WO1999064479A1 - Method of hydrogenating block copolymer - Google Patents

Method of hydrogenating block copolymer Download PDF

Info

Publication number
WO1999064479A1
WO1999064479A1 PCT/JP1999/003080 JP9903080W WO9964479A1 WO 1999064479 A1 WO1999064479 A1 WO 1999064479A1 JP 9903080 W JP9903080 W JP 9903080W WO 9964479 A1 WO9964479 A1 WO 9964479A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
hydrogenation
platinum group
carrier
catalyst
Prior art date
Application number
PCT/JP1999/003080
Other languages
French (fr)
Japanese (ja)
Inventor
Yoro Sasaki
Hiroshi Ishida
Masahiro Fujiwara
Tatsuo Yamaguchi
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17653798A external-priority patent/JP4063407B2/en
Priority claimed from JP28206198A external-priority patent/JP4255150B2/en
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU41648/99A priority Critical patent/AU4164899A/en
Publication of WO1999064479A1 publication Critical patent/WO1999064479A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a method for hydrogenating a block copolymer of an aromatic vinyl and a conjugated diene. More specifically, using a fixed bed reactor packed with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier, a solution of a block copolymer of aromatic vinyl and a conjugated gen is passed along with hydrogen gas, The present invention relates to a hydrogenation method for hydrogenating an unsaturated bond in an aromatic ring portion and a conjugated gene block portion of the block copolymer into a saturated bond.
  • Examples of fixed bed hydrogenation include, for example, US Pat. No. 3,809,687. In Saisho, pore volume 0. 3 mf / g or more, with a specific surface area 1 0 O m 2 Z g carrier loaded with platinum group catalysts, the force 'molecular weight being attempted hydrogenation of the aromatic rings of polystyrene The hydrogenation of the polymer is about 1,000, and the hydrogenation of the high molecular weight product is not performed.
  • platinum group catalysts When performing hydrogenation in a fixed bed, platinum group catalysts are preferred because they have higher activity than nickel-based catalysts.However, in platinum group catalysts, the conjugated gen block moiety is generally more selective than the aromatic ring. Therefore, especially when a high-concentration solution of a polymer having a large molecular weight is used, (1) the expansion of the polymer single-molecule chain is increased, and the diffusion rate to the catalyst metal surface in the pores of the carrier is increased. (2) The viscosity of the solution increases significantly with the hydrogenation of the conjugated gen block. The disadvantage was that the rate of mass transfer from the gas phase to the liquid phase was reduced, and hydrogenation of the aromatic ring was difficult to proceed.
  • nickel-based catalyst An example of a nickel-based catalyst is described in U.S. Pat. No. 4,629,767, in which a specific surface area is supported on a silica support having a specific surface area of 140 to 160 m 2 / g.
  • LHSV liquid hourly space velocity
  • polymer concentration 12.6% polymer concentration 12.6%
  • styrene content 61% number average molecular weight about 50,000 Hydrogenation of a styrene-butadiene block copolymer was reported, and the aromatic ring and conjugated genblock were hydrogenated.
  • the butadiene block which is the conjugated gen block
  • the conjugated gen block has a molecular weight of about 20,000 and a short chain length
  • the expansion of the polymer molecular chain due to hydrogenation of the conjugated gen block is small, and the conjugated Even if hydrogenation is first performed, hydrogenation of the aromatic ring can also be achieved sequentially.
  • it has this level of activity for diblock copolymers that are more susceptible to hydrogenation than triblock copolymers, and nickel-copper catalysts have low activity and are not suitable for hydrogenation of high molecular weight polymers.
  • the conjugated gen block is long and the aromatic ring portion of the other block chain is not easily hydrogenated, the disadvantage remains.
  • An object of the present invention is to hydrogenate unsaturated bonds between an aromatic ring portion and a conjugated gen block portion of a block copolymer of an aromatic biel and a conjugated gen, and (1) separation of a polymer solution and a catalyst is unnecessary; (2) High molecular weight, long conjugated gen block, and high concentration of polymer, high hydrogenation rate, good productivity,
  • the present invention provides a hydrogenation method with a long catalyst life without the problem of polymer coloring due to no mixing of catalysts and catalyst components.
  • the present inventors have conducted intensive studies. As a result, when hydrogenating a polymer having a high concentration of a high molecular weight polymer and a long conjugated gen block in a fixed bed, (1) The fact that the temperature dependence of the hydrogenation rate of the aromatic ring portion is higher than expected in a stirred tank at higher temperatures than expected, and (2) the surprising fact that the catalyst life is longer at higher temperatures than at lower temperatures.
  • the present inventors have discovered and completed the present invention based on the discovery.
  • a solution of a block copolymer of aromatic vinyl and a conjugated gen is passed along with hydrogen gas through a fixed bed reactor filled with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier.
  • a hydrogenation method for hydrogenating an unsaturated bond between an aromatic ring portion and a conjugated gen-block portion to a saturated bond wherein (1) the block copolymer has a number average molecular weight of 40,000 (4) the number average molecular weight of the conjugated gen block in the block copolymer is at least 30,000, and (3) the polymer in the block copolymer solution.
  • the concentration is 5 to 30 weight. /. (4) the above-mentioned method, wherein the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
  • the loading amount of the platinum group metal is 0.1 to 10% by weight with respect to the carrier,
  • the platinum group metal has a surface area of 40 to 25 Om 2 Zg—metal, and (4) the platinum group metal has a surface layer within 1/10 of the carrier diameter in the depth direction from the outer surface of the carrier.
  • the method of the above 1 which is supported by 90% or more,
  • the pore diameter measured by the mercury intrusion method is 100 to 100, OOQ nm.
  • the pore volume of the pores of the inorganic carrier is 5 to 100, 50 to the pore volume of the pores with OOO nm: I 00%. The method of 1 or 2 above,
  • the inorganic carrier is selected from the group consisting of alumina, alumina silica, silica, titania, magnesium, zirconia, and zeolite;
  • the block copolymer is a group consisting of A—B, A—B_A, A_B—A—B, and (AB) m X (where A is a block of aromatic vinyl, and B is a block of conjugated gen) Wherein m represents 2, 3 or 4, and X represents a polyfunctional coupling agent.)
  • A is a block of aromatic vinyl
  • B is a block of conjugated gen
  • m represents 2, 3 or 4
  • X represents a polyfunctional coupling agent.
  • the block copolymer is at least one selected from the group consisting of styrene-butadiene diblock copolymer, styrene-butadiene-styrene triblock copolymer, styrene-1 ⁇ soprene diblock copolymer, and styrene-isoprene-styrene triblock copolymer.
  • Method 7 above which is
  • a solution of a block copolymer of aromatic vinyl and a conjugated diene is passed along with hydrogen gas through a fixed-bed reactor filled with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier.
  • a method for producing a hydrogenated block copolymer comprising hydrogenating unsaturated bonds of an aromatic ring portion and a conjugated genlock portion to form a saturated bond, wherein (1) the number average molecular weight of the block copolymer is 40,00 (2) the number average molecular weight of the conjugated gen block in the block copolymer is 30,000 or more; (3) the block copolymer solution (4) The above method, wherein the concentration of the polymer is 5 to 30% by weight, and (4) the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
  • aromatic butyl in the present invention examples include styrene, o-methylstyrene, o-, m-, p-methylstyrene, alkyl-substituted styrene such as p-t-butylstyrene, o-, m-, and ⁇ -medium.
