WO2000007003A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2000007003A1
WO2000007003A1 PCT/JP1999/004065 JP9904065W WO0007003A1 WO 2000007003 A1 WO2000007003 A1 WO 2000007003A1 JP 9904065 W JP9904065 W JP 9904065W WO 0007003 A1 WO0007003 A1 WO 0007003A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
reagent
mediator
electrode
derivative
Prior art date
Application number
PCT/JP1999/004065
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Joko
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2000007003A1 publication Critical patent/WO2000007003A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes

Definitions

  • the present invention relates to a so-called electrode-type biosensor, and particularly to a reagent section to which a sample sample is administered in order to improve responsiveness and reproducibility when specifically qualifying or quantifying components in the sample sample. It relates to an improved biosensor. Background art
  • glucose was measured using a biosensor that combines glucose oxidase (hereinafter abbreviated as GOD j) as an enzyme that oxidizes glucose and an oxygen electrode or a hydrogen peroxide electrode. 8) D-Glucose reacts with GOD to produce ⁇ -Dalconolactone, and oxygen becomes an electron acceptor to generate hydrogen peroxide.
  • the sensor measures glucose by measuring oxygen consumption in an enzymatic reaction with an oxygen electrode or by measuring hydrogen peroxide production with a hydrogen peroxide electrode.
  • the glucose measurement described above does not measure the amount of oxygen consumed in the enzymatic reaction or the amount of hydrogen peroxide produced, but an enzyme reaction detection reagent (the enzyme reaction detecting reagent) that detects the enzymatic reaction itself Hereafter, "media" U. ).
  • an enzyme reaction detection reagent the enzyme reaction detecting reagent
  • media the biosensor having the above-mentioned mediator can more accurately measure glucose detection in a sample without being affected by dissolved oxygen.
  • FIG. 1 shows a configuration diagram of an electrode-type biosensor manufactured using a mediator.
  • the biosensor is composed of a measuring electrode (working electrode) 4 connected to lead 2 and a counter electrode connected to lead 3 on an insulating substrate "!
  • An electrode-based detection unit 9 having a number of 5 is formed, and an oxidoreductase and a nodator are compounded on the furnace-electrode detection unit 9 as shown in Fig. 1 (b).
  • the qualitative or quantitative determination of the specimen sample is performed by administering the specimen sample to the reagent section 10 and performing measurement by the electrode system detecting section 9.
  • GOD is used as the oxidoreductase
  • potassium ferricyanide is used as the mediator.
  • 6 designates the exposed area of the negative electrodes 4 and 5, and both electrodes 4 and 5 And rie de 2, 3 insulating layer covering the unnecessary portion of, 7 Wasupesa, 8 denotes a cover.
  • the biosensor detects the consumption of potassium ferricyanide because the ferricyanidation beam of the mediator is consumed as an electron acceptor during the enzymatic reaction.
  • Glucose is measured by measuring current values detected from leads 2 and 3 through electrodes 4 and 5 of unit 9.
  • FIG. 4 is a graph showing the sensor response performance depending on the mediator concentration in the dark-course measurement pyrosensor manufactured by the above configuration.
  • the vertical axis is the current value for detecting the amount of mediator (ca. ferricyanide) consumed as an electron receptor for each concentration
  • the horizontal axis is the concentration of glucose, which is the specimen sample.
  • FIG. 5 is a graph showing the reproducibility of the sensor response and the sensor response depending on the mediator concentration in the biosensor.
  • the line graph on the vertical axis indicates the thickness of the reagent section 10, and the bar graph on the vertical axis indicates the coefficient of variation (hereinafter abbreviated as “cv”) of the sensor response as an index of the reproducibility of the sensor response.
  • the horizontal axis is the concentration of the mediator (ca. ferricyanide).
  • the reagent section 10 is composed of 5 microliters (hereinafter referred to as “mixture”) of these mixed liquids in order to carry GOD as an oxidoreductase and potassium ferricyanide as a mediator. ] On electrodes 4 and 5 and dried.
  • Fig. 4 shows that the oxidoreductase (GOD) concentration was fixed at 200 Units Z milliliters (hereinafter abbreviated as UZml), and the mediaease (calidium ferricyanide) was used. It shows the relationship with the detected glucose concentration when ⁇ is arbitrarily increased.
  • the mediator concentration is 25 milimolnoliter (hereinafter abbreviated as mM)
  • the correlation coefficient (r) is 0.9831
  • the mediator concentration is up to 15 OmM. It can be seen that the correlation coefficient improves to 0.9931 when increasing. That is, it can be seen that when the mediator concentration is increased, the response sensitivity of the sensor is increased, and the linear correlation between the glucose concentration and the current value is also improved.
  • the poor adhesion of the reagent part 10 itself may be caused by the oxidoreductase and the mediator in the reagent part 10 and the surface of the electrodes 4 and 5 during the production, handling, and storage of the sensor. This caused a large error in the amount of reagent that had been optimized and the sensor response was significantly reduced.
  • the present invention provides an oxidoreductase and a mediator that suppress the elevation and unevenness of the reagent portion and stabilize the response and reproducibility of the biosensor, and carry the reagent on the reagent portion. It is another object of the present invention to provide a biosensor that enhances adhesion to an electrode surface. Disclosure of the invention
  • an electrode-based detection unit having a working electrode and a counter electrode is formed on an insulating substrate, and an oxidoreductase and an enzyme reaction are formed on the electrode-based detection unit.
  • a biosensor in which a reagent portion containing a detection reagent is formed and the qualitative or quantitative detection of a sample sample administered to the reagent portion is performed by the electrode-based detection portion a biomolecule is contained in the reagent portion. Characterized by having an additive containing the protein or its derivative.
  • an additive containing a biomolecular protein or a derivative thereof is blended in the reagent section. Therefore, such an additive is a polymer substance having a large cohesive force. Therefore, the redox enzyme and the enzyme reaction detection reagent (mediator) in the reagent section can be carried with good adhesion. Therefore, the media in the reagent part are caused by the coagulation action of this additive. It is possible to suppress bumps and bumps caused by the eta concentration, to enhance the adhesion to the detection section supporting the reagent section, and to prevent the oxidoreductase / mediator from peeling off and falling off from the detection section surface. As a result, there is an effect that the sensor response performance and the sensor reproduction performance are greatly improved.
  • the invention (Claim 2) is the biosensor according to Claim 1, wherein the biopolymer protein or the derivative thereof contained in the additive does not have a redox catalytic activity. It is characterized by.
  • the biosensor having such a configuration, since a biopolymer protein or a derivative thereof having no redox catalytic activity is used as the protein or the derivative thereof contained in the additive, enzymatic and chemical The oxidation-reduction reaction can prevent the oxidation-reduction reaction with an unspecified component of the sample sample, so that only the sensor response corresponding to the reaction with the specified component can be detected. it can. As a result, it has become possible to specifically measure specimen samples.
  • the invention provides the biosensor according to Claim 1, wherein the additive is gelatin, collagen, elastin, casein, peptone, or a derivative thereof, or a combination thereof. It is characterized in that arbitrarily combined mixtures are used.
  • FIG. 1 is a diagram showing the configuration of an electrode-type biosensor.
  • FIG. 1 (a) is an exploded perspective view of the electrode-type biosensor, and
  • FIG. 1 (b) is a diagram showing the configuration of the electrode-type biosensor.
  • FIG. 5 is a side view of a detecting unit that performs the detection.
  • FIG. 2 is a graph showing the reagent part thickness and the sensor response reproducibility due to the mixing of gelatin in the reagent part in the electrode type biosensor according to the embodiment of the present invention.
  • FIG. 3 is a graph showing the linear response of the electrode-type biosensor according to the embodiment of the present invention, in which the gelatin is blended in the reagent part.
  • FIG. 4 is a graph showing the sensor response performance depending on the mediator concentration in a conventional electrode type biosensor.
  • FIG. 5 is a graph showing the reproducibility of the sensor response and the thickness of the reagent depending on the mediator concentration in a conventional electrode-type biosensor.
  • the biosensor according to the embodiment of the present invention has substantially the same configuration as that described in the related art, but the biomolecule is added to the width of the reagent part 10. And an additive containing the protein or its derivative.
