Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs .
Aus der DE 38 08 635 AI ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, bei dem ein an einer axial beweglichen Ventilnadel ausgebildeter Ventilschließabschnitt mit einem festen Ventilsitz zum Öffnen und Schließen des Ventils zusammenwirkt. Der Ventilschließabschnitt ist sich in stromabwärtiger Richtung kegelig verjüngend ausgeführt, während der Ventilsitz kegelstumpfförmig verläuft. Dieser Ventilschließabschnitt bildet das stromabwärtige Ende der Ventilnadel, das in einer Kegelspitze ausläuft . Stromaufwärts des Ventilschließabschnitts bzw. des Ventilsitzes ist die Ventilnadel mit mehreren spiralförmigen Kraftstoffkanälen versehen, durch die der abzuspritzende Kraftstoff drallbehaftet zum Ventilsitz gelangt, um die Zerstäubung des Kraftstoffs zu verbessern und die KraftstoffStrömungsgeschwindigkeit zu steuern.
Neben dem kegelig spitz zulaufenden stromabwärtigen Ende der Ventilnadel ist beispielsweise aus der US-PS 5,350,119 ein
Brennstoffeinspritzventil mit einer axial beweglichen Ventilnadel bekannt, die einen abgerundeten
Ventilschließabschnitt aufweist, der das stromabwärtige Ende der Ventilnadel bildet.
Des weiteren ist aus der DE 30 46 889 C2 bekannt, ein Kraftstoffeinspritzventil mit einem Flachanker und einem daran befestigten Verschlussteil zu versehen. Dieses bewegliche Ventilglied wirkt mit einem gehäusefesten Ventilsitz zusammen. Das Verschlussteil weist einen konvex ausgeformten Ventilschließabschnitt auf, der durch einen senkrecht zur Ventillängsachse verlaufenden planen Anschliff abgeschlossen ist. Stromabwärts des Ventilsitzes ist ein Sammelraum vorgesehen, dessen Volumen möglichst klein sein soll und der durch den Ventilsitzkörper, die ebene untere Begrenzung des VentilSchließabschnitts und der gegenüberliegenden ebenen oberen Begrenzungsfläche eines stromabwärts des Ventilsitzkörpers angeordneten Drallkörpers begrenzt wird. In dem Drallkörper sind mehrere Drallkanäle eingebracht, die seitlich am Drallkörper beginnen und in eine zentrale Drallkammer münden.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, dass gegenüber bekannten Ventilen mit einer Drallerzeugung im Brennstoff stromaufwärts des Ventilsitzes eine verbesserte Brennstoffaufbereitung erzielt wird. Insbesondere betrifft die Verbesserung der
Aufbereitungsqualität den sogenannten Vorstrahl. Dieser Vorstrahl wird von Brennstoff gebildet, der sich bei geschlossenem Ventil in einer inneren Drallkammer des drallerzeugenden Mittels vor dem Ventilsitz gesammelt hat. Dieser Brennstoff strömt beim Öffnen des Ventils weitgehend
axial und nicht drallbehaftet zu einer stromabwärts des Ventilsitzes angeordneten Austrittsöffnung. Mit den erfindungsgemäßen Maßnahmen wird wirkungsvoll eine bessere Aufbereitung des Brennstoffs im Vorstrahl ermöglicht. Ausgenutzt wird dabei der Umstand, dass die den Vorstrahl bildende AnlaufStrömung sowie die Ausbildung eines Wandfilmes in der Austrittsöffnung sehr stark durch die Gestaltung der Ventilnadelspitze, die das Strömungsgebiet der Drallströmung mitformt, beeinflusst werden können. Auf erfindungsgemäße Weise kann die Tropfchengröße verringert werden, wodurch ein feineres Brennstoffspray abgespritzt wird. Durch den Energieverlust des Brennstoffs an der Abflachung der Ventilnadel wird der eher schädliche Vorstrahl in seiner Ausdehnung reduziert. Gegenüber spitz zulaufenden oder abgerundeten Ventilnadelenden entsteht in vorteilhafter Weise ein verkürzter Vorstrahl mit geringerer Penetration.
