellow liquid).
こうして得られた化合物 No. ( + )-14 の 2 1 lmgをメタノール 5. Omlに 溶解し、 室温で炭酸カリウム 95 mgを加え、 そのまま 1時間反応させた。 反応 終了後、 減圧下で溶媒を留去し、 水および酢酸ェチルを加え抽出し、 有機層を水、 飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾燥後、 溶媒を減圧下で 留去した。 残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル =4 : 1 ) にて精製し、 化合物 No. ( + )-16 (152 mg、 収率 95¾、 光学純度 >99¾ee、 黄色液体) を得た。 化合物 Νο·( + )- 16の分析値は次の通りであった。 : [ひ] D25 +58.8 (C 0.464, CHC13) 21 mg of the compound No. (+)-14 thus obtained was added to 5.Oml of methanol. After dissolution, 95 mg of potassium carbonate was added at room temperature, and the reaction was allowed to proceed for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure, water and ethyl acetate were added for extraction, and the organic layer was washed with water and saturated saline. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain Compound No. (+)-16 (152 mg, yield 95¾, optical purity> 99¾ee, yellow liquid). The analysis values of the compound Νο · (+)-16 were as follows. : [Hi] D 25 +58.8 (C 0.464, CHC13)
実施例 70 <化合物 Νο.(-)- 1 の合成〉 Example 70 <Synthesis of Compound Νο. (-)-1>
化合物 No. ( + )-16 (光学純度〉 99%ee) 50mgのメタノール 1. 0ml溶液に、 1 N塩酸 1. 0mlを加え、 50°Cで 2時間撹拌した。 反応液を高速液体クロマ トグラフィ一にて分析したところ、 化合物 No. ( + )-16の転化率は 100%で、 化合物 No.(-)-l (収率 56° 、 光学純度 45 ee ) が生成していた。 化合物 No. (-)-1の分析値は以下の通りであった:  To a solution of 50 mg of compound No. (+)-16 (optical purity: 99% ee) in 1.0 ml of methanol was added 1.0 ml of 1 N hydrochloric acid, and the mixture was stirred at 50 ° C for 2 hours. When the reaction mixture was analyzed by high performance liquid chromatography, the conversion of compound No. (+)-16 was 100%, and compound No. (-)-l (yield 56 °, optical purity 45 ee) Had been generated. The analytical values of the compound No. (-)-1 were as follows:
mp 98.2-99.0 。C; [ひ] D25 -58.8 (C 0.507, CHC13); IR (KBr) 3470、 3320、 1720、 1700 cm- 1; 1H NMR (CDC13) d: 0.60 (0.6H, t, J = 7.5Hz), 0.84 (2.4 H, t, J = 7.5Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0.2H, d, J = 14.他), 2.62 (0.2H, d, J = 14.4Hz), 2.65 (0.8H, d, J = 13.2Hz), 2.82 (0.8H, d, J二 13.2Hz), 3.12 (1H, br), 3.60 (2H, s), 5.10 (1H, s), 6.83- 7.70 (4H, m), 7.44-7.92 (4H, m). mp 98.2-99.0. C; [HI] D 25 -58.8 (C 0.507, CHC13); IR (KBr) 3470, 3320, 1720, 1700 cm-1; 1H NMR (CDC13) d: 0.60 (0.6H, t, J = 7.5Hz) , 0.84 (2.4 H, t, J = 7.5 Hz), 1.69-1.82 (1H, m), 1.93-2.05 (1H, m), 2.55 (0.2H, d, J = 14. other), 2.62 (0.2H , d, J = 14.4Hz), 2.65 (0.8H, d, J = 13.2Hz), 2.82 (0.8H, d, J2 13.2Hz), 3.12 (1H, br), 3.60 (2H, s), 5.10 (1H, s), 6.83-7.70 (4H, m), 7.44-7.92 (4H, m).
実施例 7 1 く化合物 No.(- )- 1 の合成 > Example 7 Synthesis of Compound No. (-)-1>
化合物 No. ( + )-16 (光学純度〉 99%ee) 50111 のァセトン 1. Oml溶液に、 1 N塩酸 1. Omlを加え 50°Cで 2時間撹拌した。 反応液を高速液体クロマト グラフィ一にて分析したところ、 化合物 No. ( + )-16 の転化率は 100%で、 ィ匕 合物 No.(- )-1 (収率 82%、 光学純度 70%ee ) が生成していた。  To a solution of compound No. (+)-16 (optical purity> 99% ee) of 50111 in 1.0 ml of acetone was added 1.0 ml of 1 N hydrochloric acid, and the mixture was stirred at 50 ° C. for 2 hours. When the reaction solution was analyzed by high performance liquid chromatography, the conversion of compound No. (+)-16 was 100%, and the compound No. (-)-1 (yield 82%, optical purity 70%) % ee) was generated.
実施例 72 <化合物 No. (- )-1の合成 > Example 72 <Synthesis of compound No. (-)-1>
化合物 No. ( + )-16 (光学純度〉 99 ee) 5 Omgのァセトン (1.0 ml) 溶液に、 1 0%硫酸水1. Omlを加え 50°Cで 2時間撹拌した。 反応液を高速液体クロ マトグラフィ一にて分析したところ、 化合物 No. ( + )-16 の転化率は 100%で、 化合物 No.(- )- 1 (収率 94% 、 光学純度 75%ee ) が生成していた。 実施例 73 <化合物 No. (- )- 1の合成〉 Compound No. (+)-16 (optical purity: 99 ee) To a solution of 5 Omg of acetone (1.0 ml) was added 1.0% of a 10% aqueous sulfuric acid solution, and the mixture was stirred at 50 ° C for 2 hours. When the reaction solution was analyzed by high performance liquid chromatography, the conversion of compound No. (+)-16 was 100%, and compound No. (-)-1 (yield 94%, optical purity 75% ee) Had been generated. Example 73 <Synthesis of compound No. (-)-1>
化合物 No. ( + )-16 (光学純度〉 99 ee) 50 mgのジイソプロピルエーテル 1. 0ml溶液に、 10%硫酸水 1. 0mlを加え、 50°Cで 5時間撹拌した。 反応 液を高速液体クロマトグラフィーにて分析したところ、 化合物 No.(+)-16 の転 化率は 6%で、 化合物 o.(-)-l (収率 4%、 光学純度 47%ee ) が生成していた。 実施例 74 <化合物 No. (- )- 1の合成 >  To a solution of 50 mg of compound No. (+)-16 (optical purity: 99 ee) in 1.0 ml of diisopropyl ether, 1.0 ml of 10% aqueous sulfuric acid was added, and the mixture was stirred at 50 ° C for 5 hours. The reaction solution was analyzed by high-performance liquid chromatography, and the conversion of compound No. (+)-16 was 6%, and compound o. (-)-L (yield 4%, optical purity 47% ee) Had been generated. Example 74 <Synthesis of Compound No. (-)-1>
化合物 No. ( + )-16 (光学純度 >99%ee) 50mgのトルエン 1. 0ml溶液に、 10%硫酸水 1. 0mlを加え、 50°Cで 5時間撹拌した。 反応液を高速液体ク 口マトグラフィ一にて分析したところ、 化合物 No. ( + )-16の転化率は 4%で、 化合物 No.(- )-1 (収率 3%、 光学純度 79%ee ) が生成していた。  To a solution of 50 mg of Compound No. (+)-16 (optical purity:> 99% ee) in 1.0 ml of toluene was added 1.0 ml of 10% aqueous sulfuric acid, and the mixture was stirred at 50 ° C for 5 hours. When the reaction mixture was analyzed by high performance liquid chromatography, the conversion of Compound No. (+)-16 was 4%, and that of Compound No. (-)-1 (yield 3%, optical purity 79% ee ) Was generated.
実施例 70〜 74の結果を表一 9に示した。  Table 19 shows the results of Examples 70 to 74.
表一 9 実施例 溶^/ ¾ 反応温度 反応時間 転化车 化合物 化合物  Table 1 9 Example Dissolution / ¾ Reaction temperature Reaction time Conversion 车 Compound Compound
( ) (h) ( ) No. (-).16 No. (-)-16 NQ 収串 (%) ee (%)  () (H) () No. (-). 16 No. (-)-16 NQ (%) ee (%)
70 メタノール/ 50 2 100 •56 45 70 Methanol / 50 2 100
71 ァセ ト、ノ / 50 2 100 82 70 72 ァセトン/ 50 2 100 •94 75 71 aceton, 50 2 100 82 70 72 aceton / 50 2 100 94 94
73 50 5 6 4 47  73 50 5 6 4 47
10% 酸水  10% acid water
74 トルェン/ 50 5 4 3 79  74 Toruen / 50 5 4 3 79
実施例 75 化合物 <No.(- )- 1の合成 > Example 75 Compound <Synthesis of No. (-)-1>
化合物 No. ( + )-16 (光学純度 70%ee ) 10. 1 gのァセ トン 20ml溶液に、 10 %硫酸水 20mlを加え、 50 °Cで 5時間撹拌した。 反応終了後、 反応液に 炭酸ナトリウムを加え中和した。 酢酸ェチルを加え分液し、 有機層を水、 飽和食 塩水で洗浄した。 溶媒を減圧下留去した後、 濃縮物にトルエン 5mlと n- へキ サン 25mlを加え混合物を氷冷した。 析出した結晶を濾過した後、 乾燥して化 合物 No.(- )- 1 (9.1 g、 収率 86%、 光学純度 36%ee 、 白色固体) を得た。 実施例 76 <化合物 No. (-)- 1の合成〉 20 ml of 10% aqueous sulfuric acid was added to a solution of 10.1 g of compound No. (+)-16 (optical purity 70% ee) in 20 ml of acetone, and the mixture was stirred at 50 ° C for 5 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline. After evaporating the solvent under reduced pressure, 5 ml of toluene and 25 ml of n-hexane were added to the concentrate, and the mixture was ice-cooled. The precipitated crystals were filtered and dried to obtain Compound No. (-)-1 (9.1 g, yield 86%, optical purity 36% ee, white solid). Example 76 <Synthesis of Compound No. (-)-1>
化合物 No. (+)-16 (光学純度 70 ee ) 4. 67 gのアセトン 10 m 1溶液に、 10%硫酸水 10 mlを加え、 50°Cで 5時間撹拌した。 反応終了後、 反応液に 炭酸ナトリウムを加え中和した。 酢酸ェチルを加え分液し、 有機層を水、 飽和食 塩水で洗浄した。 溶媒を減圧下留去した後、 濃縮物にトルエン 2. 5mlと n- へキサン 12. 5mlを加え、 混合物を氷冷した。 析出した結晶を濾過した後、 乾燥して化合物 No. (-)-1 (4.13 g、 収率 84%、 光学純度 33 ee、 白色固体) を 得た。 Compound No. (+)-16 (optical purity 70 ee) To a solution of 4.67 g of acetone in 10 ml, 10 ml of 10% aqueous sulfuric acid was added, and the mixture was stirred at 50 ° C for 5 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline. After evaporating the solvent under reduced pressure, 2.5 ml of toluene and 12.5 ml of n-hexane were added to the concentrate, and the mixture was cooled with ice. The precipitated crystals were filtered and then dried to obtain Compound No. (-)-1 (4.13 g , yield 84%, optical purity 33 ee, white solid).
実施例 77 <化合物 No.(-)- 1の合成 > Example 77 <Synthesis of Compound No. (-)-1>
化合物 No( + )- 16 (光学純度〉 99%ee) 0. 50 gをァセトニトリル 5. 0 ml に溶解し、 65%硫酸水 0. 15mlをカロえ、 室温で 10時間撹拌した。 反応終 了後、 反応液に炭酸ナトリウムを加え中和した。 酢酸ェチルを加え分液し、 有機 層を水、 飽和食塩水で洗浄した。 有機層を高速液体クロマトグラフィーにて分析 したところ、 化合物 No. (+)-16の転化率は 76%で、 化合物 No.(- )- 1 (収率 6 0¾、 光学純度 38%ee ) が生成していた。  0.50 g of compound No (+)-16 (optical purity> 99% ee) was dissolved in 5.0 ml of acetonitrile, and 0.15 ml of 65% aqueous sulfuric acid was added thereto, followed by stirring at room temperature for 10 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline. When the organic layer was analyzed by high performance liquid chromatography, the conversion of compound No. (+)-16 was 76%, and compound No. (-)-1 (yield 60¾, optical purity 38% ee) was found. Had been generated.
実施例 78〜91 <化合物 No.(- )- 1の合成 > Examples 78 to 91 <Synthesis of Compound No. (-)-1>
表一 10に示す溶媒を使用し、 実施例 77と同様に反応を行った、 得られた結 果を実施例 77と共に表一 10に示した。 The reaction was carried out in the same manner as in Example 77 using the solvents shown in Table 1-10. The obtained results are shown in Table 1 along with Example 77.
表一 1 0 fdi例 e化车 化 化^) Table 1 10 Example of fdi e- 车 ^^)
(%) No. (-);16 a 率 (% ee (%)  (%) No. (-); 16a rate (% ee (%)
77 ァセトニトリル 76 60 3877 Acetonitrile 76 60 38
78 ジメチルスルホキシド 7 5 2778 Dimethyl sulfoxide 7 5 27
79 メチルビ口リ ドン 7 5 9079 Methyl bilidone 7 5 90
80 ジメチルホルムアミ ド 28 20 S680 Dimethylformamide 28 20 S6
81 しァミルアルコール 68 47 7981 Shamyl alcohol 68 47 79
82 •Γ七卜ノ 100 82 7082
83 メチルイソブチルケトン 100 84 7183 Methyl isobutyl ketone 100 84 71
84 S¾ェチル 1∞ 78 6884 S¾ethyl 1∞ 78 68
85 ジィソブ aビルエーテル 】00 70 5285 Jissob a building ether】 00 70 52
86 テトラヒドロフラン 100 78 6486 Tetrahydrofuran 100 78 64
87 テトラヒドロピラン 100 78 7787 Tetrahydropyran 100 78 77
88 ジォキサン 10O 80 7588 Dioxane 10O 80 75
89 ェチレングリコールジェチルェ- -テル' 100 76 7889 Ethylene glycol Jetil-Ter '100 76 78
90 ジエチレングリコールジェチルェ'一テル 100 82 8390 Diethylene glycol Jetilje'tel 100 82 83
91 ジェチレングリコー ジブテルエ-一テル 100 80 75 実施例 9 2 く化合物 No. (- )-1の合成 > 91 Jetyleneglycol dibuteryl-ether 100 80 75 Example 9 Synthesis of compound No. (-)-1>
化合物 No. ( + )-16 (6.82 g、 光学純度〉 99%ee) をクロ口ベンゼン (40.0 g) に 溶解し、 ギ酸 (13.8 g) 及び水 (5.4 g ) を加え 5 0 °Cで 3時間撹拌した。 反応 終了後、 反応液に 25%水酸化ナ卜リゥム水溶液 (60 g) を加え 5 0 °Cで 0 . 5時 間撹拌した。 分液し有機層を水及び食塩水で洗浄した。 有機層を高速液体クロマ トグラフィ一にて分析したところ、 化合物 No. ( + )-16 の転化率は 1 0 0 %で、 化合物 No. (- )- 1 (収率 85%、 光学純度 55 ee ) が生成していた。  Compound No. (+)-16 (6.82 g, optical purity> 99% ee) was dissolved in benzene (40.0 g), and formic acid (13.8 g) and water (5.4 g) were added. Stirred for hours. After completion of the reaction, a 25% aqueous sodium hydroxide solution (60 g) was added to the reaction solution, and the mixture was stirred at 50 ° C for 0.5 hour. The layers were separated and the organic layer was washed with water and brine. When the organic layer was analyzed by high performance liquid chromatography, the conversion of Compound No. (+)-16 was 100%, and that of Compound No. (-)-1 (yield 85%, optical purity 55 ee ) Was generated.
実施例 9 3 <化合物 No. (- )-1 の合成 > Example 9 3 <Synthesis of Compound No. (-)-1>
化合物 No. ( + )-16 (光学純度 >99%ee) 0 . 5 0 gをクロ口ベンゼン 1 0 m 1 に溶解し、 ギ酸 0 . 5 m lを加え室温で 3 0時間撹拌した。 反応終了後、 反応液 に 2 5 %水酸化ナトリゥム水溶液 1 0 m lを加え室温で 5時間撹拌した。 分液し 有機層を水及び食塩水で洗浄した。 有機層を高速液体クロマトグラフィーにて分 祈したところ、 化合物 No. ( + )-16 の転化率は 1 0 0 %で、 化合物 No. ( - )- 1 (収 率 79%、 光学純度 64¾ee ) が生成していた。 0.5 g of Compound No. (+)-16 (optical purity> 99% ee) was dissolved in 10 ml of benzene, and 0.5 ml of formic acid was added, followed by stirring at room temperature for 30 hours. After the reaction was completed, 10 ml of a 25% aqueous sodium hydroxide solution was added to the reaction solution, followed by stirring at room temperature for 5 hours. The layers were separated and the organic layer was washed with water and brine. The organic layer was separated by high performance liquid chromatography. The conversion of Compound No. (+)-16 was 100%, and that of Compound No. (-)-1 (Yield The yield was 79% and the optical purity was 64¾ee).
実施例 94 <化合物 No. (-)-1 の合成 > Example 94 <Synthesis of compound No. (-)-1>
化合物 No. (+)-16 (光学純度〉 99%e e) 1. 40 g (4. 1 lmo 1) をジエチレングリコ一ルジェチルエーテル 14mlに溶解し、 氷冷下、 濃硫酸 0. 1ml及び水 0. 1ml (5. 56mmo l、 H20— 1. 35 e q/(+)-16) の混合溶液を滴下し、 滴下終了後、 室温で 10時間攪拌した。 反応終了後、 反応 液に炭酸ナトリウムを加え中和した。 酢酸ェチルを加え分液し、 有機層を水、 飽 和食塩水で洗浄した。 有機層を高速液体クロマトグラフィ一にて分析したところ、 化合物 No. (-)-1 の光学純度は 76 %e eであった。 Compound No. (+)-16 (optical purity: 99% ee) 1.40 g (4.1 lmo 1) was dissolved in 14 ml of diethyleneglycol glyceryl ether, 0.1 ml of concentrated sulfuric acid and 0 ml of water under ice-cooling. . 1ml (5. 56mmo l, H 2 0- 1. 35 eq / (+) - 16) mixed solution was added dropwise, and after completion of dropwise addition, the mixture was stirred at room temperature for 10 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline. The organic layer was analyzed by high performance liquid chromatography to find that the optical purity of compound No. (-)-1 was 76% ee.
実施例 95 <化合物 No. (-)-1 の合成 > Example 95 <Synthesis of compound No. (-)-1>
