JP2006277905A - Magnetic head for vertical recording and magnetic storage device - Google Patents

Magnetic head for vertical recording and magnetic storage device Download PDF

Info

Publication number
JP2006277905A
JP2006277905A JP2005099884A JP2005099884A JP2006277905A JP 2006277905 A JP2006277905 A JP 2006277905A JP 2005099884 A JP2005099884 A JP 2005099884A JP 2005099884 A JP2005099884 A JP 2005099884A JP 2006277905 A JP2006277905 A JP 2006277905A
Authority
JP
Japan
Prior art keywords
magnetic
recording
magnetic pole
sub
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005099884A
Other languages
Japanese (ja)
Inventor
Maki Maeda
麻貴 前田
Junzo Toda
順三 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005099884A priority Critical patent/JP2006277905A/en
Publication of JP2006277905A publication Critical patent/JP2006277905A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic head for vertical recording having favorable magnetic field strength distribution of a recording magnetic field, suppressing side erasure and allowing high density recording, and a storage device. <P>SOLUTION: For the recording element 20 of the magnetic head 10 for vertical recording, a main magnetic pole 21 and a sub magnetic pole distal end part 30 through a nonmagnetic part 22 are provided facing each other on a surface 11 facing a medium. In the sub magnetic pole distal end part 30, a first low Bs part 31 and a high Bs part 32 are arranged in the order from the side of the main magnetic pole 21, and a second low Bs part 33 is arranged in the track width direction and trailing side of the high Bs part 32. The high Bs part 32 is composed of a soft magnetic ferromagnetic material whose saturation magnetic flux density is higher than the first low Bs part 31 and the second low Bs part 33, and the width in the track width direction of the high Bs part 32 is set to be almost equal to or more than the width on the trailing side of the main magnetic pole 21 and double or less than that. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、垂直記録用磁気ヘッドおよび磁気記憶装置に関する。   The present invention relates to a magnetic head for perpendicular recording and a magnetic storage device.

従来、磁気記憶装置は、磁気記録媒体の記録層に、基板面に対して平行に磁化を形成する面内記録方式が主流である。面内記録方式は、記録密度を向上するに伴い記録された磁化の大きさが経時的に減少する、いわゆる記録された磁化の熱安定性が問題となっている。これに対して、磁気記録媒体の記録層に、基板面に対して垂直方向に磁化を形成する垂直記録方式が提案されている。垂直記録方式は面内記録方式よりも記録された磁化の熱安定性が高いため、面内記録方式よりも高い記録密度を達成できると期待されている。   Conventionally, the mainstream of magnetic storage devices is an in-plane recording method in which magnetization is formed in a recording layer of a magnetic recording medium in parallel to the substrate surface. The in-plane recording method has a problem of so-called thermal stability of recorded magnetization in which the magnitude of recorded magnetization decreases with time as the recording density is improved. On the other hand, a perpendicular recording method has been proposed in which magnetization is formed in a recording layer of a magnetic recording medium in a direction perpendicular to the substrate surface. Since the perpendicular recording method has higher thermal stability of recorded magnetization than the in-plane recording method, it is expected to achieve a higher recording density than the in-plane recording method.

図1に示すように、従来の垂直記録用磁気ヘッドは、媒体対向面側に、磁気抵抗効果(MR)膜104とそれを挟むシールド部102、103からなる再生素子101と、主磁極106と副磁極107からなる記録素子105を有する。再生素子101と記録素子105は、磁気記録媒体が移動する方向(矢印で示す方向)に沿ってこの順に配列されている。垂直記録用磁気ヘッドは、記録の際は、主磁極106から磁気記録媒体の記録層に膜面に対して垂直方向に記録磁界を印加する。磁気記録媒体は、基板上に軟磁性裏打ち層と記録層を有し、記録磁界は記録層を磁化させ、軟磁性裏打ち層からさらに副磁極107側の記録層を介して副磁極107から吸い込まれる。主磁極106の磁極幅は磁気記録媒体のトラック幅と同等に形成される。一方、副磁極107は記録磁界のリターンパスとして磁界を吸い込むためトラック幅方向に延びて形成されている。
特開2004−095006号公報
As shown in FIG. 1, the conventional perpendicular recording magnetic head has a reproducing element 101 including a magnetoresistive (MR) film 104 and shield portions 102 and 103 sandwiching the magnetoresistive effect (MR) film, a main magnetic pole 106, A recording element 105 including a sub magnetic pole 107 is included. The reproducing element 101 and the recording element 105 are arranged in this order along the direction in which the magnetic recording medium moves (the direction indicated by the arrow). When recording, the perpendicular recording magnetic head applies a recording magnetic field from the main magnetic pole 106 to the recording layer of the magnetic recording medium in a direction perpendicular to the film surface. The magnetic recording medium has a soft magnetic backing layer and a recording layer on a substrate, and a recording magnetic field magnetizes the recording layer and is sucked from the sub magnetic pole 107 through the soft magnetic backing layer and further through the recording layer on the sub magnetic pole 107 side. . The magnetic pole width of the main magnetic pole 106 is formed equal to the track width of the magnetic recording medium. On the other hand, the auxiliary magnetic pole 107 is formed to extend in the track width direction so as to absorb the magnetic field as a return path of the recording magnetic field.
JP 2004-095006 A

図1に示す構造では、副磁極107に吸い込まれる磁界がトラック幅方向に広がるので、記録トラックに隣接するトラックに既に記録されている磁化に影響を与える。すなわち、記録トラックに隣接するトラックは、記録が行われる度に磁界が印加されるため、その磁化が次第に減少する問題、すなわち副磁極107によるサイドイレーズが発生するという問題が生ずる。   In the structure shown in FIG. 1, since the magnetic field attracted by the sub magnetic pole 107 spreads in the track width direction, the magnetization already recorded in the track adjacent to the recording track is affected. That is, since a magnetic field is applied to the track adjacent to the recording track every time recording is performed, a problem that the magnetization gradually decreases, that is, a problem that side erasure due to the sub magnetic pole 107 occurs.

一方、副磁極107のトラック幅方向の幅を単に狭くして、隣接トラックに印加される磁界を低減することも考えられるが、この場合、記録トラックにおいて副磁極107に吸い込まれる磁界強度が増加する。その結果、主磁極106からの記録磁界により記録された磁化が副磁極107に吸い込まれる磁界により減磁してしまう。このような場合、S/N比が劣化し、エラーが発生し易くなる。   On the other hand, it is conceivable to reduce the magnetic field applied to the adjacent track by simply reducing the width of the sub magnetic pole 107 in the track width direction. In this case, however, the magnetic field strength sucked into the sub magnetic pole 107 in the recording track increases. . As a result, the magnetization recorded by the recording magnetic field from the main magnetic pole 106 is demagnetized by the magnetic field absorbed by the sub magnetic pole 107. In such a case, the S / N ratio is deteriorated and an error is likely to occur.

そこで、本発明は上記問題点に鑑みてなされたもので、本発明の目的は、記録磁界の磁界強度分布が良好でかつサイドイレーズを抑制し、高密度記録が可能な垂直記録用磁気ヘッドおよび記憶装置を提供することである。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a perpendicular recording magnetic head that has a good magnetic field strength distribution of a recording magnetic field, suppresses side erasure, and enables high-density recording. It is to provide a storage device.

本発明の一観点によれば、記録方向に沿って配置され、記録磁界を印加する主磁極と、該主磁極に対向し該記録磁界のリターンパスとなる副磁極と、主磁極と副磁極を磁気的に接続するヨークを有する記録素子を備える垂直記録用磁気ヘッドであって、前記副磁極は、主磁極に対向する側に副磁極先端部を有し、前記副磁極先端部は、主磁極側から順に、前記記録方向に対して垂直な幅方向に延在する第1の軟磁性部と、前記第1の軟磁性部に接し、主磁極の記録方向に沿う中心線上に、該中心線に対して幅方向に略対称に配置された第2の軟磁性部と、該第2の軟磁性部の幅方向の両側に第3の軟磁性部とを有し、前記第2の軟磁性部は、第1の軟磁性部および第3の軟磁性部よりも飽和磁束密度の高い強磁性材料からなることを特徴とする垂直記録用磁気ヘッドが提供される。   According to one aspect of the present invention, a main magnetic pole that is disposed along the recording direction and applies a recording magnetic field, a sub-magnetic pole that faces the main magnetic pole and serves as a return path of the recording magnetic field, and a main magnetic pole and a sub-magnetic pole are provided. A magnetic head for perpendicular recording comprising a recording element having a magnetically connected yoke, wherein the sub magnetic pole has a sub magnetic pole tip on the side facing the main magnetic pole, and the sub magnetic pole tip is a main magnetic pole A first soft magnetic portion extending in a width direction perpendicular to the recording direction and a center line in contact with the first soft magnetic portion and extending along the recording direction of the main pole in order from the side A second soft magnetic portion disposed substantially symmetrically in the width direction, and third soft magnetic portions on both sides in the width direction of the second soft magnetic portion, and the second soft magnetic portion The portion is made of a ferromagnetic material having a saturation magnetic flux density higher than that of the first soft magnetic portion and the third soft magnetic portion. A magnetic head for perpendicular recording is provided.

本発明によれば、主磁極のトレーリング側に副磁極先端部を設け、副磁極先端部は主磁極側から、第1の軟磁性部、第2の軟磁性部がこの順に配置され、第2の軟磁性部のトラック幅方向およびトレーリング側には第3の軟磁性部が配置される。第2の軟磁性部を所定の幅に形成することで、主磁極のトレーリング側の記録磁界の勾配を急峻な状態に維持しつつ、副磁極が吸い込む磁界強度を低減してオフトラック位置のサイドイレーズを抑制できる。その結果、サイドイレーズによるS/N比の劣化を抑制し、高記録密度化が可能となる。   According to the present invention, the tip of the secondary magnetic pole is provided on the trailing side of the main magnetic pole, and the tip of the secondary magnetic pole is arranged from the main magnetic pole to the first soft magnetic part and the second soft magnetic part in this order. A third soft magnetic part is disposed in the track width direction and the trailing side of the second soft magnetic part. By forming the second soft magnetic portion with a predetermined width, the magnetic field strength absorbed by the sub-magnetic pole can be reduced while maintaining the steep gradient of the recording magnetic field on the trailing side of the main magnetic pole. Side erase can be suppressed. As a result, it is possible to suppress the deterioration of the S / N ratio due to the side erase and increase the recording density.

本発明の他の観点によれば、基板と、該基板上に軟磁性裏打ち層および垂直磁化膜からなる記録層とが順次積層されてなる磁気記録媒体と、上記の垂直記録用磁気ヘッドと、を備える磁気記憶装置が提供される。   According to another aspect of the present invention, a magnetic recording medium in which a substrate and a recording layer made of a soft magnetic backing layer and a perpendicular magnetization film are sequentially stacked on the substrate, and the magnetic head for perpendicular recording described above, A magnetic storage device is provided.

