WO2000003266A1 - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
WO2000003266A1
WO2000003266A1 PCT/JP1998/003086 JP9803086W WO0003266A1 WO 2000003266 A1 WO2000003266 A1 WO 2000003266A1 JP 9803086 W JP9803086 W JP 9803086W WO 0003266 A1 WO0003266 A1 WO 0003266A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
semiconductor element
semiconductor
substrate
detecting apparatus
Prior art date
Application number
PCT/JP1998/003086
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Ikegami
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1998/003086 priority Critical patent/WO2000003266A1/en
Publication of WO2000003266A1 publication Critical patent/WO2000003266A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like

Definitions

  • the present invention relates to a radiation detector used for a gas monitor for measuring the concentration of a radioactive rare gas in a nuclear power plant or the like.
  • Landscape technology used for a radiation detector used for a gas monitor for measuring the concentration of a radioactive rare gas in a nuclear power plant or the like.
  • FIG. 8 is a cross-sectional view showing an ionization chamber which is a conventional radiation detection apparatus shown on page 148 of Glenn F. Kno11 Radiation Measurement Handbook Second Edition (Nikkan Kogyo Shimbun), page 148.
  • 1 1 is a center electrode
  • 1 2 is an outer electrode
  • 13 is an ammeter for measuring the ionization current flowing between the center electrode 11 and the outer electrode
  • 14 is a current meter from the outer electrode 12.
  • a protection ring 15 for preventing leakage current is an insulator for insulating the electrodes 11, 12, and 13 respectively.
  • the radiation incident on the ionization chamber generates an electron-ion pair, and the electrons flow to the ammeter 13 by moving the electrons to the positively applied center electrode 11 and the ions to the outer electrode 12. By measuring this current, the intensity of the incident radiation is detected.
  • a voltage V is applied between the protective ring 14 and the outer electrode to prevent leakage current.
  • Each of the electrodes 11, 12, 13 is insulated by an insulator 15.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radiation detection device that can achieve low cost, small size, high performance, and long life.
  • Disclosure of the invention has a semiconductor device that outputs a current pulse when irradiated with radiation, and a substrate that fixes at least one semiconductor device to the plate surface.
  • the substrate on which the semiconductor element is fixed is a polygonal pillar-shaped substrate, and the semiconductor element is fixed on each plate surface.
  • CdTe or CdZnTe compound semiconductor is used as the semiconductor element.
  • the semiconductor element is housed in an environmentally resistant cylindrical container.
  • the semiconductor elements are stacked in two layers, and the sum of the currents flowing through the respective semiconductor elements is measured to detect radiation.
  • FIG. 1 is a perspective view showing a radiation detecting apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a radiation detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 3 is a front view showing a radiation detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a perspective view showing a radiation detecting apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a perspective view showing a radiation detecting apparatus according to Embodiment 4 of the present invention.
  • FIG. 6 is a block diagram showing a radiation detecting apparatus according to Embodiment 5 of the present invention.
  • FIG. 7 is a block diagram showing a radiation detecting apparatus according to Embodiment 6 of the present invention.
  • FIG. 8 is a cross-sectional view showing a conventional radiation detector. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view of the radiation detecting apparatus according to the first embodiment.
  • reference numeral 1 denotes a semiconductor element that outputs a current pulse by an applied charge (not shown) when radiation is irradiated
  • 2 denotes a semiconductor element.
  • This is a substrate for fixing the semiconductor element 1 and connecting a plurality of the semiconductor elements.
  • the semiconductor element 1 when radiation enters the semiconductor crystal, holes and electrons are generated by the interaction with the starting electrons of the semiconductor substance, and if an electric field is applied, a pulse-like electric conduction is generated. Occurs and outputs a current pulse that is an electric signal corresponding to the incident radiation.
  • the case where the semiconductor element 1 is fixed by the substrate 2 has been described.
  • a triangular prism substrate 2-1 is provided, and three surfaces of the substrate 2-1 are provided.
  • the case where the semiconductor element 1 is fixed by the one-plane substrate 2 has been described.
  • a quadrangular prism substrate 2-2 is provided.
  • the same effect can be obtained even if the substrate is a polygonal prism having four or more prisms.
  • the semiconductor element 1 is fixed to the triangular prism substrate 2-1 and is exposed to the outside.
  • the triangular prism substrate 2-1 By installing the triangular prism substrate 2-1 on which the semiconductor element 1 is fixed in a cylindrical environment-resistant container 3, detection can be performed without directly exposing the semiconductor element to high temperatures even in a bad environment such as a high temperature in a nuclear power plant. The device can be used while maintaining sensitivity.
  • Embodiment 5 In the first embodiment, the case where the semiconductor element 1 is fixed to the substrate 2 and the radiation is detected by detecting a current pulse has been described. However, as shown in FIG.
  • a microammeter 4 was connected between the negative electrode 1-2 and the positive electrodes 1-3 to measure the minute current flowing through the semiconductor element 1 in response to the incident radiation and detect the radiation. As compared to detecting radiation by measuring current with current pulses, the measuring means can be simplified and the cost of the apparatus can be reduced.
  • the fifth embodiment has described the case where there is only one semiconductor element, as shown in FIG. 7, the positive electrodes of the two semiconductor elements 1 are laminated in two layers by combining the positive electrodes. 3 and the negative electrodes are negative electrodes 1-2. Then, the positive electrodes 113 are connected to the microammeter 4 at the positive terminal, and the negative electrodes 112 are commonly connected to the negative terminal of the microammeter 4. As a result, the sum of the minute currents from the respective semiconductor elements 1 flows in the minute ammeter 4 corresponding to the incident radiation, so that the radiation detection sensitivity is improved and the cost of the apparatus can be reduced as in the fifth embodiment. . Industrial applicability