濃硫酸 35 ml及び水 0. 35ml ( 19. 4mmo l、 H20— 4. 7 eq/(+)-16) の混合溶液を使用した以外は実施例 94と同様に行い、 有機層を 高速液体クロマトグラフィーにて分析したところ、 化合物 No. (-)-1 の光学純 度は 83%e eであった。 Concentrated sulfuric acid 35 ml and water 0. 35ml (19. 4mmo l, H 2 0- 4. 7 eq / (+) - 16) the same manner as in Example 94 the mixed solution was used instead of the high speed and the organic layer Analysis by liquid chromatography revealed that the optical purity of compound No. (-)-1 was 83% ee.
実施例 96 く化合物 No. (-)-1 の合成〉 Example 96 Synthesis of Compound No. (-)-1>
濃硫酸 0. 75ml及び水 0. 75ml (41. 6mmo l、 H20- 10 e q/( + )-16) の混合溶液を使用した以外は実施例 94と同様に行い、 有機層を高 速液体クロマトグラフィーにて分析したところ、 化合物 No. (-)-1 の光学純度 は 78%e eであった。 Concentrated sulfuric acid 0. 75 ml and water 0. 75ml (41. 6mmo l, H 2 0- 10 eq / (+) -16) except for using a mixed solution of the same manner as in Example 94, the organic layer high speed Analysis by liquid chromatography revealed that the optical purity of compound No. (-)-1 was 78% ee.
実施例 97 く化合物 No. (-)-1 の合成 > Example 97 Synthesis of Compound No. (-)-1>
化合物 No. (+)-16 (光学純度 > 99%e e) 1. 40 g (4. 1 lmo 1) 及び水 0. lml (5. 56mmo l、 H2〇一 l. 35 e q/( + )-16) をジェ チレングリコールジェチルエーテル 14mlに溶解し、 室温で濃硫酸 0. lml を滴下し、 滴下終了後、 室温で 10時間攪拌した。 反応終了後、 反応液に炭酸ナ トリウムを加え中和した。 酢酸ェチルを加え分液し、 有機層を水、 飽和食塩水で 洗浄した。 有機層を高速液体クロマトグラフィーにて分析したところ、 化合物 NCompound No. (+)-16 (optical purity> 99% ee) 1.40 g (4.1 lmo 1) and water 0.1 ml (5.56 mmol, H 2 -1 l. 35 eq / (+) -16) was dissolved in 14 ml of ethylene glycol getyl ether, and 0.1 ml of concentrated sulfuric acid was added dropwise at room temperature. After completion of the addition, the mixture was stirred at room temperature for 10 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline. The organic layer was analyzed by high performance liquid chromatography.
0.(-)- 1 の光学純度は 70%e eであった。 The optical purity of 0. (-)-1 was 70% ee.
実施例 98 <化合物 No. (-)-1 の合成 > Example 98 <Synthesis of Compound No. (-)-1>
化合物 No. ( + )-16 (光学純度〉 99%e e) 1. 40 g (4. 1 lmo 1) 及び水 0. 35ml ( 19. 4mmo l、 H20-4. 7 e q/( + )-16) をジェ チレングリコ一ルジェチルエーテル 14 mlに溶解し、 室温で濃硫酸 0. 35m 1を滴下し、 滴下終了後、 室温で 10時間攪拌した。 反応終了後、 反応液に炭酸 ナトリウムを加え中和した。 酢酸ェチルを加え分液し、 有機層を水、 飽和食塩水 で洗浄した。 Compound No. (+)-16 (optical purity 99% ee) 1.40 g (4.1 lmo 1) And water 0. 35ml (19. 4mmo l, H 2 0-4. 7 eq / (+) -16) was dissolved in Jefferies Chirenguriko one Rougier chill ether 14 ml, was added dropwise concentrated sulfuric acid 0. 35m 1 at room temperature After the addition, the mixture was stirred at room temperature for 10 hours. After completion of the reaction, the reaction solution was neutralized by adding sodium carbonate. Ethyl acetate was added and the layers were separated, and the organic layer was washed with water and saturated saline.
有機層を高速液体クロマトグラフィーにて分析したところ、 化合物 No.(- )-1 の光学純度は 75 %e eであった。  When the organic layer was analyzed by high performance liquid chromatography, the optical purity of compound No. (-)-1 was 75% ee.
実施例 99 く化合物 No. (-)-16の合成 > Example 99 Synthesis of Compound No. (-)-16>
化合物 No. (-)-1 (光学純度 80¾ee ) 17. 9 g、 p- トルエンスルホニルク ロリ ド 2. 7 g及びトルエン 100mlの混合液に、 40 °Cで 20 %水酸化ナト リウム水溶液 40 gを滴下した。 滴下終了後、 50°Cで 3時間反応させた後、 有 機層を分液し、 水で洗浄し、 濃縮したところ、 化合物 No. ( + )-16 16. 9 gを 得た (収率 >99¾、 光学純度 80¾ee ) 。 これを n_へキサンを加えて氷冷するこ とにより、 化合物 No. ( + )-16 の白色固体を得た。 この化合物の分析値は以下の 通りであった: mp 41-42°C; [ひ] D25 -47.6 (C 0.556, CHC13) Compound No. (-)-1 (optical purity 80¾ee) 17.9 g, p-toluenesulfonyl chloride 2.7 g and toluene 100 ml in a mixture of 40% 20% sodium hydroxide aqueous solution 40 g at 40 ° C Was added dropwise. After the completion of the dropwise addition, the mixture was reacted at 50 ° C. for 3 hours. The organic layer was separated, washed with water and concentrated to obtain 16.9 g of compound No. (+)-16 (yield > 99¾, optical purity 80¾ee). This was added with n_hexane and cooled with ice to obtain a white solid of Compound No. (+)-16. Analytical values for this compound were as follows: mp 41-42 ° C; [hi] D 25 -47.6 (C 0.556, CHC13)
以下に、 先述の一般式 (6) で表される、 本発明の光学異性体混合物の重要中 間体の精製方法についての実施例を纏める。  Examples of the method for purifying the important intermediate of the optical isomer mixture of the present invention represented by the general formula (6) described above are summarized below.
実施例 100 <化合物 No. (-)-1 の結晶化精製 > Example 100 <crystallization purification of compound No. (-)-1>
化合物 No.(-)- 1を 5. 0 g (81% ee、 化学純度 86%、 トルエン 8%) 、 及びトルエン 20mlを 70°Cに加熱して溶解させた後、 0°Cまで冷却した。 析 出した結晶を濾過し乾燥して化合物 No. (-)-1の溶媒化物結晶 4. 1 g (8 5 % e e ) を得た。  Compound No. (-)-1 was dissolved by heating 5.0 g (81% ee, chemical purity 86%, toluene 8%) and toluene 20 ml to 70 ° C, and then cooled to 0 ° C. . The precipitated crystals were filtered and dried to obtain 4.1 g (85% e e) of solvated crystals of the compound No. (-)-1.
実施例 101〜 106 <化合物 No. (-)-1 の結晶化精製 > Examples 101 to 106 <crystallization purification of compound No. (-)-1>
トルエン 20mlの代わりに、 表— 1 1に示す溶媒 20mlを使用し、 表一 1 1に示す温度まで冷却した以外は実施例 100と同様にして結晶化を行い、 表一 1 1に示す結果を得た。 ここで得られた溶媒化物結晶は、 表一 1 1に示す芳香族 系化合物を 5 - 15重量%含む以外に、 他の不純物は認められなかった。  Crystallization was carried out in the same manner as in Example 100 except that 20 ml of the solvent shown in Table 11 was used instead of 20 ml of toluene, and cooling was performed to the temperature shown in Table 11 and the results shown in Table 11 were obtained. Obtained. The solvate crystals obtained here contained no other impurities than 5 to 15% by weight of the aromatic compounds shown in Table 11.
比較例 1 Comparative Example 1
トルエン 20mlの代わりに酢酸ェチル 5 ml及び n—へキサン 15 m 1の混 合溶媒を使用した以外は実施例 100と同様にして結晶化を行ったところ、 化合 物 No. (-)- 1の結晶 3. 4gを得た。 しかし光学純度は 78 %e eと低く、 光 学純度が低下してしまった。 Mix 5 ml of ethyl acetate and 15 ml of n-hexane instead of 20 ml of toluene. Crystallization was performed in the same manner as in Example 100 except for using the mixed solvent, to obtain 3.4 g of compound No. (-)-1 as a crystal. However, the optical purity was as low as 78% ee, and the optical purity was reduced.
先述の実施例 100〜106においては、 単結晶 X線解析によって、 得られた 結晶を分析し、 溶媒化物であることを確認した。 例えば実施例 104において得 られた、 0—キシレンとの溶媒化物結晶を分析した結果、 化合物 No. (-)-1と 0—キシレンとの比が 2: 1の溶媒化物であった。 この結晶の NMRデ一夕およ び融点を示す。  In Examples 100 to 106 described above, the obtained crystals were analyzed by single-crystal X-ray analysis to confirm that they were solvates. For example, the crystal of a solvate with 0-xylene obtained in Example 104 was analyzed, and as a result, the ratio of the compound No. (-)-1 to 0-xylene was 2: 1. The NMR data and melting point of this crystal are shown.
(S) —ジオール [ (S) —ジオール.0. 5オルトーキシレン] のオルトーキ シレン複合体:無色の結晶; mp 91〜94°C;  Orthoxylene complex of (S) -diol [(S) -diol.0.5 ortho-xylene]: colorless crystals; mp 91-94 ° C;
!H NMR (a:b:c=81:6:13 in CD30D, 15mg/0.7 mL-CD30D, 23°C) 50.46 (3H, t, J=7.5Hz, c), 0.70 (3H,t, J=7.5Hz, b), 0.72 (3H, t, J=7.5Hz, a), 1.49- 1.90 (2H, m), 2.17 (1H, d, J=13.2Hz, 3c), 2,26 (3H, s, o-Xylene), 2.4 ! H NMR (a: b: c = 81: 6: 13 in CD 3 0D, 15mg / 0.7 mL-CD 3 0D, 23 ° C) 50.46 (3H, t, J = 7.5Hz, c), 0.70 (3H , T, J = 7.5Hz, b), 0.72 (3H, t, J = 7.5Hz, a), 1.49-1.90 (2H, m), 2.17 (1H, d, J = 13.2Hz, 3c), 2, 26 (3H, s, o-Xylene), 2.4
0 (1H, d, J=14.7Hz, b), 2.43 (1H, d, J=12.9Hz, a), 2.53(1H, d, J=14.7H z, b), 2.69 (1H, d, J二 12.9Hz,a), 2.97 (1H, d, J=13.2Hz, c), 3.11(1H, d, J=11.7Hz, c), 3·17(1Η, d, J=11.7Hz, c), 3.33 (1H, d, J=11.4Hz, b), 3.0 (1H, d, J = 14.7Hz, b), 2.43 (1H, d, J = 12.9Hz, a), 2.53 (1H, d, J = 14.7Hz z, b), 2.69 (1H, d, J II 12.9Hz, a), 2.97 (1H, d, J = 13.2Hz, c), 3.11 (1H, d, J = 11.7Hz, c), 3 · 17 (1Η, d, J = 11.7Hz, c) , 3.33 (1H, d, J = 11.4Hz, b), 3.
44 (2H, s, a), 3.46 (1H, d, J=11.4Hz, b), 6.83-7.94 (匪, m, (S)-Diol44 (2H, s, a), 3.46 (1H, d, J = 11.4Hz, b), 6.83-7.94 (band, m, (S) -Diol
+ o - Xylene) + o-Xylene)
Figure imgf000092_0001
表一 1 1
Figure imgf000092_0001
Table 1 1 1
実施例 Solvent 冷却到達温度 C) TO晶 ( 結晶(ee,%) Example Solvent Ultimate cooling temperature C) TO crystal (crystal (ee,%)
1 00 Toluene 0 4. 1 851 00 Toluene 0 4.1 85
1 01 Benzene 25 3. 8 851 01 Benzene 25 3.8 85
102 Ethylbenzene 0 3. 8 82102 Ethylbenzene 0 3. 8 82
103 Tetralin 25 4. 0 8 1. 4103 Tetralin 25 4.0 8 1.4
104 o-Xylene 0 3. 9 93104 o-Xylene 0 3.99 93
105 m-Xylene 0 3. 9 9 1105 m-Xylene 0 3.9 9 1
106 Chlorobenzene 0 3. 3 98 表 1 1から明らかなように、 極めて光学純度の高い光学異性体を容易に得られ ることが判る。 106 Chlorobenzene 0 3.3 98 As is clear from Table 11, it can be seen that optical isomers with extremely high optical purity can be easily obtained.
実施例 107 <化合物 N o . (-)-1の合成 > Example 107 <Synthesis of Compound No. (-)-1>
化合物 No. (±)-4 を 1 60 g Lipase R (Penicillium roqueforti, 天野製 薬株式会社製) 85 g、 ジイソプロビルエーテル 350ml及びリン酸緩衝溶液 ( H 7.2) 1 050mlの混合物を 25°Cで 24時間攪拌した。 反応終了後、 ク ロロベンゼンで抽出し、 有機層をセライ ト濾過後、 有機層を炭酸ナトリウム水、 水、 食塩水で順次洗浄した後、 有機層を高速液体クロマトグラフィーにて分析し たところ、 化合物 No. (±)-4の転化率は 50%で、 化合物 No.(- )- 4 (光学純度 8 2 e e) 及び化合物 No. (+)-1 (光学純度 82%e e) が生成していた。 このクロ口ベンゼン溶液にピリジン 30 gを加え、 氷冷下、 メタンスルホニル クロリ ド 30 gを滴下した。 滴下終了後、 室温で 24時間反応させた後、 水、 塩 酸水で洗浄し有機層を高速液体ク口マトグラフィ一にて分析したところ、 化合物 No. (-)-4 (光学純度 82 %e e) 及び化合物 No. ( + )-14 (光学純度 82% e e) が生成していた。  160 g of compound No. (±) -4, 85 g of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.), 350 ml of diisopropyl ether and 1 050 ml of phosphate buffer solution (H 7.2) at 25 ° C For 24 hours. After completion of the reaction, the reaction mixture was extracted with chlorobenzene, the organic layer was filtered through celite, the organic layer was washed with aqueous sodium carbonate, water and brine, and the organic layer was analyzed by high performance liquid chromatography. The conversion of No. (±) -4 was 50%, and compound No. (-)-4 (optical purity 82 ee) and compound No. (+)-1 (optical purity 82% ee) were formed. Was. 30 g of pyridine was added to the benzene solution of the mouth, and 30 g of methanesulfonyl chloride was added dropwise under ice cooling. After the completion of the dropwise addition, the mixture was reacted at room temperature for 24 hours, washed with water and aqueous hydrochloric acid, and the organic layer was analyzed by high performance liquid chromatography. Compound No. (-)-4 (optical purity 82% ee ) And compound No. (+)-14 (optical purity 82% ee).
このクロ口ベンゼン溶液に、 室温で 25%水酸化ナトリウム水溶液 320 gを 加え、 そのまま 5時間反応させた。 反応終了後、 有機層を水、 食塩水で洗浄し、 溶媒を減圧下で留去した。 残渣を高速液体クロマトグラフィ一にて分析したとこ ろ、 化合物 No. (-)-1 (光学純度 82%e e) 及び化合物 No. ( + )-16 (光学 純度 82 e e) が生成していた。 320 g of a 25% aqueous sodium hydroxide solution was added to the benzene solution at room temperature at room temperature, and the reaction was allowed to proceed for 5 hours. After completion of the reaction, the organic layer was washed with water and brine, and the solvent was distilled off under reduced pressure. The residue was analyzed by high performance liquid chromatography. Compound No. (-)-1 (optical purity 82% ee) and compound No. (+)-16 (optical A purity of 82 ee) was produced.
この残渣をジエチレングリコ一ルジェチルエーテル 350 ml及び水 9. 0m 1の混合溶媒に溶解し、 氷冷下濃硫酸 9. Omlをゆっく りと滴下し、 滴下終了 後、 室温で 5時間撹拌した。 反応終了後、 反応液に水酸化ナトリウム水溶液を加 え中和し、 有機層を食塩水で洗浄した。 溶媒を減圧下留去した後、 残渣を卜ルェ ンー n—へキサン混合溶媒から結晶化させたところ、 化合物 No. (-)-1 (98 gs 化合物 No. (±)-4 (光学純度 74%ee、 白色固体) からの収率 7  This residue was dissolved in a mixed solvent of 350 ml of diethylene glycol dimethyl ether and 9.0 ml of water, and 9. Oml of concentrated sulfuric acid was slowly added dropwise with ice cooling. After the addition was completed, the mixture was stirred at room temperature for 5 hours. After completion of the reaction, the reaction solution was neutralized by adding an aqueous sodium hydroxide solution, and the organic layer was washed with brine. After evaporating the solvent under reduced pressure, the residue was crystallized from a mixed solvent of toluene and n-hexane. Compound No. (-)-1 (98 gs Compound No. (±) -4 (optical purity 74 % ee, white solid) 7
3%) を得た。 3%).
実施例 108 <化合物 N o . (-)-1 の合成 > Example 108 <Synthesis of Compound No. (-)-1>
化合物 No. (±)-16 を 102 g (0. 300mo l) 、 クロ口ベンゼン 60 0 g及び水 81. 1 g (4. 5 Omo 1) の混合物に 50 °Cでギ酸 207 g (4. 50mo 1) を滴下した。 滴下終了後 50°Cで 2時間反応させた後、 25 %水酸 化ナトリウム水溶液 768 g (4. 8 Omo 1) を加え 50 °Cで 1時間反応させ た。 反応後、 有機層を分取し飽和食塩水で洗浄した。 約 1/3のクロ口べゼンを 減圧下留去し、 クロ口ベンゼン 200 g及びビリジン 29. 7 g (0. 37 mo 1) を加え、 次いでカブロン酸クロリ ド 48. 5 g (0. 36 Omo 1) を滴下 した。 滴下終了後 50°Cで 1時間反応させた後、 有機層を分取し塩酸を含む食塩 水及び飽和食塩水で洗浄し、 減圧下濃縮して粗な化合物 No. (±)- 8 を 161 g得た。  Compound No. (±) -16 was treated with a mixture of 102 g (0.300 mol), 600 g of chlorobenzene and 81.1 g (4.5 Omo 1) of water at 50 ° C in a mixture of 207 g of formic acid (4. 50mo 1) was added dropwise. After completion of the dropwise addition, the mixture was reacted at 50 ° C. for 2 hours. Then, 768 g (4.8 Omo 1) of a 25% aqueous sodium hydroxide solution was added, and the mixture was reacted at 50 ° C. for 1 hour. After the reaction, the organic layer was separated and washed with saturated saline. Approximately one-third of the rosin was distilled off under reduced pressure, 200 g of benzene and 29.7 g (0.37 mo1) of pyridine were added, and then 48.5 g of caproic acid chloride (0.36 mol). Omo 1) was added dropwise. After completion of the dropwise addition, the mixture was reacted at 50 ° C for 1 hour. The organic layer was separated, washed with a saline solution containing hydrochloric acid and a saturated saline solution, and concentrated under reduced pressure to give crude compound No. (±) -8 in 161. g obtained.