Außerdem lässt sich eine Erhöhung der Homogenität des darauffolgenden drallbehafteten Hauptstrahls gegenüber spitz zulaufenden oder abgerundeten Ventilnadelenden erreichen.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
Besonders vorteilhaft ist es, wenn der Durchmesser d der am stromabwärtigen Ende der Ventilnadel ausgebildeten Abflachung bei bekannter Größe der Austrittsöffnung mit dem Durchmesser D so gewählt wird, dass das Verhältnis d/D ca. 1 , 5 beträgt .
In vorteilhafter Weise sind die drallerzeugenden Mittel als scheibenförmiges Drallelement ausgeführt, das sehr einfach
strukturiert und dadurch einfach ausformbar ist. Im Vergleich zu Drallkörpern, die an einer Stirnseite Nuten oder ähnliche drallerzeugende Vertiefungen aufweisen, kann in dem Drallelement mit einfachsten Mitteln ein innerer Öffnungsbereich geschaffen werden, der sich über die gesamte axiale Dicke des Drallelements erstreckt und von einem äußeren umlaufenden Randbereich umgeben ist.
Ebenso wie das Drallelement und das Ventilsitzelement ist auch das Führungselement einfach herstellbar. In besonders vorteilhafter Weise dient das Führungselement mit einer inneren Führungsöffnung der Führung der sie durchragenden Ventilnadel. Durch eine Ausbildung des Führungselements am äußeren Umfang mit abwechselnden zahnförmig hervorstehenden Bereichen und dazwischenliegenden Ausnehmungen ist auf einfache Weise eine Möglichkeit geschaffen, um ein optimales Einströmen in die Drallkanäle des darunterliegenden Drallelements zu garantieren.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel eines Brennstoffeinspritzventils, Figur 2 ein zweites Beispiel eines Brennstoffeinspritzventils, wobei nur das stromabwärtige Ventilende gezeigt ist, Figur 3 einen ersten Führungs- und Sitzbereich als vergrößerten Ausschnitt aus Figur 2, Figur 4 einen zweiten Führungs- und Sitzbereich, Figur 5 einen dritten Führungs- und Sitzbereich, Figur 6 ein teilweise dargestelltes Ventilnadelende mit einer gegenüber den vorherigen Ausführungsbeispielen veränderten Geometrie, Figur 7 ein Drallelement und Figur 8 ein Führungse1ement , die in
Brennstoffeinspritzventilen gemäß Figuren 1 bis 5 einsetzbar sind.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielsweise als ein
Ausführungsbeispiel dargestellte elektromagnetisch betätigbare Ventil in der Form eines Einspritzventils für
Brennstoffeinspritzanlagen von fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 zumindest teilweise umgebenen, als Innenpol eines Magnetkreises dienenden, rohrförmigen, weitgehend hohlzylindrischen Kern 2. Das Brennstoffeinspritzventil eignet sich besonders als Hochdruckeinspritzventil zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine. Ein beispielsweise gestufter Spulenkörper 3 aus Kunststoff nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in Verbindung mit dem Kern 2 und einem ringförmigen, nichtmagnetischen, von der Magnetspule 1 teilweise umgebenen Zwischenteil 4 mit einem L-förmigen Querschnitt einen besonders kompakten und kurzen Aufbau des Einspritzventils im Bereich der Magnetspule 1.
In dem Kern 2 ist eine durchgängige Längsöffnung 7 vorgesehen, die sich entlang einer Ventillängsachse 8 erstreckt. Der Kern 2 des Magnetkreises dient auch als Brennstoffeinlaßstutzen, wobei die Längsöffnung 7 einen Brennstoffzufuhrkanal darstellt. Mit dem Kern 2 oberhalb der Magnetspule 1 fest verbunden ist ein äußeres metallenes (z. B. ferritisches) Gehäuseteil 14, das als Außenpol bzw. äußeres Leitelement den Magnetkreis schließt und die Magnetspule 1 zumindest in Umfangsrichtung vollständig umgibt. In der Längsöffnung 7 des Kerns 2 ist zulaufseitig
ein Brennstofffilter 15 vorgesehen, der für die Herausfiltrierung solcher Brennstoffbestandteile sorgt, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten. Der Brennstofffilter 15 ist z. B. durch Einpressen im Kern 2 fixiert.
