WO1999067394A1 - Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation - Google Patents

Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation Download PDF

Info

Publication number
WO1999067394A1
WO1999067394A1 PCT/JP1999/003380 JP9903380W WO9967394A1 WO 1999067394 A1 WO1999067394 A1 WO 1999067394A1 JP 9903380 W JP9903380 W JP 9903380W WO 9967394 A1 WO9967394 A1 WO 9967394A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna virus
vector
hcv
dna
pcr
Prior art date
Application number
PCT/JP1999/003380
Other languages
English (en)
French (fr)
Inventor
Michinori Kohara
Kyoko Kohara
Kazunari Taira
Junichi Matsuzaki
Hiroshi Ohmori
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to CA002330837A priority Critical patent/CA2330837C/en
Priority to EP99926798A priority patent/EP1090996A4/en
Priority to AU43932/99A priority patent/AU761012B2/en
Priority to US09/720,201 priority patent/US6524853B1/en
Publication of WO1999067394A1 publication Critical patent/WO1999067394A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a vector capable of expressing a full-length gene of an RNA virus, an animal cell and an animal model of an RNA virus infection containing the vector, and a drug screening method using the cell and the model animal. These are useful for elucidation of the mechanism of RNA virus replication and the pathogenesis of RNA virus infection, and the development of therapeutics and therapeutic means.
  • Hepatitis C virus (hereinafter referred to as “HCV”) is the major cause of posttransfusion non-A non-B hepatitis (Saito, I. et al., Pro Natl. Acad. Sci. USA, 87, 6547-). 6549 (1990)), hepatitis due to this virus has a high rate of chronicity and a high rate of progression to cirrhosis and liver cancer. You. The cDNA for this virus was cloned by Choo et al. In 1989 (Choo, Q.-L., et al., Science, 244, 359-362 (1989)) and is a single-stranded RNA virus belonging to the Flaviviridae family.
  • RNA virus genome is produced by transcription from a corresponding cDNA, and a virus is produced through protein synthesis (Racaniello, VR, Science, 214, 916 (1981), Poliovirus).
  • This method has been vigorously studied by several research groups, but none is as practical as the infectious system described above (Mizuno, M, et al., Gastroenterology, 109, 1933 (1995), Dash, S., et al., Am. J. Pathol., 151, 363 (1997)).
  • An object of the present invention is to construct an expression system that produces a full-length virus genome, and to establish an expression system that is closer to the original virus replication. Establishing model animals. Means for solving the problem
  • the present inventors succeeded in constructing a vector capable of expressing a full-length RNA virus gene, and further established a cell line incorporating the vector, The invention has been completed.
  • a first aspect of the present invention is a vector containing a cDNA encoding an RNA virus gene.
  • a vector characterized in that it is constructed so that both ends of the RNA virus gene can be accurately and uniformly transcribed.
  • a second aspect of the present invention is an animal cell comprising the vector described above.
  • a third aspect of the present invention is an RNA virus-infected model animal, which comprises the above-mentioned vector in its cell.
  • a fourth aspect of the present invention is a method for screening a drug that inhibits the replication of an RNA virus using the above animal cell or the above animal model infected with RNA virus.
  • This description includes part or all of the contents as disclosed in the description and Z or drawings of Japanese Patent Application (No. 10-177820), which is a priority document of the present application.
  • the vector of the present invention is a vector containing a cDNA encoding an RNA virus gene, which is constructed so that both ends of the RNA virus gene can be accurately and uniformly transcribed. Is what you do.
  • both ends can be accurately transcribed means that the RNA produced from the cDNA is identical to the original genomic RNA of the virus or has a nucleotide sequence difference that does not affect the translation ability. No, that means.
  • both ends can be transcribed uniformly means that RNA having a specific base sequence can be produced with a certain degree of reproducibility.
  • RNA virus examples include polio, koxsacki, picornaviruses such as echovirus, reovirus, togavirus including flaviviruses such as HCV, ortho, paramyxovirus, coronavirus, and tapacovirus.
  • examples include plant RNA viruses such as mosaic virus, but are not limited thereto.
  • Preferred RNA viruses include HCV.
  • Means for accurately and evenly transcribing both ends of an RNA virus gene include upstream of the 5 'end and downstream of the 3' end of the cDNA encoding the RNA virus gene.
  • a method for arranging a DNA encoding a ribozyme to be cleaved by self-processing can be exemplified, but the method is not limited thereto.
  • Ribozymes cleaved by self-processing include hepatitis delta virus
  • HDV Hepatitis Delta Virus
  • Ribozyme, hammerhead ribozyme, hairpin ribozyme, human elibozyme obtained by in vitro and in vivo selection and the like can be exemplified.
  • the nucleotide sequence of each ribozyme is described in Eiko Otsuka et al., Protein 'Nucleic Acid' Enzyme 40, 1400 (1995).
  • HDV ribozymes are described in Suh, YA., Et al., Nucleic Acids Research, 20, 747 (1992)
  • hammerhead ribozymes are described in Shimayama, T., et al., Biochemistry, 34, 3649 (1995).
  • the DNA encoding the ribozyme to be arranged in the vector can be determined according to the type and base sequence of the RNA virus to be used with reference to the common base sequence described in these documents. For example, in the case of HCV, a DNA encoding a hammerhead ribozyme at the 5 'end (specific sequence ⁇ ) and a DNA encoding an HDV ribozyme at the 3' end (specific sequence) Y) is mentioned as a preferable example.
  • the vector of the present invention comprises a DNA fragment containing two DNAs encoding a ribozyme as described above and a DNA encoding an RNA virus, which are prepared by PCR or the like, and this DNA fragment is treated with an appropriate promoter and terminator. It can be produced by importing the vector containing it.
  • the vector of the present invention may be one that can be expressed immediately after being transferred into a host cell, but it is more preferable that the vector be started to be expressed only by a specific treatment.
  • Means for initiating expression by specific treatment include means using a promoter that is not recognized by the host cell RNA polymerase, Cre / lox expression system (Nat J. Molecular Biol ogy 150. P467-486, Japanese Patent Application Laid-Open No. 10-84813).
  • expression of a target gene can be initiated by expressing in a host cell an RNA polymerase capable of recognizing a promoter in a vector.
  • expression of the target gene can be started by expressing the Cre enzyme in the host cell.
  • the animal cell of the present invention is characterized by containing the vector of the present invention (first invention).
  • the animal cell of the present invention can be prepared by transferring the vector of the present invention into an animal cell as a host.
  • host animal cells IMY, HuH-7, HepG2, M0LT-4, MT-2, Daudi, primary liver cells, other hepatocytes, cells or cell lines derived from hematopoietic cells can be used. Yes, but not limited to.
  • the method of transferring the vector into the host is, for example, a force that can be exemplified by the Lipofection on Reagant method. However, the method is not limited to this.
  • RNA virus-infected model animal of the present invention is characterized in that its cell contains the vector of the present invention (the first invention).
  • RNA virus-infected model animal of the present invention is obtained by transferring the vector of the present invention to a fertilized egg, transplanting the fertilized egg into a foster parent, obtaining an animal derived from the fertilized egg, and obtaining an RNA virus incorporated therein. It can be prepared by selecting individuals expressing the gene.
  • Transfer to a fertilized egg can be performed according to a conventional method such as a microinjection method.
  • the target animal may be any animal for which a technique for producing a transgenic animal has been established, and may be a mouse, a rat, a heron, a pig, a medaka, a zebrafish, or the like.