粗な化合物 No. (±)- 8 ( 161 g) をジイソプロビルエーテル 250ml に溶解し、 1N塩酸水、 炭酸ナトリウム水、 飽和食塩水で洗浄した。 この溶液に、 Lipase R (Penicillium roqueforti, 天野製薬株式会社製) 55 g及びリン酸緩 衝溶液 (PH 7. 2 ) 750 mlを加え 25°Cで 16時間攪拌した。 反応終了後、 食塩 150 gを加えクロ口べゼン 375mlで抽出し、 有機層をゼライ ト濾過後、 炭酸ナトリウムを含む食塩水、 食塩水で洗浄し有機層を高速液体クロマトグラフ ィ一にて分析したところ、 化合物 No. (- )-8の転化率は 50%で、 化合物 N 0. (-)-8 (光学純度 85 % e e ) 及び化合物 No. ( + )-1 (光学純度 85 % e e) が生成した。  Crude compound No. (±) -8 (161 g) was dissolved in diisopropyl ether (250 ml), and washed with 1N aqueous hydrochloric acid, aqueous sodium carbonate, and saturated saline. To this solution, 55 g of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) and 750 ml of a phosphate buffer solution (PH 7.2) were added, followed by stirring at 25 ° C. for 16 hours. After the completion of the reaction, 150 g of sodium chloride was added, and the mixture was extracted with 375 ml of black-and-white bezen.The organic layer was filtered through celite, washed with a saline solution containing sodium carbonate, and a saline solution. As a result, the conversion of Compound No. (-)-8 was 50%, and Compound N 0. (-)-8 (optical purity 85% ee) and Compound No. (+)-1 (optical purity 85% ee) ) Generated.
次いで約 1/3のクロ口ベンゼンを減圧下留去して、 トリエチルアミン 19. 0 g (0. 188mo 1) を加え、 氷冷下、 メ夕ンスルホニルクロリ ド 20. 6 g (0. 18 Omo 1) を滴下した。 滴下終了後、 室温で 1時間反応させた後、 水、 塩酸水で洗浄し有機層を高速液体ク口マトグラフィ一にて分析したところ、 化合物 No. (-)-8 (光学純度 85%e e) 及び化合物 No. ( + )-14 (光学純 度 85 % e e ) が生成した。 Then, about 1/3 of the benzene was distilled off under reduced pressure to obtain triethylamine 19. 0 g (0.188mo 1) was added, and 20.6 g (0.18 Omo 1) of methyl sulfonyl chloride was added dropwise under ice cooling. After completion of the dropwise addition, the mixture was reacted at room temperature for 1 hour, washed with water and aqueous hydrochloric acid, and the organic layer was analyzed by high performance liquid chromatography. Compound No. (-)-8 (optical purity: 85% ee) And Compound No. (+)-14 (optical purity 85% ee).
このクロ口べゼン溶液に、 25%水酸化ナトリウム水溶液 236 g ( 1. 48 mo 1) を加えて 70°Cで 2時間反応させた。 反応終了後、 食塩水を加え酢酸ェ チルで抽出し、 有機層を食塩水で洗浄し溶媒を減圧下で留去した。 残渣を高速液 体クロマトグラフィーにて分析したところ、 化合物 No. (-)-1 (光学純度 8 5%e e) 及び化合物 No. ( + )- 16 (光学純度 85 % e e ) が生成した。  236 g (1.48 mo1) of a 25% aqueous sodium hydroxide solution was added to the black-mouthed bezen solution and reacted at 70 ° C for 2 hours. After completion of the reaction, saline was added and extracted with ethyl acetate. The organic layer was washed with saline and the solvent was distilled off under reduced pressure. When the residue was analyzed by high performance liquid chromatography, compound No. (-)-1 (optical purity: 85% e e) and compound No. (+)-16 (optical purity: 85% e e) were produced.
この残渣をジエチレングリコールジェチルエーテル 500mlに溶解し、 氷冷 下、 水 12. 2mo 1 (0. 675mo 1) 及び濃硫酸 12. 2mlの混合溶液 をゆつくりと滴下し、 滴下終了後、 室温で 2時間攪袢した。 反応終了後、 反応液 に水酸化ナトリウム水溶液を加え中和し、 有機層を分取して減圧濃縮した後、 残 渣をトルエン/ n—へブタン混合溶媒から結晶化させたところ、 化合物 No. (-)-1 (81 g 化合物 No. (±)-16 (光学純度 8 l%e e、 白色固体) から の収率 75%) を得た。  This residue was dissolved in 500 ml of diethylene glycol getyl ether, and a mixed solution of 12.2 mol of water (0.675 mol 1) and 12.2 ml of concentrated sulfuric acid was slowly added dropwise under ice-cooling. Stirred for hours. After completion of the reaction, the reaction solution was neutralized by adding an aqueous solution of sodium hydroxide, the organic layer was separated and concentrated under reduced pressure, and the residue was crystallized from a mixed solvent of toluene / n-heptane. (-)-1 (81 g, Compound No. (±) -16 (optical purity 8 l% ee, white solid), yield: 75%) was obtained.
実施例 109 <化合物 No.(- )- 1 の合成〉 Example 109 <Synthesis of compound No. (-)-1>
化合物 No. (±)-16を 102 g (0. 30 Omo 1 ) , クロ口ベンゼン 600 g、 水 81. 1 g (4. 50mo l) の混合物に 50 °Cでギ酸 207 g (4. 5 Omo 1) を滴下した。 滴下終了後 50°Cで 2時間反応させた後、 25 %水酸化 ナトリゥム水溶液 768 g (4. 8 Omo 1) を加え 50 で 1時間反応させた。 反応後、 有機層を分取し食塩水、 水で洗浄した。 約 1/3のクロ口べゼンを減 圧下留去し、 ビリジン 29. 7 g (0. 37mo 1) を加え、 次いでカブロン酸 クロリ ド 48. 5 g (0. 36 Omo 1) を滴下した。 滴下終了後 50°Cで 1時 間反応させた後、 有機層を分取し塩酸を含む食塩水及び食塩水で洗浄し、 減圧下 濃縮して粗な化合物 No. (±)-8を得た。 これをジイソプロピルエーテル 250 mlに溶解し、 塩酸水、 炭酸ナトリウム水、 水で洗浄した。 この溶液に Lipase R (Penicillium roqueforti, 天野製薬株式会社製) 55 g及びリン酸緩衝溶液 (pH7. 2) 75 Omlを加え 25°Cで 16時間攪拌した。 反応終了後、 食塩 150 gを加えクロ口べゼン 375mlで抽出し、 有機層をゼライ ト濾過後、 炭 酸ナ卜リウムを含む食塩水、 食塩水で洗浄し有機層を高速液体クロマトグラフィ 一にて分析したところ、 化合物 No. (-)-8の転化率は 50%で、 化合物 No. (-)-8 (光学純度 85 % e e ) 及び化合物 N o . ( + )-1 (光学純度 85 % e e ) が生成した。 Compound No. (±) -16 was treated with a mixture of 102 g (0.30 Omo 1), benzene (600 g) and water (81.1 g (4.50 mol)) at 50 ° C in a mixture of 207 g of formic acid (4.5 Omo 1) was added dropwise. After completion of the dropwise addition, the mixture was reacted at 50 ° C. for 2 hours. Then, 768 g (4.8 Omo 1) of a 25% aqueous sodium hydroxide solution was added, and the mixture was reacted at 50 for 1 hour. After the reaction, the organic layer was separated and washed with brine and water. Approximately 1/3 of the rosin was distilled off under reduced pressure, 29.7 g (0.37 mol) of pyridine was added, and then 48.5 g (0.36 Omo 1) of caproic acid chloride was added dropwise. After completion of the dropwise addition, the mixture was reacted at 50 ° C for 1 hour.The organic layer was separated, washed with a saline solution containing hydrochloric acid and a saline solution, and concentrated under reduced pressure to obtain crude compound No. (±) -8. Was. This was dissolved in 250 ml of diisopropyl ether, and washed with aqueous hydrochloric acid, aqueous sodium carbonate, and water. 55 g of Lipase R (Penicillium roqueforti, manufactured by Amano Pharmaceutical Co., Ltd.) and phosphate buffer solution (pH 7.2) 75 Oml was added, and the mixture was stirred at 25 ° C for 16 hours. After completion of the reaction, 150 g of sodium chloride was added, and the mixture was extracted with 375 ml of black-and-white bezel. The organic layer was filtered through a zelite, washed with saline containing sodium carbonate and brine, and the organic layer was subjected to high performance liquid chromatography. Analysis showed that the conversion of Compound No. (-)-8 was 50%, Compound No. (-)-8 (optical purity 85% ee) and Compound No. (+)-1 (optical purity 85% ee).
P-トルエンスルホニルクロリ ド 29. 9 g (0. 157mo l) を加え、 2 5 %水酸化ナトリゥム水溶液 240g ( 1.5 Omo 1) を滴下し、 滴下終了後、 40〜50 Cで 4時間、 70°Cで 2時間反応させた。 酢酸ェチルで抽出し、 有機 層を食塩水、 水で洗浄し、 減圧下濃縮した。 残渣を高速液体クロマトグラフィー にて分析したところ、 化合物 No. (-)-1 (光学純度 85%ee) 及び化合物 No. ( + )-16 (光学純度 85%e e) が生成した。  29.9 g (0.157 mol) of P-toluenesulfonyl chloride was added, and 240 g (1.5 Omo 1) of a 25% aqueous sodium hydroxide solution was added dropwise.After completion of the addition, the mixture was heated at 40 to 50 C for 4 hours at 70 °. The reaction was performed at C for 2 hours. The mixture was extracted with ethyl acetate, and the organic layer was washed with brine and water, and concentrated under reduced pressure. When the residue was analyzed by high performance liquid chromatography, compound No. (-)-1 (optical purity 85% ee) and compound No. (+)-16 (optical purity 85% ee) were produced.
この残渣をジエチレングリコールジェチルェ一テル 500mlに溶解し、 氷冷 下、 水 12. 2mo 1 (0. 675mo 1) 及び濃硫酸 12. 2mlの混合溶液 をゆつく りと滴下し、 滴下終了後、 室温で 2時間攪拌した。 反応終了後、 反応液 に水酸化ナトリゥム水溶液を加え中和し、 有機層を分取して減圧濃縮した後、 残 渣を 0 —キシレン/ n—ヘプタン混合溶媒から結晶化させたところ、 化合物 0 . (-)-1 (81 g、 化合物 o. (±)-16 (光学純度 83%e e、 白色固体) からの収率 75%) を得た。  The residue was dissolved in 500 ml of diethylene glycol ethyl ether, and a mixed solution of 12.2 mol of water (0.675 mol) and 12.2 ml of concentrated sulfuric acid was slowly added dropwise under ice-cooling. Stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution was neutralized by adding an aqueous solution of sodium hydroxide, and the organic layer was separated and concentrated under reduced pressure. The residue was crystallized from a 0-xylene / n-heptane mixed solvent to obtain Compound 0. (-)-1 (81 g, compound o. (±) -16 (optical purity 83% ee, white solid), yield 75%).
実施例 1 10 Example 1 10
(士) -2 - [2- (3-クロ口フエニル) -2, 3-ジヒドロキシプロピル] - 2 - ェチルインダン- 1, 3 -ジオン (1.0 g、 2.79腿 ol) 、 モレキュラーシーブス 4 A (L inde社製 500 mg) 、 及びァセトン (5.0 ml) を 50 ml ナスフラ スコに仕込み、 次いで (一) -2- (N-ベンジル- N-メチルアミノメチル) - 1 - メチルピロリジン (30 mg、 5.0 mol%) のアセトン (5.0 ml) 溶液及びトリェチ ルァミン (mg、 50 mol¾) を加えた。  (P) -2-[2- (3-Chlorophenyl) -2,3-dihydroxypropyl] -2-Ethylindane-1,3-dione (1.0 g, 2.79 t ol), Molecular sieves 4 A (L inde 500 mg) and acetone (5.0 ml) were charged into a 50 ml eggplant flask, and then (1-)-2- (N-benzyl-N-methylaminomethyl) -1-methylpyrrolidine (30 mg, 5.0 mol% ) In acetone (5.0 ml) and triethylamine (mg, 50 mol%).
この混合物を一 78°Cに冷却し、 ベンゾイルクロリ ド (75 mol%) のアセトン 溶液 (5.0 ml) を滴下した。 滴下終了後、 — 78°Cで 1時間攪拌し、 反応液を HPLCで分析したところ、 (土) -2- [2- (3-クロ口フエニル) -2, 3 -ジ ヒドロキシプロビル] -2-ェチルインダン一 1, 3—ジオンの転化率は 53%で、 (+ ) - 2 - [2 - (3—クロ口フエニル) 一 2, 3—ジヒドロキシプロビル] —2—ェチルインダン— 1, 3—ジオン (23%ee) 及び (一) 一 2— [2— (3—クロ口フエニル) 一 2—ヒドロキシ一 3—ベンゾィルォキシプロビル] ― 2—ェチルインダン一 1, 3—ジオン (20%e e) が生成した。 The mixture was cooled to 178 ° C, and a solution of benzoyl chloride (75 mol%) in acetone (5.0 ml) was added dropwise. After completion of the dropwise addition, the mixture was stirred at −78 ° C. for 1 hour, and the reaction solution was analyzed by HPLC. (Sat) -2- [2- (3-chlorophenyl) -2,3-di Hydroxypropyl] -2-ethylindane-1,3-dione has a conversion of 53%, and (+)-2-[2- (3-chlorophenyl) -1,2,3-dihydroxypropyl] —2— Ethylindane-1,3-dione (23% ee) and (I) -I- [2- (3- (3-chlorophenyl) -I-2-hydroxy-l-Benzoyloxyprobiyl]-2-Ethylindane-I, 3-dione (20% ee) was produced.
実施例 1 1 1および 1 12 Example 1 1 1 and 1 12
(-) -2 - (N-ベンジル一 N—メチルアミノメチル) 一 1—メチルビロリ ジン (5.0 mol%) を表 12に示す光学活性ジァミン類 (5.0 mol%) に代えた以外 は実施例 1 10と同様に反応を行った。 結果を表 12に示す。 表 12の結果から、 いずれの光学活性ジァミン類でも光学分割が可能であることがわかる。 分割効率 は (一) 一 1—メチルー 2— [ (ピペリジン一 1—ィル) メチル]ピロリジン、 (一) 一2— ( 1—メチルピロリジン一 2—ィルメチル) 一 1, 2, 3, 4—ト ラヒドロイソキノリン、 (一) 一 2— (N—ベンジル一 N—メチルアミノメチ ル) 一 1—メチルピロリジンの順に向上することがわかる。  Example 110 except that (-)-2-(N-benzyl-1-N-methylaminomethyl) -11-methylbirolidine (5.0 mol%) was replaced by optically active diamines (5.0 mol%) shown in Table 12. The reaction was carried out in the same manner as described above. Table 12 shows the results. From the results in Table 12, it can be seen that any of the optically active diamines can be optically resolved. The resolving efficiencies were (1-) 1-1-methyl-2-[[(piperidine-1-yl) methyl] pyrrolidine, (1-) 1-2- (1-methylpyrrolidine-12-ylmethyl) -1,2,3,4- It can be seen that trihydroisoquinoline and (-1) -12- (N-benzyl-1-N-methylaminomethyl) -11-methylpyrrolidine are improved in this order.
実施例 113-120 Examples 113-120
アセトン (5.0 ml) を表 13に示す反応溶媒 (5.0 ml) に代えて、 表 13に 示す反応温度で実施例 1 10と同様に反応を行った。 結果を表 13に示す。  The reaction was carried out in the same manner as in Example 110 at the reaction temperature shown in Table 13 by replacing acetone (5.0 ml) with the reaction solvent (5.0 ml) shown in Table 13. Table 13 shows the results.
表 13の結果から、 いずれの反応溶媒でも光学分割が可能なことがわかる。 分 割効率はケトン系溶媒、 エステル系溶媒、 アミ ド系溶媒、 二トリル系溶媒が高く、 中でもケトン系溶媒、 アミ ド系溶媒、 二トリル系溶媒が特に高いことがわかる。 実施例 12 1— 128  From the results in Table 13, it can be seen that optical resolution is possible with any of the reaction solvents. It can be seen that the separation efficiency is high for ketone solvents, ester solvents, amide solvents, and nitrile solvents, and particularly high for ketone solvents, amide solvents, and nitrile solvents. Example 12 1—128
トリェチルァミン (50 mol%) を表 14に示すアキラルな塩基 (50 mol¾) に代 えて、 表 14に示すジァミン、 反応溶媒、 反応温度条件下で実施例 1 10と同様 に反応を行った。 結果を表 14に示す。  The reaction was carried out in the same manner as in Example 110 under the conditions of diamine, reaction solvent, and reaction temperature shown in Table 14, except that triethylamine (50 mol%) was replaced with the achiral base (50 mol%) shown in Table 14. Table 14 shows the results.
表 14の結果から、 いずれのアキラル塩基でも光学分割が可能であることがわ かる。 分割効率は、 卜リエチルァミンに比べてピリジンを用いると低下し、 無機 塩基を用いると向上することがわかる。 塩基中でも、 炭酸ナトリウム、 炭酸水素 ナトリゥムが特に高い分割効率を示すことがわかる。  From the results in Table 14, it can be seen that any of the achiral bases can be optically resolved. It can be seen that the resolving efficiency is lower when pyridine is used than when triethylamine is used, and is improved when an inorganic base is used. Among the bases, it can be seen that sodium carbonate and sodium hydrogen carbonate exhibit particularly high resolution.
