JP2009156800A - Radiation detector and device provided with the same - Google Patents

Radiation detector and device provided with the same Download PDF

Info

Publication number
JP2009156800A
JP2009156800A JP2007337766A JP2007337766A JP2009156800A JP 2009156800 A JP2009156800 A JP 2009156800A JP 2007337766 A JP2007337766 A JP 2007337766A JP 2007337766 A JP2007337766 A JP 2007337766A JP 2009156800 A JP2009156800 A JP 2009156800A
Authority
JP
Japan
Prior art keywords
radiation detector
thallium
thallium halide
electrode
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007337766A
Other languages
Japanese (ja)
Other versions
JP5083964B2 (en
Inventor
Keizo Ishii
慶造 石井
Keitaro Hitomi
啓太朗 人見
Tadayoshi Shoji
忠良 庄司
Yohei Kikuchi
洋平 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007337766A priority Critical patent/JP5083964B2/en
Publication of JP2009156800A publication Critical patent/JP2009156800A/en
Application granted granted Critical
Publication of JP5083964B2 publication Critical patent/JP5083964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost thallium halide radiation detector having long lifetime which prevents polarity phenomenon in a thallium halide crystal, such as TlBr. <P>SOLUTION: The thallium halide radiation detector, such as, thallium bromine forms an Au electrode on a face opposed to the thallium halide crystal, such as, TlBr. When a voltage is applied between electrodes, Br-ions which are the conduction ions move to a positive pole, the Br-ions accumulate on the positive pole; and as a result, Tl+ ions accumulate on a negative pole. Since reaction rate that neutralizes them is slower than the accumulation rate, polarization is generated in normal thallium bromine radiation, as a result. For preventing polarization phenomenon, a Tl electrode is installed on a face opposite to the thallium halide crystals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、陽電子断層画像診断装置(PET)、単光子放射線コンピュータ断層撮影装置(SPECT)等に用いられる臭化タリウム等のタリウムハロゲン化物放射線検出器及びこれを備えたPETあるいはSPECTに関する。   The present invention relates to a thallium halide radiation detector such as thallium bromide used in a positron tomography diagnostic apparatus (PET), a single photon radiation computed tomography apparatus (SPECT), and the like, and a PET or SPECT equipped with the same.

PET等における高性能タイプの検出部には、CdTe結晶を用いた放射線検出器が使用されている。ところがCdTe結晶は、共有結合結晶であり、融点が高く、また作製費が高いという問題点がある。例えば装置1台当たりの結晶のみの価格が数億円と高価になっている。
このためCdTeに代わるものとしてTlBr等のタリウムハロゲン化物が注目されている。
例えばTlBrは、その高い原子番号(Tl: 81、Br: 35)及び高密度(7.56g/cm3)、広いギャップ・エネルギー(2.68eV)及び高い光子阻止能により室温放射線検出器の素材として魅力的な半導体である。
A radiation detector using a CdTe crystal is used for a high-performance type detector in PET or the like. However, the CdTe crystal is a covalent crystal, has a high melting point and a high production cost. For example, the price of only crystals per device is as high as several hundred million yen.
For this reason, thallium halides such as TlBr have attracted attention as an alternative to CdTe.
For example, TlBr is attractive as a material for room temperature radiation detectors due to its high atomic number (Tl: 81, Br: 35) and high density (7.56g / cm3), wide gap energy (2.68eV) and high photon stopping power Is a good semiconductor.

TlBr結晶を用いた従来の臭化タリウム放射線検出器の構造模式図を図6に示す。TlBr結晶の対向する面にAu電極が形成されている。そしてAu電極間には、バイアス電圧が印加されており、TlBr結晶にガンマ線が入射するとこれにより電子が生成され、これが前置増幅器の出力信号として検出される。   FIG. 6 shows a structural schematic diagram of a conventional thallium bromide radiation detector using a TlBr crystal. Au electrodes are formed on opposing surfaces of the TlBr crystal. A bias voltage is applied between the Au electrodes. When gamma rays are incident on the TlBr crystal, electrons are generated thereby and detected as an output signal of the preamplifier.