本発明によれば、垂直記録用磁気ヘッドが磁気記録媒体に記録する際のサイドイレーズによるS/N比の劣化を抑制し、高記録密度化が可能な磁気記憶装置が実現できる。   According to the present invention, it is possible to realize a magnetic storage device capable of suppressing the deterioration of the S / N ratio due to side erasure when the perpendicular recording magnetic head records on the magnetic recording medium and increasing the recording density.

本発明によれば、記録磁界の磁界強度分布が良好でかつサイドイレーズを抑制し、高密度記録が可能な垂直記録用磁気ヘッドおよび記憶装置を提供できる。   According to the present invention, it is possible to provide a perpendicular recording magnetic head and a storage device that have a good magnetic field strength distribution of a recording magnetic field, suppress side erasure, and enable high-density recording.

以下図面を参照しつつ実施の形態を説明する。   Embodiments will be described below with reference to the drawings.

(第1の実施の形態)
図2は、本発明の第1の実施の形態に係る垂直記録用磁気ヘッドの素子部の断面図、図3は図2に示す垂直記録用磁気ヘッドの記録素子を媒体対向面側から視た図である。図2には、磁気記録媒体を合わせて示している。図2および図3において、X1方向をトレーリング方向(あるいはトレーリング側)、X2方向をリーディング方向(あるいはリーディング側)と称する。また、X1方向およびX2方向を厚さ方向とも称する。X1方向は磁気記録媒体の移動方向であり、すなわち記録動作の際の記録方向である。すなわち、トレーリング方向(あるいはトレーリング側)は、記録方向の下流方向(あるいは下流側)である。Y1方向およびY2方向をトラック幅方向と称する。Z1方向を奥行き方向、Z2方向を媒体対向面方向(あるいは媒体対向面方向)と称する。
(First embodiment)
FIG. 2 is a cross-sectional view of the element portion of the perpendicular recording magnetic head according to the first embodiment of the present invention. FIG. 3 is a view of the recording element of the perpendicular recording magnetic head shown in FIG. FIG. FIG. 2 also shows the magnetic recording medium. 2 and 3, the X 1 direction trailing direction (or the trailing side), the X 2 direction is referred to as a leading direction (or the leading side). Further, the X 1 direction and the X 2 direction are also referred to as a thickness direction. Direction X 1 is a moving direction of the magnetic recording medium, that is, the recording direction in the recording operation. That is, the trailing direction (or trailing side) is the downstream direction (or downstream side) of the recording direction. The Y 1 direction and the Y 2 direction are referred to as the track width direction. The Z 1 direction is referred to as a depth direction, and the Z 2 direction is referred to as a medium facing surface direction (or medium facing surface direction).

図2および図3を参照するに、垂直記録用磁気ヘッド10は、磁気記録媒体40に対向する面11(以下、「媒体対向面」と称する。)側に磁気抵抗効果(MR)膜17を有する再生素子15および記録素子20を有する。磁気記録媒体40は、垂直磁化膜からなる記録層43とその基板41側に軟磁性膜からなる軟磁性裏打ち層42を有する。垂直記録用磁気ヘッド10は、例えば、磁気記録媒体40上を浮上する浮上型の磁気ヘッドでもよく、磁気記録媒体40に略接触する接触型の磁気ヘッドでもよい。   2 and 3, the perpendicular recording magnetic head 10 has a magnetoresistive (MR) film 17 on the surface 11 facing the magnetic recording medium 40 (hereinafter referred to as “medium facing surface”). The reproducing element 15 and the recording element 20 are included. The magnetic recording medium 40 has a recording layer 43 made of a perpendicular magnetization film and a soft magnetic backing layer 42 made of a soft magnetic film on the substrate 41 side. The perpendicular recording magnetic head 10 may be, for example, a flying type magnetic head that floats on the magnetic recording medium 40 or a contact type magnetic head that substantially contacts the magnetic recording medium 40.

再生素子15は、軟磁性材料からなる下部シールド層16と上部シールド層19との間に非磁性部18を介して媒体対向面11側にMR膜17が設けられた構成からなる。MR膜17は、記録層43の磁化の方向を電気抵抗変化として検知して再生信号を得て、記録層43に記録された情報を再生する。MR膜17は、CIP(Current−In−Plane)型あるいはCPP(Current−Perpendicular−to−Plane)型のスピンバルブ膜、TMR(トンネル磁気抵抗効果)膜のいずれでもよく、特に制限はない。   The reproducing element 15 has a configuration in which an MR film 17 is provided on the medium facing surface 11 side through a nonmagnetic portion 18 between a lower shield layer 16 and an upper shield layer 19 made of a soft magnetic material. The MR film 17 detects the direction of magnetization of the recording layer 43 as a change in electrical resistance, obtains a reproduction signal, and reproduces information recorded on the recording layer 43. The MR film 17 may be any one of a CIP (Current-In-Plane) type or CPP (Current-Perpendicular-to-Plane) type spin valve film and a TMR (Tunnel Magnetoresistance Effect) film, and is not particularly limited.

記録素子20は、媒体対向面11側に主磁極21と、アルミナ膜からなる非磁性部22を介して副磁極23が設けられている。主磁極21は奥行き方向(Z1方向)側に下部補助磁極24と共にヨーク25を介して副磁極23と磁気的に接続されている。さらに、ヨーク25を巻回する記録コイル26が設けられている。記録コイル26に記録信号(記録電流)を流すことでヨーク25に記録磁界が誘導され、主磁極21の先端部21a→記録層43→軟磁性裏打ち層42→記録層43→副磁極23の経路で記録素子20から磁気記録媒体40に記録磁界HMPが印加され、副磁極23から磁界HSPが吸い込まれる。記録の際は、この経路に沿って記録磁界の向きが交互に反転することで、記録層43に上向きと下向きの磁化が形成される。なお、説明の便宜上、記録磁界は主磁極21から流出し、副磁極23から吸い込まれるとする。 The recording element 20 is provided with a main magnetic pole 21 and a sub magnetic pole 23 via a nonmagnetic portion 22 made of an alumina film on the medium facing surface 11 side. The main magnetic pole 21 is depth direction (Z 1 direction) connected via a yoke 25 sub magnetic pole 23 and magnetically with the lower auxiliary magnetic pole 24 on the side. Further, a recording coil 26 around which the yoke 25 is wound is provided. By passing a recording signal (recording current) through the recording coil 26, a recording magnetic field is induced in the yoke 25, and the path of the tip 21 a of the main magnetic pole 21 → the recording layer 43 → the soft magnetic backing layer 42 → the recording layer 43 → the sub magnetic pole 23. Thus, the recording magnetic field H MP is applied from the recording element 20 to the magnetic recording medium 40, and the magnetic field H SP is sucked from the sub magnetic pole 23. During recording, the direction of the recording magnetic field is alternately reversed along this path, so that upward and downward magnetization is formed in the recording layer 43. For convenience of explanation, it is assumed that the recording magnetic field flows out of the main magnetic pole 21 and is sucked in from the sub magnetic pole 23.

主磁極21は、媒体対向面11の形状がトレーリング側の辺がリーディング側の辺よりも長い台形状となっている。このような形状することで、主磁極21から記録層43に印加されるトレーリング側の記録磁界分布を好ましい分布にすることができる。すなわち、記録磁界のトラック幅方向の広がりを抑制し、トラックエッジノイズを低減する。なお、以下、主磁極21の幅(主磁極幅)はトレーリング側の辺の長さとする。   The main magnetic pole 21 has a trapezoidal shape in which the side of the medium facing surface 11 is longer on the trailing side than on the leading side. With such a shape, the trailing-side recording magnetic field distribution applied from the main magnetic pole 21 to the recording layer 43 can be set to a preferable distribution. That is, the spread of the recording magnetic field in the track width direction is suppressed, and the track edge noise is reduced. Hereinafter, the width of the main magnetic pole 21 (main magnetic pole width) is the length of the side on the trailing side.

主磁極21はFe、Ni、またはCoを含む軟磁性の強磁性材料からなる。主磁極21の強磁性材料は飽和磁束密度Bsが高い程好ましい。ただし、主磁極21に適する強磁性材料では、最大の飽和磁束密度Bsが2.4Tであるので、2.0T〜2.4Tの範囲の強磁性材料から選択されることが特に好ましい。   The main magnetic pole 21 is made of a soft magnetic ferromagnetic material containing Fe, Ni, or Co. The ferromagnetic material of the main pole 21 is preferably as the saturation magnetic flux density Bs is higher. However, the ferromagnetic material suitable for the main magnetic pole 21 has a maximum saturation magnetic flux density Bs of 2.4 T, so that it is particularly preferable to select from ferromagnetic materials in the range of 2.0 T to 2.4 T.

主磁極21の強磁性材料としては、CoFe、CoNiFe、またはNiFeを主成分とする材料が挙げられる。主磁極21に好適な強磁性材料としては、例えば、FeCo(例えばFe70Co30)、FeCoNiやFeCoAlO等のFeCo合金、FeN、FeSiN、Ni50Fe50、CoZrNb等が挙げられる。 Examples of the ferromagnetic material of the main magnetic pole 21 include materials containing CoFe, CoNiFe, or NiFe as a main component. Examples of the ferromagnetic material suitable for the main magnetic pole 21 include FeCo (for example, Fe 70 Co 30 ), FeCo alloys such as FeCoNi and FeCoAlO, FeN, FeSiN, Ni 50 Fe 50 , and CoZrNb.

副磁極23は、媒体対向面11側で主磁極21に向かって突出するように設けられている。副磁極23は、主磁極21側から、副磁極先端部30、副磁極接続部34、副磁極主部35がこの順に配置される。副磁極先端部30は奥行き(媒体対向面11からZ1方向の長さ)が副磁極接続部34および副磁極主部35よりも低減されている。このようにすることで、副磁極23が吸い込む磁界を極端に増加させないことにより、主磁極21から発生する記録磁界を低下させることがない。このように主磁極21に近接して副磁極先端部30を設けることで、主磁極21から磁気記録媒体に印加される記録磁界の磁界強度分布を好ましい分布にすることができる。 The sub magnetic pole 23 is provided so as to protrude toward the main magnetic pole 21 on the medium facing surface 11 side. In the sub magnetic pole 23, the sub magnetic pole tip 30, the sub magnetic pole connecting portion 34, and the sub magnetic pole main portion 35 are arranged in this order from the main magnetic pole 21 side. Auxiliary pole tip 30 (the length of the Z 1 direction from the air bearing surface 11) depth is lower than the sub pole connection 34 and auxiliary pole main portion 35. By doing so, the recording magnetic field generated from the main magnetic pole 21 is not lowered by not extremely increasing the magnetic field absorbed by the sub magnetic pole 23. By providing the auxiliary magnetic pole tip 30 close to the main magnetic pole 21 in this way, the magnetic field strength distribution of the recording magnetic field applied from the main magnetic pole 21 to the magnetic recording medium can be made a preferable distribution.