  • styrene o-methylstyrene, o-, m-, p-methylstyrene, alkyl-substituted styrene such as p-t-butylstyrene, o-, m-, and ⁇ -medium.
  • One or more kinds are selected from toxic styrene, vinyl / lenaphthalene and the like, and styrene is particularly preferred.
  • conjugated diene in the present invention for example, one or two or more selected from butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like are selected, and particularly preferred are butadiene, isoprene and these. It is a combination.
  • the block copolymer in the present invention is obtained by copolymerizing the aromatic vinyl and the conjugated gen by a known living anion polymerization method.
  • the structure of the block copolymer may be, for example, linear, branched, radial, comb-shaped, or a mixture thereof.
  • a preferred structure is as follows: A is a block composed of aromatic biels and B is a block composed of conjugated gens. A—B, A—B—A, A—B—A—B,
  • (A-B) m — X (m represents 2, 3 or 4, and X is, for example, silicon tetrachloride, tetrashidani tin, epoxidized soybean oil, a compound having 2 to 6 functional epoxy groups, polyhalogen Represents the residue of a coupling agent such as a hydrocarbon compound, a carboxylate ester, or a polybutyl compound such as dibutylbenzene, or the residue of an initiator such as a polyfunctional organolithium compound. It also includes a tapered block in which the boundaries of each block are random and the composition of which gradually changes.
  • styrene-butadiene diblock copolymer particularly preferred are styrene-butadiene diblock copolymer, styrene-isoprene diblock copolymer, styrene-butadiene-styrene triblock copolymer, and styrene-isoprene-styrene triblock copolymer.
  • the number average molecular weight of the block copolymer is 40,000 to 450,000, preferably 50,000 to 450,000. With a low molecular weight of less than 40,000, the strength of the polymer obtained by hydrogenation is insufficient. If the molecular weight is higher than 450,000, processing becomes difficult.
  • the molecular weight here is gel permeation It is a value in terms of polystyrene measured by Yon chromatography (GPC).
  • the number average molecular weight of the conjugated gen block in the block copolymer is a molecular weight obtained by multiplying the number average molecular weight of the block copolymer by the weight content of the conjugated gen.
  • a styrene-butadiene-styrene triblock copolymer having a number average molecular weight of 100,000 has a styrene content of 30% by weight. If / 0 , the butadiene content is 70% by weight, and the number average molecular weight of the conjugated gen block in the block copolymer is 70,000. Even if the conjugated diene block in the block copolymer is two or more blocks, or even if the block boundaries are random and the composition of the tapered block gradually changes, the number average molecular weight of the conjugated diene block Is a value obtained by this calculation method.
  • the number average molecular weight of the conjugated gen block in the block copolymer is at least 30,000, preferably at least 30,000 and at most 400,000. If it is less than 30,000, the viscosity does not increase significantly due to the hydrogenation of the conjugated gem block, and the difference in the temperature dependence of the hydrogenation rate between the fixed bed and the stirred tank is not remarkable. There is no phenomena that the reaction rate sharply rises above ° C. If it exceeds 400, 000, processing of the obtained polymer becomes difficult.
  • the hydrogenation rate of the block copolymer in the present invention is preferably 70% or more, more preferably 85% or more of the whole aromatic ring in the aromatic ring portion, and 90% of the total unsaturated bond in the conjugated gen block portion. It is preferable that it is above.
  • the hydrogenation ratio of the aromatic ring portion is less than 70%, the improvement in the glass transition temperature is small, and the improvement in the mechanical properties of the hydrogenated polymer is small. If the hydrogenation ratio of the conjugated gen block is less than 90%, the thermal stability is poor, and deterioration is likely to occur.
  • the hydrogenation rate here was measured by an ultraviolet absorption spectrum and a 1 H—NMR spectrum.
  • the decrease in the absorbance at 262 nm of a cyclohexane solution of the polymer before and after hydrogenation is measured.
  • the hydrogenation rate of the ring was determined. ⁇ !
  • the polymer is a styrene butane-styrene triblock copolymer
  • the block copolymer is dissolved in a solvent and subjected to a hydrogenation reaction.
  • the solvent used is not particularly limited as long as it is a saturated hydrocarbon capable of dissolving the block copolymer, and specifically, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, decalin and the like are used.
  • n-Hexane, n-heptane, etc. may be mixed.
  • ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethinoleatenole, and a small amount of alcohols such as methanol and ethanol may be added.
  • a polymerization initiator component used at the time of living anion polymerization and ethers / diamines added as needed to control the polymer structure, and added to stop the deactivation of the living terminal.
  • Alcohols, coupling agent components and the like may be contained.
  • the polymer concentration in the polymer solution is 5 to 30% by weight. /. And preferably 5 to 25% by weight.
  • the productivity is low due to the large amount of solvent used for the polymer, making recovery and reuse of the solvent difficult, and the hydrogen in the aromatic ring portion in the fixed bed and the stirring tank.
  • the difference in the temperature dependence of the formation rate is not noticeable.
  • the diffusion of hydrogen gas or the polymer into the catalyst becomes slow due to the high solution viscosity, so that hydrogenation of the aromatic ring and the conjugated gemlock portion does not easily proceed.
  • the platinum group metal in the present invention contains at least one selected from the group consisting of palladium, rhodium and platinum. Particularly preferred are those containing at least palladium and Z or rhodium.
  • the inorganic carrier used in the present invention is preferably alumina, silica-alumina, silica, magnesia, titer, zirconia, zeolite, or the like. More preferred are alumina, silica or a molded article containing them as a main component, and particularly preferred is alumina.
  • alumina As described in Japanese Patent Application Laid-Open No. 58-171703 and Japanese Patent Application Laid-Open No. 2-2656447, generally, in order to hydrogenate a polymer, carrier fine particles are used. It is known that those having a large pore diameter are suitable, and alumina is because the pore shape is easily controlled.
  • a more preferred carrier used in the present invention has a pore diameter measured by a mercury intrusion method.
  • the pore volume of the pores of 100 to: 100,000 nm is 50 to 100% of the pore volume of the pores of 5 to: 100,000 nm, and the BET specific surface area measured by the nitrogen gas adsorption method is A carrier that is 50-50 Om Zg.
  • macropores are defined as pores with a diameter of 50 nm or more, mesopores are defined as 10 nm or more and less than 50 nm, and micropores are defined as pores with a diameter of less than 10 nm.
  • Further preferred carriers used in the present invention are those having a peak at a pore diameter of 100 to 10,000 nm and a pore diameter of 100 nm or less in a pore distribution curve obtained by a pore distribution measurement by a mercury intrusion method.
  • the carrier has a bimodal pore distribution with a peak.
  • Particularly preferred is a bimodal carrier having a pore distribution curve with a peak at a pore diameter of 100 to 10,000 nm and a peak at a pore diameter of 10 nm or less.
  • the shape of the carrier is not particularly limited as long as it is granular such as a sphere or a cylinder.However, an extruded body or a ring-shaped body containing a side cut is preferably used because it can improve the outer surface area. is there.
  • the size of the catalyst is 0.5 to 10 mm in diameter when the shape is a sphere, 132 to 3/8 inch (0.79 to 9.53 mm) in the case of a cylindrical shape, and the length is 0.2 to 2 cm is preferred. If the particle size is too small, the pressure loss when passing the polymer solution through the catalyst layer becomes too large.On the other hand, if the particle size is too large, the ratio of the surface layer portion to the catalyst core portion becomes small, so that the total amount of the catalyst becomes small. Too much.
