WO2000001153A1 - Procede et dispositif permettant d'assurer la transmission d'images - Google Patents

Procede et dispositif permettant d'assurer la transmission d'images Download PDF

Info

Publication number
WO2000001153A1
WO2000001153A1 PCT/SE1999/001024 SE9901024W WO0001153A1 WO 2000001153 A1 WO2000001153 A1 WO 2000001153A1 SE 9901024 W SE9901024 W SE 9901024W WO 0001153 A1 WO0001153 A1 WO 0001153A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
receiver
bit stream
regions
psl
Prior art date
Application number
PCT/SE1999/001024
Other languages
English (en)
Inventor
Magnus JÄNDEL
Mathias Larsson
Charilaos Christopoulos
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to AU48120/99A priority Critical patent/AU753304B2/en
Priority to JP2000557619A priority patent/JP2002519953A/ja
Priority to CA002335022A priority patent/CA2335022A1/fr
Priority to EP99931683A priority patent/EP1106014A1/fr
Priority to KR1020007013975A priority patent/KR20010052710A/ko
Publication of WO2000001153A1 publication Critical patent/WO2000001153A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/37Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability with arrangements for assigning different transmission priorities to video input data or to video coded data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets

Definitions

  • the present invention relates to a method and to arrangement for coding and extracting regions of interest (ROI) in the transmission of still images and video images.
  • the method and the arrangement are particularly well suited for transform- based coders, such as wavelets and DCT.
  • the image In transmission of digitized still images from a transmitter to a receiver, the image is usually coded in order to reduce the amount of bits required for transmitting the image.
  • bit quantity is usually reduced, because the capacity of the channel used is limited.
  • a digitized image however, consists of a very large number of bits.
  • transmission times will be unacceptably long for the majority of applications if it is necessary to transmit every bit of the image.
  • Lossless methods i.e. methods exploiting the redundancy in the image in such manner as to enable the image to be reconstructed by the receiver without loss of information.
  • Lossy methods i.e. methods that exploit the fact that not all bits are equally as important to the receiver.
  • the image received is not identical to the original but looks sufficiently like the original image to the human eye, for instance.
  • certain parts of the transmitted image are of more interest than the remainder of the image, and better visual quality of these parts of the image is therefore desired.
  • a part is usually called the region of interest (ROI).
  • ROI region of interest
  • Applications in which this can be useful include, for example, medical databases or the transmission of satellite images.
  • the present invention addresses the aforesaid problem of defining and transmitting regions of interest and background regions of mutually different qualities in the transmission of images.
  • the basic concept of the invention in solving the problem is to transform the image and to define in said transform a mask that corresponds to the regions of interest and to the background regions.
  • the region definition and the image transform are transmitted to a receiver capable of recreating the image with the quality desired in the predetermined regions.
  • the solution involves dividing the image into the desired regions.
  • the image is then transformed to some type of transform coefficients.
  • a mask corresponding to the separate regions in the image is defined in the transform domain and the coefficients classified and assigned to different segments in accordance with the mask definition.
  • the segments thus belong to the corresponding regions in the image.
  • the segments and the coefficients are transmitted in a compressed state to a receiver that is capable of reproducing regions in the image on the one hand and of reproducing the actual image on the other hand with the desired image quality in the various regions.
  • One advantage afforded by the invention is that several different regions of interest can be defined.
  • Another advantage is that different regions can have several different degrees of image quality. Still another advantage is that only those parts of the image that are of vital interest to the user need be decoded, while avoiding decoding of the whole of the image.
  • Figure 1 is a block schematic illustrating an inventive arrangement.
  • Figure 2 is a flow chart illustrating part of an inventive method.
  • Figure 3 is a flow chart illustrating a further part of an inventive method.
  • Figure 4 is a diagram illustrating classification of transform coefficients.
  • Figure 5 is a diagram for interlinking image segments in a bit stream.