Der Kern 2 bildet mit dem Gehäuseteil 14 das Zulaufseitige Ende des Brennstoffeinspritzventils, wobei sich das obere Gehäuseteil 14 beispielsweise in axialer Richtung stromabwärts gesehen gerade noch über die Magnetspule 1 hinaus erstreckt. An das obere Gehäuseteil 14 schließt sich dicht und fest ein unteres rohrförmiges Gehäuseteil 18 an, das z. B. ein axial bewegliches Ventilteil bestehend aus einem Anker 19 und einer stangenförmigen Ventilnadel 20 bzw. einen langgestreckten Ventilsitzträger 21 umschließt bzw. aufnimmt. Die beiden Gehäuseteile 14 und 18 sind z. B. mit einer umlaufenden Schweißnaht fest miteinander verbunden.
In dem in Figur 1 dargestellten Ausführungsbeispiel sind das untere Gehäuseteil 18 und der weitgehend rohrförmige
Ventilsitzträger 21 durch Verschrauben fest miteinander verbunden; Schweißen, Löten oder Bördeln stellen aber ebenso mögliche Fügeverfahren dar. Die Abdichtung zwischen dem Gehäuseteil 18 und dem Ventilsitzträger 21 erfolgt z. B. mittels eines Dichtrings 22. Der Ventilsitzträger 21 besitzt über seine gesamte axiale Ausdehnung eine innere Durchgangsöffnung 24, die konzentrisch zu der Ventillängsachse 8 verläuft.
Mit seinem unteren Ende 25, das auch zugleich den stromabwärtigen Abschluß des gesamten Brennstoffeinspritzventils darstellt, umgibt der
Ventilsitzträger 21 ein in der Durchgangsöffnung 24 eingepasstes scheibenförmiges Ventilsitzelement 26 mit einer sich stromabwärts kegelstumpfförmig verjüngenden Ventilsitzfläche 27. In der Durchgangsöffnung 24 ist die z. B. stangenförmige, einen weitgehend kreisförmigen
Querschnitt aufweisende Ventilnadel 20 angeordnet, die an ihrem stromabwärtigen Ende einen Ventilschließabschnitt 28 aufweist. Dieser beispielsweise kugelig oder teilweise kugelförmig bzw. abgerundet ausgebildete oder sich keglig verjüngende Ventilschließabschnitt 28 wirkt in bekannter Weise mit der im Ventilsitzelement 26 vorgesehenen Ventilsitzfläche 27 zusammen. Der Ventilschließabschnitt 28 als das stromabwärtige Ende der Ventilnadel 20 endet stromabwärts mit einer erfindungsgemäßen Abflachung 29, die eben ausgeführt ist und senkrecht zur Ventillängsachse 8 verläuft. Bei der Abflachung 29 handelt es sich z.B. um einen planen Flächenanschliff. Stromabwärts der Ventilsitzfläche 27 ist im Ventilsitzelement 26 wenigstens eine Austrittsöffnung 32 für den Brennstoff eingebracht.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Ein Piezoaktor oder ein magnetostriktiver Aktor als erregbare Betätigungselemente sind jedoch ebenso denkbar. Ebenso ist eine Betätigung über einen gesteuert druckbelasteten Kolben denkbar. Zur axialen Bewegung der Ventilnadel 20 und damit zum Öffnen entgegen der Federkraft einer in der Längsöffnung 7 des Kerns 2 angeordneten Rückstellfeder 33 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Kern 2, den Gehäuseteilen 14 und 18 und dem Anker 19. Der Anker 19 ist mit dem dem Ventilschließabschnitt 28 abgewandten Ende der Ventilnadel
20 z. B. durch eine Schweißnaht verbunden und auf den Kern 2 ausgerichtet. Zur Führung der Ventilnadel 20 während ihrer Axialbewegung mit dem Anker 19 entlang der Ventillängsachse 8 dient einerseits eine im Ventilsitzträger 21 am dem Anker 19 zugewandten Ende vorgesehene Führungsöffnung 34 und andererseits ein stromaufwärts des Ventilsitzelements 26 angeordnetes scheibenförmiges Führungseiement 35 mit einer maßgenauen Führungsöffnung 55. Der Anker 19 ist während seiner Axialbewegung von dem Zwischenteil 4 umgeben.