副磁極先端部30は、さらに、主磁極21側から、第1低Bs部31、高Bs部32がこの順に配置され、高Bs部32のトラック幅方向およびトレーリング側には第2低Bs部33が配置される。後ほど詳述するが、高Bs部32は、第1低Bs部31および第2低Bs部33よりも飽和磁束密度が高い強磁性材料からなる。   The auxiliary magnetic pole tip 30 further includes a first low Bs portion 31 and a high Bs portion 32 arranged in this order from the main magnetic pole 21 side, and a second low Bs is provided in the track width direction and the trailing side of the high Bs portion 32. The part 33 is arranged. As will be described in detail later, the high Bs portion 32 is made of a ferromagnetic material having a saturation magnetic flux density higher than that of the first low Bs portion 31 and the second low Bs portion 33.

図4(A)および(B)は本発明の効果を説明するための図である。図4(A)は、図3の媒体対向面側から視た記録素子を方向を変えて示したものであり、図4(B)は、記録磁界が印加された場合の、記録層中心(図2に示す記録層43の厚さ方向の中心)での磁界強度を示す図である。この磁界強度は記録層の膜面に対して垂直方向の磁界成分の大きさを示しており、図2においてZ2方向の磁界を正値としている。磁界強度は主磁極21に対向する位置からトレーリング方向に沿って第2低Bs部33に対向する位置までを示しており、図4(A)に示す記録素子の配置に対応させて示している。なお、磁界強度は符号CLで示すトラック中心線上(オントラック位置)の磁界強度を破線で示し、トラックTRKから外れた位置(オフトラック位置)の磁界強度を実線で示している。 4A and 4B are diagrams for explaining the effects of the present invention. 4A shows the recording element viewed from the medium facing surface side of FIG. 3 in a different direction. FIG. 4B shows the center of the recording layer when a recording magnetic field is applied (FIG. 4B). FIG. 3 is a diagram showing the magnetic field strength at the center in the thickness direction of the recording layer 43 shown in FIG. 2. The magnetic field intensity indicates the magnitude of the vertical magnetic field component to the film surface of the recording layer, and a positive value a magnetic field in the Z 2 direction in FIG. The magnetic field intensity is shown from the position facing the main magnetic pole 21 to the position facing the second low Bs portion 33 along the trailing direction, corresponding to the arrangement of the recording elements shown in FIG. Yes. As for the magnetic field strength, the magnetic field strength on the track center line (on-track position) indicated by reference sign CL is indicated by a broken line, and the magnetic field strength at a position off track TRK (off-track position) is indicated by a solid line.

図4(B)では、主磁極21に対応し、オントラック位置での最大の磁界強度をHMP1、オフトラック位置での最大の磁界強度をHMP2とする。また、副磁極先端部30に対応し、オントラック位置での最大の磁界強度をHSP1、オフトラック位置での最大の磁界強度をHSP2とする。また、記録層43の磁化反転が起こる磁界強度をHaとして示している。以下、図2および図3と、適宜図4を参照しつつ副磁極23を詳しく説明する。 In FIG. 4B, the maximum magnetic field strength at the on-track position corresponding to the main magnetic pole 21 is H MP1 , and the maximum magnetic field strength at the off-track position is H MP2 . The maximum magnetic field strength at the on-track position corresponding to the sub-magnetic pole tip 30 is H SP1 , and the maximum magnetic field strength at the off-track position is H SP2 . Further, the magnetic field intensity at which the magnetization reversal of the recording layer 43 occurs is indicated as Ha. Hereinafter, the sub magnetic pole 23 will be described in detail with reference to FIGS. 2 and 3 and FIG. 4 as appropriate.

第1低Bs部31は、主磁極21に対向し非磁性部22を介して設けられている。第1低Bs部31は、所定の厚さを有すると共にトラック幅方向および奥行き方向に延在する。第1低Bs部31の幅は、高Bs部32の幅よりも広く設定される。このように設定することで、第1低Bs部31を設けない場合よりも高Bs部32に吸い込まれる磁界の強度(図4(B)に示すHSP1)を低減できる。その結果、記録時に主磁極21側で記録した磁化を副磁極23に吸い込まれる磁界で減磁させることを抑制できる。 The first low Bs portion 31 faces the main magnetic pole 21 and is provided via the nonmagnetic portion 22. The first low Bs portion 31 has a predetermined thickness and extends in the track width direction and the depth direction. The width of the first low Bs portion 31 is set wider than the width of the high Bs portion 32. By setting in this way, the strength of the magnetic field sucked into the high Bs portion 32 (H SP1 shown in FIG. 4B) can be reduced as compared with the case where the first low Bs portion 31 is not provided. As a result, it is possible to prevent the magnetization recorded on the main magnetic pole 21 side during recording from being demagnetized by the magnetic field sucked into the sub magnetic pole 23.

高Bs部32は、第1低Bs部31のトレーリング側に接して設けられる。高Bs部32は、所定の厚さおよびトラック幅方向に所定の幅を有し、奥行き方向に延在する。高Bs部32は、主磁極21のトラック幅方向に対する中心線であるトラック中心線CLに高Bs部32の幅方向の中心が一致するように形成される。このように形成することで、トラック幅方向の磁界強度分布をトラック中心線CLに対して対称にすることができる。   The high Bs portion 32 is provided in contact with the trailing side of the first low Bs portion 31. The high Bs portion 32 has a predetermined thickness and a predetermined width in the track width direction, and extends in the depth direction. The high Bs portion 32 is formed such that the center in the width direction of the high Bs portion 32 coincides with the track center line CL that is the center line of the main magnetic pole 21 with respect to the track width direction. By forming in this way, the magnetic field strength distribution in the track width direction can be made symmetric with respect to the track center line CL.

高Bs部32の幅は、主磁極21の幅に対して略同等以上に設定されることが好ましい。高Bs部32の幅が主磁極21の幅よりも狭くなると、高Bs部32に吸い込まれる磁界の強度(図4(B)に示すHSP1)が増加し、主磁極21で記録した磁化を副磁極23で減磁させる傾向になる。ただし、高Bs部32の幅は、主磁極21の幅の2倍以下に設定することが好ましい。高Bs部32の幅が主磁極21の幅の2倍を超えると、主磁極21の記録磁界分布が磁気記録媒体の記録層の面内方向に広がる。このような場合、オフトラック位置で副磁極23に吸い込まれる磁界の強度(図4(B)に示すHSP2)が増加し、オフトラック位置に記録された磁化を減磁するサイドイレーズの程度が増加する。 The width of the high Bs portion 32 is preferably set to be approximately equal to or greater than the width of the main magnetic pole 21. When the width of the high Bs portion 32 becomes narrower than the width of the main magnetic pole 21, the intensity of the magnetic field sucked into the high Bs portion 32 (H SP1 shown in FIG. 4B) increases and the magnetization recorded by the main magnetic pole 21 is increased. The secondary magnetic pole 23 tends to demagnetize. However, the width of the high Bs portion 32 is preferably set to be not more than twice the width of the main magnetic pole 21. When the width of the high Bs portion 32 exceeds twice the width of the main magnetic pole 21, the recording magnetic field distribution of the main magnetic pole 21 spreads in the in-plane direction of the recording layer of the magnetic recording medium. In such a case, the strength of the magnetic field sucked into the sub magnetic pole 23 at the off-track position (H SP2 shown in FIG. 4B) increases, and the degree of side erase that demagnetizes the magnetization recorded at the off-track position. To increase.

さらに後ほど説明する実施例により、高Bs部32の幅は、主磁極21の幅に対して略同等以上でかつその2倍以下であることがより好ましい。また、高Bs部32の厚さは、高Bs部32の全体積により適宜調整されるが、プロセスの容易さと吸い込む磁界強度に依存する効果の点で、50nm〜500nmに設定することが好ましい。   Furthermore, according to an embodiment described later, the width of the high Bs portion 32 is more preferably equal to or greater than the width of the main magnetic pole 21 and twice or less. Further, the thickness of the high Bs portion 32 is appropriately adjusted depending on the total volume of the high Bs portion 32, but is preferably set to 50 nm to 500 nm from the viewpoint of the ease of the process and the effect depending on the magnetic field strength to be sucked.

第2低Bs部33は、第1低Bs部31および高Bs部32のトレーリング側に接して設けられる。第2低Bs部33は、トラック幅方向および奥行き方向に延在する。このようにすることで、第2低Bs部33を設けずに非磁性材料とする場合よりも、高Bs部32に吸い込まれる磁界強度(図4(B)に示すHSP1)を低減できる。なお、第2低Bs部33は高Bs部32のトレーリング側にも設けてあるが、必須ではない。 The second low Bs portion 33 is provided in contact with the trailing side of the first low Bs portion 31 and the high Bs portion 32. The second low Bs portion 33 extends in the track width direction and the depth direction. By doing so, it is possible to reduce the magnetic field strength (H SP1 shown in FIG. 4B) sucked into the high Bs portion 32, compared to the case of using a nonmagnetic material without providing the second low Bs portion 33. The second low Bs portion 33 is also provided on the trailing side of the high Bs portion 32, but is not essential.

また、副磁極先端部30と主磁極21との距離、すなわち第1低Bs部のリーディング側と主磁極21のトレーリング側の距離は、10nm〜100nmに設定されることが好ましい。このように設定することで、主磁極21から流出しトレーリング側に広がる記録磁界のうち磁界強度の低い磁界は軟磁性裏打ち層42の深い部分に到達せず、記録層43に斜め方向に入射し、さらに副磁極先端部30に吸い込まれる。記録層の膜面に対して垂直方向から角度をもって入射した磁界は記録層43の磁化を反転させ易く、実効的な磁界強度が増加する。これに伴い図4(B)に示す主磁極21に対向するオントラック位置のトレーリング側の磁界強度Haにおける勾配が急峻になる。その結果、記録磁界の磁界強度分布が良好となり、記録素子の記録分解能が向上する。   The distance between the sub magnetic pole tip 30 and the main magnetic pole 21, that is, the distance between the leading side of the first low Bs portion and the trailing side of the main magnetic pole 21, is preferably set to 10 nm to 100 nm. By setting in this way, a magnetic field having a low magnetic field intensity out of the recording magnetic field flowing out from the main magnetic pole 21 and spreading toward the trailing side does not reach the deep part of the soft magnetic backing layer 42 and enters the recording layer 43 in an oblique direction. In addition, it is sucked into the auxiliary magnetic pole tip 30. A magnetic field incident at an angle from the direction perpendicular to the film surface of the recording layer easily reverses the magnetization of the recording layer 43 and increases the effective magnetic field strength. Accordingly, the gradient in the magnetic field strength Ha on the trailing side at the on-track position facing the main magnetic pole 21 shown in FIG. As a result, the magnetic field strength distribution of the recording magnetic field becomes good, and the recording resolution of the recording element is improved.