  • Figure 6 is a view of an image with object.
  • Figure 7 is a graphic representation of the topology in Figure 6. DESCRIPTION OF PREFERRED EMBODIMENTS
  • Figure 1 is an overview of an arrangement for coding and transmitting images.
  • An image 3 of an object is stored in digital form in a digital camera 1, and the image presented on a screen 4.
  • the screen is connected to a computer 2 which is programmed to divide the image 3 into objects or regions, of which a background region RI and regions of interest RI and Rn are shown.
  • An image coder 5 in the computer 2 wavelet- transforms the image, while simultaneously compressing the image, and generates a compressed bit stream PS1.
  • An operator at the image screen 4 defines the regions of interest R2 and Rn.
  • the image coder includes means for creating a mask PS2 in accordance with the regions and defines separate parts, segments, of the bit streams with respect to the corresponding regions RI, R2 and Rn, with the aid of said mask.
  • the definition also enables the regions RI, R2 , Rn in the form of said separate segments in the bit stream PS1 to be coded to different degrees of accuracy.
  • a transmitter 6 sends the bit stream, including the definition of the positions and shapes of the regions R2 and Rn to a receiver 7 which is connected to a computer that includes an image decoder 8.
  • the decoder decodes the bit stream PS1 and reproduces the mask definition PS2 and presents the image on an image display screen 9.
  • the accuracy of the background RI is relatively poor, whereas each of the regions R2 and Rn has respectively a higher degree of accuracy.
  • a segment is defined here as all of the coefficients in the transform domain that belong to a given object or the background in the image. The segment can then be divided further into subsets.
  • a subset is defined here as a number of coefficients in a part of the transform domain (e.g. a subband in the case of the wavelet transform) which is required for the reconstruction and which belongs to a segment in the digitized image, see Figure 4.
  • the coefficients are classified and can be assigned to individual segments.
  • the segments are coded independently of one another to different levels of accuracy, which yields a bit stream for each segment. These segments are then joined together.
  • the inventive encoding method will be described with reference to Figure 2.
  • the digitized image 3 to be transmitted presents the background RI and the regions of interest R2 and Rn.
  • the following procedural steps are carried out:
  • step 21 Perform a transformation of the image 3 according to step 21.
  • this transformation is performed with a wavelet transform or with a discrete cosine transform (DCT) .
  • DCT discrete cosine transform
  • step 2 Create a mask according to step 2 with the aid of information as to how the digitized image 3 shall be divided into the background RI and the objects R2 and Rn.
  • the techniques described in Swedish Patent Applications SE 9703690-9 and SE 9800088-8 can be used to this end.
  • the mask is created in the transform domain and describes which coefficients are required to reconstruct the different objects or the background. Different segments SGI, SG2 and SGn correspond to the background RI and the objects R2 and Rn.
  • step 24 Code the segments independently of one another, according to step 24. This gives the number of bits needed for each subset.
  • step 26 Concatenate the subset streams together with necessary substream information and header information, according to step 26. This requires a bit stream description, given below.
  • the method enables the receiver to have immediate access to any parts of the image when so desired, as shown in Figure 3. This is possible because the information as to where different parts are found in the bit stream is known.
  • step 32 Find and decode the required segment information
  • a pointer is a set of symbols that defines the position of a bit or a byte in a bit stream or a file. Many ways of defining a pointer have been defined in computer science. Any one of these methods can be used here. A pointer can be defined implicitly by a specific bit stream composition rule. A pointer can be defined relative to an explicitly or implicitly determined position. A simple way of defining a pointer is to determine the number of bits between the requested position and a known reference point, such as the first bit in the bit stream, for instance.
  • the topology descriptor, TOP is a set of symbols that defines the topological relationship between numbered objects and shapes. This is illustrated in Figure 6, in which four objects 01, 02, 03, 04 and four shapes SI, S2, S3 and S4 are shown.
  • the topology of the image can be represented, e.g., as a tree graph as shown in Figure 7.