  • a known supporting method may be used.
  • the carrier is impregnated with an aqueous solution of a platinum group metal salt or the like and then reduced.
  • a supported catalyst is obtained.
  • a platinum group metal compound soluble in an organic solvent may be used to adsorb the compound in the organic solvent.
  • the amount of the platinum group metal supported on the carrier is 0.1 to 10% by weight, more preferably 0.3 to 5% by weight. /. It is. If the amount is less than 0.1% by weight, the amount of the catalyst becomes too large, and if the amount exceeds 10% by weight, metal aggregation occurs on the surface of the carrier, and the activity decreases.
  • a preferred method for supporting a platinum group metal on an inorganic carrier is a method of mixing a soluble platinum group metal compound with a metal basic component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported on the carrier. It utilizes the principle of insolubilizing and fixing platinum group metal components by chemical reaction.
  • a carrier obtained by impregnating at least one metal basic component selected from the group consisting of an alkali metal, an alkaline earth metal, and a rare earth metal, followed by drying and Z or firing, and a platinum group metal compound solution are used. It is prepared by a process including mixing.
  • the platinum group metal compound is not particularly limited as long as it is a salt soluble in water.
  • Preferred examples of the compound include palladium halides such as palladium chloride, palladium tetrachloride and salts thereof, palladium salts such as potassium hexabutyl palladium, and salts of tetrabromopalladium such as sodium tetrabromopalladium.
  • Hexahalogenated rhodium acids and salts thereof such as hexaclorophic rhodium acid, hexanitrorhodates such as sodium hexanitrorhodate, rhodium acetate, hexammine rhodium Rhodium ammine complexes such as chlorides; ruthenium; ruthenium chlorides and other ruthenium halides; hexacloporruthenic acid and salts thereof; pentachloroaquarthenium salts such as pentachloroaquarthene diamic acid rim; Ruthenium ammine complexes such as silruthenium salts, ruthenium acetate, and hexammineruthenium chloride; for platinum, hexacloplatinic acid and its salts; Tetraamine white such as salts, tetranitroplatinate, tetraammineplatinum chloride Gold complexes.
  • halogenated palladiums such as palladium chloride, palladium tetrachloride and salts thereof, palladium salts of palladium hexakis such as potassium palladium hexachloride, tetrabromopalladiums such as sodium tetrabromopalladium, etc.
  • rhodium halides such as rhodium chloride, hexahalogenated rhodium acids such as hexachlororhodic acid and salts thereof, ruthenium halides such as ruthenium chloride, hexachlororuthenic acid and salts thereof, hexaclomouth Platinic acid and its salts, tetrachloroplatinic acid and its salts, hexabromoplatinic acid and its salts, tetrabromoplatinic acid and its salts, particularly preferably palladium halides such as palladium chloride, rhodium chloride and the like Rhodium halides, ruthenium chloride, etc.
  • the carrier containing the metal basic component in the present invention may be prepared in advance by using an alkali metal such as lithium, sodium, potassium, rubidium, and cesium; an alkaline earth metal such as beryllium, magnesium, calcium, strontium, and barium; lanthanum; It carries one or more metal basic components selected from rare earth elements such as praseodymium.
  • an alkali metal such as lithium, sodium, potassium, rubidium, and cesium
  • an alkaline earth metal such as beryllium, magnesium, calcium, strontium, and barium
  • lanthanum It carries one or more metal basic components selected from rare earth elements such as praseodymium.
  • the metal basic component to be supported for example, those which become an oxide by an operation such as baking of nitrate or acetate are preferable.
  • Drying of a carrier supporting a metal basic component such as an alkali metal, an alkaline earth metal, and a rare earth element is performed at a temperature of 100 ° C. or
  • the optimum amount of the alkali metal, alkaline earth metal, or basic element of the rare earth element to be dispersed and immobilized on the carrier varies depending on the amount of the platinum group metal to be supported. On the other hand, it is selected in the range of 1 to 100 times mol, preferably 2 to 50 times mol.
  • the reaction between the soluble platinum group metal compound and the metal basic component supported on the carrier is preferably performed at a temperature of 70 ° C. or higher. Depending on the amount of the platinum group metal supported and the amount of the metal basic component previously supported on the carrier, if the temperature is too low, the reaction slows down and the distribution of the supported layer of the platinum group metal is widened. In the present invention, the reaction temperature is more preferable. Is at least 80 ° C, more preferably at least 90 ° C. The reaction may be performed at a temperature equal to or higher than the boiling point under pressure, but the upper limit temperature is 150 ° C. or less in consideration of the complexity of the pressurizing equipment and the pressure of steam.
  • the carrier containing the metal basic component in advance and the platinum group metal compound solution are preferably brought into contact at the same time as much as possible in order to eliminate variations in the amount of supported platinum among the carrier particles.
  • a carrier containing a metal basic component is instantaneously charged into a platinum group metal compound solution in advance.
  • the platinum group metal compound immobilized and supported on the carrier of the present invention is reduced to a platinum group metal by a reduction operation. Disperse the carrier in which the platinum group metal compound is dispersed and immobilized in an aqueous solution, etc., and perform a reduction process using formalin formic acid, hydrazine, methanol, sodium borohydride (sodium borohydride) or hydrogen gas while stirring. Thus, the platinum group metal can be reduced.
  • a carrier in which a platinum group metal compound is dispersed and immobilized is charged into a reactor, and a solution containing formalin formic acid, hydrazine, methanol, sodium borohydride (sodium borohydride) or under high temperature Can be reduced to a platinum group metal by a reduction treatment by introducing hydrogen gas.
  • formalin formic acid, hydrazine, methanol, or sodium borohydride (sodium borohydride) the reduction temperature is from room temperature to 200 ° C. If the boiling point is exceeded, apply the necessary pressure to maintain the liquid layer.
  • the reduction conditions are preferably room temperature to 160 ° C. and normal pressure to several atmospheres. In order to make the metal particle size smaller, a condition of 60 to 160 ° C. is more preferable.
  • Platinum is obtained by a chemical reaction between a soluble platinum group metal compound and a metal basic component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported on a carrier, which is a preferred support method of the present invention.
  • a high surface area surface area of platinum group metal is 4 0 ⁇ 2 5 O m 2 Bruno g- metal.
  • the surface area is 4 0 ⁇ 2 5 O m 2 and high productivity is Z g- metal, productivity is reduced it takes time to stabilize.
  • the metal surface area was measured by a gas chemisorption method.
  • hydrogenation in a fixed bed refers to a method in which a granular catalyst is filled in a vertical reaction tower, and a block polymer solution and hydrogen gas are circulated therein to perform hydrogenation.
  • the flow direction of the polymer solution and the hydrogen gas may be either co-current or counter-current. However, co-current is preferable, and the direction may be an upward flow or a downward flow.
  • the catalyst layer filled with the block copolymer solution in the reaction tower has a catalyst layer temperature of 150 to 250 ° C, preferably 150 to 220 ° C, more preferably 180 to 220 ° C, and hydrogen pressure. 2 to 25 MPa, preferably 3 to 20 MPa, more preferably 4 to 15 MPa, hydrogen gas flow rate, polymer solution flow rate ratio of 10 to 1,000 NL / L, preferably 20 to: 1,000 NLZL, Preferably 20 to 800 NL / L, liquid hourly space velocity (LHSV) 0.01 to 10 (lZhr), preferably 0.03 to 10 (lZhr), more preferably 0.05 to 10 (lZhr) l Zh r) for hydrogenation.