  • Selection of an individual expressing the RNA virus gene can be performed, for example, by PCR using primers prepared based on a nucleotide sequence specifically present in the RNA virus gene.
  • Fourth invention Drug screening method
  • the method for screening a drug that inhibits replication of an RNA virus of the present invention is characterized by using the animal cell of the present invention (second invention) or the RNA virus-infected model animal of the present invention (third invention). is there.
  • screening can be performed by adding the target drug to the medium.
  • screening can be performed, for example, by intravenously or orally administering the target drug to the animal.
  • HCV-RNA was extracted from HCV patient serum R6 (genotype lb) by the AGPC method (Chomczynsky. P. et al., Anal. Biochem., 162, 156 (1987)), and Superscript II (Gibco- CDNA was synthesized using the BRL) kit.
  • Patient serum R6 is infectious for chimpanzees (at present, no infectivity has been confirmed for other experimental animals), its titer is 10-4.5 CID50 and its PCR titer is 10-8. It is.
  • a primer was designed based on the highly conserved region of the HCV gene sequence (genotype I) published so far, and PCR-amplified with Pfu polymerase (Stratagene). According to a conventional method (Maniatis, T., "Molecular Cloning, 2nd Ed ', CHS Press (1989)), these DNA fragments were subcloned into pBM plasmid (Japanese Patent Laid-Open No. 6-225770), and the nucleotide sequence was determined. Was done.
  • DNA containing the EcoRI site, the Swal site, the Xhol site, the T7 promoter, the hammerhead ribozyme, and the 5'-end (1-45 bp) sequence of HCV was synthesized by PCR.
  • PCR used a two-step method to improve the amplification sensitivity and specificity of the detected DNA. What is the two-step method?
  • the first PCR is performed with two types of primers (1st step PCR).
  • a second PCR is performed using two types of primers existing from both ends of the DNA sequence of the PCR product (2nd step PCR).
  • the base sequence of the PCR primer used is shown below.
  • ESXT7RBZ1 5'-GCC GGA ATT CAT TTA AAT CTC G-3 '(SEQ ID NO: 9)
  • ESXT7RBZ2 5'-GCC GGA ATT CAT TTA AAT CTC GAG TAA TAC GAC TCA CTA TAG GGC TGG CCC CTG ATG AGG CCG AAA GGC CGA AAC GGC G-3 '(SEQ ID NO: 10)
  • ESXT7RBZ3 5'-GGG GAG TGA TCT ATG GTG GAG TGT CGC CCC CAA TCG GGG GCT GGC CCG ACG GCT TTC GCC GTT TCG GCC TTT CG-3 '(SEQ ID NO: 11)
  • ESXT7RBZ4 5 '-GGG GAG TGA TCT ATG GTG G-3' (SEQ ID NO: 12)
  • PCR reaction solution 10X ThermoPol Buf fer in 0.5ml tubes (lOmM KC K 20mM Tr i s -HC 1 pH8.8, lOmM (NH 4) 2 S0 4, 2mM MgS0 4, 0 ⁇ 1% Triton X- 100) 5 ⁇ 1, 20mM dNTP mixture 0.5 ⁇ 1, 10 pmol/Ai 1 template and 1st step primer 2 types (ESXT7RBZ2, ESXT7RBZ3) 51, 2units / 1 vent DNA polymerase (Biolabs) 0.5 ⁇ 1 It was adjusted to 50 t1 with sterile water.
  • PCR was first heated at 96 ° C for 30 seconds, followed by 20 cycles of denaturation at 96 ° C for 30 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 40 seconds.
  • the amplified sequence is shown in SEQ ID NO: 1.
  • This PCR reaction solution was subjected to polyacrylamide gel electrophoresis, and the specifically amplified target fragment was extracted from the gel. Extraction of the target fragment was performed as follows. First, a normal dialysis membrane was set on the gel component side of the chamber, and then a Sartorius dialysis membrane was set on the DNA collecting side. After placing 2xTBE on the outside of chamber 1 of the electroelution apparatus and 0.1xTBE-0.005% SDS on the inside, place the gel containing the cut DNA fragment of interest on the gel component side of chamber 1 Then, several ⁇ 1 TE containing Xylene cyanole was added to the DNA collecting component side.
  • the chamber 1 was removed from the electrophoresis apparatus, and the solution in the chamber 1 was removed until about 300 ⁇ l of the solution remained on the DNA collecting component side. After recovering the remaining 300 ⁇ l of the solution, the DNA collecting component was washed with 100 ⁇ l, and the solution was added to the previous solution. The recovered solution was extracted with phenol and black hole form, precipitated with ethanol, and then dissolved in 101 TE. The extracted part was subjected to polyacrylamide gel electrophoresis, and the concentration was estimated to be 20/1.
  • This PCR product was named ESXT7RBZ PCR product.
  • the amplified sequence is the same as the sequence shown in SEQ ID NO: 1.
  • DNA from the HCV 5 'end to a part of the core region was synthesized by PCR.
  • the sequence of the PCR primer used is shown below.
  • ESXT7RBZ5 5'-CCA CCA TAG ATC ACT CCC C-3, (SEQ ID NO: 13)
  • ESXT7RBZ6 5'-ATG CCC TCG TTG CCA TAG AG-3 '(SEQ ID NO: 14)
  • PCR was performed by heating at 96 ° C for 30 seconds, followed by 20 cycles of denaturation at 96 ° C for 30 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 40 seconds.
  • This PCR reaction solution is agarose gel
  • the target fragments that had been electrophoresed and specifically amplified were extracted from the gel using QIAEX II Agarose Gel Extraction (QIAGEN). Extraction of the target fragment was performed as follows. First, the gel was cut out, three times the volume of QX1 Buffer was added, and then 10 ⁇ l of QIAEX II was added, followed by incubation at 50 ° C for 10 minutes. Shake every 2 minutes to mix QIAEX II.
  • PCR reaction solution 10X ThermoPol Buffer in 0.5ml tubes (lOraM KC and 20mM Tris-HCl pH8.8, lOmM ( NH 4) 2 S0 4, 2mM MgS0 4, 0.1% Triton X-100) a 5 1, 20mM dNTP mixture 0.5 ⁇ 1, lOpmol / ⁇ 1 2 primers (ESXT7RBZ1, ESXT7RBZ6) 2 ⁇ 1 each, 2units / 1 vent DNA polymerase (Biolabs) 0.51, 4ng / ⁇ 1 as template ESXT7RBZ PCR product, 5 '-HCV PCR product was added in ⁇ each, and adjusted to 50 ⁇ with sterile water.
  • the PCR was heated at 96 ° C for 30 seconds, followed by 20 cycles of denaturation at 96 ° C for 30 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 40 seconds.
  • This PCR product was named 5'-ribozyme PCR product.
  • the amplified sequence is shown in SEQ ID NO: 3.
  • 5'-ribozyme PCR product is mixed with 4 times the amount of black mouth form and 3 times the amount of TE buffer.After centrifugation, the aqueous layer is transferred to a 1.5 ml tube, and 2.35 times the amount of 100% ethanol and 1/4 ⁇ of 3M sodium acetate and ⁇ ⁇ of glycogen were added, and ethanol precipitation (_80 ° C, 20 minutes) was performed, and finally dissolved in sterile water.
  • PBM was used as a cloning vector. There is a possibility that mutations are likely to be introduced into the HCV gene during replication, and this is also a concern during cloning. Thus, pBM is a vector constructed to minimize artificial mutations that occur during cloning.
  • PBR322 restriction enzyme The sequence between the EcoRV site and the Ball site is deleted with the restriction enzyme, and the pUC119 multicloning site from the EcoRI site to the Hindi II site is inserted between the EcoRI site and the Hindlll site.
  • 5'-ribozyme PCR product digested with Kpnl and EcoRI and pBM digested with Kpnl and EcoRI and treated with alkaline phosphatase were subjected to agarose gel electrophoresis, and the desired DNA fragment and cloning vector were extracted from the gel (QIAEX II ) And dissolved in sterile water 201. Some of these were subjected to agarose gel electrophoresis, and the concentration of 5'-ribozyme PCR product (DNA fragment) digested with Kpnl and EcoRI was digested with 30 ng / ⁇ l, Kpnl and EcoRI, and then treated with alkaline phosphatase.
  • the pBM (cloning vector) was estimated to be 20 ng / l.
  • Transformants were cultured overnight on LB-Amp plates (1% pactotryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, ampicillin lOO ⁇ g / ml), and colonies that appeared on the plates Each in a 13 ml tube containing 4 ml of LB-Amp medium (1 pactotryptone, 0.5% yeast extract, 1% sodium chloride, 75 g / ml ampicillin) at 37 ° C for 6 hours. Was collected by centrifugation, and plasmid DNA was subjected to mini-preparation using QIAprep Spin Plasmids Kits (manufactured by QIAGEN) to prepare a 20 ⁇ DNA solution.
  • LB-Amp plates 1% pactotryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, ampicillin lOO ⁇ g / ml