実施例 129— 135 ペンゾイルクロリ ド (75 mol¾) を表 1 5に示すァシル化剤 (75 mol%) に代え て、 表 1 5に示すアキラル塩基、 反応溶媒、 反応温度条件下で実施例 1 1 0と同 様に反応を行った。 結果を表 1 5に示す。 Example 129-135 In the same manner as in Example 11 except that benzoyl chloride (75 mol%) was replaced with the acylating agent (75 mol%) shown in Table 15 and the achiral base, reaction solvent and reaction temperature shown in Table 15 were used. The reaction was performed. The results are shown in Table 15.
表 1 5の結果から、 いずれのァシル化剤でも光学分割が可能であることがわか る。 分割効率は、 芳香族カルボン酸ハライ ドを用いると向上することがわかる。 実施例 1 3 6、 1 3 7  From the results in Table 15, it can be seen that optical resolution can be performed with any of the acylating agents. It can be seen that the separation efficiency is improved by using an aromatic carboxylic acid halide. Example 1 3 6, 1 3 7
ジァミンの使用量を表 1 6に示す使用量に代えて、 表 1 6に示すアキラル塩基、 反応温度条件下で実施例 1 1 0と同様に反応を行った。 結果を表 1 6に示す。 表 1 6の結果から、 光学活性ジァミン類の使用量を削減しても、 分割効率は低 下しないことがわかる。  The reaction was carried out in the same manner as in Example 110, except that the amount of diamine used was changed to the amount shown in Table 16 and the achiral base shown in Table 16 and the reaction temperature were used. The results are shown in Table 16. From the results in Table 16, it can be seen that even if the amount of optically active diamines used is reduced, the separation efficiency does not decrease.
表一 1 2  Table 1 1 2
Figure imgf000098_0001
Figure imgf000098_0001
表一 1 3 Table 1 1 3
実施例. 反応溶媒 反応温度 転化率 ジオール エステル E Example. Reaction solvent Reaction temperature Conversion ratio Diol ester E
(+or-) (+ or-)
112 Acetone -78 56 + 78 - 61 10 112 Acetone -78 56 + 78-61 10
113 CH2C12 一 7 & 56 ' +23 ·' . - 18 1.8113 CH 2 C1 2 1 7 & 56 '+23
•1-14 AcOEt -78 55 + 45 _ 37 3• 1-14 AcOEt -78 55 + 45 _ 37 3
115 Toluene -78 23 + 4 - 13 . . 1.4 ·115 Toluene -78 23 + 4-13 ..1.4
116 Et20 -78 39 + 3. - 5 1.1116 Et20 -78 39 + 3.- 5 1.1
117 ' THF -78 56 + 27 - 21 2117 'THF -78 56 + 27-21 2
118 DMF -78 38 + 58 - 94 58118 DMF -78 38 + 58-94 58
119 CH3CH2CN -78 72 . + 72 - 59 8119 CH 3 CH 2 CN -78 72. + 72-59 8
120 DKethylene. 0 16 -2 1.1 glycol) diethyl 120 DKethylene. 0 16 -2 1.1 glycol) diethyl
ether . ether.
表一 14 Table 14
実施例 ジァミン アキラル 反応溶媒 反応温度 転化率 ジオール エステル E Example diamine achiral reaction solvent reaction temperature conversion diol ester E
(ee %) (ee %) 反応時間 (+or- ) C+or-)  (ee%) (ee%) Reaction time (+ or-) C + or-)
121 Et3N + ZD 121 Et 3 N + ZD
CH2CI2 DO ― Δ 9  CH2CI2 DO ― Δ 9
2h  2h
/— \ c c  / — \ C c
122 h C!2 00 一 b  122 h C! 2 00 one b
2 h  2 h
/o O + 78 ― 61 10/ o O + 78 ― 61 10
112 no Et3N Acetone 一 ft 112 no Et 3 N Acetone one ft
2h 2h
tone U 62 + 92 - 56 11 tone U 62 + 92-56 11
123 no 2C03 ' Ace 123 no 2 C0 3 'Ace
2h  2h
Acetone u 14 一 94 38 Acetone u 14 one 94 38
124. no INahlし D3 124.no INahl then D 3
2h  2h
125 no Na2C03 Acetone 0 61 + 91 -58 11 125 no Na 2 C0 3 Acetone 0 61 + 91 -58 11
2h  2h
126 no Na2C03 CH3CN 0 42 + 66 - 91 42 126 no Na 2 C0 3 CH 3 CN 0 42 + 66-91 42
1 h  1 h
26 + 31 一 89 23 26 + 31 1 89 23
127 o Na,C03 CH3C〇Et 0 127 o Na, C0 3 CH 3 C〇Et 0
2 h  2 h
ro Na2C03 EtN〇2 0 15 + 16 ro Na 2 C0 3 EtN〇 2 0 15 + 16
128 一.90 22  128 1.90 22
2 h 2 h
表ー1 5 Table-15
Figure imgf000101_0001
表一 1 6
Figure imgf000101_0001
Table 1 1 6
実施例 ジァミン アキラル:^基 反応温度 転化率 ジオール エステル E.  Example Diamine Achiral: ^ group Reaction temperature Conversion diol Ester
(mol%) rc) (%) fee %) fee %)  (mol%) rc) (%) fee%) fee%)
(+or-) (+or-)  (+ or-) (+ or-)
5.0 78  5.0 78
112 B3N - 56 '.+ 78 - 61 10 112 B 3 N-56 '. + 78-61 10
136 0.5 B3N - 78 49 '·+ 65 - 62 10 136 0.5 B 3 N-78 49 '+ 65-62 10
125 5.0 Na2C03 0 61 + 91 - 58 11 125 5.0 Na 2 C0 3 0 61 + 91-58 11
137 1.0 a2C03 0 56 + 84 - 66 13 以下に、 本発明の農薬の製剤例と製造方法、 及びこれを用いた試験例を示す。 「部」 及び 「%」 とあるのは、 それぞれ 「重量部」 及び 「重量%」 を意味する。 製剤例 1 :水和剤 137 1.0 a 2 C0 3 0 56 + 84-66 13 Hereinafter, formulation examples and production methods of the pesticide of the present invention, and test examples using the same are shown. “Parts” and “%” mean “parts by weight” and “% by weight”, respectively. Formulation Example 1: wettable powder
本発明の光学異性体混合物 (化合物 N o . ( - )— 16の光学純度は 9 9 % e e。 以下の製造例も同様とする。 ) を 4 0部、 カープレックス # 8 0 (塩野義製薬株 式会社製、 商標名) 2 0部、 N, N—カオリンクレー (土屋カオリン社製、 商標 名) 3 5部、 高級アルコール硫酸エステル系界面活性剤ソルポール 8 0 7 0 (東 邦化学株式会社製、 商標名) 5部を配合し、 均一に混合粉碎して、 有効成分 4 0 %を含有する水和剤を得た。  40 parts of an optical isomer mixture of the present invention (compound No. (-)-16 has an optical purity of 99% ee; the same applies to the following production examples), and Carplex # 80 (Shinogi Pharmaceutical Co., Ltd.) 20 parts, N, N-kaolin clay (trade name, manufactured by Tsuchiya Kaolin Co., Ltd.) 35 parts, higher alcohol sulfate ester surfactant Solpol 800,700 (Toho Chemical Co., Ltd.) (Trade name) was mixed and homogenously mixed and pulverized to obtain a wettable powder containing 40% of the active ingredient.
製剤例 2 :粒剤 Formulation Example 2: Granules
本発明の光学異性体混合物を 1部、 クレー (日本タルク社製) 4 5部、 ベント ナイ ト (豊順洋行社製) 5 2部、 サクシネート系界面活性剤ェャロール C T— 1 (東邦化学株式会社製、 商標名) 2部を配合し、 混合粉砕したのち水を 2 0部加 えて捏和した。 さらに、 これを押し出し造粒機を用いて直径 0 . 6 mmの穴から 押し出し、 6 0 °Cで 2時間乾燥した。 1〜2 mmの長さに切断して、 有効成分 1 %を含有する粒剤を得た。  1 part of the optical isomer mixture of the present invention, 45 parts of clay (manufactured by Nippon Talc), 52 parts of bentonite (manufactured by Toyoko Yoko Co., Ltd.) 52 parts of succinate surfactant Jarol CT-1 (Toho Chemical Co., Ltd.) Was mixed and ground, and then kneaded with 20 parts of water. Further, this was extruded from a hole having a diameter of 0.6 mm using an extruder and dried at 60 ° C for 2 hours. By cutting to a length of 1 to 2 mm, granules containing 1% of the active ingredient were obtained.
製剤例 3 :乳剤 Formulation Example 3: Emulsion
本発明の光学異性体混合物を 3 0部、 キシレン 3 0部およびジメチルホルムァ ミ ド 2 5部からなる混合溶媒に溶解させ、 この溶液にポリオキシエチレン系界面 活性剤ソルポール 3 0 0 5 X (東邦化学株式会社製、 商標名) 1 5部を加えて、 有効成分 3 0 %を含有する乳剤を得た。  The optical isomer mixture of the present invention is dissolved in a mixed solvent consisting of 30 parts, 30 parts of xylene, and 25 parts of dimethylformamide, and the resulting solution is mixed with a polyoxyethylene surfactant, Solpol 300 X ( An emulsion containing 30% of the active ingredient was obtained by adding 15 parts of Toho Chemical Co., Ltd. (trade name).
製剤例 4 : フロアブル剤 Formulation Example 4: Flowable
本発明の光学異性体混合物を 3 0部、 予め混合しておいたエチレングリコール 8部、 ソルポール A C 3 0 3 2 (東邦化学株式会社製、 商標名) 5部、 キサン夕 ンガム 0 . 1部、 水 5 6 . 9部に良く混合分散させた。 次に、 このスラリー状混 合物をダイノ一ミル (シンマルエンタープライゼス社製) を用いて湿式粉碎し、 有効成分 3 0 %を含有する安定なフロアブル剤を得た。  30 parts of the optical isomer mixture of the present invention, 8 parts of ethylene glycol preliminarily mixed, 5 parts of Solpol AC3032 (trade name, manufactured by Toho Chemical Co., Ltd.), 0.1 part of xantholangum, The mixture was well mixed and dispersed in 56.9 parts of water. Next, this slurry-like mixture was wet-milled using a Dino-mill (manufactured by Shinmaru Enterprises) to obtain a stable flowable agent containing 30% of the active ingredient.
試験例 1 畑地土壌処理試験 Test example 1 Upland soil treatment test
面積 2 0 0 c m 2の樹脂製バッ卜に畑地火山灰土壌を充填し、 施肥後、 この土 壌表面にィヌビエ、 ェノコログザ、 スズメノカ夕ビラ及びスズメノテツボウの種 子を均一に混合した土壌を入れ、 製剤例 1により得た本発明の除草剤 (水和剤) を水で希釈調整し、 所定量を小型動力加圧噴霧器で均一に処理した。 A field of 200 cm 2 resin batter is filled with upland volcanic ash soil and fertilized. The soil containing uniformly mixed seeds of P. brassicae, Enokologza, Suzumeoka-bira and Suzumetsubo was put on the soil surface, and the herbicide (wettable powder) of the present invention obtained in Formulation Example 1 was diluted with water and adjusted. The quantitation was processed uniformly with a small power pressurized sprayer.
薬剤処理後 28日目に調査を行い、 処理区及び雑草種ごとに、 対無処理比 (%:無処理区における雑草の地上部乾燥重量を 100とした割合) を算出し、 本発明の農薬に関する先述の雑草について 90%阻害を示す薬量 (有効成分の薬 量: g/ha) を算出し、 結果を表 17に示した。 (つまり 90%阻害とは、 農 薬処理区における雑草地上部の生体重量が、 無処理区の該重量の 10%であるこ とを意味する。 ) 。  A survey was conducted on the 28th day after the chemical treatment, and the ratio to the non-treatment ratio (%: the ratio of the dry weight of the weeds in the non-treatment region to the above-ground dry weight of 100) was calculated for each of the treated and weed species. The dose of the above-mentioned weeds showing 90% inhibition (the dose of the active ingredient: g / ha) was calculated, and the results are shown in Table 17. (That is, 90% inhibition means that the living body weight of the above-ground weeds in the pesticide-treated area is 10% of that in the untreated area.)
尚、 比較剤として化合物 No. (-)— 16に対応するラセミ体 (比較剤 A) 、 及 び市販の除草剤有効成分を使用して上記と同様に試験を行い、 同様に評価を行い、 結果を表 17に示した。 表 17における比較剤 A、 比較剤 B, 比較剤 Cは、 下記 に示す。  The same test was conducted using the racemate (Comparative A) corresponding to Compound No. (-)-16 and a commercially available herbicide active ingredient as a comparative agent. The results are shown in Table 17. Comparative agent A, comparative agent B and comparative agent C in Table 17 are shown below.
表一 17 畑地土壌処理試験  Table 1 17 Upland soil treatment test
90 %阻香薬量 ( gノ h a )  90% incense repellent (g no ha)
薬剤名  Drug name
ィヌビエ ェゾコロゲサ スス'メノカタビラ スス '〃テクホ 'ゥ 本発明農薬 134.9 161.0 104.1 140.6  Inubiezokorogesususu Menokatabirasusu 〃Techho ホ Pesticide of the present invention 134.9 161.0 104.1 140.6
比較剤 A 348.4 374.0 417.8 354.8 比較剤 B 275.8 456.9 538: 8 1984.3 比較剤 C 319.0 196.7 422.3 761.7 比較剤 A :化合物 (土) - 16 Comparative agent A 348.4 374.0 417.8 354.8 Comparative agent B 275.8 456.9 538: 8 1984.3 Comparative agent C 319.0 196.7 422.3 761.7 Comparative agent A: Compound (Sat)-16
Figure imgf000103_0001
比較剤 B : Alachl or
Figure imgf000103_0001
Comparative agent B: Alachl or
Figure imgf000104_0001
比較剤 C: Pendemethal in
Figure imgf000104_0001
Comparative agent C: Pendemethal in
Figure imgf000104_0002
表 1 7から明らかなように、 本発明の除草剤は、 土壌処理用において広スべク トラムでかつ、 従来公知の除草剤である比較例に対して、 著しい低薬量で優れた 除草活性を示すことは明らかである。
Figure imgf000104_0002
As is clear from Table 17, the herbicide of the present invention has an excellent herbicidal activity at a remarkably low dose in comparison with a comparative example which is a broad spectrum and conventionally known herbicide for soil treatment. It is clear that
試験例 2 Test example 2
本発明の農薬について光学純度 (%e e) と薬量を表 1 8のように変えた以外 は、 試験例 1と同様の方法で、 本発明の農薬について、 除草効果を試験した。 除草効果の評価は以下の式によって除草効果係数 Yを求め、 これを 1 1段階評 価とし、 この評価結果の 3点を平均した値とした。 結果を表 1 8に示す。  The herbicidal effect of the pesticide of the present invention was tested in the same manner as in Test Example 1 except that the optical purity (% ee) and the amount of the pesticide of the present invention were changed as shown in Table 18. For the evaluation of the herbicidal effect, the herbicidal effect coefficient Y was calculated by the following formula, and this was used as an 11-level evaluation, and the average of the three points of the evaluation results was used. The results are shown in Table 18.
Y (%) =( 1 -α/β) X 1 0 0  Y (%) = (1 -α / β) X 1 0 0
(式中、 ひは農薬処理区における雑草の地上部の生体重量を、 は農薬無処理区 における雑草の地上部の生体重量を表す。 ) 除草効果係数 Y (%) (In the formula, hi represents the biomass weight of the aerial part of the weed in the pesticide-treated area, and represents the biomass weight of the aerial part of the weed in the pesticide-untreated area.) Weeding efficiency coefficient Y (%)
0 0  0 0
1 1〜: L 0 1 1 to: L 0
2 11-202 11-20
3 21〜303 21-30
4 31〜404 31-40
5 41〜505 41-50
6 51-606 51-60
7 6 707 6 70
10 8 71〜80 10 8 71-80
9 81-90 10 91-100 9 81-90 10 91-100
表一 1 8 Table 1 1 8
Figure imgf000106_0001
Figure imgf000106_0001
① : スズメ ノ カタ ビラ ② : ブラッ ク グラス ② : ノ ピエ ④ : ェノ コ ロ グサ 表 1 8から明らかなように、 本発明の光学異性体混合物を有効成分とする除草 剤は、 広範囲の殺草スペク トラムを有し低薬量で優れた除草効果を示す。 これは、 ラセミ体に対して特定の光学異性体の含有量を特定以上 (4 0 % e e以上) とす ることで水溶解度を改善し、 畑地用土壌処理剤として優れた効果を示すためであ る。 産業上の利用可能性 ①: Sparrow cata villa ②: Black glass ②: No pie ④: eno kolo gusa As is apparent from Table 18, the herbicide containing the optical isomer mixture of the present invention as an active ingredient has a wide range of herbicidal spectrum and exhibits excellent herbicidal effect at a low dose. This is because the content of a specific optical isomer with respect to a racemate is set to a specific level or more (at least 40% ee), thereby improving water solubility and exhibiting an excellent effect as a soil treatment agent for upland fields. is there. Industrial applicability
本発明の、 光学活性 1 , 2—二置換一 2 , 3—エポキシプロパン類とその光学 対掌体との光学異性体混合物は、 上記試験例に示したように、 優れた除草活性を 示し、 且つ水溶性が著しく改良されたことにより、 特に土壌処理において卓越し た除草効果を示す、 有用なものである。  The optically isomeric mixture of the optically active 1,2-disubstituted 1,2,3-epoxypropanes and their optical enantiomers of the present invention exhibits excellent herbicidal activity, as shown in the above Test Examples, In addition, since the water solubility is remarkably improved, it is useful because it shows an excellent herbicidal effect especially in soil treatment.
そして本発明の製造法は、 工業的に安価に且つ簡便な工程で目的とする化合物 を製造できる、 優れたものである。  The production method of the present invention is excellent in that the target compound can be produced industrially at low cost and with simple steps.