  • biopolymer protein or a derivative thereof contained in the above-mentioned additive one having no redox catalytic activity is preferably used, for example, gelatin, collagen, elastin, casein, peptone, or any of these. A derivative or a mixture of any of these is used.
  • Examples of the oxidoreductase contained in the reagent section include dalcosoxidase (GOD), cholesterol oxidase, lactate oxidase, pericasidase, galactose oxidase, and alcohol oxidase.
  • Examples of the enzyme include choline, cholineoxidase, ascorbate oxidase, glucose dehydrogenase, cholesterol dehydrogenase, and alcohol dehydrogenase.
  • an electron acceptor of an organic or inorganic compound is used, for example, metal cyano complex such as lithium ferricyanide, benzoquinone, etc.
  • metal cyano complex such as lithium ferricyanide, benzoquinone, etc.
  • a quinone derivative, a chlorocene derivative, or a fluorene derivative may be used.
  • the biosensor having the above configuration is manufactured, for example, as follows. First, silver paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2 and 3. Next, an electrode system detecting section 9 including a measuring electrode (working electrode) 4 and a counter electrode 5 is formed on the leads 2 and 3 by printing a conductive carbon paste. In addition, an insulating paste is printed to define the exposed area of the electrodes 4 and 5 and to cover the unnecessary portions of the leads 2 and 3 between the electrodes 4 and 5 to form the insulating layer 6. I do.
  • the electrode type biosensor is manufactured by bonding the cover 8 and the spacer 7 in the positional relationship indicated by the dashed line in FIG. Next, the operation of the biosensor will be described.
  • a sample is directly administered to the reagent section 10 carried on the detection section 9. Then, the components in the specimen sample undergo an enzymatic reaction with the oxidoreductase contained in the reagent section 10, and the enzyme becomes a reduced form. Next, the reduced enzyme reacts with the mediator, the enzyme is oxidized again, and the mediator takes on a reduced form. By applying a voltage to this reduced mediator, the mediator emits electrons at the same time as it is oxidized again. By measuring the emitted electrons as current values from the electrodes 4 and 5, the components in the sample can be specifically qualitatively or quantitatively determined.
  • the reagent portion 10 of the biosensor according to the present embodiment contains an additive containing a biopolymer protein or a derivative thereof.
  • the oxidoreductase in the reagent part 10 can be loaded with good adhesion to the mediator. Therefore, according to the biosensor according to the present embodiment, an additive containing a biopolymer protein or a derivative thereof is blended in the reagent portion 10, and the reagent portion 10 is agglutinated by the additive. Of the oxidoreductase from the surfaces of the electrodes 4 and 5 to prevent exfoliation and falling off of the mediator. Can be. As a result, the biosensor has an effect that the sensor response performance and the sensor reproduction performance are significantly improved.
  • the biosensor of the present embodiment a protein or a derivative of a biomolecular substance contained in the above additive that does not have a redox catalytic activity is used, so that enzymatic and chemical It is possible to prevent an oxidation-reduction reaction with an unspecified component of the sample sample from occurring by a typical oxidation-reduction reaction, and it is possible to detect only a sensor response corresponding to the reaction with the specified component. As a result, the biosensor has an effect of being able to specifically measure a specimen sample.
  • the reagent part 10 supported on the electrodes 4 and 5 shown in FIG. 1 has a GOD of 200 U ml as an oxidoreductase and a ferrocyanide as a mediator 150 xn M was mixed with gelatin as an additive at various ratios of 0 to 3 W / V%, and 5 ⁇ l of this mixture was applied to the surfaces of electrodes 4 and 5 and dried. Formed. In the present embodiment, it was used to prepare a plurality of biosensor having a reagent portion 1 0 engaged gd gelatin in various ratios of 0 to 3 ⁇ 0/0.
  • FIG. 2 is a graph showing the thickness of the reagent section 10 of the glucose measuring biosensor having the reagent section 10 containing gelatin and the sensor response reproducibility.
  • the line graph on the vertical axis shows the thickness of the reagent section 10 and the bar graph on the vertical axis. Is the coefficient of variation of the sensor response (hereinafter referred to as the index of reproducibility of the sensor response).
  • the horizontal axis is the concentration of the additive (gelatin).
  • the thickness of the reagent part 10 depends on the concentration of gelatin mixed in the reagent part 10, as is evident from the line graph in the figure.
  • the characteristic is that the thickness of the reagent portion 10 decreases as the gelatin concentration increases. In other words, it can be seen that in the reagent portion 10, the higher the gelatin concentration, the more the elevation is suppressed and the unevenness is reduced.
  • the reagent part 10 formed by appropriately applying 15 O mM of potassium ferricyanide has a reagent part thickness of about 540 ⁇ m without gelatin. Although it is about ⁇ , it can be seen that when gelatin is added at about 0.25 WZV D / 0 , the reagent thickness is suppressed to about 260 ⁇ m. In other words, this result indicates that the thickness of the reagent is improved to 75 mM or less, as shown in FIG. 5, which is a conventional example, when gelatin is not blended.
  • the CV value of the reagent part 10 formed by dropping 50 mM of lithium ferricyanide without gelatin was 20 ° C. / 0 or more.
  • the bar graph in Fig. 2 when gelatin is added at about 1.5 W / V%, it is possible to improve the CV value to about 5%, and to further reduce the gelatin to 2.OW It can be seen that the CV value stabilizes to about 2% when blended at / V% or more.
  • FIG. 3 is a graph showing the response performance of a glucose measuring biosensor having a reagent part 10 containing gelatin.
  • the vertical axis indicates the current value for detecting the amount of the mediator (potassium polyfluoride) consumed as an electron acceptor, and the horizontal axis indicates the concentration of glucose in the test sample.
  • each of the polygonal lines was composed of gelatin powder (0.00 W / V%), 0.50 WZV%, 1.O owzv%, 2.O OW / V
  • the graph shows the relationship between the glucose concentration and current value (sensor response performance) detected when the mixture was formulated with% or 2.75 V%. From Fig.
  • the relationship between the glucose concentration and the current value was found to be extremely high in the relationship between the glucose concentration and the current value by blending gelatin at about 2.0 W // ⁇ % or more. It is understood that it can be done.
  • the correlation coefficient (r) was 0.9931 when gelatin was not added, but improved to 0.939 when gelatin was added at 2.75 W / V%. It can be seen that the slope of the straight line is superior to that when gelatin is not blended.
  • the biosensor was formed on the surfaces of the electrodes 4 and 5 by applying 5 ⁇ l of a reagent solution containing 1.5 to 3.0 V% of gelatin and drying the mixture.
  • a biosensor having high sensor response performance and high sensor response reproducibility can be realized.
  • the amounts of the biopolymers, enzymes, reagents, and the like, the amounts supported on the sensor, the methods, and the like described in the above examples are merely examples, and the amounts and ratios of the biosensors of the present invention are not limited. It is not limited to the method and the method, but can be changed according to the purpose. Industrial applicability
  • the biosensor according to the present invention relates to a so-called electrode-type biosensor having a wide range of applications such as clinical examination, food, environment, and industrial production processes. Enables a simple measurement system that directly administers to the sensor.In addition, the thickness of the reagent section can be suppressed to accurately measure the sample, and the adhesion between the reagent section and the electrode surface can be improved. It became. As a result, the sensor response performance and the sensor response reliability are significantly improved, and a biosensor having higher reliability can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A biosensor which may be prepared by a method comprising compounding an additive containing a protein, which is a biopolymer, or a derivative thereof, an oxido-reductase and a mediator, to provide a solution, adding dropwise the solution onto a reagent portion (10) of the biosensor, and drying. A biosensor having such a constitution permits reducing the thickness of the reagent portion (10), which results in enhancing the close contact of the oxido-reductase and the mediator both supported on an upper portion of the reagent portion (10) with a surface of an electrode (4, 5), and thus in preventing the oxido-reductase and the mediator from flaking or falling off a surface of a detecting part (9). Further, since the aforementioned additive itself has no catalytic activity for oxidation-reduction, a determination specifically for a specimen is possible by using an enzymatic or chemical oxidation-reduction reaction. As a result of the above, the responding performance and the reproducibility of response of a biosensor has been markedly improved, which leads to the preparation of a biosensor with high reliability.