  • the mini-preparation was performed as follows. First, 250 ⁇ l of PI Buffer was added to the cell pellet, suspended, and then 250 ⁇ l of ⁇ 2 Buffer was added, mixed, and reacted at room temperature for 5 minutes. Immediately after the reaction, 350 ⁇ l of cold 3 Buffer was added, and the mixture was placed on ice for 5 minutes. After centrifugation, the supernatant was transferred to a QIAprep-spin column, which was placed in a 2 ml microcentrifuge tube, and transferred to the column.
  • the flowthrough fraction was removed, 750 ⁇ l of PE Buffer was added to the QIAprep-spin column for washing, centrifugation was performed, the flowthrough fraction was removed, and centrifugation was performed again to completely remove the PE Buffer.
  • the QIAprep-spin column was transferred to a 1.5 ml tube, an appropriate amount of TE was added, centrifuged, and the plasmid was eluted.
  • DNA containing the 3 'end of HCV gene (9073-9609 bp), HDV ribozyme, Xbal site, Swal site and Hindlll site was synthesized by PCR.
  • the sequence of the PCR primer used is shown below.
  • HDRBZ2 5'-ACA TGA TCT GCA GAG AGG CC- 3 '(SEQ ID NO: 16)
  • HDRBZ3 5'- GGC CTC TCT GCA GAT CAT GTG GCC GGC ATG GTC CCA G-3 '(SEQ ID NO: 17)
  • cDNA containing the 3' end (9073- 9609 bp) sequence of the HCV gene is synthesized by PCR. did.
  • PCR reaction solution 10X ThermoPol Buffer in 0.5ml tubes (10mM KC1, 20mM Tris-HCl pH8.8, lOmM (NH 4) 2 S0 4 2mMMgS0 4, Tr i ton X- 100 0.1%) and 5 1, 20mM dNTP mixture 0.5 ⁇ l, 0.5 ⁇ l template (N25-3'X + 6), 0.5 lOpmol / ⁇ 1 2 primers (HDRBZ1, HDRBZ2), 2 units / 1 vent DNA polymerase (Biolabs) 0.51 was adjusted to 50/1 (x2) with sterile water.
  • the PCR was first heated at 96 ° C for 30 seconds, followed by 20 cycles of denaturation at 96 ° C for 30 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 40 seconds.
  • the reaction-terminated liquid was subjected to low-melting-point agarose gel electrophoresis, and the specifically amplified target fragment was extracted from the gel using Gene Cleanll. Extraction using Gene Cleanll was performed as follows. First, cut out the gel containing the target DNA fragment, add 3 volumes of Nal stock solution, incubate at 50 ° C for 10 minutes to melt the gel, add 5 ⁇ l of GLSSMILK suspension, and then add 50 ° The mixture was incubated at C for 5 minutes and centrifuged.
  • cDNA containing the 3 'end of HCV gene (9590-9609 bp), HDV ribozyme, Xbal site, Swal site and Hindlll site was synthesized by PCR.
  • 0.5ml tube 10X ThermoPol buffer (10mM KC1, 20mM Tris-HCl pH8.8, lOmM ( negation 4) 2 S0 4, 2mM MgS0 4, 0.
  • This PCR reaction solution was subjected to polyacrylamide gel electrophoresis, and the specifically amplified target fragment was extracted from the gel. A portion of the extracted DNA fragment was subjected to polyacrylamide gel electrophoresis, and the concentration was estimated to be 50 ng / l.
  • This PCR product was named Ribo product. The amplified sequence is shown in SEQ ID NO: 5.
  • the target DNA containing the 3' end of the HCV gene and the HDV ribozyme, Xbal site, Swal site, and Hindi II site was synthesized by PCR.
  • PCR reaction solution 10X in 0.5ml tubes ThermoPol BufferdOmM KCU 20mM Tr i s- HCl pH8.8, lOmM (NH 4) 2 S0 4, 2mM MgS0 4, 0.1% Triton X - 100) to S UOraM dNTPmixture O.5 1 10 1/1 primers (HDRBZ1, HDRBZ4) 2 l ⁇ units / M 1 vent DNA polymerase (Biolabs) 0.5 ⁇ 1, tem late as lOng / ⁇ 1 3 'product, 5 ng / t 1 5'-Ribo product was added to 2 ⁇ i calories each and adjusted to 50 ⁇ l ( ⁇ 2) with sterile water.
  • PCR was performed for 20 cycles under the conditions of denaturation at 96 ° C for 30 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 40 seconds.
  • the PCR product (901) was extracted with phenol and black hole form, precipitated with ethanol, and dissolved in sterile water. This PCR product was named 3'-terminal region PCR product.
  • the amplified sequence is shown in SEQ ID NO: 6.
  • 45 was digested with 1 ⁇ 111 1.5 / 1 in 51.5 1 in a restriction enzyme reaction solution (10 mM Tris-HCl pH7.5, 10 mM MgCl 2 , ImM 0 1 ⁇ 01: 1 ⁇ 6 01) (37 ° C, 45 ° C). After 0.5 min, 0.51 of 5M sodium chloride was added, and double digestion with Hindlll 1.51 (37 ° C, 1 hour) was performed. After the reaction, agarose gel electrophoresis was performed, and the specifically amplified target fragment was extracted from the gel using QIAEX II Agarose Gel Extraction (QIAGEN) and dissolved in 15 ⁇ l of sterile water. Construction of ⁇ 5, -3 'RBZ
  • ⁇ 5 'RBZ is digested with Kpnl and Hindlll, treated with alkaline phosphatase with CIAP, agarose gel electrophoresed, and the DNA fragment for the cleaning vector is separated from the gel. Extracted using QIAEX II Agarose Gel Extraction (QIAGEN). A part of this was subjected to agarose gel electrophoresis, and the concentration was estimated to be 40 ng / l.
  • Transformed bacteria were cultured on an LB-Amp plate (1% pactotryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, 100 g / ml ampicillin) overnight, and colonies that appeared on the plate Culture each in a 13 ml tube containing 4 ml of LB-Amp medium (1% pacttryptone, 0.5% yeast extract, 1% sodium chloride, 75 g / ml ampicillin) (37 ° C, overnight), and centrifuge the culture. The cells were collected with care and the plasmid DNA was mini-prepared using QIAprep Spin Plasmids Kits (manufactured by QIAGEN) to prepare 301 DNA solutions.
  • LB-Amp plate 1% pactotryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, 100 g / ml ampicillin
  • E. coli DH5 ⁇ strain was used for transformation because of the convenience of gene transfer, but it was thought that if this was used as a host strain, mutations could be easily introduced into the HCV gene during replication. Then, the vector into which the target DNA fragment was inserted was transferred to Escherichia coli JM109 strain to obtain a new transformant.
  • the nucleotide sequence of the inserted DNA fragment in the obtained clone was analyzed and determined using DNA sequencing kit Dye Terminator Cycle Sequencing Ready Reaction (PERKIN ELMER). Sequence is a Terminator 8.0 ⁇ l of the Ready Reaction Mix, 3 ⁇ l of 0.1 g / 1 template DNA, and 3.2 ⁇ l of l.Opmol / ⁇ 1 Primer were mixed to make 20 ⁇ l with sterile water. The reaction was performed at 96 ° C for 5 minutes, 25 cycles at 96 ° C for 30 seconds, 50 ° C for 15 seconds, and 60 ° C for 4 minutes.
  • the whole amount was subjected to agarose gel electrophoresis, and a DNA fragment of about 1.3 kbp was obtained from p5'-3'RBZ, and a DNA fragment of about 8 kbp (cloning vector) was obtained from pCALN / pBR using QIAEX II Agarose Gel Extraction (QIAGEN).
  • the gel was extracted from the gel and dissolved in sterile water 96 1 and 222 ⁇ l, respectively. Some of these were subjected to agarose gel electrophoresis, and their concentrations were estimated to be 70 ng / zl for the DNA fragment of ⁇ 5'-3'RBZ and 35 ng / ⁇ 1 for the closing vector pCALN / pBR.
  • the cloning vector pCALN / pBR (40 ⁇ l) was supplemented with 10X CIAP buffer (10 ⁇ l) and CIAP51 (22 units / M1), and the mixture was made up to 100 with sterile water.
  • the alkaline phosphatase reaction was performed at 37 ° C for 30 minutes, and then incubated at 75 ° C for 10 minutes to inactivate the enzyme. Thereafter, phenol / chloroform treatment was performed twice and black-mouthed form treatment was performed once. Ethanol was precipitated and dissolved in 20 ⁇ l of sterilized water. A part of it was subjected to agarose gel electrophoresis, and its concentration was estimated to be 25 ng / ⁇ 1.
  • 15 ⁇ l was digested with Xbal (37 ° C, 30 minutes) in 20 ⁇ 1 of a restriction enzyme reaction solution (10 mM Tris-HCl pH 7.5, 10 mM MgCl 2 , ImM DithiothreitoU 50 mM NaCl, 0.01% BSA), and this was digested. Agarose gel electrophoresis was performed to obtain a clone into which the target DNA fragment was inserted. The nucleotide sequence of the DNA fragment inserted into these clones was analyzed and determined using a DNA sequencing kit Dye Terminator Cycle Sequencing Ready Reaction (PERKIN ELMER). A clone having the desired nucleotide sequence was designated as pCALN / 5'-3'RBZ. Construction of pCALN / HCV RBZ
  • n was digested with 5 ⁇ l of the pCALN / 5′-3′RBZ of I ⁇ ⁇ in Kpnl 2 ⁇ l in a restriction enzyme reaction solution (10 mM Tris-HCl pH 7.5, 10 mM MgCl 2 , ImM Dithiothreitol) 301 ( The mixture was subjected to phenol treatment, phenol / chloroform-form treatment, and chloroform-form treatment, precipitated with ethanol, and dissolved in ⁇ 30 ⁇ l.
  • a restriction enzyme reaction solution 10 mM Tris-HCl pH 7.5, 10 mM MgCl 2 , ImM Dithiothreitol
