WO2000019261A1 - Image formation position adjusting device, exposure system, image formation adjusting method and exposure method - Google Patents

Image formation position adjusting device, exposure system, image formation adjusting method and exposure method Download PDF

Info

Publication number
WO2000019261A1
WO2000019261A1 PCT/JP1999/005104 JP9905104W WO0019261A1 WO 2000019261 A1 WO2000019261 A1 WO 2000019261A1 JP 9905104 W JP9905104 W JP 9905104W WO 0019261 A1 WO0019261 A1 WO 0019261A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
optical
optical system
exposure apparatus
exposure
Prior art date
Application number
PCT/JP1999/005104
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Shirasu
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU56538/99A priority Critical patent/AU5653899A/en
Publication of WO2000019261A1 publication Critical patent/WO2000019261A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • G02B26/0891Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism forming an optical wedge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • the present invention relates to an imaging position adjusting device of an exposure device used for manufacturing a micro device such as a liquid crystal display device or a plasma display device, an exposure device provided with the imaging position adjusting device, an imaging position adjusting method, and an exposure method.
  • a micro device such as a liquid crystal display device or a plasma display device
  • an exposure device provided with the imaging position adjusting device such as a liquid crystal display device or a plasma display device
  • an imaging position adjusting method such as a liquid crystal display device or a plasma display device
  • a scanning (scanning) projection exposure apparatus In order to manufacture a relatively large liquid crystal panel with a high throughput, a scanning (scanning) projection exposure apparatus is used.
  • This scanning projection exposure apparatus illuminates a mask with a plurality of slit-shaped illumination areas, scans the mask in a direction orthogonal to the arrangement direction of the illumination areas, and scans an exposure area conjugate to the illumination area.
  • This is a device that synchronously scans a photosensitive substrate (glass plate, etc.) coated with a photoresist to project the pattern on the mask at the same size or at a reduced size, and sequentially exposes the photosensitive substrate.
  • the projection optical system is provided corresponding to each of the plurality of illumination areas.
  • the surface of the mask (pattern surface) and the surface of the photosensitive substrate (exposure surface) are set at conjugate positions with respect to the projection optical system during exposure, so that the mask and the photosensitive substrate are respectively different.
  • the attitude of the ring device is changed and controlled by the ring device.
  • the leveling device includes a plurality of actuators and the like that are displaced in a direction along the optical axis of the projection optical system. By appropriately operating each of the actuators, the mask and the photosensitive substrate are removed. It shifts in the direction along the optical axis and rotates about two orthogonal axes in a plane orthogonal to the optical axis.
  • the mask and the photosensitive substrate may not be conjugate with respect to the projection optical system.
  • the leveling device was used to control the attitude of the photosensitive substrate, etc., so that the average was adjusted to be optimal.
  • the leveling device adjusts the position so that it is optimal on average, the focus error at the position corresponding to each projection optical system on the photosensitive substrate is reduced but remains. In some cases, the accuracy and integration of microdevices to be manufactured are limited.
  • the above problems can be alleviated by increasing the precision of the mask, the light-sensitive substrate, and the table that holds them, etc., but this causes problems such as an increase in manufacturing man-hours and costs. Is desired.
  • the image formation position of the projection optical system can be adjusted according to the plate thickness by installing the parallel plane glass on the optical axis. It is conceivable that the respective images of the respective projection optical systems are formed on the surface of the photosensitive substrate by installing them on the surface of the photosensitive substrate.
  • an object of the present invention is to provide an image forming position adjusting device capable of continuously changing and adjusting the image forming position of a projection optical system with high accuracy, an exposure apparatus having the image forming position adjusting device, and an image forming position adjusting device.
  • An object of the present invention is to provide a method and an exposure method, and achieve high precision and high integration of a manufactured micro device while suppressing an increase in cost and the like.
  • an image forming position adjusting device for adjusting an image forming position of an optical system, comprising first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength.
  • a non-contact device that causes the opposed inclined surfaces to face each other in a non-contact manner; and a movement that relatively moves the first optical member and the second optical member along a direction that intersects the optical axis of the optical system.
  • An imaging position adjusting device including the device is provided.
  • the first and second optical members having opposed inclined surfaces are moved by the moving device.
  • the relative thickness of the first and second optical members can be changed and adjusted by relative movement. Therefore, by installing this imaging position adjusting device on the optical axis of the projection optical system, it is possible to arbitrarily change and adjust the imaging position of the projection optical system.
  • the non-contact device may be a non-contact type bearing, for example, a device including a gas bearing.
  • a non-contact device including such a gas bearing By adopting a non-contact device including such a gas bearing, the relative position of the first and second optical members can be finely adjusted without touching each other, and the adjustment of the relative position change is required.
  • the imaging position can be adjusted with high precision and stability with little deterioration over time.
  • an exposure apparatus for exposing a pattern to a substrate by a projection optical system, wherein the exposure apparatus is disposed in the projection optical system, has an opposed inclined surface, and has a predetermined wavelength.
  • An exposure apparatus provided with an imaging position adjusting device is provided. According to this exposure apparatus, since the image forming position adjusting apparatus is provided, the image forming position of the projection optical system can be arbitrarily changed and adjusted, and when the surface of a substrate or the like to be exposed has irregularities. Even if it does, an image can be reliably formed on the surface of the substrate, and a microdevice with high precision and high integration can be manufactured.
  • an image forming position adjusting method for adjusting an image forming position of an optical system comprising first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength. Is provided in the optical system, and the step of non-contact moving the first optical member and the second optical member along the inclined surface is provided.
  • an exposure method for exposing a pattern to a substrate by a projection optical system comprising a first and a second, which have opposed inclined surfaces and transmit exposure light of a predetermined wavelength. Arranging an optical member in the projection optical system; and relatively moving the first optical member and the second optical member along a direction intersecting the optical axis of the projection optical system.
  • FIG. 1 is a diagram showing a main configuration of a scanning projection exposure apparatus according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the relationship between the photosensitive substrate and the viewing area according to the embodiment of the present invention
  • FIG. 3 is a diagram showing a configuration of a projection optical system according to an embodiment of the present invention.
  • FIG. 4 is a side view showing the configuration of the imaging position adjusting device according to the embodiment of the present invention.
  • FIG. 5 is a bottom view of the first optical member of the imaging position adjusting device according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an outline of processing according to the embodiment of the present invention.
  • FIG. 7A is a diagram showing a state of leveling control according to the embodiment of the present invention.
  • FIG. 7B is a diagram illustrating a state of the imaging position adjustment control according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a main configuration of a scanning projection exposure apparatus according to an embodiment of the present invention.
  • 11 is a mask on which a pattern to be transferred is formed
  • 12 is a photosensitive substrate such as a glass plate coated with a photosensitive material (photoresist).
  • the mask 11 and the photosensitive substrate 12 are arranged to face each other with a plurality of projection optical systems 13 (five in this embodiment) interposed therebetween.
  • the direction along the optical axis of the projection optical system 13 that is substantially perpendicular to the mask 11 and the photosensitive substrate 12 is defined as the Z direction (Z axis), and the plane perpendicular to the Z direction is shown in FIG.
  • the direction parallel to is defined as the X direction (X axis), and the direction perpendicular to the paper plane in FIG.
  • An illumination optical system 14 is arranged on the side of the mask 11 opposite to the projection optical system 13.
  • the illumination light emitted from a plurality of light sources such as an ultra-high pressure mercury lamp, is once gathered by a light guide or the like and then uniformly distributed and emitted. You.
  • the light emitted from the light guide is converted into a light beam having a uniform illuminance distribution by a fly eye integrator, and shaped into a slit by a blind having a slit-shaped (rectangular) opening.
  • Reference numeral 15 denotes an alignment microscope which is disposed at a position between the mask 11 and the light emitting portion of the illumination optical system 14 so as to be able to move forward and backward, and is provided with an alignment mark (not shown) formed on the mask 11.
  • the positions of the alignment marks 12a to 12d formed at the corresponding positions on the photosensitive substrate 12 are detected.
  • the mask 11 is held by suction on a mask table (not shown), while the photosensitive substrate 12 is held by suction on a substrate table 16.
  • the mask table and the substrate table 16 are attached to a scanning stage (not shown) which is formed in a U-shaped cross section and is moved in the X direction so as to face each other.
  • the substrate table 16 is attached to the scanning stage via three linear actuators 17 (only two are shown in FIG. 1) displaced in the Z direction.
  • these linear actuators 17 are selectively or wholly actuated, shifted in the Z direction, rotated about the X axis (0 X), and rotated. It is leveled by a rotation (0 y) about the Y axis.
  • the scanning stage (substrate stage) is driven under the control of a control device (exposure control device) (not shown) so that it can reciprocate in the X direction as a scanning direction.
  • the position of the photosensitive substrate 12 is measured by a plurality of position sensors 19 such as a laser interferometer provided on the substrate table 16, and the position of the mask 11 is similarly determined by a laser interferometer provided on a mask table.
  • a plurality of position sensors are measured by a plurality of position sensors (not shown).
  • a slit-shaped pattern image which is an image of a part of the mask pattern formed on the mask 11.
  • the scanning stage which integrally holds the mask table holding the photosensitive substrate 12 and the substrate table 16 holding the photosensitive substrate 12, is moved and scanned with respect to the illumination area on the mask 11 and the projection optical system 13. All the mask patterns formed on the mask 11 are transferred onto the photosensitive substrate 12.
  • the projection optical system 13 is an optical system of an erect real image system at the same magnification. Illumination light is shaped by a blind opening arranged in the illumination optical system 14, and the mask 11 is a trapezoidal field of view 18 a to l 8 e on the photosensitive substrate 12. (See Fig. 2) are illuminated by a plurality of rectangular (slit-shaped) illumination areas (not shown) each including
  • FIG. 3 shows a lens configuration of the projection optical system 13. All the projection optical systems 13 have the configuration shown in FIG.
  • the projection optical system 13 has a configuration in which two sets of Dyson optical systems are combined, and includes a first partial optical system 13 a (21 to 24) and a second partial optical system 13 b (26 ⁇ 29).
  • the first partial optical system 13a has a right-angle prism 21 having a reflecting surface arranged at an inclination of 45 ° facing the mask 11 and an optical axis along the in-plane direction of the mask 11
  • a plano-convex lens component 22 having a convex surface facing the opposite side of the right-angle prism 21; and a lens component 23 having a meniscus shape as a whole and having a reflecting surface with the concave surface facing the plano-convex lens component 22 side.
  • a right-angle prism 24 having a reflection surface orthogonal to the reflection surface of the right-angle prism 21 and arranged at an inclination of 45 ° with respect to the surface of the mask 11.
  • the light path from the illumination optical system 14 through the mask 11 is 90 by the right-angle prism 21.
  • the light is deflected and enters the plano-convex lens component 22 joined to the right-angle prism 21.
  • This lens component 22 is joined with a lens component 23 made of a glass material different from the plano-convex lens component 22.
  • Light from the right-angle prism 21 is joined to the lens components 22 and 23.
  • the light is refracted at the surface 22a and reaches the reflective surface 23a on which the reflective film is deposited.
  • the light reflected by the reflecting surface 23 a is refracted by the joint surface 22 a and reaches the right-angle prism 24 joined to the lens component 22.
  • the light from the lens component 22 is deflected by 90 ° in the optical path by the right-angle prism 24 to form a primary image of the mask 11 on the exit surface side of the right-angle prism 24.
  • the light from the primary image passes through the second partial optical system 13 b (26 to 29) and passes through the mask 1
  • a secondary image of 1 is formed on the surface of the photosensitive substrate 12. Since the configuration of the second partial optical system 13b is the same as that of the first partial optical system 13a, detailed description will be omitted.
  • the projection optical system 13 (the first and second partial optical systems 13a and 13b) is a double-sided telecentric optical system.
  • the field stop is located at the position of the primary image formed by the first partial optical system 13a.
  • the field stop has a trapezoidal opening, and the field stop defines an exposure area on the photosensitive substrate 12 in a trapezoidal shape. That is, as shown in Figure 2, the projected light
  • the science system 13 has a visual field region 18a to 18e defined by a field stop in the projection optical system.
  • the images of these visual field regions 18a to 18e are formed as an equal-size erect image (image having a positive horizontal magnification in the vertical and horizontal directions) on the exposure region on the photosensitive substrate 12.
  • a part of the projection optical system 13 is provided such that the field regions 18a to 18c are arranged along the Y direction in the figure.
  • another part of the projection optical system 13 has the viewing areas 18 d and 18 e arranged along the Y direction at positions different from the viewing areas 18 a to 18 c in the X direction in the figure. It is provided to be.
  • the upper side of the viewing area 18a to 18c (short side of a pair of parallel sides) faces the upper side of the viewing areas 18c and 18e. It is arranged so that.
  • the trapezoidal viewing area 18a is set so that the sum of the widths of the viewing areas 18a to 18e in the X direction, that is, the moving direction of the scanning stage, is always constant at any position in the Y direction.
  • ⁇ 18 e are arranged. This is because, when exposing a large exposure area of the photosensitive substrate 12 while moving the scanning stage in the X direction, a uniform exposure amount distribution is obtained over the entire exposure area on the photosensitive substrate 12.
  • the exposure areas 18a to 18c and the exposure areas 18d and 18e on the photosensitive substrate 12 are set apart in the X direction, the pattern extending in the Y direction After being exposed by the discrete discrete exposure areas 18a to 18c, the exposure areas 18d and 18e, which fill the space between them at certain intervals, are exposed in time and space. And the exposure is performed.
  • the imaging position of the projection optical system 13 is adjusted.
  • the projection optical systems 13 are arranged corresponding to those of the projection optical systems 13.
  • the detailed configuration of the imaging position adjusting device 31 is shown in FIG. 4 and FIG.
  • the imaging position adjusting device 31 includes a first optical member 32, a second optical member 33, and a moving device for sliding the first optical member 32.
  • the moving device includes a plurality of guide rollers 34 for guiding the first optical member 32 in a freely slidable manner, a linear actuator 35 for displacing the first optical member 32 to slide, and a first optical member 32. And a position detection sensor 37 for detecting the position of the first optical member 32.
  • the first optical member 32 is guided by a plurality of guide rollers 34 so as to be movable in the X direction (or Y direction), and the second optical member 33 is not shown. It is fixed to a frame. However, the first optical member 32 is fixed and the second optical member 33 is configured to move, or both the first and second optical members 32, 33 are configured to be movable. Is also good.