  • LHSV liquid hourly space velocity
  • the catalyst layer temperature in the present invention means the highest temperature in the catalyst layer because a temperature distribution occurs in the fixed bed catalyst layer.
  • the temperature is lower than 150 ° C, the hydrogenation rate of the aromatic ring is extremely reduced, and when the temperature is higher than 250 ° C, molecular chain cleavage is undesirably caused.
  • the hydrogen pressure is less than 2 MPa, the hydrogenation rate is not sufficient, and if it exceeds 25 MPa, the equipment becomes expensive.
  • the flow rate of hydrogen gas is less than 10 NLZL, the hydrogenation rate will decrease, and if it exceeds 1,000 NLZL, the equipment for collecting and recycling hydrogen gas will be expensive.
  • the liquid hourly space velocity (LHSV) is less than 0.01, the productivity will decrease, and if it exceeds 10, the hydrogenation rate will decrease.
  • the polymer solution may be replaced with an inert gas or hydrogen gas in advance, and then passed through.
  • Known fixed-bed reactors can be used and are not particularly limited. Since the calorific value is large, a multitubular reactor may be used for efficient heat removal.
  • the block copolymer is hydrogenated in the fixed bed by recycling the effluent of the fixed bed to reach the target value of the hydrogenation rate in the fixed bed, in the low temperature region, the conjugated gem block in the block copolymer is used. Is more likely to be hydrogenated earlier than the aromatic ring portion. As the hydrogenation of the conjugated gem block progresses, the molecular chains expand and the solution viscosity increases significantly. As a result, the diffusion of the block copolymer into the pores of the carrier becomes slow, and the aromatic ring remains unhydrogenated.
  • the temperature dependence of the hydrogenation rate of the aromatic ring portion in this fixed bed is significantly different from that in the stirred tank, and the hydrogenation rate of the aromatic ring portion rapidly rises in the fixed bed at a high temperature.
  • the mass transfer rate of the system can be increased by stirring, so the temperature dependence is smaller than that of a fixed bed. It is thought that it is.
  • the diffusion of the polymer is better in the high temperature range, which is considered to have a good effect on the catalyst life.
  • the hydrogenation reaction effluent that has reached the target hydrogenation rate is hydrogenated by a known method. It is separated into gas, solvent and hydrogenated polymer. Hydrogen gas and solvent are recycled.
  • the hydrogenation method of the present invention has a longer catalyst life, no catalyst / catalyst component is mixed into the obtained polymer, and the obtained block copolymer is colored, as compared with hydrogenation in a stirred tank. It has high transparency and can be used as optical materials, medical materials, electrical insulating materials, and electrical and electronic parts materials. Further, the obtained polymer is used as a thermoplastic block copolymer having excellent heat resistance, weather resistance, moldability, elasticity, and the like.
  • a catalyst with a catalyst particle size of 3 to 4 mm was used in the fixed bed. This is because if the particle size is small, the liquid cannot pass through due to a large pressure loss.
  • a catalyst having a particle size of about 60 / m was used in the stirring tank. This is because if the catalyst diameter is large, it will be crushed by stirring. Therefore, the catalyst particle size is different in the two types of reaction, and the catalytic activity is higher in the stirred tank, but the temperature dependence of the hydrogenation rate and the obtained polymer properties are fixed bed and stirred tank. Shows the differences in the hydrogenation methods.
  • the number average molecular weight and weight average molecular weight of the block copolymer were measured by gel permeation chromatography (GPC) (HLC-8120 GPC system, manufactured by Tosoh Corporation) using standard polystyrene.
  • GPC gel permeation chromatography
  • the aromatic vinyl content was determined using an ultraviolet absorption spectrum (MPS-2000, manufactured by Shimadzu Corporation).
  • the hydrogenation rate of the block copolymer is determined by the UV absorption spectrum or
  • 1 H-NMR spectrum (JEOL-GX270 manufactured by JEOL Ltd.) was measured.
  • the microstructure of the conjugated gen moiety for example, the ratio of 1,2-bonds to 1,4-bonds in the case of butadiene, was determined by 1 H-NMR spectrum.
  • the hydrogenation rate of the olefin portion was also measured by 1 H-NMR spectrum.
  • the melt flow rate was measured under the condition of 2.16 kg load and 230 ° C. according to JIS K7210.
  • the mechanical properties were measured according to JIS K63 ⁇ 1, using a compression molded sheet with a thickness of 2 mm for the sample, and measuring the sample piece as a No. 3 dumbbell.
  • the amount of metal in the polymer was determined by subjecting the polymer to thermal decomposition in nitric acid by applying ultrasonic waves, and then performing measurement using a high-frequency induction plasma mass spectrometer (VG- ⁇ manufactured by Fison).
  • the pore distribution of the used carrier was measured by a mercury intrusion method measuring apparatus (Pore Size 9220, manufactured by Shimadzu Corporation).
  • the specific surface area of the carrier was measured by a BET surface measurement by nitrogen gas adsorption (Carlo Elba's Soapmatic 1800).
  • the amount of platinum group metal in the catalyst was measured by using X-ray photoelectron spectroscopy (RIX3000 manufactured by Rigaku Corporation).
  • the surface area of the platinum group metal was measured using a fully automatic catalytic gas adsorption device (R-6015 manufactured by Okura Riken Co., Ltd.).
  • the distribution of the platinum group metal was measured using an electron beam microprobe (X650, manufactured by Tate Works Co., Ltd.) and an energy dispersive X-ray detector (EMAX 5,770 W, manufactured by Horiba, Ltd.).
  • X650 electron beam microprobe
  • EMAX 5,770 W energy dispersive X-ray detector
  • the number average molecular weight is 98,000
  • styrene content is 20% by weight
  • butadiene block is 78,000
  • SBS styrene-butadiene-styrene
  • the hydrogenation rate of the effluent polymer was 95.0% for the aromatic ring, 98.3% for the 1,4-butadiene portion, and 99.1% for the 1,2-butadiene portion.
  • the Pd content in the polymer was less than 0.1 pm. No coloration occurred in the polymer coloration test.
  • the hydrogenation rate of the distillate polymer after 200 hours was 96.2% for aromatic ring, 99.3% for 1,4-butadiene part, and 98.6% for 1,2-butadiene part, and the catalyst activity decreased. There was no. Melt edge rate of the obtained polymer is 7.2 g / 1
  • Hydrogenation was carried out in a stirring tank using 5% Pd / alumina powder (average diameter 60 ⁇ m) (manufactured by N.C. Chemcat). Charge 1 g of the catalyst and 400 g of the polymer solution to a 1 L autoclave, and set the temperature to 180 ° C, 140 ° C, and 100 ° C under the conditions of a hydrogen pressure of 6 MPa, a stirring speed of 800 rpm, and a reaction time of 3 hours. And tested. After cooling, the content was taken out, the catalyst was separated by filtration, and the solvent was distilled off under reduced pressure. Poly obtained The hydrogenation rate of the mer was determined. Table 1 shows the results.
  • the test was performed in the same manner as in Comparative Example 1 except that the reaction time was changed to 10 hours according to the test at 180 ° C. Although the hydrogenation rate was high, the polymer contained 37 dpm of Pd. The polymer coloring test resulted in coloration. Table 1 shows the results.
  • Example 2 The test was performed in the same manner as in Example 1 except that LHSV was 0.05 and the temperature was changed to 160 ° C.