Zwischen dem Führungselement 35 und dem Ventilsitzelement 26 ist ein weiteres scheibenförmiges Element, und zwar ein Drallelement 47 angeordnet, so dass alle drei Elemente 35, 47 und 26 unmittelbar aufeinanderliegen und im Ventilsitzträger 21 Aufnahme finden. Die drei scheibenförmigen Elemente 35, 47 und 26 sind beispielsweise Stoffschlüssig fest miteinander verbunden.
Eine in der Längsöffnung 7 des Kerns 2 eingeschobene, eingepresste oder eingeschraubte Einstellhülse 38 dient zur Einstellung der Federvorspannung der über ein Zentrierstück 39 mit ihrer stromaufwärtigen Seite an der Einstellhülse 38 anliegenden Rückstellfeder 33, die sich mit ihrer gegenüberliegenden Seite am Anker 19 abstützt. Im Anker 19 sind ein oder mehrere bohrungsähnliche Strömungskanäle 40 vorgesehen, durch die der Brennstoff von der Längsöffnung 7 im Kern 2 aus über stromabwärts der Strömungskanäle 40 ausgebildete Verbindungskanäle 41 nahe der Führungsöffnung 34 im Ventilsitzträger 21 bis in die Durchgangsöffnung 24 gelangen kann.
Der Hub der Ventilnadel 20 wird durch die Einbaulage des Ventilsitzelements 26 vorgegeben. Eine Endstellung der Ventilnadel 20 ist bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließabschnitts 28 an der Ventilsitzfläche 27 des Ventilsitzelements 26 festgelegt, während sich die andere Endstellung der Ventilnadel 20 bei erregter Magnetspule 1 durch die Anlage des Ankers 19 an der stromabwärtigen Stirnseite des Kerns 2 ergibt. Die Oberflächen der Bauteile im letztgenannten Anschlagbereich sind beispielsweise verchromt.
Die elektrische Kontaktierung der Magnetspule 1 und damit deren Erregung erfolgt über Kontaktelemente 43, die noch außerhalb des Spulenkörpers 3 mit einer Kunststoffumspritzung 44 versehen sind. Die
Kunststoffumspritzung 44 kann sich auch über weitere Bauteile (z. B. Gehäuseteile 14 und 18) des Brennstoffeinspritzventils erstrecken. Aus der Kunststoffumspritzung 44 heraus verläuft ein elektrisches Anschlusskabel 45, über das die Bestromung der Magnetspule 1 erfolgt. Die Kunststoffumspritzung 44 ragt durch das in diesem Bereich unterbrochene obere Gehäuseteil 14.
Figur 2 zeigt ein zweites Ausführungsbeispiel eines Brennstoffeinspritzventils, wobei nur das stromabwärtige
Ventilende dargestellt ist. Im Unterschied zu dem in Figur 1 dargestellten Beispiel sind im Ventilsitzträger 21 im Bereich der Führungsöffnung 34 mehrere achsparallel verlaufende Verbindungskanäle 41 vorgesehen. Um ein sicheres Einströmen in den Ventilsitzträger 21 zu ermöglichen, ist die Durchgangsöffnung 24 mit größerem Durchmesser
ausgebildet, während der Ventilsitzträger 21 dünnwandiger ausgeführt ist .
In Figur 3 ist der Führungs- und Sitzbereich als Ausschnitt aus Figur 2 nochmals in geändertem Maßstab dargestellt, um diesen Ventilbereich mit dem erfindungsgemäß ausgebildeten Ventilnadelende besser zu verdeutlichen. Der im abspritzseitigen Ende 25 des Ventilsitzträgers 21 in dessen Durchgangsöffnung 24 vorgesehene Führungs- und Sitzbereich wird bei dem in Figur 3 dargestellten Ausführungsbeispiel durch drei axial aufeinanderfolgende, scheibenförmige, funktionsgetrennte Elemente gebildet, die fest miteinander verbunden sind. In Stromabwärtiger Richtung folgen nacheinander das Führungselement 35, das sehr flache Drallelement 47 und das Ventilsitzelement 26.