臭化タリウム放射線検出器は、CdTe放射線検出器に比べて次のような点で優れている。
(1)臭化タリウムは、イオン結合結晶であり、融点が低く、安価に作製できる。このためTlBr結晶は、CdTe結晶と比較し、100分の1程度の値段で作製できる。
(2)TlBr結晶はCdTe結晶よりもガンマ線を止める能力が高く、CdTeの半分程度の大きさで同程度の効果が発揮できる。このため検出器を薄くすることができる。
The thallium bromide radiation detector is superior to the CdTe radiation detector in the following points.
(1) Thallium bromide is an ion-bonded crystal, has a low melting point, and can be produced at low cost. For this reason, the TlBr crystal can be manufactured at a price about 1/100 compared with the CdTe crystal.
(2) The TlBr crystal has a higher ability to stop gamma rays than the CdTe crystal, and can exhibit the same effect at about half the size of CdTe. For this reason, a detector can be made thin.

ところが臭化タリウム等のタリウムハロゲン化物放射線検出器には、次のような重大な問題がある。
これは、臭化タリウム等のタリウムハロゲン化物放射線検出器にバイアス電圧を印加した後、しばらく経つとその検出能力が無くなるというものである(非特許文献1参照)。この理由としては、TlBr結晶中の伝導イオンが検出器の中で分極現象を引き起こすためと考えられている(非特許文献2参照)。
However, thallium halide radiation detectors such as thallium bromide have the following serious problems.
This is because the detection capability disappears after a while after a bias voltage is applied to a thallium halide radiation detector such as thallium bromide (see Non-Patent Document 1). The reason is considered to be that conduction ions in the TlBr crystal cause a polarization phenomenon in the detector (see Non-Patent Document 2).

すなわちTlBr等のタリウムハロゲン化物結晶の対向する面にAu電極が形成された臭化タリウム等のタリウムハロゲン化物放射線検出器では、電極間に電圧をかけると、伝導イオンであるBr−イオンが陽極に移動し、陽極にはBr−イオンが、陰極には結果としてTl+イオンが集積する。これらのイオンを中和する反応速度が集積速度より遅いので、この結果通常の臭化タリウム放射線では分極が生じることになる。   That is, in a thallium halide radiation detector such as thallium bromide in which an Au electrode is formed on the opposite surface of a thallium halide crystal such as TlBr, when a voltage is applied between the electrodes, Br- ions that are conductive ions are applied to the anode. As a result, Br− ions accumulate on the anode and Tl + ions accumulate on the cathode as a result. This results in polarization with normal thallium bromide radiation because the reaction rate neutralizing these ions is slower than the rate of accumulation.

CdTe結晶も同様に分極の問題があるが、一度装置をシャットダウンすると分極が解消される。これに対し臭化タリウム等のタリウムハロゲン化物では金属イオンが動いてしまうため、シャットダウンしても分極が解消されない。このためTlBr結晶自体の寿命が4時間程度しかなく実用化には至っていなかった。なおこの分極現象を防ぐ唯一の方法として、−20℃の下で例えばTlBr結晶を使用することが知られているが、常時検出器を冷却しておく必要があり実用的ではない。
特開2005−156252号公報 特開2005−208057号公報 T. Onodera, K. Hitomi, T. Shoji, Nucl. Instr. and Meth. A 568 (2006) 433. V. Kozlov, M. Kemell, M. Vehkamaki, M. Leskela, Nucl. Instr. and Meth. A 576 (2007) 10.
The CdTe crystal also has a polarization problem, but once the device is shut down, the polarization is eliminated. In contrast, thallium halides such as thallium bromide move metal ions, so that polarization is not eliminated even when shut down. For this reason, the lifetime of the TlBr crystal itself is only about 4 hours, and has not been put into practical use. It is known that, for example, a TlBr crystal is used at −20 ° C. as the only method for preventing this polarization phenomenon, but it is not practical because the detector needs to be cooled at all times.
JP 2005-156252 A JP 2005-208057 A T. Onodera, K. Hitomi, T. Shoji, Nucl. Instr. And Meth. A 568 (2006) 433. V. Kozlov, M. Kemell, M. Vehkamaki, M. Leskela, Nucl. Instr. And Meth. A 576 (2007) 10.

本発明はTlBr等のタリウムハロゲン化物結晶における分極現象を防止し、安価で寿命が長いタリウムハロゲン化物放射線検出器を提供することを課題とするものである。   It is an object of the present invention to provide a thallium halide radiation detector that prevents polarization phenomenon in a thallium halide crystal such as TlBr and that is inexpensive and has a long lifetime.