  • the resulting polymer has a melt flow rate of 7. O g / 10 min, breaking strength
  • Example 5 the hydrogenation rate after 100 hours was measured. There was no decrease in catalytic activity. Table 2 shows the results. Examples 7 to 10
  • Example 10 Using various block copolymers, hydrogenation was performed in a fixed bed with the catalyst of Example 1. Table 2 shows the results. The hydrogenation rate was good, and a colorless polymer was obtained. Note that S, B, and I in the structures in the table represent styrene, butadiene, and isoprene. (SB) 4 Si in Example 10 is a polymer coupled with a silicon compound.
  • Example 5 when the temperature of the catalyst layer was set at 140 ° C., the hydrogenation rate was lowered even when the LHSV was lowered. Table 2 shows the results.
  • the pore volume of pores having a pore diameter of 100 to 100,000 nm was 0.21 m / g, which accounted for 84% of the pore volume of pores having a pore diameter of 5 to 100,000 nm. Since this carrier has pores with a pore diameter of about 0.6 nm, it is substantially a bimodal pore distribution carrier.
  • the obtained carrier was impregnated with a 15% by weight aqueous solution of magnesium nitrate, and calcined in an electric furnace at 600 ° C. for 5 hours to prepare a carrier having magnesium oxide adsorbed thereon.
  • a carrier supporting a palladium compound was added to 1,000 ml of a 10% aqueous hydrazine solution.
  • the reduction reaction was performed for 20 minutes while gently shaking. After tilting to remove the solution, it was washed 10 times with distilled water.
  • the palladium catalyst thus obtained was dried and stored under a heated and dried nitrogen stream.
  • the loading amount of palladium metal is 0.
  • the metal surface area was 146 m 2 Zg—Pd metal (0.732 m g—catalyst). Palladium was supported within 80 // m from the outer surface of the carrier.
  • the weight average molecular weight is 101,000 (molecular weight distribution 1.03), and the styrene content is 20% by weight. /.
  • a styrene-butadiene-styrene triploc copolymer / cyclohexane solution having a 1,2 -— / 1,4-bond ratio of butadiene portion of 0.40 / 0.60 and a concentration of 13.5% by weight was obtained.
  • Polymers having different molecular weights were prepared by slightly modifying this method.
  • the above catalyst (213 g) was filled in a stainless steel reaction tube (catalyst layer volume: 312 mi) with an inner diameter of 22 mm, and cyclohexane solvent and hydrogen gas were first passed from the bottom to the top. Then, the temperature was raised so that the catalyst layer temperature (internal temperature) became 180 ° C. Preheating of the liquid flow was performed by heating the preheating layer provided below the catalyst layer. The flow was continued at LHSV 1.0 for 8 hours.
  • styrene one butadiene one styrene tri block Kukoporima weight average molecular weight of 01,000 to liquid passing from the lower the temperature, molecular weight distribution 1.03, styrene content 20 wt 0/0, 1, 2/1 , 4 switched to a combined butadiene ratio 0.40 Bruno 0.60
  • cyclo hexane solution polymer concentration 1 3.5 wt 0/0
  • 80 g (1 03 milliliters) / hr hydrogen 1 5NLZh r
  • the flow was started with the gas.
  • the LHSV at this time was 0.33 (1 / hr).
  • the hydrogen pressure was 6.5 MPa.
  • a hydrogenation test was performed for 100 hours in a continuous manner, but no decrease in the hydrogenation rate was observed during this period.
  • the hydrogenation rate in the olefin portion was 1,8-98% or more, and 1,4 part was 97. /.
  • the hydrogenation rate of the aromatic ring was maintained at 92 to 95%.
  • the polymer obtained had a weight average molecular weight of 100,000 and a molecular weight distribution of 1.03.
  • the amount of palladium in the polymer obtained by drying the effluent was 0.055 ppm.
  • bimodal alumina spherical carrier manufactured by Sumitomo Chemical Co., Ltd., particle size 8-14 mesh, BET specific surface area 8 lm 2 / g, pore volume 0.53 ml / g
  • the pore distribution curve has peak peaks at the pore diameters of 1800 nm and 6 nm, and the pore volume of pores having a pore diameter of 100 to 100,000 nm has a pore diameter of 5 to 100 nm. It occupied 63% of the pore volume of the pore having a diameter of 100,000 nm.
  • the obtained catalyst had a supported amount of palladium metal of 0.5% by weight and a metal surface area of 152.6 m 2 g—Pd metal (0.763 m 2 / g—catalyst). Palladium was supported within 100 ⁇ m from the outer surface of the carrier.
  • Example 13 The test was conducted in the same manner as in Example 11 except that 190 g of the above catalyst was charged into a fixed bed reactor. A hydrogenation test was conducted continuously for 300 hours. During this period, no decrease in the hydrogenation rate was observed. Ring hydrogenation remained above 98%.
  • the polymer obtained after 300 hours had a weight average molecular weight of 1,000,000 and a molecular weight distribution of 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.071 ppm.
  • Example 11 ⁇ -alumina spheres (diameter: about 3 mm, specific surface area: 6.4 m 2 / g, and almost 100% of the pore volume were pores having a pore diameter of 50 nm or more) were used in Example 11 as a support. The same operation as in Example 11 was performed except that the support of the magnesium compound was not performed. The amount of palladium metal supported on the obtained catalyst was 0.5% by weight, and the metal surface area was 34. - P d metal (0. 1 7m 2 Zg- catalyst) and small, palladium was supported to the interior support.
  • Example 14 A test was performed in the same manner as in Example 12 except that the carrier prepared by impregnating and calcining sodium nitrate was used instead of magnesium nitrate in Example 12.
  • the resulting catalyst had a supported amount of palladium metal of 0.5% by weight and a metal surface area of 15.5.
  • Pd metal 0.778 mZg—catalyst. Palladium was supported within 100 microns from the outer surface of the support.
  • the hydrogenation rate of the olefin portion of the polymer obtained after 10 hours in fixed bed hydrogenation is over 99% for the 1,2_ and 1,4-portions, and the hydrogenation rate for the aromatic ring is 98.3%. High activity was shown.
  • the weight average molecular weight of the polymer was 100,000, and the molecular weight distribution was 1.03.
  • the amount of palladium in the polymer obtained by drying the effluent was 0.065 ppm.
  • Example 14 The same test as in Example 15 was performed, except that in Example 14, sodium nitrate was used instead of sodium nitrate. Supported amount of palladium metal in the resulting catalyst 0.5 wt% Deari, metal surface area was 141. 2m 2 Zg- P d metal (0. 706 m 2 Zg- catalyst). Palladium was supported within 100 / im from the outer surface of the support. The hydrogenation rate of the olefin portion of the polymer obtained by fixed-bed hydrogenation is 99% or more for the 1,2- and 1,4-parts, and the hydrogenation rate of the aromatic ring is 95.9 ° /. And showed high activity. The weight average molecular weight of the polymer was 100,000, and the molecular weight distribution was 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.083 ppm.
  • Example 11 Instead of using palladium chloride at the time of preparing the catalyst of 1, using 8.13 g of rhodium chloride, 90 g of the catalyst was filled in a catalyst bed volume of 166 m during hydrogenation of the fixed bed polymer, and LHSV was added. The reaction was carried out under the same conditions as in Example 11 except that 0.5 was performed. The hydrogenation rate of the olefin moiety is 97% for the 1,2-part, 96% for the 1,4 part, and the hydrogenation rate of the aromatic ring is 93. /. Met.