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

A radiation detector made by fixing a plurality of semiconductor elements (1) for outputting current pulses when irradiated with a radiation on a substrate (2).

Description

明細書 放射線検出装置 技術分野  Description Radiation detection device Technical field
この発明は、 原子力プラント等において放射性の希ガスの濃度を測定するガス モニタ一に使用する放射線検出装置に関するものである。 景技術  The present invention relates to a radiation detector used for a gas monitor for measuring the concentration of a radioactive rare gas in a nuclear power plant or the like. Landscape technology
図 8は例えば、 G l e n n F . K n o 1 1放射線計測ハンドブック第 2版 ( 日刊工業新聞社) 1 4 8頁に示された従来の放射線検出装置である電離箱を示す 断面図であり、 図において、 1 1は中心電極、 1 2は外側電極、 1 3は中心電極 1 1と外側電極 1 2との間を流れる電離電流を測るための電流計、 1 4は外側電 極 1 2よりの漏洩電流を防止するための保護環、 1 5はそれそれの電極 1 1, 1 2, 1 3を絶縁するための絶縁物である。  For example, FIG. 8 is a cross-sectional view showing an ionization chamber which is a conventional radiation detection apparatus shown on page 148 of Glenn F. Kno11 Radiation Measurement Handbook Second Edition (Nikkan Kogyo Shimbun), page 148. , 1 1 is a center electrode, 1 2 is an outer electrode, 13 is an ammeter for measuring the ionization current flowing between the center electrode 11 and the outer electrode 12, and 14 is a current meter from the outer electrode 12. A protection ring 15 for preventing leakage current is an insulator for insulating the electrodes 11, 12, and 13 respectively.
次に従来装置の動作について説明する。 電離箱に入射した放射線により電子一 イオンペアが生成され、 電子は正に印加された中心電極 1 1に、 イオンは外側電 極 1 2に移動することで電流計 1 3に電流が流れる。 この電流を計測することに より入射放射線の強度を検出する。  Next, the operation of the conventional device will be described. The radiation incident on the ionization chamber generates an electron-ion pair, and the electrons flow to the ammeter 13 by moving the electrons to the positively applied center electrode 11 and the ions to the outer electrode 12. By measuring this current, the intensity of the incident radiation is detected.
また測定精度を向上させるため、 漏洩電流を防ぐ目的で保護環 1 4と外側電極 間に電圧 Vをかけている。 それそれの電極 1 1 , 1 2 , 1 3は絶縁物 1 5により 絶縁されている。  To improve the measurement accuracy, a voltage V is applied between the protective ring 14 and the outer electrode to prevent leakage current. Each of the electrodes 11, 12, 13 is insulated by an insulator 15.
従来の放射線検出装置には電離箱を用いて以上のように構成されているので、 製造コストが高い、 検出器の体積が大きくなる、 測定レンジが狭い、 電離ガスの 劣化によるイオン対の発生低下等が起因して寿命が短いなどの問題点があった。 この発明は上記のような課題を解決するためになされたものであり、 低コスト 化、 小型化、 高性能化、 長寿命化が計れる放射線検出装置を得ることを目的とす る。  Conventional radiation detectors are configured as described above using an ionization chamber, so they are expensive to manufacture, have a large detector volume, have a narrow measurement range, and reduce the generation of ion pairs due to deterioration of ionized gas. For example, there is a problem that the life is short. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radiation detection device that can achieve low cost, small size, high performance, and long life.
発明の開示 1 . 放射線が照射されると電流パルスを出力する半導体素子と、 半導体素子を少 なくとも 1個板面に固定する基板とを備えたものである。 Disclosure of the invention 1. It has a semiconductor device that outputs a current pulse when irradiated with radiation, and a substrate that fixes at least one semiconductor device to the plate surface.
2 . 半導体素子を固定する基板を多角柱形状の基板とし、 各板面に前記半導体素 子を固定するものである。  2. The substrate on which the semiconductor element is fixed is a polygonal pillar-shaped substrate, and the semiconductor element is fixed on each plate surface.
3 . 半導体素子として、 C d T eもしくは C d Z n T eの化合物半導体を用いた ものである。  3. CdTe or CdZnTe compound semiconductor is used as the semiconductor element.
4 . 半導体素子を耐環境性の筒状の容器に収納したものである。  4. The semiconductor element is housed in an environmentally resistant cylindrical container.
5 . 放射線の入射により半導体に流れる電流を計測して放射線を検出するもので ある。  5. It detects the radiation by measuring the current flowing through the semiconductor due to the incident radiation.