  • Each of the first optical member 32 and the second optical member 33 is a wedge-shaped glass plate that transmits light having a predetermined wavelength (light in a predetermined band including the wavelength of illumination light). That is, the first optical member 32 has a first entrance surface 32a as a light entrance surface and a first exit surface 32b as a light exit surface oblique to the first entrance surface 32a. are doing.
  • the second optical member 33 has a second incident surface 33 a as a light incident surface facing the first exit surface 32 b of the first optical member 32 and a second optical member 32. It has a second exit surface 33b as a light exit surface substantially parallel to the one entrance surface 32a.
  • a plurality of positive pressure grooves 32 c and a plurality of negative pressure grooves 32 d are formed on the first light exit surface 32 b of the first optical member 32.
  • negative pressure grooves 32 d are arranged on both sides of the positive pressure groove 32 c, respectively, at two locations near both ends.
  • the positive pressure groove 3 2c and the negative pressure groove 3 2d connect the first exit surface 32 of the first optical member 32 and the second entrance surface 33a of the second optical member 33 to each other by a predetermined distance.
  • This groove is used to construct an air bearing as a non-contact device that faces each other in a non-contact manner while maintaining an interval.
  • each of the positive pressure grooves 32c is communicated with a positive pressure supply source (compressed air supply device) P (not shown) through the respective through holes. Is supplied to the positive pressure groove 32c, and urges the first optical member 32 in a direction to separate (float) from the second optical member 33.
  • the negative pressure groove 3 2 d is connected to a negative pressure supply source (vacuum suction device) V (not shown) through the respective through holes, and the negative pressure supply source V is actuated. The air in 2d is sucked in vacuum and urges the first optical member 32 in a direction to make the first optical member 32 approach (contact) the second optical member 33.
  • the first exit surface 32b of the member 32 and the second entrance surface 33a of the second optical member 33 face each other while maintaining a constant gap G.
  • this gap G is about It was set to 10 m. Note that if the gap G is too large, an optical difference occurs, and therefore, as in the present embodiment, a value of 10 111 to several 10 m is desirable. In any case, the gear G should be set within the optical aberration that can be tolerated by the equipment used (for example, a projection exposure apparatus).
  • the tip of the operating shaft is in contact with one side surface of the first optical member 32, and the first optical member 32 is guided by expanding and contracting the operating shaft. Slide (move) along la 3 4.
  • the coil panel 36 urges the other side of the first optical member 32 such that one side of the first optical member 32 comes into contact with the tip of the operating shaft of the linear actuator 35.
  • the position (movement amount) of the first optical member 32 is detected by a position detection sensor 37 such as a potentiometer or a linear encoder, and based on the detected value, the linear actuator 35 is feedback-controlled to obtain a first position.
  • the optical member 32 can be accurately positioned at an arbitrary position with respect to the second optical member 33.
  • the relative dimension (thickness) between the first entrance surface 3 2a of the first optical member 32 and the second exit surface 33b of the second optical member 33 can be arbitrarily finely adjusted.
  • the image forming position of the projection optical system 13 can be changed by (5) by sliding the first optical member 32 from the position indicated by the two-dot line to the position indicated by the solid line.
  • the imaging position adjustment device 31 can precisely adjust the imaging position of each projection optical system 13 in the optical axis direction (Z direction).
  • a contact prevention film 38 such as a chrome film is formed in a rectangular shape, and in a non-operation state, that is, when the air bearing is not operated. In this case, direct contact between the first exit surface 32b of the first optical member 32 and the second entrance surface 33a of the second optical member 33 is prevented.
  • a plurality of (three in this embodiment) focus sensors 20 are arranged in the Y direction between the positions 13 and 13 as indicated by the crosshairs in FIG. 2. These focus sensors 20 emit detection beams toward the surface (pattern surface) of the mask 11 and the surface (exposure surface) of the photosensitive substrate 12, respectively. This is a device for detecting the positions of the surface of the mask 11 and the surface of the photosensitive substrate 12 in the Z direction by detecting the reflected light of the light.
  • the scanning stage By moving the scanning stage in the X direction and collecting data at an appropriate sampling pitch in the X direction based on the focus signal from each of these focus sensors 20, the X coordinate specified by the scanning stage feed amount And the surface of the mask 11 and the photosensitive substrate 12 at the position corresponding to the Y coordinate defined by the installation position of the focus sensor 20 in the Y direction. .
  • These surface data are caused by the flatness of the mask 11 and the photosensitive substrate 12, the bending of the mask table and the substrate table 16 due to the holding thereof, and the unevenness of the scanning stage feed.
  • the mask 11 1 and the photosensitive substrate 12 are based on the respective positions in the Z direction. The relative distance in the Z direction between the substrate and the photosensitive substrate 12 is determined, and this is defined as the surface distance.
  • the mask 11 is an ideal flat surface, and all the irregularities including the irregularities on the surface of the mask 11 are treated as being on the photosensitive substrate 12.
  • This surface data is stored in a storage device (not shown).
  • the scanning stage is moved to a predetermined substrate transfer position at the end in the + X direction, and the photosensitive substrate (plate) 12 is loaded (loaded) onto the substrate table 16 of the scanning stage (ST 1). It is assumed that the mask 11 has already been loaded and held on the mask table of the scanning stage.
  • the scanning stage is started to move in the X direction in order to perform a preliminary scan, and the mask 11 and the photosensitive substrate 12 are synchronously moved with respect to the projection optical system 13.
  • the illumination light from the illumination optical system 14 is blocked by an unillustrated shirt.
  • the relative postures (X, Y positions) of the mask 11 and the photosensitive substrate 12 in the XY plane are detected (ST 2).
  • the alignment microscope 15 is extended to a predetermined detection position, and the alignment of the photosensitive substrate 12 is adjusted.
  • the alignment microscope 15 uses the alignment marks 12a and 12b of the photosensitive substrate 12 and the corresponding masks 11 on the photosensitive substrate 12.
  • the relative position of the alignment marks formed on the photosensitive substrate 12 is detected, and then, when the alignment marks 12 c and 12 d of the photosensitive substrate 12 come to the positions of the viewing areas 18 a and 18 c, the alignment microscope 15 Thus, the relative displacement between the alignment marks 12c and 12d and the corresponding alignment marks formed on the mask 11 are detected.
  • the relative distance (Z position) in the Z direction between the mask 11 and the photosensitive substrate 12 is also detected (ST 3) in parallel with the above processing (ST 2).
  • the Z-direction positions of the mask 11 and the photosensitive substrate 12 are sampled at a predetermined pitch based on the focus signals of the mask 11 and the photosensitive substrate 12 by the respective focus sensors 20, thereby forming a grid.
  • the relative distance in the Z direction between the mask 11 and the photosensitive substrate 12 corresponding to the predetermined X and Y coordinates defined in the form is stored in the storage device as the surface data.
  • the sampling position of this surface data in the X direction is indicated by a cross line and a cross-dot line in FIG. Note that the higher the number of samplings in the X direction on the photosensitive substrate 12, the better the accuracy. However, the number is appropriately set in consideration of the time required for signal processing and calculation processing.
  • the relative positions of the alignment marks on the mask 11 and the corresponding alignment marks 12a to 12d on the photosensitive substrate 12 are determined.
  • one or both of the mask 11 and the photosensitive substrate 12 are shifted in the XY plane by a position correction mechanism (not shown) provided on the substrate table 12 and the mask table,
  • the postures of the mask 11 and the photosensitive substrate 12 are aligned with each other by rotating (ST4).
  • an approximated surface is calculated using an approximation method such as a least square method. (ST 5).
  • the leveling control amount is calculated (ST6). That is, based on the focal length information (predetermined) of each projection optical system 13, A theoretical imaging position in a state where the first optical member 32 is at a predetermined initial position is calculated, and a focus error (projection optical system) is calculated based on the theoretical imaging position and the approximated surface calculated in ST5. The amount of rotation of the substrate table 16 around the X-axis ( ⁇ ⁇ ) and the ⁇ ⁇ ⁇ direction such that the distance in the Z direction between the image forming position and the approximated curved surface in 13) is minimized in the Y direction. Is calculated, and this is used as a leveling control amount for the linear actuator 17 for adjusting the attitude of the base table 16.
  • the rotation amount (0 y) is calculated in the same manner, and the leveling control amount for the linear actuator 17 is also calculated. And The leveling control amount is calculated for each predetermined feed amount according to the feed amount (movement amount) of the scanning stage in the X direction.
  • a new approximated surface obtained by correcting the approximated surface calculated in ST 5 by the leveling control amount calculated in ST 6 is calculated, and further remaining based on the new approximated surface and the theoretical imaging position.
  • the focus errors are calculated, and these are used as the imaging position control amounts for the imaging position adjustment device 31 (ST7).
  • the blocking of the illumination light by the shirt of the illumination optical system 14 is released, and the main scan is started by moving the scanning stage.
  • the linear actuator 17 is operated as appropriate based on the leveling control amount corresponding to the position of the scanning stage in the X direction, and the leveling is performed based on the imaging position control amount.
  • the photosensitive material on the photosensitive substrate 12 is selectively exposed to light, and the pattern images of the mask 11 are sequentially projected and transferred.
  • the transfer formation of the pattern on the photosensitive substrate 12 is completed, the same operation is repeated by replacing the photosensitive substrate 12 with another photosensitive substrate.
  • the linear work 17 of the substrate table 16 is controlled based on the leveling control amount. And sensitized substrate 1 2 The focus error at each position on the surface is reduced on average. Further, in addition to this, as shown in FIG. 7B, the focus error which still remains due to this leveling is adjusted by the image forming position adjusting device 31 provided for each projection optical system 13. By controlling based on the imaging position control amount, the imaging position of the projection optical system itself is changed and adjusted to individually reduce the size.
  • FIG. 7A during scanning (main scanning), the linear work 17 of the substrate table 16 is controlled based on the leveling control amount. And sensitized substrate 1 2 The focus error at each position on the surface is reduced on average. Further, in addition to this, as shown in FIG. 7B, the focus error which still remains due to this leveling is adjusted by the image forming position adjusting device 31 provided for each projection optical system 13. By controlling based on the imaging position control amount, the imaging position of the projection optical system itself is changed and adjusted to individually reduce the size.
  • FIG. 7A during scanning (main
  • microdevices such as liquid crystal display devices with high accuracy and high reliability can be manufactured.
  • the above-described leveling and the adjustment of the imaging position are performed based on the surface distance of the relative distance in the Z direction between the mask 11 and the photosensitive substrate 12. It can be carried out only on the basis of the surface data on 11 or only on the basis of the surface data on the photosensitive substrate 12.
  • the leveling for the average removal of the focus error is performed by operating the actuator 17 for the photosensitive substrate 12, but the operation for the mask 11 is performed. , Or both.
  • the first optical member 32 and the second optical member 33 are arranged so as to face each other at a constant interval in a non-contact state by air bearing.
  • the imaging position of each projection optical system 13 can be finely adjusted with high accuracy, and since it is non-contact, there is little deterioration over time, and stable adjustment can be performed over a long period of time.
  • the combination of the suction force by the negative pressure and the repulsion force by the positive pressure is used.
  • the present invention is not limited to this.
  • the present invention is not limited to this, and a combination of a magnetic attraction force and a positive pressure repulsion force, a negative pressure attraction force And a combination of repulsive force by magnetic force. It may be a combination of a magnetic attraction and a magnetic repulsion as well as a gravity, a biasing force by a panel, and the above-mentioned positive pressure or negative pressure, magnetic force, or the like. Is also good.
  • the projection position of each projection optical system 13 can be shifted.
  • the projection magnification of each projection optical system 13 is adjusted by expansion and contraction of the photosensitive substrate 12 and the like, the amount of overlap between the trapezoidal field regions 18a and 18d changes. Therefore, the amount of overlap between the trapezoidal viewing regions 18a and 18d can be adjusted by tilting the entire imaging position adjusting device 31 by a drive mechanism (not shown).
  • the imaging position of each projection optical system 13 in the optical axis direction and the Y direction orthogonal to the optical axis direction can be adjusted by the imaging position adjustment device 31.
  • the structure of the system 13 can be simplified.
  • the present invention is applied to a scanning projection exposure apparatus configured to perform exposure by equal-magnification projection.
  • a scanning projection exposure apparatus that exposes the mask and the photosensitive substrate while independently and synchronously moving in the same direction or in the opposite direction.
  • the projection method is also limited to 1: 1 projection.
  • the image may be projected in a reduced or enlarged manner.
  • the image forming position adjusting apparatus of the present invention can be applied not only to a scanning type exposure apparatus but also to a stationary type exposure apparatus (for example, a stepper).
  • g-rays (wavelength: 436 nm), i-rays (wavelength: 365 nm), and KrF excimer laser generated from a mercury lamp are used as exposure illumination light.
  • a r 2 laser (wavelength 1 2 6 nm), and metal vapor lasers also
  • a harmonic such as a YAG laser can be used.
  • a single-wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and yttrium), and a non-linear optical amplifier is used.
  • a harmonic converted to ultraviolet light using a crystal may be used.
  • the semiconductor device manufactured by the exposure apparatus of the present embodiment includes, for example, a display device including a liquid crystal display device and a plasma display, a semiconductor device, a thin-film magnetic head, an imaging device (CCD), and the like.
  • a semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a substrate such as a glass plate or a wafer, and a reticle using the exposure apparatus. It is manufactured through a step of transferring the above pattern to a substrate, a step of assembling a device (including a dicing step, a bonding step, and a package step), and an inspection step.
  • the exposure apparatus of the present embodiment incorporates a plurality of projection optical systems 13 having an illumination optical system 14 composed of a plurality of lenses and an imaging position adjustment device 31 into an exposure apparatus main body, and performs optical adjustment.
  • it can be manufactured by attaching a scanning stage consisting of a large number of mechanical parts to the exposure apparatus main body, connecting wiring and piping, and performing overall adjustment (electrical adjustment, operation confirmation, etc.). It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature and the degree of cleanliness are controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An image formation position adjusting device (31) provided on an optical axis of an optical system and adapted to properly change and adjust with high accuracy and continuously an image formation position of the projection optical system, comprising first and second optical members (32, 33) consisting of wedge-shaped sheets of glass, disposed facing each other and having tilted surfaces (32b, 33a), wherein a positive pressure groove (33c) supplied with a compressed air from a positive pressure source (P) and a negative pressure groove (33d) vacuum-sucked by a negative pressure source (V) are provided in the tilted surface (32b) of the first optical member (32) to form an air bearing with the first and second optical members (32, 33) facing each other in non-contact condition, and a relative clearance (sheet thickness) between a plane (32a) of light incidence and a plane (33b) of outgoing light can be changed and adjusted by actuating an actuator (35) against an urging force of a coil spring (36) to relatively move the first optical member (32) with respect to the second optical member (33).