上記の課題を解決するために本発明は、次のような放射線検出器及びこれを備えた装置を提供するものである。
(1)タリウムハロゲン化物結晶の対向する面にTl電極を有するタリウムハロゲン化物放射線検出器。
(2)対向する面にTl電極を有する2枚のタリウムハロゲン化物結晶を重ね合わせ、対向する2表面を導通して一方の電極とし、重ね合わさった中間層をもう一方の電極にすることを特徴とするタリウムハロゲン化物放射線検出器。
(3)上記Tl電極上にTlと反応しにくく電極特性の良い金属の電極がさらに設けられた(1)又は(2)に記載のタリウムハロゲン化物放射線検出器。
(4)上記金属の電極は、Al電極であることを特徴とする(3)に記載のタリウムハロゲン化物放射線検出器。
(5)タリウムハロゲン化物結晶に印加する電圧の極性を変えて使用することを特徴とする(1)乃至(4)のいずれかに記載のタリウムハロゲン化物放射線検出器。
(6)上記タリウムハロゲン化物は、臭化タリウムであることを特徴とする(1)乃至(5)のいずれかに記載のタリウムハロゲン化物放射線検出器。
(7)(1)乃至(6)のいずれかに記載のタリウムハロゲン化物放射線検出器を備えた陽電子断層撮影装置。
(8)(1)乃至(6)のいずれかに記載のタリウムハロゲン化物放射線検出器を備えた単光子放射線コンピュータ断層撮影装置。
なお本発明においてタリウムハロゲン化物は、TlCl、TlBr、TlI又はこれらの混晶を指す。
In order to solve the above-mentioned problems, the present invention provides the following radiation detector and an apparatus including the same.
(1) A thallium halide radiation detector having Tl electrodes on opposing surfaces of a thallium halide crystal.
(2) Two thallium halide crystals having Tl electrodes on the opposing surfaces are superposed, the two opposing surfaces are brought into conduction as one electrode, and the superimposed intermediate layer is used as the other electrode. Thallium halide radiation detector.
(3) The thallium halide radiation detector according to (1) or (2), further comprising a metal electrode that does not easily react with Tl and has good electrode characteristics on the Tl electrode.
(4) The thallium halide radiation detector according to (3), wherein the metal electrode is an Al electrode.
(5) The thallium halide radiation detector according to any one of (1) to (4), wherein the voltage applied to the thallium halide crystal is changed in polarity.
(6) The thallium halide radiation detector according to any one of (1) to (5), wherein the thallium halide is thallium bromide.
(7) A positron emission tomography apparatus comprising the thallium halide radiation detector according to any one of (1) to (6).
(8) A single photon radiation computed tomography apparatus comprising the thallium halide radiation detector according to any one of (1) to (6).
In the present invention, thallium halide refers to TlCl, TlBr, TlI or a mixed crystal thereof.

本発明によれば、TlBr等のタリウムハロゲン化物結晶中の伝導イオンが検出器の中で分極現象を引き起こすことがないため、安価で寿命が長いタリウムハロゲン化物放射線検出器が得られる。   According to the present invention, since a conduction ion in a thallium halide crystal such as TlBr does not cause a polarization phenomenon in the detector, an inexpensive and long-life thallium halide radiation detector can be obtained.

本発明は、TlBr結晶等のタリウムハロゲン化物結晶の対向する面にTl膜を蒸着することにより、タリウムハロゲン化物結晶中のTlイオン及びハロゲンイオンがそれぞれTlメタルとタリウムハロゲン化物に変化するため、分極が発生しないという知見に基づくものである。   In the present invention, Tl ions and halogen ions in a thallium halide crystal are changed to Tl metal and thallium halide, respectively, by depositing a Tl film on the opposing surface of a thallium halide crystal such as a TlBr crystal. This is based on the knowledge that no occurrence occurs.

タリウムハロゲン化物結晶であるTlBr結晶についていうと、TlBr結晶の対向する両面を蒸着等によってTlの薄層を形成し、電極とすると、陰極においては、Tl+イオンは電子と一緒になり、Tl金属となる。陽極においては、Br−イオンがTlと結合してTlBrとなり、電子が生成される。この反応によって生成されるTl金属、TlBrはイオンではなく、電荷を持たない。したがって、Tl電極付きTlBr検出器中では、イオンが集積しても直後に中性化され、分極を起こさないというものである。   As for the TlBr crystal, which is a thallium halide crystal, a thin Tl layer is formed by vapor deposition or the like on both opposing surfaces of the TlBr crystal, and at the cathode, Tl + ions are combined with electrons at the cathode, Become. At the anode, Br− ions combine with Tl to become TlBr, and electrons are generated. The Tl metal produced by this reaction, TlBr, is not an ion and has no charge. Therefore, in the TlBr detector with a Tl electrode, even if ions are accumulated, they are neutralized immediately and do not cause polarization.