  • the enzyme was inactivated by heating at 75 ° C for 10 minutes, phenol / chloroform-form treatment was performed twice, and black-form form treatment was performed once, ethanol precipitated, and dissolved in 20 ⁇ l of sterile water.
  • the DNA fragment recovered from pCALN ⁇ R6 ⁇ CR8 and a part of the clone vector pCALN / 5 '-3' RBZ were subjected to agarose gel electrophoresis, and their concentrations were both estimated to be about 20 ng / ⁇ l.
  • the ligation reaction is performed by mixing the DNA fragment 41 recovered from pCALNR6'CR8 with the cloning vector pCALN / 5'-3'RBZ1, incubating at 80 ° C for 3 minutes, immersing in ice-cold water, and immediately 5X DNA dilution buffer 21 and 2 ⁇ DNA ligation buffer 10 5 units / 1 T4 DNA ligase 11 were added to the mixture, and the mixture was incubated at room temperature for 1.5 hours. Add 2 ⁇ l of the reaction solution to E. coli DH5a strain 100 [], place on ice for 30 minutes, heat shock at 42 ° C for 45 seconds, place on ice again for 2 minutes, and place in 400 l of S0C medium.
  • the host strain of the clone obtained for the purpose of minimizing the mutation during replication of the HCV gene was changed from E. coli DH5a strain to JM109 strain, and a new transformant was obtained.
  • the Triton method was used for the subsequent plasmid preparation.
  • clones were mass-cultured in Super broth (3.3% pacto-tryptone, 2% yeast extract, 0.75% sodium chloride, 10N sodium hydroxide, 1 000 amount), and the cells were collected by centrifugation (5000 rpm, 10 minutes).
  • TE-Sarkosyl (0.4% SarkosyKlOmM Tris-HCl pH7.5, ImM EDTA) was added to the precipitate at 3/200 volume of the culture volume, and cesium chloride was added at 3/200 volume (w / v) of the culture volume, and 10 mg / mg 3/8000 ml of ethylene bromide was added, transferred to a tube, and centrifuged (8000 rpm, 10 minutes, 15 ° C). After centrifugation, the protein film formed on the liquid surface was removed, the supernatant was transferred to a tube, and 3/4000 of 10 mg / ml ethylene bromide was added again.
  • the plasmid was recovered, extracted six times with 5M sodium chloride-saturated isopropanol to remove ethylene bromide, and TE was added three times the amount of the recovered sample, followed by ethanol precipitation. It was dissolved in an appropriate amount of TE.
  • the nucleotide sequence of the HCV gene inserted into this plasmid was determined using DNA sequencing kit Dye Terminator Cycle Sequencing Ready Reaction (PERKIN ELMER).
  • the plasmid vector having the desired nucleotide sequence was named pCALN / HCVRBZ (Fig. 1).
  • Escherichia coli harboring this plasmid has been deposited with the National Institute of Bioscience and Human-Technology, National Institute of Advanced Industrial Science and Technology (1-1-3 Tsukuba East, Ibaraki, Japan) (FERM BP-6763, date of deposit: 1997) October 31).
  • pCALN / HCV RBZ was transferred to IMY cells (Itoh, T. et al., submitted) by the method of Lipofectin Reagant (GIBCO-BRL) (Feigner, PL, et al., Pro Natl. Acad. Sci. USA, 84, 7413 ( 1987)) and infected with a recombinant vaccinia virus having T7-RNA polymerase (Literature: Yasui, K. et al., J. Virol, in press) to express HCV-RNA.
  • GEBCO-BRL Lipofectin Reagant
  • a recombinant vaccinia virus having T7-RNA polymerase Literature: Yasui, K. et al., J. Virol, in press
  • a 600 bp cDNA corresponding to the core region from the 5 'UTR of the HCV gene was labeled with pdCTP and used as a probe to detect the expressed HCV-RNA.
  • detection of HCV-RNA was similarly attempted when pCALN / HCV RBZ was expressed in vitro and when T702X without DNA encoding ribozyme was expressed. The result is shown in FIG.
  • HCV-RNA When pCALN / HCV RBZ was expressed in vitro, HCV-RNA was not completely trimmed and approximately llkb of RNA was detected. On the other hand, when pCALN / HCV RBZ was expressed in cells, only full-length (9.6 kb) HCV-RNA was detected. Also, using T702X In this case, full-length HCV-RNA was detected, but the amount of RNA was markedly lower than when pCALN / HCV RBZ was used.
  • HCV-RNA was extracted from IMY cells transfected with pCALN / HCV RBZ, and the nucleotide sequences at both ends were examined (FIGS. 3 and 4).
  • the 5 'end sequence of the expressed HCV-RNA was confirmed by the 5' Race method using a 5 'Race System (Gibco-BRL).
  • CDNA was synthesized from the extracted HCV-RNA using A5'-IR primer 1 and Superscriptll (Gibco-BRL).
  • the synthesized cDNA was subjected to dA tailing with TdT, and this was designated as type II.
  • PCR was performed using sense primer: CAC-T35 and antisense primer: A5'-II.
  • the obtained amplification product was designated as type III, and PCR was performed again with the use of a sense primer: KM2 and an antisense primer: CAC-T35.
  • the amplified DNA fragment was cloned into pGEM-T vector (Promega) and the nucleotide sequence was determined.
  • a tailing was performed on the extracted HCV-RNA using poly A Polymerase (Takara), and cDNA synthesis was performed using the CAC-T35 primer (Superscript II, Gibco-BRL). Using this cDNA as type III, the first PCR was performed with the CAC-T35 primer and Takara Taq, followed by the second PCR with 3′-X-K6H3 and CAC-T35. Sequenced as before.
  • the base sequence of the primer used is shown below.
  • CAC-T35 CAC (T) 35 (SEQ ID NO: 19)
  • ICAL cells transfected with pCALN / HCV RBZ were analyzed for the expression of the constituent proteins by Western blotting (Protein I, Tokyo Chemical Laboratories (1990)).
  • IMY cells were solubilized with RIPA buffer (1% SDS, 0.5% NP40, 0.15 band aCl, lOmMTris-HCl (pH 7.4)), electrophoresed on SDS-PAGE, and recite obilon-P (Millipore). ) was transferred with a transfer solution (25 mM Tris, 192 mM Glycine, 20% methanol).
  • HepG2, IMY cells, 4 ⁇ g of plasmid DNA and Lipofectin (GIBCO-BRL) dissolved in Opti-MEM (GIBCO-BRL) at a ratio of about 18% per 1 cm dish were mixed. After leaving at room temperature for 15 minutes, 1.6 ml of Opti-MEM was added, mixed gently, and spread on the cells previously washed with Opti-MEM. 5:00 to C0 2 incubator in one at 37 ° C for After an interval, the supernatant was replaced with 10% FCS-DMEM (cell culture medium). After 48 hours at 37 ° C., the cells were passaged at a ratio of 1: 5, and G418 was added at SOO g / mKB Bioactive). After about three weeks, the colonies formed were picked up.
  • Opti-MEM Opti-MEM
  • the present invention provides a vector capable of expressing a full-length gene of an RNA virus. These are useful for elucidation of the mechanism of RNA virus replication and the mechanism of the onset of RNA virus infection, and development of therapeutics and therapeutic means.
  • Figure 1 Diagram showing the structure of pCALN / HCV RBZ.
  • Figure 2 Photograph showing the result of Northern blot for the transcript from pCALN / HCV RBZ.
  • Figure 3 Outline of the 5'-Race method.
  • Figure 4 Outline of the 3'-Race method.
  • Figure 5 Photograph showing the results of a Western plot for the translation product from pCALN / HCV RBZ.
  • Figure 6 Diagram showing the expression level of Core protein in HCV gene-expressing cell lines.
  • Fig. 7 is a graph showing the relationship between the expression level of Core protein in HCV gene-expressing cell lines and the amount of infection with ere-adenovirus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明糸田書
RNAウィルスの完全長遺伝子を発現するベクター及びその用途 発明の属する技術分野
本発明は、 RNAウィルスの完全長遺伝子を発現することのできるベクター、 そ れを含む動物細胞及び RNAウィルス感染モデル動物、 並びにそれらの細胞及びモ デル動物を用いて薬物のスクリーニング方法に関する。 これらは、 RNA ウィルス 複製の機構および RNAゥィルス感染症の発症機構の解明、 治療薬および治療手段 の開発等に有用である。 従来の技術
C型肝炎ウィルス (以下 「HCV」 という) は、 輸血後非 A非 B肝炎の主な原因ゥ ィルスであり (Saito, I. et al., Pro Natl. Acad. Sci. USA, 87, 6547-6549 (1990))、 このウィルスに起因する肝炎は慢性化率が高く、 肝硬変や肝がんに移行 する率も高いことから、 確実な治療手段の発見が急がれている疾患のひとつであ る。 このウィルスの cDNAは 1989年に Chooらによりクローニングされ(Choo, Q. - L., et al. , Science, 244, 359-362 (1989))、 フラビウィルス科に属する一本 鎖 RNAウィルスであることも知られている (Kato, N., et al., Pro Natl. Acad. Sci., USA, 87, 9524-9528 (1990))。 これまでにいくつかの研究グループにより 全塩基配列およびアミノ酸配列の解明がなされいる (Kato, N., et al., Pro Natl. Acad. Sci. , USA, 87, 9524-9528 (1990)、 Pro Natl. Acad. Sci. , USA, 88, 245卜 2455 (1991)、 J. Virol. , 65, 1105-1113 (1991)、 J. Gen. Virol., 72, 2697-2704 (1991)、 Virology, 188, 331-341 (1992))。
HCVの invitro感染系の確立に関しては、 いくつかの報告があるが、 その複製 量の低さ等の問題で、 再現性のある安定な感染系で種々の機構の解明や治療法の 開発に活用できるような実用的な系はできていないのが実情である( Lanf ord, RE, et al., Virology, 202, 606(1994), Yoo, BJ, et al. , J. Vi rol., 69, 32(1995), Shimizu, YK, et al., Pro Natl. Acad. Sci. USA, 89, 5477(1992), Kato, N. , et al., Biochem. Biophys. Res. Comm. , 206, 863(1995), Batolini, L., et al. , Res. Virol. , 144, 281 (1993))。