副磁極先端部30は奥行き(媒体対向面11からZ1方向の長さ)が例えば50nm〜300nmの範囲に設定される。これにより、副磁極先端部30に吸い込まれる磁界が増加し、また、主磁極21からの記録磁界の磁界強度分布が良好となる。 Auxiliary pole tip 30 is set in the range (from the medium facing surface 11 length of Z 1 direction) depth is, for example, 50 nm to 300 nm. As a result, the magnetic field sucked into the auxiliary magnetic pole tip 30 is increased, and the magnetic field strength distribution of the recording magnetic field from the main magnetic pole 21 is improved.

高Bs部32は、Fe、Ni、またはCoを含む軟磁性の強磁性材料からなる。高Bs部32の強磁性材料は、CoFe、CoNiFe、またはNiFeを主成分とする強磁性材料から選択されることが好ましく、飽和磁束密度が高い点で、CoNiFe、CoFeB、FeCoAlO、あるいはNi50Fe50がより好ましい。 The high Bs portion 32 is made of a soft magnetic ferromagnetic material containing Fe, Ni, or Co. Ferromagnetic material of the high Bs 32, CoFe, CoNiFe or is preferably selected from ferromagnetic material mainly composed of NiFe,, in that a high saturation magnetic flux density, CoNiFe, CoFeB, FeCoAlO or Ni 50 Fe, 50 is more preferred.

一方、第1低Bs部31および第2低Bs部33は、高Bs部32の強磁性材料よりも飽和磁束密度の低い軟磁性の強磁性材料からなる。第1低Bs部31および第2低Bs部33は、NiFeまたはNiFe−Xからなり、XがTa、Mo、CrおよびCuなる群のうち少なくとも1種を含む強磁性材料から選択されることが好ましい。   On the other hand, the first low Bs portion 31 and the second low Bs portion 33 are made of a soft magnetic ferromagnetic material having a saturation magnetic flux density lower than that of the high Bs portion 32 ferromagnetic material. The first low Bs portion 31 and the second low Bs portion 33 are made of NiFe or NiFe—X, and X is selected from a ferromagnetic material containing at least one selected from the group consisting of Ta, Mo, Cr, and Cu. preferable.

第1低Bs部31および第2低Bs部33は、高Bs部32がNiFeを主成分とする強磁性材料からなる場合は、高Bs部32よりもFe含有量の少ないNiFeまたはNiFe−Xからなることが好ましい。このような強磁性材料を用いることで、第1低Bs部31および第2低Bs部33は高Bs部32よりも飽和磁束密度を低く設定できる。また、第1低Bs部31と高Bs部32の格子整合性が良好なので、第1低Bs部31上に結晶性が良質の高Bs部32を形成でき、高Bs部32の保磁力を低減すると共に飽和磁束密度を向上できる。   The first low Bs portion 31 and the second low Bs portion 33 are NiFe or NiFe-X having a lower Fe content than the high Bs portion 32 when the high Bs portion 32 is made of a ferromagnetic material mainly composed of NiFe. Preferably it consists of. By using such a ferromagnetic material, the first low Bs portion 31 and the second low Bs portion 33 can set the saturation magnetic flux density lower than that of the high Bs portion 32. In addition, since the lattice matching between the first low Bs portion 31 and the high Bs portion 32 is good, the high Bs portion 32 with good crystallinity can be formed on the first low Bs portion 31, and the coercive force of the high Bs portion 32 can be increased. The saturation magnetic flux density can be improved while being reduced.

高Bs部32の飽和磁束密度BsHと第1低Bs部31および第2低Bs部33の飽和磁束密度BsLとの比は、実際に得られる強磁性材料のうち選択可能な材料の観点からBsH/BsL=1.4〜2.4の範囲に設定されることが好ましい。 The ratio between the saturation magnetic flux density Bs H of the high Bs portion 32 and the saturation magnetic flux density Bs L of the first low Bs portion 31 and the second low Bs portion 33 is a viewpoint of a material that can be selected from the ferromagnetic materials actually obtained. It is set in the range of Bs H / Bs L = 1.4~2.4 from is preferred.

本実施の形態によれば、主磁極21のトレーリング側に、主磁極21側から第1低Bs部31、高Bs部32がこの順に配置され、高Bs部32のトラック幅方向およびトレーリング側には第2低Bs部33が配置される。高Bs部32を所定の幅に形成することで、主磁極21のトレーリング側の記録磁界の勾配を急峻な状態に維持しつつ、副磁極23が吸い込む磁界強度を低減してオフトラック位置のサイドイレーズを抑制できる。その結果、サイドイレーズによるS/N比の劣化を抑制し、高記録密度化が可能となる。   According to the present embodiment, the first low Bs portion 31 and the high Bs portion 32 are arranged in this order from the main magnetic pole 21 side on the trailing side of the main magnetic pole 21, and the track width direction and trailing of the high Bs portion 32 are arranged. The second low Bs portion 33 is disposed on the side. By forming the high Bs portion 32 to have a predetermined width, the magnetic field strength absorbed by the sub magnetic pole 23 is reduced while maintaining the steep gradient of the recording magnetic field on the trailing side of the main magnetic pole 21 so that the off-track position is maintained. Side erase can be suppressed. As a result, it is possible to suppress the deterioration of the S / N ratio due to the side erase and increase the recording density.

次に、本実施の形態に係る垂直記録用磁気ヘッドの製造方法について説明する。垂直記録用磁気ヘッドの製造方法は、素子形成工程、ウェハ切断工程、ローバー粗研磨工程、浮上面仕上げ研磨工程、浮上面パッド加工工程、ローバー切断工程等から構成され、素子形成工程以外は公知の製造方法により形成する。これらの説明を省略し、以下、素子形成工程における記録素子の副磁極を形成する方法について図5(A)および(B)を参照しつつ説明する。   Next, a method for manufacturing the magnetic head for perpendicular recording according to the present embodiment will be described. The manufacturing method of the magnetic head for perpendicular recording is composed of an element forming process, a wafer cutting process, a rover rough polishing process, an air bearing surface finish polishing process, an air bearing surface pad processing process, a row bar cutting process, and the like. It is formed by a manufacturing method. A description of these methods will be omitted, and a method for forming the sub-magnetic pole of the recording element in the element forming step will be described below with reference to FIGS. 5 (A) and 5 (B).

図5(A)および(B)は、第1の実施の形態に係る垂直記録用磁気ヘッドの製造工程を示す図である。   5A and 5B are views showing a manufacturing process of the magnetic head for perpendicular recording according to the first embodiment.

図5(A)の工程では、ウェハ上に、図2に示す非磁性部12、再生素子15、非磁性部22を公知の方法で順次形成する。次いで、非磁性部22に補助磁極および主磁極21を形成し、次いで、補助磁極および主磁極21を覆う非磁性部を形成し、その表面をCMP(化学的機械研磨)法により平坦化する。   5A, the nonmagnetic portion 12, the reproducing element 15, and the nonmagnetic portion 22 shown in FIG. 2 are sequentially formed on the wafer by a known method. Next, the auxiliary magnetic pole and the main magnetic pole 21 are formed in the nonmagnetic portion 22, then the nonmagnetic portion covering the auxiliary magnetic pole and the main magnetic pole 21 is formed, and the surface thereof is flattened by a CMP (chemical mechanical polishing) method.

図5(A)の工程ではさらに、非磁性部22上に電気めっき法、無電解めっき法、スパッタ法等によりNiFe等の上述した材料の第1低Bs部31を形成する。なお、電気めっき法により第1低Bs部31を形成する場合は、非磁性部22の表面にスパッタ法等によりTi膜やCu膜等のめっきシード層を形成する。   5A, the first low Bs portion 31 made of the above-described material such as NiFe is formed on the nonmagnetic portion 22 by electroplating, electroless plating, sputtering, or the like. In the case where the first low Bs portion 31 is formed by electroplating, a plating seed layer such as a Ti film or Cu film is formed on the surface of the nonmagnetic portion 22 by sputtering or the like.

図5(A)の工程ではさらに、第1低Bs部31にレジスト膜51を形成し、レジスト膜51をフォトリソグラフィ法によりパターニングして、主磁極21の上方の位置に第1低Bs部31の表面を露出する開口部51−1を形成する。開口部51−1は、そのトラック幅方向の中心線が、主磁極21のトラック幅方向の中心線と一致するように形成する。   5A, a resist film 51 is further formed on the first low Bs portion 31, and the resist film 51 is patterned by a photolithography method, so that the first low Bs portion 31 is positioned above the main magnetic pole 21. An opening 51-1 exposing the surface is formed. The opening 51-1 is formed such that the center line in the track width direction coincides with the center line of the main magnetic pole 21 in the track width direction.

図5(A)の工程ではさらに、レジスト膜51をマスクとして電気めっき法、無電解めっき法、スパッタ法等によりNiFe等の上述した高Bs部の材料からなる軟磁性膜32a形成する。電気めっき法により軟磁性膜32aを形成する場合は、第1低Bs部31をめっきシード層として電界を印加して成膜する。   5A, a soft magnetic film 32a made of the above-described high Bs portion material such as NiFe is formed by electroplating, electroless plating, sputtering, or the like using the resist film 51 as a mask. In the case where the soft magnetic film 32a is formed by electroplating, the first low Bs portion 31 is used as a plating seed layer to form a film by applying an electric field.

次いで、図5(B)の工程では、リフトオフ法により図5(A)のレジスト膜51とその上の軟磁性膜32aを除去する。このようにして高Bs部32が形成される。   Next, in the process of FIG. 5B, the resist film 51 of FIG. 5A and the soft magnetic film 32a thereon are removed by a lift-off method. In this way, the high Bs portion 32 is formed.

図5(B)の工程ではさらに、電気めっき法、無電解めっき法、スパッタ法等により第1低Bs部31の表面と高Bs部32を覆う第2低Bs部33を形成する。次いで、CMP法により第2低Bs部33の表面を平坦化する。以上により副磁極先端部が形成される。   In the step of FIG. 5B, a second low Bs portion 33 that covers the surface of the first low Bs portion 31 and the high Bs portion 32 is further formed by electroplating, electroless plating, sputtering, or the like. Next, the surface of the second low Bs portion 33 is planarized by CMP. Thus, the sub magnetic pole tip is formed.

次いで、図2および図3に示す副磁極接続部34、副磁極主部35、記録コイル、およびヨーク等を形成する。以上により記録素子が形成される。   Next, the sub magnetic pole connecting portion 34, the sub magnetic pole main portion 35, the recording coil, the yoke, and the like shown in FIGS. 2 and 3 are formed. Thus, a recording element is formed.