Description

明 細 書 バイオセンサ 技術分野  Description Biosensor Technical Field
本発明は、 いわゆる電極式のバイオセンサに関し、 特に、 検体試料中 の成分を特異的に定性あるいは定量する際の応答性及び再現性を向上さ せるために、 検体試料が投与される試薬部を改善したバイォセンサに関 するものである。 背景技術  The present invention relates to a so-called electrode-type biosensor, and particularly to a reagent section to which a sample sample is administered in order to improve responsiveness and reproducibility when specifically qualifying or quantifying components in the sample sample. It relates to an improved biosensor. Background art
近年、 バイオセンサの開発は、 検体試料を希釈することなく 、 直接, センサに投与する簡便な計測システムを可能にしている。 以下に、 従来 のバイオセンサ技術について、 グルコース測定を例に説明する。  In recent years, the development of biosensors has enabled a simple measurement system in which a sample is directly administered to the sensor without dilution. Hereinafter, the conventional biosensor technology will be described by taking glucose measurement as an example.
当初、 グルコースを測定する方法と しては、 グルコースを酸化する酵 素と してグルコースォキシダーゼ (以下、 「G O D j と略す。 ) と、 酸 素電極あるいは過酸化水素電極とを組み合わせたバイオセンサが開発さ れていた。 )8 — D—グルコースは、 G O Dと反応して δ —ダルコノ ラク トンを生成する際に、 酸素が電子受容体となって過酸化水素が生じる。, そこで、 上記バイオセンサは、 酵素反応での酸素消費量を酸素電極で測 定するか、 あるいは過酸化水素生成量を過酸化水素電極で測定するこ と で、 グルコースの測定を行っていた。  Initially, glucose was measured using a biosensor that combines glucose oxidase (hereinafter abbreviated as GOD j) as an enzyme that oxidizes glucose and an oxygen electrode or a hydrogen peroxide electrode. 8) D-Glucose reacts with GOD to produce δ-Dalconolactone, and oxygen becomes an electron acceptor to generate hydrogen peroxide. The sensor measures glucose by measuring oxygen consumption in an enzymatic reaction with an oxygen electrode or by measuring hydrogen peroxide production with a hydrogen peroxide electrode.
しかしながら、 上記グルコースを測定する方法では、 酸素電極あるい は過酸化水素電極による鴦極方式で測定した場合、 検体試料中に溶存す る酸素濃度に強く依存するため、 安定して測定することができなかった そこで、 この問題を解決するために上記グルコース測定は、 酵素反応 での酸素消費量、 あるいは過酸化水素生成量を測定するのではなく 、 酵 素反応自体を検知する酵素反応検知試薬 (以下、 「メデイエ一タ」 とい う。 ) を用いること と した。 その結果、 上記メデイエ一タを有するバイ ォセンサは、 溶存酸素に影饗されるこ となく検体試料のグルコ ースの検 出をよ り正確に測定することができるよ う になった。 However, in the above method of measuring glucose, when the measurement is performed by the oxygen electrode or hydrogen peroxide electrode according to the Yang pole method, it is strongly dependent on the concentration of oxygen dissolved in the test sample, so that stable measurement can be performed. Therefore, in order to solve this problem, the glucose measurement described above does not measure the amount of oxygen consumed in the enzymatic reaction or the amount of hydrogen peroxide produced, but an enzyme reaction detection reagent (the enzyme reaction detecting reagent) that detects the enzymatic reaction itself Hereafter, "media" U. ). As a result, the biosensor having the above-mentioned mediator can more accurately measure glucose detection in a sample without being affected by dissolved oxygen.
第 1図に、 メディェ一タを用いて作製した電極式バイオセンサの構成 図を示す。  FIG. 1 shows a configuration diagram of an electrode-type biosensor manufactured using a mediator.
ト.記バイオセンサは、 第 1 ( a ) 図に示すよ うに、 絶縁性基板 "! 上に 、 リー ド 2に接続する測定極 (作用極) 4、 及びリ ー ド 3 に接続する対 極 5 を有する電極系の検出部 9が形成されている。 また、 上記竃極系検 出部 9上には、 第 1 ( b ) 図に示すよ う に、 酸化還元酵素及びノディエ ータを配合した試薬部 1 0が形成されている。 検体試料の定性、 あるい ' は定量は、 上記試薬部 1 0に検体試料を投与し、 上記電極系検出部 9に よ り測定を行っている。 こ こで、 検体試料にグルコースを用いる場合、 上記酸化還元酵素と しては、 例えば G O Dが用いられ、 また、 上記メデ イエータ と しては、 例えばフェ リ シアン化カ リ ウムが用いられる。 なお 、 第 1 ( a ) 図中、 6は两電極 4 、 5の露出部面積を規定し、 かつ両電 極 4 、 5問と リ ー ド 2 、 3 の不要部を覆う絶縁層、 7 はスぺーサ、 8は カバーである。  G. As shown in Fig. 1 (a), the biosensor is composed of a measuring electrode (working electrode) 4 connected to lead 2 and a counter electrode connected to lead 3 on an insulating substrate "!" An electrode-based detection unit 9 having a number of 5 is formed, and an oxidoreductase and a nodator are compounded on the furnace-electrode detection unit 9 as shown in Fig. 1 (b). The qualitative or quantitative determination of the specimen sample is performed by administering the specimen sample to the reagent section 10 and performing measurement by the electrode system detecting section 9. Here, when glucose is used as the specimen sample, for example, GOD is used as the oxidoreductase, and, for example, potassium ferricyanide is used as the mediator. In Fig. 1 (a), 6 designates the exposed area of the negative electrodes 4 and 5, and both electrodes 4 and 5 And rie de 2, 3 insulating layer covering the unnecessary portion of, 7 Wasupesa, 8 denotes a cover.
つま り 、 上記バイオセンサは、 酵素反応の際に、 メデイエ一タのフエ リ シアン化力 リ ゥムが電子受容体となって消費されるので、 このフエ リ シアン化カ リ ウム消費量を検出部 9の電極 4 、 5 を通じてリー ド 2 、 3 から検出される電流値を測定することによ り 、 グルコースの測定を行う ものである。  In other words, the biosensor detects the consumption of potassium ferricyanide because the ferricyanidation beam of the mediator is consumed as an electron acceptor during the enzymatic reaction. Glucose is measured by measuring current values detected from leads 2 and 3 through electrodes 4 and 5 of unit 9.
と ころで、 上記構成のバイオセンサでは、 酸化還元酵素とメデイエ一 タを有した際に、 検出部 9を構成する電極 4 、 5 と試薬部 1 0 との密着 性、 及び試薬部 1 0 の均一溶解性がバイオセンサの性能に大きな影響を 与えている。 以下に、 上記バイオセンサにおいてメディエータ濃度とセ ンサ応答特性の関係について検討する。  In the biosensor having the above configuration, when the oxidoreductase and the mediator are provided, the adhesion between the electrodes 4 and 5 constituting the detection unit 9 and the reagent unit 10 and the reagent unit 10 Uniform solubility has a significant effect on biosensor performance. Hereinafter, the relationship between the mediator concentration and the sensor response characteristics in the above biosensor will be examined.
第 4図は、 上記構成によ り作製したダルコース測定用パイォセンサに おいて、 メディエータ濃度に依存したセンサ応答性能を示すグラフであ る。 縦軸は、 各濃度毎にメディエータ (フェ リ シアン化カ リ ウム) が電 子受容体となって消費される量を検出する電流値であり、 横軸は、 検体 試料であるグルコースの濃度を示す。 また、 第 5図は、 上記バイオセン ザにおいて、 メディエータ濃度に依存した試薬部厚とセンサ応答再現性 を示すグラフである。 縦軸の折れ線グラフは、 試薬部 1 0の厚みを示し 、 縦軸の棒グラフは、 センサ応答の再現性の指標となるセンサ応答の変 動係数 (以下、 「cv」 と略す。 ) を示す。 また、 横軸は、 メディエー タ (フェリ シアン化カ リ ウム) の濃度である。 FIG. 4 is a graph showing the sensor response performance depending on the mediator concentration in the dark-course measurement pyrosensor manufactured by the above configuration. You. The vertical axis is the current value for detecting the amount of mediator (ca. ferricyanide) consumed as an electron receptor for each concentration, and the horizontal axis is the concentration of glucose, which is the specimen sample. Show. FIG. 5 is a graph showing the reproducibility of the sensor response and the sensor response depending on the mediator concentration in the biosensor. The line graph on the vertical axis indicates the thickness of the reagent section 10, and the bar graph on the vertical axis indicates the coefficient of variation (hereinafter abbreviated as “cv”) of the sensor response as an index of the reproducibility of the sensor response. The horizontal axis is the concentration of the mediator (ca. ferricyanide).