一方、 HCVを生成する別の手法として、 対応する cDNAから転写により、 RNAゥ ィルスゲノムを生成させ、 蛋白質合成を経てウィルスを生成させる方法がある (Racaniello, VR, Science, 214, 916(1981) 、 ポリオウイルス)。 この方法に ついてもこれまでいくつかの研究グループにより精力的な検討が行われてきたが、 上述の感染系と同様に実用的な系はない (Mizuno, M, et al. , Gastroenterology, 109, 1933(1995), Dash, S., et al., Am. J. Pathol. , 151, 363(1997) )。 また、 cDNAを発現する小動物、 たとえば、 トランスジエニックマウスについても、 一部 または全長 cDNAを発現するマウスの報告はあるが、ウィルス遺伝子に対応する全 てのウィルス蛋白質を効率良く発現できるようなものは知られていない (特開平 9-9965号公報、 特開平 10-84813号公報)。 発明の解決しょうとする課題
発明者らのこれまでの研究により、 有効な量のウィルス粒子あるいはウィルス 蛋白質が生成されない理由として、 途中で生成されるウィルスゲノムの両末端が 正確に転写されず、 効率良く複製可能な完全長の遺伝子が生成していないことが 考えられた。
本発明の目的は、 完全長のウィルスゲノムを生成する発現系を構築し、 より本 来のウィルス複製に近い発現系を確立することであり、 それを用いて、 cDNAより ウィルスを発現する細胞あるいはモデル動物を樹立することにある。 課題を解決するための手段
本発明者は、 上記課題を解決するために鋭意検討を重ねた結果、 完全長の RNA ウィルス遺伝子を発現することのできるベクターの構築に成功し、 更に、 それを 組み込んだ細胞株を樹立し、 発明を完成するに至った。
すなわち、 本発明の第一は、 RNAウィルスの遺伝子をコードする cDNAを含むベ クタ一であって、 該 RNAウィルスの遺伝子の両末端を正確かつ均一に転写できる ように構築されていることを特徴とするベクタ—である。
本発明の第二は、 上記のベクタ一を含むことを特徴とする動物細胞である。 本発明の第三は、 その細胞中に上記のベクタ一を含むことを特徴とする RNAゥ ィルス感染モデル動物である。
本発明の第四は、 上記の動物細胞、 又は上記の RNAウィルス感染モデル動物を 用いた RNAウィルスの複製を阻害する薬物のスクリ一ニング方法である。 本明細書は本願の優先権の基礎である日本国特許出願 (特願平 10- 177820号) の明細書および Zまたは図面に記載される内容を包含する。
発明の開示
以下、 本発明を詳細に説明する。
( 1 ) 第一発明 (ベクター)
本発明のベクタ一は、 RNAウィルスの遺伝子をコ一ドする cDNAを含むベクタ一 であって、 該 RNAウィルスの遺伝子の両末端を正確かつ均一に転写できるように 構築されていることを特徴とするものである。 ここで、 「両末端を正確に転写でき る」 とは、 cDNAから作られる RNAが、 ウィルス本来のゲノム RNAと全く同一かあ るいは翻訳能力に影響を与えない程度の塩基配列の差異しか存在しない、 という 意味である。 また、 「両末端を均一に転写できる」 とは、 一定の再現性をもって特 定の塩基配列を持つ RNAを作ることができる、 という意味である。
本発明に使用できる RNAウィルスとしては、 ポリオ、 コクサツキ一、 エコーゥ ィルス等のピコルナウィルス、 レオウィルス、 HCV 等のフラビウィルス属を含む トガウィルス、 ォーソ、 パラミキソウィルス、 コロナウィルス、 あるいは、 タパ コモザイクウイルス等の植物 RNAゥィルスなどを例示することができるが、 これ らに限定されるわけではない。 好ましい RNAウィルスとしては、 HCVを挙げるこ とができる。
RNA ウィルスの遺伝子の両末端を正確かつ均一に転写する手段としては、 RNA ウィルスの遺伝子をコードする cDNAの 5'末端の上流及び 3'末端の下流のそれぞ れにセルフプロセッシングにより切断するリボザィムをコードする DNAを配置す る方法を例示することができるが、 これに限定されるわけではない。
セルフプロセッシングにより切断するリボザィムとしては、 δ型肝炎ウィルス
(Hepatitis Delta Virus: HDV) リボザィム、 ハンマーヘッドリボザィム、 ヘア ピンリボザィム、 インビトロおよびィンビボセレクションにより得られる人エリ ボザィムなどを例示することができる。 各リボザィムの塩基配列に関しては、 大 塚栄子等、 蛋白質 '核酸 '酵素 40, 1400(1995) に記載されている。 とくに、 HDV リボザィムについては、 Suh, Y-A. , et al. , Nucleic Acids Research, 20, 747(1992)に、 ハンマ一ヘッドリボザィムについては、 Shimayama, T., et al., Biochemistry, 34, 3649(1995) に塩基配列が記載されている。 ベクタ一中に配 置するリボザィムをコードする DNAは、 これらの文献に記載されている共通塩基 配列を参考にして、 使用する RNAウィルスの種類、 塩基配列に応じて決定するこ とができる。 例えば、 HCVの場合は 5'末端側にハンマーへッドリボザィムをコ一 ドする DNA (具体的な配列としては配列 Χ)、 3'末端側に HDVリボザィムをコード する DNA (具体的な配列としては配列 Y) が好ましいものとして挙げられる。 配列番号 X:
CTGATGAGGCCGAAAGGCCGAAACGGCGAAAGCCGTC (配列番号 7 )
配列番号 Y :
TGGCGAATGGGAC (配列番号 8 )
本発明のベクタ一は、 上述したようなリボザィムをコードする 2つの DNA と RNAウィルスをコードする DNAとを含む DNA断片を PCRなどによリ作製し、 この DNA 断片を適当なプロモーターとターミネータ一を含むベクタ一に揷入すること により作製できる。
本発明のベクタ一は、 宿主細胞内に移入された後、 直ちに発現するものであつ てもよいが、 特定の処理によりはじめて発現を開始するものの方が好ましい。 特 定の処理により発現を開始させる手段としては、 宿主細胞の RNAポリメラーゼに 認識されないプロモータ一を使用する手段、 Cre/lox 発現システム (Nat Sternbe rg et al . J. Mo l ecu l ar B i o l ogy 150. P467-486 、 特開平 10- 84813号 公報) を使用する手段などを例示することができる。 前者の手段では、 ベクタ一 中のプロモータ一を認識できる RNAポリメラーゼを宿主細胞内で発現させること により、 目的遺伝子の発現を開始させることができる。 後者の手段では、 Cre 酵 素を宿主細胞内で発現させることにより、 目的遺伝子の発現を開始させることが できる。
( 2 ) 第二発明 (動物細胞)
本発明の動物細胞は、 本発明のベクター (第一発明) を含むことを特徴とする ものである。
本発明の動物細胞は、 本発明のベクタ一を宿主となる動物細胞内に移入するこ とにより作製できる。 宿主動物細胞としては、 IMY、 HuH- 7、 HepG2、 M0LT-4、 MT- 2、 Daud i、 肝プライマリー細胞、 その他の肝細胞、 血球系細胞由来の細胞また は細胞株などを使用することができるが、 これらに限定されるわけではない。 ベ クタ一を宿主内に移入する方法としては、 L i pofect i on Reagant 法などを例示す ることができる力 これに限定されるわけではない。
( 3 ) 第三発明 (RNAウィルス感染モデル動物)
本発明の RNAウィルス感染モデル動物は、 その細胞中に本発明のベクター (第 一発明) を含むことを特徴とするものである。
本発明の RNAウィルス感染モデル動物は、 本発明のベクターを受精卵に移入し た後、 受精卵を仮親に移植し、 前記受精卵に由来する動物を得、 その中から組み 込んだ RNAゥィルスの遺伝子が発現している個体を選抜することにより作製でき る。
受精卵への移入は、 マイクロインジェクション法など常法に従って行うことが できる。 対象とする動物は、 トランジェニック動物の作出技術が確立されている 動物であればどのようなものでもよく、 マウス、 ラット、 ゥサギ、 ブタ、 メダカ、 ゼブラフィッシュなどを使用することができる。 RNA ウィルスの遺伝子が発現し ている個体の選抜は、 例えば、 RNA ウィルスの遺伝子に特異的に存在する塩基配 列に基づいて作製されたプライマーを使用した PCRなどにより行うことができる。 (4) 第四発明 (薬物のスクリーニング方法)
本発明の RNAウィルスの複製を阻害する薬物のスクリーニング方法は、 本発明 の動物細胞 (第二発明)、 又は本発明の RNAウィルス感染モデル動物 (第三発明) を用いることを特徴とするものである。
動物細胞を使用する場合には、 スクリーニングは培地内に対象薬剤を添加する ことなどにより行うことができる。 モデル動物を使用する場合には、 スクリ一二 ングは対象薬剤を動物に静脈内又は経口投与することなどにより行うことができ る。 実施例
〔実施例 1〕 完全長 HCV遺伝子発現ベクターの構築
( 1 ) HCVcDNAのクロ一ニング
HCV患者血清 R6 (genotype lb ) から AGPC法 (Chomczynsky. P. et al. , Anal. Biochem. , 162, 156 (1987)) により HCV-RNA を抽出し、 得られた RNA から Superscript II (Gibco-BRL) キットを用いて cDNAを合成した。 患者血清 R6は、 チンパンジーに感染性を示し (現在のところ、 他の実験動物に対する感染性は確 認されていない)、 その力価は 10— 4.5 CID50 であり、 また、 PCR 価は 10— 8 で ある。
これまでに発表されている HCV遺伝子配列 (genotype I) のうち、 保存性の高 い領域の配列を基にプライマ一をデザインし、 Pfu ポリメラーゼ (Stratagene) で PCR増幅した。 これらの DNAフラグメントは常法 (Maniatis, T., "Molecular Cloning, 2nd Edノ', CHS Press(1989) ) に従って、 pBM プラスミ ド (特開平 6 - 225770号公報) にサブクローニングし、 塩基配列の決定を行った。
HCVはクロ一ニングの工程で容易に変異を起こすので、 3つ以上のクローンで 共通する配列を本来のウィルス配列とみなし、 そのような配列を複数つなぎ合わ せ、 全長のクローンを構築した。
全長クローンの構築方法は、 特開平 6-225770号公報の記載に従った。
(2) pCALN/HCV RBZの作製 ρ5' RBZの作製
まず EcoRI サイ ト、 Swalサイト、 Xholサイ ト、 T7 プロモータ一、 ハンマー へッドリボザィムおよび HCVの 5'端( l-45bp)の配列を含んだ DNAを PCRで合成し た。 PCRは検出 DNAの増幅感度と特異性を向上させるため 2ステツプ法を用いた。 2ステップ法とは、 まず、 2種類のプライマーで 1回目の PCRを行い、 (1st step PCR)。 次にその PCR産物の DNA配列両端から内側に存在する 2種類のプライマ一 を用いて 2回目の PCRを行う方法である(2nd step PCR)。 以下に使用した PCR プ ライマ一の塩基配列を示す。
ESXT7RBZ1 : 5' -GCC GGA ATT CAT TTA AAT CTC G- 3' (配列番号 9 )
ESXT7RBZ2: 5' -GCC GGA ATT CAT TTA AAT CTC GAG TAA TAC GAC TCA CTA TAG GGC TGG CCC CTG ATG AGG CCG AAA GGC CGA AAC GGC G- 3' (配列番号 1 0 )
ESXT7RBZ3: 5' -GGG GAG TGA TCT ATG GTG GAG TGT CGC CCC CAA TCG GGG GCT GGC CCG ACG GCT TTC GCC GTT TCG GCC TTT CG- 3' (配列番号 1 1 )
ESXT7RBZ4: 5' - GGG GAG TGA TCT ATG GTG G- 3' (配列番号 1 2)
PCR反応液は、 0.5mlチューブに 10X ThermoPol Buf f e r ( lOmM KC K 20mM Tr i s-HC 1 pH8.8、 lOmM (NH4)2S04、 2mM MgS04、 0· 1% Triton X- 100)を 5μ 1、 20mM dNTP mixture を 0.5μ 1、 10pmol/Ai 1の template兼 1st step プライマ一 2 種(ESXT7RBZ2、 ESXT7RBZ3)を 5 1ずつ、 2units/ 1の vent DNA polymerase(Biolabs)を 0.5μ 1 加え滅菌水で 50 t 1に調製した。 PCRはまず 96°Cで 30秒間加熱した後、変性 96°C 30秒間、 アニーリング 58°C 15秒間、 伸長 72°C40秒間の条件で 20サイクル行つ た。 増幅された配列を配列番号 1に示す。
次に新しい 0.5ml チューブに 1st PCR 反応終了液を 0.5μ 1、 10X ThermoPol bufferdOmM KCK 20mM Tris- HC1 pH8.8、 (NH4)2S04、 2mM MgS04、 0.1% Ttiton X-100) を 5μ 1、 20mM dNTP mixture を 0.5 1、 lOpmol/ μ 1の 2nd step プライマ一 2 種(ESXT7RBZ1 、 ESXT7RBZ4) を 2 ^ 1 ずつ、 2units/ μ I の vent DNA polymerase(Biolabs)を 0.5 1 を加え滅菌水で 50μ 1 に調製した。 PCR反応は先 の条件で行つた。 この PCR反応液をポリアクリルアミ ドゲル電気泳動し、 特異的 に増幅した目的の断片をゲルから抽出した。 目的の断片の抽出は、 以下のように して行った。 まず、 チャンバ一のゲルコンポーネント側に通常の透析膜をセット し、 ついで DNAコレクティング側に Sartorius透析膜をセットした。 電気溶出装 置のチャンバ一の外側に 2xTBEを、 内側に 0. lxTBE- 0.005%SDSを入れた後、 切り 出しておいた目的の DN A断片を含んだゲルを、 チャンバ一のゲルコンポーネント 側に置き、 DNAコレクティングコンポーネント側に Xylene cyanoleを含んだ TE を数^ 1加えた。 150Vで 1時間電気泳動を行った後、 電極を変えてさらに 45秒間 泳動した。 泳動装置からチャンバ一をはずし、 DNA コレクティングコンポ一ネン ト側に約 300μ 1 溶液が残るまでチャンバ一内の溶液を除去した。 残った 300μ 1 の溶液を回収した後、 DNAコレクティングコンポ一ネン卜を 100μ 1で washし、 その液も先の溶液に加えた。 回収した溶液についてフエノール、 クロ口ホルム抽 出を行い、 エタノール沈殿をした後、 10 1の TEに溶解した。 抽出した一部をポ リアクリルアミ ドゲル電気泳動し、 濃度を 20 / 1 と概算した。 この PCR産物を ESXT7RBZ PCR productと命名した。 増幅された配列は配列番号 1に示した配列と 同一である。
さらに HCV 5'端から core領域の一部(26 - 613bp)までの DNAを PCRで合成した。 以下に使用した PCR プライマ一の配列を示す。
ESXT7RBZ5: 5' -CCA CCA TAG ATC ACT CCC C- 3, (配列番号 1 3 )
ESXT7RBZ6: 5' -ATG CCC TCG TTG CCA TAG AG- 3' (配列番号 1 4 )
PCR反応液は 0.5ml チューブに 10X ThermoPol Buffer(10mM KC1、 20mM Tris- HC1 pH8.8、 lOmM (NH4)zS04、 2mM MgS04、 0.1% Triton X-100) を 10 / 1、 0mM dNTP mixture を 1 / 1、 lOpmol/μ 1 のプライマー 2種(ESXT7RBZ5、 ESXT7RBZ6)を 4 β \ ずつ、 2units/ β 1 の vent DNA polymerase(Biolabs)を 1 μ 1, \ ^g/ μ \ の template (pT702R6 14- 8)を 1 μ 1加え滅菌水で 100 μ 1 に調製した。 PCRは 96°C で 30秒間加熱した後、 変性 96°C30秒間、 アニーリング 58°C15秒間、 伸長 72°C 40秒間の条件で 20サイクル行った。 この PCR反応終了液をァガロースゲル電気 泳動 し 、 特異的 に 増幅 し た 目 的 の断片 を QIAEX II Agarose Gel Extraction(QIAGEN)を用いてゲルから抽出した。 目的の断片の抽出は、 以下のよ うにして行った。 まずゲル切り出し、 その 3倍量の QX1 Buffer を添加し、 つい で QIAEX II を 10μ 1加え、 50°Cで 10分間インキュベーションした。 この際 2分 毎に振って QIAEX II を混和させた。 インキュベーション後、 遠心し、 上清を除 去し、 その後、 沈殿物を PE Bufferで 2回洗浄、 約 15分程度風乾し、 滅菌水を 20μ 1加え、 沈殿物を再懸濁させ、 室温で 5分間インキュベーションし、 遠心後、 上清を回収した。 抽出した一部をァガロースゲル電気泳動し、 濃度を 200η§/μ 1 と概算した。 この PCR産物を 5'-HCV PCR product と命名した。 増幅された配列 を配列番号 2に示した。
上記 2種類のゲル抽出 PCR産物(ESXT7RBZ PCR product, 5, - HCV PCR product) を用いて EcoRIサイト、 Swalサイト、 Xholサイ ト、 T7プロモーター 、 ハンマー へッドリボザィムおよび HCVの 5'端から core領域の一部(1- 613bp)までを含んだ 目的の cDNA を PCRで合成した。 PCR反応液は 0.5ml チューブに 10X ThermoPol Buffer ( lOraM KCし 20mM Tris-HCl pH8.8, lOmM (NH4)2S04、 2mM MgS04、 0.1% Triton X-100) を 5 1、 20mM dNTP mixture 0.5μ 1、 lOpmol/^ 1 のプライマー 2 種 (ESXT7RBZ1 、 ESXT7RBZ6) を 2 ^ 1 ず つ 、 2units/ 1 の vent DNA polymerase(Biolabs)を 0.5 1、 templateとして 4ng/ μ 1の ESXT7RBZ PCR product, 5' -HCV PCR product をそれぞれ Ιμ ΐ加え、 滅菌水で 50 μ ΐ に調製した。 PCRは 96°Cで 30秒間加熱した後、 変性 96°C 30秒間、 ァニ一リング 58°C 15秒間、 伸長 72°C40秒間の条件で 20サイクル行った。 この PCR product を 5'- ribozyme PCR productと命名した。 増幅された配列を配列番号 3に示した。