この製造方法では、第1低Bs部31をスパッタ法により形成し、第1低Bs部31をめっきシード層として電気めっき法により高Bs部32を選択的に形成する。高Bs部32を形成するためにめっきシード層を別に形成する必要がないので、工程を簡略化できる。また、RIE(反応性イオンエッチング)法等のドライエッチングを用いることなく第1低Bs部31および高Bs部32を形成できるので、第1低Bs部31および高Bs部32がイオンやプラズマにより損傷を受けることがない。したがって、良質の磁気特性を有する第1低Bs部31および高Bs部32を形成できる。   In this manufacturing method, the first low Bs portion 31 is formed by sputtering, and the high Bs portion 32 is selectively formed by electroplating using the first low Bs portion 31 as a plating seed layer. Since it is not necessary to separately form a plating seed layer in order to form the high Bs portion 32, the process can be simplified. In addition, since the first low Bs portion 31 and the high Bs portion 32 can be formed without using dry etching such as RIE (reactive ion etching), the first low Bs portion 31 and the high Bs portion 32 are formed by ions or plasma. There is no damage. Therefore, the first low Bs portion 31 and the high Bs portion 32 having good magnetic properties can be formed.

また、次に説明する方法により記録素子の副磁極を形成してもよい。   Further, the sub-magnetic pole of the recording element may be formed by the method described below.

図6(A)〜(C)は第1の実施の形態に係る垂直記録用磁気ヘッドの製造工程の変形例を示す図である。   6A to 6C are views showing a modification of the manufacturing process of the perpendicular recording magnetic head according to the first embodiment.

図6(A)の工程では、上述した図5(A)の工程と同様にして、非磁性部22の平坦化までを行い、次いで、非磁性部22上に電気めっき法、無電解めっき法、スパッタ法等により上述した第1低Bs部の材料からなる軟磁性膜31aを形成する。ここで、軟磁性膜31aの厚さは、図5(B)に示す第1低Bs部とおよび高Bs部32の厚さの和と同等に設定される。   In the step of FIG. 6A, the nonmagnetic portion 22 is flattened in the same manner as in the above-described step of FIG. 5A, and then the electroplating method and electroless plating method are performed on the nonmagnetic portion 22. Then, the soft magnetic film 31a made of the material of the first low Bs portion described above is formed by sputtering or the like. Here, the thickness of the soft magnetic film 31a is set to be equal to the sum of the thicknesses of the first low Bs portion and the high Bs portion 32 shown in FIG.

図6(A)の工程ではさらに、軟磁性膜31a上にレジスト膜52を形成し、レジスト膜52をフォトリソグラフィ法によりパターニングして、主磁極21の上方の位置に開口部52−1を形成する。開口部52−1は、そのトラック幅方向の中心線が、主磁極21のトラック幅方向の中心線と一致するように形成する。   In the step of FIG. 6A, a resist film 52 is further formed on the soft magnetic film 31a, and the resist film 52 is patterned by a photolithography method to form an opening 52-1 at a position above the main magnetic pole 21. To do. The opening 52-1 is formed so that the center line in the track width direction coincides with the center line in the track width direction of the main pole 21.

図6(A)の工程ではさらに、レジスト膜52をマスクとしてArイオンを用いたイオンミリングあるいはRIE法により軟磁性膜31aをエッチングし、凹部31a−1を形成する。   6A, the soft magnetic film 31a is further etched by ion milling using Ar ions or the RIE method using the resist film 52 as a mask to form the recess 31a-1.

次いで、図6(B)の工程では、図6(A)のレジスト膜52を除去し、電気めっき法、無電解めっき法、スパッタ法等により軟磁性膜31aを覆い、凹部31a−1を充填する高Bs部の材料からなる軟磁性膜32bを形成する。   Next, in the step of FIG. 6B, the resist film 52 of FIG. 6A is removed, the soft magnetic film 31a is covered by electroplating, electroless plating, sputtering, etc., and the recess 31a-1 is filled. A soft magnetic film 32b made of a material having a high Bs portion is formed.

次いで、図6(C)の工程ではCMP法により軟磁性膜32bを、軟磁性膜31aの表面が露出するまで平坦化する。この平坦化により、図3に示す第1低Bs部31と第2低Bs部33の一部が一体化された低Bs部31cが形成される共に、高Bs部32が形成される。   6C, the soft magnetic film 32b is planarized by CMP until the surface of the soft magnetic film 31a is exposed. By this planarization, the low Bs portion 31c in which a part of the first low Bs portion 31 and the second low Bs portion 33 shown in FIG. 3 are integrated is formed, and the high Bs portion 32 is formed.

図6(C)の工程ではさらに、電気めっき法、無電解めっき法、スパッタ法等により低Bs部31cおよび高Bs部32の表面を覆う低Bs部31dを形成する。低Bs部31dの材料は、図3に示す第2低Bs部33の材料と同様の材料から選択する。以上により副磁極先端部が形成される。   In the step of FIG. 6C, a low Bs portion 31d that covers the surfaces of the low Bs portion 31c and the high Bs portion 32 is further formed by electroplating, electroless plating, sputtering, or the like. The material of the low Bs portion 31d is selected from the same materials as the material of the second low Bs portion 33 shown in FIG. Thus, the sub magnetic pole tip is formed.

この製造方法では、図3に示す第1低Bs部31と第2低Bs部33が、第1低Bs部31と高Bs部32との界面の位置では連続して形成されているので、吸い込む磁界強度が高い領域での界面に起因する磁壁の発生等の磁気的な異常の発生の懸念を解消できる。   In this manufacturing method, the first low Bs portion 31 and the second low Bs portion 33 shown in FIG. 3 are continuously formed at the position of the interface between the first low Bs portion 31 and the high Bs portion 32. It is possible to eliminate concerns about the occurrence of magnetic anomalies such as the occurrence of domain walls due to the interface in the region where the magnetic field strength to be sucked is high.

次に、本実施の形態に係る垂直記録用磁気ヘッドを構成する記録素子により形成される磁界強度分布をシミュレーションにより求めた。   Next, the magnetic field strength distribution formed by the recording elements constituting the perpendicular recording magnetic head according to the present embodiment was obtained by simulation.

図7(A)および(B)は、実施例および比較例を構成する記録素子の各寸法を示す図である。   FIGS. 7A and 7B are diagrams showing dimensions of the recording elements constituting the examples and comparative examples.

図7(A)を参照するに、実施例の記録素子の構成は図3と同様である。シミュレーションは副磁極の高Bs部32の飽和磁束密度、厚さTL3、および幅WTを各々異ならせて記録層中心位置での磁界強度分布を求めた。具体的には、得られた磁界強度分布から、一点鎖線で示すトラック中心線から距離LOFだけ離れた破線OFTで示すオフトラック位置での、膜面に対して垂直方向の磁界強度の最大値を求めた。 Referring to FIG. 7A, the configuration of the recording element of the example is the same as that of FIG. In the simulation, the magnetic field strength distribution at the center position of the recording layer was obtained by varying the saturation magnetic flux density, the thickness TL3, and the width WT of the high Bs portion 32 of the sub magnetic pole. Specifically, from the obtained magnetic field strength distribution, the maximum value of the magnetic field strength in the direction perpendicular to the film surface at the off-track position indicated by the broken line OFT separated from the track center line indicated by the alternate long and short dash line by the distance L OF. Asked.

また、得られた磁界強度分布から、トラック中心線CL上のトレーリング側で記録層が磁化反転を起こす磁界強度でのトレーリング方向に対する磁界勾配を求めた。記録層が磁化反転を起こす磁界強度は図4(B)に示すHaに対応し、磁界の勾配は点TRAにおけるトレーリング方向に対する勾配である。   Further, from the obtained magnetic field strength distribution, the magnetic field gradient with respect to the trailing direction at the magnetic field strength at which the recording layer causes magnetization reversal on the trailing side on the track center line CL was obtained. The magnetic field intensity causing the magnetization reversal of the recording layer corresponds to Ha shown in FIG. 4B, and the gradient of the magnetic field is a gradient with respect to the trailing direction at the point TRA.

シミュレーションにおいて、主磁極21については、幅(トレーリング側の辺の長さ)を110nm、リーディング側の辺の長さを71.5nm、厚さを220nm、飽和磁束密度を2.4Tに設定した。副磁極先端部については、第1低Bs部31の厚さTL1を100nm、第2低Bs部33の厚さTL2を500nm、第1低Bs部31および第2低Bs部33の飽和磁束密度を1.0Tに設定した。副磁極先端部の奥行き(図3に示す副磁極先端部30の奥行き方向の長さ)は130nmとした。また、記録コイルおよび記録電流の条件を0.25AT(アンペア・ターン)に設定した。これらの条件を次の図8に示す実施例1〜8に適用した。   In the simulation, the main magnetic pole 21 was set to have a width (trailing side length) of 110 nm, a leading side length of 71.5 nm, a thickness of 220 nm, and a saturation magnetic flux density of 2.4 T. . For the tip of the sub magnetic pole, the thickness TL1 of the first low Bs portion 31 is 100 nm, the thickness TL2 of the second low Bs portion 33 is 500 nm, and the saturation magnetic flux density of the first low Bs portion 31 and the second low Bs portion 33 Was set to 1.0T. The depth of the tip of the sub magnetic pole (the length in the depth direction of the tip of the sub magnetic pole 30 shown in FIG. 3) was 130 nm. The recording coil and recording current conditions were set to 0.25 AT (ampere turn). These conditions were applied to Examples 1 to 8 shown in FIG.

また、比較のため、図7(B)に示す構成の比較例の記録素子についてもシミュレーションを実施例と同様の条件に設定して行った。比較例の記録素子は、高Bs部113が第1低Bs部31と同様にトラック幅方向に延在している以外は、図7(A)の実施例の記録素子と同様である。これらの条件を次の図8に示す比較例1および2に適用した。   For comparison, the simulation was performed under the same conditions as in the example for the recording element of the comparative example having the configuration shown in FIG. The recording element of the comparative example is the same as the recording element of the example of FIG. 7A except that the high Bs portion 113 extends in the track width direction like the first low Bs portion 31. These conditions were applied to Comparative Examples 1 and 2 shown in FIG.

図8は、実施例および比較例を構成する記録素子の記録磁界特性を示す図である。図8中、オフトラック位置での最大磁界強度は、比較例1の記録素子のオフトラック位置での最大値を100%としてその相対値で示している。また、記録トラック位置での磁界勾配は、比較例1の記録素子の磁界勾配を100%としてその相対値で示している。   FIG. 8 is a diagram showing the recording magnetic field characteristics of the recording elements constituting the example and the comparative example. In FIG. 8, the maximum magnetic field strength at the off-track position is shown as a relative value with the maximum value at the off-track position of the recording element of Comparative Example 1 being 100%. Further, the magnetic field gradient at the recording track position is shown as a relative value with the magnetic field gradient of the recording element of Comparative Example 1 being 100%.