Description

明 細 書 結像位置調整装置、 露光装置、 結像位置調整方法および露光方法 技術分野  Technical Field Image forming position adjusting apparatus, exposure apparatus, image forming position adjusting method and exposure method
本発明は、 液晶表示装置やプラズマ表示装置などのマイクロデバイスの製造に 使用される露光装置の結像位置調整装置、 該結像位置調整装置を備えた露光装置、 結像位置調整方法および露光方法に関する。 背景技術  The present invention relates to an imaging position adjusting device of an exposure device used for manufacturing a micro device such as a liquid crystal display device or a plasma display device, an exposure device provided with the imaging position adjusting device, an imaging position adjusting method, and an exposure method. About. Background art
比較的に大型の液晶パネルなどを高いスループッ 卜で製造するために、 走査型 (スキャン型) の投影露光装置が用いられる。 この走査型の投影露光装置は、 マ スクを複数のスリット状の照明領域で照明し、 その照明領域の配列方向に対して 直交する方向にマスクを走査し、 照明領域と共役な露光領域に対してフォトレジ ストが塗布された感光基板 (ガラスプレートなど) を同期して走査することによ り、 マスク上のパターンを等倍であるいは縮小投影して感光基板上に逐次露光す る装置である。 投影光学系は前記複数の照明領域のそれぞれに対応して設けられ ている。  In order to manufacture a relatively large liquid crystal panel with a high throughput, a scanning (scanning) projection exposure apparatus is used. This scanning projection exposure apparatus illuminates a mask with a plurality of slit-shaped illumination areas, scans the mask in a direction orthogonal to the arrangement direction of the illumination areas, and scans an exposure area conjugate to the illumination area. This is a device that synchronously scans a photosensitive substrate (glass plate, etc.) coated with a photoresist to project the pattern on the mask at the same size or at a reduced size, and sequentially exposes the photosensitive substrate. . The projection optical system is provided corresponding to each of the plurality of illumination areas.
ここで、 マスクの表面 (パターン面) と感光基板の表面 (露光面) は露光時に おいて投影光学系に関して共役な位置に設定されるのが望ましいため、 マスクお よび感光基板はそれそれレべリング装置によりその姿勢が変更制御されるように なっている。 レべリング装置は、 投影光学系の光軸に沿う方向に変位する複数の ァクチユエ一夕などを備えて構成され、 それそれのァクチユエ一夕を適宜に作動 させることにより、 マスクや感光基板を該光軸に沿う方向へシフトするとともに、 該光軸に直交する面内の直交 2軸周りに回転する。  Here, it is desirable that the surface of the mask (pattern surface) and the surface of the photosensitive substrate (exposure surface) are set at conjugate positions with respect to the projection optical system during exposure, so that the mask and the photosensitive substrate are respectively different. The attitude of the ring device is changed and controlled by the ring device. The leveling device includes a plurality of actuators and the like that are displaced in a direction along the optical axis of the projection optical system. By appropriately operating each of the actuators, the mask and the photosensitive substrate are removed. It shifts in the direction along the optical axis and rotates about two orthogonal axes in a plane orthogonal to the optical axis.
ところで、 マスクおよび感光基板の表面にはそれ自体の平坦度や保持状態によ る撓みなどによって凹凸が存在する。 従って、 局所的に見ると、 マスクと感光基 板とが投影光学系に関して共役とならない場合がある。  By the way, irregularities are present on the surfaces of the mask and the photosensitive substrate due to the flatness of the mask itself and the bending due to the holding state. Therefore, when viewed locally, the mask and the photosensitive substrate may not be conjugate with respect to the projection optical system.
そこで、 従来は、 各投影光学系の結像位置 (結像面) と感光基板の表面との光 軸に沿う方向の距離 (フォーカス誤差) を少なくすべく、 レべリング装置による 感光基板などの姿勢制御により平均的に最適となるように調整していた。 Therefore, conventionally, the light between the image forming position (image forming plane) of each projection optical system and the surface of the photosensitive substrate is known. In order to reduce the distance along the axis (focus error), the leveling device was used to control the attitude of the photosensitive substrate, etc., so that the average was adjusted to be optimal.
しかしながら、 レべリング装置による姿勢制御により平均的に最適となるよう に調整したとしても、 感光基板上の各投影光学系に対応する位置でのフォーカス 誤差は少なくはなるが依然として残存してあ'り、 製造されるマイクロデバイスの さらなる高精度化、 高集積化に対して制限になる場合がある。 なお、 マスクゃ感 光基板あるいはこれらを保持するテーブルなどをそれ自体高精度化することによ り上記問題は軽減されるが、 それでは製造工数の増大、 コストの上昇などの問題 を生じるから、 他の解決手段が望まれる。  However, even if the leveling device adjusts the position so that it is optimal on average, the focus error at the position corresponding to each projection optical system on the photosensitive substrate is reduced but remains. In some cases, the accuracy and integration of microdevices to be manufactured are limited. The above problems can be alleviated by increasing the precision of the mask, the light-sensitive substrate, and the table that holds them, etc., but this causes problems such as an increase in manufacturing man-hours and costs. Is desired.
ここで、 投影光学系の結像位置はその光軸上に平行平面ガラスを設置すること によりその板厚に応じて調整できるから、 かかる板厚を適宜に調整した平行平面 ガラスを各投影光学系のそれそれに設置することにより、 各投影光学系のそれそ れの像を感光基板の表面に結像させることが考えられる。  Here, the image formation position of the projection optical system can be adjusted according to the plate thickness by installing the parallel plane glass on the optical axis. It is conceivable that the respective images of the respective projection optical systems are formed on the surface of the photosensitive substrate by installing them on the surface of the photosensitive substrate.
しかし、 感光基板やマスクの凹凸は一様でないから、 各投影光学系の結像位置 の調整は連続的に変更できること、 すなわち、 平行平面ガラスの板厚を連続的に 変更調整できる必要があり、 しかも該板厚の変更調整は極めて高精度、 かつ長期 に渡り安定して行える必要がある。 発明の開示  However, since the unevenness of the photosensitive substrate and the mask is not uniform, the adjustment of the imaging position of each projection optical system can be changed continuously, that is, it is necessary to be able to change and adjust the thickness of the parallel flat glass continuously. In addition, it is necessary that the change of the plate thickness be adjusted with extremely high accuracy and stably for a long period of time. Disclosure of the invention
よって本発明の目的は、 投影光学系の結像位置を高精度で連続的に変更調整す ることができる結像位置調整装置、 該結像位置調整装置を備えた露光装置、 結像 位置調整方法および露光方法を提供し、 コストなどの上昇を抑制しつつ、 製造さ れるマイクロデバイスの高精度化、 高集積化を達成することである。  Accordingly, an object of the present invention is to provide an image forming position adjusting device capable of continuously changing and adjusting the image forming position of a projection optical system with high accuracy, an exposure apparatus having the image forming position adjusting device, and an image forming position adjusting device. An object of the present invention is to provide a method and an exposure method, and achieve high precision and high integration of a manufactured micro device while suppressing an increase in cost and the like.
本発明の第 1の観点によると、 光学系の結像位置を調整する結像位置調整装置 であって、 対向する傾斜面を有し、 所定波長の光を透過する第 1および第 2光学 部材と、 前記対向する傾斜面を非接触で対向させる非接触装置と、 前記光学系の 光軸と交差する方向に沿って、 前記第 1光学部材と前記第 2光学部材とを相対移 動させる移動装置とを備えた結像位置調整装置が提供される。 本発明の結像位置 調整装置によると、 対向する傾斜面を有する第 1および第 2光学部材を移動装置 により相対移動させることにより、 該第 1および第 2光学部材の全体としての板 厚を変更調整できるようにしている。 従って、 この結像位置調整装置を投影光学 系の光軸上に設置することにより、 該投影光学系の結像位置を任意に変更調整す ることができる。 According to a first aspect of the present invention, there is provided an image forming position adjusting device for adjusting an image forming position of an optical system, comprising first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength. A non-contact device that causes the opposed inclined surfaces to face each other in a non-contact manner; and a movement that relatively moves the first optical member and the second optical member along a direction that intersects the optical axis of the optical system. An imaging position adjusting device including the device is provided. According to the image forming position adjusting device of the present invention, the first and second optical members having opposed inclined surfaces are moved by the moving device. The relative thickness of the first and second optical members can be changed and adjusted by relative movement. Therefore, by installing this imaging position adjusting device on the optical axis of the projection optical system, it is possible to arbitrarily change and adjust the imaging position of the projection optical system.
ここで、 特に限定されないが、 前記非接触装置としては非接触型ベアリング、 例えば気体べァリングを含んでいるものを採用することができる。 このような気 体ベアリングなどを含む非接触装置の採用により、 第 1および第 2光学部材が互 いに接触することなくその相対位置を微調整することができ、 相対位置の変更調 整に伴う経時的な劣化が少なく、 結像位置の調整を高精度かつ安定的に行うこと ができる。  Here, although not particularly limited, the non-contact device may be a non-contact type bearing, for example, a device including a gas bearing. By adopting a non-contact device including such a gas bearing, the relative position of the first and second optical members can be finely adjusted without touching each other, and the adjustment of the relative position change is required. The imaging position can be adjusted with high precision and stability with little deterioration over time.
本発明の第 2の観点によると、 投影光学系によりパターンを基板に露光する露 光装置であって、 前記投影光学系内に配設されるとともに、 対向する傾斜面を有 し、 所定波長の光を透過する第 1および第 2光学部材と、 前記投影光学系の光軸 と交差する方向に沿って、 前記第 1光学部材と前記第 2光学部材とを相対移動さ せる移動装置とを有する結像位置調整装置を備えた露光装置が提供される。 この 露光装置によると、 前記結像位置調整装置を備えているので、 投影光学系の結像 位置を任意に変更調整することができ、 露光対象としての基板などの表面に凹凸 があった場合であっても、 基板の表面に確実に結像することができ、 高精度化、 高集積化を図ったマイクロデバイスを製造することができる。  According to a second aspect of the present invention, there is provided an exposure apparatus for exposing a pattern to a substrate by a projection optical system, wherein the exposure apparatus is disposed in the projection optical system, has an opposed inclined surface, and has a predetermined wavelength. A first optical member that transmits light, and a moving device that relatively moves the first optical member and the second optical member along a direction that intersects the optical axis of the projection optical system. An exposure apparatus provided with an imaging position adjusting device is provided. According to this exposure apparatus, since the image forming position adjusting apparatus is provided, the image forming position of the projection optical system can be arbitrarily changed and adjusted, and when the surface of a substrate or the like to be exposed has irregularities. Even if it does, an image can be reliably formed on the surface of the substrate, and a microdevice with high precision and high integration can be manufactured.
本発明の第 3の観点によると、 光学系の結像位置を調整する結像位置調整方法 であって、 対向する傾斜面を有し、 所定波長の光を透過する第 1および第 2光学 部材を前記光学系に配設するステップと、 前記第 1光学部材と前記第 2光学部材 とを前記傾斜面に沿つて非接触で移動させるステップとを含む結像位置調整方法 が提供される。  According to a third aspect of the present invention, there is provided an image forming position adjusting method for adjusting an image forming position of an optical system, comprising first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength. Is provided in the optical system, and the step of non-contact moving the first optical member and the second optical member along the inclined surface is provided.
本発明の第 4の観点によると、 投影光学系によりパターンを基板に露光する露 光方法であって、 対向する傾斜面を有し、 所定波長の露光光を透過する第 1およ び第 2光学部材を前記投影光学系内に配設するステップと、 前記投影光学系の光 軸と交差する方向に沿って、 前記第 1光学部材と前記第 2光学部材とを相対移動 させるステップとを含む露光方法が提供される。 図面の簡単な説明 According to a fourth aspect of the present invention, there is provided an exposure method for exposing a pattern to a substrate by a projection optical system, comprising a first and a second, which have opposed inclined surfaces and transmit exposure light of a predetermined wavelength. Arranging an optical member in the projection optical system; and relatively moving the first optical member and the second optical member along a direction intersecting the optical axis of the projection optical system. An exposure method is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施形態の走査型の投影露光装置の要部構成を示す図、  FIG. 1 is a diagram showing a main configuration of a scanning projection exposure apparatus according to an embodiment of the present invention,