  • separation of a polymer solution and a catalyst is not required, a high molecular weight, a long conjugated gen block, and a high hydrogenation rate and high productivity can be obtained under a condition of a high concentration solution.
  • No mixing of components, no problem of polymer coloring, catalyst It has become possible to provide a long-life hydrogenation method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)

Abstract

A method of hydrogenating a block copolymer, which comprises passing a solution of an aromatic vinyl/conjugated diene block copolymer together with hydrogen gas through a fixed-bed reactor packed with a hydrogenation catalyst comprising a platinum group metal deposited on an inorganic support to convert the unsaturated bonds in the aromatic ring blocks and conjugated diene blocks of the block copolymer into saturated bonds through hydrogenation, wherein (1) the block copolymer has a number-average molecular weight of 40,000 to 450,000, (2) the conjugated diene blocks in the block copolymer have a number-average molecular weight of 30,000 or higher, (3) the concentration of the block copolymer in its solution is 5 to 30 wt.%, and (4) the fixed catalyst bed has a temperature of 150 to 250 °C.

Description

明 細 書 ブロックコポリマー水素化方法  Description Hydrogenation method of block copolymer
本発明は、 芳香族ビニルと共役ジェンとのブロックコポリマーの水素化方法に 関する。 更に詳しくは、 白金族金属を無機質担体に担持した水素化触媒を充填し た固定床反応器を用い、 水素ガスと共に、 芳香族ビニルと共役ジェンとのブロッ クコポリマーの溶液を通液して、 該ブロックコポリマーの芳香環部分及び共役ジ ェンブ口ック部分の不飽和結合を水素化して飽和結合にする水素化方法に関する。 背景技術 The present invention relates to a method for hydrogenating a block copolymer of an aromatic vinyl and a conjugated diene. More specifically, using a fixed bed reactor packed with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier, a solution of a block copolymer of aromatic vinyl and a conjugated gen is passed along with hydrogen gas, The present invention relates to a hydrogenation method for hydrogenating an unsaturated bond in an aromatic ring portion and a conjugated gene block portion of the block copolymer into a saturated bond. Background art
芳香族ビュルと共役ジェンとのブロックコポリマーの芳香環部分と共役ジェン プロック部分の不飽和結合を水素化することによって、 耐熱性、 耐候性、 及び機 械物性を向上させることができる。  By hydrogenating the unsaturated bond between the aromatic ring portion and the conjugated genlock portion of the block copolymer of aromatic butyl and conjugated diene, heat resistance, weather resistance, and mechanical properties can be improved.
そこで、 白金族金属やニッケル金属を無機質担体に担持した不均一系水素化触 媒を用いて、 攪拌槽で水素ガスの存在下、 飽和炭化水素溶媒中で芳香族ビュルと 共役ジェンとのプロックコポリマーの芳香環ブロック部分と共役ジェンブロック 部分の不飽和結合を水素化する試みは種々行われてきた (米国特許第 3, 3 3 3, 0 2 4号、 英国特許第 2 0 1 1 9 1 1号、 W0 9 6 3 4 8 9 6、 及び日本国特 開平 5— 9 7 9 1 6号) 。  Therefore, using a heterogeneous hydrogenation catalyst in which a platinum group metal or nickel metal is supported on an inorganic carrier, a block copolymer of an aromatic butyl and a conjugated gen in a saturated hydrocarbon solvent in a stirred tank in the presence of hydrogen gas. Various attempts have been made to hydrogenate the unsaturated bond between the aromatic ring block portion and the conjugated gen block portion (US Pat. No. 3,333,024, British Patent No. 2101191). No., W0963334896, and Japanese Patent Laid-Open No. 5-9716916).
しかし、 攪拌槽で水素化を行う場合、 (1 ) ポリマー溶液が高粘度であるため に水素化反応後の触媒とポリマー溶液との分離が困難で精製工程が煩雑なものに なってしまうこと、 ( 2 ) 濾過処理で濾布等を抜けた触媒や触媒成分がポリマー 中に混入して得られたポリマーが着色しやすいこと、 (3 ) 触媒をリサイクルす ると活性が低下してしまうという不都合があつた。  However, when hydrogenation is carried out in a stirred tank, (1) it is difficult to separate the catalyst and the polymer solution after the hydrogenation reaction due to the high viscosity of the polymer solution, which complicates the purification process. (2) The polymer obtained by mixing the catalyst or catalyst components that have passed through the filter cloth or the like during the filtration process into the polymer tends to be colored, and (3) The activity is reduced when the catalyst is recycled. There was.
この不都合を回避するために触媒を充填した固定床で水素化することが考えら れるが、 ポリマー溶液の粘度が低レ、ところでないと水素化速度が不十分であった ために、 低分子量のポリマーや低濃度のポリマー溶液での水素化の例しか報告さ れていなかった。  To avoid this inconvenience, it is conceivable to hydrogenate with a fixed bed filled with a catalyst.However, the viscosity of the polymer solution is low. Only examples of hydrogenation with polymers and low concentration polymer solutions have been reported.
固定床での水素化の例としては、 例えば、 米国特許第 3, 8 0 9, 6 8 7号明 細書において、 細孔容積 0 . 3 mf/ g以上、 比表面積 1 0 O m 2 Z gの担体に 担持した白金族触媒を用いて、 ポリスチレンの芳香環の水素化を試みられている 力' 分子量で 1, 0 0 0程度のポリマーの水素化であって、 高分子量体の水素化 ゃブロックコポリマーの水素化は行われていない。 Examples of fixed bed hydrogenation include, for example, US Pat. No. 3,809,687. In Saisho, pore volume 0. 3 mf / g or more, with a specific surface area 1 0 O m 2 Z g carrier loaded with platinum group catalysts, the force 'molecular weight being attempted hydrogenation of the aromatic rings of polystyrene The hydrogenation of the polymer is about 1,000, and the hydrogenation of the high molecular weight product is not performed.
米国特許第 5, 3 7 8, 7 6 7号明細書によれば、 α—アルミナ担体に担持し た白金又はパラジウム触媒を用いた固定床で、 分子量 1万以下のポリイソプレン の水素化を試みているが、 芳香環を有するプロックコポリマーの水素化は実施さ れていない。  According to US Patent No. 5,378,767, hydrogenation of polyisoprene having a molecular weight of 10,000 or less was attempted in a fixed bed using a platinum or palladium catalyst supported on an α-alumina carrier. However, hydrogenation of a block copolymer having an aromatic ring has not been performed.
固定床で水素化を行う場合、 ニッケル系触媒よりも白金族触媒の方が活性が高 いために好んで用いられるが、 一般に、 白金族触媒では共役ジェンブロック部分 が芳香環よりも先に選択的に水素化されやすく、 このため、 特に分子量が大きい ポリマーの高濃度溶液を使用する場合、 (1 ) ポリマ一分子鎖の広がりが拡大し て、 担体細孔内の触媒メタル表面への拡散速度が低下し、 芳香環の水素化が進行 しにくいことや、 (2 ) 共役ジェンブロック部分の水素化に伴って溶液の粘度が 大きく上昇するために、 上述のポリマ一拡散速度の低下や水素ガスのガス相から 液相への物質移動速度が低下し、 芳香環の水素化が進行しにくいという不都合が めった。  When performing hydrogenation in a fixed bed, platinum group catalysts are preferred because they have higher activity than nickel-based catalysts.However, in platinum group catalysts, the conjugated gen block moiety is generally more selective than the aromatic ring. Therefore, especially when a high-concentration solution of a polymer having a large molecular weight is used, (1) the expansion of the polymer single-molecule chain is increased, and the diffusion rate to the catalyst metal surface in the pores of the carrier is increased. (2) The viscosity of the solution increases significantly with the hydrogenation of the conjugated gen block. The disadvantage was that the rate of mass transfer from the gas phase to the liquid phase was reduced, and hydrogenation of the aromatic ring was difficult to proceed.