5' -ribozyme PCR productに 4倍量のクロ口ホルムと 3倍量の TE bufferを混 和し、 遠心後、 その水層を 1.5mlチューブに移し、 2.35倍量の 100%エタノールと 1/4量の 3M酢酸ナトリウムと \β I μΛのグリコ一ゲンを Ιμ ΐ加え、 エタノール 沈殿(_80°C、 20分間)を行い、 最終的に滅菌水 に溶解した。
精製した 5'- ribozyme PCR product(10 1)を制限酵素反応液(10mM Tris-HCl pH7.5、 10mMMgCl2、 ImM Dithiothrei tol)20 1中で Kpnl 1 1で消化(37°C、 1.5 時間)後、 1M塩化ナトリゥムを 2μ 1 を添加しさらに EcoRI \n\で二重消化(37°C、 2.5時間)した。
クローニングベクターには pBMを用いた。 HCV遺伝子は複製時に変異が導入さ れやすい可能性があり、 クローニング時にもそのことが懸念される。 そこでクロ 一二ング時に発生する人為的な変異を極力少なくするために構築されたベクター が pBMである。 PBR322の制限酵素 EcoRVサイ トから Ballサイ トの間の配列を制 限酵素で欠失させ、 EcoRIサイトと Hindlllサイ トの間に pUC119のマルチクロー ニングサイ トの EcoRI サイ トから Hindi II サイ トまでを組み込み、 次に pBR322 の Vsplサイ トから Sealサイ トの間の配列を pUC119の Vsplサイ トから Sealサイ トの配列に置き換え、この間の Pstlサイ トを欠失させて pBMベクターが作製され ている。
0.25M /M 1の ΡΒΜ 10μ 1 を制限酵素反応液( 10mM Tris-HCl pH7.5、 lOmM MgCl2、 ImM Dithiothreitol)100 1 中で Kpnl Ιμ ΐ で消化(37°C、 1.5時間)後、 1M塩化 ナトリウムを 10 を添加しさらに EcoRI l j 1で二重消化(37°C、 2時間)した。 酵素反応終了液に
Figure imgf000012_0001
1の CIAP (子牛小腸由来、 宝酒造) 5 1 を添加し、 37°C、 30分間反応を行い、 5'末端の脱リン酸化を行った。
Kpnl、 EcoRIで消化した 5'- ribozyme PCR product と Kpnl、 EcoRIで消化後ァ ルカリフォスファタ一ゼ処理を行った pBMをァガロースゲル電気泳動し、 目的の DNA断片およびクローニングベクターをゲルから抽出(QIAEX II)し、 滅菌水 20 1 に溶解した。 これらの一部をァガロースゲル電気泳動し、 濃度を Kpnl、 EcoRI で消化した 5' -ribozyme PCR product(DNA断片)は 30ng/ μ 1、 Kpnl、 EcoRIで消 化後アルカリフォスファタ一ゼ処理を行った pBM (クロ一ニングべクタ一)は 20ng/ l と概算した。
5'-ribozyme PCRproduct(DNA断片)を l z l、 pBM (クロ一ニングベクター)を 1 ju DNA Ligation Kit Ver.2(宝酒造)の solution I を 6μ 1、 滅菌水を 4 1混 和し、 16°Cで 1時間ライゲ一シヨン反応を行った。
ライゲ一シヨン反応終了液 10μ 1 を大腸菌 DH5a株(コンビテントセル) 100〃 1 に添加し、 氷上に 30分間置いた後、 42°Cで 30秒間のヒートショックを行い、 再 度氷上に 2分間置いた後、 S0C培地 900^1に加え、 37°Cで 1時間インキュべ一シ ョンした。形質転換菌は LB- Ampプレート(1%パクトトリプトン、 0.5%酵母エキス、 1%塩化ナトリウム、 1.5%寒天、 アンピシリン lOO^g/ml)上で一夜培養した後、 プ レート上に出現したコロニーをそれぞれ 4ml LB- Amp培地(1 パクトトリプトン、 0.5%酵母エキス、 1%塩化ナトリウム、 アンピシリン 75 g/ml)の入った 13mlチュ ーブで培養(37°C、 6時間)し、培養液を遠心して集菌し、プラスミ ド DNAを QIAprep Spin Plasmids Kits(QIAGEN社製)を用いてミニプレパレ一ションを行い 20μΙの DNA液を調製した。 ミニプレパレ一シヨンは、 以下のようにして行った。 まず、 菌体ペレットに PI Bufferを 250μ】加え、 懸濁させ、 次に Ρ2 Bufferを 250μ1 添加し、 混和させ室温で 5分間反応させた。 反応後、 即座に冷 Ν3 Buffer 350μ 1 を加え、氷上に 5分間置いた後、遠心を行い、上清を 2mlの microcentrifuge tube に置力、れた QIAprep— spin columnに移し、 冉度遠 した。 flowthrough fraction を除去し、 洗浄のため 750μ1の PE Bufferを QIAprep- spin columnに加え、 遠 心を行い、 flowthrough fractionを除去し、 再度遠心を行い完全に PE Bufferを 除去した。 QIAprep- spin columnを 1.5mlチューブに移し、 TEを適当量加え、 遠 心し、 プラスミ ドを溶出させた。
調製した DNA溶液 1のうち 16 1を制限酵素反応液(10mM Tris-HCl pH7.5、 10mM MgCl2、 ImM Dithiothreitol)18 z 1中で Kpnl 0.5 1で消化(37°C、 40分間) 後、 1M塩化ナトリウムを 2 し EcoRI を 0.5μ1 を添力 []し、 二重消化(37°C、 40 分間)した。酵素反応終了液をァガロースゲル電気泳動し、 的の DNA断片が揷入 されたクロ一ンを得た。 このクローンを p5'RBZと命名した。
3' RBZ PCR productの作製
HCV遺伝子の 3'端(9073- 9609bp)、 HDV リボザィム、 Xbalサイト、 Swalサイ ト、 Hindlllサイ トを含んだ DNAを PCRで合成した。 以下に使用した PCR プライマ一 の配列を示す。
HDRBZ1 5,- TTG GGG TAC CAC CCT TGC G-3' (配列番号 1 5)
HDRBZ2 5' -ACA TGA TCT GCA GAG AGG CC- 3' (配列番号 1 6) HDRBZ3 5'- GGC CTC TCT GCA GAT CAT GTG GCC GGC ATG GTC CCA G-3' (配列 番号 1 7 )
HDRBZ4 5' -GCC CAA GCT TAT TTA AAT CTA GAG TCC CAT TCG CCA TTA CCG AG- 3' (配列番号 1 8 ) まず HCV遺伝子の 3'端(9073- 9609bp)の配列を含んだ cDNAを PCRで合成した。 PCR反応液は 0.5mlチューブに 10X ThermoPol Buffer(10mM KC1、 20mM Tris-HCl pH8.8、 lOmM (NH4)2S04 2mMMgS04、 0.1% Tr i ton X- 100)を 5 1、 20mM dNTP mixture 0.5μ 1、 template(N25- 3'X+6)を 0.5μ 1、 lOpmol/ ^ 1のプライマー 2種(HDRBZ1、 HDRBZ2)を 2 1ずつ、 2units/ 1の vent DNA polymerase(Biolabs)を 0.5 1 を 加え滅菌水で 50/ l(x2)に調製した。 PCRはまず 96°Cで 30秒間加熱した後、 変性 96°C 30秒間、 ァニ一リング 58°C 15秒間、 伸長 72°C 40秒間の条件で 20サイクル 行った。 この反応終了液を低融点ァガロースゲル電気泳動し、 特異的に増幅した 目的の断片を Gene Cleanll を用いてゲルから抽出した。 Gene Cleanll を用いた 抽出は以下のようにして行った。 まず目的の DNA断片を含んだゲルを切り出し、 3 倍量の Nal stock solutionを添加し、 50°Cで 10分間インキュベーションしてゲ ルを融解させた後、 GLSSMILK suspension を 5μ 1加え、 さらに 50°Cで 5分間ィ ンキュベ一シヨンし、 遠心した。 遠心後、 上清を除去し、 300μ 1 の NEW WASH を 加え沈殿物を洗浄した。 この操作を 3回繰り返した後、 沈殿物に滅菌水を 15μ 1 添加し、 DNA断片を溶出させた。 抽出した DNA断片の一部をァガロースゲル電気 泳動し、 濃度を 20ng/ 1 と概算した。 この PCR産物を 3' productと命名した。 増幅された配列を配列番号 4に示した。
次に HCV遺伝子の 3'端(9590-9609bp)と HDV リボザィム、 Xbal サイト、 Swal サイト、 Hindlllサイ トを含んだ cDNAを PCRで合成した。 0.5mlチューブに 10X ThermoPol buffer ( 10mM KC1、 20mM Tris-HCl pH8.8、 lOmM (匪 4)2S04、 2mM MgS04、 0. l%Triton X - 100)を 5 U 20mM dNTP mixture 0·5μ 1、 tempi ate (Cis-HDV-88) を 0.4μ 1、 10pmol/ 1のプライマー 2種(HDRBZ3、 HDRBZ4)を 2μ 1ずつ、 2units/ 1の vent DNA polymerase(Biolabs)を 0.5μ 1 を加え滅菌水で 50μ 1(χ4)に調製 した。 PCRはまず 96°Cで 30秒間加熱した後、変性 96°C30秒間、ァニ一リング 58°C 15秒間、 伸長 72°C40秒間の条件で 20サイクル行った。 この PCR反応液をポリァ クリルアミ ドゲル電気泳動し、特異的に増幅した目的の断片をゲルから抽出した。 抽出した DNA断片の一部をポリアクリルアミ ドゲル電気泳動し、 濃度を 50ng/ l と概算した。 この PCR産物を Ribo product と命名した。 増幅された配列を配列 番号 5に示した。
上記 2種類の抽出 PCR産物(3' product, Ribo product)を用いて HCV遺伝子 3' 端および HDV リボザィム、 Xbal サイト、 Swal サイ ト、 Hindi II サイトを含んだ 目的の DNA を PCR で合成した。 PCR反応液は 0.5ml チューブに 10X ThermoPol BufferdOmM KCU 20mM Tr i s-HCl pH8.8, lOmM (NH4)2S04、 2mM MgS04、 0.1% Triton X - 100) を S UOraM dNTPmixture O.5 1、 10 1/ 1のプライマ一 2種(HDRBZ1、 HDRBZ4)を 2 l^units/M 1の vent DNA polymerase(Biolabs)を 0.5μ 1、 tem late として lOng/μ 1の 3' product, 5ng/ t 1の 5' - Ribo productをそれぞれ 2μ iカロ え、 滅菌水で 50μ 1(χ2)に調製した。 PCRは 96°Cで 30秒間加熱した後、 変性 96°C 30秒間、 ァニ一リング 58°C 15秒間、 伸長 72°C40秒間の条件で 20サイクル行つ た。 PCR product(90 1)をフエノール、 クロ口ホルム抽出し、 エタノール沈殿を 行い、 滅菌水 に溶解した。 この PCR product を 3' - terminal region PCR productと命名した。 増幅された配列を配列番号 6に示した。
この内 45 を制限酵素反応液(10mM Tris-HCl pH7.5、 lOmM MgCl2、 ImM 0 1^01:1^6 01)51.5 1 中で 1^111 1.5 / 1で消化(37°C、 45分間)後、 5M塩化ナ トリウムを 0.5 1 を添加しさらに Hindlll 1.5 1で二重消化(37°C、 1時間)し た。反応後、ァガロースゲル電気泳動し、特異的に増幅した目的の断片を QIAEX II Agarose Gel Extraction(QIAGEN)を用いてゲルから抽出し、 滅菌水 15μ 1に溶解 した。 ρ5, -3' RBZの構築
ρ5' RBZを Kpnl、 Hindlllで消化後、 CIAPでアルカリフォスファタ一ゼ処理し、 ァガロースゲル電気泳動を行い、 ゲルからクロ一ニングベクター用の DNA断片を QIAEX II Agarose Gel Extraction(QIAGEN)を用いて抽出した。 この一部をァガ ロースゲル電気泳動し、 濃度を 40ng/ l と概算した。
Kpnl、 Hindlllで消化後、 ゲル抽出した 3' -terminal region PCR productの一 部をァガロースゲル電気泳動し、 濃度を 20ng/ l と概算した。
8ng/ 1 の p5'RBZ (クロ一ニングべクタ一)を 1 1、 0ng/ 1 の 3' -terminal region PCR product (DNA 断片)を 1μ 1、 DNA Ligation Kit Ver.2(宝酒造)の solution I を 6 1、 滅菌水を 4μΙ混和し、 16°Cで一夜ライゲ一シヨン反応を行 つた。 ライゲ一シヨン反応終了液 ΙΟμΙ を大腸菌 DH5a株 ΙΟΟμΙに添加し、 氷上 に 30分間置いた後、 42°Cで 30秒間のヒートショックを行い、 再度氷上に 2分間 置いた後、 S0C培地 900μ 1に加え、 37°Cで 1.5時間インキュベーションした。 形 質転換菌は LB-Ampプレート(1%パクトトリプトン、 0.5%酵母エキス、 1%塩化ナト リウム、 1.5%寒天、 アンピシリン 100 g/ml)上で一夜培養した後、 プレート上に 出現したコロニーをそれぞれ 4ml LB- Amp培地(1%パク トトリプトン、 0.5%酵母ェ キス、 1%塩化ナトリウム、 アンピシリン 75 g/ml)の入った 13mlチューブで培養 (37°C、 一夜)し、 培養液を遠心して集菌し、 プラスミ ド DNA を QIAprep Spin Plasmids Kits(QIAGEN社製)を用いてミニプレパレ一ションして 30 1 の DNA液 を調製した。 内 20μ 1 を制限酵素反応液(10mM Tris- HC1 pH7.5、 lOmM MgCl2、 lmM Dithiothreitol, 50mM NaCl)22.8i 1中で Hindi 110.5^ 1で消化(37°C、 40分間) 後、 0.5M塩化ナトリウムを 2.6μ 1、 EcoRI を 0.5μ 1 を添加し、 二重消化(37°C、 40分間)した。 酵素反応終了液をァガロースゲル電気泳動し、 目的の DNA断片が 揷入されたクローンを得た。
ここまで形質転換には遺伝子導入の簡便性から大腸菌 DH5 α株を使用したが、 これをホスト株にした場合、 複製時に HCV遺伝子に変異が導入されやすい可能性 が考えられた。 そこで目的の DNA断片が揷入されたベクタ一を大腸菌 JM109株に 移し新たな形質転換菌を獲得した。
得られたクローンについて挿入された DNA断片部の塩基配列を DNA sequencing kit Dye Terminator Cycle Sequencing Ready Reaction(PERKIN ELMER)を用いて 解析を行い決定した。 Sequence はまず、 Sequence 反応溶液として、 Terminator Ready Reaction Mixを 8.0μ 1、 0.1 g/ 1 の Template DNAを 3μ 1、 l.Opmol/ μ 1の Primerを 3.2 μ 1 を混ぜ、 滅菌水で 20 μ 1に調製した。 反応は 96°C 5分間 96°C30秒間、 50°C15秒間、 60°C4分間の条件で 25サイクル行った。 反応終了液 を CENTRI-SEP COLUMNS (Ap lied Biosystems)で精製後、 泳動サンプルとして用い、 sequenceを行った。 目的の塩基配列を有したクロ一ンを ρ5' - 3' RBZと命名した。 pCALN/5' -3' RBZの構築
ρ5' -3' RBZ 24 μ g, pCALN/pBR 2A μ g をそれぞれ酵素反応液 500 μ 1 中で SwaKBoeheringer Mannheim)4 1 で消化(25°C、 一夜)した後、 TE飽和フエノー ル、 フエノール/クロ口ホルム及びクロ口ホルム処理を行い、 エタノール沈殿し、 TE 400 1 に溶解した。 この全量をァガロースゲル電気泳動し、 p5'-3'RBZ から は約 1.3kbpの DNA断片を、 pCALN/pBRからは約 8kbpの DNA断片(クローニングべ クタ一)を QIAEX II Agarose Gel Extraction(QIAGEN)を用いてゲルから抽出し、 それぞれを滅菌水 96 1、 222μ 1に溶解した。 これらの一部をァガロースゲル電 気泳動し、 それらの濃度を ρ5' - 3'RBZの DNA断片は 70ng/ z l、 クロ一ニングべク タ一 pCALN/pBRは 35ng/ μ 1 と概算した。 クローニングベクター pCALN/pBR 40 μ 1 に 10X CIAP buffer 10μ 1、 22units/M 1 の CIAP 5 1 を添力 Qし、 滅菌水で 100 1 にした。 アルカリフォスファタ一ゼ反応を 37°Cで 30分間行なった後、 75°Cで 10 分間インキュベーションし、 酵素を失活させた。 その後フエノール/クロロホ ルム処理を 2回、 クロ口ホルム処理を 1回行い、 エタノール沈殿し、 滅菌水 20μ 1に溶解した。 その一部をァガロースゲル電気泳動し、 その濃度を 25ng/^ 1 と概 算した。