  • the nodes and the edges of the tree graph can be coded in a data structure using well known methods.
  • P_T0P is a pointer to a topology descriptor.
  • a shape descriptor, Si defines the appearance of a closed boundary line of an object.
  • the shape number, i is given by a topology descriptor.
  • Many different shape coding techniques can be used. Examples of such methods are chain coding and shape coding methods in MPEG-4.
  • Shape descriptors can be decoded independently of one another once their respective positions in the bit stream is known.
  • P_Si is a pointer to a shape descriptor.
  • a segment descriptor, Ti is a compressed set of symbols that encode a segment as described above.
  • the segment includes an ordered set of subsets.
  • the object number, i is given by a topology descriptor.
  • P_Ti is a pointer to a segment descriptor.
  • a subset descriptor, B ;j is an independently decodable subset, j , of a segment descriptor, T A , which describes, e.g., the coefficients that belong to a given subband, j , as described above.
  • p_B ij is a pointer to a subset descriptor.
  • segment descriptors ⁇ i r T , T k ... ⁇
  • MT data structure
  • p_MT is a pointer to a multiplexed segment descriptor.
  • MT(i, j ,k) ⁇ B i0 , B j0 , B k0 , B il r B jX , B kl , B i2 , B j2 , B k2 ... ⁇
  • the order of the symbols corresponds to the order in the bit stream 51, with symbols on the left being sent first. Subsets in a multiplexed stream may be excluded if they are known by the decoder.
  • the stored bit stream or file structure should preferably include at least the following components:
  • a group of segment descriptors with index ⁇ k,l,m... ⁇ can optionally be replaced with a multiplexed segment descriptor MT(k, l,m... ) N is the number of stored objects.
  • the background is the object with index 0.
  • a server receives a request for sending image data to a client.
  • the image is stored with the server in the format described in the preceding passage.
  • Part of the stored data structures may have already been sent to the receiving terminal.
  • This section of the description describes a procedure for composing a bit stream with the server that handles the request.
  • a simple request contains the following information:
  • TOP is sent in response to a first request for image information.
  • Subset descriptors that describe the objects requested to the defined accuracy.
  • Subset descriptors that are already known to the decoder need not be sent. For instance, the user is aware of the subsets ⁇ B k0 , B kl , B k2 , B k3 ⁇ belonging .to segment k .
  • Subset descriptors ⁇ B k5 , B k6 , B k7 ⁇ must be sent when object k is requested to accuracy 7.
  • the original image is transformed with a wavelet transform.
  • a mask is then created in the transform domain.
  • This mask describes the coefficients that are required in the transform domain in order to reconstruct the region R52 and the background R53.
  • the created mask is then used to classify the coefficients in the transform domain in two segments, one segment for the region and one segment for the background.
  • the two segments are built up by a number of subsets. In the illustrated case, the number of subsets is the same as the number of subbands in the transform domain. The situation on hand is thus:
  • a shape descriptor T r ⁇ B r#0 ,B r/1 , ... ,B r/no _ subbands ⁇ and a set of subset pointers ⁇ p_B r/0 ,p_B r/1 , ... ,p_B rrno _ subbands ⁇ .
  • a segment descriptor T b ⁇ B b/0 ,B b/1 , ... ,B b , no _ subbands ⁇ and a set of subset pointers ⁇ p_B b#0 ,B b
  • bit stream 51 4.
  • the subsets are combined in the manner shown in the upper part of Figure 5, with the sub-bit streams 52 of the region being taken alternately with the sub-bit streams of the background.
  • the TOP field is not required when the receiver is aware of the order in which the various parts of the image are set.
  • the combined bit stream is then sent to the receiver.
  • the decoder is now able to create the same mask as that described above.
  • the decoder creates the segments with the underlying subsets .
  • the decoder commences with decoding the combined bit stream and filling in the transmitted transform coefficients in the corresponding subsets.
  • the image is transmitted and reconstructed.
  • the aforedescribed is one way of using the proposed method.
  • Other methods may be to combine (mix) the bit streams in another way. For instance, as shown in the bottom part of Figure 5, the region R52 may be transmitted first, followed by the background R53.
  • Another example is one in which more than one region is found, as described with reference to Figure 6, wherewith these regions are combined in a number of different ways.
  • the proposed method has the added advantage of enabling shape information to be sent only when needed.