図8を参照するに、実施例1〜4および比較例1は、各々図7(A)または(B)に示す高Bs部32、高Bs部113の飽和磁束密度を1.4Tとした場合である。実施例1〜4では、高Bs部32の厚さTL3を500nmと250nmに、幅WTを主磁極21の幅と同等の110nmとその2倍の220nmに異ならせている。なお、オフトラック位置OFTは、トラック中心線CLから200nmの位置とした。また、このシミュレーションにより得られた記録トラック位置での記録磁界強度は13.2kOe、比較例1のオフトラック位置での最大値は5.55kOe、比較例1の記録トラック位置での磁界勾配は246Oe/nmであった。   Referring to FIG. 8, in Examples 1 to 4 and Comparative Example 1, the saturation magnetic flux density of the high Bs portion 32 and the high Bs portion 113 shown in FIG. It is. In Examples 1 to 4, the thickness TL3 of the high Bs portion 32 is set to 500 nm and 250 nm, and the width WT is set to 110 nm, which is the same as the width of the main magnetic pole 21, and 220 nm, which is twice as large. The off-track position OFT was set at a position 200 nm from the track center line CL. Further, the recording magnetic field strength at the recording track position obtained by this simulation is 13.2 kOe, the maximum value at the off-track position in Comparative Example 1 is 5.55 kOe, and the magnetic field gradient at the recording track position in Comparative Example 1 is 246 Oe. / Nm.

実施例1〜4は、オフトラック位置での最大磁界強度は、比較例1よりも20%程度低減されている。また、記録トラック位置での磁界勾配は比較例1に対して5%程度の減少であり、ほとんど劣化がない。このことから、高Bs部32の幅WTを主磁極21の幅と同等および2倍としたときに、記録トラックの磁界勾配の劣化を招かずに記録磁界の印加時のオフトラック位置での最大磁界強度を低減できることが分かる。   In Examples 1 to 4, the maximum magnetic field strength at the off-track position is reduced by about 20% compared to Comparative Example 1. Further, the magnetic field gradient at the recording track position is about 5% lower than that of Comparative Example 1, and there is almost no deterioration. Therefore, when the width WT of the high Bs portion 32 is equal to or twice the width of the main magnetic pole 21, the maximum at the off-track position when the recording magnetic field is applied without causing deterioration of the magnetic field gradient of the recording track. It can be seen that the magnetic field strength can be reduced.

また、実施例5〜8および比較例2は、各々、図7(A)または(B)に示す高Bs部32、高Bs部113の飽和磁束密度を2.4Tとした場合である。実施例5〜8では、高Bs部32の厚さTL3を500nmと250nmに、幅WTを主磁極21の幅と同等の110nmとその2倍の220nmに異ならせている。   Examples 5 to 8 and Comparative Example 2 are cases where the saturation magnetic flux density of the high Bs portion 32 and the high Bs portion 113 shown in FIG. 7A or 7B is 2.4 T, respectively. In Examples 5 to 8, the thickness TL3 of the high Bs portion 32 is changed to 500 nm and 250 nm, and the width WT is changed to 110 nm, which is the same as the width of the main magnetic pole 21, and 220 nm, which is twice as large.

実施例1〜4は、オフトラック位置での最大磁界強度は、比較例2よりも14%〜25程度低減されている。また、記録トラック位置での磁界勾配は比較例2に対して3〜6%程度の減少でありほとんど劣化がない。このことから、高Bs部32の飽和磁束密度を2.4Tとした場合であっても、高Bs部32の幅WTを主磁極21の幅と同等および2倍としたときに、記録トラックの磁界勾配の劣化を招かずに記録磁界の印加時のオフトラック位置での最大磁界強度を低減できることが分かる。   In Examples 1 to 4, the maximum magnetic field strength at the off-track position is reduced by about 14% to 25 compared to Comparative Example 2. Further, the magnetic field gradient at the recording track position is about 3 to 6% lower than that of Comparative Example 2, and there is almost no deterioration. Therefore, even when the saturation magnetic flux density of the high Bs portion 32 is 2.4 T, when the width WT of the high Bs portion 32 is equal to or twice the width of the main magnetic pole 21, the recording track It can be seen that the maximum magnetic field strength at the off-track position when the recording magnetic field is applied can be reduced without causing deterioration of the magnetic field gradient.

実施例1〜8によれば、高Bs部32の飽和磁束密度が1.4Tあるいは2.4Tの場合でも、比較例1および比較例2に対して、高Bs部32の幅WTを主磁極21の幅と同等および2倍としたときに記録トラックの磁界勾配の劣化を招かずに記録磁界の印加時のオフトラック位置での最大磁界強度を低減できることを確認できた。   According to Examples 1 to 8, even when the saturation magnetic flux density of the high Bs portion 32 is 1.4T or 2.4T, the width WT of the high Bs portion 32 is set to the main magnetic pole as compared with the comparative example 1 and the comparative example 2. It was confirmed that the maximum magnetic field strength at the off-track position when the recording magnetic field was applied could be reduced without degrading the magnetic field gradient of the recording track when the width was equal to or twice the width of 21.

(第2の実施の形態)
次に、本発明第2の実施の形態に係る磁気記憶装置について説明する。
(Second Embodiment)
Next, a magnetic memory device according to the second embodiment of the present invention will be described.

図9は、本発明の第2の実施の形態に係る磁気記憶装置の要部を示す図である。図9を参照するに、本実施の形態に係る磁気記憶装置60は、ハウジング61と、ハウジング61内に格納された、磁気ディスク62、垂直記録用磁気ヘッド63、アクチュエータユニット64等から構成される。磁気ディスク62は、ハブ65に固定され、図示されないスピンドルモータにより駆動される。また、垂直記録用磁気ヘッド63は、その基部がアーム66に固定され、アーム66を介してアクチュエータユニット64に取り付けられている。垂直記録用磁気ヘッド63は、アクチュエータユニット64により、磁気ディスク62の径方向に回動される。また、ハウジング61の裏側には、記録再生制御、磁気ヘッド位置制御、およびスピンドルモータ制御等を行う電子基板(図示されず。)が設けられている。   FIG. 9 is a diagram showing a main part of a magnetic memory device according to the second embodiment of the present invention. Referring to FIG. 9, the magnetic storage device 60 according to the present embodiment includes a housing 61 and a magnetic disk 62, a perpendicular recording magnetic head 63, an actuator unit 64, and the like stored in the housing 61. . The magnetic disk 62 is fixed to the hub 65 and is driven by a spindle motor (not shown). The perpendicular recording magnetic head 63 has a base fixed to the arm 66 and is attached to the actuator unit 64 via the arm 66. The perpendicular recording magnetic head 63 is rotated in the radial direction of the magnetic disk 62 by the actuator unit 64. An electronic board (not shown) for performing recording / reproduction control, magnetic head position control, spindle motor control, and the like is provided on the back side of the housing 61.

磁気記録媒体63は、図3に示したように垂直磁気記録媒体であり、例えば基板上に軟磁性裏打ち層、垂直磁化膜からなる記録層がこの順に積層されて構成される。また、軟磁性裏打ち層と記録層との間に非磁性中間層を設けてもよく、記録層上に保護膜、さらには潤滑層を設けてもよい。   As shown in FIG. 3, the magnetic recording medium 63 is a perpendicular magnetic recording medium. For example, the magnetic recording medium 63 is formed by laminating a recording layer including a soft magnetic underlayer and a perpendicular magnetization film on a substrate in this order. Further, a nonmagnetic intermediate layer may be provided between the soft magnetic backing layer and the recording layer, and a protective film and further a lubricating layer may be provided on the recording layer.

垂直記録用磁気ヘッド63は、上述した第1の実施の形態に係る垂直記録用磁気ヘッドである。垂直記録用磁気ヘッド63は、その先端部のヘッドスライダ68に素子部(微小なため図示されず。)が設けられている。素子部には、第1の実施の形態において説明した記録素子が設けられている。   The perpendicular recording magnetic head 63 is the perpendicular recording magnetic head according to the first embodiment described above. The perpendicular recording magnetic head 63 is provided with an element portion (not shown because it is minute) on a head slider 68 at the tip thereof. The element unit is provided with the recording element described in the first embodiment.

磁気記憶装置60の基本構成は、図9に示すものに限定されるものではない。本発明で用いる磁気記録媒体は磁気ディスク62に限定されない。例えば磁気記憶装置60は、ヘリカルスキャン型あるいはラテラル型の磁気テープ装置でもよく、その場合、垂直記録用磁気ヘッド63は、ヘリカルスキャン型の場合シリンダヘッドに実装され、ラテラル型の場合、複数の垂直記録用磁気ヘッドがテープ幅方向に実装される。   The basic configuration of the magnetic storage device 60 is not limited to that shown in FIG. The magnetic recording medium used in the present invention is not limited to the magnetic disk 62. For example, the magnetic storage device 60 may be a helical scan type or a lateral type magnetic tape device. In this case, the perpendicular recording magnetic head 63 is mounted on the cylinder head in the case of the helical scan type, and in the case of the lateral type, a plurality of vertical recording magnetic heads 63 are provided. A recording magnetic head is mounted in the tape width direction.

本実施の形態によれば、垂直記録用磁気ヘッド63の記録素子が、主磁極のトレーリング側の記録磁界の勾配を急峻な状態に維持しつつ、副磁極が吸い込む磁界強度を低減してオフトラック位置のサイドイレーズを抑制できる。その結果、サイドイレーズによるS/N比の劣化を抑制し、高記録密度化が可能となる。その結果、高記録密度化が可能な磁気記憶装置が実現できる。   According to the present embodiment, the recording element of the perpendicular recording magnetic head 63 maintains the recording magnetic field gradient on the trailing side of the main magnetic pole in a steep state while reducing the magnetic field strength absorbed by the sub magnetic pole. Side erasure at the track position can be suppressed. As a result, it is possible to suppress the deterioration of the S / N ratio due to the side erase and increase the recording density. As a result, a magnetic storage device capable of increasing the recording density can be realized.

以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。   The preferred embodiment of the present invention has been described in detail above. However, the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the present invention described in the claims.・ Change is possible.