Das Ventilsitzelement 26 weist teilweise einen solchen Außendurchmesser auf, dass es straff mit geringem Spiel in einen unteren Abschnitt 49 der Durchgangsöffnung 24 des Ventilsitzträgers 21 stromabwärts einer in der
Durchgangsöffnung 24 vorgesehenen Stufe 51 eingepasst werden kann. Das Führungselement 35 und das Drallelement 47 besitzen beispielsweise einen geringfügig kleineren Außendurchmesser als das Ventilsitzelement 26.
Das Führungselement 35 weist eine maßgenaue innere Führungsöffnung 55 auf, durch die sich die Ventilnadel 20 während ihrer Axialbewegung hindurch bewegt . Vom äußeren Umfang her besitzt das Führungselement 35 über den Umfang verteilt mehrere Ausnehmungen 56, womit eine
BrennstoffStrömung am äußeren Umfang des Führungseiements 35 entlang in das Drallelement 47 hinein und weiter in Richtung zur Ventilsitzfläche 27 garantiert ist. Anhand der Figuren 7 und 8 wird jeweils eine Ausführungsform des Drallelements 47 bzw. des Führungseiements 35 näher beschrieben.
Die drei Elemente 35, 47 und 26 liegen unmittelbar mit ihren jeweiligen Stirnflächen aneinander und liegen bereits vor ihrer Montage im Ventilsitzträger 21 fest miteinander verbunden vor. Die feste Verbindung der einzelnen scheibenförmigen Elemente 35, 47 und 26 erfolgt Stoffschlüssig am äußeren Umfang der Elemente 35, 47, 26, wobei Schweißen oder Bonden bevorzugte Fügeverfahren sind. Bei dem in Figur 3 gezeigten Beispiel sind Schweißpunkte bzw. kurze Schweißnähte 60 in den Umfangsbereichen vorgesehen, in denen das Führungselement 35 keine Ausnehmungen 56 aufweist. Nach dem Verbinden der drei Elemente 35, 47, 26 werden in einer Aufspannung die FührungsÖffnung 55, die Ventilsitzfläche 27 und die obere Stirnseite 59 des Führungseiements 35 geschliffen. Somit besitzen diese drei Flächen eine sehr geringe Rundlaufabweichung zueinander.
Der gesamte mehrscheibige Ventilkörper wird beispielsweise so weit in die Durchgangsöffnung 24 eingeschoben bis die obere Stirnseite 59 des Führungseiements 35 an der Stufe 51 anliegt. Die Befestigung des Ventilkörpers erfolgt z.B. durch eine mittels eines Lasers erzielten Schweißnaht 61 am unteren Abschluss des Ventils zwischen Ventilsitzelement 26 und Ventilsitzträger 21.
Erfindungsgemäß ist das stromabwärtige Ende des Ventilschließabschnitts 28 und damit auch der gesamten Ventilnadel 20 mit der senkrecht zur Ventillängsachse 8 verlaufenden Abflachung 29 versehen. Die an der Ventilnadel 20 vorgesehene Abflachung 29 weist einen Durchmesser d auf, der größer ist als der Durchmesser D der sich stromabwärts anschließenden Austrittsöffnung 32, so dass d > D gilt. Besonders vorteilhaft ist es, wenn der Durchmesser d bei bekannter Größe der Austrittsöffnung 32 so gewählt wird,
dass das Verhältnis d/D ca. 1,5 beträgt. Bei einer Drallerzeugung stromaufwärts der Ventilsitzfläche 27 ergeben sich beim jeweiligen Öffnen des Ventils durch Abheben des Ventilschließabschnitts 28 von der Ventilsitzfläche 27 nachfolgend zwei zeitlich aufeinander folgende Strahlarten. Beim Öffnen des Ventils tritt dabei zuerst ein sogenannter Vorstrahl in die Austrittsöffnung 32 ein. Dieser Vorstrahl wird von Brennstoff gebildet, der sich bei geschlossenem Ventil in einer inneren Drallkammer 92 des Drallelements 47 vor dem Ventilsitz gesammelt hat. Dieser Brennstoff strömt beim Öffnen des Ventils weitgehend axial und nicht drallbehaftet zur Austrittsöffnung 32. Erst unmittelbar darauffolgend schließt sich der eigentliche Hauptstrahl an, der von Brennstoff gebildet wird, der das Drallelement 47 direkt vorher durchströmt hat und der entsprechend drallbehaftet ist.