6 . 半導体素子を 2重に積層し、 前記各半導体素子に流れる電流の和を計測して 放射線を検出するものである。 図面の簡単な説明  6. The semiconductor elements are stacked in two layers, and the sum of the currents flowing through the respective semiconductor elements is measured to detect radiation. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の実施の形態 1に係る放射線検出装置を示す斜視図である。 図 2はこの発明の実施の形態 2に係る放射線検出装置を示す斜視図である。 図 3はこの発明の実施の形態 2に係る放射線検出装置を示す正面図である。 図 4はこの発明の実施の形態 3に係る放射線検出装置を示す斜視図である。 図 5はこの発明の実施の形態 4に係る放射線検出装置を示す斜視図である。 図 6はこの発明の実施の形態 5に係る放射線検出装置を示すプロック構成図であ る。 FIG. 1 is a perspective view showing a radiation detecting apparatus according to Embodiment 1 of the present invention. FIG. 2 is a perspective view showing a radiation detecting apparatus according to Embodiment 2 of the present invention. FIG. 3 is a front view showing a radiation detecting apparatus according to Embodiment 2 of the present invention. FIG. 4 is a perspective view showing a radiation detecting apparatus according to Embodiment 3 of the present invention. FIG. 5 is a perspective view showing a radiation detecting apparatus according to Embodiment 4 of the present invention. FIG. 6 is a block diagram showing a radiation detecting apparatus according to Embodiment 5 of the present invention.
図 7はこの発明の実施の形態 6に係る放射線検出装置を示すプロック構成図であ る。 FIG. 7 is a block diagram showing a radiation detecting apparatus according to Embodiment 6 of the present invention.
図 8は従来の放射線検出器を示す断面図である。 発明を実施するための最良の形態 FIG. 8 is a cross-sectional view showing a conventional radiation detector. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
以下、 この発明の実施の形態 1を図に基づいて説明する。 図 1は本実施の形態 1に係る放射線検出装置の斜視図である。 図 1において、 1は放射線が照射され ると図示しない印加された電荷により電流パルスを出力する半導体素子、 2はこ の半導体素子 1を固定し、 複数個連結するための基板である。 次に本装置の動作 について説明する。 半導体素子 1を基板 2に複数個並べることで、 放射線が照射 される面積が増大することにより、 希ガス例えば X e— 1 3 3に対する感度が良 くなる。 Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the radiation detecting apparatus according to the first embodiment. In FIG. 1, reference numeral 1 denotes a semiconductor element that outputs a current pulse by an applied charge (not shown) when radiation is irradiated, and 2 denotes a semiconductor element. This is a substrate for fixing the semiconductor element 1 and connecting a plurality of the semiconductor elements. Next, the operation of the present apparatus will be described. By arranging a plurality of semiconductor elements 1 on the substrate 2, the area irradiated with the radiation is increased, and the sensitivity to a rare gas such as Xe-133 is improved.
尚、 半導体素子 1は、 半導体の結晶体中に放射線が入射した場合、 半導体物質 の起動電子との相互作用により正孔と電子が生成され、 電界を印加しておけばパ ルス的な電気伝導が起こり入射放射線に対応した電気信号である電流パルスを出 力する。  In the semiconductor element 1, when radiation enters the semiconductor crystal, holes and electrons are generated by the interaction with the starting electrons of the semiconductor substance, and if an electric field is applied, a pulse-like electric conduction is generated. Occurs and outputs a current pulse that is an electric signal corresponding to the incident radiation.
実施の形態 2 . Embodiment 2
なお、 上記実施の形態 1では、 基板 2により半導体素子 1を固定する場合につ いて述べたが、 図 2に示すように、 三角柱基板 2— 1を設け、 この基板 2— 1の 3面に図 3に示すように半導体素子 1を固定することで、 一平面の基板に比べ多 数の半導体素子 1を固定しながらも検出装置を小型化することができると共に、 放射線照射面積がより広がり放射線検出を更に高感度なものにすることができる 実施の形態 3 .  In the first embodiment, the case where the semiconductor element 1 is fixed by the substrate 2 has been described. However, as shown in FIG. 2, a triangular prism substrate 2-1 is provided, and three surfaces of the substrate 2-1 are provided. By fixing the semiconductor element 1 as shown in FIG. 3, it is possible to reduce the size of the detection device while fixing a large number of semiconductor elements 1 as compared with a flat substrate, and to increase the radiation irradiation area and increase the radiation area. The detection can be made even more sensitive Embodiment 3.