以下本発明に係るタリウムハロゲン化物放射線検出器について、臭化タリウム放射線検出器を例示して、詳細に説明する。
図1は、本発明の原理を説明する構造模式図である。基本的な構成は、図6に示す従来の臭化タリウム放射線検出器と同様であるが、TlBr結晶の対向する面にTl電極が形成されている。
また図2は、本発明の臭化タリウム放射線検出器と図6に示す従来の臭化タリウム放射線検出器との特性比較のため、Tl電極上にAu電極をさらに設けたものである。
Hereinafter, the thallium halide radiation detector according to the present invention will be described in detail with reference to a thallium bromide radiation detector.
FIG. 1 is a structural schematic diagram for explaining the principle of the present invention. The basic configuration is the same as that of the conventional thallium bromide radiation detector shown in FIG. 6, except that Tl electrodes are formed on opposing surfaces of the TlBr crystal.
FIG. 2 is a graph in which an Au electrode is further provided on the Tl electrode for comparison of characteristics between the thallium bromide radiation detector of the present invention and the conventional thallium bromide radiation detector shown in FIG.

放射線検出器に用いるTlBr結晶は、99.999%の市販のTlBrパウダーをゾーン精製法によって作製した。TlBr結晶をワイヤーソーで厚さ約1mmのウエハーに切断した後、ウエハーの表面をエメリー・シート(#800)で磨き、厚さを約0.6mmとした。次に直径3mmのTl、Au電極を蒸着によって形成した。電極と外部回路との接続はバネ接点によって行った。   The TlBr crystal used for the radiation detector was produced by zone purification of 99.999% of commercially available TlBr powder. After cutting the TlBr crystal into a wafer having a thickness of about 1 mm with a wire saw, the surface of the wafer was polished with an emery sheet (# 800) to a thickness of about 0.6 mm. Next, a Tl, Au electrode having a diameter of 3 mm was formed by vapor deposition. The connection between the electrode and the external circuit was made by a spring contact.

スペクトルの計測は、標準エレクトロニクス・システム(電荷敏感型プリアンプ(クリアーパルス580K)、シェーピングアンプ(Aptec 6300、シェーピングタイム14μ秒及びマルチ・チャンネル波高分析器)を用いて行った。放射線検出器の長期間安定性を評価するために、室温で30時間、22Na線源を測定した。TlBr結晶のバイアス電圧は、−200Vとして行った。 Spectral measurements were made using a standard electronics system (charge sensitive preamplifier (clear pulse 580K), shaping amplifier (Aptec 6300, shaping time 14μs and multi-channel wave height analyzer). In order to evaluate the stability, a 22 Na radiation source was measured at room temperature for 30 hours, and the bias voltage of the TlBr crystal was set to -200V.

図3は、バイアス電圧の印加後の0時間及び30時間での、図6に示す従来の放射線検出器(Au/TlBr/Au放射線検出器)で得られた22Naスペクトルを示す。
図3から分かるように、分極現象によるエネルギー分解能の低下が30時間後のスペクトルに観察された。これは、図6で示した従来の放射線検出器は、30時間後では検出器として使えないことが分かる。
FIG. 3 shows 22 Na spectra obtained with the conventional radiation detector (Au / TlBr / Au radiation detector) shown in FIG. 6 at 0 and 30 hours after application of the bias voltage.
As can be seen from FIG. 3, a decrease in energy resolution due to the polarization phenomenon was observed in the spectrum after 30 hours. This shows that the conventional radiation detector shown in FIG. 6 cannot be used as a detector after 30 hours.

次に図2に示す放射線検出器(Au/Tl/TlBr/Tl/Au放射線検出器)で得られたスペクトルを図4に示す。図4から分かるように、本発明に係る放射線検出器では、電圧印加後30時間経っても、スペクトルは変わらず、分極現象が起きていないことが分かる。   Next, the spectrum obtained by the radiation detector (Au / Tl / TlBr / Tl / Au radiation detector) shown in FIG. 2 is shown in FIG. As can be seen from FIG. 4, in the radiation detector according to the present invention, the spectrum does not change and no polarization phenomenon occurs even after 30 hours have passed since the voltage application.