二ッケル系触媒の例では、 米国特許第 4, 6 2 9, 7 6 7号明細書があり、 該 明細書で比表面積が 1 4 0〜1 6 0 m 2 / gであるシリカ担体に担持したニッケ ル—銅触媒を用いて、 1 6 0 °C、 L H S V (液時空間速度) 0 . 1 2、 ポリマー 濃度 1 2 . 6 %で、 スチレン含有量 6 1 %、 数平均分子量約 5万のスチレン—ブ タジェンジブ口ックコポリマーの水素化を行い、 芳香環部分と共役ジェンブロッ ク部分が水素化されることを報告している。 An example of a nickel-based catalyst is described in U.S. Pat. No. 4,629,767, in which a specific surface area is supported on a silica support having a specific surface area of 140 to 160 m 2 / g. Using nickel-copper catalyst, at 160 ° C, LHSV (liquid hourly space velocity) 0.12, polymer concentration 12.6%, styrene content 61%, number average molecular weight about 50,000 Hydrogenation of a styrene-butadiene block copolymer was reported, and the aromatic ring and conjugated genblock were hydrogenated.
この場合は、 共役ジェンブロックであるブタジエンブロックの分子量が約 2万 であって鎖長が短いために、 共役ジェンブロック部分の水素化によるポリマー分 子鎖の広がりの拡大が小さく、 共役ジェンプロック部分が先に水素化されても、 逐次的に芳香環の水素化も達成することができる。 しかし、 トリブロックコポリ マーに比べて水素化されやすいジブ口ックコポリマーに対してこの程度の活性で あり、 また、 ニッケル—銅触媒は活性が低く、 高分子量ポリマーの水素化には谪 用できないという不都合、 および共役ジェンブロックが長い場合は、 もう一方の ブロック鎖の芳香環部分が水素化されにくいとレ、う不都合が残つている。 In this case, since the butadiene block, which is the conjugated gen block, has a molecular weight of about 20,000 and a short chain length, the expansion of the polymer molecular chain due to hydrogenation of the conjugated gen block is small, and the conjugated Even if hydrogenation is first performed, hydrogenation of the aromatic ring can also be achieved sequentially. However, it has this level of activity for diblock copolymers that are more susceptible to hydrogenation than triblock copolymers, and nickel-copper catalysts have low activity and are not suitable for hydrogenation of high molecular weight polymers. When the conjugated gen block is long and the aromatic ring portion of the other block chain is not easily hydrogenated, the disadvantage remains.
発明の開示  Disclosure of the invention
本発明の目的は、 芳香族ビエルと共役ジェンとのプロックコポリマーの芳香環 部分と共役ジェンブロック部分の不飽和結合を水素化する際に、 (1 ) ポリマー 溶液と触媒の分離が不要であり、 (2 ) 高分子量、 かつ、 共役ジェンブロックが 長く、 しかも、 ポリマーの高濃度溶液でも、 水素化率が高くて生産性が良く、 An object of the present invention is to hydrogenate unsaturated bonds between an aromatic ring portion and a conjugated gen block portion of a block copolymer of an aromatic biel and a conjugated gen, and (1) separation of a polymer solution and a catalyst is unnecessary; (2) High molecular weight, long conjugated gen block, and high concentration of polymer, high hydrogenation rate, good productivity,
( 3 ) 触媒や触媒成分の混入がなくてポリマー着色の問題もなく、 (4 ) 触媒寿 命の長い水素化方法を提供することである。 (3) The present invention provides a hydrogenation method with a long catalyst life without the problem of polymer coloring due to no mixing of catalysts and catalyst components.
上記課題を解決するために、 本発明者らは鋭意研究を行った結果、 固定床で、 高濃度の高分子量体であり、 かつ、 共役ジェンブロックが長いポリマーを水素化 する場合、 (1 ) 芳香環部分の水素化速度の温度依存性が攪拌槽に比べて予想以 上に高温域では高くなるということ、 (2 ) 低温域よりも高温域で触媒寿命が長 くなるという驚くべき事実を発見し、 かかる発見に基づいて本発明を完成するに 至った。  In order to solve the above problems, the present inventors have conducted intensive studies. As a result, when hydrogenating a polymer having a high concentration of a high molecular weight polymer and a long conjugated gen block in a fixed bed, (1) The fact that the temperature dependence of the hydrogenation rate of the aromatic ring portion is higher than expected in a stirred tank at higher temperatures than expected, and (2) the surprising fact that the catalyst life is longer at higher temperatures than at lower temperatures. The present inventors have discovered and completed the present invention based on the discovery.
すなわち、 本発明は、  That is, the present invention
1 . 白金族金属を無機質担体に担持した水素化触媒を充填した固定床反応器 に、 水素ガスと共に、 芳香族ビニルと共役ジェンとのブロックコポリマーの溶液 を通液して、 該ブロックコポリマ一中の芳香環部分と共役ジェンブロック部分の 不飽和結合を水素化して飽和結合にすることを含むプロックコポリマー水素化方 法であって、 (1 ) 該ブロックコポリマーの数平均分子量が 4 0, 0 0 0〜4 5 0, 0 0 0であり、 (2 ) 該ブロックコポリマー中の共役ジェンブロックの数平 均分子量が 3 0, 0 0 0以上であり、 (3 ) 該ブロックコポリマー溶液中のポリ マー濃度が 5〜 3 0重量。 /。濃度であり、 ( 4 ) 該固定床の触媒層温度が 1 5 0〜 2 5 0 °Cである上記方法、  1. A solution of a block copolymer of aromatic vinyl and a conjugated gen is passed along with hydrogen gas through a fixed bed reactor filled with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier. A hydrogenation method for hydrogenating an unsaturated bond between an aromatic ring portion and a conjugated gen-block portion to a saturated bond, wherein (1) the block copolymer has a number average molecular weight of 40,000 (4) the number average molecular weight of the conjugated gen block in the block copolymer is at least 30,000, and (3) the polymer in the block copolymer solution. The concentration is 5 to 30 weight. /. (4) the above-mentioned method, wherein the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
2 . ( 1 ) 白金族金属を無機質担体に担持した水素化触媒が、 予めアルカリ 金属、 アルカリ土類金属、 及び稀土類金属からなる群から選ばれる少なくとも 1 種の金属塩基性成分を含む担体と白金族金属化合物溶液とを接触させることによ つて該白金族金属成分を不溶固定化することを含む工程により調製されたもので あり、 (2) 該白金族金属の担持量が該担体に対して 0. 1〜1 0重量%でぁり、2. (1) A hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier, the carrier comprising at least one metal basic component selected from the group consisting of an alkali metal, an alkaline earth metal, and a rare earth metal in advance. Prepared by a process comprising insolubilizing and immobilizing the platinum group metal component by contacting with a platinum group metal compound solution. (2) the loading amount of the platinum group metal is 0.1 to 10% by weight with respect to the carrier,