70ng/^ 1 の p5,- 3'RBZ DNA 断片を 2μ 1、 25ng/, 1 のクローニングベクタ一 pCALN/pBRを 1.5μ 1、 滅菌水を 4.5μ 1混ぜ、 70°C、 5分間インキュベーションし た後、 氷冷水で急冷し、 即座に 5X DNA dilution buf fer(Boeheringer Mannheim, Rapid DNA Ligation Kit)を 2μ 1、 2X T4 DNA ligation buf fer(Boeheringer Mannheim , Rapid DNA Ligation Kit) を 10 μ 1 、 5units/ μ, 1 の T4 DNA 1 igase(Boeheringer Mannheim, Rapid DNA Ligation Kit)を 1 1 添カロし、 室温 で 1.5時間ライゲ一シヨン反応を行った。 この反応終了液 2 1 を大腸菌 DH5a株 ΙΟΟμΙに添加し、 氷上に 30分間置いた後、 42°Cで 45秒間のヒートショックを行 い、 再度氷上に 2分間置いた後、 S0C培地 400 1 に加え、 37°Cで 1時間インキュ ベ一シヨンした。 形質転換菌は LB-Arapプレート(1%パクトトリプトン、 0.5%酵母 エキス、 1%塩化ナトリウム、 1.5%寒天、 lOO g/ml)上で一夜培養した後、 プレー ト上に出現したコロニーをそれぞれ 4mlの LB- Amp培地(1%パクトトリプトン、 0.5% 酵母エキス、 1%塩化ナ卜リゥム、 75 g/ml)の入った 13mlチューブで培養(37°C、 6.5時間)し、培養液を遠心して集菌し、 プラスミ ド DNAを QIAprepSpinPlasmids Kits(QIAGEN社製)を用いてミニプレパレ一ションし、 TEで 50 ^ 1の MA液を調製 した。 この内 15μ1 を制限酵素反応液(10mM Tris-HCl pH7.5、 10mM MgCl2、 ImM DithiothreitoU 50mM NaCl、 0.01% BSA)20^ 1中で Xbalで消化(37°C、 30分間) し、 これをァガロースゲル電気泳動し、 目的の DNA断片が揷入されたクローンを 得た。 これらのクロ一ンについて揷入された DNA 断片部の塩基配列を DNA sequencing kit Dye Terminator Cycle Sequencing Ready React i on(PERKIN ELMER) を用いて解析し、 決定した。 目的の塩基配列を有したクローンを pCALN/5'- 3'RBZ と命名した。 pCALN/HCV RBZの構築
1の pCALN · R6 · CR8を 4 し 制限酵素反応液(10mM Tris-HCl pH7.5、 10mM MgCl2、 ImM DithiothreitoUSO 1中で Kpnl 2μ 1で消化(37°C、 一夜)し、 その酵素反応終了液 28μ1 に 0.5Μ塩化ナトリゥムを 4 μ1、 Hindlll を 2μ 1添カロ し、 滅菌水で 40μ 1 にしてさらに消化(37°C、 3.5時間)を行った。 反応後、 フエ ノール処理、 フエノール/クロ口ホルム処理、 クロ口ホルム処理を行い、 ェタノ一 ル沈殿し、 TE 30^ 1 に溶解した。この一部をァガロースゲル電気泳動し、約 8.5kbp の DNA断片を QIAEX II Agarose Gel Extract ion(QIAGEN)を用いてゲルから抽出 し、 滅菌水 20μ1に溶解した。 そして再度フエノール処理、 フエノール/クロロホ ルム処理、 クロ口ホルム処理を行い、 エタノール沈殿し、 滅菌水 20^1 に溶解し た。 同様に nも I β \ の pCALN/5'- 3'RBZ を 5 zl、 制限酵素反応液(10mM Tris-HCl pH7.5、 10mM MgCl2、 ImM Dithiothreitol)30 1中で Kpnl 2μ 1で消化(37°C、 一 夜)し、 その反応終了液をフエノール処理、 フエノール/クロ口ホルム処理、 クロ 口ホルム処理を行い、 エタノール沈殿し、 ΤΕ30μ1に溶解した。 これをァガ口一 スゲル電気泳動し、 約 9.2kbpのクローニングベクタ一を QIAEX II Agarose Gel Extraction(QIAGEN)を用いてゲルから抽出し、 滅菌水 27/ 1に溶解した。 次いで このクロ一ニングベクタ一 27μ1 に 10X CIAP bufferを 5μ1、 22units/ i 1 の CIAPを 2 1加え、 滅菌水で 50 1にし、 50°C、 30分間インキュベーションして アルカリフォスファタ一ゼ処理を行った。 反応後、 75°C、 10分間の加熱で酵素を 失活させ、 フエノール/クロ口ホルム処理を 2回、 クロ口ホルム処理を 1回行い、 エタノール沈殿し、 滅菌水 20μ1に溶解した。
pCALN · R6 · CR8から回収した DNA断片とクロ一ニングべクタ一 pCALN/5' -3' RBZ の一部をァガロースゲル電気泳動し、それらの濃度を共に約 20ng/^l と概算した。 ライゲ一シヨン反応は、 pCALN · R6 ' CR8から回収した DNA断片 4 1 とクロ一 ニングベクター pCALN/5'- 3'RBZ 1 を混ぜ 80°C、 3分間インキュベーションし た後、氷冷水につけ、即座に 5X DNA dilution buffer 2 1、 2Χ DNA ligation buffer 10 5units/ 1の T4 DNA ligase 1 1を添加し、 室温で 1.5時間行った。 反 応液 2μ1 を大腸菌 DH5a株 100 に添力 []し、 氷上に 30分間置いた後、 42°Cで 45 秒間のヒートショックを行い、 再度氷上に 2分間置いた後、 S0C培地 400 lに加 え、 37°Cで 1時間インキュベーションした。 形質転換菌は LB-Ampプレート(1%バ クトトリプトン、 0.5%酵母エキス、 1%塩化ナトリウム、 1.5%寒天、 アンピシリン lOO^g/ml)上で一夜培養した後、 プレート上に出現したコロニーをそれぞれ 4ml の LB-Amp培地(1%パクトトリプトン、 0.5%酵母エキス、 1%塩化ナトリウム、 アン ピシリン 75 tg/nd)の入った 13mlチューブで培養(37°C、 6時間)し、 培養液を遠 心して集菌し、 プラスミ ド DNAを QIAprep Spin Plasmids Kits(QIAGEN社製)を 用いてミニプレパレ一シヨンし、 TEで 100 1の DNA液を調製した。 この内 12.5 H 1 を制限酵素反応液(50mM Tris-HCl pH7.5、 10mM MgCl2、 ImM Di thiothrei tol, lOOmM NaCl)15/ 1中で EcoRI Ιμΐで消化(37°C、 30分間)した後、 ァガロースゲ ル電気泳動し、 目的の DNA断片の挿入されたクローンを得た。
HCV 遺伝子の複製時における変異を極力抑える目的で得られたクローンのホス ト株を大腸菌 DH5a株から JM109株に変え、 新たな形質転換菌を得た。 また細胞 への transfectionや tgm作製といった本発明のベクタ一の応用性を考慮して、以 降のプラスミ ド調製は Triton法を用いた。
まず Super broth(3.3%パクトトリプトン、 2%酵母エキス、 0.75%塩化ナトリウ ム、 10N水酸化ナトリウム 1 000量)でクローンを大量培養し、 遠心(5000rpm、 10 分間)で菌体を回収した。 そこに冷 TE Sucrose(25% Sucrose, 50mM Tris-HCl pH8.0、 ImM EDTA)を培養量の 1/20量加え、 チューブに移し、 以後氷上で 20mg/ml lysozymeを培養量の 1/100量加え 5分間インキュベーション、 0.5M EDTA pH8.0 を培養量の 1/50量加え 10分間ィンキュベーション、 Tyiton-lyticmixture(0.1% Triton X-100、 50mM Tris-HCl pH8.0、 62.5mM EDTA)を培養量の 2/25 量加え 15 分間インキュベーションといった操作を行った。 インキュベーション後、 超遠心 (Beckman rotor 45Ti、 30krpm 30分間、 4°C)を行い、 上清をビ一カーに移した。 上清の重量の 1/10量(w/w)の PEG 6000と 1/ 10量(v/w)の 5M塩化ナトリゥムを加 え攪拌して完全に溶解させ、 溶解後、 氷上で 1,5時間インキュベーションした。 その後、 遠心チューブに移し、 8000rpm、 10分間、 4°Cで遠心を行った。 沈殿物に TE-Sarkosyl(0.4% SarkosyK lOmM Tris-HCl pH7.5, ImM EDTA)を培養量の 3/200 量加え、 塩化セシウムを培養量の 3/200量(w/v)加え、 10mg/mlのエチレンブロマ イドを 3/8000量加え、 チューブに移して遠心(8000rpm、 10分間、 15°C)した。 遠 心後、 液体表面上に形成されたタンパクの膜を除去し、 上清をチューブに移し、 再度 10mg/ml のエチレンブロマイ ドを 3/4000 量加えた後、 超遠心チューブ (polyal lomer Quick-seal 1x3 1/2 in)に移し、 超遠心(Beckman rotor Vti50、 4.8krpm、 一夜、 15°C)を行った。 遠心終了後、 プラスミ ドを回収し、 再度超遠心 チューフ polyal lomer Quick-seal 1x3 1/2 in) (こ移し、 超 ¾ (Beckman rotor Vti80、 6.5krpm、 3.5時間、 20°C)を行った。 遠心終了後、 プラスミ ドを回収し、 5M塩化ナトリゥム飽和イソプロパノールで 6回抽出を行い、 エチレンブロマイド を除去した。 回収したサンプル量の 3倍量の TEを添加後、 エタノール沈殿を行い、 適当量の TE に溶解した。 このプラスミ ドに挿入された HCV遺伝子の塩基配列を DNA sequencing kit Dye Terminator Cycle Sequencing Ready Reaction(PERKIN ELMER)を用いて決定した。 目的の塩基配列を有したプラスミ ドベクタ一を pCALN/HCVRBZと命名した (図 1 )。 このプラスミ ドを導入した大腸菌は工業技術 院生命工学工業技術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号) に寄託さ れている (FERM BP-6763、 寄託日 :平成 9年 10月 31 日)。
〔実施例 2〕 完全長 HCV遺伝子発現の確認
( 1 ) ノーザンブロッテイングによる確認
pCALN/HCV RBZ を IMY 細胞 (Itoh, T. et al. , submitted) に Lipofectin Reagant(GIBCO-BRL)の方法 (Feigner, PL, et al. , Pro Natl. Acad. Sci. USA, 84, 7413(1987) ) に従いトランスフエクトし、 T7- RNAポリメラーゼを持つ組み 換えワクチニァウィルス (文献: Yasui, K. et al. , J.Virol, in press) を感染 させ、 HCV-RNAを発現させた。 具体的には、 IMY細胞、 6cm dish当たり、 Rz-DNA4 igを用い、 Lipofectinを 18%の割合になるように Opt i-MEMで希釈したものを 混合し、 室温で 15分間放置後、 Opti-MEM 1.6ral を加え静かに混合し、 dish上に まく。 その後 37°Cで 5時間インキュベートし、 M01 = 10で T7ポリメラ一ゼを持つ 組換えワクチニァウィルスを 1時間吸着させた。 その後、 37°Cで、 12時間培養し、 感染細胞を集め、 HCVの発現を検討した。 Isogen (二ツボンジーン) を用いて RNA を抽出し、そのうちのトータル RNA4 もをホルムアルデヒトゲルで電気泳動し、 ナイロン膜 (アマシャム) に転写して 10%Dextran sulfate, 1%SDS 溶液でノー ザンンブロットを行った。 HCV遺伝子の 5'UTRから coreの領域に相当する 600bp の cDNAを pdCTPでラベルしプローブとし、 発現された HCV- RNAを検出した。 また、 対照として、 pCALN/HCV RBZを in vitroで発現させた場合、 及びリボザィムをコ ードする DNA を含まない T702X を発現させた場合についても同様に HCV- RNAの 検出を試みた。 この結果を図 2に示す。
pCALN/HCV RBZを in vitroで発現させた場合、 HCV- RNA は完全にトリミングさ れず、 約 llkbの RNA が検出された。 一方、 pCALN/HCV RBZ を細胞内で発現させ た場合、 完全長 (9.6kb ) の HCV- RNA のみが検出された。 また、 T702X を用い た場合、 完全長の HCV-RNA は検出されたが、 その RNA 量は pCALN/HCV RBZを用 いた場合に比べ著しく少なかった。
( 2 ) 5' -Race 及び 3' -Race による確認
pCALN/HCV RBZをトランスフエクトした IMY細胞から HCV-RNA を抽出し、 その 両末端の塩基配列を調べた (図 3及び図 4)。
5'末端のク口一ニング及びシークエンス
発現した HCV- RNA の 5'末端配列の確認は、 5' Race System (Gibco-BRL) を用 いて、 5'Race 法により行った。 抽出した HCV- RNA から A5'-IR プライマ一と Superscriptll (Gibco-BRL) を用いて cDNAを合成した。 合成された cDNAを、 TdT で dA tailingし、 これを铸型とし、 sense プライマ一 : CAC-T35、 antisense プ ライマー: A5' -II として PCRを行った。 得られた増幅産物を錡型とし、 senseプ ライマ一: KM2、 antisenseプライマ一: CAC-T35として再度 PCRを行った。 増幅 された DNAフラグメントは pGEM- Tベクタ一 (プロメガ) にクローニングし、 塩基 配列の決定を行った。
3 '末端のクローニング及びシークェンス
抽出した HCV- RNA に poly A Polymerase (タカラ) で A tailing を行い、 こ れから CAC- T35プライマーで cDNA合成を行った (Superscript II、 Gibco- BRL)。 この cDNA を錄型として、 CAC- T35プライマー、 Takara Taqで 1回目の PCRを、 続いて 3'-X- K6H3と CAC-T35で 2回目の PCRを行い、 得られたフラグメントを 5' 末端の場合と同様に配列決定した。
以下に使用したプライマ一の塩基配列を示す。
CAC-T35 : CAC(T)35 (配列番号 1 9 )
匿: 5, -CTGTACGACACTCATACTAA - 3' (配列番号 2 0 )
3' -XR6H3: 5' -TTTTTGGTGGCTCCATCTTAGCC-3' (配列番号 2 1 )
A5' - IR:5' -GGGTTTGGGATTTGTGCTCATGAT, (配列番号 2 2) A5' - 11: 5' -CACTCGCAAGCACCCTATCAGGCAGT, (配列番号 2 3 ) 以上のシークェンスの結果を HCV 遺伝子の両末端の塩基配列と比較したとこ ろ、 3'末端については完全な一致がみられたが、 5'末端については、 得られたシ —クエンスは、 HCV 遺伝子の配列に G がーつ付加したものであった。 この G は pCALN/HCV RBZ中に揷入した cDNAに含まれていないものなので、 mRNAの 5'末端 のキヤップ構造に由来するものと考えられた。
(3) HCV蛋白質発現の確認
pCALN/HCV RBZ をトランスフェクトした IMY細胞についてウェスタンブロッテ イング法 (新生化学実験講座タンパク質 I、 東京化学同人 (1990)) により、 構成 蛋白質の発現を解析した。
IMY細胞を RIPAバッ 77— (l%SDS、0.5%NP40、0.15匪 aCl、 lOmMTri s-HCl (pH7.4) ) で可溶化し、 SDS-PAGEで電気泳動し、 I誦 obilon- P (ミリポア) に転写溶液(25mM Tris, 192mM Glycine, 20%メタノール) で転写した。 その後、 抗 core、 El、 E2、 NS3、 NS4A/4B 、 NS4B、 NS5A、 NS5Bの各ビォチン化モノクローナル抗体 ( 1— 2 6g/ml) と 37°Cで反応させ、 ァビジン化-111^0( 6 (^ 316111:1:1500)で反応後、 ECL (アマシャム)で HCV蛋白質を検出した。 対照として、 pCALN/HCV RBZをトラン スフェクトしなかった IMY細胞についても同様に構成蛋白質の発現を解析した。 この結果を図 5に示す (図中の 2- 18がトランスフエクトした場合、 Mockがトラ ンスフェクトしなかった場合を示す)。
図に示すように作製したすべてのモノクローナル抗体について特異的に結合す る蛋白質が検出された。 これより、 pCALN/HCV RBZは、 全 HCV蛋白質を発現でき るものと考えられる。
〔実施例 3〕 HCV 遺伝子発現細胞株の樹立
HepG2、 IMY 細胞、 6 cm dish 1 枚当た り 、 プラス ミ ド DNA4 μ g と Lipofectin(GIBCO-BRL)を Opti- MEM(GIBCO-BRL)に約 18%の割合で溶解したも のを、 混合し、 室温で 15分放置後、 Opti- MEMを 1.6ml加え、 静かに混合し、 予 め Opti- MEMで洗浄した細胞の上にまいた。 37°Cで C02インキュベータ一内に 5時 間置いた後、 上清を 10%FCS-DMEM (細胞培養液) と置換した。 37°C、 48時間後、 細胞を 1 : 5の割合で継代し、 G418を SOO g/mKBi oact ive)で加えた。約 3週間後、 形成されたコロニ一をピックァップした。
ピックアップした細胞に cre-adenovi rusを感染させ (感染量: mo i = 100 )、 ゥ エルあたりの core蛋白質の発現量を調べた。 特に発現量の多かった 3 系統につ いての結果を図 6に示す。
次に、 ere- adenov i rusの感染量を mo i = l から 100 まで変化させ、 その際の発 現量を調べた。 この結果を図 7に示す。 図 7に示すように、 mo i =30でほぼプラト —に達した。 このことから全細胞で HCV が発現するためにはある程度の ere 酵 素が必要であると考えられた。 なお、 図 7では、 最も発現の高い 2 - 18系統のみ示 したが、 2-8 系統及び 2-22系統でも同様の反応性を示した。 なお、 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考 として本明細書にとリ入れるものとする。 発明の効果
本発明は、 RNAウィルスの完全長遺伝子を発現することのできるベクタ一等を 提供する。 これらは、 RNAウィルス複製の機構および RNA ウィルス感染症の発症 機構の解明、 治療薬および治療手段の開発等に有用である。 図面の簡単な説明
図 1 : pCALN/HCV RBZ の構造を示す図である。
図 2 : pCALN/HCV RBZ からの転写産物に対するノーザンブロットの結果を示す写 真である。
図 3 : 5' -Race 法の概要を示す図である。
図 4 : 3' - Race 法の概要を示す図である。
図 5 : pCALN/HCV RBZ からの翻訳産物に対するウェスタンプロットの結果を示す 写真である。 図 6 : HCV 遺伝子発現細胞株の Core蛋白質の発現量を示す図である。
図 7 : HCV遺伝子発現細胞株の Core蛋白質の発現量と ere- adenovi rus感染量と の関係を示す図である。