なお本発明ではTl膜を蒸着することにより、Tlイオン及びBrイオンがそれぞれTlメタルとTlBrに変化するため、分極が発生しないが、Tl膜が薄くなる現象が発生する。すなわち検出器に電圧を印加することによって、陰極ではTl金属、陽極ではTlBr結晶が生成され、その結果陰極のTl層は厚くなり、陽極のTl層は薄くなる。
しかし、Tl金属及びTlBr結晶の生成反応は、可逆反応であるので、TlBr結晶に印加する電圧の極性を変えて、使用時間を同じにすることによって、元に戻すことができる。これによって、Tl電極を有する臭化タリウム放射線検出器を恒久的に使用することができる。
In the present invention, when a Tl film is deposited, Tl ions and Br ions are changed to Tl metal and TlBr, respectively, so that polarization does not occur but a phenomenon that the Tl film becomes thin occurs. That is, by applying a voltage to the detector, a Tl metal is produced at the cathode and a TlBr crystal at the anode, resulting in a thicker Tl layer at the cathode and a thinner Tl layer at the anode.
However, since the formation reaction of the Tl metal and the TlBr crystal is a reversible reaction, it can be restored by changing the polarity of the voltage applied to the TlBr crystal to make the usage time the same. This makes it possible to permanently use a thallium bromide radiation detector with a Tl electrode.

以上従来の臭化タリウム放射線検出器との比較のため、Tl膜上にAu電極を形成した臭化タリウム放射線検出器を例示したが、Tl膜上にはTlと反応しにくく電極特性の良い金属を形成することが望ましい。特にAlを蒸着することによって、非常に酸素と反応し易いTlの酸化を防ぐことができる。またTl膜上に複数の金属を多層に形成してもよい。
なおTlの酸化を防ぐために、Al蒸着に代えてTlの表面を樹脂等で覆ってもよい。
For comparison with the conventional thallium bromide radiation detector, a thallium bromide radiation detector in which an Au electrode is formed on a Tl film has been exemplified. However, a metal having good electrode characteristics that hardly reacts with Tl on the Tl film. It is desirable to form. In particular, by depositing Al, it is possible to prevent oxidation of Tl which is very easy to react with oxygen. A plurality of metals may be formed in multiple layers on the Tl film.
In order to prevent oxidation of Tl, the surface of Tl may be covered with a resin or the like instead of Al deposition.

次に本発明に係る臭化タリウム放射線検出器のPETへの適用について説明する。
PET用検出器としては、同時計数の時間分解能が数十ナノ秒でなければならない。このためTlBr結晶の電極間を薄くして高時間分解能を得る必要がある。
ところが結晶が薄くなると、ガンマ線を検出できる体積が減る。そこで、図5に示すように、2枚のTlBr結晶を重ね合わせ、対向する2表面を導通して一方の電極とし、重ね合わさった中間層をもう一方の電極にすることによって、厚みを2倍にした放射線検出器とする。この薄片2層の構造によってPETに使用できる時間分解能として数十ナノ秒を確保し、且つ検出感度も確保できた。
Next, application of the thallium bromide radiation detector according to the present invention to PET will be described.
As a detector for PET, the time resolution of coincidence must be several tens of nanoseconds. For this reason, it is necessary to obtain a high time resolution by thinning the gap between the electrodes of the TlBr crystal.
However, as the crystal becomes thinner, the volume in which gamma rays can be detected decreases. Therefore, as shown in FIG. 5, two TlBr crystals are superposed, the two opposing surfaces are conducted to make one electrode, and the overlapped intermediate layer is made the other electrode, so that the thickness is doubled. A radiation detector is used. This two-layer structure of the flakes ensured several tens of nanoseconds as a time resolution that can be used for PET and also secured detection sensitivity.

さらに検出器のサイズを1mm角で長さ1〜2mmのものを薄い絶縁板(セラミック樹脂板)に並べ、それをさらに重ね、各放射線検出器からの信号をASIC増幅器に繋げることにより、高空間分解能で高感度の高いPET用ガンマ線3次元検出器ブロックを実現することができる。   In addition, the detectors with a size of 1 mm square and a length of 1 to 2 mm are arranged on a thin insulating plate (ceramic resin plate), which is further stacked, and the signal from each radiation detector is connected to the ASIC amplifier, thereby increasing the space. A PET gamma ray three-dimensional detector block with high resolution and high sensitivity can be realized.