上記バイオセンサにおいて、 試薬部 1 0は、 酸化還元酵素と して G O D、 メディエータと してフェ リ シアン化カ リ ウムを担持させるために、 これらの混合液の 5マイ ク ロ リ ッ トル (以下 】 と略す) を電極 4、 5 表面上に適下し、 乾燥させて形成した。  In the biosensor described above, the reagent section 10 is composed of 5 microliters (hereinafter referred to as “mixture”) of these mixed liquids in order to carry GOD as an oxidoreductase and potassium ferricyanide as a mediator. ] On electrodes 4 and 5 and dried.
まず、 第 4図は、 酸化還元酵素 (G OD) 濃度を 2 0 0ユニッ ト Zミ リ リ ッ トル (以下 UZm l と略す) に固定し、 メディエー夕 (フエ リ シ アン化カ リ ウム) 攮度を任意に増加させたとき、 検出されるグルコース 濃度との関係を示す。 第 4図よ り、 メディエータ濃度が 2 5 ミ リモルノ リ ッ トル (以下 mMと略す) では、 相関係数 ( r ) が 0. 9 8 3 1 であ るが、 メディエータ濃度を 1 5 O mMまで増加させると、 相関係数が 0 . 9 9 3 1 まで改善するこ とが分かる。 すなわち、 メディエータ濃度を 增加させると、 それに伴ってセンサの応答感度が增加し、 グルコース濃 度と電流値との直線相関性も改善されていく ことが分かる。  First, Fig. 4 shows that the oxidoreductase (GOD) concentration was fixed at 200 Units Z milliliters (hereinafter abbreviated as UZml), and the mediaease (calidium ferricyanide) was used. It shows the relationship with the detected glucose concentration when 攮 is arbitrarily increased. As can be seen from Fig. 4, when the mediator concentration is 25 milimolnoliter (hereinafter abbreviated as mM), the correlation coefficient (r) is 0.9831, but the mediator concentration is up to 15 OmM. It can be seen that the correlation coefficient improves to 0.9931 when increasing. That is, it can be seen that when the mediator concentration is increased, the response sensitivity of the sensor is increased, and the linear correlation between the glucose concentration and the current value is also improved.
しかしながら、 第 5図では、 メディエータ (フェ リ シアン化カ リ ウム ) 濃度を增加させると、 試薬部 1 0の厚みも増加することが分かる。 す なわち、 試薬部 1 0は、 隆起及び凸凹化が生じ、 その結果、 試薬部 1 0 と電極 4、 5 との密着性の低下をまねく こ と となる。 特に、 メディエー タ澳度が 5 0 mMを超えると この現象は顕著である (図中、 #を結ぶ折 れ線グラフ参照。 ) 。 また、 C V値は、 図中の棒グラフで示すよ うに、 メディエータ港度が 1 2 5 mM以下では 5〜 1 0 %程度と不安定である 。 さ らに、 第 4図で示したセンサ応答の直線相関性が良好なノディエ一 タ湣度 1 5 0 m Mでは、 C V値は 2 5 %近く まで增加し、 センサの信頼 性が非常に悪く なることが分かる。 However, in FIG. 5, it can be seen that increasing the concentration of the mediator (ca. ferricyanide) also increases the thickness of the reagent portion 10. That is, the reagent section 10 is raised and uneven, and as a result, the adhesion between the reagent section 10 and the electrodes 4 and 5 is reduced. This phenomenon is particularly remarkable when the mediator concentration exceeds 50 mM (see the line graph connecting # in the figure). Further, as shown by the bar graph in the figure, the CV value is unstable at about 5 to 10% when the mediator port is less than 125 mM. In addition, the good linear correlation of sensor response shown in Fig. 4 At a height of 150 mM, the CV value increases to nearly 25%, indicating that the reliability of the sensor becomes very poor.
以上のことから、 試薬部 1 0は、 メディエータ濃度を高濃度に配合し た場合、 センサ応答感度は良く なるものの、 該試薬部 1 0の隆起あるい は凸凹に伴う電極 4 、 5 との密着性の低下、 及び部分的溶解不良によつ て、 センサ性能を著しく低下させる という問題があった。  From the above, when the mediator concentration is high, the reagent response of the reagent part 10 improves the sensor response sensitivity, but the close contact of the reagent part 10 with the electrodes 4 and 5 due to the bumps or irregularities of the reagent part 10 There was a problem that the sensor performance was remarkably reduced due to the deterioration of the properties and partial dissolution.
さ らに、 試薬部 1 0そのものの密着性の不良化は、 センサの作製中や 、 取り扱い中、 あるいは保存期間中などに試薬部 1 0中の酸化還元酵素 、 及びメディエータが電極 4 、 5表面から剥離し、 適正化した試薬の担 持量に多大な誤差が生じ、 ひいてはセンサ応答特性を著しく 低減させて いた。  Furthermore, the poor adhesion of the reagent part 10 itself may be caused by the oxidoreductase and the mediator in the reagent part 10 and the surface of the electrodes 4 and 5 during the production, handling, and storage of the sensor. This caused a large error in the amount of reagent that had been optimized and the sensor response was significantly reduced.
そこで、 本発明は、 バイオセンサの応答性、 及び再現性をと もに安定 化させるために、 試薬部の隆起及び凸凹化を抑制し、 試薬部上に担持す る酸化還元酵素、 及びメディエータ と、 電極表面との密着性を高めるパ ィォセンサを提供することを目的とする。 発明の開示  Therefore, the present invention provides an oxidoreductase and a mediator that suppress the elevation and unevenness of the reagent portion and stabilize the response and reproducibility of the biosensor, and carry the reagent on the reagent portion. It is another object of the present invention to provide a biosensor that enhances adhesion to an electrode surface. Disclosure of the invention
本発明 (請求の範囲第 1項) に係るバイオセンサは、 絶縁性の基板上 に作用極及び対極を有する電極系の検出部が形成され、 この電極系検出 部上に酸化還元酵素及び酵素反応検知試薬を配合した試薬部が形成され て、 この試薬部に投与した検体試料の定性あるいは定量の検出を上記電 極系検出部によ り行うバイオセンサにおいて、 上記試薬部中に、 生体高 分子の蛋白質またはその誘導体を含む添加剤を有してなるこ とを特徴と するものである。  In the biosensor according to the present invention (claim 1), an electrode-based detection unit having a working electrode and a counter electrode is formed on an insulating substrate, and an oxidoreductase and an enzyme reaction are formed on the electrode-based detection unit. In a biosensor in which a reagent portion containing a detection reagent is formed and the qualitative or quantitative detection of a sample sample administered to the reagent portion is performed by the electrode-based detection portion, a biomolecule is contained in the reagent portion. Characterized by having an additive containing the protein or its derivative.
このよ うな構成のバイオセンサによれば、 上記試薬部中に、 生体高分 子の蛋白質またはその誘導体を含む添加剤を配合してなるので、 かかる 添加剤は、 凝集力が大きい高分子物質であるため、 試薬部中の酸化還元 酵素や酵素反応検知試薬 (メディエータ) を密着性よく担持させるこ と ができる。 したがって、 この添加剤の凝集作用によ り試薬部中のメディ エータ濃度に起因した隆起及び凸凹化を抑制し、 試薬部を担持する検出 部との密着性を高め、 検出部表面からの酸化還元酵素ゃメディエータの 剥離及び脱落を防止することができる。 その結果、 センサ応答性能及び センサ再現性能が非常に向上するという効果を有する。 According to the biosensor having such a configuration, an additive containing a biomolecular protein or a derivative thereof is blended in the reagent section. Therefore, such an additive is a polymer substance having a large cohesive force. Therefore, the redox enzyme and the enzyme reaction detection reagent (mediator) in the reagent section can be carried with good adhesion. Therefore, the media in the reagent part are caused by the coagulation action of this additive. It is possible to suppress bumps and bumps caused by the eta concentration, to enhance the adhesion to the detection section supporting the reagent section, and to prevent the oxidoreductase / mediator from peeling off and falling off from the detection section surface. As a result, there is an effect that the sensor response performance and the sensor reproduction performance are greatly improved.
この発明 (請求の範囲第 2項) は、 請求の範囲第 1項記載のバイオセ ンサにおいて、 上記添加剤に含む生体高分子の蛋白質またはその誘導体 は、 酸化還元的触媒能を有しないものであるこ とを特徵とするものであ る。  The invention (Claim 2) is the biosensor according to Claim 1, wherein the biopolymer protein or the derivative thereof contained in the additive does not have a redox catalytic activity. It is characterized by.
このよ うな構成のバイオセンサによれば、 上記添加剤に含む生体高分 子の蛋白質あるいはその誘導体と して、 酸化還元的触媒能を有しないも のを用いたので、 酵素的及び化学的な酸化還元反応によ り検体試料の不 特定成分との酸化還元反応を生じないよ うにするこ とができ、 したがつ て、 特定成分との反応に対応したセンサ応答のみを検出するこ とができ る。 その結果、 特異的に検体試料を測定するこ とが可能となった。  According to the biosensor having such a configuration, since a biopolymer protein or a derivative thereof having no redox catalytic activity is used as the protein or the derivative thereof contained in the additive, enzymatic and chemical The oxidation-reduction reaction can prevent the oxidation-reduction reaction with an unspecified component of the sample sample, so that only the sensor response corresponding to the reaction with the specified component can be detected. it can. As a result, it has become possible to specifically measure specimen samples.
この発明 (請求の範囲第 3項) は、 請求の範囲第 1項記載のバイオセ ンサにおいて、 上記添加剤と して、 ゼラチン、 コラーゲン、 エラスチン 、 カゼイン、 ペプトンも しく はこれらの誘導体、 またはこれらを任意に 組合わせた混合物が用いられることを特徴とするものである。  The invention (Claim 3) provides the biosensor according to Claim 1, wherein the additive is gelatin, collagen, elastin, casein, peptone, or a derivative thereof, or a combination thereof. It is characterized in that arbitrarily combined mixtures are used.
このよ うな構成のバイオセンサによれば、 添加剤と して、 種々の生体 高分子の蛋白質も しく はこれらの誘導体、 またはこれらを任意に組合わ せた混合物を用いたので、 かかる添加剤は、 凝集力が大きい高分子物質 であるため、 試薬部中の酸化還元酵素や酵素反応検知試薬 (ノディエ一 タ) を密着性よ く担持させることができ る。 したがって、 この添加剤の 凝集作用によ り試薬部中のメディエータ濃度に起因した隆起及び凸凹化 を抑制し、 試薬部を担持する検出部との密着性を高め、 検出部表面から の酸化還元酵素ゃメディエータの剥離及び脱落を防止するこ とができる 。 その結果、 センサ応答性能及びセンサ再現性能が非常に向上する とい う効果を有する。 図面の簡単な説明 According to the biosensor having such a configuration, various additives of a biopolymer, a derivative thereof, or a mixture obtained by arbitrarily combining these are used as additives. However, since it is a polymer substance having a large cohesive force, the oxidoreductase and the enzyme reaction detection reagent (nodifier) in the reagent section can be carried with good adhesion. Therefore, the agglomeration of this additive suppresses the bumps and bumps caused by the mediator concentration in the reagent part, increases the adhesion to the detection part carrying the reagent part, and increases the oxidoreductase from the detection part surface.剥離 It is possible to prevent peeling and falling off of the mediator. As a result, the sensor response performance and the sensor reproduction performance are greatly improved. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 電極式バイオセンサの構成を示す図であり 、 第 1 ( a ) 図 は、 該電極式バイオセンサの分解斜視図、 第 1 ( b ) 図は、 該電極式バ ィォセンサを構成する検出部の側面図である。  FIG. 1 is a diagram showing the configuration of an electrode-type biosensor. FIG. 1 (a) is an exploded perspective view of the electrode-type biosensor, and FIG. 1 (b) is a diagram showing the configuration of the electrode-type biosensor. FIG. 5 is a side view of a detecting unit that performs the detection.
第 2図は、 本発明の実施の形態による電極式バイオセンサにおける試 薬部中へのゼラチン配合による試薬部厚とセンサ応答再現性を示したグ ラフである。  FIG. 2 is a graph showing the reagent part thickness and the sensor response reproducibility due to the mixing of gelatin in the reagent part in the electrode type biosensor according to the embodiment of the present invention.
第 3図は、 上記発明の実施の形態による電極式バイオセンサにおける 試薬部中へのゼラチン配合によるセンサ応答直線相関性を示したグラフ である。  FIG. 3 is a graph showing the linear response of the electrode-type biosensor according to the embodiment of the present invention, in which the gelatin is blended in the reagent part.
第 4図は、 従来の電極式バイオセンサにおけるメデイエ一タ濃度に依 存したセンサ応答性能を示したダラフである。  FIG. 4 is a graph showing the sensor response performance depending on the mediator concentration in a conventional electrode type biosensor.
第 5図は、 従来の電極式バイォセンサにおけるメディエータ濃度に依 存した試薬部厚とセンサ応答再現性を示したグラフである。 発明を実施するための最良の形態  FIG. 5 is a graph showing the reproducibility of the sensor response and the thickness of the reagent depending on the mediator concentration in a conventional electrode-type biosensor. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の形態について第 1 図を用いて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to FIG.
実施の形態 Embodiment
本発明の実施の形態に係るバイオセンサは、 第 1 図に示すよ うに、 従 来の技術の櫚で説明した場合とほぼ同様の構成を備えるが、 その試薬部 1 0 巾に、 生体高分子の蛋白質またはその誘導体を含む添加剤を有して なるものである。  As shown in FIG. 1, the biosensor according to the embodiment of the present invention has substantially the same configuration as that described in the related art, but the biomolecule is added to the width of the reagent part 10. And an additive containing the protein or its derivative.
上記添加剤に含む生体高分子の蛋白質またはその誘導体と して、 好ま しく は酸化還元的触媒能を有しないものが使用され、 例えば、 ゼラチン 、 コラーゲン、 エラスチン、 カゼイン、 ペプ トンも しく はこれらの誘導 体、 またはこれらを任意に組合わせた混合物が用いられる。  As the biopolymer protein or a derivative thereof contained in the above-mentioned additive, one having no redox catalytic activity is preferably used, for example, gelatin, collagen, elastin, casein, peptone, or any of these. A derivative or a mixture of any of these is used.
また、 試薬部中に含まれる酸化還元酵素と しては、 例えば、 ダルコ一 スォキシダーゼ (G O D ) 、 コ レステロールォキシダーゼ、 乳酸ォキシ ダーゼ、 ゥ リ カ一ゼ、 ガラク トースォキシダーゼ、 アルコールォキシダ ーゼ、 コ リ ンォキシダ一ゼ、 ァスコルビン酸ォキシダーゼ、 グルコース デヒ ドロゲナーゼ、 コ レステロールデヒ ドロゲナーゼ、 アルコールデヒ ドロゲナ一ゼ等が用いられる。 Examples of the oxidoreductase contained in the reagent section include dalcosoxidase (GOD), cholesterol oxidase, lactate oxidase, pericasidase, galactose oxidase, and alcohol oxidase. Examples of the enzyme include choline, cholineoxidase, ascorbate oxidase, glucose dehydrogenase, cholesterol dehydrogenase, and alcohol dehydrogenase.
また、 試薬部中に含まれるメディエータ と しては、 有機的あるいは無 機的な化合物の電子受容体が用いられ、 例えば、 フェ リ シアン化力 リ ウ ム等の金属シァノ錯体、 ベンゾキノ ン等のキノ ン誘導体、 フヱロセン、 またはフエ口セン誘導体などが用いられる。  As the mediator contained in the reagent part, an electron acceptor of an organic or inorganic compound is used, for example, metal cyano complex such as lithium ferricyanide, benzoquinone, etc. A quinone derivative, a chlorocene derivative, or a fluorene derivative may be used.
上記構成のバイオセンサは、 例えば以下のよ うにして作製される。 まず、 ポリ エチレンテ レフ タ レー ト製の絶縁性基板 1上にスク リーン 印刷によ り 、 銀ペース トを印刷し、 リー ド 2 、 3を形成する。 次に、 導 電性カーボンペース トを印刷することによ り上記のリー ド 2 、 3上に測 定極 (作用極) 4 と対極 5 とからなる電極系検出部 9 を形成する。 さ ら に、 両電極 4 、 5の露出部面積を規定し、 かつ両電極 4 、 5間と リー ド 2 、 3 の不要部を覆うために絶縁性ペース トを印刷し、 絶縁層 6 を形成 する。 そ して、 上記の肉電極 4 、 5上に添加剤、 酸化還元酵素、 及びメ ディエータを含む溶液を適下し、 担持した後、 乾燥するこ とによ り試薬 部 1 0を形成する。 最後にカバー 8及びスぺーサ 7を第 1 図中、 一点鎖 線で示す位置関係に接着することで電極式バイオセンサが作製される。 次に、 上記バイオセンサの動作について説明する。  The biosensor having the above configuration is manufactured, for example, as follows. First, silver paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2 and 3. Next, an electrode system detecting section 9 including a measuring electrode (working electrode) 4 and a counter electrode 5 is formed on the leads 2 and 3 by printing a conductive carbon paste. In addition, an insulating paste is printed to define the exposed area of the electrodes 4 and 5 and to cover the unnecessary portions of the leads 2 and 3 between the electrodes 4 and 5 to form the insulating layer 6. I do. Then, a solution containing an additive, an oxidoreductase, and a mediator is appropriately dropped on the above-mentioned meat electrodes 4, 5, carried, and then dried to form a reagent part 10. Finally, the electrode type biosensor is manufactured by bonding the cover 8 and the spacer 7 in the positional relationship indicated by the dashed line in FIG. Next, the operation of the biosensor will be described.
まず、 検体試料は、 検出部 9上に担持させた試薬部 1 0に直接投与す る。 する と、 検体試料中の成分は、 試薬部 1 0に含む酸化還元酵素と酵 素反応し、 酵素が還元型になる。 次にこの還元型酵素とメディエータが 反応し、 酵素は再び酸化されて、 メディエータは還元型を呈する。 この 還元型のメディエータに電圧を印加することで、 メデイエ一タは、 再度 酸化される と同時に電子を放出する。 この放出された電子を電極 4 、 5 から電流値と して測定することによ り、 検体試料中の成分を特異的に定 性あるいは定量することができる。  First, a sample is directly administered to the reagent section 10 carried on the detection section 9. Then, the components in the specimen sample undergo an enzymatic reaction with the oxidoreductase contained in the reagent section 10, and the enzyme becomes a reduced form. Next, the reduced enzyme reacts with the mediator, the enzyme is oxidized again, and the mediator takes on a reduced form. By applying a voltage to this reduced mediator, the mediator emits electrons at the same time as it is oxidized again. By measuring the emitted electrons as current values from the electrodes 4 and 5, the components in the sample can be specifically qualitatively or quantitatively determined.
本実施の形態によるバイオセンサの試薬部 1 0中には、 生体高分子の 蛋白質またはその誘導体を含む添加剤を配合してなり 、 かかる添加剤は 8 The reagent portion 10 of the biosensor according to the present embodiment contains an additive containing a biopolymer protein or a derivative thereof. 8
、 凝集力が大きい高分子物質であるため、 試薬部 1 0 中の酸化還元酵素 ゃメディエータを密着性よく担持させることができる。 したがって、 本 実施の形態によるバイオセンサによれば、 試薬部 1 0中に、 生体高分子 の蛋白質あるいはその誘導体を含む添加剤を配合するので、 この添加剤 の凝集作用によ り試薬部 1 0の隆起及び凸凹化を抑制し、 試薬部 1 0を 担持する電極 4、 5表面との密着性を高め、 電極 4、 5表面からの酸化 還元酵素ゃメディェ一タの剥離及び脱落を防止するこ とができる。 その 結果、 上記バイオセンサは、 センサ応答性能及びセンサ再現性能が非常 に向上するという効果を有する。 Since it is a polymer substance having a large cohesive force, the oxidoreductase in the reagent part 10 can be loaded with good adhesion to the mediator. Therefore, according to the biosensor according to the present embodiment, an additive containing a biopolymer protein or a derivative thereof is blended in the reagent portion 10, and the reagent portion 10 is agglutinated by the additive. Of the oxidoreductase from the surfaces of the electrodes 4 and 5 to prevent exfoliation and falling off of the mediator. Can be. As a result, the biosensor has an effect that the sensor response performance and the sensor reproduction performance are significantly improved.
また、 本実施の形態のバイオセンサと して、 上記添加剤に含む生体高 分子物質の蛋白質あるいはその誘導体が、 酸化還元的触媒能を有しない ものを用いるこ とによ り 、 酵素的及び化学的な酸化還元反応によ り検体 試料の不特定成分との酸化還元反応を生じないよ うにすることができ、 特定成分との反応に対応したセンサ応答のみを検出するこ とができる。 その結果、 上記バイオセンサは、 特異的に検体試料を測定するこ とがで きるという効果を有する。  In addition, as the biosensor of the present embodiment, a protein or a derivative of a biomolecular substance contained in the above additive that does not have a redox catalytic activity is used, so that enzymatic and chemical It is possible to prevent an oxidation-reduction reaction with an unspecified component of the sample sample from occurring by a typical oxidation-reduction reaction, and it is possible to detect only a sensor response corresponding to the reaction with the specified component. As a result, the biosensor has an effect of being able to specifically measure a specimen sample.
次に、 実施例について第 1図から第 3図を用いて説明する。  Next, an embodiment will be described with reference to FIGS.
( ^ ) 試薬部の調製  (^) Preparation of reagent part
第 1 図に示す電極 4、 5上に担持する試薬部 1 0は、 酸化還元酵素と して G O Dを 2 0 0 Uノ m l 、 及びメディエータ と してフェ リ シアン化 カ リ ウムを 1 5 0 xn Mとする溶液に、 添加剤と してゼラチンを 0〜 3 W ノ V %の種々の割合で配合し、 この混合液の 5 μ 1 を電極 4、 5表面に 適下し、 乾燥させて形成した。 そして、 本実施例では、 0〜 3 ¥ 0/0 の種々の割合でゼラチンを gd合した試薬部 1 0を備えた複数個のバイオ センサを作製して用いた。 The reagent part 10 supported on the electrodes 4 and 5 shown in FIG. 1 has a GOD of 200 U ml as an oxidoreductase and a ferrocyanide as a mediator 150 xn M was mixed with gelatin as an additive at various ratios of 0 to 3 W / V%, and 5 μl of this mixture was applied to the surfaces of electrodes 4 and 5 and dried. Formed. In the present embodiment, it was used to prepare a plurality of biosensor having a reagent portion 1 0 engaged gd gelatin in various ratios of 0 to 3 ¥ 0/0.
( 2 ) 試薬部厚、 センサ応答再現性  (2) Reagent thickness, sensor response reproducibility
第 2図は、 ゼラチン配合の試薬部 1 0を有したグルコース測定用バイ ォセンサの試薬部 1 0 の厚みと、 センサ応答再現性とを示したグラフで ある。 縦軸の折れ線グラフは、 試薬部 1 0の厚みであり 、 縦軸の棒グラ フは、 センサ応答の再現性の指標となるセンサ応答の変動係数 (以下、FIG. 2 is a graph showing the thickness of the reagent section 10 of the glucose measuring biosensor having the reagent section 10 containing gelatin and the sensor response reproducibility. The line graph on the vertical axis shows the thickness of the reagent section 10 and the bar graph on the vertical axis. Is the coefficient of variation of the sensor response (hereinafter referred to as the index of reproducibility of the sensor response).
「cv」 と略す。 ) を示す。 また、 横軸は、 添加剤 (ゼラチン) の濃度 である。 Abbreviated as "cv". ). The horizontal axis is the concentration of the additive (gelatin).
第 2図よ り 試薬部 1 0の厚みは、 図中の折れ線グラフよ り明らかなよ うに、 試薬部 1 0に配合したゼラチン濃度に依存している。 その特性は 、 ゼラチン濃度が増えるに従い試薬部 1 0の厚みが低下していく。 すな わち、 試薬部 1 0は、 ゼラチン濃度が高いほど隆起が抑制され、 凸凹化 も軽減されることが分かる。  2, the thickness of the reagent part 10 depends on the concentration of gelatin mixed in the reagent part 10, as is evident from the line graph in the figure. The characteristic is that the thickness of the reagent portion 10 decreases as the gelatin concentration increases. In other words, it can be seen that in the reagent portion 10, the higher the gelatin concentration, the more the elevation is suppressed and the unevenness is reduced.
さ らに、 試薬部厚に関して、 1 5 O mMのフェ リ シアン化カ リ ゥムを 適下して形成した試薬部 1 0は、 ゼラチン未配合時では、 試薬部厚が約 5 4 0 μ ΐη程度であるが、 ゼラチンを約 0. 2 5 WZVD/0配合すると、 試薬部厚が約 2 6 0 μ m程度まで抑制されるこ とが分かる。 つま り この 結果は、 従来の実施例である第 5図よ り、 ゼラチン未配合時のフエリ シ アン化カ リ ゥム 7 5 mM以下の試薬部厚まで改善されたこと となる。 Further, regarding the reagent part thickness, the reagent part 10 formed by appropriately applying 15 O mM of potassium ferricyanide has a reagent part thickness of about 540 μm without gelatin. Although it is about ΐη, it can be seen that when gelatin is added at about 0.25 WZV D / 0 , the reagent thickness is suppressed to about 260 μm. In other words, this result indicates that the thickness of the reagent is improved to 75 mM or less, as shown in FIG. 5, which is a conventional example, when gelatin is not blended.
また、 C V値 (%) に関しては、 第 5図よ り、 ゼラチン未配合時のフ ェ リ シアン化力 リ ウム 1 50 mMを滴下して形成した試薬部 1 0では、 C V値が 2 0 °/0以上であった。 しかし、 第 2図中の棒グラフよ りゼラチ ンを約 1. 5 W/ V %程度配合すると、 C V値が 5 %程度まで改善する こ とが可能とな り、 さ らにゼラチンを 2. OW/V%以上配合すると、 C V値が 2 %程度まで安定化することが分かる。 Regarding the CV value (%), as shown in Fig. 5, the CV value of the reagent part 10 formed by dropping 50 mM of lithium ferricyanide without gelatin was 20 ° C. / 0 or more. However, according to the bar graph in Fig. 2, when gelatin is added at about 1.5 W / V%, it is possible to improve the CV value to about 5%, and to further reduce the gelatin to 2.OW It can be seen that the CV value stabilizes to about 2% when blended at / V% or more.
( 3 ) センサ応答性能  (3) Sensor response performance
第 3図は、 ゼラチン配合の試薬部 1 0を有したグルコース測定用バイ ォセンサの応答性能を示したグラフである。 縦軸は、 メディエータ (フ ヱ リ シアン化カ リ ウム) が電子受容体となって消費される量を検出する 電流値であり 、 横軸は、 検体試料であろグルコースの濃度である。 また 、 各折れ線ダラフは、 第 2図において、 試薬部 1 0に、 ゼラチン末配合 (0. 00 W / V % ) 、 0. 50WZV%配合、 1. o owzv%配合 、 2. O OW/V%配合、 または 2. 7 5 V%配合したときに検出 されるグルコース濃度と電流値との関係 (センサ応答性能) を示す。 第 3図よ り グルコース濃度と電流値との関係は、 ゼラチンを 2 . 0 W // ν %程度以上配合することによ り、 グルコース濃度と電流値との問に 極めて高い直線相関性が得られることが分かる。 相関係数 ( r ) は、 ゼ ラチン未配合時では、 0 . 9 9 3 1であるが、 ゼラチン 2 . 7 5 W / V %配合時では、 相関係数が 0 · 9 3 9 6まで改善するこ とが可能となり . 、 さ らに直線の傾き もゼラチン未配合時に比べて、 優位に向 ヒするこ と が分かる。 FIG. 3 is a graph showing the response performance of a glucose measuring biosensor having a reagent part 10 containing gelatin. The vertical axis indicates the current value for detecting the amount of the mediator (potassium polyfluoride) consumed as an electron acceptor, and the horizontal axis indicates the concentration of glucose in the test sample. In FIG. 2, each of the polygonal lines was composed of gelatin powder (0.00 W / V%), 0.50 WZV%, 1.O owzv%, 2.O OW / V The graph shows the relationship between the glucose concentration and current value (sensor response performance) detected when the mixture was formulated with% or 2.75 V%. From Fig. 3, the relationship between the glucose concentration and the current value was found to be extremely high in the relationship between the glucose concentration and the current value by blending gelatin at about 2.0 W // ν% or more. It is understood that it can be done. The correlation coefficient (r) was 0.9931 when gelatin was not added, but improved to 0.939 when gelatin was added at 2.75 W / V%. It can be seen that the slope of the straight line is superior to that when gelatin is not blended.
なお、 ゼラチン自身に酸化還元的触媒活性が存在しないのは、 周知の 事実であり、 第 3図で示した電流値の增加についても、 電極 4 、 5 と試 薬部 1 0 との密着性の改善に起因するものであることは明らかである。  It is a well-known fact that there is no redox catalytic activity in gelatin itself, and the increase in the current value shown in Fig. 3 also indicates that the adhesion between the electrodes 4 and 5 and the reagent section 10 is poor. Clearly, this is due to the improvement.
以上の実施例から、 上記バイオセンサは、 電極 4 、 5表面上に、 1 . 5 〜 3 . 0 V %のゼラチンを配合した試薬部用溶液を 5 μ 1 適下し 、 乾燥して形成した試薬部 1 0を適用することで、 センサ応答性能及び センサ応答再現性の高いバイォセンサが実現可能となる。  From the above examples, the biosensor was formed on the surfaces of the electrodes 4 and 5 by applying 5 μl of a reagent solution containing 1.5 to 3.0 V% of gelatin and drying the mixture. By applying the reagent section 10, a biosensor having high sensor response performance and high sensor response reproducibility can be realized.
なお、 上記の実施例に示した生体高分子物質や酵素、 また、 試薬等の 配合量、 センサへの担持量及び方法などは一例であり 、 本発明のバイオ センサは、 その配合の量、 比率及び方法などに限定するものではなく 、 目的に応じて変更可能である。 産業上の利用可能性  It should be noted that the amounts of the biopolymers, enzymes, reagents, and the like, the amounts supported on the sensor, the methods, and the like described in the above examples are merely examples, and the amounts and ratios of the biosensors of the present invention are not limited. It is not limited to the method and the method, but can be changed according to the purpose. Industrial applicability
以上のよ う に本発明に係るバイオセンサは、 臨床検査、 食品、 環境、 工業生産プロセスなどの広範な用途をもつ、 いわゆる電極式のバイオセ ンサに関し、 該電極式バイオセンサは、 検体試料を、 直接センサに投与 する簡便な計測システムを可能にし、 さ らに、 検体試料を精度よく測定 するために試薬部の厚みを抑制し、 試薬部と電極表面との密着性を高め るこ とが可能となった。 これにより 、 センサ応答性能、 及びセンサ応答 冉現性が非常に向上し、 より高い信頼性を有するバイオセンサを実現す ることができる。  As described above, the biosensor according to the present invention relates to a so-called electrode-type biosensor having a wide range of applications such as clinical examination, food, environment, and industrial production processes. Enables a simple measurement system that directly administers to the sensor.In addition, the thickness of the reagent section can be suppressed to accurately measure the sample, and the adhesion between the reagent section and the electrode surface can be improved. It became. As a result, the sensor response performance and the sensor response reliability are significantly improved, and a biosensor having higher reliability can be realized.

Claims

請求の範囲 The scope of the claims
1 . 絶縁性の基板上に作用極及び対極を有する電極系の検出部が形成 され、 この電極系検出部上に酸化還元酵素及び酵素反応検知試薬を配合 した試薬部が形成されて、 この試薬部に投与した検体試料の定性あるい は定量の検出を上記電極系検出部によ り行うバイオセンサにおいて、 上記試薬部中に、 生体高分子の蛋白質またはその誘導体を含む添加剤 を有してなることを特徴とするバイォセンサ。  1. An electrode-based detection section having a working electrode and a counter electrode is formed on an insulating substrate, and a reagent section containing an oxidoreductase and an enzyme reaction detection reagent is formed on the electrode-based detection section. In the biosensor, wherein the qualitative or quantitative detection of a sample sample administered to the biopsy section is performed by the electrode-based detection section, the reagent section contains an additive containing a biopolymer protein or a derivative thereof. A biosensor characterized in that:
2 - 請求の範囲第 1項記載のバイオセンサにおいて、  2-The biosensor according to claim 1, wherein
上記添加剤に含む生体高分子の蛋白質またはその誘導体は、 酸化還元 的触媒能を有しないものであることを特徴とするバイ才センサ。  A biyear-old sensor, wherein the biopolymer protein or the derivative thereof contained in the additive does not have a redox catalytic activity.
3 . 請求の範囲第 1項記載のバイオセンサにおいて、  3. In the biosensor according to claim 1,
上記添加剤と して、 ゼラチン、 コラーゲン、 エラスチン、 カゼイン、 ペプ トンもしく はこれらの誘導体、 またはこれらを任意に組合わせた混 合物が用いられることを特徴とするバイオセンサ。  A biosensor characterized in that gelatin, collagen, elastin, casein, peptone, a derivative thereof, or a mixture thereof is used as the additive.
PCT/JP1999/004065 1998-07-30 1999-07-29 Biosensor WO2000007003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10216186A JP2000046782A (en) 1998-07-30 1998-07-30 Biosensor
JP10/216186 1998-07-30

Publications (1)

Publication Number Publication Date
WO2000007003A1 true WO2000007003A1 (en) 2000-02-10

Family

ID=16684646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004065 WO2000007003A1 (en) 1998-07-30 1999-07-29 Biosensor

Country Status (3)

Country Link
JP (1) JP2000046782A (en)
CN (1) CN1274421A (en)
WO (1) WO2000007003A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913355B2 (en) * 2005-03-29 2012-04-11 シーシーアイ株式会社 Biosensor
KR100829400B1 (en) * 2006-11-30 2008-05-15 주식회사 인포피아 Bio-sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304329A (en) * 1996-03-12 1997-11-28 Matsushita Electric Ind Co Ltd Biosensor and substrate determination method using it
JPH10104192A (en) * 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304329A (en) * 1996-03-12 1997-11-28 Matsushita Electric Ind Co Ltd Biosensor and substrate determination method using it
JPH10104192A (en) * 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd Biosensor

Also Published As

Publication number Publication date
CN1274421A (en) 2000-11-22
JP2000046782A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US10067082B2 (en) Biosensor for determining an analyte concentration
US9546974B2 (en) Concentration determination in a diffusion barrier layer
US5922188A (en) Biosensor and method for quantitating biochemical substrate using the same
EP0636879B1 (en) Method for producing a biosensor
EP1398386B1 (en) Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
JP3267936B2 (en) Biosensor
US7862696B2 (en) Biosensor system having enhanced stability and hematocrit performance
KR101503072B1 (en) Gated amperometry
JP3375040B2 (en) Substrate quantification method
JP2003518249A (en) Amperometric biosensor test strip
US6214612B1 (en) Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator
JPH09500727A (en) Potentiometric biosensor and method of using the same
JP3267933B2 (en) Substrate quantification method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JPH10113200A (en) Enzyme electrode
JPH11344461A (en) Biosensor
WO2000007003A1 (en) Biosensor
JP2000081408A (en) Biosensor
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JP3115167B2 (en) Biosensor
JP3297341B2 (en) Biosensor
JP2004156989A (en) Biosensor
JPH10282037A (en) Method for determining substrate in organism constituent
Taniike et al. Biosensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801245.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

WWE Wipo information: entry into national phase

Ref document number: 09509459

Country of ref document: US