Claims

請求の範囲
1 . RNAウィルスの遺伝子をコードする cDNAを含むベクタ一であって、 該 RNA ウィルスの遺伝子の両末端を正確かつ均一に転写できるように構築されているこ とを特徴とするベクター。
2 . RNAウィルスの遺伝子をコードする cDNAの 5'末端の上流及び 3'末端の下 流のそれぞれにセルフプロセッシングによリ切断するリボザィムをコードする DNAが配置されていることを特徴とする請求項 1記載のベクタ一。
3 . RNA ウィルスが C型肝炎ウィルスであることを特徴とする請求項 1又は 2 記載のベクター。
4 . 請求項 1又は 2記載のベクターを含むことを特徴とする動物細胞。
5 . 請求項 3記載のベクターを含むことを特徴とする動物細胞。
6 . その細胞中に請求項 1又は 2記載のベクターを含むことを特徴とする RNA ウィルス感染モデル動物。
7 . RNA ウィルスが C型肝炎ウィルスであることを特徴とする請求項 6記載の RNAウィルス感染モデル動物。
8 . 請求項 4記載の動物細胞、 又は請求項 6記載の RNAウィルス感染モデル動 物を用いることを特徴とする Aウィルスの複製を阻害する薬物のスクリ一ニン グ方法。
9 . 請求項 5記載の動物細胞、 又は請求項 7記載の RNAウィルス感染モデル動 物を用いることを特徴とする C型肝炎ウィルスの複製を阻害する薬物のスクリ一 ニング方法。
PCT/JP1999/003380 1998-06-24 1999-06-24 Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation WO1999067394A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002330837A CA2330837C (en) 1998-06-24 1999-06-24 A vector expressing an rna viral full-length gene and its use
EP99926798A EP1090996A4 (en) 1998-06-24 1999-06-24 VECTOR EXPRESSING THE FULL LENGTH GENE OF RNA VIRUSES AND ITS USE
AU43932/99A AU761012B2 (en) 1998-06-24 1999-06-24 Vector expressing the full-length gene of RNA virus and use thereof
US09/720,201 US6524853B1 (en) 1998-06-24 1999-06-24 Vector expressing the full-length gene of RNA virus and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17782098 1998-06-24
JP10/177820 1998-06-24

Publications (1)

Publication Number Publication Date
WO1999067394A1 true WO1999067394A1 (fr) 1999-12-29

Family

ID=16037680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003380 WO1999067394A1 (fr) 1998-06-24 1999-06-24 Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation

Country Status (6)

Country Link
US (1) US6524853B1 (ja)
EP (1) EP1090996A4 (ja)
JP (1) JP2010046083A (ja)
AU (1) AU761012B2 (ja)
CA (1) CA2330837C (ja)
WO (1) WO1999067394A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043399A2 (de) * 1999-04-03 2000-10-11 Ralf Dr. Bartenschlager Hepatitis C Virus Zellkultursystem
WO2003037081A1 (fr) * 2001-10-30 2003-05-08 Tokyo Metropolitan Organization For Medical Research Animal transgenique a gene hcv
US8466273B2 (en) 2008-03-14 2013-06-18 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Hepatitis C virus inhibitors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447994B1 (en) * 2000-06-20 2002-09-10 The General Hospital Corporation Production of replicative hepatitis C virus
AU2001282560A1 (en) * 2000-10-03 2002-04-15 Chugai Seiyaku Kabushiki Kaisha Methods of infection with hepatitis c virus
EP1483280B1 (en) 2002-03-08 2012-10-24 Glen Research Corporation Fluorescent nitrogenous base and nucleosides incorporating same
WO2007013882A2 (en) * 2004-09-30 2007-02-01 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services In vitro model for hepatitis c virion production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225770A (ja) 1992-07-10 1994-08-16 Tokyo Met Gov Rinshiyou Igaku Sogo Kenkyusho 非a非b型肝炎ウイルス抗原をコードする核酸断片
JPH099965A (ja) 1995-06-30 1997-01-14 Chemo Sero Therapeut Res Inst C型肝炎ウイルス遺伝子の全長配列を有するトランスジェニック動物
JPH1084813A (ja) 1996-07-24 1998-04-07 Tokyo Met Gov Rinshiyou Igaku Sogo Kenkyusho C型肝炎モデル動物
WO1998021338A1 (en) * 1996-11-08 1998-05-22 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Synthesis and purification of hepatitis c virus-like particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283267A4 (en) * 2000-05-15 2004-05-12 Tokyo Metropolitan Org Med Res VECTOR FOR ANALYZING AND USING THE REPLICATION MECHANISM OF A RNA VIRUS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225770A (ja) 1992-07-10 1994-08-16 Tokyo Met Gov Rinshiyou Igaku Sogo Kenkyusho 非a非b型肝炎ウイルス抗原をコードする核酸断片
JPH099965A (ja) 1995-06-30 1997-01-14 Chemo Sero Therapeut Res Inst C型肝炎ウイルス遺伝子の全長配列を有するトランスジェニック動物
JPH1084813A (ja) 1996-07-24 1998-04-07 Tokyo Met Gov Rinshiyou Igaku Sogo Kenkyusho C型肝炎モデル動物
WO1998021338A1 (en) * 1996-11-08 1998-05-22 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Synthesis and purification of hepatitis c virus-like particles

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
BALL L. A.: "CELLULAR EXPRESSION OF A FUNCTIONAL NODAVIRUS RNA REPLICON FROM VACCINIA VIRUS VECTORS.", JOURNAL OF VIROLOGY., THE AMERICAN SOCIETY FOR MICROBIOLOGY., US, vol. 66., no. 04., 1 April 1992 (1992-04-01), US, pages 2335 - 2345., XP002922091, ISSN: 0022-538X *
BATOLINI, L. ET AL., RES. VIROL., vol. 144, 1993, pages 281
BEEN M. D., WICKHAM G. S.: "SELF-CLEAVING RIBOZYMES OF HEPATITIS DELTA VIRUS RNA.", EUROPEAN JOURNAL OF BIOCHEMISTRY, WILEY-BLACKWELL PUBLISHING LTD., GB, vol. 247., 1 January 1997 (1997-01-01), GB, pages 741 - 753., XP002922090, ISSN: 0014-2956, DOI: 10.1111/j.1432-1033.1997.00741.x *
CHOMCZYNSKY. P ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156
CHOO, Q. -L. ET AL., SCIENCE, vol. 244, 1989, pages 359 - 362
DASH, S. ET AL., AM. J. PATHOL, vol. 151, 1997, pages 363
EIKO OOTSUKA ET AL., PROTEIN, NUCLEIC ACID AND ENZYME, vol. 40, 1995, pages 1400
GROSFELD H., HILL M. G., COLLINS P. L.: "RNA REPLICATION BY RESPIRATORY SYNCYTIAL VIRUS (RSV) IS DIRECTED BYTHE N, P, AND L PROTEINS; TRANSCRIPTION ALSO OCCURS UNDER THESE CONDITIONS BUT REQUIRES RSV SUPERINFECTION FOR EFFICIENT SYNTHESIS OF FULL-LENGTH MRNA.", JOURNAL OF VIROLOGY., THE AMERICAN SOCIETY FOR MICROBIOLOGY., US, vol. 69., no. 09., 1 September 1995 (1995-09-01), US, pages 5677 - 5686., XP002922092, ISSN: 0022-538X *
ISHIKAWA M., ET AL.: "IN VIVO DNA EXPRESSION OF FUNCTIONAL BROME MOSAIC VIRUS RNA REPLICONS IN SACCHAROMYCES CEREVISIAE.", JOURNAL OF VIROLOGY., THE AMERICAN SOCIETY FOR MICROBIOLOGY., US, vol. 71., no. 10., 1 October 1997 (1997-10-01), US, pages 7781 - 7790., XP002922093, ISSN: 0022-538X *
J. GEN. VIROL., vol. 72, 1991, pages 2697 - 2704
J. VIROL., vol. 65, 1991, pages 1105 - 1113
KATO, N. ET AL., BRIOCHEM BIOPHYS. RES. COMM, vol. 206, 1995, pages 863
KATO, N. ET AL., PROC. NATL. ACAD. SCI., USA, vol. 87, 1990, pages 9524 - 9528
LANFORD, RE ET AL., VIROLOGY, vol. 202, 1994, pages 606
MANIATIS, T.: "Molecular Cloning,2nd Ed,", 1989, CHS PRESS
MIZUNO, M ET AL., GASTROENTEROLOGY, vol. 109, 1995, pages 1933
NAT STERNBEIG ET AL., J. MOLECULAT BIOLOGY, vol. 150, pages 467 - 486
PROC. NATL. ACAD. SCI., USA, vol. 88, 1991, pages 2451 - 2455
RACCANIELLO, VR, SCIENCE, vol. 214, 1981, pages 916
SAITO, I. ET AL., PROC. NATL. AEAD. SCI. USA, vol. 87, 1990, pages 6547 - 6549
See also references of EP1090996A4
SHIMAYAMA, T. ET AL., BIOCHEMISTRY, vol. 34, 1995, pages 3649
SHIMIZU, YK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 5477
SUH, Y-A. ET AL., NUCLEIC ACIDS RESEARCH, vol. 20, 1992, pages 747
VIROLOGY, vol. 188, 1992, pages 331 - 341
YOO, BJ ET AL., J, VIROL., vol. 69, 1995, pages 32

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043399A2 (de) * 1999-04-03 2000-10-11 Ralf Dr. Bartenschlager Hepatitis C Virus Zellkultursystem
EP1043399A3 (de) * 1999-04-03 2002-05-08 Ralf Dr. Bartenschlager Hepatitis C Virus Zellkultursystem
WO2003037081A1 (fr) * 2001-10-30 2003-05-08 Tokyo Metropolitan Organization For Medical Research Animal transgenique a gene hcv
US8466273B2 (en) 2008-03-14 2013-06-18 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Hepatitis C virus inhibitors

Also Published As

Publication number Publication date
AU761012B2 (en) 2003-05-29
CA2330837C (en) 2008-11-18
JP2010046083A (ja) 2010-03-04
CA2330837A1 (en) 1999-12-29
EP1090996A4 (en) 2003-03-26
US6524853B1 (en) 2003-02-25
AU4393299A (en) 2000-01-10
EP1090996A1 (en) 2001-04-11

Similar Documents

Publication Publication Date Title
Kim et al. 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA
Lam et al. Hepatitis C virus subgenomic replicon requires an active NS3 RNA helicase
Lee et al. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome
Melegari et al. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression
Appel et al. Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A
EP0856051B1 (en) Novel 3' terminal sequence of hepatitis c virus genome and diagnostic and therapeutic uses thereof
Huang et al. Initiation at the third in-frame AUG codon of open reading frame 3 of the hepatitis E virus is essential for viral infectivity in vivo
Spångberg et al. HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3′ ends of hepatitis C virus RNA of both polarities
JP2000506010A (ja) C型肝炎ウイルスリボザイム
JP2010046083A (ja) Rnaウイルスの完全長遺伝子を発現するベクター及びその用途
CN102827841A (zh) 利用小干扰rna抑制病毒基因表达
Merkle et al. Biological significance of a human enterovirus B-specific RNA element in the 3′ nontranslated region
Baulcombe et al. Signal for potyvirus-dependent aphid transmission of potato aucuba mosaic virus and the effect of its transfer to potato virus X
Blight Allelic variation in the hepatitis C virus NS4B protein dramatically influences RNA replication
Nagashima et al. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform
Teterina et al. Strand-specific RNA synthesis defects in a poliovirus with a mutation in protein 3A
JP2011505159A (ja) Hcvns3プロテアーゼレプリコンシャトルベクター
JP2000152793A (ja) Rnaウイルスの完全長遺伝子を発現するベクタ―及びその用途
WO2005028652A1 (ja) 新規hcv株由来の核酸、遺伝子、及び該遺伝子を利用したレプリコン複製細胞
Chen et al. Identification of a functional nuclear localization signal in 3Dpol/3CD of duck hepatitis A virus 1
JP3831035B2 (ja) C型肝炎ウイルス感受性組換え肝細胞及びその利用
JPH099965A (ja) C型肝炎ウイルス遺伝子の全長配列を有するトランスジェニック動物
CN113004390B (zh) Adam17在作为猪瘟病毒的受体中的应用
US8609403B2 (en) Polynucleotide derived from novel hepatitis C virus strain and use thereof
WO2006001517A1 (ja) 新規な配列を持つhcv rna

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2330837

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09720201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 43932/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999926798

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999926798

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 43932/99

Country of ref document: AU