以上本発明に係る臭化タリウム放射線検出器について、PET用の放射線検出器への適用について説明したが、本発明はこれに限定されずSPECTその他、放射線検出器を必要とする装置に適用することができる。
なお本発明にかかるタリウムハロゲン化物放射線検出器は、単体でも、放射線検出器として十分機能することはいうまでもないことである。
The application of the thallium bromide radiation detector according to the present invention to a radiation detector for PET has been described above. However, the present invention is not limited to this, and is applied to SPECT and other devices that require a radiation detector. Can do.
In addition, it goes without saying that the thallium halide radiation detector according to the present invention functions sufficiently as a radiation detector alone.

また臭化タリウム放射線検出器を例示して本発明を説明したが、本発明はTlBrと同様のイオン結合結晶である、TlCl、TlIを用いた放射線検出器についても適用することができる。さらにTlCl、TlI及びTlBrの混晶であってもよい。
本発明では、TlCl、TlI、TlBr及びこれらの混晶をタリウムハロゲン化物と総称する。
Although the present invention has been described with reference to a thallium bromide radiation detector, the present invention can also be applied to a radiation detector using TlCl or TlI, which is an ion-bonded crystal similar to TlBr. Further, it may be a mixed crystal of TlCl, TlI and TlBr.
In the present invention, TlCl, TlI, TlBr and mixed crystals thereof are collectively referred to as thallium halide.

Tl電極を付けた本発明に係る臭化タリウム放射線検出器を示す構造模式図である。It is a structural schematic diagram which shows the thallium bromide radiation detector based on this invention which attached Tl electrode. Auで覆ったTl電極を付けた本発明に係る臭化タリウム放射線検出器を示す構造模式図である。It is a structural schematic diagram which shows the thallium bromide radiation detector based on this invention which attached the Tl electrode covered with Au. Au/TlBr/Au放射線検出器で測定した22Naスペクトルである。It is a 22 Na spectrum measured with an Au / TlBr / Au radiation detector. Au/Tl/TlBr/Tl/Au放射線検出器で測定した22Naスペクトル図である。It is a 22 Na spectrum figure measured with the Au / Tl / TlBr / Tl / Au radiation detector. 厚みを2倍にした本発明に係る臭化タリウム放射線検出器を示す構造模式図である。It is a structural schematic diagram which shows the thallium bromide radiation detector based on this invention which doubled thickness. Au電極を付けた従来の臭化タリウム放射線検出器を示す構造模式図である。It is a structural schematic diagram which shows the conventional thallium bromide radiation detector which attached Au electrode.

Claims (8)

タリウムハロゲン化物結晶の対向する面にTl電極を有するタリウムハロゲン化物放射線検出器。   A thallium halide radiation detector having Tl electrodes on opposing surfaces of a thallium halide crystal. 対向する面にTl電極を有する2枚のタリウムハロゲン化物結晶を重ね合わせ、対向する2表面を導通して一方の電極とし、重ね合わさった中間層をもう一方の電極にすることを特徴とするタリウムハロゲン化物放射線検出器。   Two thallium halide crystals having Tl electrodes on opposite surfaces are superposed, two opposing surfaces are made conductive to form one electrode, and the overlapped intermediate layer serves as the other electrode Halide radiation detector. 上記Tl電極上にTlと反応しにくく電極特性の良い金属の電極がさらに設けられた請求項1又は2に記載のタリウムハロゲン化物放射線検出器。   3. The thallium halide radiation detector according to claim 1, further comprising a metal electrode which does not easily react with Tl and has good electrode characteristics on the Tl electrode. 上記金属の電極は、Al電極であることを特徴とする請求項3に記載のタリウムハロゲン化物放射線検出器。   4. The thallium halide radiation detector according to claim 3, wherein the metal electrode is an Al electrode. タリウムハロゲン化物結晶に印加する電圧の極性を変えて使用することを特徴とする請求項1乃至4のいずれか1項に記載のタリウムハロゲン化物放射線検出器。   The thallium halide radiation detector according to any one of claims 1 to 4, wherein the thallium halide crystal is used by changing a polarity of a voltage applied to the thallium halide crystal. 上記タリウムハロゲン化物は、臭化タリウムであることを特徴とする請求項1乃至5のいずれか1項に記載のタリウムハロゲン化物放射線検出器。   6. The thallium halide radiation detector according to claim 1, wherein the thallium halide is thallium bromide. 請求項1乃至6のいずれか1項に記載のタリウムハロゲン化物放射線検出器を備えた陽電子断層撮影装置。   A positron emission tomography apparatus comprising the thallium halide radiation detector according to any one of claims 1 to 6. 請求項1乃至6のいずれか1項に記載のタリウムハロゲン化物放射線検出器を備えた単光子放射線コンピュータ断層撮影装置。   A single photon radiation computed tomography apparatus comprising the thallium halide radiation detector according to any one of claims 1 to 6.
JP2007337766A 2007-12-27 2007-12-27 Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus Active JP5083964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337766A JP5083964B2 (en) 2007-12-27 2007-12-27 Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337766A JP5083964B2 (en) 2007-12-27 2007-12-27 Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus

Publications (2)

Publication Number Publication Date
JP2009156800A true JP2009156800A (en) 2009-07-16
JP5083964B2 JP5083964B2 (en) 2012-11-28

Family

ID=40960963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337766A Active JP5083964B2 (en) 2007-12-27 2007-12-27 Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus

Country Status (1)

Country Link
JP (1) JP5083964B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167938A (en) * 2011-02-10 2012-09-06 Hitachi Ltd Radiation measuring device and nuclear medicine diagnostic apparatus using the same
WO2013111844A1 (en) * 2012-01-27 2013-08-01 株式会社日立製作所 Semiconductor radiation detector and nuclear medical diagnosis device
US8664613B2 (en) 2010-03-10 2014-03-04 Hitachi, Ltd. Radiation measurement device and nuclear medicine diagnosis system
WO2015076033A1 (en) * 2013-11-21 2015-05-28 日立アロカメディカル株式会社 Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element
JP2018009801A (en) * 2016-07-11 2018-01-18 浜松ホトニクス株式会社 Radiation detector
JP2018021937A (en) * 2017-11-08 2018-02-08 浜松ホトニクス株式会社 Radiation detector
WO2020100467A1 (en) * 2018-11-12 2020-05-22 浜松ホトニクス株式会社 Radiation detector and method for producing same
JP2020115150A (en) * 2020-04-06 2020-07-30 浜松ホトニクス株式会社 Method for manufacturing radiation detector
JP2021006832A (en) * 2018-10-31 2021-01-21 浜松ホトニクス株式会社 Manufacturing method of radiation detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090145B1 (en) 2020-12-14 2022-06-23 浜松ホトニクス株式会社 Radiation detector and radiation detector manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182870A (en) * 1987-01-26 1988-07-28 Nippon Mining Co Ltd Laminated radiation detection element
WO2000003266A1 (en) * 1998-07-09 2000-01-20 Mitsubishi Denki Kabushiki Kaisha Radiation detector
JP2004125524A (en) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd Radiation detector
JP2005106806A (en) * 2004-07-02 2005-04-21 Hitachi Ltd Nuclear medicine diagnosis system
JP2006080206A (en) * 2004-09-08 2006-03-23 Toshiba Corp Radiation detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182870A (en) * 1987-01-26 1988-07-28 Nippon Mining Co Ltd Laminated radiation detection element
WO2000003266A1 (en) * 1998-07-09 2000-01-20 Mitsubishi Denki Kabushiki Kaisha Radiation detector
JP2004125524A (en) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd Radiation detector
JP2005106806A (en) * 2004-07-02 2005-04-21 Hitachi Ltd Nuclear medicine diagnosis system
JP2006080206A (en) * 2004-09-08 2006-03-23 Toshiba Corp Radiation detector