図 2は本発明の実施形態の感光基板と視野領域との関係を示す図、  FIG. 2 is a diagram showing the relationship between the photosensitive substrate and the viewing area according to the embodiment of the present invention,
図 3は本発明の実施形態の投影光学系の構成を示す図、  FIG. 3 is a diagram showing a configuration of a projection optical system according to an embodiment of the present invention,
図 4は本発明の実施形態の結像位置調整装置の構成を示す側面図、  FIG. 4 is a side view showing the configuration of the imaging position adjusting device according to the embodiment of the present invention,
図 5は本発明の実施形態の結像位置調整装置の第 1光学部材の底面図、  FIG. 5 is a bottom view of the first optical member of the imaging position adjusting device according to the embodiment of the present invention,
図 6は本発明の実施形態の処理の概要を示す図、  FIG. 6 is a diagram showing an outline of processing according to the embodiment of the present invention,
図 7 Aは本発明の実施形態のレべリング制御の様子を示す図、 及び  FIG. 7A is a diagram showing a state of leveling control according to the embodiment of the present invention, and
図 7 Bは本発明の実施形態の結像位置調整制御の様子を示す図である。 発明を実施するための最良の形態  FIG. 7B is a diagram illustrating a state of the imaging position adjustment control according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説明するために、 添付の図面に従って説明する。  The present invention will be described in more detail with reference to the accompanying drawings.
図 1は本発明の実施形態の走査型の投影露光装置の要部構成を示す図、 図 2は 同じく感光基板と視野領域との関係を示す図である。  FIG. 1 is a diagram showing a main configuration of a scanning projection exposure apparatus according to an embodiment of the present invention, and FIG.
図 1において、 1 1は転写すべきパターンが形成されたマスクであり、 1 2は 感光材料 (フォトレジス ト) が塗布されたガラスプレートなどの感光基板である。 これらのマスク 1 1および感光基板 1 2は、 複数の投影光学系 1 3 (本実施の形 態では 5つ) を挟んで対向するように配置されている。 ここで、 マスク 1 1およ び感光基板 1 2に概略直交する投影光学系 1 3の光軸に沿う方向を Z方向 (Z軸) とし、 この Z方向に直交する面内で図 1で紙面に平行な方向を X方向 (X軸) と し、 Z方向および X方向に直交する図 1で紙面に対して直交する方向を Y方向 ( Y軸) とする。 一 マスク 1 1の投影光学系 1 3に対して反対側には照明光学系 1 4が配置されて いる。 照明光学系 1 4において、 図示は省略しているが、 超高圧水銀ランプ等か らなる複数の光源から射出された照明光はライ トガイ ドなどにより一旦集合され た後に均等に分配されて出射される。 このライ トガイ ドからの出射光は、 フライ アイインテグレ一夕によって均一な照度分布をもつ光束に変換され、 スリット形― 状 (矩形状) の開口を有するブラインドによってスリヅト状に整形される。 この ブラインドを通過した光束はコンデンサレンズに入射され、 コンデンサレンズは この光束をマスク 1 1上に結像することでマスク 1 1を複数のスリヅト状の照明 領域で照明する。 1 5はマスク 1 1と照明光学系 1 4の光出射部との間の部分に 進退自在に配置されたァライメント顕微鏡であり、 マスク 1 1上に形成されてい るァライメントマーク (不図示) と感光基板 1 2上の対応する位置に形成されて いるァライメントマ一ク 1 2 a〜 1 2 dの位置を検出する。 In FIG. 1, 11 is a mask on which a pattern to be transferred is formed, and 12 is a photosensitive substrate such as a glass plate coated with a photosensitive material (photoresist). The mask 11 and the photosensitive substrate 12 are arranged to face each other with a plurality of projection optical systems 13 (five in this embodiment) interposed therebetween. Here, the direction along the optical axis of the projection optical system 13 that is substantially perpendicular to the mask 11 and the photosensitive substrate 12 is defined as the Z direction (Z axis), and the plane perpendicular to the Z direction is shown in FIG. The direction parallel to is defined as the X direction (X axis), and the direction perpendicular to the paper plane in FIG. 1 perpendicular to the Z direction and the X direction is defined as the Y direction (Y axis). An illumination optical system 14 is arranged on the side of the mask 11 opposite to the projection optical system 13. In the illumination optical system 14, although not shown, the illumination light emitted from a plurality of light sources, such as an ultra-high pressure mercury lamp, is once gathered by a light guide or the like and then uniformly distributed and emitted. You. The light emitted from the light guide is converted into a light beam having a uniform illuminance distribution by a fly eye integrator, and shaped into a slit by a blind having a slit-shaped (rectangular) opening. The light beam that has passed through the blind enters the condenser lens, By forming an image of this light beam on the mask 11, the mask 11 is illuminated by a plurality of slit-like illumination regions. Reference numeral 15 denotes an alignment microscope which is disposed at a position between the mask 11 and the light emitting portion of the illumination optical system 14 so as to be able to move forward and backward, and is provided with an alignment mark (not shown) formed on the mask 11. The positions of the alignment marks 12a to 12d formed at the corresponding positions on the photosensitive substrate 12 are detected.
マスク 1 1は不図示のマスクテーブルに吸着保持されており、 一方、 感光基板 1 2は基板テーブル 1 6に吸着保持されている。 これらのマスクテ一ブルおよび 基板テーブル 1 6は、 断面コの字状に形成された X方向に移動される走査ステー ジ (不図示) に互いに対向するように取り付けられている。  The mask 11 is held by suction on a mask table (not shown), while the photosensitive substrate 12 is held by suction on a substrate table 16. The mask table and the substrate table 16 are attached to a scanning stage (not shown) which is formed in a U-shaped cross section and is moved in the X direction so as to face each other.
基板テーブル 1 6は Z方向に変位する 3個のリニアァクチユエ一夕 1 7 (図 1 では 2個のみ表示) を介して該走査ステージに取り付けられている。 感光基板 1 2の表面は、 これらのリニアァクチユエ一夕 1 7が選択的にあるいは全体的に作 動されて、 Z方向へシフトされるとともに、 X軸を中心とした回転 (0 X ) およ び Y軸を中心とした回転 (0 y ) がなされることによりレべリングされる。  The substrate table 16 is attached to the scanning stage via three linear actuators 17 (only two are shown in FIG. 1) displaced in the Z direction. On the surface of the photosensitive substrate 12, these linear actuators 17 are selectively or wholly actuated, shifted in the Z direction, rotated about the X axis (0 X), and rotated. It is leveled by a rotation (0 y) about the Y axis.
走査ステージ (基板ステージ) は、 不図示の制御装置 (露光制御装置) による 制御に基づいて駆動されることにより、 走査方向としての X方向に往復移動でき るようになっている。 感光基板 1 2の位置は基板テーブル 1 6に設けられたレー ザ干渉計などの複数の位置センサ 1 9により計測され、 マスク 1 1の位置も同様 にマスクテ一ブルに設けられたレーザ干渉計などの複数の位置センサ (不図示) により計測される。  The scanning stage (substrate stage) is driven under the control of a control device (exposure control device) (not shown) so that it can reciprocate in the X direction as a scanning direction. The position of the photosensitive substrate 12 is measured by a plurality of position sensors 19 such as a laser interferometer provided on the substrate table 16, and the position of the mask 11 is similarly determined by a laser interferometer provided on a mask table. Are measured by a plurality of position sensors (not shown).
走査ステージが静止した状態では、 感光基板 1 2上に投影されるのはスリット 状のパターン像であり、 マスク 1 1上に形成されているマスクパターンの一部の 像であるが、 マスク 1 1を保持するマスクテーブルと感光基板 1 2を保持する基 板テーブル 1 6を一体的に保持した走査ステージを、 マスク 1 1上の照明領域お よび投影光学系 1 3に対して移動走査することで、 マスク 1 1上に形成されてい るマスクパターンの全てを感光基板 1 2上に転写するようにしている。  When the scanning stage is stationary, what is projected on the photosensitive substrate 12 is a slit-shaped pattern image, which is an image of a part of the mask pattern formed on the mask 11. The scanning stage, which integrally holds the mask table holding the photosensitive substrate 12 and the substrate table 16 holding the photosensitive substrate 12, is moved and scanned with respect to the illumination area on the mask 11 and the projection optical system 13. All the mask patterns formed on the mask 11 are transferred onto the photosensitive substrate 12.
この実施形態においては、 投影光学系 1 3としては、 等倍で正立実像系の光学 系を用いている。 照明光は照明光学系 1 4中に配置されたブラインドの開口によ つて整形され、 マスク 1 1は感光基板 1 2上の台形状の視野領域 1 8 a〜 l 8 e (図 2参照) を各々包含する複数の矩形状 (スリツ ト状) の照明領域 (不図示) で照明される。 In this embodiment, the projection optical system 13 is an optical system of an erect real image system at the same magnification. Illumination light is shaped by a blind opening arranged in the illumination optical system 14, and the mask 11 is a trapezoidal field of view 18 a to l 8 e on the photosensitive substrate 12. (See Fig. 2) are illuminated by a plurality of rectangular (slit-shaped) illumination areas (not shown) each including
図 3は投影光学系 1 3のレンズ構成を示し、 投影光学系 1 3は全てこの図 3の 構成を有する。 この投影光学系 1 3は、 2組のダイソン型光学系を組み合わせた 構成を有し、 第 1部分光学系 1 3 a ( 2 1〜2 4 ) および第 2部分光学系 1 3 b ( 2 6〜2 9 ) などから構成されている。  FIG. 3 shows a lens configuration of the projection optical system 13. All the projection optical systems 13 have the configuration shown in FIG. The projection optical system 13 has a configuration in which two sets of Dyson optical systems are combined, and includes a first partial optical system 13 a (21 to 24) and a second partial optical system 13 b (26 ~ 29).
第 1部分光学系 1 3 aは、 マスク 1 1に面して 4 5 ° の傾斜で配置された反射 面を持つ直角プリズム 2 1と、 マスク 1 1の面内方向に沿った光軸を有し、 凸面 を直角プリズム 2 1に対して反対側に向けた平凸レンズ成分 2 2と、 全体として メニスカス形状であって凹面を平凸レンズ成分 2 2側に向けた反射面を有するレ ンズ成分 2 3と、 直角プリズム 2 1の反射面と直交しかつマスク 1 1面に対して 4 5 ° の傾斜で配置された反射面を持つ直角プリズム 2 4とを有する。  The first partial optical system 13a has a right-angle prism 21 having a reflecting surface arranged at an inclination of 45 ° facing the mask 11 and an optical axis along the in-plane direction of the mask 11 A plano-convex lens component 22 having a convex surface facing the opposite side of the right-angle prism 21; and a lens component 23 having a meniscus shape as a whole and having a reflecting surface with the concave surface facing the plano-convex lens component 22 side. And a right-angle prism 24 having a reflection surface orthogonal to the reflection surface of the right-angle prism 21 and arranged at an inclination of 45 ° with respect to the surface of the mask 11.
マスク 1 1を介した照明光学系 1 4からの照明光は、 直角プリズム 2 1によつ て光路が 9 0。 偏向され、 直角プリズム 2 1に接合された平凸レンズ成分 2 2に 入射する。 このレンズ成分 2 2には、 平凸レンズ成分 2 2とは異なる硝材にて構 成されたレンズ成分 2 3が接合されており、 直角プリズム 2 1からの光はレンズ 成分 2 2, 2 3の接合面 2 2 aにて屈折し、 反射膜が蒸着された反射面 2 3 aに 達する。 反射面 2 3 aで反射された光は、 接合面 2 2 aで屈折され、 レンズ成分 2 2に接合された直角プリズム 2 4に達する。 レンズ成分 2 2からの光は、 直角 プリズム 2 4により光路が 9 0 ° 偏向されて、 この直角プリズム 2 4の射出面側 にマスク 1 1の 1次像を形成する。  The light path from the illumination optical system 14 through the mask 11 is 90 by the right-angle prism 21. The light is deflected and enters the plano-convex lens component 22 joined to the right-angle prism 21. This lens component 22 is joined with a lens component 23 made of a glass material different from the plano-convex lens component 22. Light from the right-angle prism 21 is joined to the lens components 22 and 23. The light is refracted at the surface 22a and reaches the reflective surface 23a on which the reflective film is deposited. The light reflected by the reflecting surface 23 a is refracted by the joint surface 22 a and reaches the right-angle prism 24 joined to the lens component 22. The light from the lens component 22 is deflected by 90 ° in the optical path by the right-angle prism 24 to form a primary image of the mask 11 on the exit surface side of the right-angle prism 24.
1次像からの光は、 第 2部分光学系 1 3 b ( 2 6〜2 9 ) を介して、 マスク 1 The light from the primary image passes through the second partial optical system 13 b (26 to 29) and passes through the mask 1
1の 2次像を感光基板 1 2の表面上に形成する。 この第 2部分光学系 1 3 bの構 成は第 1部分光学系 1 3 aと同一であるため、 詳細な説明を省略する。 投影光学 系 1 3 (第 1および第 2部分光学系 1 3 a , 1 3 b ) は、 両側テレセントリック 光学系である。 第 1部分光学系 1 3 aが形成する 1次像の位置には、 視野絞りA secondary image of 1 is formed on the surface of the photosensitive substrate 12. Since the configuration of the second partial optical system 13b is the same as that of the first partial optical system 13a, detailed description will be omitted. The projection optical system 13 (the first and second partial optical systems 13a and 13b) is a double-sided telecentric optical system. The field stop is located at the position of the primary image formed by the first partial optical system 13a.
(不図示) が配置されている。 (Not shown) are arranged.
