WO2000012646A1 - Damping fluid composition - Google Patents

Damping fluid composition Download PDF

Info

Publication number
WO2000012646A1
WO2000012646A1 PCT/JP1998/003910 JP9803910W WO0012646A1 WO 2000012646 A1 WO2000012646 A1 WO 2000012646A1 JP 9803910 W JP9803910 W JP 9803910W WO 0012646 A1 WO0012646 A1 WO 0012646A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration damping
damping liquid
vibration
active ingredient
liquid composition
Prior art date
Application number
PCT/JP1998/003910
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1998/003910 priority Critical patent/WO2000012646A1/en
Publication of WO2000012646A1 publication Critical patent/WO2000012646A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/006Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium characterised by the nature of the damping medium, e.g. biodegradable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/048High viscosity, semi-solid pastiness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/04Frequency effects

Definitions

  • the present invention is applied to seismic isolation liquids in seismic isolation devices installed in high-rise buildings and the like, and is applied to the automobile engines and building structures.
  • the present invention relates to a vibration damping liquid composition capable of absorbing and attenuating vibration generated from an automobile engine or a building structure.
  • vibration generated by automobiles which are indispensable for social life, and the noise caused by the vibration have come to the fore as social problems, and in the process of stricter legal regulations, measures to prevent the occurrence are strongly required. I was able to.
  • many drivers and passengers demand quietness and comfort in cars by preventing the generation of vibrations and noise caused by the vibrations.
  • vibration damping liquid ethylene daryl
  • the present inventors focused on a vibration damping liquid used in combination with a material having viscoelastic properties, and aimed at improving the vibration damping performance of the vibration damping liquid itself.
  • the present invention relates to a vibration damping liquid composition which can be used in combination with a material having viscoelastic properties, and by dramatically improving the vibration damping performance of the vibration damping liquid, for example, an engine mount for a vehicle ⁇ a building structure
  • the vibration damping liquid composition of the present invention (hereinafter, simply referred to as a composition) is characterized in that the vibration damping liquid contains an active component that increases the amount of dipole moment in the vibration damping liquid.
  • the vibration damping solution in the composition of the present invention uses water, alcohols, or one selected from daricols or a mixture thereof. Can be. It should be noted that which of the above-mentioned vibration damping liquids is used may be appropriately determined according to the field of application, the application state, and the like. Next, the relationship between the dipole moment amount and the vibration damping performance will be described.
  • FIG. 1 shows the arrangement of the dipoles 12 inside the vibration damping liquid 11 before the vibration energy is transmitted.
  • the arrangement state of the dipoles 12 is in a stable state.
  • the transmission of the vibration energy causes displacement of the dipoles 12 existing inside the vibration damping liquid 11, and as shown in FIG. 2, each dipole 1 2 inside the vibration damping liquid 11 1 It will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1.
  • energy is consumed. It is considered that the vibration energy is absorbed through the displacement of the dipole inside the vibration damping liquid 11 and the energy consumption by the restoring action of the dipole.
  • the displacement of the dipoles 12 means that the dipoles 12 in the vibration damping liquid 11 rotate or shift in phase.
  • the vibration damping property of the vibration damping liquid 11 increases. It is considered to be. From this, it is very useful to use a vibration damping liquid with a large amount of dipole moment in the vibration damping liquid to obtain higher vibration damping performance.
  • the vibration damping performance (vibration) at the temperature at which the machine or equipment to which the composition is applied is used (hereinafter referred to as the operating temperature range; specifically, 20 to 40 ° C.) Ensuring the maximum performance of energy absorption is one of the important factors.
  • the vibration damping liquid the application field, application state, In addition to the amount of dipole moment in the composition and the operating temperature range of the composition, it is desirable to consider handling, availability, temperature performance (heat resistance and cold resistance), weather resistance, price, etc.