なお、以上の説明に関してさらに以下の付記を開示する。
(付記1) 記録方向に沿って配置され、記録磁界を印加する主磁極と、該主磁極に対向し該記録磁界のリターンパスとなる副磁極と、主磁極と副磁極を磁気的に接続するヨークを有する記録素子を備える垂直記録用磁気ヘッドであって、
前記副磁極は、主磁極に対向する側に副磁極先端部を有し、
前記副磁極先端部は、主磁極側から順に、
前記記録方向に対して垂直な幅方向に延在する第1の軟磁性部と、
前記第1の軟磁性部に接し、主磁極の記録方向に沿う中心線上に、該中心線に対して幅方向に略対称に配置された第2の軟磁性部と、該第2の軟磁性部の幅方向の両側に第3の軟磁性部とを有し、
前記第2の軟磁性部は、第1の軟磁性部および第3の軟磁性部よりも飽和磁束密度の高い強磁性材料からなることを特徴とする垂直記録用磁気ヘッド。
(付記2) 前記副磁極は、主磁極に対してトレーリング側に配設され、副磁極先端部のトレーリング側に記録方向に沿って副磁極接続部と、前記ヨークに接続された副磁極主部をこの順で有し、
前記副磁極接続部が、その基部を副磁極主部に接すると共に、その先端部を副磁極先端部と接し、
前記副磁極先端部は、副磁極接続部よりも媒体対向面に垂直な方向の長さが短いことを特徴とする付記1記載の垂直記録用磁気ヘッド。
(付記3) 前記第1の軟磁性部と主磁極との距離が、10nm〜100nmの範囲に設定されてなることを特徴とする付記1または2記載の垂直記録用磁気ヘッド。
(付記4) 前記第2の軟磁性部の幅は、主磁極の副磁極先端部に対向する側の幅に対して同等以上でかつ2倍以下であること特徴とする付記1〜3のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記5) 前記第2の軟磁性部の強磁性材料の飽和磁束密度は、第1の軟磁性部と第3の軟磁性部の強磁性材料の飽和磁束密度に対して、140%以上かつ240%以下であることを特徴とする付記1〜4のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記6) 前記第2の軟磁性部の記録方向の長さは、50nm〜500nmの範囲に設定されることを特徴とする付記1〜5のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記7) 前記第2の軟磁性部の強磁性材料は、CoNiFe、CoFeおよびNiFeからなる群のうちいずれか1種を主成分とする材料であることを特徴とする付記1〜6のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記8) 前記第1の軟磁性部および第3の軟磁性部の強磁性材料は、NiFeまたはNiFe−X(X=Ta、Mo、CrおよびCuなる群のうち少なくとも1種を含む)からなることを特徴とする付記1〜7のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記9) 前記第2の軟磁性部の強磁性材料がNiFeを主成分とする材料からなり、前記第1の軟磁性部および第3の軟磁性部の強磁性材料は、そのFe濃度が第2の軟磁性部の強磁性材料のFe濃度よりも低いNiFeまたはNiFe−X(X=Ta、Mo、CrおよびCuなる群のうち少なくとも1種を含む)からなることを特徴とする付記1〜7のうち、いずれか一項記載の垂直記録用磁気ヘッド。
(付記10) 前記第1の軟磁性部と第3の軟磁性部とは同一の強磁性材料からなること特徴とする付記8または9記載の垂直記録用磁気ヘッド。
(付記11) 記録方向に沿って配置された記録磁界を印加する主磁極と、該記録磁界のリターンパスとなる副磁極とを有する記録素子を備える垂直記録用磁気ヘッドの製造方法であって、
前記主磁極上に副磁極を形成する工程とを含み、
前記副磁極を形成する工程は、
前記主磁極を覆う非磁性層を形成する処理と、
前記非磁性層上に第1の軟磁性部を形成する処理と、
前記第1の軟磁性部の表面に選択的に第2の軟磁性部を形成する処理と、
前記第1の軟磁性部の表面および第2の軟磁性部を覆う第3の軟磁性部を形成する処理とを含むことを特徴とする垂直記録用磁気ヘッドの製造方法。
(付記12) 前記第2の軟磁性部を形成する処理は、
前記第1の軟磁性部の表面に、主磁極の上方に第1の軟磁性部の表面を露出する開口部を有するレジスト膜を形成し、露出した第1の軟磁性部上に第2の軟磁性部となる軟磁性層を堆積し、該レジスト膜と共にレジスト膜上の軟磁性層を除去することを特徴とする付記11記載の垂直記録用磁気ヘッドの製造方法。
(付記13) 前記第2の軟磁性部を形成する処理は、
前記第1の軟磁性部の表面に、主磁極の上方に第1の軟磁性部の表面を露出する開口部を有するレジスト膜を形成し、該レジスト膜をマスクとして第1の軟磁性部をエッチングして溝を形成し、該溝に第2の軟磁性部となる強磁性材料を充填することを特徴とする付記11記載の垂直記録用磁気ヘッドの製造方法。
(付記14) 基板と、該基板上に軟磁性裏打ち層および垂直磁化膜からなる記録層とが順次積層されてなる磁気記録媒体と、
付記1〜10のうち、いずれか一項記載の垂直記録用磁気ヘッドと、を備える磁気記憶装置。
In addition, the following additional notes are disclosed regarding the above description.
(Supplementary Note 1) A main magnetic pole that is arranged along the recording direction and applies a recording magnetic field, a sub magnetic pole that faces the main magnetic pole and serves as a return path of the recording magnetic field, and the main magnetic pole and the sub magnetic pole are magnetically connected. A perpendicular recording magnetic head comprising a recording element having a yoke,
The sub magnetic pole has a sub magnetic pole tip on the side facing the main magnetic pole,
The auxiliary magnetic pole tip is in order from the main magnetic pole side,
A first soft magnetic portion extending in a width direction perpendicular to the recording direction;
A second soft magnetic portion that is in contact with the first soft magnetic portion and disposed substantially symmetrically in the width direction with respect to the center line on a center line along the recording direction of the main magnetic pole; A third soft magnetic part on both sides in the width direction of the part,
The perpendicular recording magnetic head according to claim 1, wherein the second soft magnetic part is made of a ferromagnetic material having a saturation magnetic flux density higher than that of the first soft magnetic part and the third soft magnetic part.
(Supplementary Note 2) The sub magnetic pole is disposed on the trailing side with respect to the main magnetic pole, the sub magnetic pole connecting portion along the recording direction on the trailing side of the sub magnetic pole tip, and the sub magnetic pole connected to the yoke Have the main part in this order,
The sub magnetic pole connecting portion is in contact with the main portion of the sub magnetic pole at the base, and is in contact with the front end of the sub magnetic pole.
2. The perpendicular recording magnetic head according to claim 1, wherein the tip of the auxiliary magnetic pole has a shorter length in the direction perpendicular to the medium facing surface than the auxiliary magnetic pole connection.
(Supplementary note 3) The perpendicular recording magnetic head according to Supplementary note 1 or 2, wherein a distance between the first soft magnetic portion and the main magnetic pole is set in a range of 10 nm to 100 nm.
(Supplementary Note 4) Of the supplementary notes 1 to 3, wherein the width of the second soft magnetic portion is equal to or greater than twice the width of the main magnetic pole facing the sub magnetic pole tip. A magnetic head for perpendicular recording according to any one of the above.
(Supplementary Note 5) The saturation magnetic flux density of the ferromagnetic material of the second soft magnetic part is 140% or more with respect to the saturation magnetic flux density of the ferromagnetic material of the first soft magnetic part and the third soft magnetic part. The magnetic head for perpendicular recording according to any one of appendices 1 to 4, wherein the magnetic head is 240% or less.
(Appendix 6) The perpendicular recording magnetism according to any one of appendices 1 to 5, wherein the length of the second soft magnetic portion in the recording direction is set in a range of 50 nm to 500 nm. head.
(Supplementary note 7) Of the supplementary notes 1 to 6, wherein the ferromagnetic material of the second soft magnetic part is a material mainly comprising any one of the group consisting of CoNiFe, CoFe, and NiFe. A magnetic head for perpendicular recording according to any one of the above.
(Supplementary Note 8) The ferromagnetic material of the first soft magnetic part and the third soft magnetic part is from NiFe or NiFe-X (including at least one selected from the group consisting of X = Ta, Mo, Cr, and Cu). The magnetic head for perpendicular recording according to any one of appendices 1 to 7, characterized in that:
(Supplementary note 9) The ferromagnetic material of the second soft magnetic part is made of a material mainly composed of NiFe, and the ferromagnetic material of the first soft magnetic part and the third soft magnetic part has an Fe concentration of Supplementary note 1 comprising NiFe or NiFe-X (including at least one selected from the group consisting of Ta = Mo, Cr and Cu) lower than the Fe concentration of the ferromagnetic material of the second soft magnetic part The magnetic head for perpendicular recording as described in any one of -7.
(Additional remark 10) The perpendicular recording magnetic head according to additional remark 8 or 9, wherein the first soft magnetic portion and the third soft magnetic portion are made of the same ferromagnetic material.
(Supplementary note 11) A method of manufacturing a magnetic head for perpendicular recording comprising a recording element having a main magnetic pole for applying a recording magnetic field arranged along a recording direction and a sub-magnetic pole serving as a return path for the recording magnetic field,
Forming a sub-magnetic pole on the main magnetic pole,
The step of forming the sub magnetic pole includes
Forming a nonmagnetic layer covering the main pole;
Forming a first soft magnetic portion on the nonmagnetic layer;
A process of selectively forming a second soft magnetic portion on the surface of the first soft magnetic portion;
Forming a third soft magnetic part that covers the surface of the first soft magnetic part and the second soft magnetic part, and a method of manufacturing a magnetic head for perpendicular recording.
(Additional remark 12) The process which forms a said 2nd soft-magnetic part,
A resist film having an opening exposing the surface of the first soft magnetic part is formed above the main pole on the surface of the first soft magnetic part, and a second film is formed on the exposed first soft magnetic part. 12. The method of manufacturing a magnetic head for perpendicular recording according to appendix 11, wherein a soft magnetic layer serving as a soft magnetic portion is deposited and the soft magnetic layer on the resist film is removed together with the resist film.
(Supplementary Note 13) The process of forming the second soft magnetic part is as follows:
A resist film having an opening exposing the surface of the first soft magnetic part is formed above the main pole on the surface of the first soft magnetic part, and the first soft magnetic part is formed using the resist film as a mask. 12. The method of manufacturing a magnetic head for perpendicular recording according to appendix 11, wherein a groove is formed by etching, and the groove is filled with a ferromagnetic material that becomes the second soft magnetic portion.
(Supplementary Note 14) A magnetic recording medium in which a substrate and a recording layer made of a soft magnetic backing layer and a perpendicular magnetization film are sequentially stacked on the substrate;
A magnetic storage device comprising: the perpendicular recording magnetic head according to any one of appendices 1 to 10.