この視野絞りは台形状の開口部を有し、 この視野絞りにより感光基板 1 2上の 露光領域が台形状に規定される。 すなわち、 図 2に示されているように、 投影光 学系 1 3は、 投影光学系内の視野絞りによって規定される視野領域 1 8 a〜 1 8 eを有している。 これらの視野領域 1 8 a ~ 1 8 eの像は、 感光基板 1 2上の露 光領域上に等倍の正立像 (上下左右方向の横倍率が正の像) として形成される。 ここで、 投影光学系 1 3の一部は、 視野領域 1 8 a〜 l 8 cが図中 Y方向に沿つ て配列されるように設けられている。 また、 投影光学系 1 3の他の一部は、 図中 X方向で視野領域 1 8 a〜 1 8 cとは異なる位置に、 視野領域 1 8 d , 1 8 eが Y方向に沿って配列されるように設けられている。 The field stop has a trapezoidal opening, and the field stop defines an exposure area on the photosensitive substrate 12 in a trapezoidal shape. That is, as shown in Figure 2, the projected light The science system 13 has a visual field region 18a to 18e defined by a field stop in the projection optical system. The images of these visual field regions 18a to 18e are formed as an equal-size erect image (image having a positive horizontal magnification in the vertical and horizontal directions) on the exposure region on the photosensitive substrate 12. Here, a part of the projection optical system 13 is provided such that the field regions 18a to 18c are arranged along the Y direction in the figure. Further, another part of the projection optical system 13 has the viewing areas 18 d and 18 e arranged along the Y direction at positions different from the viewing areas 18 a to 18 c in the X direction in the figure. It is provided to be.
各視野領域 1 8 a〜 1 8 eは、 視野領域 1 8 a〜 1 8 cの上辺 (一対の平行な 辺のうちの短辺) と視野領域 1 8 c, 1 8 eの上辺とが対向するように配置され ている。 このとき X方向、 すなわち走査ステージの移動方向に沿った視野領域 1 8 a〜 1 8 eの幅の総和が、 どの Y方向の位置においても常に一定となるように 台形状の視野領域 1 8 a〜 1 8 eが配置されている。 これは、 走査ステージを X 方向に移動しながら感光基板 1 2の大きな露光領域を露光するとき、 感光基板 1 2上の露光領域の全面にわたって均一な露光量分布を得るためである。  In each of the viewing areas 18a to 18e, the upper side of the viewing area 18a to 18c (short side of a pair of parallel sides) faces the upper side of the viewing areas 18c and 18e. It is arranged so that. At this time, the trapezoidal viewing area 18a is set so that the sum of the widths of the viewing areas 18a to 18e in the X direction, that is, the moving direction of the scanning stage, is always constant at any position in the Y direction. ~ 18 e are arranged. This is because, when exposing a large exposure area of the photosensitive substrate 12 while moving the scanning stage in the X direction, a uniform exposure amount distribution is obtained over the entire exposure area on the photosensitive substrate 12.
感光基板 1 2上の露光領域 1 8 a〜 1 8 cと露光領域 1 8 d , 1 8 eとは X方 向に離れて設定されているため、 Y方向に伸びるパターンは、 まず空間的に分離 した飛び飛びの露光領域 1 8 a〜l 8 cによって露光された後、 ある時間をおい てその間を埋める露光領域 1 8 d, 1 8 eで露光されるというように時間的およ び空間的に分割されて露光されることになる。  Since the exposure areas 18a to 18c and the exposure areas 18d and 18e on the photosensitive substrate 12 are set apart in the X direction, the pattern extending in the Y direction After being exposed by the discrete discrete exposure areas 18a to 18c, the exposure areas 18d and 18e, which fill the space between them at certain intervals, are exposed in time and space. And the exposure is performed.
投影光学系 1 3の第 1部分光学系 1 3 aと第 2部分光学系 1 3 bとの間の光路 (光軸) 上には、 当該投影光学系 1 3の結像位置を調整するための結像位置調整 装置 3 1が各投影光学系 1 3のそれそれに対応して配置されている。 結像位置調 整装置 3 1の詳細構成は、 図 4および図 5に示されている。  On the optical path (optical axis) between the first partial optical system 13 a and the second partial optical system 13 b of the projection optical system 13, the imaging position of the projection optical system 13 is adjusted. Of the projection optical systems 13 are arranged corresponding to those of the projection optical systems 13. The detailed configuration of the imaging position adjusting device 31 is shown in FIG. 4 and FIG.
結像位置調整装置 3 1は、 第 1光学部材 3 2、 第 2光学部材 3 3、 および第 1 光学部材 3 2をスライ ドさせる移動装置を備えている。 移動装置は、 第 1光学部 材 3 2をスライ ド自在に案内する複数のガイ ドローラ 3 4、 第 1光学部材 3 2を スライ ドすべく変位するリニアァクチユエ一夕 3 5、 第 1光学部材 3 2をリニア ァクチユエ一夕 3 5側に付勢するコイルパネ 3 6、 および第 1光学部材 3 2の位 置を検出する位置検出センサ 3 7などから構成されている。 この実施形態では、 第 1光学部材 3 2は複数のガイ ドロ一ラ 3 4により X方向 (または Y方向) に沿って移動できるように案内されており、 第 2光学部材 3 3 は図外のフレームなどに固定されている。 但し、 第 1光学部材 3 2を固定して、 第 2光学部材 3 3を移動するように構成し、 あるいは第 1および第 2光学部材 3 2, 3 3の双方を移動できるように構成してもよい。 The imaging position adjusting device 31 includes a first optical member 32, a second optical member 33, and a moving device for sliding the first optical member 32. The moving device includes a plurality of guide rollers 34 for guiding the first optical member 32 in a freely slidable manner, a linear actuator 35 for displacing the first optical member 32 to slide, and a first optical member 32. And a position detection sensor 37 for detecting the position of the first optical member 32. In this embodiment, the first optical member 32 is guided by a plurality of guide rollers 34 so as to be movable in the X direction (or Y direction), and the second optical member 33 is not shown. It is fixed to a frame. However, the first optical member 32 is fixed and the second optical member 33 is configured to move, or both the first and second optical members 32, 33 are configured to be movable. Is also good.
第 1光学部材 3 2および第 2光学部材 3 3は、 それそれ所定波長の光 (照明光 の波長を含む所定帯域の光) を透過するくさび状に形成されたガラス板である。 すなわち、 第 1光学部材 3 2は光入射面としての第 1入射面 3 2 aと該第 1入射 面 3 2 aに対して斜交する光出射面としての第 1出射面 3 2 bを有している。 ま た、 第 2光学部材 3 3は第 1光学部材 3 2の第 1出射面 3 2 bに沿って対面する 光入射面としての第 2入射面 3 3 aと第 1光学部材 3 2の第 1入射面 3 2 aに対 して略平行な光出射面としての第 2出射面 3 3 bを有している。  Each of the first optical member 32 and the second optical member 33 is a wedge-shaped glass plate that transmits light having a predetermined wavelength (light in a predetermined band including the wavelength of illumination light). That is, the first optical member 32 has a first entrance surface 32a as a light entrance surface and a first exit surface 32b as a light exit surface oblique to the first entrance surface 32a. are doing. In addition, the second optical member 33 has a second incident surface 33 a as a light incident surface facing the first exit surface 32 b of the first optical member 32 and a second optical member 32. It has a second exit surface 33b as a light exit surface substantially parallel to the one entrance surface 32a.
第 1光学部材 3 2の第 1出射面 3 2 bには複数の陽圧溝 3 2 cおよび複数の負 圧溝 3 2 dが形成されている。 この実施形態では、 陽圧溝 3 2 cを挟んで両側に それそれ負圧溝 3 2 dを配置したものを両端部近傍の 2箇所に配置している。 これらの陽圧溝 3 2 cおよび負圧溝 3 2 dは、 第 1光学部材 3 2の第 1出射面 3 2 と第 2光学部材 3 3の第 2入射面 3 3 aとを互いに所定の間隔を保ちつつ 非接触で対面させる非接触装置としてのエア (空気) ベアリングを構成するため の溝である。 すなわち、 陽圧溝 3 2 cはそれぞれ通孔を介して図外の陽圧供給源 (圧縮空気供給装置) Pに連通されており、 陽圧供給源 Pが作動されることによ り圧縮空気が陽圧溝 3 2 cに供給され、 第 1光学部材 3 2を第 2光学部材 3 3に 対して離間 (浮上) させる方向に付勢する。 一方、 負圧溝 3 2 dはそれそれ通孔 を介して図外の負圧供給源 (真空吸引装置) Vに連通されており、 負圧供給源 V が作動されることにより負圧溝 3 2 d内の空気が真空吸引され、 第 1光学部材 3 2を第 2光学部材 3 3に対して近接 (接触) させる方向に付勢する。  A plurality of positive pressure grooves 32 c and a plurality of negative pressure grooves 32 d are formed on the first light exit surface 32 b of the first optical member 32. In this embodiment, negative pressure grooves 32 d are arranged on both sides of the positive pressure groove 32 c, respectively, at two locations near both ends. The positive pressure groove 3 2c and the negative pressure groove 3 2d connect the first exit surface 32 of the first optical member 32 and the second entrance surface 33a of the second optical member 33 to each other by a predetermined distance. This groove is used to construct an air bearing as a non-contact device that faces each other in a non-contact manner while maintaining an interval. That is, each of the positive pressure grooves 32c is communicated with a positive pressure supply source (compressed air supply device) P (not shown) through the respective through holes. Is supplied to the positive pressure groove 32c, and urges the first optical member 32 in a direction to separate (float) from the second optical member 33. On the other hand, the negative pressure groove 3 2 d is connected to a negative pressure supply source (vacuum suction device) V (not shown) through the respective through holes, and the negative pressure supply source V is actuated. The air in 2d is sucked in vacuum and urges the first optical member 32 in a direction to make the first optical member 32 approach (contact) the second optical member 33.
陽圧供給源 Pと負圧供給源 Vを適宜に調整制御して、 陽圧溝 3 2 cによる反発 力と負圧溝 3 2 dによる吸引力とを所定値に保つことにより、 第 1光学部材 3 2 の第 1出射面 3 2 bと第 2光学部材 3 3の第 2入射面 3 3 aとが一定のギャップ Gを保った状態で対向することになる。 この実施形態では、 このギャップ Gは約 1 0 mに設定した。 なお、 このギャップ Gが大きくなりすぎると、 光学的な収 差が発生してしまうので、 本実施の形態のように 1 0 111〜数1 0 mが望まし い。 いずれにせよ使用する装置 (例えば投影露光装置) で許容できる光学的収差 内にギヤッブ Gを設定すればいい。 By appropriately adjusting and controlling the positive pressure supply source P and the negative pressure supply source V to maintain the repulsive force by the positive pressure groove 32c and the suction force by the negative pressure groove 32d at predetermined values, The first exit surface 32b of the member 32 and the second entrance surface 33a of the second optical member 33 face each other while maintaining a constant gap G. In this embodiment, this gap G is about It was set to 10 m. Note that if the gap G is too large, an optical difference occurs, and therefore, as in the present embodiment, a value of 10 111 to several 10 m is desirable. In any case, the gear G should be set within the optical aberration that can be tolerated by the equipment used (for example, a projection exposure apparatus).
移動装置のリニアァクチユエ一夕 3 5は、 その作動軸の先端が第 1光学部材 3 2の一方の側面に当接しており、 該作動軸を伸縮することによって、 第 1光学部 材 3 2をガイドロ一ラ 3 4に沿ってスライ ド (移動) させる。 コイルパネ 3 6は リニアァクチユエ一夕 3 5の作動軸の先端部に第 1光学部材 3 2の一方の側面が 当接するように該第 1光学部材 3 2の他方の側面を付勢している。 第 1光学部材 3 2の位置 (移動量) は、 ポテンショメータ若しくはリニアエンコーダなどの位 置検出センサ 3 7により検出され、 この検出値に基づきリニアァクチユエ一夕 3 5がフィードバック制御されることにより、 第 1光学部材 3 2を第 2光学部材 3 3に対して任意の位置に正確に位置決めすることができる。  In the linear actuator 35 of the moving device, the tip of the operating shaft is in contact with one side surface of the first optical member 32, and the first optical member 32 is guided by expanding and contracting the operating shaft. Slide (move) along la 3 4. The coil panel 36 urges the other side of the first optical member 32 such that one side of the first optical member 32 comes into contact with the tip of the operating shaft of the linear actuator 35. The position (movement amount) of the first optical member 32 is detected by a position detection sensor 37 such as a potentiometer or a linear encoder, and based on the detected value, the linear actuator 35 is feedback-controlled to obtain a first position. The optical member 32 can be accurately positioned at an arbitrary position with respect to the second optical member 33.
これにより、 第 1光学部材 3 2の第 1入射面 3 2 aと第 2光学部材 3 3の第 2 出射面 3 3 bとの相対寸法 (厚さ) を任意に微調整することができ、 例えば図 4 において、 第 1光学部材 3 2を二点差線で示す位置から実線で示す位置にスライ ドさせることにより、 投影光学系 1 3の結像位置を (5だけ変更することができる。 以上のように、 結像位置調整装置 3 1により、 各投影光学系 1 3のそれそれの光 軸方向 (Z方向) の結像位置を精度良く調整することができる。  Thereby, the relative dimension (thickness) between the first entrance surface 3 2a of the first optical member 32 and the second exit surface 33b of the second optical member 33 can be arbitrarily finely adjusted. For example, in FIG. 4, the image forming position of the projection optical system 13 can be changed by (5) by sliding the first optical member 32 from the position indicated by the two-dot line to the position indicated by the solid line. As described above, the imaging position adjustment device 31 can precisely adjust the imaging position of each projection optical system 13 in the optical axis direction (Z direction).
第 2光学部材 3 3の第 2入射面 3 3 aには、 クローム膜などの接触防止膜 3 8 が矩形状に形成されており、 非運転状態において、 すなわち、 エアベアリングを 作動させていない場合において、 第 1光学部材 3 2の第 1出射面 3 2 bと第 2光 学部材 3 3の第 2入射面 3 3 aとの直接的な接触を防止する。  On the second entrance surface 33a of the second optical member 33, a contact prevention film 38 such as a chrome film is formed in a rectangular shape, and in a non-operation state, that is, when the air bearing is not operated. In this case, direct contact between the first exit surface 32b of the first optical member 32 and the second entrance surface 33a of the second optical member 33 is prevented.