なお、 上記実施の形態 1では、 一平面の基板 2により半導体素子 1を固定する 場合について述べたが、 図 4に示すように、 四角柱基板 2— 2を設け、 この基板 2一 2の 4面に半導体素子を固定することで、 一平面の基板に比べ多数の半導体 素子 1を固定しながらも検出装置を小型化することができると共に、 放射線照射 面積がより広がり放射線検出を更に高感度なものにすることができる。  In the first embodiment, the case where the semiconductor element 1 is fixed by the one-plane substrate 2 has been described. However, as shown in FIG. 4, a quadrangular prism substrate 2-2 is provided. By fixing the semiconductor elements on the surface, it is possible to reduce the size of the detection device while fixing a large number of semiconductor elements 1 as compared with a flat substrate, and to increase the radiation irradiation area and increase the sensitivity of radiation detection. Can be something.
なお、 基板は 4角柱以上の多角柱の基板でも同様の効果を奏する。  The same effect can be obtained even if the substrate is a polygonal prism having four or more prisms.
実施の形態 4 . Embodiment 4.
なお、 上記実施の形態 2では、 三角柱基板 2— 1に半導体素子 1を固定し外部 に晒すようにしたが、 本実施の形態は図 5に示すように、 円筒状の耐環境性容器 3を設け、 半導体素子 1を固定した三角柱基板 2— 1を筒状の耐環境性容器 3の 中に収納することで、 原子力プラントにおける高温等の悪環境下でも半導体素子 を高温に直接晒すことなく検出感度を維持して本装置を使うことができる。 実施の形態 5 . なお、 上記実施の形態 1では、 基板 2に半導体素子 1を固定して電流パルスの 検出により放射線を検出する場合について述べたが、 図 6に示すように、 半導体 素子 1の両面に付けられた負電極 1― 2と正電極 1 - 3間に微少電流計 4を接続 し、 入射放射線に対応して半導体素子 1に流れる微小電流を計測して放射線を検 出するようにしたので、 電気信号を電流パルスにて計測して放射線を検出するに 比べ、 計測手段を簡易化できるため装置のコストを低減できる。 In the second embodiment, the semiconductor element 1 is fixed to the triangular prism substrate 2-1 and is exposed to the outside. However, in the present embodiment, as shown in FIG. By installing the triangular prism substrate 2-1 on which the semiconductor element 1 is fixed in a cylindrical environment-resistant container 3, detection can be performed without directly exposing the semiconductor element to high temperatures even in a bad environment such as a high temperature in a nuclear power plant. The device can be used while maintaining sensitivity. Embodiment 5 In the first embodiment, the case where the semiconductor element 1 is fixed to the substrate 2 and the radiation is detected by detecting a current pulse has been described. However, as shown in FIG. A microammeter 4 was connected between the negative electrode 1-2 and the positive electrodes 1-3 to measure the minute current flowing through the semiconductor element 1 in response to the incident radiation and detect the radiation. As compared to detecting radiation by measuring current with current pulses, the measuring means can be simplified and the cost of the apparatus can be reduced.
実施の形態 6 . Embodiment 6
なお、 上記実施の形態 5では、 半導体素子が一層だけの場合について述べたが 、 図 7に示すように、 2つの半導体素子 1の正電極同士を合わせて二層に積層し て正電極 1—3とし、 それそれの負電極を負電極 1— 2とする。 そして、 正電極 1一 3を微少電流計 4に正端子に接続し、 各負電極 1一 2を微小電流計 4の負端 子に共通接続する。 この結果、 微小電流計 4には入射放射線に対応して各半導体 素子 1によりの微小電流の和が流れるため、 放射線検出感度が向上すると共に、 実施の形態 5と同様に装置のコストを低減できる。 産業上の利用の可能性  Although the fifth embodiment has described the case where there is only one semiconductor element, as shown in FIG. 7, the positive electrodes of the two semiconductor elements 1 are laminated in two layers by combining the positive electrodes. 3 and the negative electrodes are negative electrodes 1-2. Then, the positive electrodes 113 are connected to the microammeter 4 at the positive terminal, and the negative electrodes 112 are commonly connected to the negative terminal of the microammeter 4. As a result, the sum of the minute currents from the respective semiconductor elements 1 flows in the minute ammeter 4 corresponding to the incident radiation, so that the radiation detection sensitivity is improved and the cost of the apparatus can be reduced as in the fifth embodiment. . Industrial applicability
原子力プラント等の高温な悪環境下でも十分信頼性を保てる放射線検出装置の 低コスト化、 小型化、 高性能化、 長寿命化を計る。  Reduce the cost, size, performance, and longevity of radiation detectors that can maintain sufficient reliability even in high-temperature adverse environments such as nuclear plants.