  • the active component is a component that dramatically increases the amount of the dipole moment in the vibration damping liquid.
  • the active component itself has a large dipole moment, or the active component itself has a small dipole moment. However, it refers to a component capable of dramatically increasing the amount of dipole moment in the vibration damping liquid by blending the active component.
  • the amount of the dipole moment generated in the vibration damping liquid 11 under the predetermined temperature condition and the magnitude of the vibration energy can be reduced by mixing the active ingredient with the vibration damping liquid 11, as shown in Fig. 3.
  • the power is increased by a factor of three, and by a factor of ten.
  • the energy consumption due to the dipole restoration operation when the vibration energy is transmitted will increase dramatically, and it is thought that the vibration damping performance far exceeds the predicted.
  • active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), and dibenzothiazyl sulfide (MBT).
  • DCHBSA N-dicyclohexylbenzothiazyl-2-sulfenamide
  • MTT 2-mercaptobenzothiazole
  • MTT dibenzothiazyl sulfide
  • MB TS N-cyclohexenylbenzobenzothiazyl-1-sulfenamide (CBS), N-tert-butyl benzothiazilyl 2-sulfenamide (BBS), N-oxyzetene lenvenothiazilyl 2-sulfenamide (OB S), N, N-diisopropyl / lebenzothiazide / le2-sulfenamide (DPBS) and other compounds containing a benzothiazyl group, benzotriazole with an azole group bonded to the benzene ring, and a phenyl group bonded to this 2— ⁇ 2 '—Hide mouth xy 3' ⁇ (3 ", 4", 5 ", 6 tetrahidrophthalide midemethyl) 1 5'-Methyl D two Le ⁇ one base Nzotoria Zole (2 HPMMB), 2- ⁇ 2'-Hydrox-5'-Methylphenyl ⁇ -Benz
  • the mixing amount of the above-mentioned active ingredient is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the vibration damping liquid.
  • the amount of the active ingredient is less than 0.1 part by weight, the effect of adding the active ingredient to increase the amount of the dipole moment cannot be obtained, and the amount of the active ingredient is not more than 10 parts.
  • the amount exceeds the parts by weight the amount of the dipole moment may not increase even though the active ingredient is added in an amount exceeding the B parts by weight.
  • the active ingredient is not limited to one kind, and two or more kinds can be mixed.
  • the amount of the dipole moment varies depending on the type of the vibration damping liquid and the active component. Also, even if the same vibration damping liquid or active component is used, the amount of dipole moment varies depending on the temperature at which the vibration energy is transmitted. Ma 0 The amount of dipole moment varies depending on the magnitude of the transmitted vibrational energy. For this reason, considering the temperature and the magnitude of vibration energy when applying the composition, it is necessary to select and use the vibration damping liquid and the active component so that the largest dipole moment is obtained at that time. Is desirable.
  • FIG. 1 is a schematic diagram showing a dipole in a vibration damping liquid.
  • Figure 2 is a schematic diagram showing the state of the dipole in the vibration damping liquid when vibration energy is applied.
  • FIG. 3 is a schematic diagram showing a state of a dipole in a vibration damping liquid when an active ingredient is blended.
  • FIG. 4 is a graph showing the elastic tangent (ta ⁇ ⁇ ) of each of the compositions of Examples 1 to 4 and Comparative Examples 1 and 2 at 20 ° C. and 30 Hz.
  • Example 3% by weight of each of ethylene glycol (EG) and DC EBSA (Example 1), 2 HPMMB (Example 2), MBTS (Example 3) and HMPS (Example 4) as active ingredients were added.
  • a vibration damping liquid composition was prepared.
  • an EG solution containing no active ingredient alone (Comparative Example 1) and a EG solution mixed with 3% by weight of DOP (Comparative Example 2) were prepared.
  • the elastic tangent (ta ⁇ ) at 20 ° C and 30 Hz was measured for each of the above vibration damping liquid compositions.
  • the vibration damping performance was evaluated.
  • Fig. 4 shows the results.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A damping fluid composition capable of being applied in combination with a viscoelastic material capable of drastically improving the damping performance of a damping fluid, sufficiently cutting off the propagation of vibration and noise, and exhibiting fully a vibration-proofing effect, characterized by containing an active component for increasing the dipole moment in the damping fluid.