再度、 図 2および図 3を参照する。 マスク 1 1と感光基板 1 2との間の部分で あって、 視野領域 1 8 a〜l 8 cに対応する投影光学系 1 3と視野領域 1 8 d, 1 8 eに対応する投影光学系 1 3との間の図 2で十字線で示される位置には、 Y 方向に配列的に複数 (この実施形態では 3個) のフォーカスセンサ 2 0が設けら - れている。 これらのフォーカスセンサ 2 0は、 マスク 1 1の表面 (パターン面) および感光基板 1 2の表面 (露光面) に向けてそれぞれ検出ビームを出射し、 そ の反射光を検出することにより、 マスク 1 1の表面および感光基板 1 2の表面の Z方向の位置をそれそれ検出する装置である。 Referring again to FIG. 2 and FIG. A portion between the mask 11 and the photosensitive substrate 12, and a projection optical system 13 corresponding to the visual field regions 18 a to l 8 c and a projection optical system corresponding to the visual field regions 18 d and 18 e A plurality of (three in this embodiment) focus sensors 20 are arranged in the Y direction between the positions 13 and 13 as indicated by the crosshairs in FIG. 2. These focus sensors 20 emit detection beams toward the surface (pattern surface) of the mask 11 and the surface (exposure surface) of the photosensitive substrate 12, respectively. This is a device for detecting the positions of the surface of the mask 11 and the surface of the photosensitive substrate 12 in the Z direction by detecting the reflected light of the light.
走査ステージを X方向に移動しつつ、 これらの各フォーカスセンサ 2 0による フォーカス信号に基づき、 X方向に適宜なサンプリングピッチでデータを採取す ることにより、 走査ステージの送り量により規定される X座標およびフォーカス センサ 2 0の Y方向における設置位置により規定される Y座標に対応する位置に おけるマスク 1 1および感光基板 1 2のそれそれの Z方向の位置からなる表面デ —夕を得ることができる。  By moving the scanning stage in the X direction and collecting data at an appropriate sampling pitch in the X direction based on the focus signal from each of these focus sensors 20, the X coordinate specified by the scanning stage feed amount And the surface of the mask 11 and the photosensitive substrate 12 at the position corresponding to the Y coordinate defined by the installation position of the focus sensor 20 in the Y direction. .
これらの表面データは、 マスク 1 1および感光基板 1 2のそれそれの平面度、 それそれのマスクテ一ブルおよび基板テーブル 1 6に対する保持に伴う撓み、 走 査ステージの送りの不均一などに起因するマスク 1 1と感光基板 1 2の表面の凹 凸を示すデ一夕であるが、 この実施形態では、 マスク 1 1および感光基板 1 2の それそれについての Z方向の位置に基づき、 マスク 1 1と感光基板 1 2の Z方向 の相対距離を求めてこれを表面デ一夕とする。 そして、 マスク 1 1は理想的な平 面であるものと仮定し、 マスク 1 1の表面の凹凸をも含めて全ての凹凸は感光基 板 1 2にあるものとして取り扱う。 この表面データは不図示の記憶装置に記憶保 持される。  These surface data are caused by the flatness of the mask 11 and the photosensitive substrate 12, the bending of the mask table and the substrate table 16 due to the holding thereof, and the unevenness of the scanning stage feed. Although this is an example showing the irregularities on the surfaces of the mask 11 and the photosensitive substrate 12, in this embodiment, the mask 11 1 and the photosensitive substrate 12 are based on the respective positions in the Z direction. The relative distance in the Z direction between the substrate and the photosensitive substrate 12 is determined, and this is defined as the surface distance. Then, it is assumed that the mask 11 is an ideal flat surface, and all the irregularities including the irregularities on the surface of the mask 11 are treated as being on the photosensitive substrate 12. This surface data is stored in a storage device (not shown).
次に、 図 6に示す処理の概要を示す図を参照して、 この走査型露光装置の動作 について説明する。 まず、 走査ステージを + X方向の端部の所定の基板受け渡し 位置に移動し、 感光基板 (プレート) 1 2を走査ステージの基板テーブル 1 6上 に搬入 (ローデイング) する (S T 1 ) 。 マスク 1 1は走査ステージのマスクテ —ブルに既に搬入保持されているものとする。  Next, the operation of this scanning type exposure apparatus will be described with reference to the figure showing the outline of the processing shown in FIG. First, the scanning stage is moved to a predetermined substrate transfer position at the end in the + X direction, and the photosensitive substrate (plate) 12 is loaded (loaded) onto the substrate table 16 of the scanning stage (ST 1). It is assumed that the mask 11 has already been loaded and held on the mask table of the scanning stage.
その後、 予備スキャンを実施すべく—X方向への走査ステージの移動を開始し、 マスク 1 1および感光基板 1 2を投影光学系 1 3に対して同期移動する。 このと き、 照明光学系 1 4による照明光は不図示のシャツタにより遮断されているもの とする。  After that, the scanning stage is started to move in the X direction in order to perform a preliminary scan, and the mask 11 and the photosensitive substrate 12 are synchronously moved with respect to the projection optical system 13. At this time, it is assumed that the illumination light from the illumination optical system 14 is blocked by an unillustrated shirt.
この予備スキャン中には、 マスク 1 1および感光基板 1 2の X— Y平面内にお ける相対的な姿勢 (X , Y位置) の検出を行う (S T 2 ) 。 具体的には、 ァライ メント顕微鏡 1 5が所定の検出位置に繰り出されて、 感光基板 1 2のァライメン トマ一ク 12 a, 12 bが視野領域 18 a, 18 cの位置にきたときにァライメ ント顕微鏡 15により、 感光基板 12のァライメントマーク 12 a, 12 bとこ れらに対応するマスク 1 1上に形成されたァライメントマークの相対的な位置ず れを検出し、 次いで、 感光基板 12のァライメントマ一ク 1 2 c, 12 dが視野 領域 18 a, 18 cの位置にきたときにァライメント顕微鏡 15により、 ァライ メントマーク 12 c, 12 dとこれらに対応するマスク 1 1上に形成されたァラ ィメントマ一クの相対的な位置ずれを検出する。 During this preliminary scan, the relative postures (X, Y positions) of the mask 11 and the photosensitive substrate 12 in the XY plane are detected (ST 2). Specifically, the alignment microscope 15 is extended to a predetermined detection position, and the alignment of the photosensitive substrate 12 is adjusted. When the marks 12a and 12b come to the positions of the viewing areas 18a and 18c, the alignment microscope 15 uses the alignment marks 12a and 12b of the photosensitive substrate 12 and the corresponding masks 11 on the photosensitive substrate 12. The relative position of the alignment marks formed on the photosensitive substrate 12 is detected, and then, when the alignment marks 12 c and 12 d of the photosensitive substrate 12 come to the positions of the viewing areas 18 a and 18 c, the alignment microscope 15 Thus, the relative displacement between the alignment marks 12c and 12d and the corresponding alignment marks formed on the mask 11 are detected.
また、 この予備スキャン中には、 上記の処理 (ST 2) と並行して、 マスク 1 1および感光基板 12の Z方向の相対距離 (Z位置) の検出も行う (ST 3) 。 具体的には、 各フォーカスセンサ 20によるマスク 1 1および感光基板 12につ いてのフォーカス信号に基づき、 マスク 1 1および感光基板 12の Z方向の位置 を所定のピッチでサンプリングすることにより、 碁盤目状に規定された所定の X および Y座標に対応するマスク 1 1および感光基板 12の Z方向の相対距離を表 面デ一夕として記憶装置に格納する。 この表面データの X方向のサンプリング位 置は、 図 2において、 十字線および十字点線で示されている。 なお、 感光基板 1 2上の X方向のサンプリング数は多いほど精度的には良好となるが、 信号処理や 計算処理に要する時間などとの関係を考慮して適宜に設定される。  In addition, during this preliminary scan, the relative distance (Z position) in the Z direction between the mask 11 and the photosensitive substrate 12 is also detected (ST 3) in parallel with the above processing (ST 2). Specifically, the Z-direction positions of the mask 11 and the photosensitive substrate 12 are sampled at a predetermined pitch based on the focus signals of the mask 11 and the photosensitive substrate 12 by the respective focus sensors 20, thereby forming a grid. The relative distance in the Z direction between the mask 11 and the photosensitive substrate 12 corresponding to the predetermined X and Y coordinates defined in the form is stored in the storage device as the surface data. The sampling position of this surface data in the X direction is indicated by a cross line and a cross-dot line in FIG. Note that the higher the number of samplings in the X direction on the photosensitive substrate 12, the better the accuracy. However, the number is appropriately set in consideration of the time required for signal processing and calculation processing.
走査ステージがー X方向の所定の端部折り返し位置まで移動したならば、 マス ク 1 1の各ァライメントマークと感光基板 12のこれらに対応するァライメント マーク 12 a〜 12 dとの相対的な位置ずれが最小となるように、 基板テーブル 12およびマスクテ一ブルに装備された不図示の位置補正機構によって、 マスク 1 1および感光基板 12のいずれか一方または双方を X— Y平面内でシフトし、 回転するなどにより、 マスク 1 1と感光基板 12の姿勢を互いに整合させる (S T 4) 。  When the scanning stage has moved to the predetermined end turn-back position in the X direction, the relative positions of the alignment marks on the mask 11 and the corresponding alignment marks 12a to 12d on the photosensitive substrate 12 are determined. In order to minimize the displacement, one or both of the mask 11 and the photosensitive substrate 12 are shifted in the XY plane by a position correction mechanism (not shown) provided on the substrate table 12 and the mask table, The postures of the mask 11 and the photosensitive substrate 12 are aligned with each other by rotating (ST4).
また、 記憶装置に格納された X— Y平面内の離散的な位置における Z方向の相 対距離の集合としての表面データに基づき、 近似曲面を最小自乗法などの近似方 法を用いて算出する (S T 5) 。  Also, based on surface data as a set of relative distances in the Z direction at discrete positions in the XY plane stored in the storage device, an approximated surface is calculated using an approximation method such as a least square method. (ST 5).
その後、 レべリング制御量を算出する (ST 6) 。 すなわち、 各投影光学系 1 3の焦点距離の情報 (予め求められている) に基づき、 結像位置調整装置 31の 第 1光学部材 3 2が所定の初期位置にある状態における理論的な結像位置を算出 し、 この理論的な結像位置と S T 5で算出した近似曲面に基づき、 フォーカス誤 差 (投影光学系 1 3の当該結像位置と当該近似曲面との間の Z方向の距離) が Y 方向に渡って最小となるような基板テーブル 1 6の X軸回りの回転量 ( θ χ ) お よび Ζ方向のシフト量を算出し、 これを基根テーブル 1 6の姿勢を調整するリニ ァァクチユエ一タ 1 7に対するレべリング制御量とする。 なお、 基板テーブル 1 6の Υ軸回りの回転についても補正制御する場合には、 当該回転量 (0 y ) を同 様に算出し、 これも含めてリニアァクチユエ一夕 1 7に対するレべリング制御量 とする。 このレべリング制御量は、 走査ステージの X方向への送り量 (移動量) に応じて所定の送り量毎に算出される。 After that, the leveling control amount is calculated (ST6). That is, based on the focal length information (predetermined) of each projection optical system 13, A theoretical imaging position in a state where the first optical member 32 is at a predetermined initial position is calculated, and a focus error (projection optical system) is calculated based on the theoretical imaging position and the approximated surface calculated in ST5. The amount of rotation of the substrate table 16 around the X-axis (θ χ) and the よ う な direction such that the distance in the Z direction between the image forming position and the approximated curved surface in 13) is minimized in the Y direction. Is calculated, and this is used as a leveling control amount for the linear actuator 17 for adjusting the attitude of the base table 16. When the correction control is also performed for the rotation of the substrate table 16 around the Υ axis, the rotation amount (0 y) is calculated in the same manner, and the leveling control amount for the linear actuator 17 is also calculated. And The leveling control amount is calculated for each predetermined feed amount according to the feed amount (movement amount) of the scanning stage in the X direction.
次いで、 S T 5で算出した近似曲面を S T 6で算出したレペリング制御量によ り補正した新たな近似曲面を算出し、 この新たな近似曲面および前記理論的な結 像位置に基づき、 さらに残留するフォーカス誤差を算出して、 これらを結像位置 調整装置 3 1に対する結像位置制御量とする (S T 7 ) 。  Next, a new approximated surface obtained by correcting the approximated surface calculated in ST 5 by the leveling control amount calculated in ST 6 is calculated, and further remaining based on the new approximated surface and the theoretical imaging position. The focus errors are calculated, and these are used as the imaging position control amounts for the imaging position adjustment device 31 (ST7).
これらの制御量の算出の後、 照明光学系 1 4のシャツ夕による照明光の遮断を 解除するとともに、 走査ステージを移動することにより本スキャンを開始する。 この走査ステージの移動に伴い、 該走査ステージの X方向の位置に対応するレべ リング制御量に基づきリニアァクチユエ一夕 1 7を適宜に作動させてレペリング するとともに、 結像位置制御量に基づき結像位置調整装置 3 1のリニアァクチュ エー夕 3 5を作動させて第 1光学部材 3 2を第 2光学部材 3 3に対してスライ ド させて全体としての板厚を調整することにより、 各投影光学系 1 3の結像位置を それそれ感光基板 1 2の表面にほぼ一致させつつ、 感光基板 1 2に対して露光す る (S T 8 ) 。 これにより、 感光基板 1 2の感光材料が選択的に感光し、 マスク 1 1のパターンの像が逐次的に投影転写される。 当該感光基板 1 2についてのパ ターンの転写形成が終了したならば、 他の感光基板と交換して、 同様の動作を繰 り返す。  After the calculation of these control amounts, the blocking of the illumination light by the shirt of the illumination optical system 14 is released, and the main scan is started by moving the scanning stage. Along with the movement of the scanning stage, the linear actuator 17 is operated as appropriate based on the leveling control amount corresponding to the position of the scanning stage in the X direction, and the leveling is performed based on the imaging position control amount. By operating the linear mechanism 35 of the position adjusting device 31 and sliding the first optical member 32 with respect to the second optical member 33 to adjust the overall plate thickness, each projection optical system can be adjusted. The photosensitive substrate 12 is exposed while the imaging position of 13 is almost coincident with the surface of the photosensitive substrate 12 (ST8). Thus, the photosensitive material on the photosensitive substrate 12 is selectively exposed to light, and the pattern images of the mask 11 are sequentially projected and transferred. When the transfer formation of the pattern on the photosensitive substrate 12 is completed, the same operation is repeated by replacing the photosensitive substrate 12 with another photosensitive substrate.
本実施形態の走査型投影露光装置によると、 図 7 Aに示されているように、 走 査 (本スキャン) 中に基板テーブル 1 6についてのリニァァクチユエ一夕 1 7を レベリング制御量に基づいて制御してレペリングすることにより、 感光基板 1 2 の表面の各位置におけるフォーカス誤差を平均的に小さくする。 そして、 これに 加えて、 このレべリングによってもなお残留するフォーカス誤差を、 図 7 Bに示 されているように、 各投影光学系 1 3についてそれそれ設けた結像位置調整装置 3 1を結像位置制御量に基づき制御することにより投影光学系自身の結像位置を 変更調整して個別的に小さくする。 なお、 図 7 Aにおいて、 二点差線で示すのは 結像位置を調整する前の各投影光学系 1 3の全体的な結像面であり、 図 7 Bにお いて、 二点差線で示すのは結像位置を調整した後の各投影光学系 1 3のそれそれ の個別的な結像面である。 According to the scanning projection exposure apparatus of the present embodiment, as shown in FIG. 7A, during scanning (main scanning), the linear work 17 of the substrate table 16 is controlled based on the leveling control amount. And sensitized substrate 1 2 The focus error at each position on the surface is reduced on average. Further, in addition to this, as shown in FIG. 7B, the focus error which still remains due to this leveling is adjusted by the image forming position adjusting device 31 provided for each projection optical system 13. By controlling based on the imaging position control amount, the imaging position of the projection optical system itself is changed and adjusted to individually reduce the size. In FIG. 7A, what is indicated by a two-dot line is the entire image plane of each projection optical system 13 before adjusting the imaging position, and is indicated by a two-dot line in FIG. 7B. Are individual imaging planes of each of the projection optical systems 13 after adjusting the imaging position.
これにより、 マスク 1 1および感光基板 1 2の表面の凹凸などによるフォー力 ス誤差が解消され、 感光基板 1 2の全域に渡って最適フォーカスに近い状態で露 光処理を行うことができるようになり、 高精度で信頼性の高い液晶表示装置など のマイクロデバイスを製造することができる。  This eliminates force errors due to irregularities on the surface of the mask 11 and the photosensitive substrate 12, so that exposure processing can be performed over the entire area of the photosensitive substrate 12 in a state close to optimal focus. Thus, microdevices such as liquid crystal display devices with high accuracy and high reliability can be manufactured.
なお、 上記実施形態では、 上記のレべリングおよび結像位置の調整は、 マスク 1 1および感光基板 1 2の Z方向の相対距離に関する表面デ一夕に基づいて実施 するようにしたが、 マスク 1 1についての表面データに基づいてのみ、 あるいは 感光基板 1 2についての表面データに基づいてのみ実施するようにできる。 また、 フォーカス誤差の平均的除去のためのレべリングは感光基板 1 2についてのァク チユエ一夕 1 7を作動させることにより行うようにしているが、 マスク 1 1につ いてのァクチユエ一夕を作動させることにより行うようにすることができ、 ある いは両方について行うようにすることもできる。  In the above-described embodiment, the above-described leveling and the adjustment of the imaging position are performed based on the surface distance of the relative distance in the Z direction between the mask 11 and the photosensitive substrate 12. It can be carried out only on the basis of the surface data on 11 or only on the basis of the surface data on the photosensitive substrate 12. In addition, the leveling for the average removal of the focus error is performed by operating the actuator 17 for the photosensitive substrate 12, but the operation for the mask 11 is performed. , Or both.
また、 本実施形態における結像位置調整装置 3 1においては、 第 1光学部材 3 2と第 2光学部材 3 3とはエアべァリングにより非接触状態で一定の間隔で対向 するようにしているので、 各投影光学系 1 3の結像位置を高精度で微調整するこ とができるとともに、 非接触であるから経時的な劣化も少なく、 長期に渡り安定 した調整を行うことができる。  Further, in the image forming position adjusting device 31 according to the present embodiment, the first optical member 32 and the second optical member 33 are arranged so as to face each other at a constant interval in a non-contact state by air bearing. In addition, the imaging position of each projection optical system 13 can be finely adjusted with high accuracy, and since it is non-contact, there is little deterioration over time, and stable adjustment can be performed over a long period of time.
結像位置調整装置 3 1の第 1光学部材 3 2と第 2光学部材 3 3についての非接 触装置としては、 上記の実施形態では負圧による吸引力と陽圧による反発力の組― み合わせによるエアべァリングとしたが、 本発明はこれに限定されることはなく、 磁力による吸引力と陽圧による反発力とを組み合わせたもの、 負圧による吸引力 と磁力による反発力を組み合わせたものでもよい。 また、 磁力による吸引力と同 じく磁力による反発力を組み合わせたものでもよく、 加えて、 重力、 パネによる 付勢力などと、 上記の陽圧若しくは負圧、 磁力などを適宜に組み合わせたもので もよい。 As the non-contact device for the first optical member 32 and the second optical member 33 of the imaging position adjusting device 31, in the above embodiment, the combination of the suction force by the negative pressure and the repulsion force by the positive pressure is used. The present invention is not limited to this. However, the present invention is not limited to this, and a combination of a magnetic attraction force and a positive pressure repulsion force, a negative pressure attraction force And a combination of repulsive force by magnetic force. It may be a combination of a magnetic attraction and a magnetic repulsion as well as a gravity, a biasing force by a panel, and the above-mentioned positive pressure or negative pressure, magnetic force, or the like. Is also good.
また、 結像位置調整装置 3 1全体をチルトさせる駆動機構を設ければ、 各投影 光学系 1 3の投影位置をシフ卜することができる。 例えば、 感光基板 1 2の伸縮 などにより各投影光学系 1 3の投影倍率を調整すると、 台形状の視野領域 1 8 a と 1 8 dとのオーバラップ量が変化してしまう。 このため、 不図示の駆動機構に より結像位置調整装置 3 1全体をチルトさせることにより台形状の視野領域 1 8 aと 1 8 dとのオーバラップ量を調節することができる。 このように、 本実施の 形態によれば、 各投影光学系 1 3の光軸方向および光軸方向と直交する Y方向の 結像位置を結像位置調整装置 3 1により調整できるので、 投影光学系 1 3の構成 を簡単にすることができる。  Further, if a drive mechanism for tilting the entire imaging position adjusting device 31 is provided, the projection position of each projection optical system 13 can be shifted. For example, if the projection magnification of each projection optical system 13 is adjusted by expansion and contraction of the photosensitive substrate 12 and the like, the amount of overlap between the trapezoidal field regions 18a and 18d changes. Therefore, the amount of overlap between the trapezoidal viewing regions 18a and 18d can be adjusted by tilting the entire imaging position adjusting device 31 by a drive mechanism (not shown). As described above, according to the present embodiment, the imaging position of each projection optical system 13 in the optical axis direction and the Y direction orthogonal to the optical axis direction can be adjusted by the imaging position adjustment device 31. The structure of the system 13 can be simplified.
なお、 以上説明した実施形態は、 本発明の理解を容易にするために記載された ものであって、 本発明を限定するために記載されたものではない。 したがって、 上記の実施形態に閧示された各要素は、 本発明の技術的範囲に属する全ての設計 変更や均等物をも含む趣旨である。  The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element described in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
例えば、 上述した実施形態では、 走査ステージによりマスク 1 1と感光基板 1 を一体的に移動する構成とし、 等倍投影により露光するようにした走査型投影 露光装置に本発明を適用した場合について説明しているが、 マスクと感光基板を 同方向または逆方向にそれそれ独立的に同期移動させつつ露光する走査型投影露 光装置に適用することもでき、 投影方法についても、 等倍投影に限らず、 縮小投 影若しくは拡大投影するものであってもよい。 また、 本発明の結像位置調整装置 は、 走査型の露光装置のみならず、 静止型の露光装置 (例えば、 ステッパー) に ついても適用することができる。  For example, in the above-described embodiment, a description will be given of a case where the mask 11 and the photosensitive substrate 1 are integrally moved by a scanning stage, and the present invention is applied to a scanning projection exposure apparatus configured to perform exposure by equal-magnification projection. However, it can also be applied to a scanning projection exposure apparatus that exposes the mask and the photosensitive substrate while independently and synchronously moving in the same direction or in the opposite direction.The projection method is also limited to 1: 1 projection. Instead, the image may be projected in a reduced or enlarged manner. Further, the image forming position adjusting apparatus of the present invention can be applied not only to a scanning type exposure apparatus but also to a stationary type exposure apparatus (for example, a stepper).
さらに、 本実施形態の露光装置では露光用照明光として水銀ランプから発生す る g線 (波長 4 3 6 n m) や i線 (波長 3 6 5 n m ) 、 K r Fエキシマレ一ザ ― Further, in the exposure apparatus of the present embodiment, g-rays (wavelength: 436 nm), i-rays (wavelength: 365 nm), and KrF excimer laser generated from a mercury lamp are used as exposure illumination light.
(波長 2 4 8 n m ) 、 A r Fエキシマレーザ (波長 1 9 3 n m) 、 F 2 レーザ(Wavelength 2 4 8 nm), A r F excimer laser (wavelength 1 9 3 nm), F 2 laser
(波長 1 5 7 n m ) 、 A r 2 レーザ (波長 1 2 6 n m) 、 及び金属蒸気レーザ又 は Y A Gレーザなどの高調波などを用いることができる。 また、 D F B半導体レ 一ザ又はファイバーレーザから発振される赤外域、 又は可視域の単一波長レーザ を、 例えばエルビウム (又はエルビウムとイツトリビゥムの両方) がドープされ たファイバーアンプで増幅し、 かつ非線形光学結晶を用いて紫外光に波長変換し た高調波を用いてもよい。 (Wavelength 1 5 7 nm), A r 2 laser (wavelength 1 2 6 nm), and metal vapor lasers also For example, a harmonic such as a YAG laser can be used. In addition, a single-wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and yttrium), and a non-linear optical amplifier is used. A harmonic converted to ultraviolet light using a crystal may be used.
本実施形態の露光装置により製造される半導体デバイスとしては、 例えば、 液 晶表示素子やプラズマディスプレイなどを含むディスプレイ装置、 半導体素子、 薄膜磁気ヘッド、 及び撮像素子 (C C D ) 等が含まれる。 このような半導体デバ イスは、 デバイスの機能 '性能設計を行うステップ、 この設計ステップに基づい てレチクルを製作するステップ、 ガラスプレートやウェハ等の基板を製作するス テツプ、 前記露光装置を用いてレチクルのパターンを基板に転写するステップ、 デバイス組み立てステップ (ダイシング工程、 ボンディング工程、 パヅケージェ 程を含む) 、 及び検査ステップ等を経て製造される。  The semiconductor device manufactured by the exposure apparatus of the present embodiment includes, for example, a display device including a liquid crystal display device and a plasma display, a semiconductor device, a thin-film magnetic head, an imaging device (CCD), and the like. Such a semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a substrate such as a glass plate or a wafer, and a reticle using the exposure apparatus. It is manufactured through a step of transferring the above pattern to a substrate, a step of assembling a device (including a dicing step, a bonding step, and a package step), and an inspection step.
なお、 本実施の形態の露光装置は、 複数のレンズから構成される照明光学系 1 4、 結像位置調整装置 3 1を有する複数の投影光学系 1 3を露光装置本体に組み 込み、 光学調整をするとともに、 多数の機械部品からなる走査ステージを露光装 置本体に取り付けて配線や配管を接続し、 更に総合調整 (電気調整、 動作確認等) をすることにより製造することができる。 なお、 露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。  The exposure apparatus of the present embodiment incorporates a plurality of projection optical systems 13 having an illumination optical system 14 composed of a plurality of lenses and an imaging position adjustment device 31 into an exposure apparatus main body, and performs optical adjustment. In addition to this, it can be manufactured by attaching a scanning stage consisting of a large number of mechanical parts to the exposure apparatus main body, connecting wiring and piping, and performing overall adjustment (electrical adjustment, operation confirmation, etc.). It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature and the degree of cleanliness are controlled.
明細書、 特許請求の範囲、 図面、 及び要約を含む、 1 9 9 8年 9月 2 5日付提 出の日本国特許出願第 1 0— 2 7 1 2 7 0号の全ての開示内容は、 そっく りその まま引用してここに組み込まれている。  All disclosures, including the description, claims, drawings, and abstract, of Japanese Patent Application No. 10-27,1270, filed September 25, 1998, are: It is incorporated here by reference as it is.

Claims

請 求 の 範 囲 The scope of the claims
I . 光学系の結像位置を調整する結像位置調整装置であって、 対向する傾斜面を有し、 所定波長の光を透過する第 1および第 2光学部材と、 前記対向する傾斜面を非接触で対向させる非接触装置と、 I. An image forming position adjusting device for adjusting an image forming position of an optical system, comprising: first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength; A non-contact device for non-contact facing,
前記光学系の光軸と交差する方向に沿って、 前記第 1光学部材と前記第 2光学 部材とを相対移動させる移動装置とを備えた結像位置調整装置。  An imaging position adjusting device comprising: a moving device that relatively moves the first optical member and the second optical member along a direction that intersects the optical axis of the optical system.
2 . 前記第 1および第 2光学部材はそれそれくさび状のガラス板である 請求項 1記載の結像位置調整装置。  2. The imaging position adjusting apparatus according to claim 1, wherein the first and second optical members are wedge-shaped glass plates.
3 . 前記非接触装置は、 非接触型ベアリングを含んでいる請求項 1また は 2記載の結像位置調整装置。  3. The imaging position adjusting device according to claim 1, wherein the non-contact device includes a non-contact bearing.
4 . 前記非接触型ベアリングは気体ベアリングである請求項 3記載の結 像位置調整装置。  4. The imaging position adjusting device according to claim 3, wherein the non-contact bearing is a gas bearing.
5 . 前記第 1光学部材と前記第 2光学部材とを一体的に前記光学系の光 軸に対して駆動する駆動機構を備えた請求項 1記載の結像位置調整装置。  5. The imaging position adjusting device according to claim 1, further comprising a drive mechanism that integrally drives the first optical member and the second optical member with respect to an optical axis of the optical system.
6 . 前記移動装置は、 前記第 1光学部材と前記第 2光学部材とを前記光 軸とほぼ直交する方向に沿って駆動する請求項 1記載の結像位置調整装置。  6. The imaging position adjustment device according to claim 1, wherein the moving device drives the first optical member and the second optical member along a direction substantially orthogonal to the optical axis.
7 . 投影光学系によりパターンを基板に露光する露光装置であって、 前記投影光学系内に配設されるとともに、 対向する傾斜面を有し、 所定波長の 光を透過する第 1および第 2光学部材と、  7. An exposure apparatus for exposing a pattern to a substrate by a projection optical system, the exposure apparatus being provided in the projection optical system, having first and second inclined surfaces facing each other, and transmitting light of a predetermined wavelength. An optical member;
前記投影光学系の光軸と交差する方向に沿って、 前記第 1光学部材と前記第 2 光学部材とを相対移動させる移動装置とを備えた露光装置。 ―  An exposure apparatus comprising: a moving device that relatively moves the first optical member and the second optical member along a direction that intersects the optical axis of the projection optical system. ―
8 . 前記対向する傾斜面を非接触で対向させる非接触装置を備えた請求 項 7記載の露光装置。  8. The exposure apparatus according to claim 7, further comprising a non-contact device for causing the opposed inclined surfaces to face each other in a non-contact manner.
9 . 前記第 1および第 2光学部材はそれそれくさび状のガラス板である 請求項 7記載の露光装置。  9. The exposure apparatus according to claim 7, wherein each of the first and second optical members is a wedge-shaped glass plate.
1 0 . 前記非接触装置は、 非接触型ベアリングを含んでいる請求項 8記 載の露光装置。  10. The exposure apparatus according to claim 8, wherein the non-contact device includes a non-contact type bearing.
I I . 前記非接触型ベアリングは気体ベアリングである請求項 1 0記載 の露光装置。 II. The non-contact type bearing is a gas bearing. Exposure equipment.
1 2 . 前記第 1光学部材と前記第 2光学部材とを一体的に前記投影光学 系の光軸に対して駆動する駆動機構を備えた請求項 7記載の露光装置。  12. The exposure apparatus according to claim 7, further comprising a driving mechanism that integrally drives the first optical member and the second optical member with respect to an optical axis of the projection optical system.
1 3 . 前記移動装置は、 前記第 1光学部材と前記第 2光学部材とを前記 光軸とほぼ直交する方向に沿って駆動する請求項 7記載の露光装置。  13. The exposure apparatus according to claim 7, wherein the moving device drives the first optical member and the second optical member along a direction substantially orthogonal to the optical axis.
1 4 . 前記パターンを備えたマスクを保持するマスクステージを備えた 請求項 7記載の露光装置。  14. The exposure apparatus according to claim 7, further comprising a mask stage for holding a mask having the pattern.
1 5 . 前記光軸方向に関する前記基板と前記マスクとの相対距離に関す る情報を検出する検出装置を備えた請求項 1 4記載の露光装置。  15. The exposure apparatus according to claim 14, further comprising a detection device that detects information about a relative distance between the substrate and the mask in the optical axis direction.
1 6 . 前記移動装置は、 前記検出装置の検出結果に基づいて前記第 1光 学部材と前記第 2光学部材とを相対移動させる請求項 1 5記載の露光装置。  16. The exposure apparatus according to claim 15, wherein the moving device relatively moves the first optical member and the second optical member based on a detection result of the detection device.
1 7 . 前記露光装置は、 前記基板を移動させている間に前記パターンを 露光する走査型露光装置である請求項 7記載の露光装置。  17. The exposure apparatus according to claim 7, wherein the exposure apparatus is a scanning exposure apparatus that exposes the pattern while moving the substrate.
1 8 . 前記露光装置は、 前記投影光学系を複数備えている請求項 7記載 の露光装置。  18. The exposure apparatus according to claim 7, wherein the exposure apparatus includes a plurality of the projection optical systems.
1 9 . 前記複数投影光学系のうち第 1投影光学系の投影領域の一部と、 第 2投影光学系の投影領域の一部とはォ一バラッブするように、 前記第 1投影光 学系と前記第 2投影光学系とは配設されている請求項 1 8記載の露光装置。  1 9. The first projection optical system so that a part of the projection area of the first projection optical system and a part of the projection area of the second projection optical system among the plurality of projection optical systems are different from each other. 19. The exposure apparatus according to claim 18, wherein the second projection optical system and the second projection optical system are provided.
2 0 . 光学系の結像位置を調整する結像位置調整方法であって、 対向する傾斜面を有し、 所定波長の光を透過する第 1および第 2光学部材を前 記光学系に配設するステツプと、  20. An imaging position adjusting method for adjusting an imaging position of an optical system, wherein first and second optical members having opposed inclined surfaces and transmitting light of a predetermined wavelength are arranged in the optical system. Steps to set up,
前記第 1光学部材と前記第 2光学部材とを前記傾斜面に沿って非接触で移動さ せるステップとを含む結像位置調整方法。  Moving the first optical member and the second optical member along the inclined surface in a non-contact manner.
2 1 . 前記第 1光学部材と前記第 2光学部材とを一体的に前記光学系の 光軸に対して駆動するステップを含む請求項 2 0記載の結像位置調整方法。  21. The imaging position adjustment method according to claim 20, further comprising a step of integrally driving the first optical member and the second optical member with respect to an optical axis of the optical system.
2 2 . 前記所定波長の光が入射する前記第 1光学部材の入射面と、 前記 所定波長の光が射出する前記第 2光学部材の射出面とはほぼ平行である請求項 2 0記載の結像位置調整方法。  22. The connection according to claim 20, wherein an incident surface of the first optical member on which the light of the predetermined wavelength is incident and an emission surface of the second optical member on which the light of the predetermined wavelength exits are substantially parallel. Image position adjustment method.
2 3 . 投影光学系によりパターンを基板に露光する露光方法であって、 対向する傾斜面を有し、 所定波長の露光光を透過する第 1および第 2光学部材 を前記投影光学系内に配設するステツブと、 23. An exposure method for exposing a pattern to a substrate by a projection optical system, A step having, in the projection optical system, first and second optical members having opposed inclined surfaces and transmitting exposure light of a predetermined wavelength;
前記投影光学系の光軸と交差する方向に沿って、 前記第 1光学部材と前記第 2 光学部材とを相対移動させるステップとを含む露光方法。  Relative moving the first optical member and the second optical member along a direction intersecting the optical axis of the projection optical system.
2 4 . 前記第 1光学部材と前記第 2光学部材とは、 非接触で前記相対移 動をする請求項 2 3記載の露光方法。  24. The exposure method according to claim 23, wherein the first optical member and the second optical member perform the relative movement in a non-contact manner.
2 5 . 前記露光光が入射する前記第 1光学部材の入射面と、 前記露光光 が射出する前記第 2光学部材の射出面とはほぼ平行である請求項 2 3記載の露光 方 ¾。  25. The exposure method according to claim 23, wherein an incident surface of the first optical member on which the exposure light is incident is substantially parallel to an emission surface of the second optical member from which the exposure light exits.
2 6 . 前記第 1光学部材と前記第 2光学部材とを一体的に前記投影光学 系の光軸に対して駆動するステツプを含む請求項 2 3記載の露光方法。  26. The exposure method according to claim 23, further comprising a step of driving the first optical member and the second optical member integrally with respect to the optical axis of the projection optical system.
2 7 . 前記基板を移動させている間に前記パターンを露光するステップ を含む請求項 2 3記載の露光方法。  27. The exposure method according to claim 23, further comprising: exposing the pattern while moving the substrate.
2 8 . 前記パターンの一部をオーバラップして前記基板に露光するステ ッブを含む請求項 2 3記載の露光方法。  28. The exposure method according to claim 23, further comprising a step of exposing the substrate while partially overlapping the pattern.
2 9 . 請求項 2 3記載の露光方法を用いて前記パターンが露光された基 板。  29. A substrate on which the pattern is exposed using the exposure method according to claim 23.
PCT/JP1999/005104 1998-09-25 1999-09-20 Image formation position adjusting device, exposure system, image formation adjusting method and exposure method WO2000019261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56538/99A AU5653899A (en) 1998-09-25 1999-09-20 Image formation position adjusting device, exposure system, image formation adjusting method and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/271270 1998-09-25
JP27127098 1998-09-25

Publications (1)

Publication Number Publication Date
WO2000019261A1 true WO2000019261A1 (en) 2000-04-06

Family

ID=17497754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005104 WO2000019261A1 (en) 1998-09-25 1999-09-20 Image formation position adjusting device, exposure system, image formation adjusting method and exposure method

Country Status (5)

Country Link
JP (1) JP4900465B2 (en)
KR (1) KR100617376B1 (en)
AU (1) AU5653899A (en)
TW (1) TW446829B (en)
WO (1) WO2000019261A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556278B1 (en) 1993-06-30 2003-04-29 Nikon Corporation Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
JP2003309053A (en) * 2002-04-12 2003-10-31 Nikon Corp Aligner and exposure method
JP2005266779A (en) * 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method
WO2006014595A1 (en) * 2004-07-08 2006-02-09 Coherent, Inc. Method and apparatus for maintaining focus and magnification of a projected image
US7659989B2 (en) 2007-06-29 2010-02-09 Coherent, Inc. Focus determination for laser-mask imaging systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608011B1 (en) 2004-11-03 2006-08-02 삼성전자주식회사 Image display device
JP5385652B2 (en) * 2009-03-24 2014-01-08 キヤノン株式会社 Position detection apparatus, exposure apparatus, position detection method, exposure method, and device manufacturing method
CN107966880B (en) * 2017-03-15 2019-01-11 上海微电子装备(集团)股份有限公司 A kind of vertical control method for litho machine
CN106950691B (en) * 2017-03-20 2019-11-29 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) A kind of optical path compensation device
DE102018218110A1 (en) 2018-10-23 2020-04-23 Carl Zeiss Smt Gmbh SPACERS, OPTICAL SYSTEM AND LITHOGRAPHY SYSTEM

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179815A (en) * 1982-04-15 1983-10-21 Yokogawa Hokushin Electric Corp Optical scanner
JPH0360010U (en) * 1989-10-17 1991-06-13
JPH03220515A (en) * 1990-01-25 1991-09-27 Nec Corp Focus position detection system
JPH04103364U (en) * 1991-01-16 1992-09-07 日立金属株式会社 Floating magnetic head for magneto-optical recording
JPH04123541U (en) * 1991-04-17 1992-11-09 日立電子エンジニアリング株式会社 Wafer inspection stage
JPH05258321A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Optical information reading device
JPH05343292A (en) * 1992-06-08 1993-12-24 Nikon Corp Exposure apparatus
JPH06326000A (en) * 1993-05-14 1994-11-25 Canon Inc Projection aligner
JPH08288192A (en) * 1995-04-13 1996-11-01 Nikon Corp Projection aligner
JPH09318872A (en) * 1996-05-28 1997-12-12 Sony Corp Doublet lens, variable apex angle prism and shake correcting device
JPH10186222A (en) * 1996-12-24 1998-07-14 Asahi Optical Co Ltd Optical path length adjusting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200943A (en) * 1993-01-07 1994-07-19 Toshiba Corp Hydrostatic bearing device
JP3610597B2 (en) * 1994-07-29 2005-01-12 株式会社ニコン Exposure apparatus and method
JPH07307284A (en) * 1994-05-16 1995-11-21 Nikon Corp Scanning exposure device
JPH09242756A (en) * 1996-03-08 1997-09-16 Fanuc Ltd Support device and bearing
JPH10223525A (en) * 1997-02-10 1998-08-21 Nikon Corp Focus control method for aligner
JPH11305419A (en) * 1998-02-18 1999-11-05 Nikon Corp Photomask, aberration correction plate and exposure device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179815A (en) * 1982-04-15 1983-10-21 Yokogawa Hokushin Electric Corp Optical scanner
JPH0360010U (en) * 1989-10-17 1991-06-13
JPH03220515A (en) * 1990-01-25 1991-09-27 Nec Corp Focus position detection system
JPH04103364U (en) * 1991-01-16 1992-09-07 日立金属株式会社 Floating magnetic head for magneto-optical recording
JPH04123541U (en) * 1991-04-17 1992-11-09 日立電子エンジニアリング株式会社 Wafer inspection stage
JPH05258321A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Optical information reading device
JPH05343292A (en) * 1992-06-08 1993-12-24 Nikon Corp Exposure apparatus
JPH06326000A (en) * 1993-05-14 1994-11-25 Canon Inc Projection aligner
JPH08288192A (en) * 1995-04-13 1996-11-01 Nikon Corp Projection aligner
JPH09318872A (en) * 1996-05-28 1997-12-12 Sony Corp Doublet lens, variable apex angle prism and shake correcting device
JPH10186222A (en) * 1996-12-24 1998-07-14 Asahi Optical Co Ltd Optical path length adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556278B1 (en) 1993-06-30 2003-04-29 Nikon Corporation Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
JP2003309053A (en) * 2002-04-12 2003-10-31 Nikon Corp Aligner and exposure method
JP2005266779A (en) * 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method
WO2006014595A1 (en) * 2004-07-08 2006-02-09 Coherent, Inc. Method and apparatus for maintaining focus and magnification of a projected image
US7659989B2 (en) 2007-06-29 2010-02-09 Coherent, Inc. Focus determination for laser-mask imaging systems

Also Published As

Publication number Publication date
JP2010135803A (en) 2010-06-17
KR20010089255A (en) 2001-09-29
KR100617376B1 (en) 2006-08-29
AU5653899A (en) 2000-04-17
JP4900465B2 (en) 2012-03-21
TW446829B (en) 2001-07-21

Similar Documents

Publication Publication Date Title
JP4900465B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7864293B2 (en) Exposure apparatus, exposure method, and producing method of microdevice
US6426790B1 (en) Stage apparatus and holder, and scanning exposure apparatus and exposure apparatus
JP2012094899A (en) Processing apparatus and method, pattern forming apparatus, exposure device and method, and method for manufacturing device
JP4211272B2 (en) Exposure apparatus and exposure method
US7154581B2 (en) Scanning exposure apparatus, manufacturing method thereof, and device manufacturing method
JPH0794388A (en) Method and device for projection exposure
US6404505B2 (en) Positioning stage system and position measuring method
JP2013503458A (en) Exposure method, exposure apparatus, and device manufacturing method
JP5169492B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO1999005709A1 (en) Exposure method and aligner
JP2004095653A (en) Aligner
JP2003347185A (en) Exposure method, exposure device, and method of manufacturing device
JP2004158610A (en) Aligner and aligning method
JP2000243693A (en) Stage device and aligner
KR102558072B1 (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
JP5234308B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2005183736A (en) Exposure method and apparatus, and device manufacturing method
JP5245506B2 (en) Stage apparatus, exposure method and apparatus, and device manufacturing method
JP5211690B2 (en) Calibration method, moving body driving method and apparatus, exposure method and apparatus, pattern forming method and apparatus, and device manufacturing method
JP3787531B2 (en) Exposure method and apparatus
JP2002057095A (en) Aligner
KR100945707B1 (en) Stage apparatus and holder, and scanning exposure apparatus and exposure apparatus
JPWO2002047133A1 (en) Substrate, position measurement method, position measurement device, exposure method, exposure device, and device manufacturing method
JP2005026615A (en) Stage unit and exposure apparatus, and measuring method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017003278

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017003278

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020017003278

Country of ref document: KR