Die Abflachung 29 an der Ventilnadel 20 bewirkt nun in vorteilhaf er Weise eine verbesserte Aufbereitung des Vorstrahles, da die Abflachung 29 eine Vorverwirbelung des Brennstoffs ermöglicht. Auf diese Weise kann die Tropfchengröße verringert werden, wodurch ein feineres Brennstoffspray abgespritzt wird. Außerdem lässt sich eine Erhöhung der Homogenität des Hauptstrahls gegenüber spitz zulaufenden oder abgerundeten Ventilnadelenden erreichen. Es soll ausdrücklich festgehalten werden, dass für die Erfindung die Ausbildungsart des stromaufwärts des Ventilsitzes 27 angeordneten Drallelements 47 keinen Einfluss hat. Anstelle des dargestellten scheibenförmigen Drallelements 47 können auch drallerzeugende Mittel in völlig beliebiger Gestaltungsweise (z.B. zylinderförmige Drallkörper, Drallnuten an der Ventilnadel) eingesetzt werden.
In den weiteren Ausführungsbeispielen der nachfolgenden Figuren sind die gegenüber dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel gleichbleibenden bzw. gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Unterschiede liegen hauptsächlich bei der Ausbildung der Austrittsöffnung 32 im Ventilsitzelement 26 sowie der Anbringung des Ventilsitzelements 26 am Ventilsitzträger 21 vor, nicht jedoch bei der Ausbildung des erfindungsgemäßen Ventilnadelendes .
Bei dem in Figur 4 gezeigten Beispiel hat das Ventilsitzelement 26 einen umlaufenden Flansch 64, der das stromabwärtige Ende des Ventilsitzträgers 21 untergreift. Die Oberseite 65 des umlaufenden Flansches 64 wird in einer Aufspannung mit der Führungsöffnung 55 und der
Ventilsitzfläche 27 geschliffen. Das Einschieben des dreischeibigen Ventilkörpers erfolgt bis zur Anlage der Oberseite 65 des Flansches 64 am Ende 25 des Ventilsitzträgers 21. In diesem Anlagebereich werden beide Bauteile 21 und 26 miteinander verschweißt. Die Austrittsöffnung 32 ist z.B. schräg geneigt zur Ventillängsachse 8 eingebracht, wobei sie stromabwärtig in einem konvex ausgewölbten Abspritzbereich 66 endet.
Das in Figur 5 gezeigte Beispiel entspricht im wesentlichen dem in Figur 4 dargestellten Beispiel, wobei der wesentliche Unterschied darin besteht, dass nun ein zusätzliches viertes scheibenförmiges Abspritzelement 67 in Form einer Spritzlochscheibe vorgesehen ist, das die Austrittsöffnung 32 aufweist. Im Vergleich zu Figur 4 ist also das
Ventilsitzelement 26 stromabwärts der Ventilsitzfläche 27 nochmals geteilt. Das Abspritzelement 67 und das Ventilsitzelement 26 sind z.B. über eine mittels Laserschweißen erzielte Schweißnaht 68 fest miteinander verbunden, wobei die Verschweißung in einer ringförmig
umlaufenden Vertiefung 69 vorgenommen ist. Neben dem Laserschweißen sind auch Bonden oder Widerstandsschweißen u.a. geeignete Fügeverfahren für diese Verbindung. Im Bereich der Oberseite 65' des Abspritzelements 67 und des Endes 25 des Ventilsitzträgers 21 werden beide Bauteile fest miteinander verbunden (Schweißnaht 61) .
Das Ventilsitzelement 26 hat aus Verschleißschutzgründen einen hohen Kohlenstoffgehalt und ist hoch vergütet. Daraus ergibt sich eine weniger gute Schweißbarkeit. Das
Abspritzelement 67 ist dagegen aus einem besser schweißbaren Material hergestellt. Die Schweißnaht 68 muß außerdem nur geringfügig belastbar sein. Die Austrittsöffnung 32 kann spät im Herstellungsprozess kostengünstig z.B. durch Bohren eingebracht werden. Am Eintritt in die Austrittsöffnung 32 liegt eine scharfe Lochkante vor, durch die Turbulenzen in der Strömung erzeugt werden, aus denen eine Zerstäubung in besonders feine Tröpfchen resultiert.
Figur 6 zeigt ein teilweise dargestelltes Ventilnadelende mit einer gegenüber den vorherigen Ausführungsbeispielen veränderten Geometrie. Bei dem in Figur 6 gezeigten Beispiel gilt nämlich d < D, d.h. die am stromabwärtigen Ende der Ventilnadel 20 vorgesehene Abflachung 29 weist einen Durchmesser d auf, der kleiner ist als der Durchmesser D der sich stromabwärts anschließenden Austrittsöffnung 32. Auch mit einer solchen Ausbildung kann ein definierter Strömungsabriss erzielt werden, der für bestimmte Anwendungsfälle gewünscht sein kann.
In Figur 7 ist ein zwischen Führungselement 35 und Ventilsitzelement 26 eingebettetes Drallelement 47 als Einzelbauteil in einer Draufsicht dargestellt. Das Drallelement 47 kann kostengünstig beispielsweise mittels Stanzen, Drahterodieren, Laserschneiden, Ätzen oder anderen
bekannten Verfahren aus einem Blech oder durch galvanische Abscheidung hergestellt werden. In dem Drallelement 47 ist ein innerer Öffnungsbereich 90 ausgeformt, der über die gesamte axiale Dicke des Drallelements 47 verläuft. Der Öffnungsbereich 90 wird von einer inneren Drallkammer 92, durch die sich der Ventilschließabschnitt 28 der Ventilnadel 20 hindurch erstreckt, und von einer Vielzahl von in die Drallkammer 92 mündenden Drallkanälen 93 gebildet . Die Drallkanäle 93 münden tangential in die Drallkammer 92 und stehen mit ihren der Drallkammer 92 abgewandten Enden 95 nicht mit dem äußeren Umfang des Drallelements 47 in Verbindung. Vielmehr verbleibt zwischen den als Einlauftaschen ausgebildeten Enden 95 der Drallkanäle 93 und dem äußeren Umfang des Drallelements 47 ein umlaufender Randbereich 96.
Bei eingebauter Ventilnadel 20 wird die Drallkammer 92 nach innen von der Ventilnadel 20 (Ventilschließabschnitt 28) und nach außen durch die Wandung des Öffnungsbereichs 90 des Drallelements 47 begrenzt. Durch die tangentiale Einmündung der Drallkanäle 93 in die Drallkammer 92 bekommt der Brennstoff einen Drehimpuls aufgeprägt, der in der weiteren Strömung bis in die Austrittsöffnung 32 erhalten bleibt. Durch die Fliehkraft wird der Brennstoff hohlkegelförmig abgespritzt. Die Enden 95 der Drallkanäle 93 dienen als Sammeltaschen, die großflächig ein Reservoir zum turbulenzarmen Einströmen des Brennstoffs bilden. Nach der Strömungsumlenkung tritt der Brennstoff langsam und turbulenzarm in die eigentlichen tangentialen Drallkanäle 93 ein, wodurch ein weitgehend störungsfreier Drall erzeugbar ist.
Der Figur 8 ist ein Ausführungsbeispiel eines Führungseiements 35 entnehmbar. Über seinen äußeren Umfang besitzt das Führungselement 35 alternierend Ausnehmungen 56
und zahnförmig hervorstehende Bereiche 98. Die zahnförmigen Bereiche 98 können abgerundet ausgeformt sein. Die Herstellung des Führungselements 35 erfolgt z.B. durch Stanzen. Im Beispiel gemäß Figur 8 sind die Ausnehmungsgrunde 99 geneigt ausgebildet, so dass die Ausnehmungsgrunde 99 in vorteilhafter Weise senkrecht zu den Achsen der Drallkanäle 93 des darunterliegenden Drallelements 47 verlaufen.