Claims

請求の範囲 The scope of the claims
1. 放射線が照射されると電流パルスを出力する半導体素子と、 半導体素子を少 なくとも 1個板面に固定する基板とを備えたことを特徴とする放射線検出装置。 1. A radiation detection device comprising: a semiconductor element that outputs a current pulse when irradiated with radiation; and a substrate that fixes at least one semiconductor element to a plate surface.
2. 半導体素子を固定する基板を多角柱形状の基板とし、 各板面に前記半導体素 子を固定することを特徴とする特許請求の範囲第 1項記載の放射線検出装置。 、2. The radiation detecting apparatus according to claim 1, wherein the substrate on which the semiconductor element is fixed is a polygonal pillar-shaped substrate, and the semiconductor element is fixed on each plate surface. ,
3. 半導体素子として、 CdTeもしくは CdZnTeの化合物半導体を用いた ことを特徴とする特許請求の範囲第 1項に記載の放射線検出装置。 3. The radiation detector according to claim 1, wherein a CdTe or CdZnTe compound semiconductor is used as the semiconductor element.
4. 半導体素子を耐環境性の筒状の容器に収納したことを特徴とする特許請求の 範囲第 1項に記載の放射線検出装置。  4. The radiation detecting apparatus according to claim 1, wherein the semiconductor element is housed in an environmentally resistant cylindrical container.
5. 放射線の入射により半導体に流れる電流を計測して放射線を検出することを 特徴とする特許請求の範囲第 1項記載の放射線検出装置。  5. The radiation detection device according to claim 1, wherein the radiation is detected by measuring a current flowing through the semiconductor due to the incidence of the radiation.
6. 半導体素子を 2重に積層し、 前記各半導体素子に流れる電流の和を計測して 放射線を検出することを特徴とする特許請求の範囲第 5項記載の放射線検出装置  6. The radiation detecting apparatus according to claim 5, wherein the semiconductor elements are stacked in two layers, and radiation is detected by measuring a sum of currents flowing through the respective semiconductor elements.
PCT/JP1998/003086 1998-07-09 1998-07-09 Radiation detector WO2000003266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003086 WO2000003266A1 (en) 1998-07-09 1998-07-09 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003086 WO2000003266A1 (en) 1998-07-09 1998-07-09 Radiation detector

Publications (1)

Publication Number Publication Date
WO2000003266A1 true WO2000003266A1 (en) 2000-01-20

Family

ID=14208589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003086 WO2000003266A1 (en) 1998-07-09 1998-07-09 Radiation detector

Country Status (1)