Claims

1. 下記一般式 ( 1) で表される光学活性 1, 2—二置換一 2, 3—エポキシプロパン 類とその光学対掌体との光学異性体混合物であって、 下記一般式 (1) で表される光学 異性体の含有率が 40%e e以上であることを とする 1, 2—二置換一 2, 3—ェ ポキシプロパン類の光学異性体混合物。 青 o、 1. An optically isomeric mixture of an optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the following general formula (1) and its optical antipode, which is represented by the following general formula (1) An optical isomer mixture of 1,2-disubstituted 1,2,3-epoxypropanes, wherein the content of the optical isomer represented by is 40% ee or more. Blue o,
(1)  (1)
B  B
 of
{式中、 Aは下記 ~« ( 2 ) 囲
Figure imgf000108_0001
{Where A is the following ~ «(2)
Figure imgf000108_0001
(式中、 R1は水素原子または低級ァゾレキル基、 アルケニル アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~ 3のアルキル基 炭素数:!〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一 (3) (Wherein, R 1 represents a hydrogen atom or a lower azoalkyl group or an alkenyl alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 3 to 3 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Represents a nitro group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following (3)
CX' { CX: P- (3) CX '{CX : P- (3)
(式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }。 (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B represents a group having a substituent Shows good aryl groups. }.
2. 含有率が 70 % e e以上である請求の範囲第 1項に記載の光学異性体混合物。 2. The optical isomer mixture according to claim 1, wherein the content is 70% e e or more.
3. 含有率が 90 % e e以上である請求の範囲第 1項に記載の光学異性体混合物。 3. The optical isomer mixture according to claim 1, wherein the content is 90% e e or more.
4. 水溶解度が 3 Oppm以上である請求の範囲第 1項に記載の光学異性体混合物。  4. The optical isomer mixture according to claim 1, having a water solubility of 3 Oppm or more.
5. 一般式 (1) において、 Aが一般式 (2) で表される基である請求の範囲第 1項に 記載の光学活性 1, 2—二置換— 2, 3—エポキシプロパン類の光学異性 ίお昆^ 1。  5. The optical activity of the optically active 1,2-disubstituted-2,3-epoxypropane according to claim 1, wherein A in the general formula (1) is a group represented by the general formula (2). Heterosexual ί ^^^
6. HIS式 ( 1) において、 Aが" 式 (2) で表される基であり、 一般式 (2) にお ける nが 0であり、 Bがハロゲン原子で置換されているフエニル基である請求の範囲第 6. In the HIS formula (1), A is a group represented by the formula (2), n in the general formula (2) is 0, and B is a phenyl group substituted with a halogen atom. Certain claims
1項に記載の光学活性 1, 2—二置換— 2, 3—エポキシプロパン類の光学異性 昆合 物。 Optical activity of 1,2-disubstituted-2,3-epoxypropanes described in paragraph 1 object.
7. 一般式 (1) において、 Aがー 式 (2) で表される基であり、 一般式 (2) にお ける nが 0であり、 かつ; Bがクロロフェニル基である請求の範囲第 1項に記載の光学活 性 1, 2—二置換— 2, 3—エポキシプロパン類の光学異性術昆^)。  7. In the general formula (1), A is a group represented by the general formula (2), n in the general formula (2) is 0, and B is a chlorophenyl group. Optical activity 1,2-disubstituted-2,3-epoxypropanes described in item 1).
8. 一般式 (1) で表される化合物が、 (一) -2- [2- (3—クロ口フエニル) 一 2, 3—エポキシプロビル]— 2—ェチルーインダン一 1, 3—ジオンである請求の範 囲第 1項に記載の光学異性術昆^。  8. When the compound represented by the general formula (1) is (1-)-2- [2- (3-chlorophenyl) -1,2,3-epoxypropyl] —2-ethylethylindane-1,3-dione The optical isomerism described in claim 1.
9. 請求の範囲第 1項に記載の光学活性 1, 2—二置換一 2, 3—エポキシプロパン類 の光学異性術昆合物を有効成分とする 。  9. The optically active 1,2-disubstituted 1,2,3-epoxypropane optically isomer compound according to claim 1 is used as an active ingredient.
10. 除草剤であることを «とする請求の範囲第 9項に記載の M^。  10. M ^ according to claim 9, which is a herbicide.
1 1. 土 除草剤であることを特徴とする請求の範囲第 10項に記載の除草剤。  1 1. The soil herbicide according to claim 10, wherein the herbicide is a soil herbicide.
12. 下記 (4)  12. Following (4)
(4) (Four)
B  B
{式中、 Aは下記 (2)
Figure imgf000109_0001
(Where A is the following (2)
Figure imgf000109_0001
(式中、 R1 は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜 3のアルキル基、 炭素数 1〜 3のハロアルキル基、 炭素 数 1〜5のアルコキシ ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Represents a nitro group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX1 3( CX2 2 2)ノ P (3) CX 1 3 (CX 2 2 2) P (3)
(式中、 X1、 X 2はそれぞれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリ一ル基を示す。 } で表 される 2, 3—二置換一 1—プロペン類を、 不斉エポキシ化することを特徴とする下記 "^式 (1) A" f (1) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.); and B may have a substituent. Represents an aryl group. Asymmetric epoxidation of 2,3-disubstituted 1-propenes represented by the formula (1) A "f (1)
B  B
(式中、 A及び Bは HIS式 (4) と同義。 ) で表される光学活性 1, 2—二置換— 2, 3一エポキシプロパン類の製造法。 (Wherein, A and B have the same meanings as HIS formula (4).) A method for producing an optically active 1,2-disubstituted-2,3-epoxypropane represented by the formula
13. 光学活性マンガン錯体の存在下、 酸化剤と反応させ不斉エポキシ化を行う請求の 範囲第 12項に記載の製造法。  13. The production method according to claim 12, wherein the asymmetric epoxidation is carried out by reacting with an oxidizing agent in the presence of an optically active manganese complex.
14. 下記 H¾式 (6)  14. The following H¾ formula (6)
OH  OH
ヽ„, .  ヽ „,.
(6)  (6)
B  B
{式中、 Aは下記 ""^式 (2) {Where A is the following "" ^ Equation (2)
Figure imgf000110_0001
Figure imgf000110_0001
(式中、 R1 は水素原子または低級アルキル アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~ 3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (In the formula, R 1 represents a hydrogen atom or a lower alkyl alkenyl group alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a nitro group. Or a cyano group, n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CXl 3( CX2 2) p - (3) CX l 3 (CX 2 2 ) p- (3)
(式中、 X1、 X 2はそれぞれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 } で表 される光学活性 1 , 2一二置換一 2, 3—ジヒドロキシプロパン類を立体選択的に閉璟 することを特徴とする一 式 (1) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.); and B may have a substituent. Shows an aryl group. }, Wherein the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the formula are stereoselectively closed.
2ヽ  2 ヽ
A^ T (1) A ^ T (1)
B  B
(式中、 A及び Bは一般式 (6) と同義。 ) で表される光学活性 1, 2—二置換一 2, 3一エポキシプロパン類の製造法。 (Wherein, A and B have the same meanings as in the general formula (6)).
15. 下記 式 (7)
Figure imgf000111_0001
15. Equation (7) below
Figure imgf000111_0001
{式中、 Αは下記 (2)  (Where Α is the following (2)
Figure imgf000111_0002
Figure imgf000111_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基 炭素数 1〜3のハロアルキル基 炭素 数 1〜 5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 H^; (3) (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following H ^;
CXl 3( CX2 2 2)ノ (3) CX l 3 (CX 2 2 2) ノ (3)
(式中、 X1、 X 2はそれぞれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示し、 R5は 置換基を有していても良い炭素数 1~10のアルキル基又はァリール基を示す。 }で表 される光学活性スルホン酸エステル類を^ ¾の存在下、 閉環することを »とする下記 ~*式 (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.); and B may have a substituent. Represents an aryl group, and R 5 represents an alkyl group having 1 to 10 carbon atoms or an aryl group which may have a substituent. The following ~ * formula is to close the ring of the optically active sulfonic acid ester represented by} in the presence of ^ »
Q、  Q,
A"  A "
(1)  (1)
B  B
{式中、 A、 Bは一般式 (7) と同義。 }で表される光学活性 1, 2—二置換— 2, 3 —エポキシプロノ ン類の製造法。 {Wherein A and B are as defined in general formula (7). The process for the production of optically active 1,2-disubstituted-2,3-epoxypronones represented by}.
16. 下記 式 (7)
Figure imgf000111_0003
16. Equation (7) below
Figure imgf000111_0003
{式中、 Aは下記一般式 ( 2 )
Figure imgf000112_0001
(Where A is the following general formula (2)
Figure imgf000112_0001
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基 炭素数 1~ 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 H¾ (3)
Figure imgf000112_0002
(Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following H3 (3)
Figure imgf000112_0002
(式中、 x\ X 2はそれそ ufciにハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示し、 R5は 置換基を有していてもよい炭素数 1〜10のアルキル基又はァリール基を示す。 } で表される光学活性スルホン酸エステル類。 (In the formula, x \ X 2 represents a halogen atom or a hydrogen atom in each ufci. P represents 0 to 2.), and B may have a substituent. And R 5 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent or an aryl group. } Optically active sulfonic acid esters represented by the formula:
17. ΙίίίΒ-Κ ( 6 )で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプ 口パン類に塩基の存在下、 下記 (8) または (9)  17. Optical activity 1,2-disubstituted 1,2,3-dihydroxy represented by ΙίίίΒ-Κ (6) In the presence of a base in breads, (8) or (9) below
R5S02Y (8) R 5 S0 2 Y (8)
( 5S02) 20 (9) ( 5 S0 2 ) 2 0 (9)
(式中、 R 5は置換基を有していてもよい炭素数 1〜10のアルキル基又はァリール基 を示し、 Yはハロゲン原子を示す。 ) で表されるスルホン酸誘導体を反応させることを 特徴とする請求の範囲第 16項において一般式 (7)で表される光学活性スルホン酸ェ ステル類の製造法。 (Wherein, R 5 represents an alkyl group or an aryl group having 1 to 10 carbon atoms which may have a substituent, and Y represents a halogen atom.) 17. A method for producing an optically active sulfonic ester represented by the general formula (7) in claim 16.
18.下記 H¾ (4)  18.H 下 記 (4) below
{式中、 Aは下記一般式 (2)
Figure imgf000112_0003
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜 5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 H¾ (3)
(Where A is the following general formula (2)
Figure imgf000112_0003
(Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following H¾ (3)
CX1 CX2 2) p - (3) CX 1 CX 2 2 ) p- (3)
(式中、 X1、 X 2はそれそ; h fciにハロゲン原子又は水親子を示す。 pは 0~2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される 2, 3—二置換一 1—プロペン類を、 不斉ジヒドロキシ化することを特徴とする 式 (1)
Figure imgf000113_0001
(式中、 A及び Bは 式 (4) と同義。 ) で表される光学活性 1, 2—二置換— 2, 3—ジヒドロキシプロパン類の製造法。
(Wherein, X 1 and X 2 each represent a halogen atom or a hydrophile for h fci; p represents 0 to 2.), and B has a substituent. Shows an aryl group which may be present. Asymmetric dihydroxylation of 2,3-disubstituted 1-propenes represented by the formula (1)
Figure imgf000113_0001
(Wherein A and B have the same meanings as in formula (4).) A method for producing an optically active 1,2-disubstituted-2,3-dihydroxypropane represented by
19. ォスミゥム化^の存在下で不斉ジヒドロキシ化反応を行うことを とする請 求の範囲第 18項に記載の光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類 の1^法。  19. Scope of the request to carry out the asymmetric dihydroxylation reaction in the presence of osmidimation ^ The 1 ^ method of optically active 1,2-disubstituted 1,2,3-dihydroxypropanes described in Item 18 .
20. 光学活性な第三級ァミン類の存在下でジヒド口キシ化 を行うことを特徴とす る請求の範囲第 18項に記載の光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパ ン類の製造法。 20. The optically active 1,2-disubstituted 1,2,3-dihydroxypropane according to claim 18, wherein the dihydric xylation is carried out in the presence of an optically active tertiary amine. Manufacturing methods
21. オスミウム化合物の存在下、 共酸化剤で酸化することにより不斉ジヒドロキシ化 反応を行うことを特徴とする請求の範囲第 18項に記載の光学活性 1 , 2一二置換一 2, 3—ジヒドロキシプロノ ン類の S^t法。  21. The optically active 1,2-disubstituted 1,2-, 3-substituted asymmetric dihydroxylation reaction by oxidizing with a co-oxidizing agent in the presence of an osmium compound. S ^ t method for dihydroxyprononones.
22. 下記一般式 (10) 22. The following general formula (10)
OH  OH
A^^GH ( 1 0 ) A ^^ GH (1 0)
B {式中、 Aは下記一般式 (2)
Figure imgf000114_0001
B (where A is the following general formula (2)
Figure imgf000114_0001
(式中、 R1は水素原子または低級アルキル基 アルケニル墓 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~ 3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. And n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CXX 3( CX2 2) p - (3) CX X 3 (CX 2 2 ) p- (3)
(式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される 1, 2—二置換一 2, 3—ジヒドロキシプロパン類を、 立体選択的エステル交換 能を有する酵素の存在下、 下記 ~« (11) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B represents a group having a substituent Shows good aryl groups. 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the following formulas in the presence of an enzyme capable of stereoselective transesterification:
(R6C02) mR7 m (11) (R 6 C0 2 ) m R 7 m (11)
(式中、 R 6は置換基を有していてもよい炭素数 1〜20のアルキル基 アルケニル基 ァラルキル基 又はァリール基を示し、 R 7は置 を有していてもよい炭素数 1〜2(In the formula, R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group or an aryl group, and R 7 has 1 to 2 carbon atoms which may have a substituent.
◦のアルキル アルケニル基、 ァラルキル基 ァリール 又はァシル基を示すか或 いは、 R 6及び R7は結合して環を形成していてもよく、 mは 1〜3の整数を示す。 ) で 表されるカルボン酸エステル類又は酸無水物と反応させて、 下記一般式 (12) で表さ れる光学活性 1, 2—二置換一 2—ヒドロキシ一 3—ァシロキシプロパン類と、 下記一 般式 (13) で表される、 一般式 (12) で表される化合物とは光学対掌体である光学 活性 1, 2—二置換— 2, 3—ジヒドロキシプロパン類を生成させ、 所望の光学異性体 である" S式 (13) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロ パン類を分取する力 若しくは反応後、 更に加激某分解することを とする、 下記一 般式 ( 6 ) で表される光学活性 1 , 2—二置換— 2, 3—ジヒドロキシプロパン類の製 造法。
Figure imgf000115_0001
Represents an alkyl alkenyl group, an aralkyl group, an aryl group or an acyl group, or R 6 and R 7 may combine to form a ring, and m represents an integer of 1 to 3. ) To react with a carboxylic acid ester or an acid anhydride represented by the following formula (12) to form an optically active 1,2-disubstituted 1-2-hydroxy-13-acyloxypropane; The compound represented by the general formula (13), represented by the general formula (13), generates an optically active 1,2-disubstituted-2,3-dihydroxypropane which is an optical antipode, Is the optical isomer of "S: Formulation of the optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the formula (13). A method for producing an optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the following general formula (6).
Figure imgf000115_0001
(式中、 A、 B及び R6は (10)および (11) と同義であり、 *は不斉炭素 原子を示す。 ) (In the formula, A, B and R 6 have the same meanings as (10) and (11), and * indicates an asymmetric carbon atom.)
23. IH-i¾ (12) 23. IH-i¾ (12)
OH  OH
A' 0C0R6 A '0C0R 6
(12)  (12)
{式中、 Aは下記 (2)
Figure imgf000115_0002
(Where A is the following (2)
Figure imgf000115_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~3のアルキル 炭素数 1~ 3のハロアルキル基 炭素 数 1~5のアルコキシ ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (In the formula, R 1 represents a hydrogen atom or a lower alkyl group alkenyl group alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxynitro group having 1 to 5 carbon atoms, or Represents a cyano group, n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX'3( CX2,) D - (3) CX ' 3 (CX 2 ,) D- (3)
(式中、 X1、 X2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示し、 R6は 置換基を有していてもよい炭素数 1〜20のアルキル アルケニル基、 ベンジル基 又はァリール基を示す。 } で表される光学活性 1, 2—二置換一 2—ヒドロキシ—3— (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B represents a group having a substituent And R 6 represents an alkyl alkenyl group having 1 to 20 carbon atoms, a benzyl group or an aryl group which may have a substituent. } Optically active 1, 2-disubstituted 2-hydroxy-3-
24. 下記 ~¾ζ (13) 24. Below ~ ¾ζ (13)
OH  OH
B (13) B (13)
{式中、 Αは下記 (2)  (Where Α is the following (2)
Figure imgf000116_0001
Figure imgf000116_0001
(式中、 R1は水素原子または低級アルキル アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~3のアルキル基 炭素数 1~ 3のハロアルキル基 炭素 数 1〜 5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0~4の整数を示 す。 ) で表される基又は、 下記 ~« (3) cx cx2 2) p - (3) (In the formula, R 1 represents a hydrogen atom or a lower alkyl alkenyl group alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a nitro group. Or a cyano group, n represents an integer of 0 to 4.) or a group represented by the following ~ «(3) cx cx 2 2 ) p- (3)
(式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0~2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類。 (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B may have a substituent. Shows good aryl groups. } Optically active 1,2-disubstituted 1,2,3-dihydroxypropanes represented by
25. 酵素が Pen i c i l l ium属または Pus eud 0111011&3属»物由来 のリパーゼであることを特徴とする請求の範囲第 22項に記載の光 ^¾性 1, 2—二置 換一 2, 3—ジヒドロキシプロパン類の ^法。 25. The photo ^ ¾-soluble 1,2-disubstitution-1,2,3-- according to claim 22, wherein the enzyme is a lipase derived from the genus Penicillium or the species of Pus eud 0111011 & 3. ^ Method for dihydroxypropanes.
26. 式 (11)で表される化^ #1が酪酸ビニルであることを とする請求の範 囲第 22項に記載の光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の製造 法。  26. The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes according to claim 22, wherein the compound represented by the formula (11) is vinyl butyrate. Manufacturing method.
27. 下記 ~ ^式 (14)  27. Following ~ ^ formula (14)
OH  OH
Α' OCOR.  Α 'OCOR.
Β (14)  Β (14)
{式中、 Αは下記一般式 (2)  (Where Α is the following general formula (2)
(2)(2)
Figure imgf000116_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基 炭素数 1~3のハロアルキル基 炭素 数 1~5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 式 (3)
Figure imgf000116_0002
(In the formula, R 1 represents a hydrogen atom or a lower alkyl group alkenyl group alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. And n represents an integer of 0 to 4.) or a group represented by the following formula (3):
CX ( CX2 2) p - (3) CX (CX 2 2 ) p- (3)
(式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示し、 R6は 置換基を有していてもよい炭素数 1〜20のアルキル基 アルケニル基 ァラルキル基 又はァリール基を示す。 } で表される 1, 2—二置換一2, 3—ジヒドロキシプロパン 類を、 立体選択的加溶媒分解能を有する酵素の存在下、 下記一般式 (15) 8OH (15) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B represents a group having a substituent And R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group or an aryl group. 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the general formula (15) 8OH (15)
(式中、 R8は水素原子、 置腿を有していてもよい炭素数 1〜20のアルキル基を示 す。 ) で表される化合物と反応させて、 下記一般式 (12) で表される光学活性 1, 2 一二置換一 2—ヒドロキシ一 3—ァシロキシプロパン類と、 TIB-^¾ (13) で表さ れる、 一般式 (12) で表される化合物とは光学対掌体である光学活性 1, 2—二置換 -2, 3—ジヒドロキシプロパン類を生成させ、 所望の光学異性体である一般式 ( 1 3) で表される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類を分取する か、 若しくは反応後、 更に加溶媒分解することを特徴とする、 下記 ~«式 (6) で表さ れる光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の B法。 (In the formula, R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may have a thigh.) The compound represented by the following general formula (12) Optical activity 1,2 di-substituted 1-2-hydroxy-13-acyloxypropanes and the compound represented by the general formula (12) represented by TIB- ^ ¾ (13) 1,2-disubstituted-2,3-dihydroxypropanes as optical isomers, and the optically active 1,2-disubstituted 1 2 represented by the general formula (13) as the desired optical isomer , 3-dihydroxypropanes are fractionated or, after the reaction, further subjected to solvolysis, and are characterized by the optical activity 1,2-disubstituted 1,2,3 represented by the following formula (6) —Method B for dihydroxypropanes.
Figure imgf000117_0001
Figure imgf000117_0001
(6) (式中、 A、 B及び R¾~«; (14) と同義であり、 *は不斉炭素原子を示す。 )(6) (Wherein, A, B, and R¾ to ; are as defined in (14), and * represents an asymmetric carbon atom.)
28. 酵素が Pen i c i 11 i um属微注物由来のリパーゼであることを とする 請求の範囲第 27項に記載の光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン 類の製造法。 28. The method for producing an optically active 1,2-disubstituted 1,2,3-dihydroxypropane according to claim 27, wherein the enzyme is a lipase derived from a microinjection of the genus Pen ici 11ium. .
29. "^式 (15)で表される化^)が水であることを特徴とする請求の範囲第 27 項に記載の光学活性 1, 2—二置換- 2, 3-ジヒドロキシプロパン類の觀法。  29. The optically active 1,2-disubstituted-2,3-dihydroxypropanes according to claim 27, wherein "^ the compound represented by formula (15) is water". Observation.
30. 下記 Hi¾ (14) 30. Hi¾ below (14)
OH  OH
A' OCOR'  A 'OCOR'
(14)  (14)
B  B
{式中、 Aは下記"^ (2)
Figure imgf000118_0001
{Where A is the following "^ (2)
Figure imgf000118_0001
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~ 3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1~5のアルコキシ ニトロ基あるいはシァノ基を示す。 nは 0~4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (In the formula, R 1 represents a hydrogen atom or a lower alkyl group alkenyl group alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxynitro group having 1 to 5 carbon atoms. Or a cyano group, n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX1 CX2 2) p - (3) CX 1 CX 2 2 ) p- (3)
(式中、 X1、 X 2はそれぞれ独立にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示し、 R6は 置換基を有していてもよい炭素数 1〜20のアルキル基 アルケニル基 ァラルキル基 又はァリール基を示す。 } で表される 1, 2—二置換一 2—ヒドロキシ— 3—ァシロキ (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.); and B may have a substituent. And R 6 represents an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aralkyl group or an aryl group. } 1,2-disubstituted mono-2-hydroxy-3-acyloki
31. 下記一般式 (10) 31. The following general formula (10)
OH  OH
0H  0H
(10) {式中、 Aは下記一般式 (2) (Ten) {Where A is the following general formula (2)
Figure imgf000119_0001
Figure imgf000119_0001
(式中、 R1は水素原子または低級ァソレキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~ 3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 H¾¾ (3) (Wherein, R 1 represents a hydrogen atom or a lower azoalkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following H3 (3)
0Χ'3( CX2 22)ノ P (3) 0Χ ' 3 (CX 2 2 2) no P (3)
(式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0~2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される 1, 2—二置換一 2, 3—ジヒドロキシプロパン類を、 塩基の存在下にて、 下記 式 (16) 又は H¾式 (17) (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B may have a substituent. Shows good aryl groups. }, In the presence of a base, with the following formula (16) or H¾ formula (17)
R6COY (16) R 6 COY (16)
( 6CO) 20 (17) ( 6 CO) 2 0 (17)
(式中、 R 6は置換基を有していてもよい炭素数 1~20のアルキル基 アルケニル基 ァラルキル基 又はァリール基を示し、 Yはハロゲン原子を示す。 ) で表されるカルボ ン酸誘導体と Si¾させることを特徴とする請求の範囲第 30項に記載の" HIS式 ( 14) で表される 1、 2 _二置換— 2—ヒドロキシ一 3—ァシロキシプロパン類の製造法。 (Wherein, R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group or an aryl group, and Y represents a halogen atom.) 31. A method for producing a 1,2-disubstituted-2-hydroxy-13-acyloxypropane represented by the HIS formula (14) according to claim 30, characterized in that the compound is formed by Si.
32. Tia-feC (18) 32. Tia-feC (18)
A" (18) A "(18)
{式中、 Aは下記一般式 (2) (Where A is the following general formula (2)
Figure imgf000119_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜 3のアルキル基 炭素数 1〜3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3)
Figure imgf000119_0002
(In the formula, R 1 represents a hydrogen atom or a lower alkyl group alkenyl alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a nitro group. Or a cyano group, n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX CX2 2) p - (3) CX CX 2 2 ) p- (3)
(式中、 X1、 X2はそれそ fctにハロゲン原子又は水素原子を示す。 pは o~2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }。 で 表される光学活性 1, 2—二置換— 2, 3—エポキシプロパン類を、 酸の雜下で加水 分解するか、 又は加カルボン酸分解させ次いで力 [!:? 某分解することを特徴とする下記一 般式 (6) (Wherein, X 1 and X 2 each represent a halogen atom or a hydrogen atom at fct; p represents o to 2.), and B represents a substituent. Shows good aryl groups. }. The optically active 1,2-disubstituted-2,3-epoxypropanes represented by are hydrolyzed in the presence of an acid or decomposed with a carboxylic acid and then subjected to force [! :? The following general formula (6) characterized by certain decomposition
OH  OH
A' OH  A 'OH
B (6)  B (6)
(式中、 A、 Bは"^^ (18) と同義。 ) で表される光学活性 1, 2—二置換- 2, 3—ジヒドロキシプロパン類の製造法。 (Wherein A and B have the same meanings as "^^ (18).) A process for producing an optically active 1,2-disubstituted-2,3-dihydroxypropane represented by the formula:
33. 下記 H¾ (18)
Figure imgf000120_0001
33. Following H 下 記 (18)
Figure imgf000120_0001
{式中、 Aは下記 H¾式 (2)
Figure imgf000120_0002
(Where A is the following H¾ equation (2)
Figure imgf000120_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜 3のアルキル基 炭素数 1~3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0~4の整数を示 す。 ) で表される基又は、 下記一般式 (3) CXl 3( CX2 2) p- (3) (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following general formula (3) CX l 3 (CX 2 2 ) p- (3)
(式中、 X1、 X2はそれそれ ¾にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される光学活性 1, 2—二置換一 2, 3—エポキシプロパン類。 (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; p represents 0 to 2.), and B represents a group having a substituent. Shows good aryl groups. } Optically active 1,2-disubstituted 1,2,3-epoxypropanes represented by
34. —般式 (18) で表される光学活性 1, 2—二置換— 2, 3—エポキシプロパン 類を、 酸の存在下で力□水分解することを W (とする請求の範囲第 32項に記載の光学活 性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の製造法。 34. —W (wherein the optically active 1,2-disubstituted—2,3-epoxypropane represented by the general formula (18) is hydrolyzed in the presence of an acid. 32. The method for producing optically active 1,2-disubstituted 1,2,3-dihydroxypropanes according to item 32.
35. 一般式 (18) で表される光学活性 1, 2—二置換一 2, 3—エポキシプロパン 類を加カルボン酸分解させ、 次いで加離分解することを霞とする請求の範囲第 32 項に記載の光学活性 1、 2—二置換— 2, 3-ジヒドロキシプロパン類の觀法。 35. A claim according to claim 32, wherein the optically active 1,2-disubstituted 1,2,3-epoxypropane represented by the general formula (18) is decomposed by carboxylic acid decomposition and then decomposed and decomposed. The optical activity of 1,2-disubstituted-2,3-dihydroxypropanes described in 1 above.
36. 下記 (19)
Figure imgf000121_0001
36. (19) below
Figure imgf000121_0001
(式中、 A及び Bは ~«式 (18) と同義であり、 : 5は置腿を有していてもよい 炭素数 1〜10のアルキル基又はァリール基を示す。 ) で表される光学活性スルホン酸 エステル類と とを反応させることを特徴とする請求の範囲第 32項に記載の一般式 (18) で表される光学活性 1, 2—二置換一 2 , 3一エポキシプロパン類の製造方法。 (Wherein, A and B have the same meanings as in the formula (18), and 5 represents an alkyl group or an aryl group having 1 to 10 carbon atoms which may have a thigh.) 33. An optically active 1,2-disubstituted 1,2,31-epoxypropane represented by the general formula (18) according to claim 32, which is reacted with an optically active sulfonic acid ester. Manufacturing method.
37. HIS式 (18) で表される化^が、 請求の範囲第 36項に記載の S ^法で S¾t されたものであることを特徴とする、 請求の範囲第 32項に記載の光学活性 1, 2—二 置換一 2, 3—ジヒドロキシプロパン類の S ^法。 37. The optical device according to claim 32, wherein the compound represented by the HIS formula (18) is S¾t obtained by the S ^ method according to claim 36. S ^ method for active 1,2-disubstituted 1,2,3-dihydroxypropanes.
38. 下記 式 (19) 38. The following equation (19)
0H  0H
A^^OSC^ (19)  A ^^ OSC ^ (19)
B  B
{式中、 Aは下記一般式 (2)  (Where A is the following general formula (2)
(2)(2)
Figure imgf000121_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜3のアルキル基 炭素数 1~ 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 ~« (3)
Figure imgf000121_0002
(Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and nitro. Represents a group or a cyano group, and n represents an integer of 0 to 4.) or a group represented by the following ~ «(3)
CXl 3( CX2 2) (3) CX l 3 (CX 2 2 ) (3)
(式中、 X1、 X 2はそれそれ ¾ϊにハロゲン原子又は水素原子を示す。 ρは 0〜2を示 す。 ) で表される基を示し、 Βは置換基を有していてもよいァリール基を示し、 R5は 置換基を有していてもよい炭素数 1〜10のアルキル基又はァリール基を示す。 ) で表 される光学活性スルホン酸エステル類。 (Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom; ρ represents 0 to 2.). And R 5 represents an alkyl group having 1 to 10 carbon atoms or an aryl group which may have a substituent. ) Optically active sulfonic acid esters represented by.
39. 下記 (20) 39. Following (20)
ΟΗ  ΟΗ
Α-^ ΟΗ ( 2 0) {式中、 Αは下記 ~« (2)
Figure imgf000122_0001
Α- ^ ΟΗ (20) {where 式 is the following ~ «(2)
Figure imgf000122_0001
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記 ~« (3) (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, and an alkoxynitro group having 1 to 5 carbon atoms. Or n represents an integer of 0 to 4. n represents an integer of 0 to 4.) or a group represented by the following ~ «(3)
CXl 3( CX ) p - (3) CX l 3 (CX) p- (3)
(式中、 X1、 X 2はそれそれ にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類と、 下記一般式(Wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom. P represents 0 to 2.), and B may have a substituent. Shows an aryl group. } And an optically active 1,2-disubstituted 1,2,3-dihydroxypropane represented by the following general formula:
(8) R5S0 Y (8) (8) R 5 S0 Y (8)
または下記^ (9) Or ^ (9) below
(R5S02) 20 (9) (R 5 S0 2 ) 2 0 (9)
(式中、 ; 5は置換基を有していてもよい炭素数 1 10のアルキル基又はァリール基 を示し、 Yはハロゲン原子を示す。 ) で表されるスルホン酸誘導体を反応させることを 特徴とする請求の範囲第 38項に記載の一般式 (19) で表される光学活性スルホン酸 エステル類の製造法。 (Wherein; 5 represents an alkyl group or Ariru group which may a carbon number of 1 10 may have a substituent, Y represents a halogen atom.), Which comprises reacting a sulfonic acid derivative represented by the 39. A process for producing an optically active sulfonic acid ester represented by the general formula (19) according to claim 38.
40. "^式 (20) で表される光学活性 1 2—二置換一 2, 3—ジヒドロキシプロ パン類が、 請求の範囲第 22項または第 25項乃至第 29項のいずれかに記載の製造法 にて得られたものであることを特徴とする請求の範囲第 39項に記載の光学活性スルホ ン酸エステル類の製造法。  40. The optically active 12-disubstituted 1,2,3-dihydroxypropanes represented by the formula (20) may be a compound according to any one of claims 22 to 25 to 29. 40. The method for producing an optically active sulfonate according to claim 39, which is obtained by a production method.
41. ~¾式 (13)  41. ~ ¾ expression (13)
: OH  : OH
(13)  (13)
B  B
{式中、 Aは下記一般式 (2) {Where A is the following general formula (2)
Figure imgf000123_0001
Figure imgf000123_0001
(式中、 R1は水素原子または低級アルキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1 3のアルキル 炭素数 1 3のハロアルキル基 炭素 数 1 5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 nは 0 4の整数を示 す。 ) で表される基又は、 下記一般式 (3) 3( CX 2 ρ· (3) (式中、 X1 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0 2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類の光学異性術昆^ j を、 置 を有していてもよい芳香族化 を含有する激某中に溶解させ、 次いで冷却 することを TOとする"^式 (6)で表される光学活性 1, 2—二 一 2, 3—ジヒ ドロキシプロパン類の精製方法。 (Wherein, R 1 represents a hydrogen atom or a lower alkyl group, an alkenyl group, an alkynyl group, and Q represents a halogen atom, an alkyl group having 13 carbon atoms, a haloalkyl group having 13 carbon atoms, an alkoxy group having 15 carbon atoms, a nitro group or a cyano group. And n represents an integer of 04.) or a group represented by the following general formula (3) 3 (CX 2 ρ · (3) (wherein, X 1 X 2 is each independently a halogen atom) Represents an atom or a hydrogen atom, p represents 02.) represents a group represented by, and B represents an aryl group which may have a substituent. The optically active 1,2-disubstituted 1,2,3-dihydroxypropanes obtained by dissolving the optical isomers are dissolved in a viscous solution containing an optionally aromatizable compound, and then cooled. A method for purifying optically active 1,2-2-1,2-dihydroxypropanes represented by the formula (6).
42. 置換基を有していてもよい芳香族化合物が以下の一般式 (30)  42. The aromatic compound which may have a substituent has the following general formula (30)
Ar— A, η (30) Ar— A, η (30)
(式中、 A rはフエ二ル基を示し、 A, は炭素数 1〜 5のアルキル基 炭素数 1〜5の アルコキシ 炭素数 2〜 5のアルケニル 炭素数 2〜 5のアルキニル基 炭素数 1 〜5のハロアルキル基 ハロゲン原子を示し、 nは 1~6の整数を示し、 置換基が複数 有る場合は置 どうしか して璟を構成していてもよい。 ) で表されることを とする請求の範囲第 41項に記載の精製方法。 (In the formula, Ar represents a phenyl group; A, represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, and having 1 carbon atom. ~ 5 haloalkyl group represents a halogen atom, n represents an integer of 1-6, and when there are a plurality of substituents, they may constitute 置 in any case.) 42. The purification method according to claim 41.
43. 下記 (6)
Figure imgf000124_0001
43. Following (6)
Figure imgf000124_0001
{式中、 Aは下記 ^β; (2)
Figure imgf000124_0002
{Where A is the following ^ β; (2)
Figure imgf000124_0002
(式中、 R1は水素原子または低級アルキル基 アルケニル アルキニル基を示し、 Qはハロゲン原子、 炭素数 1~3のアルキル基 炭素数 1〜 3のハロアルキル基 炭素 数 1〜5のアルコキシ基 ニトロ基あるいはシァノ基を示す。 ηは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (In the formula, R 1 represents a hydrogen atom or a lower alkyl group alkenyl alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a nitro group. Or represents a cyano group, and η represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX! 3( CX2 22)ノ p (3) (式中、 X1、 X 2はそれそれ独立にハロゲン原子又は水素原子を示す。 pは 0~2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類と、 置 »を有して いてもよ ヽ芳香族化合物からなる 某化物。 CX ! 3 (CX 2 2 2) no p (3) (wherein, X 1 and X 2 each independently represent a halogen atom or a hydrogen atom, and p represents 0 to 2.) And B represents an aryl group which may have a substituent. } An optically active 1,2-disubstituted 1,2,3-dihydroxypropane compound and an aromatic compound which may have a substituent.
44. 1, 2—二置換一 2, 3—ジヒドロキシプロパン類と、 置換基を有していてもよ い芳香族化合物とのモル比が 2: 1である請求の範囲第 43項に記載の溶媒化物。  44. The method according to claim 43, wherein the molar ratio of the 1,2-disubstituted 1,2,3-dihydroxypropanes to the aromatic compound which may have a substituent is 2: 1. Solvates.
45. 置換基を有していてもよい芳香族化^ が以下の 式 (30) 45. The optionally substituted aromatization ^ is represented by the following formula (30)
Ar-A' (30) Ar-A '(30)
(式中、 A rはフエ二ル基を示し、 A, は炭素数 1〜 5のアルキル基 炭素数 1〜5の アルコキシ基 炭素数 2〜 5のアルケニル基 炭素数 2〜 5のアルキニル基 炭素数 1 ~ 5のハロアルキル基 ハロゲン原子を示し、 nは 1〜6の整数を示し、 置換基が複数 有る^は置^ Sどうしが結合して環を構成していてもよい。 ) で表されることを とする請求の範囲第 43項に記載の^ r某化物 p (In the formula, Ar represents a phenyl group, A, represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, and A haloalkyl group of the numbers 1 to 5 represents a halogen atom, n represents an integer of 1 to 6, and ^ having a plurality of substituents may be substituted with ^ S to form a ring.) The ^ r certain compound p according to claim 43, wherein
46. 光学! ^が 80 % e e以上であることを «とする請求の範囲第 43項に記載の 藤化物。  46. The compound according to claim 43, wherein optics! Is at least 80% e e.
47. TIH-« (10)  47. TIH- «(10)
OH  OH
Υ ^、OH (10)  Υ ^, OH (10)
B  B
{式中、 Aは下記一般式 (2)
Figure imgf000125_0001
(Where A is the following general formula (2)
Figure imgf000125_0001
(式中、 R1は水素原子または低級ァノレキル基 アルケニル基 アルキニル基を示し、 Qはハロゲン原子、 炭素数 1〜 3のアルキル基 炭素数 1〜 3のハロアルキル基、 炭素 数 1〜5のアルコキシ ニトロ基あるいはシァノ基を示す。 nは 0〜4の整数を示 す。 ) で表される基又は、 下記一般式 (3) (In the formula, R 1 represents a hydrogen atom or a lower anoalkyl group alkenyl group alkynyl group, Q represents a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, and an alkoxy nitro group having 1 to 5 carbon atoms. And n represents an integer of 0 to 4.) or a group represented by the following general formula (3)
CX'3( CX2 2) p - (3) (式中、 X1、 X2はそれそ t fc^にハロゲン原子又は水素原子を示す。 pは 0〜2を示 す。 ) で表される基を示し、 Bは置換基を有していてもよいァリール基を示す。 }で表 される 1, 2—二置換一 2, 3ージヒドロキシプロパン類を、 光学活性な求核性触媒の 存在下、 下記" IS式 (16)又は H ^式 (17) CX ' 3 (CX 2 2 ) p- (3) (Wherein, X 1 and X 2 each represent a halogen atom or a hydrogen atom at t fc ^; p represents 0 to 2.), and B has a substituent. Shows an aryl group which may be present. 1,2-disubstituted 1,2,3-dihydroxypropanes represented by the following formulas (16) or (17) below in the presence of an optically active nucleophilic catalyst.
R6COY (16) R 6 COY (16)
(R6CO) 20 (17) (R 6 CO) 2 0 (17)
(式中、 R 6は置換基を有していてもよい炭素数 1~20のアルキル基 アルケニル基 ァラルキル 又はァリール基を示し、 Yはハロゲン原子を示す。 ) で表されるカルボ ン酸誘導体と させて、 下記 ~« (12)で表される光学活性 1, 2—二置換一 2 —ヒドロキシー 3—ァシロキシプロパン類と、 下記 (13)で表される、 ~«式 (12)で表される化^ )とは光 掌体である光学活性 1, 2—二置換一 2, 3—ジ ヒドロキシプロパン類を生成させ、 所望の光学異性体である一般式 (13)で表される 光学活性 1, 2—二置換一 2, 3—ジヒドロキシプロパン類を分取するか、 若しくは反 応後、 更に加激某分解することを«とする、 下記 H¾ (6)で表される光学活性 1, 2一二置換一 2, 3—ジヒドロキシプロパン類の il法。 (12) (In the formula, R 6 represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group, an aralkyl group or an aryl group, and Y represents a halogen atom.) Then, an optically active 1,2-disubstituted 1-2-hydroxy-3-acyloxypropane represented by the following formula (12) and a formula (12) represented by the following formula (13): Is an enantiomer that produces optically active 1,2-disubstituted 1,2,3-dihydroxypropanes and is a desired optical isomer represented by the general formula (13) The optical activity represented by the following H¾ (6), which is to fractionate the 1,2-disubstituted 1,2,3-dihydroxypropanes, or to further aggressively decompose them after the reaction. , Method of 2,2-disubstituted mono 2,3-dihydroxypropanes. (12)
(13)(13)
Figure imgf000126_0001
Figure imgf000126_0001
OH OH
B (6) B (6)
(式中、 A、 B及び Rsは一 (10)および (16) と同義であり、 *は不斉炭素 原子を示す。 ) (In the formula, A, B and R s have the same meanings as in (10) and (16), and * indicates an asymmetric carbon atom.)
48. 光学活性な求核性触媒として下記 HIS式 (25)  48. The following HIS formula (25) is used as an optically active nucleophilic catalyst.
(25)(twenty five)
Figure imgf000126_0002
(式中、 Dは— N (R10) R11を示し、 R\ R10及び R11は各々独立に置換基を有し ていても良い炭素数 1—20のアルキル基 アルケニル基 ァラルキル基 又はァリー ル基を示し、 R1Qと R11が結合して環を形成していてもよい。 *は不斉炭素原子を示 す。 ) で表される光^ M性ジァミン類を用いることを とする請求の範囲第 47項に 記載の難法。
Figure imgf000126_0002
(Wherein, D represents —N (R 10 ) R 11 , wherein R \ R 10 and R 11 are each independently an optionally substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aralkyl group or R 1Q and R 11 may be combined to form a ring. * Indicates an asymmetric carbon atom.) The use of photo-M diamines represented by 49. The difficult method according to claim 47.
49. ^^基の存在下に ϋδを行うことを特徴とする請求の範囲第 47項に記載の製 造法。  49. The method according to claim 47, wherein ϋδ is performed in the presence of a ^^ group.
PCT/JP1999/005511 1998-10-07 1999-10-06 Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof WO2000020405A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU60040/99A AU6004099A (en) 1998-10-07 1999-10-06 Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof
KR1020007014133A KR20010052811A (en) 1998-10-07 1999-10-06 Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP285042 1998-10-07
JP28504298 1998-10-07
JP19860499A JP2002027997A (en) 1999-07-13 1999-07-13 Method for producing optically active 1,2-disubstituted-2,3- dihydroxypropane compounds and intermediate for producing the same
JP198604 1999-07-13
JP198603 1999-07-13
JP19860399 1999-07-13
JP219667 1999-08-03
JP21966999A JP2002030017A (en) 1999-08-03 1999-08-03 Method for producing optically active 1,2-disubstituted-2,3- dihydroxypropanes
JP21966799A JP2002030019A (en) 1999-08-03 1999-08-03 Method for producing optically active 1,2-disubstituted-2,3- dihydroxypropanes
JP219669 1999-08-03
JP219668 1999-08-03
JP21966899A JP2002030079A (en) 1999-08-03 1999-08-03 Method for producing optically active 1,2-disubstituted-2,3- epoxypropane
JP268372 1999-09-22
JP26837299A JP2002030023A (en) 1999-09-22 1999-09-22 Solvate of optically active 1,2-disubstituted-2,3- dihydroxypropane and method for producing the same

Publications (2)

Publication Number Publication Date
WO2000020405A1 true WO2000020405A1 (en) 2000-04-13
WO2000020405A8 WO2000020405A8 (en) 2001-09-20

Family

ID=27566488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005511 WO2000020405A1 (en) 1998-10-07 1999-10-06 Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof

Country Status (3)

Country Link
KR (1) KR20010052811A (en)
AU (1) AU6004099A (en)
WO (1) WO2000020405A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484535A (en) * 2018-03-14 2018-09-04 河北科技大学 A method of preparing indanofan
CN113113669A (en) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 Electrolyte additive, non-aqueous electrolyte containing electrolyte additive and lithium ion battery

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900509A (en) * 1974-05-03 1975-08-19 Dow Chemical Co Substituted butyl esters of alkyl- and haloalkyl-sulfonic acids
US4013772A (en) * 1972-10-02 1977-03-22 The Dow Chemical Company Fungicidal methods employing substituted oxirane compounds
GB1469741A (en) * 1974-05-03 1977-04-06 Dow Chemical Co 2-chloroalkyl-2-3,5-disubstituted phenyl-oxiranes
US4018801A (en) * 1973-12-12 1977-04-19 The Dow Chemical Company Substituted oxirane compounds
US4211549A (en) * 1975-12-08 1980-07-08 The Dow Chemical Company Substituted oxirane compounds
US4414210A (en) * 1979-10-02 1983-11-08 Rohm And Haas Company 2-Hydroxyarylethyltriazole fungicides
US4474602A (en) * 1980-12-19 1984-10-02 The Dow Chemical Company Substituted pyridyl compounds, herbicidal compositions and method of use
JPS6092281A (en) * 1983-09-30 1985-05-23 バイエル・アクチエンゲゼルシヤフト 2-aryl-2-halogenoalkyloxysilane
US4629492A (en) * 1984-10-26 1986-12-16 The Dow Chemical Company Substituted oxirane compounds
EP0246982A2 (en) * 1986-04-23 1987-11-25 Rhone-Poulenc Agrochimie Triazole or imidazole and tetrahydrofuran compounds, their use as fungicides and preparation processes
US4824475A (en) * 1985-09-16 1989-04-25 The Dow Chemical Company Enhanced herbicidal triazine compositions and method of use
WO1990002125A1 (en) * 1988-08-22 1990-03-08 Idemitsu Kosan Co. Ltd. Oxirane derivatives and herbicides containing same as active ingredients
EP0398258A1 (en) * 1989-05-16 1990-11-22 Mitsubishi Kasei Corporation Indan-1,3-dione derivative and herbicidal composition containing the same as active ingredient
JPH03227986A (en) * 1990-01-30 1991-10-08 Idemitsu Kosan Co Ltd Oxirane derivative and herbicide containing the same as active ingredient
JPH04224560A (en) * 1990-12-27 1992-08-13 Idemitsu Kosan Co Ltd Benzyl alcohol derivative and herbicide containing the derivative as active ingredient
WO1992014703A1 (en) * 1991-02-15 1992-09-03 Zeneca Limited Epoxidation process of carbonyl compounds using sulphonium or sulphoxonium ylides and intermediates
JPH05230045A (en) * 1992-02-25 1993-09-07 Idemitsu Kosan Co Ltd Oxirane derivative and herbicide containing the same as an active ingredient
WO1994002449A1 (en) * 1992-07-27 1994-02-03 Idemitsu Kosan Co., Ltd. Carbamate derivative and weedkiller containing the same as active ingredient
JPH06239819A (en) * 1992-12-25 1994-08-30 Idemitsu Kosan Co Ltd Amide derivative and herbicide comprising the same as active ingredient
US5410054A (en) * 1993-07-20 1995-04-25 Merck Frosst Canada, Inc. Heteroaryl quinolines as inhibitors of leukotriene biosynthesis
JPH07206835A (en) * 1994-01-26 1995-08-08 Idemitsu Kosan Co Ltd Production of styrene oxide derivative
WO1996031513A1 (en) * 1995-04-07 1996-10-10 Pharmacia & Upjohn Company Novel intermediates and process for the manufacture of camptothecin derivatives (cpt-11) and related compounds
JPH08268951A (en) * 1995-04-04 1996-10-15 Mitsubishi Chem Corp Indan-1,3-dione derivative and herbicide with the same as active ingredient

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013772A (en) * 1972-10-02 1977-03-22 The Dow Chemical Company Fungicidal methods employing substituted oxirane compounds
US4018801A (en) * 1973-12-12 1977-04-19 The Dow Chemical Company Substituted oxirane compounds
US3900509A (en) * 1974-05-03 1975-08-19 Dow Chemical Co Substituted butyl esters of alkyl- and haloalkyl-sulfonic acids
GB1469741A (en) * 1974-05-03 1977-04-06 Dow Chemical Co 2-chloroalkyl-2-3,5-disubstituted phenyl-oxiranes
US4211549A (en) * 1975-12-08 1980-07-08 The Dow Chemical Company Substituted oxirane compounds
US4414210A (en) * 1979-10-02 1983-11-08 Rohm And Haas Company 2-Hydroxyarylethyltriazole fungicides
US4474602A (en) * 1980-12-19 1984-10-02 The Dow Chemical Company Substituted pyridyl compounds, herbicidal compositions and method of use
JPS6092281A (en) * 1983-09-30 1985-05-23 バイエル・アクチエンゲゼルシヤフト 2-aryl-2-halogenoalkyloxysilane
US4629492A (en) * 1984-10-26 1986-12-16 The Dow Chemical Company Substituted oxirane compounds
US4824475A (en) * 1985-09-16 1989-04-25 The Dow Chemical Company Enhanced herbicidal triazine compositions and method of use
EP0246982A2 (en) * 1986-04-23 1987-11-25 Rhone-Poulenc Agrochimie Triazole or imidazole and tetrahydrofuran compounds, their use as fungicides and preparation processes
WO1990002125A1 (en) * 1988-08-22 1990-03-08 Idemitsu Kosan Co. Ltd. Oxirane derivatives and herbicides containing same as active ingredients
EP0398258A1 (en) * 1989-05-16 1990-11-22 Mitsubishi Kasei Corporation Indan-1,3-dione derivative and herbicidal composition containing the same as active ingredient
JPH03227986A (en) * 1990-01-30 1991-10-08 Idemitsu Kosan Co Ltd Oxirane derivative and herbicide containing the same as active ingredient
JPH04224560A (en) * 1990-12-27 1992-08-13 Idemitsu Kosan Co Ltd Benzyl alcohol derivative and herbicide containing the derivative as active ingredient
WO1992014703A1 (en) * 1991-02-15 1992-09-03 Zeneca Limited Epoxidation process of carbonyl compounds using sulphonium or sulphoxonium ylides and intermediates
JPH05230045A (en) * 1992-02-25 1993-09-07 Idemitsu Kosan Co Ltd Oxirane derivative and herbicide containing the same as an active ingredient
WO1994002449A1 (en) * 1992-07-27 1994-02-03 Idemitsu Kosan Co., Ltd. Carbamate derivative and weedkiller containing the same as active ingredient
JPH06239819A (en) * 1992-12-25 1994-08-30 Idemitsu Kosan Co Ltd Amide derivative and herbicide comprising the same as active ingredient
US5410054A (en) * 1993-07-20 1995-04-25 Merck Frosst Canada, Inc. Heteroaryl quinolines as inhibitors of leukotriene biosynthesis
JPH07206835A (en) * 1994-01-26 1995-08-08 Idemitsu Kosan Co Ltd Production of styrene oxide derivative
JPH08268951A (en) * 1995-04-04 1996-10-15 Mitsubishi Chem Corp Indan-1,3-dione derivative and herbicide with the same as active ingredient
WO1996031513A1 (en) * 1995-04-07 1996-10-10 Pharmacia & Upjohn Company Novel intermediates and process for the manufacture of camptothecin derivatives (cpt-11) and related compounds

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BENTLEY T.W. ET AL.: "Rearragement of (1,2,4-Triazol-4-yl)ethanols to (1,2,4-Triazol-1-yl)ethanols", TETRAHEDRON, vol. 48, no. 37, 1992, pages 7869 - 7878, XP002935577 *
C. LAMBERT-VAN DER BREMPT ET AL: "Conferomational Analysis of 5-Lipoxygenase Inhibitors: Role of the Substituents in Chiral Recognition and on the Active Conformations of the (Methoxylkyl)thiazole and Methoxytetrahydropyran Sereis", J. MED CHEM., vol. 37, 1994, pages 113 - 124, XP002935576 *
COLOMBO L. ET AL.: "Camphor-Derived 2-Stannyl-N-Boc-1,3-Oxazolidine: a New Chiral Formylanion Equivalent for the Asymmetric Synthesis of 1,2-Diols", TETRAHEDRON LETTERS, vol. 36, no. 16, 1995, pages 2863 - 2866, XP002935578 *
GOJI O., HAUFE G.: "New Synthetic Routes to 2-Fluoro-2-phenylalkanoic Acids", LIEBIGS ANN., 1996, pages 1289 - 1294, XP002935572 *
HENEGAR K.E., ASHFORD S.W., BAUGHMAN T.A., SIH J.C., GU R.: "Practical Asymmetric Synthesis of (S)-4-Ethyl-7, 8-dihydro-4-hydroxy-1H-pyrano(3,4-f)indolizine-3,6,10(4H)-trione, a Key Intermediate for the Synthesis of Irinotecan and Other Camptothecin Analogs", J. ORG. CHEM., vol. 62, no. 19, 1997, pages 6588 - 6597, XP002935575 *
HOF R.P., KELLOGG R.M.: "Lipase AKG Mediated Resolutions og alpha, alpha-Disubstituted 1,2-Diols in Organic Solvents; Remarkably High Regio- and Enantio-selectivety", J. CHEM. SOC., PERKIN TRANS. 1, 1996, pages 2051 - 2060, XP002935573 *
LYNCH J.E., ELIEL E.L.: "Asymmetric Synthesis Based on 1,3-Oxathianes. 2. Synthesis of Chiral Tertiary alpha-Hydroxy Acids, Glycols (RR'C(OH)CH2OH), Carbinols (RR'C(OH)CH3) in High Enantionmeric Purity", J. AM. CHEM. SOC., vol. 106, 1984, pages 2943 - 2948 *
VANHESSCHE K.P.M., SHARPLESS K.B.: "Ligand-Dependent Reversal of Facial Selectivity Asymmetric Dihydroxylation", J. ORG. CHEM., vol. 61, no. 23, 1996, pages 7978 - 7979, XP002935574 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484535A (en) * 2018-03-14 2018-09-04 河北科技大学 A method of preparing indanofan
CN113113669A (en) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 Electrolyte additive, non-aqueous electrolyte containing electrolyte additive and lithium ion battery

Also Published As

Publication number Publication date
WO2000020405A8 (en) 2001-09-20
AU6004099A (en) 2000-04-26
KR20010052811A (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US5312950A (en) Method for purification of alcohols
WO2000020405A1 (en) Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof
DE69732570T2 (en) Sulphonic acid derivatives, process for their preparation and their use
KR100379756B1 (en) Resolution of chiral compounds
JP4012389B2 (en) Process for producing optically active substance having sulfonamide group and synthetic intermediate thereof
JPH06125788A (en) Production of optically active 1,2-diol derivative
KR20010071161A (en) Improved Process for The Manufacture of N-(1-Cyanoalkyl)-2-Phenoxypropionamide Derivatives
KR19980083587A (en) Novel propenoic ester and amide derivatives with fluorovinyl groups
JP3202824B2 (en) Process for producing optically active hydroxynitrile and novel synthetic intermediate used in this process
KR100453212B1 (en) Catalyzed resolution of (±)-cis-1,3-dioxolane derivatives
FR2462416A1 (en) NOVEL DERIVATIVES OF NITROALCANOLS, PROCESS FOR THEIR PREPARATION AND COMPOSITIONS CONTAINING SUCH SUBSTANCES FOR USE IN THE PROTECTION OF PLANTS
Hoffman et al. 2-[[(p-Nitrophenyl) sulfonyl] oxy] 3-Keto Esters as Intermediates for the Regiospecific Preparation of 2-[[(p-Nitrophenyl) sulfonyl] oxy] Ketones
CN107488165B (en) Ezetimibe intermediate compound
ES2224154T3 (en) PROCEDURE AND INTERMEDIATE PRODUCTS FOR THE MANUFACTURE OF COMPOUNDS OF 1 - ((2- (CICLOPROPILCARBONIL) -FENIL) SULFAMOIL) -3- (4,6-DIALCOXI-2 PIRIMIDINIL) UREA HERBICIDE.
Guzzo et al. Preparation of optically active (acyloxy) alkyl esters from optically active O-acyl-α-hydroxy acids
KR101866271B1 (en) Novel benzoylcyclohexanedione derivatives and a herbicide comprising the derivatives
KR100341255B1 (en) Process for the Resolution of Racemic Alcohol Compounds Containing Quaternary Chiral Carbon and Synthesis of Systhane Derivatives
JP2002027997A (en) Method for producing optically active 1,2-disubstituted-2,3- dihydroxypropane compounds and intermediate for producing the same
BE883271R (en) NEW PYRETHROIDS
Diddi THE TOTAL SYNTHESIS OF DOLABRIFEROL C VIA ONE-POT ENANTIOSELECTIVE BISALDOL REACTIONS
JPH02121968A (en) Substituted pyrimidyl-or pyridyl- alkynols,production thereof and use thereof as controlling agent of harmful organism
US5310736A (en) Fungicidal N-(2-cyano-2-alkoxyimino acetamido)cyclohexamethyleneimine derivatives
WO1995028374A1 (en) Process for producing triazole derivative
JPS6056942A (en) Optically active n-methylephedrine ester of 2,2- dimethylcyclopropanecarboxylic acid and salt thereof
JP4217805B2 (en) Process for producing optically active γ-lactone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007014133

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007014133

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WRT Later publication of a revised version of an international search report translation
122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020007014133

Country of ref document: KR