Abstract

L'invention concerne la transmission d'une image (3) numérisée sur une voie reliant un émetteur à un récepteur. Cette voie de transmission est limitée en largeur de bande. L'image a un fond moins important (R1) ainsi que des zones d'importance particulière, c'est-à-dire des zones d'intérêt (R2, Rn). L'image est convertie en coefficients de transformation et comprimée (21), et un masque correspondant à l'ensemble des zones (R1, R2, Rn) est défini dans le domaine de transformation (22). Les coefficients susmentionnés sont classés (23) et affectés à différents segments (SG1, SG2, SGn), conformément à la définition du masque. Lesdits segments (24) sont codés indépendamment les uns des autres, à différents degrés de précision, selon l'importance de chacune des zones correspondantes (R1, R2, Rn) dans l'image (3). Le codage a pour effet d'établir des flux binaires secondaires (25) assemblés entre eux (26) avec l'en-tête d'image (271, 272), de manière à former un flux binaire (27) destiné à être transmis au récepteur. Le récepteur décode l'en-tête d'image et l'information de segment, puis il reconstruit le masque dans le domaine de transformation, y compris les formes et les positions des différentes zones (R1, R2, Rn). Ensuite, l'image est recréée par l'intermédiaire du masque, aux degrés de précision voulus dans les zones respectives. Il est possible de définir plusieurs zones (R2, Rn) correspondant à différents degrés de qualité d'image, et la nécessité d'un décodage s'applique seulement aux parties de l'image qui font l'objet d'un intérêt.
PCT/SE1999/001024 1998-06-18 1999-06-10 Procede et dispositif permettant d'assurer la transmission d'images WO2000001153A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU48120/99A AU753304B2 (en) 1998-06-18 1999-06-10 Method and apparatus in transmission of images
JP2000557619A JP2002519953A (ja) 1998-06-18 1999-06-10 画像の転送方法及び装置
CA002335022A CA2335022A1 (fr) 1998-06-18 1999-06-10 Procede et dispositif permettant d'assurer la transmission d'images
EP99931683A EP1106014A1 (fr) 1998-06-18 1999-06-10 Procede et dispositif permettant d'assurer la transmission d'images
KR1020007013975A KR20010052710A (ko) 1998-06-18 1999-06-10 이미지 전송 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9802193A SE521021C2 (sv) 1998-06-18 1998-06-18 Förfarande och anordning vid överförande av bilder
SE9802193-4 1998-06-18

Publications (1)

Publication Number Publication Date
WO2000001153A1 true WO2000001153A1 (fr) 2000-01-06

Family

ID=20411773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1999/001024 WO2000001153A1 (fr) 1998-06-18 1999-06-10 Procede et dispositif permettant d'assurer la transmission d'images

Country Status (8)

Country Link
EP (1) EP1106014A1 (fr)
JP (1) JP2002519953A (fr)
KR (1) KR20010052710A (fr)
CN (1) CN1135848C (fr)
AU (1) AU753304B2 (fr)
CA (1) CA2335022A1 (fr)
SE (1) SE521021C2 (fr)
WO (1) WO2000001153A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094991A (ja) * 2000-09-19 2002-03-29 Mega Chips Corp 関心領域符号化方法
JP2002325754A (ja) * 2001-04-27 2002-11-12 Canon Inc 画像処理方法および装置
EP1287493A1 (fr) * 2000-05-29 2003-03-05 Canon Kabushiki Kaisha Procede permettant d'assurer une compatibilite de format de fichier
EP1287485A1 (fr) * 2000-04-25 2003-03-05 Hewlett-Packard Company Compression de sequences d'images representant des zones codees independamment
WO2003036985A1 (fr) * 2001-10-19 2003-05-01 Hewlett-Packard Company Transmission d'image pour bande passante etroite avec region d'interet
EP1329847A1 (fr) * 2002-01-10 2003-07-23 Ricoh Company, Ltd. Traitement selon l'en-tête d'images comprimées, avec utilisation de transformées à échelle variable
EP1405268A1 (fr) * 2001-07-10 2004-04-07 France Telecom Procede de codage par ondelettes d'un objet maille
US7720295B2 (en) 2004-06-29 2010-05-18 Sanyo Electric Co., Ltd. Method and apparatus for coding images with different image qualities for each region thereof, and method and apparatus capable of decoding the images by adjusting the image quality
US8005309B2 (en) 2004-02-09 2011-08-23 Sanyo Electric Co., Ltd. Image coding apparatus, image decoding apparatus, image display apparatus and image processing apparatus
US8150173B2 (en) 2004-10-29 2012-04-03 Sanyo Electric Co., Ltd. Image coding method and apparatus, and image decoding method and apparatus
EP2666296A1 (fr) * 2011-01-19 2013-11-27 Telefonaktiebolaget LM Ericsson (PUBL) Indication de sous-ensembles de flux de bits
JP2015144929A (ja) * 2015-05-19 2015-08-13 キヤノン株式会社 画像処理方法および装置
WO2017112415A1 (fr) * 2015-12-22 2017-06-29 Intel Corporation Écran sans fil en mosaïques

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426221A (zh) * 2002-12-27 2003-06-25 王锡宁 三维通讯机
JP2005223852A (ja) * 2004-02-09 2005-08-18 Sanyo Electric Co Ltd 画像符号化装置および方法、ならびに画像復号装置および方法
EP1830573A1 (fr) * 2006-03-02 2007-09-05 Thomson Licensing Procédé et appareil de détermination, dans une image, du signal codant l'affectation des bits pour des groupes de blocs de pixels dans une image
CN101309259B (zh) * 2008-06-24 2012-07-11 广东威创视讯科技股份有限公司 一种分布式图像显示方法
CN102438144B (zh) * 2011-11-22 2013-09-25 苏州科雷芯电子科技有限公司 视频传输方法
GB2507127B (en) * 2012-10-22 2014-10-08 Gurulogic Microsystems Oy Encoder, decoder and method
US10514541B2 (en) 2012-12-27 2019-12-24 Microsoft Technology Licensing, Llc Display update time reduction for a near-eye display
CN106060544B (zh) * 2016-06-29 2020-04-28 华为技术有限公司 一种图像编码方法、相关设备及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757974A (en) * 1996-04-15 1998-05-26 The United States Of America As Represented By The Secretary Of The Navy System and method for data compression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757974A (en) * 1996-04-15 1998-05-26 The United States Of America As Represented By The Secretary Of The Navy System and method for data compression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIGNORONI A. ET AL: "Progressive ROI Coding and Diagnostic Quality for Medcal Image Compression", SPIE, vol. 3309, January 1998 (1998-01-01), pages 674 - 685, XP002919926 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287485A1 (fr) * 2000-04-25 2003-03-05 Hewlett-Packard Company Compression de sequences d'images representant des zones codees independamment
JP2003532316A (ja) * 2000-04-25 2003-10-28 ヒューレット・パッカード・カンパニー 独立コード化領域を特徴とする画像シーケンス圧縮
JP4777583B2 (ja) * 2000-04-25 2011-09-21 ヒューレット・パッカード・カンパニー 独立コード化領域を特徴とする画像シーケンス圧縮
EP1287485A4 (fr) * 2000-04-25 2006-06-28 Hewlett Packard Co Compression de sequences d'images representant des zones codees independamment
EP1287493A4 (fr) * 2000-05-29 2006-08-16 Canon Kk Procede permettant d'assurer une compatibilite de format de fichier
EP1287493A1 (fr) * 2000-05-29 2003-03-05 Canon Kabushiki Kaisha Procede permettant d'assurer une compatibilite de format de fichier
JP4701448B2 (ja) * 2000-09-19 2011-06-15 株式会社メガチップス 関心領域符号化方法
JP2002094991A (ja) * 2000-09-19 2002-03-29 Mega Chips Corp 関心領域符号化方法
JP2002325754A (ja) * 2001-04-27 2002-11-12 Canon Inc 画像処理方法および装置
EP1405268A1 (fr) * 2001-07-10 2004-04-07 France Telecom Procede de codage par ondelettes d'un objet maille
US6882755B2 (en) 2001-10-19 2005-04-19 Hewlett-Packard Development Company, L.P. Image transmission for low bandwidth with region of interest
WO2003036985A1 (fr) * 2001-10-19 2003-05-01 Hewlett-Packard Company Transmission d'image pour bande passante etroite avec region d'interet
US7428338B2 (en) 2002-01-10 2008-09-23 Ricoh Co., Ltd. Header-based processing of images compressed using multi-scale transforms
US7536056B2 (en) 2002-01-10 2009-05-19 Ricoh Co., Ltd. Header-based processing of images compressed using multi-scale transforms
US7548654B2 (en) 2002-01-10 2009-06-16 Ricoh Co., Ltd. Header-based scaling and cropping of images compressed using multi-scale transforms
EP1329847A1 (fr) * 2002-01-10 2003-07-23 Ricoh Company, Ltd. Traitement selon l'en-tête d'images comprimées, avec utilisation de transformées à échelle variable
US8184918B2 (en) 2002-01-10 2012-05-22 Ricoh Co., Ltd. Header-based processing of images compressed using multi-scale transforms
US8326058B2 (en) 2004-02-09 2012-12-04 Sanyo Electric Co., Ltd. Image coding apparatus, image decoding apparatus, image display apparatus and image processing apparatus
US8005309B2 (en) 2004-02-09 2011-08-23 Sanyo Electric Co., Ltd. Image coding apparatus, image decoding apparatus, image display apparatus and image processing apparatus
US7720295B2 (en) 2004-06-29 2010-05-18 Sanyo Electric Co., Ltd. Method and apparatus for coding images with different image qualities for each region thereof, and method and apparatus capable of decoding the images by adjusting the image quality
US8150173B2 (en) 2004-10-29 2012-04-03 Sanyo Electric Co., Ltd. Image coding method and apparatus, and image decoding method and apparatus
US8208738B2 (en) 2004-10-29 2012-06-26 Sanyo Electric Co., Ltd. Image coding method and apparatus, and image decoding method and apparatus
EP2666296A1 (fr) * 2011-01-19 2013-11-27 Telefonaktiebolaget LM Ericsson (PUBL) Indication de sous-ensembles de flux de bits
EP2666296A4 (fr) * 2011-01-19 2013-12-25 Ericsson Telefon Ab L M Indication de sous-ensembles de flux de bits
JP2014509114A (ja) * 2011-01-19 2014-04-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ビットストリームサブセットの指示
US9143783B2 (en) 2011-01-19 2015-09-22 Telefonaktiebolaget L M Ericsson (Publ) Indicating bit stream subsets
KR101560956B1 (ko) * 2011-01-19 2015-10-15 텔레폰악티에볼라겟엘엠에릭슨(펍) 비트스트림 서브세트 표시
US9485287B2 (en) 2011-01-19 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Indicating bit stream subsets
JP2015144929A (ja) * 2015-05-19 2015-08-13 キヤノン株式会社 画像処理方法および装置
WO2017112415A1 (fr) * 2015-12-22 2017-06-29 Intel Corporation Écran sans fil en mosaïques

Also Published As

Publication number Publication date
AU753304B2 (en) 2002-10-17
CN1135848C (zh) 2004-01-21
AU4812099A (en) 2000-01-17
KR20010052710A (ko) 2001-06-25
SE521021C2 (sv) 2003-09-23
CA2335022A1 (fr) 2000-01-06
SE9802193L (sv) 1999-12-19
JP2002519953A (ja) 2002-07-02
CN1305684A (zh) 2001-07-25
EP1106014A1 (fr) 2001-06-13
SE9802193D0 (sv) 1998-06-18

Similar Documents

Publication Publication Date Title
WO2000001153A1 (fr) Procede et dispositif permettant d'assurer la transmission d'images
US5881176A (en) Compression and decompression with wavelet style and binary style including quantization by device-dependent parser
US5966465A (en) Compression/decompression using reversible embedded wavelets
AU2002215709B2 (en) Method and apparatus for scalable compression of video
Muthukumaran et al. The performances analysis of fast efficient lossless satellite image compression and decompression for wavelet based algorithm
CN100511282C (zh) 数据压缩
KR100550105B1 (ko) 화상 압축 및 복원 방법 및 장치
US6345126B1 (en) Method for transmitting data using an embedded bit stream produced in a hierarchical table-lookup vector quantizer
CN1254977C (zh) 具有细粒度可调节性的视频系统和方法
JPH09139940A (ja) 終端間伸縮可能なビデオデリバリシステム用デコーダ
CN103841424B (zh) 随机存取存储器中压缩数据的系统及方法
WO1999008449A1 (fr) Codage et decodage de signaux
KR100959837B1 (ko) 패러미터 값들을 코드워드 인덱스들로 매핑하기 위한최적의 방법 및 시스템
KR20060106930A (ko) 이미지 압축 복원 장치 및 방법
EP1175785A1 (fr) Acheminement en reseau de fichiers supports profiles vers des clients
ES2351880T3 (es) Codificación y decodificación sensibles al contexto de un flujo de datos de vídeo.
JP3466080B2 (ja) デジタルデータの符号化/復号化方法及び装置
EP1095519B1 (fr) Codage d'image agrandissable base sur la region
Liang The predictive embedded zerotree wavelet (PEZW) coder: Low complexity image coding with versatile functionality
Al-Janabi Highly scalable single list set partitioning in hierarchical trees image compression
EP1465350A2 (fr) Quantificateurs scalaires intégrés à description multiple pour transmission progressive d'image
Pawadshetty et al. JPEG 2000 region of interest coding methods
Minas et al. Compression of an AVI video file using fractal system
CN111264062A (zh) 编码器、编码系统和编码方法
KR19990037963A (ko) 웨이브릿 기반의 소프트웨어 부호화기 및 복호화기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807481.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007013975

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2335022

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09719709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999931683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 48120/99

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999931683

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013975

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 48120/99

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007013975

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999931683

Country of ref document: EP