Description

糸田 振動減衰液組成物 技術分野 本発明は、 自動車用ユンジンマウント液ゃ高層ビルなどに設置される免震装置 における免震液などに適用されて、 前記自動車用ェンジンゃ建築構造物などに伝 播する、 あるいは自動車用エンジンや建築構造物などから発生する振動を吸収し 減衰させることができる振動減衰液組成物に関する。 景技 fe 近年、 社会生活に欠かせない自動車から発生する振動、 振動による騒音は、 社 会問題として大きくクローズアップされ、 法的規制がますます強化される過程で 、 その発生防止対策が強く求められようになった。 一方、 ドライバーや乗客の側 からは、 車内における振動、 振動による騒音の発生を防止して、 自動車内におけ る静粛性、 快適性を求める声も多い。 また、 工場や住宅、 学校などの構造物についても、 より快適な生活を指向する という思想の広がりにより、 構造物外部からの振動や騒音による被害や、 構造物 内部から発生する振動や振動による騒音が外部へ拡散することによる被害が取り 沙汰されるようになり、 その対策が求められている。 また、 振動の発生源となる産業機械、 器具、 あるいは振動による影響を受け易 い電子機器や精密機器、 家電製品についても、 使用者の振動対策製品についての ニーズが高まっている。 従来、 このような要求に応えるべく、 自動車、 家電製品、 精密機器、 建設機械 、 土木建築物、 その他種々の機械、 機器、 構造物などには、 その振動対策として 、 ゴムなどの粘弾性特性を有する材料を前記機械、 機器、 構造物などに適用して 、 当該機械、 機器、 構造物などに伝播する、 あるいは機械、 機器、 構造物などか ら発生する振動を吸収し減衰させていた。 ところが、 一部の分野、 例えば自動車用エンジンマウントや建築構造物の免震 装置などの分野では、 ゴムなどの粘弾性特性を有する材料単独の使用 (改良) の みでは、 十分な振動、 騒音の伝播の遮断、 免震などの効果が期待できなかった。 そこで、 これらの分野では、 粘弾性特性を有する材料とともに、 エチレンダリ コールなどの液体 (以下振動減衰液という) を併用することで高性能化を計り、 当該分野における要求に応えていた。 本発明者らは、 より効果的な振動対策についての研究の過程で、 粘弾性特性を 有する材料と併用する振動減衰液に着目し、 当該振動減衰液自体の振動減衰性能 の向上を目的として、 鋭意研究を行った結果、 本発明を完成させるに至ったので める。 すなわち本発明は、 粘弾性特性を有する材料と併用して適用できる振動減衰液 組成物に関し、 当該振動減衰液の振動減衰性能を飛躍的に向上させて、 例えば自 動車用エンジンマウントゃ建築構造物の免震装置などの分野に適用したときに、 十分な振動、 騒音の伝播の遮断、 免震効果が発揮されるようにできる振動減衰液 組成物を提供することを目的とするものである。 発明の開示 Itoda Vibration damping liquid composition Technical field The present invention is applied to seismic isolation liquids in seismic isolation devices installed in high-rise buildings and the like, and is applied to the automobile engines and building structures. The present invention relates to a vibration damping liquid composition capable of absorbing and attenuating vibration generated from an automobile engine or a building structure. In recent years, vibration generated by automobiles, which are indispensable for social life, and the noise caused by the vibration have come to the fore as social problems, and in the process of stricter legal regulations, measures to prevent the occurrence are strongly required. I was able to. On the other hand, many drivers and passengers demand quietness and comfort in cars by preventing the generation of vibrations and noise caused by the vibrations. Also, with regard to structures such as factories, houses, schools, etc., due to the spread of the idea of aiming for a more comfortable life, damage due to vibration and noise from outside the structure, and noise due to vibration and vibration generated inside the structure The damage caused by the spread of the garbage to the outside has been reported, and countermeasures are required. In addition, there is a growing need for users of vibration-producing industrial machinery and equipment, as well as electronic equipment, precision equipment, and home appliances that are easily affected by vibration. Conventionally, to meet such demands, automobiles, home appliances, precision equipment, construction machinery For civil engineering buildings, various other machines, devices, structures, etc., as a measure against vibration, a material having viscoelastic properties such as rubber is applied to the machines, devices, structures, etc. It absorbs and attenuates vibrations that propagate to structures, or from machines, equipment, and structures. However, in some fields, such as engine mounts for automobiles and seismic isolation devices for building structures, the use (improvement) of rubber and other materials with viscoelastic properties alone can provide sufficient vibration and noise. The effects of blocking transmission and seismic isolation could not be expected. Therefore, in these fields, the use of a material having viscoelastic properties together with a liquid such as ethylene daryl (hereinafter referred to as a vibration damping liquid) was used to achieve higher performance and meet the demands in the relevant fields. In the course of research on more effective vibration countermeasures, the present inventors focused on a vibration damping liquid used in combination with a material having viscoelastic properties, and aimed at improving the vibration damping performance of the vibration damping liquid itself. As a result of intensive research, the present invention has been completed. That is, the present invention relates to a vibration damping liquid composition which can be used in combination with a material having viscoelastic properties, and by dramatically improving the vibration damping performance of the vibration damping liquid, for example, an engine mount for a vehicle ゃ a building structure It is an object of the present invention to provide a vibration damping liquid composition capable of exerting sufficient vibration, blocking noise propagation, and exerting a seismic isolation effect when applied to fields such as seismic isolation devices. Disclosure of the invention
本発明の振動減衰液組成物 (以下単に組成物という) は、 振動減衰液中に、 同 振動減衰液における双極子モーメント量を増加させる活性成分を含んでいること を特徴とするものである。 本発明の組成物における振動减衰液は、 水、 アルコー ル類、 あるいはダリコール類の中から選ばれた 1種若しくはそれらの混合物を用 いることができる。 尚、 上記振動減衰液のうち、 いずれの振動減衰液を用いるか は、 適用する分野や適用状態などに応じて適宜決定すればよい。 次に、 前記双極子モーメント量と振動減衰性能との関係について説明する。 図 1には振動エネルギーが伝達される前の振動減衰液 1 1内部における双極子 1 2 の配置状態を示した。 この双極子 1 2の配置状態は安定な状態にあると言える。 ところが、 振動エネルギーが伝達されることで、 振動減衰液 1 1内部に存在する 双極子 1 2には変位が生じ、 図 2に示すように、 振動減衰液 1 1内部における各 双極子 1 2は不安定な状態に置かれることになり、 各双極子 1 2は、 図 1に示す ような安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じることになる。 こうした振動減衰液 1 1内 部における双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 振 動エネルギーの吸収が生じるものと考えられる。 尚、 双極子 1 2に変位が生じる とは、 振動減衰液 1 1内部における各双極子 1 2が回転したり、 位相がズレれた りすることをレヽう。 このような振動減衰のメカニズムから、 図 1及び図 2に示すような振動減衰液 1 1内部における双極子モーメントの量が大きくなればなる程、 その振動减衰液 1 1の持つ減衰性も高くなると考えられる。 このことから、 振動減衰液として、 振動減衰液内部における双極子モ一メント量がもともと大きなものを用いること は、 より高い振動減衰性能を得る上で大変有用なことである。 またこの組成物を適用する上で、 適用される機械、 装置の使用時の温度 (以下 使用温度域という。 具体的には— 2 0 ° C〜4 0 ° C ) において、 振動減衰性能 (振動エネルギーの吸収性能) が最も発揮されるようにすることは、 重要な要素 の一つと言える。 尚、 振動減衰液の選択に際しては、 適用分野や適用状態、 振動減衰液内部にお ける双極子モーメント量や当該組成物の使用温度域の他に、 取り扱い性、 入手容 易性、 温度性能 (耐熱性や耐寒性) 、 耐候性、 価格なども考慮するのが望ましい The vibration damping liquid composition of the present invention (hereinafter, simply referred to as a composition) is characterized in that the vibration damping liquid contains an active component that increases the amount of dipole moment in the vibration damping liquid. The vibration damping solution in the composition of the present invention uses water, alcohols, or one selected from daricols or a mixture thereof. Can be. It should be noted that which of the above-mentioned vibration damping liquids is used may be appropriately determined according to the field of application, the application state, and the like. Next, the relationship between the dipole moment amount and the vibration damping performance will be described. FIG. 1 shows the arrangement of the