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664613B2 (en) 2010-03-10 2014-03-04 Hitachi, Ltd. Radiation measurement device and nuclear medicine diagnosis system
JP2012167938A (en) * 2011-02-10 2012-09-06 Hitachi Ltd Radiation measuring device and nuclear medicine diagnostic apparatus using the same
US9223030B2 (en) 2011-02-10 2015-12-29 Hitachi, Ltd. Radiation detection equipment and nuclear medicine diagnosis device
WO2013111844A1 (en) * 2012-01-27 2013-08-01 株式会社日立製作所 Semiconductor radiation detector and nuclear medical diagnosis device
JP2013156048A (en) * 2012-01-27 2013-08-15 Hitachi Ltd Semiconductor radiation detector and nuclear medicine diagnosis device
CN104081225A (en) * 2012-01-27 2014-10-01 株式会社日立制作所 Semiconductor radiation detector and nuclear medical diagnosis device
WO2015076033A1 (en) * 2013-11-21 2015-05-28 日立アロカメディカル株式会社 Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element
JP2015102340A (en) * 2013-11-21 2015-06-04 日立アロカメディカル株式会社 Radiation detecting element and radiation detector including the same, nuclear medicine diagnostic apparatus, and method for manufacturing radiation detecting element
CN105874353A (en) * 2013-11-21 2016-08-17 株式会社日立制作所 Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element
EP3073291A4 (en) * 2013-11-21 2017-08-23 Hitachi, Ltd. Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element
US10782427B2 (en) 2016-07-11 2020-09-22 Hamamatsu Photonix K.K. Radiation detector having an alloyed electrode
WO2018012209A1 (en) * 2016-07-11 2018-01-18 浜松ホトニクス株式会社 Radiation detector
CN107850683A (en) * 2016-07-11 2018-03-27 浜松光子学株式会社 Radiation detector
KR101886596B1 (en) * 2016-07-11 2018-08-07 하마마츠 포토닉스 가부시키가이샤 Radiation detector
CN110133707A (en) * 2016-07-11 2019-08-16 浜松光子学株式会社 Radiation detector
US11555934B2 (en) 2016-07-11 2023-01-17 Hamamatsu Photonics K.K. Radiation detector
US11307315B2 (en) 2016-07-11 2022-04-19 Hamamatsu Photonics K.K. Radiation detector
JP2018009801A (en) * 2016-07-11 2018-01-18 浜松ホトニクス株式会社 Radiation detector
US10859717B2 (en) 2016-07-11 2020-12-08 Hamamatsu Photonics K.K. Radiation detector
JP2018021937A (en) * 2017-11-08 2018-02-08 浜松ホトニクス株式会社 Radiation detector
JP2021006832A (en) * 2018-10-31 2021-01-21 浜松ホトニクス株式会社 Manufacturing method of radiation detector
WO2020100467A1 (en) * 2018-11-12 2020-05-22 浜松ホトニクス株式会社 Radiation detector and method for producing same
JP7051928B2 (en) 2020-04-06 2022-04-11 浜松ホトニクス株式会社 How to manufacture a radiation detector
JP2020115150A (en) * 2020-04-06 2020-07-30 浜松ホトニクス株式会社 Method for manufacturing radiation detector

Also Published As

Publication number Publication date
JP5083964B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5083964B2 (en) Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus
He et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals
JP6381638B2 (en) Semiconductor scintillation detector
Liu et al. Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy
Stoumpos et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection
Hitomi et al. Recent development of TlBr gamma-ray detectors
Luo et al. A review on X-ray detection using nanomaterials
JP5155808B2 (en) Semiconductor radiation detector and nuclear medicine diagnostic equipment
JP2010527453A (en) Direct conversion radiation detector with sensitivity to energy
US9632190B2 (en) Neutron imaging systems utilizing lithium-containing semiconductor crystals
Hitomi et al. TlBr capacitive Frisch grid detectors
Kim et al. Thallium bromide gamma-ray spectrometers and pixel arrays
Egarievwe et al. Optimizing CdZnTeSe Frisch-grid nuclear detector for gamma-ray spectroscopy
WO2018017909A2 (en) Inorganic ternary halide semiconductors for hard radiation detection
WO2015076033A1 (en) Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element
Hitomi et al. TlBr gamma-ray spectrometers using the depth sensitive single polarity charge sensing technique
JP6243578B1 (en) Direct conversion radiation detector
JP2003344548A (en) Radiation detector
Onodera et al. Fabrication of indium iodide X-and gamma-ray detectors
Kargar et al. Design of capacitive Frisch grid TlBr detectors for radionuclide identification
Lin et al. Purification and improved nuclear radiation detection of Tl6SI4 semiconductor
Lintereur et al. Iodine based compound semiconductors for room temperature gamma-ray spectroscopy
Nogami et al. Reversible capacitive Frisch grid TlBr detectors
JP2005523438A (en) Position-sensitive germanium detector with microstructure on both contact surfaces
Tan et al. Characterization of solution grown 3D polycrystalline methylammonium lead tribromide for x-ray detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

R150 Certificate of patent or registration of utility model

Ref document number: 5083964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250