従来の垂直記録用磁気ヘッドの構成を示す図である。It is a figure which shows the structure of the conventional magnetic head for perpendicular recording. 本発明の第1の実施の形態に係る垂直記録用磁気ヘッドの素子部の断面図である。1 is a cross-sectional view of an element portion of a magnetic head for perpendicular recording according to a first embodiment of the present invention. 図2に示す記録素子を媒体対向面側から視た図である。FIG. 3 is a diagram of the recording element shown in FIG. 2 viewed from the medium facing surface side. (A)および(B)は本発明の効果を説明するための図である。(A) And (B) is a figure for demonstrating the effect of this invention. (A)および(B)は第1の実施の形態に係る垂直記録用磁気ヘッドの製造工程を示す図である。(A) And (B) is a figure which shows the manufacturing process of the magnetic head for perpendicular recording based on 1st Embodiment. (A)〜(C)は第1の実施の形態に係る垂直記録用磁気ヘッドの製造工程の変形例を示す図である。(A)-(C) are figures which show the modification of the manufacturing process of the magnetic head for perpendicular recording based on 1st Embodiment. (A)および(B)は実施例および比較例を構成する記録素子の各寸法を示す図である。(A) And (B) is a figure which shows each dimension of the recording element which comprises an Example and a comparative example. 実施例および比較例を構成する記録素子の記録磁界特性を示す図である。It is a figure which shows the recording magnetic field characteristic of the recording element which comprises an Example and a comparative example. 本発明の第2の実施の形態に係る磁気記憶装置の要部を示す平面図である。It is a top view which shows the principal part of the magnetic memory device based on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 垂直記録用磁気ヘッド
11 媒体対向面
12、18、22 非磁性部
15 再生素子
16 下部シールド層
17 MR膜
19 上部シールド層
20 記録素子
21 主磁極
23 副磁極
24 補助磁極
25 ヨーク
26 記録コイル
30 副磁極先端部
31 第1低Bs部
32 高Bs部
33 第2低Bs部
34 副磁極接続部
35 副磁極主部
51、52 レジスト膜
60 磁気記憶装置
DESCRIPTION OF SYMBOLS 10 Magnetic head for perpendicular recording 11 Medium facing surface 12, 18, 22 Nonmagnetic part 15 Reproducing element 16 Lower shield layer 17 MR film 19 Upper shield layer 20 Recording element 21 Main magnetic pole 23 Sub magnetic pole 24 Auxiliary magnetic pole 25 Yoke 26 Recording coil 30 Sub magnetic pole tip 31 First low Bs part 32 High Bs part 33 Second low Bs part 34 Sub magnetic pole connection part 35 Sub magnetic pole main part 51, 52 Resist film 60 Magnetic storage device

Claims (5)

記録方向に沿って配置され、記録磁界を印加する主磁極と、該主磁極に対向し該記録磁界のリターンパスとなる副磁極と、主磁極と副磁極を磁気的に接続するヨークを有する記録素子を備える垂直記録用磁気ヘッドであって、
前記副磁極は、主磁極に対向する側に副磁極先端部を有し、
前記副磁極先端部は、主磁極側から順に、
前記記録方向に対して垂直な幅方向に延在する第1の軟磁性部と、
前記第1の軟磁性部に接し、主磁極の記録方向に沿う中心線上に、該中心線に対して幅方向に略対称に配置された第2の軟磁性部と、該第2の軟磁性部の幅方向の両側に第3の軟磁性部とを有し、
前記第2の軟磁性部は、第1の軟磁性部および第3の軟磁性部よりも飽和磁束密度の高い強磁性材料からなることを特徴とする垂直記録用磁気ヘッド。
A recording having a main magnetic pole for applying a recording magnetic field, a sub magnetic pole facing the main magnetic pole and serving as a return path for the recording magnetic field, and a yoke for magnetically connecting the main magnetic pole and the sub magnetic pole, arranged along the recording direction A perpendicular recording magnetic head comprising an element,
The sub magnetic pole has a sub magnetic pole tip on the side facing the main magnetic pole,
The auxiliary magnetic pole tip is in order from the main magnetic pole side,
A first soft magnetic portion extending in a width direction perpendicular to the recording direction;
A second soft magnetic portion that is in contact with the first soft magnetic portion and disposed substantially symmetrically in the width direction with respect to the center line on a center line along the recording direction of the main magnetic pole; A third soft magnetic part on both sides in the width direction of the part,
The perpendicular recording magnetic head according to claim 1, wherein the second soft magnetic part is made of a ferromagnetic material having a saturation magnetic flux density higher than that of the first soft magnetic part and the third soft magnetic part.
前記副磁極は、主磁極に対してトレーリング側に配設され、副磁極先端部のトレーリング側に記録方向に沿って副磁極接続部と、前記ヨークに接続された副磁極主部をこの順で有し、
前記副磁極接続部が、その基部を副磁極主部に接すると共に、その先端部を副磁極先端部と接し、
前記副磁極先端部は、副磁極接続部よりも媒体対向面に垂直な方向の長さが短いことを特徴とする請求項1記載の垂直記録用磁気ヘッド。
The sub magnetic pole is disposed on the trailing side with respect to the main magnetic pole, and the sub magnetic pole connecting portion and the sub magnetic pole main portion connected to the yoke are arranged along the recording direction on the trailing side of the sub magnetic pole tip. In order,
The sub magnetic pole connecting portion is in contact with the main portion of the sub magnetic pole at the base, and is in contact with the front end of the sub magnetic pole.
2. The magnetic head for perpendicular recording according to claim 1, wherein the tip of the auxiliary magnetic pole has a shorter length in the direction perpendicular to the medium facing surface than the auxiliary magnetic pole connection.
前記第2の軟磁性部の幅は、主磁極の副磁極先端部に対向する側の幅に対して同等以上でかつ2倍以下であること特徴とする請求項1または2記載の垂直記録用磁気ヘッド。   3. The perpendicular recording according to claim 1, wherein the width of the second soft magnetic portion is equal to or greater than twice the width of the main magnetic pole facing the tip of the sub magnetic pole. Magnetic head. 前記第2の軟磁性部の強磁性材料がNiFeを主成分とする材料からなり、前記第1の軟磁性部および第3の軟磁性部の強磁性材料は、そのFe濃度が第2の軟磁性部の強磁性材料のFe濃度よりも低いNiFeまたはNiFe−X(X=Ta、Mo、CrおよびCuなる群のうち少なくとも1種を含む)からなることを特徴とする請求項1〜3のうち、いずれか一項記載の垂直記録用磁気ヘッド。   The ferromagnetic material of the second soft magnetic part is made of a material mainly composed of NiFe, and the ferromagnetic material of the first soft magnetic part and the third soft magnetic part has an Fe concentration of the second soft magnetic part. The magnetic part is made of NiFe or NiFe-X (including at least one selected from the group consisting of Ta, Mo, Cr and Cu) lower than the Fe concentration of the ferromagnetic material of the magnetic part. A magnetic head for perpendicular recording according to any one of the above. 基板と、該基板上に軟磁性裏打ち層および垂直磁化膜からなる記録層とが順次積層されてなる磁気記録媒体と、
請求項1〜4のうち、いずれか一項記載の垂直記録用磁気ヘッドと、を備える磁気記憶装置。
A magnetic recording medium in which a substrate and a recording layer comprising a soft magnetic backing layer and a perpendicular magnetization film are sequentially laminated on the substrate;
A magnetic storage device comprising: the perpendicular recording magnetic head according to claim 1.
JP2005099884A 2005-03-30 2005-03-30 Magnetic head for vertical recording and magnetic storage device Withdrawn JP2006277905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099884A JP2006277905A (en) 2005-03-30 2005-03-30 Magnetic head for vertical recording and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099884A JP2006277905A (en) 2005-03-30 2005-03-30 Magnetic head for vertical recording and magnetic storage device

Publications (1)

Publication Number Publication Date
JP2006277905A true JP2006277905A (en) 2006-10-12

Family

ID=37212492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099884A Withdrawn JP2006277905A (en) 2005-03-30 2005-03-30 Magnetic head for vertical recording and magnetic storage device

Country Status (1)

Country Link
JP (1) JP2006277905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186555A (en) * 2007-01-31 2008-08-14 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording unit
US8164853B2 (en) 2010-03-08 2012-04-24 Tdk Corporation Perpendicular magnetic write head with side shield saturation magnetic flux density increasing away from magnetic pole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186555A (en) * 2007-01-31 2008-08-14 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording unit
US8164853B2 (en) 2010-03-08 2012-04-24 Tdk Corporation Perpendicular magnetic write head with side shield saturation magnetic flux density increasing away from magnetic pole

Similar Documents

Publication Publication Date Title
JP5571625B2 (en) Magnetic head for perpendicular magnetic recording having a shield provided around the main pole
US8203803B2 (en) Magnetic recording head for perpendicular recording with wrap around shield, the fabrication process and magnetic disk storage apparatus mounting the magnetic head
JP5571626B2 (en) Magnetic head for perpendicular magnetic recording having a shield provided around the main pole
US7295401B2 (en) Laminated side shield for perpendicular write head for improved performance
US7859791B2 (en) Perpendicular magnetic recording head having a main magnetic pole layer with a trapezoidally shaped flared part with a ratio of the length of the long base to that of the short base is equal to 1
JP4116626B2 (en) Magnetic head for perpendicular magnetic recording and manufacturing method thereof
JP2006155866A (en) Perpendicular magnetic recording head, method of manufacturing the same, and magnetic recording apparatus
JP2009032382A (en) Cpp type magnetic field detecting element and manufacturing method thereof
US7889457B2 (en) Perpendicular magnetic recording head device capable of increasing magnetic field gradient to exhibit excellent recording performance while maintaining magnetic field intensity
US8320078B1 (en) Perpendicular magnetic recording write head with antiparallel-coupled laminated main pole having a tapered trailing edge
US7848056B2 (en) Thin film magnetic head having thermal expansion layer for suppressing thermal protrusion
US8139321B2 (en) Perpendicular magnetic recording write head with improved laminated main pole
US7626785B2 (en) Thin film magnetic head, method of manufacturing the same, and magnetic recording apparatus
JP2006252694A (en) Magnetic head for vertical recording
US20080180858A1 (en) Perpendicular magnetic write head and method of manufacturing perpendicular magnetic write head, and magnetic write device
JP2008234716A (en) Magnetic head
JP2007164911A (en) Perpendicular magnetic recording magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
US7843667B2 (en) Thin film magnetic head, head gimbal assembly, head arm assembly and magnetic disk device
JP2008226424A (en) Vertical recording magnetic head and magnetic disk device
JP2004178664A (en) Recording and reproduction separation type magnetic head
JP2006277905A (en) Magnetic head for vertical recording and magnetic storage device
JP2007035165A (en) Magnetic head, its manufacturing method, and magnetic recording and reproducing device
JP2006048869A (en) Thin-film magnetic head, manufacturing method thereof, and magnetic recorder
JP2008299986A (en) Perpendicular magnetic recording head
JP3902183B2 (en) Magnetic head, manufacturing method thereof, and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090610