dipoles 12 inside the vibration damping liquid 11 before the vibration energy is transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, the transmission of the vibration energy causes displacement of the dipoles 12 existing inside the vibration damping liquid 11, and as shown in FIG. 2, each dipole 1 2 inside the vibration damping liquid 11 1 It will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1. At this time, energy is consumed. It is considered that the vibration energy is absorbed through the displacement of the dipole inside the vibration damping liquid 11 and the energy consumption by the restoring action of the dipole. The displacement of the dipoles 12 means that the dipoles 12 in the vibration damping liquid 11 rotate or shift in phase. From the mechanism of such vibration damping, as the amount of dipole moment inside the vibration damping liquid 11 as shown in FIGS. 1 and 2 increases, the damping property of the vibration damping liquid 11 increases. It is considered to be. From this, it is very useful to use a vibration damping liquid with a large amount of dipole moment in the vibration damping liquid to obtain higher vibration damping performance. In addition, when applying this composition, the vibration damping performance (vibration) at the temperature at which the machine or equipment to which the composition is applied is used (hereinafter referred to as the operating temperature range; specifically, 20 to 40 ° C.) Ensuring the maximum performance of energy absorption is one of the important factors. When selecting the vibration damping liquid, the application field, application state, In addition to the amount of dipole moment in the composition and the operating temperature range of the composition, it is desirable to consider handling, availability, temperature performance (heat resistance and cold resistance), weather resistance, price, etc.
次に、 活性成分について説明する。 活性成分とは、 振動減衰液内部における双 極子モーメントの量を飛躍的に増加させる成分であり、 当該活性成分そのものが 双極子モーメント量が大きいもの、 あるいは活性成分そのものの双極子モーメン ト量は小さいが、 当該活性成分を配合することで、 振動減衰液内部における双極 子モ一メント量を飛躍的に増加させることができる成分をいう。 Next, the active ingredient will be described. The active component is a component that dramatically increases the amount of the dipole moment in the vibration damping liquid.The active component itself has a large dipole moment, or the active component itself has a small dipole moment. However, it refers to a component capable of dramatically increasing the amount of dipole moment in the vibration damping liquid by blending the active component.
@  @
例えば所定の温度条件、 振動エネルギーの大きさとしたときの、 振動減衰液 1 1に生じる双極子モーメントの量が、 これに活性成分を配合することで、 図 3に 示すように、 同じ条件の下で 3倍と力 、 1 0倍とかいった量に増加することにな るのである。 これに伴って、 振動エネルギーが伝達されたときの双極子の復元作 用によるエネルギー消費量も飛躍的に増大することになり、 予測を遥かに超えた 振動減衰性能が生じることになると考えられる。  For example, the amount of the dipole moment generated in the vibration damping liquid 11 under the predetermined temperature condition and the magnitude of the vibration energy can be reduced by mixing the active ingredient with the vibration damping liquid 11, as shown in Fig. 3. Thus, the power is increased by a factor of three, and by a factor of ten. Along with this, the energy consumption due to the dipole restoration operation when the vibration energy is transmitted will increase dramatically, and it is thought that the vibration damping performance far exceeds the predicted.
@  @
このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジルー 2—スルフェンアミ ド (D CHB S A) 、 2—メルカプトべ ンゾチアゾール (MB T) 、 ジベンゾチアジルスルフィ ド (MB T S) 、 N—シ ク口へキシノレべンゾチアジル一 2—スルフェンァミ ド (C B S) 、 N- t e r t 一ブチルベンゾチアジルー 2—スルフェンアミ ド (B B S) 、 N—ォキシジェチ レンべンゾチアジルー 2—スルフェンアミ ド (OB S) 、 N、 N—ジイソプロピ /レベンゾチアジ/レー 2—スルフェンアミ ド (D P B S) などのベンゾチアジル基 を含む化合物、 ベンゼン環にァゾール基が結合したベンゾトリアゾールを母核とし、 これにフ ェニル基が結合した 2— { 2' —ハイ ド口キシー 3 ' ― (3 " , 4 " , 5 " , 6 テ トラハイ ドロフタリ ミデメチル) 一 5 ' —メチルフエ二ル} 一べンゾトリア ゾール (2 HPMMB) 、 2 - { 2' 一ハイ ド口キシ一 5 ' —メチルフエ二ル} —ベンゾト リアゾ一ル ( 2 HMP B) 、 2— { 2' —ハイ ド口キシ— 3' - t - プ、チノレー 5' —メチノレフエ二ノレ } — 5—クロ口べンゾトリァゾ一ノレ (2 HBMP C B) 、 2 - { 2' 一ハイ ド口キシ一 3 ' , 5' —ジー t一プチルフエ二ル} ― 5—クロ口べンゾトリアゾール ( 2 HDB P CB) などのべンゾトリアゾール基 を持つ化合物、 ェチルー 2—シァノ一 3, 3ージ一フエ二ルァク リ レートなどのジフエニルァ ク リ レート基を含む化合物、 あるレヽは 2—ハイ ド口キシ一 4—メ トキシベンゾフエノン (HMB P) 、 2 - ハイ ドロキシ一 4—メ トキシベンゾフエノン一 5ースルフォニックァシド (HM B P S) などのベンゾフエノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 上述の活性成分の配合量としては、 振動減衰液 1 0 0重量部に対して 0. 1〜 1 0重量部の割合が好ましい。 例えば活性成分の配合量が 0. 1重量部を下回る 場合、 双極子モ一メントの量を増大させるという活性成分を配合したことによる 十分な効果が得られず、 活性成分の配合量が 1 0重量部を上回る場合には、 活性 成分を B重量部を上回るだけ配合したにも拘わらず、 双極子モーメントの量が增 大しなかったりすることがある。 尚、 前記振動減衰液に配合する活性成分を決定するに当たり、 活性成分と振動 减衰液を構成する成分との相溶し易さを考慮すると良い。 また、 上記活性成分は 1種に限らず、 2種以上配合することもできる。 尚、 双極子モーメントの量は、 前述の振動減衰液や活性成分の種類により様々 に異なっている。 また、 同じ振動減衰液や活性成分を用いたとしても、 振動エネ ルギ一が伝達されたときの温度により、 その双極子モーメン トの量は変わる。 ま 0 た、 伝達される振動エネルギーの大小によっても、 双極子モーメン トの量は変わ る。 このため、 当該組成物を適用するときの温度や振動エネルギーの大きさなど を考慮して、 そのとき最も大きな双極子モーメント量となるように、 振動减衰液 や活性成分を選択して用いるのが望ましい。 また、 上記振動減衰液中には活性成分の他に、 必要に応じて酸化防止剤、 劣化 防止剤、 着色剤などを配合することもできる。 図面の簡単な説明 図 1は、 振動減衰液における双極子を示した模式図である。 図 2は、 振動エネルギーが加わったときの振動減衰液における双極子の状態を 示した模式図。 図 3は、 活性成分が配合されたときの振動減衰液における双極子の状態を示し た模式図。 図 4は、 実施例 1〜 4並びに比較例 1及び 2の各組成物の 20 °C、 30 H zに おける弾性正接 ( t a η δ) を示したグラフ。 実施例 エチレングリコール (EG) に、 活性成分として DC E B S A (実施例 1 ) 、 2 HPMMB (実施例 2) 、 MBTS (実施例 3 ) 、 HMP S (実施例 4 ) をそ れぞれ 3重量%の割合で配合して振動減衰液組成物を作製した。 また比較のため 、 活性成分を配合しない EG溶液単独のもの (比較例 1 ) 、 この EG溶液に同じ く 3重量%の DOPを配合したもの (比較例 2) をそれぞれ作製した。 上記各振 動減衰液組成物について、 20°C、 3 0 H zにおける弾性正接 ( t a η δ ) を測 定して振動減衰性能を評価した。 この結果を図 4に示す。 尚、 弾性正接 ( t a n δ ) の測定は、 レオバイブロン、 DDV— 25 F P (株式会社オリエンテイツク 製) を用いて行った。 図 4から、 実施例 1及び 2のものは、 いずれも比較例 1及び 2のものと同程度 となっているものの、 実施例 3のものについては約 2倍、 実施例 4にいたつては 約 1 0倍のレベルにあり、 その性能が飛躍的に向上していることが解る。 Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), and dibenzothiazyl sulfide (MBT). MB TS), N-cyclohexenylbenzobenzothiazyl-1-sulfenamide (CBS), N-tert-butyl benzothiazilyl 2-sulfenamide (BBS), N-oxyzetene lenvenothiazilyl 2-sulfenamide (OB S), N, N-diisopropyl / lebenzothiazide / le2-sulfenamide (DPBS) and other compounds containing a benzothiazyl group, benzotriazole with an azole group bonded to the benzene ring, and a phenyl group bonded to this 2— {2 '—Hide mouth xy 3' ― (3 ", 4", 5 ", 6 tetrahidrophthalide midemethyl) 1 5'-Methyl D two Le} one base Nzotoria Zole (2 HPMMB), 2- {2'-Hydrox-5'-Methylphenyl} -Benzotriazol (2HMPB), 2- {2'-Hydrox3--3'-t -Pin, Chinole 5 '—Methinorefuenole} — 5—Black benzotriazonole (2 HBMP CB), 2-{2 一 Hide mouth xi 3', 5 '—Gee ― Compounds having a benzotriazole group, such as benzotriazole (2 HDBPCB), and diphenylacrylate groups, such as ethyl 2-cyano-1,3,3-diphenyl acrylate Some compounds, such as 2-hydroxyl 4-methoxybenzophenone (HMBP) and 2-hydroxyl-4-methoxybenzophenone-15-sulfonic acid (HMBPS) One or more compounds selected from compounds having a benzophenone group may be mentioned. That. The mixing amount of the above-mentioned active ingredient is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the vibration damping liquid. For example, if the amount of the active ingredient is less than 0.1 part by weight, the effect of adding the active ingredient to increase the amount of the dipole moment cannot be obtained, and the amount of the active ingredient is not more than 10 parts. When the amount exceeds the parts by weight, the amount of the dipole moment may not increase even though the active ingredient is added in an amount exceeding the B parts by weight. In determining the active component to be mixed in the vibration damping liquid, it is good to consider the easiness of compatibility between the active component and the components constituting the vibration damping liquid. The active ingredient is not limited to one kind, and two or more kinds can be mixed. The amount of the dipole moment varies depending on the type of the vibration damping liquid and the active component. Also, even if the same vibration damping liquid or active component is used, the amount of dipole moment varies depending on the temperature at which the vibration energy is transmitted. Ma 0 The amount of dipole moment varies depending on the magnitude of the transmitted vibrational energy. For this reason, considering the temperature and the magnitude of vibration energy when applying the composition, it is necessary to select and use the vibration damping liquid and the active component so that the largest dipole moment is obtained at that time. Is desirable. Further, in addition to the active ingredient, an antioxidant, an anti-deterioration agent, a coloring agent, and the like can be added to the vibration damping liquid as required. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a dipole in a vibration damping liquid. Figure 2 is a schematic diagram showing the state of the dipole in the vibration damping liquid when vibration energy is applied. FIG. 3 is a schematic diagram showing a state of a dipole in a vibration damping liquid when an active ingredient is blended. FIG. 4 is a graph showing the elastic tangent (ta η δ) of each of the compositions of Examples 1 to 4 and Comparative Examples 1 and 2 at 20 ° C. and 30 Hz. Example 3% by weight of each of ethylene glycol (EG) and DC EBSA (Example 1), 2 HPMMB (Example 2), MBTS (Example 3) and HMPS (Example 4) as active ingredients were added. And a vibration damping liquid composition was prepared. For comparison, an EG solution containing no active ingredient alone (Comparative Example 1) and a EG solution mixed with 3% by weight of DOP (Comparative Example 2) were prepared. The elastic tangent (taηδ) at 20 ° C and 30 Hz was measured for each of the above vibration damping liquid compositions. The vibration damping performance was evaluated. Fig. 4 shows the results. In addition, the measurement of the elastic tangent (tan δ) was performed using Leo Vibron, DDV-25FP (manufactured by Orientetech Co., Ltd.). From FIG. 4, it can be seen that the products of Examples 1 and 2 are almost the same as those of Comparative Examples 1 and 2, but the product of Example 3 is about twice as large and the product of Example 4 is about twice. At 10 times the level, it can be seen that the performance has been dramatically improved.

Claims

言青求の範囲 Scope of word blue
1 . 振動減衰液中に、 同振動減衰液における双極子モーメン ト量を増加させる 活性成分を含んでいることを特徴とする振動減衰液組成物。 1. A vibration damping liquid composition characterized in that the vibration damping liquid contains an active ingredient that increases the amount of dipole moment in the vibration damping liquid.
2 . 前記振動減衰液が、 水、 アルコール類、 あるいはグリコール穎の中から選 ばれた 1種若しくはそれらの混合物であることを特徴とする請求項 1記載の振動 減衰液組成物。 2. The vibration damping liquid composition according to claim 1, wherein the vibration damping liquid is at least one selected from water, alcohols, and glycolide, or a mixture thereof.
3 . 前記活性成分が、 ベンゾチアジル基を含む化合物の中から選ばれた 1種若 しくは 2種以上であることを特徴とする請求項 1記載の振動減衰液組成物。 3. The vibration damping liquid composition according to claim 1, wherein the active ingredient is at least one selected from compounds containing a benzothiazyl group.
4 . 前記活性成分が、 ベンゾトリアゾール基を持つ化合物の中から選ばれた 1 種若しくは 2種以上であることを特徴とする請求項 1記載の振動減衰液組成物。 4. The vibration damping liquid composition according to claim 1, wherein the active ingredient is one or more selected from compounds having a benzotriazole group.
5 . 前記活性成分が、 ジフエニルアタリレー ト基を持つ化合物の中から選ばれ た 1種若しくは 2種以上であることを特徴とする請求項 1記載の振動減衰液組成 物。 5. The vibration damping liquid composition according to claim 1, wherein the active ingredient is one or more selected from compounds having a diphenyl atalylate group.
6 . 前記活性成分が、 ベンゾフユノン基を持つ化合物の中から選ばれた 1種若 しくは 2種以上であることを特徴とする請求項 1記載の振動減衰液組成物。 6. The vibration damping liquid composition according to claim 1, wherein the active ingredient is at least one compound selected from compounds having a benzofuunone group.
7 . 前記活性成分が前記振動減衰液 1 0 0重量部に対し、 0 . 1〜 1 0重量 部の割合で含まれていることを特徴とする請求項 1〜 6のいずれかに記載の振動 減衰液組成物。 7. The vibration according to any one of claims 1 to 6, wherein the active ingredient is contained in a ratio of 0.1 to 10 parts by weight with respect to 100 parts by weight of the vibration damping liquid. Attenuating liquid composition.
PCT/JP1998/003910 1998-08-31 1998-08-31 Damping fluid composition WO2000012646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003910 WO2000012646A1 (en) 1998-08-31 1998-08-31 Damping fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003910 WO2000012646A1 (en) 1998-08-31 1998-08-31 Damping fluid composition

Publications (1)

Publication Number Publication Date
WO2000012646A1 true WO2000012646A1 (en) 2000-03-09

Family

ID=14208911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003910 WO2000012646A1 (en) 1998-08-31 1998-08-31 Damping fluid composition

Country Status (1)

Country Link
WO (1) WO2000012646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077895A (en) * 2010-10-06 2012-04-19 Kinki Univ Absorber and method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770534U (en) * 1980-10-17 1982-04-28
JPH05272583A (en) * 1992-03-30 1993-10-19 Tokai Rubber Ind Ltd Manufacture of liquid-sealed vibration-proof device
JPH1077417A (en) * 1996-09-03 1998-03-24 Cci Corp Shock-absorbing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770534U (en) * 1980-10-17 1982-04-28
JPH05272583A (en) * 1992-03-30 1993-10-19 Tokai Rubber Ind Ltd Manufacture of liquid-sealed vibration-proof device
JPH1077417A (en) * 1996-09-03 1998-03-24 Cci Corp Shock-absorbing material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUKHTO, I. N. et al., "The width of the rotational contour of vibrational and vibronic bands of complex Molecules in the gas phase as a temperature indicator", J. Appl. Spectrosc., Vol. 64, No. 3, 1997, pages 325 - 330. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077895A (en) * 2010-10-06 2012-04-19 Kinki Univ Absorber and method of using the same

Similar Documents

Publication Publication Date Title
JPH10139933A (en) Vibration-proofing material
JP4178195B2 (en) Damping agent and damping paint
WO2000012646A1 (en) Damping fluid composition
JPH09302139A (en) Damping material
JP6148902B2 (en) High damping rubber composition for vibration control damper and vibration control damper using the same
JPH107845A (en) Vibration-damping material
JP2002179908A (en) Vibration suppressive resin composition
JP5221487B2 (en) Damping resin composition
JP3952192B2 (en) Damping composition
JP2002179927A (en) Low impact resilient, vibration-damping polymer composition
JPH09316295A (en) Energy conversion composition
JPH10195339A (en) Vibration-damping coating material
JPWO2002006396A1 (en) Damping material
JPH1192675A (en) Highly attenuating material composition
WO2000007789A1 (en) Pellet for vibration-control resin molding
JP4092415B2 (en) Damping material
WO1999064535A1 (en) Damping self-adhesive
JP2002297146A (en) Restrained vibration damping material
JP2002294208A (en) Vibration-damping adhesive composition, and vibration- damping steel plate using vibration-damping adhesive composition
JP4384929B2 (en) Damping material
JPH10149171A (en) Foamed sound absorbing material
JP4112495B2 (en) Damping composition and damping structure
JP4013142B2 (en) Damping material
JPH11172122A (en) Highly damping material composition
JPWO2002053638A1 (en) Damping material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000567644

Format of ref document f/p: F