Country Link
WO (1) WO2000003266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156800A (en) * 2007-12-27 2009-07-16 Tohoku Univ Radiation detector and device provided with the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328630Y1 (en) * 1966-02-10 1968-11-25
JPS5292577A (en) * 1975-12-30 1977-08-04 Inst Fuijika Na Tabaadoto Taya Nucleous radiation detector
JPS56129380A (en) * 1980-03-13 1981-10-09 Fuji Electric Co Ltd Semiconductor radioactive rays detector
JPS57105982U (en) * 1980-12-22 1982-06-30
JPS60224079A (en) * 1984-04-23 1985-11-08 Toshiba Corp Radiation measuring instrument
JPS63182870A (en) * 1987-01-26 1988-07-28 Nippon Mining Co Ltd Laminated radiation detection element
JPS6442488U (en) * 1987-09-08 1989-03-14
JPH05223942A (en) * 1991-11-07 1993-09-03 Power Reactor & Nuclear Fuel Dev Corp Flexible-arm-type compact radiation measuring instrument
JPH06242251A (en) * 1993-02-12 1994-09-02 Power Reactor & Nuclear Fuel Dev Corp Measuring device for gamma-ray and neutron flux in nuclear reactor
JPH07128454A (en) * 1993-11-08 1995-05-19 Fuji Electric Co Ltd Semiconductor radiation detector
JPH07134181A (en) * 1993-11-11 1995-05-23 Aloka Co Ltd Radiation detecting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328630Y1 (en) * 1966-02-10 1968-11-25
JPS5292577A (en) * 1975-12-30 1977-08-04 Inst Fuijika Na Tabaadoto Taya Nucleous radiation detector
JPS56129380A (en) * 1980-03-13 1981-10-09 Fuji Electric Co Ltd Semiconductor radioactive rays detector
JPS57105982U (en) * 1980-12-22 1982-06-30
JPS60224079A (en) * 1984-04-23 1985-11-08 Toshiba Corp Radiation measuring instrument
JPS63182870A (en) * 1987-01-26 1988-07-28 Nippon Mining Co Ltd Laminated radiation detection element
JPS6442488U (en) * 1987-09-08 1989-03-14
JPH05223942A (en) * 1991-11-07 1993-09-03 Power Reactor & Nuclear Fuel Dev Corp Flexible-arm-type compact radiation measuring instrument
JPH06242251A (en) * 1993-02-12 1994-09-02 Power Reactor & Nuclear Fuel Dev Corp Measuring device for gamma-ray and neutron flux in nuclear reactor
JPH07128454A (en) * 1993-11-08 1995-05-19 Fuji Electric Co Ltd Semiconductor radiation detector
JPH07134181A (en) * 1993-11-11 1995-05-23 Aloka Co Ltd Radiation detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156800A (en) * 2007-12-27 2009-07-16 Tohoku Univ Radiation detector and device provided with the same

Similar Documents

Publication Publication Date Title
US4445036A (en) Solid state fast-neutron spectrometer/dosimeter and detector therefor
Beusch et al. The RICH counter in the CERN hyperon beam experiment
JP6148329B2 (en) Solid-state radiation detector with enhanced sensitivity to gamma rays
EP0490783A2 (en) Neutron detection apparatus with extended dynamic range for checking and control of nuclear reactors
US7022996B2 (en) Radiation detector
US3366790A (en) Nuclear radiation detector comprising multiple ionization chamber with hemisphericalshaped electrodes
CN104620387B (en) Photon counting semiconductor detector
WO2000003266A1 (en) Radiation detector
US10797195B2 (en) Ionizing radiation sensor based on float-zone silicon with p-type conductivity
Hutton et al. Diamond-based radiation detectors for very high dose rate environments–
US8481957B2 (en) Ionizing radiation detector
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
US4039808A (en) Solid state ionization chamber of silicon pn-junction type
RU2469354C1 (en) Neutron detector
JP2007240467A (en) Open window ionization chamber
KR100423536B1 (en) Real Time Electronic Gamma/Thermal Neutron Dosimetry and Detection Method using a pMOSFET, a pMOSFET with Gadolinium Converter, and a Subtracter
RU2231808C1 (en) Ionization dosimeter on the basis of diamond detector
Anderson Development of proportional counters using photosensitive gases and liquids
Ambrosio et al. Aging measurements on glass RPCs
JPH06180370A (en) Neutron monitor
JP2000292544A (en) Radiation detector
Gongadze Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview)
RU109873U1 (en) MULTIPLE SEMICONDUCTOR DETECTOR FOR REGISTRATION OF ALPHA PARTICLES IN A NEUTRON GENERATOR WITH A STATIC VACUUM AND A SENSITIVE ELEMENT FOR IT
JPH08122443A (en) Radiation detector
Pal et al. Development of a compact MWPC detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase