WO2000017861A1 - Thin film induction write magnetic head and method of manufacturing the same - Google Patents

Thin film induction write magnetic head and method of manufacturing the same Download PDF

Info

Publication number
WO2000017861A1
WO2000017861A1 PCT/JP1999/000331 JP9900331W WO0017861A1 WO 2000017861 A1 WO2000017861 A1 WO 2000017861A1 JP 9900331 W JP9900331 W JP 9900331W WO 0017861 A1 WO0017861 A1 WO 0017861A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
layer
thin
magnetic head
magnetic
Prior art date
Application number
PCT/JP1999/000331
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoko Kutsuzawa
Ikuya Tagawa
Syuji Nishida
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Publication of WO2000017861A1 publication Critical patent/WO2000017861A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Definitions

  • the present invention relates to a thin-film inductive write magnetic head including an upper magnetic pole layer facing the air bearing surface, and a lower magnetic pole layer facing the upper magnetic pole layer with the gap layer interposed therebetween and facing the air bearing surface. Formed at the boundary between the gap layer and the air bearing surface, and swells toward the lower pole layer along the air bearing surface, and formed on the lower magnetic pole layer along the air bearing surface from the boundary surface with the gap layer.
  • the present invention relates to a thin-film inductive write magnetic head further comprising a lower sub-pole bulging toward the upper sub-pole.
  • the upper magnetic pole layer and the lower magnetic pole layer facing each other with the gap layer interposed therebetween form a write gap on the air bearing surface of the magnetic head slider.
  • lines of magnetic force passing between the two magnetic pole layers bypass the gap layer and act on the recording medium facing the air bearing surface to magnetize the recording medium. This magnetization generates a recording track on the recording medium.
  • the width of the upper magnetic pole layer and the lower magnetic pole layer facing each other on the air bearing surface determines the recording track width. If the widths of the upper magnetic pole layer and the lower magnetic pole layer can be reduced, it is possible to increase the track density and to further improve the areal recording density. Therefore, if a narrow upper sub-pole swelling from the upper pole layer to the lower pole layer and a narrow lower sub-pole swelling from the lower pole layer to the upper pole layer are used, a narrow writing gap can be obtained. It is thought that the surface recording density can be increased as a result.
  • a magnetic field peak occurs at a write gap used for recording information, but also the recording track extends from the upper sub-pole along the air bearing surface in the recording track width direction.
  • a magnetic field peak also occurs at the edge of the upper magnetic pole layer. The magnetic field beak caused by these edges is The recording track adjacent to the recording track on which information is recorded is disturbed. Unless the peak of the magnetic field generated in such an edge is suppressed, the areal recording density on the recording medium cannot be increased as desired. Disclosure of the invention
  • the present invention has been made in view of the above situation, and has as its object to provide a thin-film inductive write magnetic head having good magnetic field characteristics suitable for improvement in areal recording density.
  • an upper magnetic pole layer facing the air bearing surface, a lower magnetic pole layer facing the upper magnetic pole layer with the gap layer interposed therebetween and facing the air bearing surface, and an upper magnetic pole layer are formed.
  • an upper sub-pole swelling from the boundary surface with the gap layer along the air bearing surface toward the lower magnetic pole layer, and the vertical length of the upper sub-magnetic pole in the air bearing surface is set to 1.5 m or more.
  • a thin-film inductive write magnetic head is provided.
  • a narrow gap layer force is formed between the upper sub pole and the lower pole layer.
  • the recording track width of the recording medium on which the magnetic head records information is determined by the narrow gap layer. Therefore, the width of the recording track can be made narrower than simply using the gap layer formed by the upper magnetic pole layer and the lower magnetic pole layer. As a result, the track density can be increased, and the areal recording density of the recording medium can be further improved.
  • the boundary surface of the upper magnetic pole layer protrudes from the upper sub magnetic pole in the recording track width direction along the air bearing surface, good overwrite characteristics can be obtained.
  • the vertical length of the air bearing surface of the upper sub magnetic pole is set to 1.5 m or more, the magnitude of the magnetic field generated at the edge of the overhanging upper magnetic pole layer can be reliably reduced by the coercive force H c of the recording medium. It can be reduced to less than one part. If the magnetic field strength of the applied magnetic field is equal to or less than half of the coercive force Hc, it is considered that no reversal of the magnetization occurs on the recording medium. As a result, it is possible to avoid problems such as an increase in the recording track width and a magnetization reversal of a recording track adjacent to a recording track on which information is recorded.
  • the vertical length of the air bearing surface is set to 3.0 Om or more, even if the overhang length of the upper pole layer overhanging from the upper sub-pole is large, the magnitude of the magnetic field generated by the edge is sufficiently prevented.
  • the magnetic force H c can be reduced to less than half.
  • the overhang length of the magnetic pole can be increased, the yield during manufacturing can be improved.
  • the overhang length of the upper pole layer is preferably 0.4 or less.
  • the thin-film inductive write magnetic head may further include a lower sub-pole formed on the lower pole layer and swelling from the interface with the gap layer along the air bearing surface toward the upper sub-pole.
  • the length of the lower sub-magnetic pole in the vertical direction of the air bearing surface may be set to 1.5 m or more, as in the case of the upper sub-magnetic pole, and is preferably set to 3.0 m or more.
  • the boundary surface of the upper magnetic pole layer may be inclined so as to move away from the lower magnetic pole layer as the distance from the upper auxiliary magnetic pole increases. According to this inclination, the magnetic field generated at the edge of the overhanging upper magnetic pole layer is reduced, so that it is possible to avoid problems such as an increase in a recording track width and a magnetization reversal of a recording track adjacent to a recording track where information is recorded. Becomes
  • the angle of inclination of the boundary surface may be set to 15 ° or more, preferably, 30 ° or more.
  • the magnitude of the magnetic field generated by the overhanging edge of the upper magnetic pole layer can be reliably suppressed to less than half the coercive force Hc of the recording medium.
  • the inclination angle is set to 30 ° or more, even if the overhang length of the upper magnetic pole layer overhanging from the upper sub-pole is large, the magnitude of the magnetic field generated by the edge can be sufficiently increased by two times the coercive force H c. It can be reduced to less than one part. If the overhang length of the upper magnetic pole can be made large in this way, the production yield can be improved.
  • a step of forming an upper sub-magnetic pole on the lower magnetic pole layer at the tip of the thin film induced write magnetic head facing the air bearing surface A step of laminating an insulating layer thereon and covering the formed upper sub-pole with an insulating layer; a step of subjecting the insulating layer to a flattening process to expose the upper sub-pole; and a step of flattening the upper sub-pole Performing a process of ion milling the surface of the insulating layer containing: a method of manufacturing a thin-film inductive write magnetic head.
  • the upper sub-pole is first carved by the ion beam. As a result, a tapered surface is formed at the edge of the insulating layer. If the upper magnetic pole layer is formed using the formed taper surface, an upper magnetic pole layer having an inclined boundary surface can be obtained.
  • an upper pole layer having an inclined interface can be easily obtained.
  • a photoresist is uniformly applied to the surface of the insulating layer when the surface of the insulating layer has been subjected to the planarization treatment. Then, under exposure and development of the photoresist on the pattern of the upper magnetic pole layer using the mask pattern, under exposure may be used. According to the under exposure, the photoresist is not completely removed, and as a result, a tapered surface is formed in the photoresist near the upper subpole. When the upper magnetic pole layer is formed using this tapered surface, an upper magnetic pole layer having an inclined boundary surface is obtained.
  • a resist pattern is formed on the upper auxiliary magnetic pole.
  • An inclined boundary surface may be formed by lift-off.
  • the resist pattern is formed, if the insulating layer is formed again by sputtering or the like, the insulating layer is not completely laminated at the edge of the resist pattern. As a result, a tapered surface is formed in the insulating layer. If an upper pole layer is formed on such a taper surface, an upper pole layer with a sloping interface can be obtained.
  • a S ⁇ 0 2 insulating film uniformly on the surface of the insulating layer including an upper sub magnetic pole ZoTsuta Regis Bokuha the upper sub magnetic pole.
  • the turns may be formed on the S ⁇ 2 insulating film.
  • the edge of the resist pattern recedes, and a tapered surface is formed.
  • the SiO 2 insulating film is also removed while reflecting the shape of the resist pattern. As a result, a tapered surface is formed in the SiO 2 insulating film. If the resist pattern is removed and the upper magnetic pole layer is formed using the formed tapered surface, an upper magnetic pole layer having an inclined boundary surface can be obtained.
  • the thin-film inductive write magnetic head according to the present invention is combined with a read magnetic head such as a magnetoresistive (MR) element or a giant magnetoresistive (GMR) element. May be used. Further, the magnetic head according to the present invention can be applied to a magnetic disk device such as a hard disk drive (HDD) or a magnetic tape device.
  • a read magnetic head such as a magnetoresistive (MR) element or a giant magnetoresistive (GMR) element.
  • MR magnetoresistive
  • GMR giant magnetoresistive
  • FIG. 1 is a plan view showing the internal structure of a hard disk drive (HDD).
  • FIG. 2 is a perspective view showing a specific example of a flying head slider.
  • FIG. 3 is a plan view schematically showing a structure of an inductive write head element provided in the thin-film magnetic head.
  • FIG. 4 is a partial cross-sectional view taken along line 4-4 in FIG.
  • FIG. 5 is a diagram showing the state of the air bearing surface viewed from the direction of arrow 5 in FIG.
  • Fig. 6 is a partially enlarged view of Fig. 5 showing the vicinity of the upper sub-pole and the lower sub-pole.
  • Fig. 7A shows the gap magnetic field and the edge magnetic field distributed along the track width direction of the recording track.
  • 9 is a graph showing a specific example.
  • FIG. 7B is a graph showing another specific example of the gap magnetic field and the edge magnetic field distributed along the track width direction of the recording track.
  • FIG. 8 is a partially enlarged view of FIG. 4 showing a state near the upper sub-pole and the lower sub-pole.
  • FIG. 9 is a graph showing the relationship between the peak value of the edge magnetic field and the vertical length of the air bearing surface.
  • FIG. 10 is a graph showing the relationship between the maximum head magnetic field, that is, the peak value of the gap magnetic field, and the vertical length of the air bearing surface.
  • FIG. 11 is a graph showing the relationship between the peak value of the edge magnetic field and the overhang length of the upper pole layer.
  • FIG. 12 is a view corresponding to FIG. 6 showing the upper pole layer in which the boundary surface is inclined.
  • FIG. 13 is a graph showing the relationship between the peak value of the edge magnetic field and the inclination angle of the boundary surface.
  • Figure 14 shows the peak value of the maximum head magnetic field, that is, the gap magnetic field, and the inclination angle of the interface.
  • 6 is a graph showing a relationship with the graph.
  • FIG. 15 is a graph showing the relationship between the peak value of the edge magnetic field and the overhang length of the upper pole layer.
  • FIG. 16 is a diagram illustrating a method of forming an upper pole layer having an inclined boundary surface.
  • FIG. 17 is a diagram showing a method of forming an upper magnetic pole layer having an inclined boundary surface.
  • FIG. 18 is a diagram illustrating a method of forming an upper magnetic pole layer having an inclined boundary surface.
  • FIG. 19 is a diagram showing a method of forming an upper magnetic pole layer having an inclined boundary surface.
  • FIG. 20 is a diagram illustrating a method of forming an upper magnetic pole layer having an inclined boundary surface.
  • FIG. 1 shows the internal structure of a hard disk drive (HDD) 10 as a specific example of a magnetic disk drive.
  • the housing 11 of the HDD 10 accommodates a magnetic disk 13 mounted on the rotating shaft 12 and a flying head slider 14 facing the magnetic disk 13.
  • the flying head slider 14 is fixed to the tip of a carriage arm 16 that can swing around a swing axis 15.
  • the carriage arm 16 is oscillated by an actuator 17 which is composed of a magnetic circuit, and as a result, a flying head slider 14 magnetic disk It is positioned on the desired recording track on 13.
  • the interior space of the housing 11 is closed by a cover (not shown).
  • FIG. 2 shows a specific example of the flying head slider 14.
  • the flying head slider 14 has a flying surface 19 facing the magnetic disk 13.
  • two rails 20 forming an ABS surface (air bearing surface) are formed.
  • the flying head slider 14 can fly above the surface of the magnetic disk 13 by utilizing the air flow 21 received on the floating surface 19 (particularly the ABS surface) while the magnetic disk 13 is rotating.
  • a thin-film magnetic head built-in film 23 in which the thin-film magnetic head 22 is built is formed on the air outflow side end surface of the flying head slider 14.
  • Tsu Dosuraida 1 4 to levitation is formed from A 1 2 O 3 T i C (AlTiC)
  • head protection film 2 3 thin film magnetic is formed from A 1 2 ⁇ 3 (alumina).
  • the structure of the thin-film magnetic head 22 according to the present invention will be described in detail with reference to FIG.
  • This thin The film magnetic head 22 is provided with an inductive write head element 26 for recording information on the magnetic disk 13 using a magnetic field generated by the spiral-shaped conductor coil pattern 25 c Conductor coil When a magnetic field is generated in the pattern 25, the magnetic field lines are transmitted in the magnetic core 27 penetrating the center of the conductor coil pattern 25.
  • the magnetic core 27 includes an upper magnetic pole layer 8 facing the air bearing surface 19 and a lower magnetic pole layer 29 also facing the air bearing surface 19.
  • the upper magnetic pole layer 28 and the lower magnetic pole layer 29 are connected to each other at the center of the conductor coil pattern 25.
  • the upper magnetic pole layer 28 and the lower magnetic pole layer 29 face each other with the gap layer 30 interposed therebetween.
  • Lines of magnetic force transmitted through the magnetic core 27 pass between the upper magnetic pole layer 28 and the lower magnetic pole layer 29 at the tips of the upper magnetic pole layer 28 and the lower magnetic pole layer 29 while bypassing the gap layer 30.
  • the upper magnetic pole layer 28 and the lower magnetic pole layer 29 may be made of, for example, NiFe.
  • a magnetoresistive effect (MR) element 31 is used for reading information.
  • MR element 3 1 is sandwiched between and embedded in the AI 2 ⁇ three layers 3 2 F e N and N i F e of the bottom shield layer 3 3 and the lower magnetic pole layer 2 9.
  • the lower magnetic pole layer 29 functions as an upper shield layer of the MR element 31.
  • the MR element 31 instead of the MR element 31, another reading element such as a giant magnetoresistance (GMR) element may be used, and the inductive writing head element 26 is used alone without using the reading element. May be used.
  • GMR giant magnetoresistance
  • an upper sub-pole 35 is formed on the upper pole layer 28, and the upper sub-pole is formed on the lower pole layer 29.
  • a lower secondary magnetic pole 36 opposing 35 is formed.
  • the upper sub pole 35 swells from the interface 37 between the upper pole layer 28 and the gap layer 30 toward the lower pole layer 29.
  • the lower sub pole 36 expands from the interface 38 between the lower pole layer 29 and the gap layer 30 toward the upper pole layer 28.
  • the upper sub pole 35 and the lower sub pole Between the upper magnetic pole layer 28 and the lower magnetic pole layer 29, a narrow gap layer 39 narrower than the gap layer 30 formed between the upper magnetic pole layer 28 and the lower magnetic pole layer 29 is formed.
  • the track width of the recording track formed on the medium surface of the magnetic disk 13 is defined by the narrow gap layer 39 thus formed. Therefore, the track width can be reduced as compared with the case where the gap layer 30 formed by the upper magnetic pole layer 28 and the lower magnetic pole layer 29 is simply used. As a result, it is considered that the track density can be increased and the surface recording density on the magnetic disk 13 can be further improved. Since the boundary surface 37 of the upper magnetic pole layer 28 protrudes from the upper sub-magnetic pole 35 along the air bearing surface 19, good overwrite characteristics can be obtained.
  • the magnetic field characteristics of the inductive write head element 26 described above will be considered.
  • the magnetic flux of the upper sub pole 35 is guided toward the medium surface of the magnetic disk 13 by the narrow gap layer 39, It has been found that the magnetic flux of the upper pole layer 28 leaks toward the medium surface of the magnetic disk 13 at the edge 28 a of the upper pole layer 28.
  • the former is called a gap magnetic field
  • the latter is called an edge magnetic field.
  • simulation results shown in FIGS. 7A and 7B are obtained, for example. .
  • the peak value PK of the gap magnetic field AA on the center line of the recording track (the center in the direction of the AA line in FIG. 6).
  • the edge magnetic field BB is, for example, a peak value PK at a position shifted from the center line of the recording track in the recording track width direction (the direction of the BB line in FIG. 6). It can be seen that 2 ⁇ 200 000 e is reached.
  • medium coercivity It is considered that when a magnetic field is applied with a magnetic field strength of one half of the force Hc, the reversal of magnetization is caused on the recording medium. Therefore, as shown in FIG.
  • the peak value PK 2 of the edge magnetic field BB becomes apparent from the comparison of FIGS. 7A and 7B. It is confirmed that the magnitude of the peak value PK 2 decreases at the same time as moving toward the center line of. That is, the overhang length (see FIG. 6) of the boundary surface 37 of the upper magnetic pole layer 28 protruding from the upper sub pole 35 along the air bearing surface 19 is reduced, and the edge 2 8 of the upper magnetic pole layer 28 is reduced. As a approaches the upper auxiliary pole 35, the peak value PK2 of the edge magnetic field BB decreases. However, the smaller the overhang length, the worse the manufacturing yield.
  • the vertical length GD of the air bearing surface of the upper sub-pole 35 and the lower sub-pole 36 is set to 1.5 or more, preferably 3.0 or more. Is done.
  • the vertical length GD of the air bearing surface is defined by the lengths of the upper sub magnetic pole 35 and the lower sub magnetic pole 36 extending inward in the vertical direction from the air bearing surface 19, as shown in FIG.
  • the simulation results shown in FIG. 9 were obtained.
  • the overhang length A PW was set to 0.2 m. At present, it is difficult to set the overhang length ⁇ PW to less than 0.2 ⁇ m in view of the dimensional tolerances during manufacturing.
  • G be set to 3.0 m or more, and that the overhang length ⁇ ⁇ ⁇ of the boundary surface 37 be set to 0.4 m or less.
  • a slope may be provided at the boundary surface 37 of the upper pole layer 28, for example, as shown in FIG. According to this inclination, the boundary surface 37 is separated from the lower magnetic pole layer 29 as the distance from the upper sub magnetic pole 35 increases.
  • the inclination angle S of the boundary surface 37 is set to 15 ° or more, preferably 30 ° or more.
  • the inclination angle 0 is defined by the angle of the boundary surface 37 with respect to one surface parallel to the lower magnetic pole layer 29 when viewed from the air bearing surface 19 side.
  • the magnetic field characteristics were simulated using three-dimensional magnetic field analysis software. For example, the simulation results shown in Fig. 13 were obtained. However, the vertical length GD of the air bearing surface was set to 1.5 m, and the overhang length was set to 0.3.
  • the peak value PK 2 of the edge magnetic field is smaller than 15000 e, which is the lower limit of the magnetization reversal.
  • the peak value PK 1 60000 e of the gap magnetic field AA. .
  • the inclination angle S of the boundary surface 37 is 30.
  • the overhang length ⁇ ⁇ ⁇ of the boundary surface 37 be set to 0.45 m or less. If the inclination angle 0 of the boundary surface 37 is set to 30 ° or more, it is possible to secure a sufficiently large overhang length ⁇ PW and improve the yield during manufacturing.
  • the vertical length GD of the air bearing surface is 1.
  • FIG. 16A a lower magnetic pole layer 29 and a gap layer 30 are laminated on an AlTiC substrate according to a known method.
  • the upper sub-pole 35 is formed on the gap layer 30 by plating film formation or the like.
  • an ion mill is performed as shown in FIG. 16 (c). With this ion mill, gap layer 30 and lower pole layer
  • the lower sub-pole 36 facing the upper sub-pole 35 with the narrow gap layer 39 interposed therebetween is formed.
  • an insulating layer 41 such as alumina is coated on the lower magnetic pole layer 29.
  • the upper sub pole 35 is covered by the coated insulating layer 41.
  • the insulating layer 41 is subjected to flattening polishing to expose the upper sub pole 35.
  • the surface of the insulating layer 41 containing 35 is subjected to ion milling. Then, since the etching rate differs between the alumina of the insulating layer 41 and the material of the upper sub-pole 35, the upper sub-pole 35 is carved first. As a result, a tapered surface 42 is formed at the edge of the insulating layer 41. As shown in FIG. 17D, when the upper magnetic pole layer 28 is formed so as to overlap the formed taper surface 42, the upper magnetic pole layer 28 in which the boundary surface 37 is inclined can be obtained. In forming the upper magnetic pole layer 28, for example, a plating film using the photo resist 43 may be adopted.
  • the upper magnetic pole layer 28 inclined at the interface 37 can be easily obtained by using the photoresist at the time of forming the upper magnetic pole layer 28.
  • the photoresist 45 is uniformly applied as shown in FIG. 18 (a). Apply to. Thereafter, a photoresist 45 is exposed and developed on the pattern of the upper magnetic pole layer 28 using a mask pattern (not shown). At this time, when the under exposure is used, the photoresist 45 is not completely removed in the pattern of the upper magnetic pole layer 28 as shown in FIG.
  • a taper surface 46 is formed at the bottom 45.
  • a resist pattern 48 is formed on the upper sub-pole 35, and a boundary surface 37 inclined by lift-off is formed. May be.
  • the resist pattern 48 is formed, if the insulating layer 49 is formed again by sputtering or the like as shown in FIG. 19 (a), the insulating layer 49 is not completely laminated in the vicinity of the resist pattern 48. As a result, a tapered surface 50 is formed on the insulating layer 49.
  • FIG. 19 (b) After removing the resist pattern 48, as shown in FIG. 19 (b), if the upper magnetic pole layer 28 is formed so as to overlap the tapered surface 50, the upper magnetic pole layer 28 in which the boundary surface 37 is inclined can be obtained.
  • a SiO 2 insulating film 52 is uniformly formed on the surface of the insulating layer 41 including the upper sub-pole 35, A resist pattern 53 imitating the upper sub-pole 35 may be formed on the SiO 2 insulating film 52.
  • the edge of the resist pattern 53 recedes, and a tapered surface 54 is formed.
  • the SiO 2 insulating film 52 is also removed while reflecting the shape of the resist pattern 53.
  • a tapered surface 55 is formed on the SiO 2 insulating film 52.
  • the resist pattern 53 is removed as shown in FIG. 20 (c), and the upper magnetic pole layer 28 is formed on the formed taper surface 55 as shown in FIG. 20 (d).
  • the inclined upper pole layer 28 can be obtained.

Abstract

A thin film induction write magnetic head has an upper magnetic layer (28) and a lower magnetic layer (29). In the tip of the magnetic head is formed a gap layer (39) between narrow, small upper and lower sub-magnetic poles (35, 36). By restricting the shape including the length (GD) in the direction vertical to the flying surface of the upper sub-magnetic pole, the magnetic field generated around the edge (28a) of the upper magnetic layer overhanging from the upper sub-magnetic pole in the direction of the width of the recording track is weakened. Because of the weakening, the width of the recording track is narrowed and the recording blur is relieved, thus providing a thin film induction write magnetic head having good magnetic field characteristics suitable for improving the surface recording density.

Description

明細書 薄膜誘導書き込み磁気へッ ドおよびその製造方法 技術分野  Description Thin-film inductive write magnetic head and method for manufacturing the same
本発明は、 浮上面に臨む上部磁極層と、 ギャップ層を挟んで上部磁極層に対向 し、 浮上面に臨む下部磁極層とを備える薄膜誘導書き込み磁気へッ ドに関し、 特 に、 上部磁極層に形成されて、 ギャップ層との境界面から浮上面に沿って下部磁 極層に向かって膨らむ上部副磁極や、 下部磁極層に形成されて、 ギャップ層との 境界面から浮上面に沿って前記上部副磁極に向かって膨らむ下部副磁極をさらに 備える薄膜誘導書き込み磁気へッ ドに関する。 背景技術  The present invention relates to a thin-film inductive write magnetic head including an upper magnetic pole layer facing the air bearing surface, and a lower magnetic pole layer facing the upper magnetic pole layer with the gap layer interposed therebetween and facing the air bearing surface. Formed at the boundary between the gap layer and the air bearing surface, and swells toward the lower pole layer along the air bearing surface, and formed on the lower magnetic pole layer along the air bearing surface from the boundary surface with the gap layer. The present invention relates to a thin-film inductive write magnetic head further comprising a lower sub-pole bulging toward the upper sub-pole. Background art
ギヤップ層を挟んで互いに対向する上部磁極層および下部磁極層は、 磁気へッ ドスライダの浮上面で書き込みギヤップを形成する。この書き込みギヤップでは、 2つの磁極層を行き交う磁力線がギヤップ層を迂回して浮上面に対向する記録媒 体に作用し、 記録媒体を磁化する。 この磁化によって記録媒体上に記録卜ラック が生成される。  The upper magnetic pole layer and the lower magnetic pole layer facing each other with the gap layer interposed therebetween form a write gap on the air bearing surface of the magnetic head slider. In this writing gap, lines of magnetic force passing between the two magnetic pole layers bypass the gap layer and act on the recording medium facing the air bearing surface to magnetize the recording medium. This magnetization generates a recording track on the recording medium.
浮上面で向き合う上部磁極層および下部磁極層の幅は記録卜ラック幅を決定す る。 上部磁極層および下部磁極層の幅を狭めることができれば、 トラック密度を 高め、 一層の面記録密度の向上に寄与することができる。 そこで、 上部磁極層か ら下部磁極層に向かって膨らむ狭小の上部副磁極と、 反対に下部磁極層から上部 磁極層に向かって膨らむ狭小の下部副磁極とを用いれば、 狭小な書き込みギヤッ プを形成することができ、 その結果、 面記録密度を高めることができると考えら れる。  The width of the upper magnetic pole layer and the lower magnetic pole layer facing each other on the air bearing surface determines the recording track width. If the widths of the upper magnetic pole layer and the lower magnetic pole layer can be reduced, it is possible to increase the track density and to further improve the areal recording density. Therefore, if a narrow upper sub-pole swelling from the upper pole layer to the lower pole layer and a narrow lower sub-pole swelling from the lower pole layer to the upper pole layer are used, a narrow writing gap can be obtained. It is thought that the surface recording density can be increased as a result.
しかしながら、 上部副磁極や下部副磁極を備える磁気へッ ドでは、 情報の記録 に用いられる書き込みギヤップに磁界のピークが生じるだけでなく、 浮上面に沿 つて上部副磁極から記録トラック幅方向に張り出した上部磁極層のェッジにも磁 界のピークが生じてしまう。 こうしたエッジによる磁界のビークは、 記録トラッ ク幅を増大させたり、 情報が記録される記録トラックに隣接する記録トラックの' 磁化を乱したりする。 こうしたエツジに生じる磁界のピークを抑制しない限り、 所望通りに記録媒体上の面記録密度を高めることはできない。 発明の開示 However, in a magnetic head having an upper sub-pole and a lower sub-pole, not only a magnetic field peak occurs at a write gap used for recording information, but also the recording track extends from the upper sub-pole along the air bearing surface in the recording track width direction. A magnetic field peak also occurs at the edge of the upper magnetic pole layer. The magnetic field beak caused by these edges is The recording track adjacent to the recording track on which information is recorded is disturbed. Unless the peak of the magnetic field generated in such an edge is suppressed, the areal recording density on the recording medium cannot be increased as desired. Disclosure of the invention
本発明は、 上記実状に鑑みてなされたもので、 面記録密度の向上に適した良好 な磁界特性を有する薄膜誘導書き込み磁気へッ ドを提供することを目的とする。 上記目的を達成するために、 本発明によれば、 浮上面に臨む上部磁極層と、 ギ ヤップ層を挟んで上部磁極層に対向し、 浮上面に臨む下部磁極層と、 上部磁極層 に形成されて、 ギャップ層との境界面から浮上面に沿って下部磁極層に向かって 膨らむ上部副磁極とを備え、 上部副磁極の浮上面鉛直方向長さは 1 . 5 m以上 に設定されることを特徴とする薄膜誘導書き込み磁気へッ ドが提供される。  The present invention has been made in view of the above situation, and has as its object to provide a thin-film inductive write magnetic head having good magnetic field characteristics suitable for improvement in areal recording density. To achieve the above object, according to the present invention, an upper magnetic pole layer facing the air bearing surface, a lower magnetic pole layer facing the upper magnetic pole layer with the gap layer interposed therebetween and facing the air bearing surface, and an upper magnetic pole layer are formed. And an upper sub-pole swelling from the boundary surface with the gap layer along the air bearing surface toward the lower magnetic pole layer, and the vertical length of the upper sub-magnetic pole in the air bearing surface is set to 1.5 m or more. A thin-film inductive write magnetic head is provided.
かかる薄膜誘導書き込み磁気へッ ドによれば、 上部副磁極と下部磁極層との間 に狭小のギャップ層力、'形成される。 こうした磁気へッ ドが情報を記録する記録媒 体の記録トラック幅は狭小のギャップ層によって規定されることとなる。 したが つて、 上部磁極層および下部磁極層によつて形成されるギヤップ層を単純に用 、 るよりも記録卜ラック幅を狭めることができる。その結果、 トラック密度を高め、 記録媒体の面記録密度を一層向上させることができる。  According to such a thin-film inductive write magnetic head, a narrow gap layer force is formed between the upper sub pole and the lower pole layer. The recording track width of the recording medium on which the magnetic head records information is determined by the narrow gap layer. Therefore, the width of the recording track can be made narrower than simply using the gap layer formed by the upper magnetic pole layer and the lower magnetic pole layer. As a result, the track density can be increased, and the areal recording density of the recording medium can be further improved.
上記磁気へッ ドでは、 上部磁極層の前記境界面が浮上面に沿って上部副磁極か ら記録トラック幅方向に張り出すことから、 良好なオーバーライ ト特性が得られ る。その上、上部副磁極の浮上面鉛直方向長さが 1 . 5 m以上に設定されれば、 張り出した上部磁極層のエッジで生じる磁界の大きさを確実に記録媒体の抗磁力 H cの 2分の 1以下に抑え込むことができる。 作用する磁界の磁界強度が抗磁力 H cの 2分の 1以下であれば、記録媒体上で磁化の反転は生じないと考えられる。 その結果、 記録トラック幅の増大や、 情報が記録される記録卜ラックに隣接する 記録トラックの磁化反転といった問題を回避することが可能となる。  In the magnetic head, since the boundary surface of the upper magnetic pole layer protrudes from the upper sub magnetic pole in the recording track width direction along the air bearing surface, good overwrite characteristics can be obtained. In addition, if the vertical length of the air bearing surface of the upper sub magnetic pole is set to 1.5 m or more, the magnitude of the magnetic field generated at the edge of the overhanging upper magnetic pole layer can be reliably reduced by the coercive force H c of the recording medium. It can be reduced to less than one part. If the magnetic field strength of the applied magnetic field is equal to or less than half of the coercive force Hc, it is considered that no reversal of the magnetization occurs on the recording medium. As a result, it is possible to avoid problems such as an increase in the recording track width and a magnetization reversal of a recording track adjacent to a recording track on which information is recorded.
しかも、 浮上面鉛直方向長さを 3 . O m以上に設定すれば、 上部副磁極から 張り出す上部磁極層の張り出し長さを大きく取っても、 エツジで生じる磁界の大 きさを十分に抗磁力 H cの 2分の 1以下に抑え込むことができる。 こうして上部 磁極の張り出し長さを大きく取ることができれば製造時の歩溜まりを向上させる ' ことができる。 ただし、 張り出し長さを大きく取ると、 エッジで生じる磁界が増 大することから、 上部磁極層の張り出し長さは 0 . 4 以下であることが好ま しい。 In addition, if the vertical length of the air bearing surface is set to 3.0 Om or more, even if the overhang length of the upper pole layer overhanging from the upper sub-pole is large, the magnitude of the magnetic field generated by the edge is sufficiently prevented. The magnetic force H c can be reduced to less than half. Thus the top If the overhang length of the magnetic pole can be increased, the yield during manufacturing can be improved. However, if the overhang length is large, the magnetic field generated at the edge increases, so the overhang length of the upper pole layer is preferably 0.4 or less.
薄膜誘導書き込み磁気へッ ドは、 さらに、 下部磁極層に形成されて、 ギャップ 層との境界面から浮上面に沿って前記上部副磁極に向かって膨らむ下部副磁極を さらに備えてもよい。 こうした下部副磁極の浮上面鉛直方向長さは、 上部副磁極 と同様に 1 . 5 m以上に設定されればよく、 好ましくは、 3 . 0 m以上に設 定されればよい。  The thin-film inductive write magnetic head may further include a lower sub-pole formed on the lower pole layer and swelling from the interface with the gap layer along the air bearing surface toward the upper sub-pole. The length of the lower sub-magnetic pole in the vertical direction of the air bearing surface may be set to 1.5 m or more, as in the case of the upper sub-magnetic pole, and is preferably set to 3.0 m or more.
また、 本発明に係る薄膜誘導書き込み磁気へッ ドでは、 上部副磁極から遠ざか るにつれて下部磁極層から離れるように上部磁極層の前記境界面を傾斜させても よい。 かかる傾斜によれば、 張り出した上部磁極層のエッジに生じる磁界が低減 され、 記録トラック幅の増大や、 情報が記録される記録トラックに隣接する記録 トラックの磁化反転といった問題を回避することが可能となる。  Further, in the thin-film inductive write magnetic head according to the present invention, the boundary surface of the upper magnetic pole layer may be inclined so as to move away from the lower magnetic pole layer as the distance from the upper auxiliary magnetic pole increases. According to this inclination, the magnetic field generated at the edge of the overhanging upper magnetic pole layer is reduced, so that it is possible to avoid problems such as an increase in a recording track width and a magnetization reversal of a recording track adjacent to a recording track where information is recorded. Becomes
境界面の傾斜角は 1 5 ° 以上に設定されればよく、 好ましくは、 3 0 ° 以上に 設定されればよい。 傾斜角を 1 5 ° 以上に設定すれば、 張り出した上部磁極層の ェッジで生じる磁界の大きさを確実に記録媒体の抗磁力 H cの 2分の 1以下に抑 え込むことができる。 しかも、 傾斜角を 3 0 ° 以上に設定すれば、 上部副磁極か ら張り出す上部磁極層の張り出し長さを大きく取っても、 エツジで生じる磁界の 大きさを十分に抗磁力 H cの 2分の 1以下に抑え込むことができる。 こうして上 部磁極の張り出し長さを大きく取ることができれば製造時の歩溜まりを向上させ ることができる。  The angle of inclination of the boundary surface may be set to 15 ° or more, preferably, 30 ° or more. By setting the inclination angle to 15 ° or more, the magnitude of the magnetic field generated by the overhanging edge of the upper magnetic pole layer can be reliably suppressed to less than half the coercive force Hc of the recording medium. Moreover, if the inclination angle is set to 30 ° or more, even if the overhang length of the upper magnetic pole layer overhanging from the upper sub-pole is large, the magnitude of the magnetic field generated by the edge can be sufficiently increased by two times the coercive force H c. It can be reduced to less than one part. If the overhang length of the upper magnetic pole can be made large in this way, the production yield can be improved.
前述したように境界面が傾斜した上部磁極層を得るには、 浮上面に臨む薄膜誘 導書き込み磁気へッ ドの先端で、 下部磁極層上に上部副磁極を形成する工程と、 下部磁極層上に絶縁層を積層し、 形成された上部副磁極を絶縁層で覆う工程と、 絶縁層に平坦化処理を施し、 上部副磁極を露出させる工程と、 平坦化処理が施さ れた上部副磁極を含む絶縁層の表面にイオンミル処理を施す工程とを備える薄膜 誘導書き込み磁気へッ ドの製造方法が提供されればよい。  As described above, in order to obtain an upper magnetic pole layer having an inclined boundary surface, a step of forming an upper sub-magnetic pole on the lower magnetic pole layer at the tip of the thin film induced write magnetic head facing the air bearing surface, A step of laminating an insulating layer thereon and covering the formed upper sub-pole with an insulating layer; a step of subjecting the insulating layer to a flattening process to expose the upper sub-pole; and a step of flattening the upper sub-pole Performing a process of ion milling the surface of the insulating layer containing: a method of manufacturing a thin-film inductive write magnetic head.
かかる製造方法によれば、 絶縁層の表面にイオンミル処理を施すと、 一般に上 部副磁極と絶縁層との間でエッチングレ一卜が異なることから、 イオンビームに よって上部副磁極が先に彫り込まれていく。 その結果、 絶縁層のエッジにテ一パ 面が形成される。 形成されたテ一パ面を用いて上部磁極層を形成すれば、 境界面 が傾斜した上部磁極層を得ることができる。 According to such a manufacturing method, when the surface of the insulating layer is subjected to ion milling, Since the etching rate differs between the lower sub-pole and the insulating layer, the upper sub-pole is first carved by the ion beam. As a result, a tapered surface is formed at the edge of the insulating layer. If the upper magnetic pole layer is formed using the formed taper surface, an upper magnetic pole layer having an inclined boundary surface can be obtained.
また、 そういったイオンミル処理を用いなくとも、 上部磁極層成膜時のフォト Also, without using such an ion milling process, the photo
レジストを用いれば、 境界面が傾斜した上部磁極層を容易に得ることができる。 この場合には、 絶縁層の表面に平坦化処理が施された時点で、 絶縁層の表面にフ オトレジストを一様に塗布する。 その後、 マスクパターンを用いて上部磁極層の パターンにフォ卜レジストを露光現像するにあたって、 アンダー露光を用いれば よい。 アンダー露光によれば、 フォ トレジス卜が完全には除去されず、その結果、 上部副磁極の近辺ではフォ トレジストにテ一パ面が形成される。 このテ一パ面を 用いて上部磁極層を成膜すると、 境界面が傾斜した上部磁極層が得られるのであ 同様に、絶縁層の平坦化処理後に、上部副磁極上にレジストノ ターンを形成し、 リフトオフによって傾斜する境界面を形成してもよい。 レジス卜パターンが形成 された後、 スパッタリングなどによって再び絶縁層が形成されると、 レジス卜パ ターンのきわでは絶縁層が完全には積層されない。 その結果、 絶縁層にテーパ面 が形成される。 こういったテ一パ面上に上部磁極層を形成すれば、 境界面が傾斜 した上部磁極層を得ることができるのである。  If a resist is used, an upper pole layer having an inclined interface can be easily obtained. In this case, a photoresist is uniformly applied to the surface of the insulating layer when the surface of the insulating layer has been subjected to the planarization treatment. Then, under exposure and development of the photoresist on the pattern of the upper magnetic pole layer using the mask pattern, under exposure may be used. According to the under exposure, the photoresist is not completely removed, and as a result, a tapered surface is formed in the photoresist near the upper subpole. When the upper magnetic pole layer is formed using this tapered surface, an upper magnetic pole layer having an inclined boundary surface is obtained. Similarly, after the insulating layer is flattened, a resist pattern is formed on the upper auxiliary magnetic pole. An inclined boundary surface may be formed by lift-off. After the resist pattern is formed, if the insulating layer is formed again by sputtering or the like, the insulating layer is not completely laminated at the edge of the resist pattern. As a result, a tapered surface is formed in the insulating layer. If an upper pole layer is formed on such a taper surface, an upper pole layer with a sloping interface can be obtained.
さらにまた、 絶縁層の平坦化処理後に、 上部副磁極を含む絶縁層の表面に一様 に S ί 02 絶縁膜を成膜し、 上部副磁極を象つたレジス卜ハ。ターンを S ί◦ 2 絶 縁膜上に形成するようにしてもよい。 ここで、 レジストハ°ターンに熱処理を施す と、 レジストパターンのエッジが後退しテ一パ面が形成される。 続いて、 反応ィ オンエッチング (R I Ε ) 処理を実施すると、 レジストパターンの形状を反映し ながら S i 02 絶縁膜も削り取られていく。 その結果、 S i O 2 絶縁膜にテーパ 面が形成される。 レジストパターンを除去し、 形成されたテ一パ面を用いて上部 磁極層を形成すれば、 境界面が傾斜した上部磁極層を得ることができる。 Furthermore, after the planarization of the insulating layer, forming a S ί 0 2 insulating film uniformly on the surface of the insulating layer including an upper sub magnetic pole, ZoTsuta Regis Bokuha the upper sub magnetic pole. The turns may be formed on the Sί◦2 insulating film. Here, when heat treatment is performed on the resist pattern, the edge of the resist pattern recedes, and a tapered surface is formed. Subsequently, when a reaction ion etching (RIΕ) process is performed, the SiO 2 insulating film is also removed while reflecting the shape of the resist pattern. As a result, a tapered surface is formed in the SiO 2 insulating film. If the resist pattern is removed and the upper magnetic pole layer is formed using the formed tapered surface, an upper magnetic pole layer having an inclined boundary surface can be obtained.
なお、 本発明に係る薄膜誘導書き込み磁気へッ ドは、 磁気抵抗効果 (MR ) 素 子や巨大磁気抵抗効果 (G M R ) 素子といった読み取り磁気へッ ドと組み合わさ れて使用されてもよい。 また、 本発明に係る磁気へッ ドは、 ハ一ドディスク ドラ イブ (H D D ) を始めとする磁気ディスク装置や磁気テープ装置に適用されるこ とができる。 図面の簡単な説明 The thin-film inductive write magnetic head according to the present invention is combined with a read magnetic head such as a magnetoresistive (MR) element or a giant magnetoresistive (GMR) element. May be used. Further, the magnetic head according to the present invention can be applied to a magnetic disk device such as a hard disk drive (HDD) or a magnetic tape device. BRIEF DESCRIPTION OF THE FIGURES
, 、  ,,
図 1は、 ハードディスク ドライブ ( H D D ) の内部構造を示す平面図である。 図 2は、 浮上へッ ドスライダの一具体例を示す斜視図である。  FIG. 1 is a plan view showing the internal structure of a hard disk drive (HDD). FIG. 2 is a perspective view showing a specific example of a flying head slider.
図 3は、 薄膜磁気へッ ドが備える誘導書き込みへッ ド素子の構造を概略的に示 す平面図である。  FIG. 3 is a plan view schematically showing a structure of an inductive write head element provided in the thin-film magnetic head.
図 4は、 図 3の 4— 4線に沿った一部断面図である。  FIG. 4 is a partial cross-sectional view taken along line 4-4 in FIG.
図 5は、 図 4の矢印 5方向から見た浮上面の様子を示す図である。  FIG. 5 is a diagram showing the state of the air bearing surface viewed from the direction of arrow 5 in FIG.
図 6は、 上部副磁極および下部副磁極付近の様子を示す図 5の一部拡大図であ 図 7 Aは、 記録トラックのトラック幅方向に沿つて分布するギャップ磁界およ びエッジ磁界の一具体例を示すグラフである。  Fig. 6 is a partially enlarged view of Fig. 5 showing the vicinity of the upper sub-pole and the lower sub-pole. Fig. 7A shows the gap magnetic field and the edge magnetic field distributed along the track width direction of the recording track. 9 is a graph showing a specific example.
図 7 Bは、 記録トラックのトラック幅方向に沿って分布するギャップ磁界およ びエツジ磁界の他の具体例を示すグラフである。  FIG. 7B is a graph showing another specific example of the gap magnetic field and the edge magnetic field distributed along the track width direction of the recording track.
図 8は、 上部副磁極および下部副磁極付近の様子を示す図 4の一部拡大図であ る  FIG. 8 is a partially enlarged view of FIG. 4 showing a state near the upper sub-pole and the lower sub-pole.
図 9は、 エッジ磁界のピーク値と浮上面鉛直方向長さとの関係を示すグラフで ある。  FIG. 9 is a graph showing the relationship between the peak value of the edge magnetic field and the vertical length of the air bearing surface.
図 1 0は、 最大へッ ド磁界すなわちギャップ磁界のピーク値と浮上面鉛直方向 長さとの関係を示すグラフである。  FIG. 10 is a graph showing the relationship between the maximum head magnetic field, that is, the peak value of the gap magnetic field, and the vertical length of the air bearing surface.
図 1 1は、 エッジ磁界のピーク値と上部磁極層の張り出し長さとの関係を示す グラフである。  FIG. 11 is a graph showing the relationship between the peak value of the edge magnetic field and the overhang length of the upper pole layer.
図 1 2は、 境界面が傾斜した上部磁極層を示す図 6に対応する図である。  FIG. 12 is a view corresponding to FIG. 6 showing the upper pole layer in which the boundary surface is inclined.
図 1 3は、 エッジ磁界のピーク値と境界面の傾斜角との関係を示すグラフであ る。  FIG. 13 is a graph showing the relationship between the peak value of the edge magnetic field and the inclination angle of the boundary surface.
図 1 4は、 最大へッ ド磁界すなわちギャップ磁界のピーク値と境界面の傾斜角 との関係を示すグラフである。 Figure 14 shows the peak value of the maximum head magnetic field, that is, the gap magnetic field, and the inclination angle of the interface. 6 is a graph showing a relationship with the graph.
図 1 5は、 エッジ磁界のピーク値と上部磁極層の張り出し長さとの関係を示す グラフである。  FIG. 15 is a graph showing the relationship between the peak value of the edge magnetic field and the overhang length of the upper pole layer.
図 1 6は、 境界面が傾斜した上部磁極層の形成方法を示す図である。  FIG. 16 is a diagram illustrating a method of forming an upper pole layer having an inclined boundary surface.
図 1 7は、 境界面が傾斜した上部磁極層の形成方法を示す図である。  FIG. 17 is a diagram showing a method of forming an upper magnetic pole layer having an inclined boundary surface.
■ 、  ■,
図 1 8は、 境界面が傾斜した上部磁極層の形成方法を示す図である。  FIG. 18 is a diagram illustrating a method of forming an upper magnetic pole layer having an inclined boundary surface.
図 1 9は、 境界面が傾斜した上部磁極層の形成方法を示す図である。  FIG. 19 is a diagram showing a method of forming an upper magnetic pole layer having an inclined boundary surface.
図 2 0は、 境界面が傾斜した上部磁極層の形成方法を示す図である。 発明を実施するための最良の形態  FIG. 20 is a diagram illustrating a method of forming an upper magnetic pole layer having an inclined boundary surface. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は磁気ディスク装置の一具体例としてのハードディスク ドライブ(H D D ) 1 0の内部構造を示す。 H D D 1 0のハウジング 1 1には、 回転軸 1 2に装着さ れる磁気ディスク 1 3と、 磁気ディスク 1 3に対向する浮上へッ ドスライダ 1 4 とが収容される。 浮上へッ ドスライダ 1 4は、 揺動軸 1 5回りで揺動することが できるキヤリッジアーム 1 6の先端に固着される。 磁気ディスク 1 3に対する情 報の書き込みや読み取りにあたっては、 磁気回路から構成されるァクチユエ一夕 1 7によってキヤリッジアーム 1 6が揺動駆動され、 その結果、 浮上へッ ドスラ イダ 1 4カ磁気ディスク 1 3上の所望の記録トラックに位置決めされる。 ハウジ ング 1 1の内部空間は、 図示しないカバ一によって閉鎖される。  FIG. 1 shows the internal structure of a hard disk drive (HDD) 10 as a specific example of a magnetic disk drive. The housing 11 of the HDD 10 accommodates a magnetic disk 13 mounted on the rotating shaft 12 and a flying head slider 14 facing the magnetic disk 13. The flying head slider 14 is fixed to the tip of a carriage arm 16 that can swing around a swing axis 15. When writing or reading information to or from the magnetic disk 13, the carriage arm 16 is oscillated by an actuator 17 which is composed of a magnetic circuit, and as a result, a flying head slider 14 magnetic disk It is positioned on the desired recording track on 13. The interior space of the housing 11 is closed by a cover (not shown).
図 2は浮上へッ ドスライダ 1 4の一具体例を示す。 この浮上へッ ドスライダ 1 4は、 磁気ディスク 1 3に対向する浮上面 1 9を備える。 浮上面 1 9には、 A B S面 (空気軸受け面) を形成する 2筋のレール 2 0が形成される。 浮上へッ ドス ライダ 1 4は、 磁気ディスク 1 3の回転中に浮上面 1 9 (特に A B S面) に受け る空気流れ 2 1を利用して磁気ディスク 1 3の表面から浮上することができる。 浮上へッ ドスライダ 1 4の空気流出側端面には、 後述するように、 薄膜磁気へッ ド 2 2が内蔵された薄膜磁気へッ ド内蔵膜 2 3が形成される。 一般に、 浮上へッ ドスライダ 1 4は A 1 2 O 3 T i C (アルチック) から形成され、 薄膜磁気へッ ド 内蔵膜 2 3は A 1 23 (アルミナ) から形成される。 FIG. 2 shows a specific example of the flying head slider 14. The flying head slider 14 has a flying surface 19 facing the magnetic disk 13. On the air bearing surface 19, two rails 20 forming an ABS surface (air bearing surface) are formed. The flying head slider 14 can fly above the surface of the magnetic disk 13 by utilizing the air flow 21 received on the floating surface 19 (particularly the ABS surface) while the magnetic disk 13 is rotating. As will be described later, a thin-film magnetic head built-in film 23 in which the thin-film magnetic head 22 is built is formed on the air outflow side end surface of the flying head slider 14. Generally, Tsu Dosuraida 1 4 to levitation is formed from A 1 2 O 3 T i C (AlTiC), head protection film 2 3 thin film magnetic is formed from A 1 23 (alumina).
図 3を参照しつつ本発明に係る薄膜磁気へッ ド 2 2の構造を詳述する。 この薄 膜磁気へッ ド 2 2は、 渦巻き状の導体コイルパターン 2 5で生成される磁界を利 用して磁気ディスク 1 3に情報を記録する誘導書き込みへッ ド素子 2 6を備える c 導体コィノレパターン 2 5で磁界が生成されると、 導体コイルパターン 2 5の中心 を貫通する磁性コア 2 7内で磁力線が伝わる。 The structure of the thin-film magnetic head 22 according to the present invention will be described in detail with reference to FIG. This thin The film magnetic head 22 is provided with an inductive write head element 26 for recording information on the magnetic disk 13 using a magnetic field generated by the spiral-shaped conductor coil pattern 25 c Conductor coil When a magnetic field is generated in the pattern 25, the magnetic field lines are transmitted in the magnetic core 27 penetrating the center of the conductor coil pattern 25.
図 4を併せて参照すると明らかなように、 磁性コア 2 7は、 浮上面 1 9に臨む 上部磁極層 8と、 同じく浮上面 1 9に臨む下部磁極層 2 9とを備える。 上部磁 極層 2 8と下部磁極層 2 9とは、 導体コイルパターン 2 5の中心で互いに接続さ れる。 その一方で、 浮上面 1 9に臨む上部磁極層 2 8および下部磁極層 2 9の先 端では、 ギヤップ層 3 0を挟んで上部磁極層 2 8と下部磁極層 2 9とが互いに対 向する。 磁性コア 2 7内を伝わる磁力線は、 上部磁極層 2 8および下部磁極層 2 9の先端では、 ギャップ層 3 0を迂回しながら上部磁極層 2 8と下部磁極層 2 9 との間を行き交う。 その結果、 浮上面 1 9から漏れる磁界によって、 浮上面 1 9 に対向する磁気ディスク 1 3が磁化されるのである。 上部磁極層 2 8や下部磁極 層 2 9は例えば N i F eから構成されればよい。  4, the magnetic core 27 includes an upper magnetic pole layer 8 facing the air bearing surface 19 and a lower magnetic pole layer 29 also facing the air bearing surface 19. The upper magnetic pole layer 28 and the lower magnetic pole layer 29 are connected to each other at the center of the conductor coil pattern 25. On the other hand, at the leading ends of the upper magnetic pole layer 28 and the lower magnetic pole layer 29 facing the air bearing surface 19, the upper magnetic pole layer 28 and the lower magnetic pole layer 29 face each other with the gap layer 30 interposed therebetween. . Lines of magnetic force transmitted through the magnetic core 27 pass between the upper magnetic pole layer 28 and the lower magnetic pole layer 29 at the tips of the upper magnetic pole layer 28 and the lower magnetic pole layer 29 while bypassing the gap layer 30. As a result, the magnetic disk 13 facing the flying surface 19 is magnetized by the magnetic field leaking from the flying surface 19. The upper magnetic pole layer 28 and the lower magnetic pole layer 29 may be made of, for example, NiFe.
この薄膜磁気へッ ド 2 2では、 情報の読み取りに磁気抵抗効果 (M R ) 素子 3 1が用いられる。 M R素子 3 1は、 A I 23層 3 2に埋め込まれて F e Nや N i F eの下部シールド層 3 3および下部磁極層 2 9の間に挟み込まれる。ここでは、 下部磁極層 2 9は M R素子 3 1の上部シールド層として機能する。 その結果、 例 えば図 3から明らかなように、 浮上面 1 9に臨む誘導書き込みへッ ド素子 2 6の 先端では、 上部磁極層 2 8に比べて下部磁極層 2 9が広範囲に広がっている。 た だし、 こうした M R素子 3 1に代えて巨大磁気抵抗効果 (G M R ) 素子といった その他の読み取り素子が採用されてもよく、 読み取り素子を採用せずに誘導書き 込みへッ ド素子 2 6が単独で使用されてもよい。 In the thin-film magnetic head 22, a magnetoresistive effect (MR) element 31 is used for reading information. MR element 3 1 is sandwiched between and embedded in the AI 2three layers 3 2 F e N and N i F e of the bottom shield layer 3 3 and the lower magnetic pole layer 2 9. Here, the lower magnetic pole layer 29 functions as an upper shield layer of the MR element 31. As a result, as apparent from FIG. 3, for example, at the tip of the inductive write head element 26 facing the air bearing surface 19, the lower magnetic pole layer 29 is wider than the upper magnetic pole layer 28. . However, instead of the MR element 31, another reading element such as a giant magnetoresistance (GMR) element may be used, and the inductive writing head element 26 is used alone without using the reading element. May be used.
図 5に示すように、浮上面 1 9に臨む誘導書き込みへッ ド素子 2 6の先端では、 上部磁極層 2 8に上部副磁極 3 5が形成され、 下部磁極層 2 9には上部副磁極 3 5に対向する下部副磁極 3 6力形成される。 上部副磁極 3 5は、 上部磁極層 2 8 とギヤップ層 3 0との境界面 3 7から下部磁極層 2 9に向かって膨らむ。 その一 方で、 下部副磁極 3 6は、 下部磁極層 2 9とギャップ層 3 0との境界面 3 8から 上部磁極層 2 8に向かって膨らむ。 その結果、 上部副磁極 3 5および下部副磁極 3 6との間には、 上部磁極層 2 8と下部磁極層 2 9との間に形成されるギヤップ 層 3 0よりも狭い狭小ギャップ層 3 9が形成されることとなる。 As shown in FIG. 5, at the tip of the inductive write head element 26 facing the air bearing surface 19, an upper sub-pole 35 is formed on the upper pole layer 28, and the upper sub-pole is formed on the lower pole layer 29. A lower secondary magnetic pole 36 opposing 35 is formed. The upper sub pole 35 swells from the interface 37 between the upper pole layer 28 and the gap layer 30 toward the lower pole layer 29. On the other hand, the lower sub pole 36 expands from the interface 38 between the lower pole layer 29 and the gap layer 30 toward the upper pole layer 28. As a result, the upper sub pole 35 and the lower sub pole Between the upper magnetic pole layer 28 and the lower magnetic pole layer 29, a narrow gap layer 39 narrower than the gap layer 30 formed between the upper magnetic pole layer 28 and the lower magnetic pole layer 29 is formed.
磁気ディスク 1 3の媒体表面に形成される記録トラックのトラック幅は、 こう して形成された狭小ギヤップ層 3 9によつて規定されることとなる。したがって、 上部磁極層 2 8および下部磁極層 2 9によって形成されるギャップ層 3 0を単純 に用いるよりもトラック幅を狭めることができる。 その結果、 トラック密度を高 め、 磁気ディスク 1 3上の面記録密度を一層向上させることができると考えられ る。 し力、も、 上部磁極層 2 8の境界面 3 7は浮上面 1 9に沿って上部副磁極 3 5 から張り出すことから、 良好なオーバ一ライ 卜特性が得られることとなる。  The track width of the recording track formed on the medium surface of the magnetic disk 13 is defined by the narrow gap layer 39 thus formed. Therefore, the track width can be reduced as compared with the case where the gap layer 30 formed by the upper magnetic pole layer 28 and the lower magnetic pole layer 29 is simply used. As a result, it is considered that the track density can be increased and the surface recording density on the magnetic disk 13 can be further improved. Since the boundary surface 37 of the upper magnetic pole layer 28 protrudes from the upper sub-magnetic pole 35 along the air bearing surface 19, good overwrite characteristics can be obtained.
次に、 以上のような誘導書き込みへッ ド素子 2 6の磁界特性を考察する。 こう した誘導書き込みへッ ド素子 2 6では、 例えば図 6に示すように、 狭小ギャップ 層 3 9で上部副磁極 3 5の磁束が磁気ディスク 1 3の媒体面に向けて誘導される と同時に、 上部磁極層 2 8のエッジ 2 8 aで上部磁極層 2 8の磁束が磁気ディス ク 1 3の媒体面に向けて漏れ出すことがわかっている。 以下の説明では、 前者を ギャップ磁界と呼び、 後者をエッジ磁界と呼ぶこととする。 ここで、 三次元磁界 解析ソフトウエアを用いて誘導書き込みへッ ド素子 2 6の磁界特性をシミュレ一 卜してみると、 例えば図 7 Aおよび図 7 Bに示すシミユレ一ション結果が得られ る。  Next, the magnetic field characteristics of the inductive write head element 26 described above will be considered. In such an inductive write head element 26, for example, as shown in FIG. 6, the magnetic flux of the upper sub pole 35 is guided toward the medium surface of the magnetic disk 13 by the narrow gap layer 39, It has been found that the magnetic flux of the upper pole layer 28 leaks toward the medium surface of the magnetic disk 13 at the edge 28 a of the upper pole layer 28. In the following description, the former is called a gap magnetic field, and the latter is called an edge magnetic field. Here, when the magnetic field characteristics of the inductive write head element 26 are simulated using three-dimensional magnetic field analysis software, simulation results shown in FIGS. 7A and 7B are obtained, for example. .
図 7 Aおよび図 7 Bから明らかなように、 この誘導書き込みへッ ド素子 2 6で は、 記録トラックの中心線 (図 6の A A線方向中央) 上でギャップ磁界 A Aのピ —ク値 P K 1 = 6 0 0 0 0 eが現れるように導体コィノレパターン 2 5に流される 電流の大きさや上部副磁極 3 5や下部副磁極 3 6の幅が決定される。 一般に、 情 報の磁気記録にあたっては、 磁気ディスク 1 3といった記録媒体の媒体抗磁力 H c ( - 3 0 0 0 0 e ) の 2倍の磁界強度力必要とされるからである。 ギャップ磁 界 A Aは記録トラックの中心線から記録トラック幅左右方向にずれるにつれて減 少していくことがわかる。  As is apparent from FIGS. 7A and 7B, in the inductive write head element 26, the peak value PK of the gap magnetic field AA on the center line of the recording track (the center in the direction of the AA line in FIG. 6). The magnitude of the current flowing through the conductor coil pattern 25 and the widths of the upper sub-pole 35 and the lower sub-pole 36 are determined so that 1 = 600 000 e appears. This is because, in general, magnetic recording of information requires a magnetic field strength twice as large as the medium coercive force H c (−300000) of a recording medium such as the magnetic disk 13. It can be seen that the gap magnetic field A A decreases as it deviates from the center line of the recording track in the horizontal direction of the recording track width.
その一方で、 図 7 Aおよび図 7 Bから明らかなように、 エッジ磁界 B Bは例え ば記録トラックの中心線から記録卜ラック幅方向 (図 6の B B線方向) にずれた 位置でピーク値 P K 2≥ 2 0 0 0 0 eに達することがわかる。 一般に、 媒体抗磁 力 H cの 2分の 1の磁界強度で磁界が作用すると記録媒体上で磁化の反転が引き' 起こされると考えられる。 したがって、 図 7 Aに示すように、 磁界強度 1 5 0 0 0 e以上のエツジ磁界 B Bによってギヤップ磁界 A Aを越えるサブピークが形成 されると、 このサブピークによって記録にじみ特性が悪化し、 所望の記録トラッ ク幅を得ることができなくなる。 また、 図 7 Bに示すように、 エツジ磁界 B Bが ギヤップ磁界 A Aを越えない場合でも、 エツジ磁界 B Bが磁界強度 1 5 0 0 0 e を越えると、 ギヤップ磁界 A Aで記録媒体に記録された磁化がェッジ磁界 B Bに よって反転されるおそれがある。 図 6から明らかなように、 実際の情報の記録時 には、 狭小ギヤップ層 3 9が通過した後に上部磁極層 2 8のエッジ 2 8 aが媒体 面を通過していくことになるからである。 On the other hand, as is clear from FIGS. 7A and 7B, the edge magnetic field BB is, for example, a peak value PK at a position shifted from the center line of the recording track in the recording track width direction (the direction of the BB line in FIG. 6). It can be seen that 2 ≥ 200 000 e is reached. Generally, medium coercivity It is considered that when a magnetic field is applied with a magnetic field strength of one half of the force Hc, the reversal of magnetization is caused on the recording medium. Therefore, as shown in FIG. 7A, when a sub-peak exceeding the gap magnetic field AA is formed by the edge magnetic field BB having a magnetic field intensity of more than 1500 e, the recording bleeding characteristic is deteriorated by the sub-peak, and a desired recording track is obtained. It is not possible to obtain the work width. Also, as shown in FIG. 7B, even when the edge magnetic field BB does not exceed the gap magnetic field AA, if the edge magnetic field BB exceeds the magnetic field strength of 1500 e, the magnetization recorded on the recording medium with the gap magnetic field AA May be reversed by the edge magnetic field BB. As is clear from Fig. 6, during actual information recording, the edge 28a of the upper pole layer 28 passes through the medium surface after the narrow gap layer 39 passes. .
いま、 誘導書き込みへッ ド素子 2 6の先端で上部磁極層 2 8の幅を狭めると、 図 7 Aおよび図 7 Bを比較すると明らかなように、 エツジ磁界 B Bのピーク値 P K 2が記録トラックの中心線に向かって移行すると同時に、 ピーク値 P K 2の大 きさが減少していくことが確認される。 すなわち、 浮上面 1 9に沿って上部副磁 極 3 5から張り出す上部磁極層 2 8の境界面 3 7の張り出し長さ (図 6参 照) を狭め、 上部磁極層 2 8のエッジ 2 8 aを上部副磁極 3 5に接近させると、 エッジ磁界 B Bのピーク値 P K 2が減少するのである。 しかしながら、 張り出し 長さ を小さくすればするほど、 製造時の歩留まりは悪化してしまう。  Now, if the width of the upper magnetic pole layer 28 is reduced at the tip of the inductive write head element 26, the peak value PK 2 of the edge magnetic field BB becomes apparent from the comparison of FIGS. 7A and 7B. It is confirmed that the magnitude of the peak value PK 2 decreases at the same time as moving toward the center line of. That is, the overhang length (see FIG. 6) of the boundary surface 37 of the upper magnetic pole layer 28 protruding from the upper sub pole 35 along the air bearing surface 19 is reduced, and the edge 2 8 of the upper magnetic pole layer 28 is reduced. As a approaches the upper auxiliary pole 35, the peak value PK2 of the edge magnetic field BB decreases. However, the smaller the overhang length, the worse the manufacturing yield.
本実施形態に係る誘導書き込みへッ ド素子 2 6では、 上部副磁極 3 5および下 部副磁極 3 6の浮上面鉛直方向長さ G Dが 1 . 5 以上に、 好ましくは 3 . 0 以上に設定される。 ここで、 浮上面鉛直方向長さ G Dは、 図 8に示されるよ うに、 浮上面 1 9から垂直方向内方に延びる上部副磁極 3 5および下部副磁極 3 6の長さによって規定される。 前述と同様な三次元磁界解析ソフトウエアを用い て磁界特性をシミュレートした結果、 例えば図 9に示すシミュレ一ション結果が 得られた。 ただし、 張り出し長さ A P Wは 0 . 2 mに設定された。 いまのとこ ろ、 製造時の寸法公差に鑑みれば、 張り出し長さ△ P Wを 0 . 2 ^ m未満に設定 することは難しいからである。  In the inductive write head element 26 according to the present embodiment, the vertical length GD of the air bearing surface of the upper sub-pole 35 and the lower sub-pole 36 is set to 1.5 or more, preferably 3.0 or more. Is done. Here, the vertical length GD of the air bearing surface is defined by the lengths of the upper sub magnetic pole 35 and the lower sub magnetic pole 36 extending inward in the vertical direction from the air bearing surface 19, as shown in FIG. As a result of simulating the magnetic field characteristics using the same three-dimensional magnetic field analysis software as described above, for example, the simulation results shown in FIG. 9 were obtained. However, the overhang length A PW was set to 0.2 m. At present, it is difficult to set the overhang length △ PW to less than 0.2 ^ m in view of the dimensional tolerances during manufacturing.
図 9から明らかなように、 浮上面鉛直方向長さ G Dを 1 . 5 ^ m以上に設定す ると、 エツジ磁界のピーク値 P K 2が磁化反転の下限となる 1 5 0 0 0 eを下回 り、 その結果、 ギャップ磁界 A Aで記録媒体に記録された磁ィヒがエッジ磁界 BB によって反転されるおそれがなくなることがわかる。図 1 0から明らかなように、 このように浮上面鉛直方向長さ GDを変えても、 最大へッ ド磁界すなわちギヤッ プ磁界 A Aのピーク値 PK 1 = 60000 eにはほとんど影響しないことがわか る。 As is evident from Fig. 9, when the vertical length GD of the air bearing surface is set to 1.5 ^ m or more, the peak value PK 2 of the edge magnetic field falls below 1 500 e, which is the lower limit of magnetization reversal. Times As a result, it is understood that there is no possibility that the magnetic field recorded on the recording medium by the gap magnetic field AA is inverted by the edge magnetic field BB. As can be seen from Fig. 10, it can be seen that changing the vertical length GD of the air bearing surface in this way has almost no effect on the maximum head magnetic field, that is, the peak value PK1 = 60000 e of the gap magnetic field AA. You.
しかも、 図 1 1に示されるように、 浮上面鉛直方向長さ GDを増大させると、 張り出し長さ ΔΡ νを大きく取っても十分にエッジ磁界 B Bのピーク値 PK 2を 1 5000 e以下に抑え込むことができる。 したがって、 浮上面鉛直方向長さ D Moreover, as shown in Fig. 11, increasing the vertical length GD of the air bearing surface can sufficiently suppress the peak value PK 2 of the edge magnetic field BB to 15,000 e or less even if the overhang length ΔΡ ν is large. be able to. Therefore, the floating surface vertical length D
Gは 3. 0 m以上に設定されると同時に、 境界面 37の張り出し長さ ΔΡ\νは 0. 4〃m以下に設定されることが望ましいこととなる。 浮上面鉛直方向長さ GIt is desirable that G be set to 3.0 m or more, and that the overhang length ΔΡ \ ν of the boundary surface 37 be set to 0.4 m or less. Air bearing surface vertical length G
Dを 3. に設定すれば、 十分な大きさの張り出し長さ APWを確保して製 造時の歩溜まりを向上させることができるのである。 By setting D to 3, it is possible to secure a sufficiently large overhang length APW and improve the production yield.
以上のように浮上面鉛直方向長さ GDを調整する代わりに、 例えば図 1 2に示 すように、 上部磁極層 28の境界面 37に傾斜を設けてもよい。 この傾斜によれ ば、 境界面 37は、 上部副磁極 35から遠ざかるに従って下部磁極層 29から離 れていく。 本実施形態に係る誘導書き込みへッ ド素子 26では、 境界面 37の傾 斜角 Sが 1 5° 以上に、 好ましくは 30° 以上に設定される。 ここで、 傾斜角 0 は、 浮上面 1 9側から見て、 下部磁極層 29と平行な一面に対する境界面 37の 角度によって規定される。 前述と同様な条件の下、 三次元磁界解析ソフトウェア を用いて磁界特性をシミュレ一卜した結果、 例えば図 1 3に示すシミュレ一ショ ン結果が得られた。 ただし、 浮上面鉛直方向長さ GDは 1. 5 mに、 張り出し 長さ は 0. 3 に設定された。  Instead of adjusting the vertical length GD of the air bearing surface as described above, a slope may be provided at the boundary surface 37 of the upper pole layer 28, for example, as shown in FIG. According to this inclination, the boundary surface 37 is separated from the lower magnetic pole layer 29 as the distance from the upper sub magnetic pole 35 increases. In the inductive write head element 26 according to the present embodiment, the inclination angle S of the boundary surface 37 is set to 15 ° or more, preferably 30 ° or more. Here, the inclination angle 0 is defined by the angle of the boundary surface 37 with respect to one surface parallel to the lower magnetic pole layer 29 when viewed from the air bearing surface 19 side. Under the same conditions as above, the magnetic field characteristics were simulated using three-dimensional magnetic field analysis software. For example, the simulation results shown in Fig. 13 were obtained. However, the vertical length GD of the air bearing surface was set to 1.5 m, and the overhang length was set to 0.3.
図 1 3から明らかなように、 傾斜角 0を 1 5° 以上に設定すると、 エッジ磁界 のピーク値 PK 2が磁化反転の下限となる 1 5000 eを下回ることがわかる。 このように傾斜角 0を変えても、 図 14に示されるように、 最大へッ ド磁界すな わちギヤップ磁界 A Aのピーク値 PK 1 = 60000 eにはほとんど影響しない ことカヾゎカヽる。  As is clear from FIG. 13, when the inclination angle 0 is set to 15 ° or more, the peak value PK 2 of the edge magnetic field is smaller than 15000 e, which is the lower limit of the magnetization reversal. As shown in Fig. 14, even if the tilt angle 0 is changed in this way, it is almost impossible to affect the maximum head magnetic field, that is, the peak value PK 1 = 60000 e of the gap magnetic field AA. .
しかも、 図 15に示されるように、 傾斜角 Sを増大させると、 張り出し長さ厶 PWを大きく取っても十分にエツジ磁界 B Bのピーク値 PK 2を 1 5000 e以 下に抑え込むことができる。 したカ って、 境界面 37の傾斜角 Sは 30。 以上に 設定されると同時に、 境界面 37の張り出し長さ ΔΡ\Υは 0. 45 m以下に設 定されることが望ましいこととなる。 境界面 37の傾斜角 0を 3 0° 以上に設定 すれば、 十分な大きさの張り出し長さ Δ P Wを確保して製造時の歩溜まりを向上 させることができるのである。なお、図 1 5では、浮上面鉛直方向長さ GDは 1. Moreover, as shown in Fig. 15, when the inclination angle S is increased, the peak value PK 2 of the edge magnetic field BB can be sufficiently reduced to 15000 e or less even if the overhang length PW is large. Can be held down. Therefore, the inclination angle S of the boundary surface 37 is 30. At the same time, it is desirable that the overhang length ΔΡ \ Υ of the boundary surface 37 be set to 0.45 m or less. If the inclination angle 0 of the boundary surface 37 is set to 30 ° or more, it is possible to secure a sufficiently large overhang length ΔPW and improve the yield during manufacturing. In Figure 15, the vertical length GD of the air bearing surface is 1.
 :
5 mに設定された。  Set to 5 m.
ここで、傾斜角 Sの境界面 37を備える上部磁極層 28の形成方法を詳述する。 まず、 図 1 6 (a) に示すように、 周知の方法に従ってアルチックゥヱハ一上に 下部磁極層 29およびギャップ層 30を積層する。 続いて、 図 1 6 (b) に示す ように、 めっき成膜等を用いてギャップ層 30上に上部副磁極 35を形成する。 形成された上部副磁極 35をマスクに用いて、 図 1 6 (c) に示すように、 ィォ ンミルを実施する。 このイオンミルによって、 ギャップ層 30および下部磁極層 Here, a method of forming the upper magnetic pole layer 28 having the boundary surface 37 with the inclination angle S will be described in detail. First, as shown in FIG. 16A, a lower magnetic pole layer 29 and a gap layer 30 are laminated on an AlTiC substrate according to a known method. Subsequently, as shown in FIG. 16 (b), the upper sub-pole 35 is formed on the gap layer 30 by plating film formation or the like. Using the formed upper sub-pole 35 as a mask, an ion mill is performed as shown in FIG. 16 (c). With this ion mill, gap layer 30 and lower pole layer
29が削られ、 狭小ギャップ層 39を挟んで上部副磁極 35に対向する下部副磁 極 36が形成される。 The lower sub-pole 36 facing the upper sub-pole 35 with the narrow gap layer 39 interposed therebetween is formed.
続いて図 1 7 (a) に示すように、 下部磁極層 29上にアルミナなどの絶縁層 4 1を被膜する。 その結果、 被膜された絶縁層 4 1によって上部副磁極 35は覆 われる。 その後、 図 1 7 (b) に示すように、 絶縁層 4 1に平坦化研摩を施し、 上部副磁極 35を露出させる。 ここで、 図 1 7 (c) に示すように、 上部副磁極 Subsequently, as shown in FIG. 17A, an insulating layer 41 such as alumina is coated on the lower magnetic pole layer 29. As a result, the upper sub pole 35 is covered by the coated insulating layer 41. Thereafter, as shown in FIG. 17 (b), the insulating layer 41 is subjected to flattening polishing to expose the upper sub pole 35. Here, as shown in Fig. 17 (c), the upper auxiliary pole
35を含む絶縁層 4 1の表面にイオンミル処理を実施する。 すると、 絶縁層 41 のアルミナと上部副磁極 35の素材との間でエッチングレートが異なることから、 上部副磁極 35が先に彫り込まれていく。 その結果、 絶縁層 4 1のエッジにテ一 パ面 42が形成される。 図 1 7 (d) に示すように、 形成されたテ一パ面 42に 重ねて上部磁極層 28を形成すれば、 境界面 37が傾斜した上部磁極層 28を得 ることができる。 上部磁極層 28の形成にあたっては、 例えばフォ 卜レジス卜 4 3を用いためっき成膜が採用されればよい。 The surface of the insulating layer 41 containing 35 is subjected to ion milling. Then, since the etching rate differs between the alumina of the insulating layer 41 and the material of the upper sub-pole 35, the upper sub-pole 35 is carved first. As a result, a tapered surface 42 is formed at the edge of the insulating layer 41. As shown in FIG. 17D, when the upper magnetic pole layer 28 is formed so as to overlap the formed taper surface 42, the upper magnetic pole layer 28 in which the boundary surface 37 is inclined can be obtained. In forming the upper magnetic pole layer 28, for example, a plating film using the photo resist 43 may be adopted.
そういったイオンミル処理を用いなくとも、 上部磁極層 28成膜時のフォ卜レ ジストを用いれば、 境界面 37力傾斜した上部磁極層 28を容易に得ることがで きる。 この場合には、 図 1 7 (b) に示すように絶縁層 4 1の表面に平坦化研摩 が施された時点で、 例えば図 1 8 (a) に示すようにフォトレジスト 45を一様 に塗布する。 その後、 マスクパターン (図示せず) を用いて上部磁極層 28のパ ターンにフォ トレジスト 45を露光現像する。 このとき、 アンダー露光を用いる と、 図 18 (b) に示すように、 上部磁極層 28のパターン内でフォ トレジスト 45が完全には除去されず、 その結果、 上部副磁極 35の近辺ではフォトレジス 卜 45にテ一パ面 46が形成される。 このテ一パ面 46を用いて上部磁極層 28 を成膜すると、 境界面 37が傾斜した上部磁極層 28が得られるのである。 Even without using such an ion mill treatment, the upper magnetic pole layer 28 inclined at the interface 37 can be easily obtained by using the photoresist at the time of forming the upper magnetic pole layer 28. In this case, when the surface of the insulating layer 41 is subjected to the planarization polishing as shown in FIG. 17 (b), for example, the photoresist 45 is uniformly applied as shown in FIG. 18 (a). Apply to. Thereafter, a photoresist 45 is exposed and developed on the pattern of the upper magnetic pole layer 28 using a mask pattern (not shown). At this time, when the under exposure is used, the photoresist 45 is not completely removed in the pattern of the upper magnetic pole layer 28 as shown in FIG. 18B, and as a result, the photoresist near the upper sub magnetic pole 35 is not removed. A taper surface 46 is formed at the bottom 45. When the upper magnetic pole layer 28 is formed using the taper surface 46, the upper magnetic pole layer 28 in which the boundary surface 37 is inclined is obtained.
同様に、 絶縁層 4 1の平坦化研摩後に、 例えば図 19 (a) に示すように、 上 部副磁極 35上にレジス卜パターン 48を形成し、 リフ卜オフによって傾斜する 境界面 37を形成してもよい。レジス卜パターン 48が形成された後、図 19(a) に示すようにスパッタリングなどによって再び絶縁層 49が形成されると、 レジ ストパターン 48のきわでは絶縁層 49が完全には積層されない。 その結果、 絶 縁層 49にテ一パ面 50が形成される。 レジストパターン 48を除去した後、 図 19 (b) に示すように、 テーパ面 50に重ねて上部磁極層 28を形成すれば、 境界面 37が傾斜した上部磁極層 28を得ることができる。  Similarly, after the flattening and polishing of the insulating layer 41, for example, as shown in FIG. 19A, a resist pattern 48 is formed on the upper sub-pole 35, and a boundary surface 37 inclined by lift-off is formed. May be. After the resist pattern 48 is formed, if the insulating layer 49 is formed again by sputtering or the like as shown in FIG. 19 (a), the insulating layer 49 is not completely laminated in the vicinity of the resist pattern 48. As a result, a tapered surface 50 is formed on the insulating layer 49. After removing the resist pattern 48, as shown in FIG. 19 (b), if the upper magnetic pole layer 28 is formed so as to overlap the tapered surface 50, the upper magnetic pole layer 28 in which the boundary surface 37 is inclined can be obtained.
さらにまた、絶縁層 41の平坦化研摩後に、例えば図 20 (a)に示すように、 上部副磁極 35を含む絶縁層 41の表面に一様に S i 02 絶縁膜 52を成膜し、 上部副磁極 35を象ったレジストパタ一ン 53を S i 02 絶縁膜 52上に形成 するようにしてもよい。 ここで、 レジストパターン 53に熱処理を施すと、 レジ ストパターン 53のエッジが後退しテ一パ面 54が形成される。 続いて、 図 20 (b) に示すように、 R I E (反応イオンエッチング) 処理を実施すると、 レジ ストパターン 53の形状を反映しながら S i 02 絶縁膜 52も削り取られてい く。 その結果、 S i 02 絶縁膜 52にテーパ面 55が形成される。 図 20 (c) に示すようにレジストパターン 53を除去し、 図 20 (d) に示すように、 形成 されたテ一パ面 55に重ねて上部磁極層 28を形成すれば、 境界面 37力傾斜し た上部磁極層 28を得ることができる。 Furthermore, after flattening and polishing the insulating layer 41, for example, as shown in FIG. 20 (a), a SiO 2 insulating film 52 is uniformly formed on the surface of the insulating layer 41 including the upper sub-pole 35, A resist pattern 53 imitating the upper sub-pole 35 may be formed on the SiO 2 insulating film 52. Here, when the resist pattern 53 is subjected to a heat treatment, the edge of the resist pattern 53 recedes, and a tapered surface 54 is formed. Subsequently, as shown in FIG. 20B, when the RIE (reactive ion etching) process is performed, the SiO 2 insulating film 52 is also removed while reflecting the shape of the resist pattern 53. As a result, a tapered surface 55 is formed on the SiO 2 insulating film 52. The resist pattern 53 is removed as shown in FIG. 20 (c), and the upper magnetic pole layer 28 is formed on the formed taper surface 55 as shown in FIG. 20 (d). The inclined upper pole layer 28 can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 浮上面に臨む上部磁極層と、 ギャップ層を挟んで上部磁極層に対向し、 浮上 面に臨む下部磁極層と、 上部磁極層に形成されて、 ギャップ層との境界面から浮 上面に沿って下部磁極層に向かって膨らむ上部副磁極とを備え、 上部副磁極の浮 上面鉛直方向長さは 1 . 5 m以上に設定されることを特徴とする薄膜誘導書き 込み磁気へッ ド。 1. Upper magnetic pole layer facing the air bearing surface, lower magnetic pole layer facing the upper magnetic pole layer with the gap layer interposed, and facing the floating surface, and formed on the upper magnetic pole layer, from the boundary surface with the gap layer to the air bearing surface An upper sub-pole swelling toward the lower magnetic pole layer along with the upper sub-pole, and the vertical length of the air bearing surface of the upper sub-pole is set to 1.5 m or more.
2 . 請求の範囲第 1項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記上部 副磁極の浮上面鉛直方向長さは 3 . 0 m以上に設定されることを特徴とする薄 膜誘導書き込み磁気へッ ド。 2. The thin-film inductive write head according to claim 1, wherein a vertical length of the air bearing surface of the upper sub-pole is set to 3.0 m or more. Magnetic head.
3 . 請求の範囲第 1項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記上部 磁極層の前記境界面は、 前記浮上面に沿って 0 . 4 i m以下の張り出し長さで前 記上部副磁極から張り出すことを特徴とする薄膜誘導書き込み磁気へッ ド。 3. The thin-film inductive write magnetic head according to claim 1, wherein the boundary surface of the upper pole layer has an overhang length of 0.4 im or less along the air bearing surface. A thin-film inductive writing magnetic head that protrudes from the magnetic pole.
4 . 請求の範囲第 1項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記上部 磁極層の前記境界面は、 前記上部副磁極から遠ざかるにつれて前記下部磁極層か ら離れるように傾斜することを特徴とする薄膜誘導書き込み磁気へッ ド。 4. The thin-film inductive write magnetic head according to claim 1, wherein the boundary surface of the upper magnetic pole layer is inclined away from the lower magnetic pole layer as the distance from the upper auxiliary magnetic pole increases. Characterized thin-film inductive write magnetic head.
5 . 請求の範囲第 4項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記境界 面の傾斜角は 1 5 ° 以上に設定されることを特徴とする薄膜誘導書き込み磁気へ ッ 卜。 5. The thin-film inductive writing magnetic head according to claim 4, wherein the inclination angle of the boundary surface is set to 15 ° or more.
6 . 請求の範囲第 5項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記境界 面の傾斜角は 3 0 ° 以上に設定されることを特徴とする薄膜誘導書き込み磁気へ ッ 卜。 6. The thin-film inductive writing magnetic head according to claim 5, wherein an inclination angle of the boundary surface is set to 30 ° or more.
7 . 請求の範囲第 1項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 下部磁極 層に形成されて、 ギヤップ層との境界面から浮上面に沿って前記上部副磁極に向 かって膨らむ下部副磁極をさらに備え、 下部副磁極の浮上面鉛直方向長さは 1 . 5 m以上に設定されることを特徴とする薄膜誘導書き込み磁気へッ ド。 7. The thin-film inductive write magnetic head according to claim 1, wherein the lower pole is A lower sub-pole that is formed on the layer and swells from the boundary surface with the gap layer along the air-bearing surface toward the upper sub-magnetic pole, and the vertical length of the lower sub-magnetic pole in the air-bearing surface is 1.5 m or more. A thin-film inductive write magnetic head characterized by being set.
8 . 請求の範囲第 7項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記下部 、 8. The thin-film inductive write magnetic head according to claim 7, wherein said lower portion,
副磁極の浮上面鉛直方向長さは 3 . 0 m以上に設定されることを特徴とする薄 膜誘導書き込み磁気へッ ド。  The thin-film inductive writing magnetic head characterized in that the vertical length of the sub-pole is set at least 3.0 m in the air bearing surface.
9 . 請求の範囲第 7項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記上部 磁極層の前記境界面は、 前記浮上面に沿って 0 . 4 m以下の張り出し長さで前 記上部副磁極から張り出すことを特徴とする薄膜誘導書き込み磁気へッ ド。 9. The thin-film inductive write magnetic head according to claim 7, wherein the boundary surface of the upper pole layer has an overhang length of 0.4 m or less along the air bearing surface. A thin-film inductive writing magnetic head that protrudes from the magnetic pole.
1 0 . 請求の範囲第 7項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記上 部磁極層の前記境界面は、 前記上部副磁極から遠ざかるにつれて前記下部磁極層 力、ら離れるように傾斜することを特徴とする薄膜誘導書き込み磁気へッ ド。 10. The thin-film inductive write magnetic head according to claim 7, wherein the boundary surface of the upper magnetic pole layer is inclined so as to move away from the lower magnetic pole layer as the distance from the upper auxiliary magnetic pole increases. A thin-film inductive write magnetic head.
1 1 . 請求の範囲第 1 0項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記 境界面の傾斜角は 1 5 ° 以上に設定されることを特徴とする薄膜誘導書き込み磁 気へッ 卜'。 11. The thin-film inductive writing magnetic head according to claim 10, wherein an inclination angle of the boundary surface is set to 15 ° or more. '.
1 2 . 請求の範囲第 1 1項に記載の薄膜誘導書き込み磁気へッ ドにおいて、 前記 境界面の傾斜角は 3 0 ° 以上に設定されることを特徴とする薄膜誘導書き込み磁 気へッ 卜 '。 12. The thin-film inductive writing magnetic head according to claim 11, wherein the inclination angle of the boundary surface is set to 30 ° or more. '.
1 3 . 浮上面に臨む薄膜誘導書き込み磁気へッ ドの先端で、 下部磁極層上に上部 副磁極を形成する工程と、 下部磁極層上に絶縁層を積層し、 形成された上部副磁 極を絶縁層で覆う工程と、 絶縁層に平坦化処理を施し、 上部副磁極を露出させる 工程と、 平坦化処理が施された上部副磁極を含む絶縁層の表面にィォンミル処理 を施す工程とを備えることを特徴とする薄膜誘導書き込み磁気へッ ドの製造方法。 1 3. A step of forming an upper sub-pole on the lower pole layer at the tip of the thin-film inductive write magnetic head facing the air bearing surface, and an upper sub-pole formed by laminating an insulating layer on the lower pole layer Covering the insulating layer with an insulating layer, performing a planarizing process on the insulating layer to expose the upper sub-magnetic pole, and performing an ion milling process on the surface of the insulating layer including the planarized upper sub-magnetic pole. A method for producing a thin-film inductive write magnetic head, comprising:
1 4 . 浮上面に臨む薄膜誘導書き込み磁気へッ ドの先端で、 下部磁極層上に上部 副磁極を形成する工程と、 下部磁極層上に絶縁層を積層し、 形成された上部副磁 極を絶縁層で覆う工程と、 絶縁層に平坦化処理を施し、 上部副磁極を露出させる 工程と、 平坦化処理が施された上部副磁極を含む絶縁層の表面にフォ トレジスト を塗布する工程と、 アンダー露光によってフォ卜レジストを除去する工程とを備 えることを特徴とする薄膜誘導書き込み磁気へッ ドの製造方法。 1 4. A step of forming an upper sub-pole on the lower pole layer at the tip of the thin-film inductive write magnetic head facing the air bearing surface, and an upper sub-pole formed by laminating an insulating layer on the lower pole layer Covering the insulating layer with an insulating layer, performing a planarizing process on the insulating layer to expose the upper sub-pole, and applying a photoresist on the surface of the insulating layer including the planarized upper sub-pole. And a step of removing the photoresist by underexposure.
1 5 . 浮上面に臨む薄膜誘導書き込み磁気へッ ドの先端で、 下部磁極層上に上部 副磁極を形成する工程と、 下部磁極層上に絶縁層を積層し、 形成された上部副磁 極を絶縁層で覆う工程と、 絶縁層に平坦化処理を施し、 上部副磁極を露出させる 工程と、 露出した上部副磁極上にレジス卜パターンを形成する工程と、 レジスト パターンを含む絶縁層の表面に絶縁膜を形成する工程とを備えることを特徴とす る薄膜誘導書き込み磁気へッ ドの製造方法。 15. Step of forming an upper sub-pole on the lower pole layer at the tip of the thin-film inductive write magnetic head facing the air bearing surface, and laminating an insulating layer on the lower pole layer to form the upper sub-pole Covering the insulating layer with an insulating layer, performing a planarizing process on the insulating layer to expose the upper sub-pole, forming a resist pattern on the exposed upper sub-pole, and a surface of the insulating layer including the resist pattern. Forming a thin-film inductive write magnetic head.
1 6 . 浮上面に臨む薄膜誘導書き込み磁気へッ ドの先端で、 下部磁極層上に上部 副磁極を形成する工程と、 下部磁極層上に絶縁層を積層し、 形成された上部副磁 極を絶縁層で覆う工程と、 絶縁層に平坦化処理を施し、 上部副磁極を露出させる 工程と、 平坦化処理が施された上部副磁極を含む絶縁層の表面に一様に絶縁膜を 成膜する工程と、 上部副磁極を象ったレジス卜パターンを絶縁膜上に形成するェ 程と、 レジストパターンに熱処理を施す工程と、 熱処理が施されたレジス卜パタ 一ンを含む絶縁膜の表面に反応ィオンエツチング処理を施す工程とを備えること を特徴とする薄膜誘導書き込み磁気へッ ドの製造方法。 16. Step of forming an upper sub-pole on the lower pole layer at the tip of the thin-film inductive writing magnetic head facing the air bearing surface, and laminating an insulating layer on the lower pole layer to form the upper sub-pole Covering the insulating layer with an insulating layer, flattening the insulating layer to expose the upper sub-pole, and forming an insulating film uniformly on the surface of the insulating layer including the flattened upper sub-pole. Film forming, forming a resist pattern imitating the upper sub-magnetic pole on the insulating film, heat-treating the resist pattern, and forming a resist pattern including the heat-treated resist pattern. Subjecting the surface to a reactive ion etching treatment.
PCT/JP1999/000331 1998-09-18 1999-01-27 Thin film induction write magnetic head and method of manufacturing the same WO2000017861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10264198A JP2000099918A (en) 1998-09-18 1998-09-18 Thin-film induction writing magnetic head and its production
JP10/264198 1998-09-18

Publications (1)

Publication Number Publication Date
WO2000017861A1 true WO2000017861A1 (en) 2000-03-30

Family

ID=17399856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000331 WO2000017861A1 (en) 1998-09-18 1999-01-27 Thin film induction write magnetic head and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2000099918A (en)
WO (1) WO2000017861A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123909A (en) 2000-10-19 2002-04-26 Fujitsu Ltd Thin film magnetic head

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476414A (en) * 1987-09-17 1989-03-22 Fuji Photo Film Co Ltd Thin film magnetic head
JPH0628626A (en) * 1992-02-28 1994-02-04 Internatl Business Mach Corp <Ibm> Thin-film magnetic head and its manufacture
JPH06314413A (en) * 1993-04-30 1994-11-08 Victor Co Of Japan Ltd Thin film magnetic head
JPH0744817A (en) * 1993-07-29 1995-02-14 Hitachi Ltd Thin film magnetic head and magnetic disk device
JPH09270105A (en) * 1996-03-29 1997-10-14 Sony Corp Thin film magnetic head and its production
JPH10283616A (en) * 1997-04-07 1998-10-23 Nec Corp Magneto-resistive composite head and its production as well as magnetic memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476414A (en) * 1987-09-17 1989-03-22 Fuji Photo Film Co Ltd Thin film magnetic head
JPH0628626A (en) * 1992-02-28 1994-02-04 Internatl Business Mach Corp <Ibm> Thin-film magnetic head and its manufacture
JPH06314413A (en) * 1993-04-30 1994-11-08 Victor Co Of Japan Ltd Thin film magnetic head
JPH0744817A (en) * 1993-07-29 1995-02-14 Hitachi Ltd Thin film magnetic head and magnetic disk device
JPH09270105A (en) * 1996-03-29 1997-10-14 Sony Corp Thin film magnetic head and its production
JPH10283616A (en) * 1997-04-07 1998-10-23 Nec Corp Magneto-resistive composite head and its production as well as magnetic memory device

Also Published As

Publication number Publication date
JP2000099918A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
US8203803B2 (en) Magnetic recording head for perpendicular recording with wrap around shield, the fabrication process and magnetic disk storage apparatus mounting the magnetic head
US7181829B2 (en) Method of manufacturing a perpendicular magnetic recording head
US7551395B2 (en) Main pole structure coupled with trailing gap for perpendicular recording
JP4116626B2 (en) Magnetic head for perpendicular magnetic recording and manufacturing method thereof
US10839829B1 (en) Magnetic head with a main pole including first and second layers and manufacturing method for the same
JP2007220208A (en) Magnetic head, magnetic recording and reproducing device, and method for manufacturing magnetic head
JP2010146600A (en) Perpendicular magnetic recording head, method of manufacturing the same, and magnetic recording/reproducing device
US20060152852A1 (en) Thin film magnetic head having solenoidal coil and method of manufacturing the same
US8320078B1 (en) Perpendicular magnetic recording write head with antiparallel-coupled laminated main pole having a tapered trailing edge
US7743487B2 (en) Method to planarize perpendicular write poles using a combination of CMP and reactive ion milling
JP2005285297A (en) Method for manufacturing perpendicular magnetic recording magnetic head
US20010013992A1 (en) Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same
JP2000331318A (en) Magneto-resistance effect type head
WO2000077777A1 (en) Thin-film magnetic write head and method of manufacture thereof
US8117737B2 (en) Method of manufacturing magnetic head for perpendicular magnetic recording with shield around main magnetic pole
WO2000017861A1 (en) Thin film induction write magnetic head and method of manufacturing the same
US6624972B1 (en) Magnetic head, method of manufacturing magnetic head and information recording apparatus
US6700740B2 (en) Thin-film magnetic head and method of manufacturing same
JP3558997B2 (en) Perpendicular magnetic recording head and method of manufacturing the same
US20010043445A1 (en) Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same
US8760821B1 (en) Higher stability read head using a read sensor with a flat back edge
JP2000099916A (en) Thin-film magnetic head and its production
JP2006277905A (en) Magnetic head for vertical recording and magnetic storage device
JP2000306214A (en) Thin film writing magnetic head and its manufacture
JP4236144B2 (en) Magnetic recording apparatus and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642