(3) 該白金族金属の表面積が 40〜25 Om2Zg—金属であり、 (4) 該白 金族金属が該担体の外表面から深さ方向に担体径の 1/10以内の表層部に 90 %以上担持されている上記 1の方法、 (3) The platinum group metal has a surface area of 40 to 25 Om 2 Zg—metal, and (4) the platinum group metal has a surface layer within 1/10 of the carrier diameter in the depth direction from the outer surface of the carrier. The method of the above 1 which is supported by 90% or more,
3. 水銀圧入法により測定した孔直径が 100〜 1 00, O O Q n mである 無機質担体の孔の孔容積が、 孔直径 5〜100, O O O n mである孔の孔容積の 50〜: I 00 %である上記 1又は 2の方法、  3. The pore diameter measured by the mercury intrusion method is 100 to 100, OOQ nm. The pore volume of the pores of the inorganic carrier is 5 to 100, 50 to the pore volume of the pores with OOO nm: I 00%. The method of 1 or 2 above,
4. 白金族金属がパラジウム及び/又はロジウムである上記 1又は 2の方法、 4. The method of the above 1 or 2, wherein the platinum group metal is palladium and / or rhodium,
5. 無機質担体がアルミナ、 アルミナシリカ、 シリカ、 チタニア、 マグネシ ァ、 ジルコニァ及びゼォライ トからなる群から選ばれる上記 1又は 2の方法、5. The method according to 1 or 2 above, wherein the inorganic carrier is selected from the group consisting of alumina, alumina silica, silica, titania, magnesium, zirconia, and zeolite;
6. 固定床条件が水素圧 2〜 25 M P a、 水素ガス流量 Zポリマー溶液流量 比力; 1 0〜: I, 000 NLZL、 液時空間速度 (LHS V) が 0. 01〜: 1 0 (1/h r ) である上記 1の方法、 6. Fixed bed conditions are hydrogen pressure 2 ~ 25MPa, hydrogen gas flow rate Z polymer solution flow rate specific force; 10 ~: I, 000NLZL, liquid hourly space velocity (LHSV) 0.01 ~~ 10 ( 1 / hr)
7. ブロックコポリマーが、 A— B、 A— B_A、 A_B— A— B、 及び (A-B) mXからなる群 (ここで、 Aは芳香族ビニルからなるブロックを、 B は共役ジェンからなるブロックを表し、 mは 2、 3又は 4を表し、 Xは多官能性 のカップリング剤を表す。 ) 力 ら選ばれる少なくとも 1種である上記 1の方法、7. The block copolymer is a group consisting of A—B, A—B_A, A_B—A—B, and (AB) m X (where A is a block of aromatic vinyl, and B is a block of conjugated gen) Wherein m represents 2, 3 or 4, and X represents a polyfunctional coupling agent.) The method according to 1 above, wherein at least one member selected from the group consisting of
8. プロックコポリマーがスチレン一ブタジエンジブロックコポリマー、 ス チレン一ブタジエン一スチレントリブロックコポリマ一、 スチレン一^ ソプレン ジブロックコポリマー、 及びスチレン一イソプレン一スチレントリブロックコポ リマーからなる群から選ばれる少なくとも 1種である上記 7の方法、 8. The block copolymer is at least one selected from the group consisting of styrene-butadiene diblock copolymer, styrene-butadiene-styrene triblock copolymer, styrene-1 ^ soprene diblock copolymer, and styrene-isoprene-styrene triblock copolymer. Method 7 above, which is
である。  It is.
9. 白金族金属を無機質担体に担持した水素化触媒を充填した固定床反応器 に、 水素ガスと共に、 芳香族ビニルと共役ジェンとのブロックコポリマーの溶液 を通液して、 該ブロックコポリマー中の芳香環部分及び共役ジェンプロック部分 の不飽和結合を水素化して飽和結合にすることを含む水素化プロックコポリマー の製造方法であって、 (1 ) 該ブロックコポリマ一の数平均分子量が 40, 00 0〜450, 000であり、 (2) 該ブロックコポリマー中の共役ジェンブロッ クの数平均分子量が 30, 000以上であり、 (3) 該ブロックコポリマー溶液 中のポリマ一濃度が 5〜3 0重量%濃度であり、 (4 ) 該固定床の触媒層温度が 1 5 0〜2 5 0 °Cである上記方法。 9. A solution of a block copolymer of aromatic vinyl and a conjugated diene is passed along with hydrogen gas through a fixed-bed reactor filled with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier. A method for producing a hydrogenated block copolymer comprising hydrogenating unsaturated bonds of an aromatic ring portion and a conjugated genlock portion to form a saturated bond, wherein (1) the number average molecular weight of the block copolymer is 40,00 (2) the number average molecular weight of the conjugated gen block in the block copolymer is 30,000 or more; (3) the block copolymer solution (4) The above method, wherein the concentration of the polymer is 5 to 30% by weight, and (4) the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明における芳香族ビュルとしては、 例えば、 スチレン、 ひーメチルスチレ ン、 o—、 m―、 p—メチルスチレン、 p— t—ブチルスチレン等のアルキル置 換スチレン、 o—、 m—、 ρ—メ トキシスチレン、 ビ二/レナフタレン等の中から 1種又は 2種以上が選ばれ、 特に好ましいものはスチレンである。  Examples of the aromatic butyl in the present invention include styrene, o-methylstyrene, o-, m-, p-methylstyrene, alkyl-substituted styrene such as p-t-butylstyrene, o-, m-, and ρ-medium. One or more kinds are selected from toxic styrene, vinyl / lenaphthalene and the like, and styrene is particularly preferred.
また、 本発明における共役ジェンとしては、 例えば、 ブタジエン、 イソプレン、 2 , 3—ジメチルー 1, 3 _ブタジエン等の中から 1種又は 2種以上が選ばれ、 特に好ましいものはブタジエン、 イソプレン及びこれらを組み合わせたものであ る。  Further, as the conjugated diene in the present invention, for example, one or two or more selected from butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like are selected, and particularly preferred are butadiene, isoprene and these. It is a combination.
本発明におけるブロックコポリマ一は、 該芳香族ビニルと該共役ジェンとを公 知のリビングァニオン重合方法によって共重合させて得られる。 該ブロックコポ リマーの構造は、 例えば、 線状、 分岐状、 放射状、 櫛形状又はこれらが混合して いても良い。 好ましい構造としては、 芳香族ビエルから成るブロックを A、 共役 ジェンから成るブロックを Bとすると、 A—B、 A— B— A、 A— B— A— B、 The block copolymer in the present invention is obtained by copolymerizing the aromatic vinyl and the conjugated gen by a known living anion polymerization method. The structure of the block copolymer may be, for example, linear, branched, radial, comb-shaped, or a mixture thereof. A preferred structure is as follows: A is a block composed of aromatic biels and B is a block composed of conjugated gens. A—B, A—B—A, A—B—A—B,
(A - B ) m— X (mは 2、 3又は 4を表し、 Xは例えば四塩化ケィ素、 四塩ィ匕 スズ、 エポキシ化大豆油、 2〜 6官能のエポキシ基含有化合物、 ポリハロゲン化 炭化水素、 カルボン酸エステル、 ジビュルベンゼン等のポリビュル化合物などの 力ップリング剤の残基又は多官能有機リチウム化合物等の開始剤の残基を表 す。 ) 等が挙げられる。 また、 各ブロックの境界がランダムになり、 しかもその 組成が徐々に変化していくテーパープロックも含まれる。 特に好ましいものは、 スチレン一ブタジエンジブ口ックコポリマー、 スチレンーィソプレンジブ口ック コポリマー、 スチレン一ブタジエン一スチレントリブロックコポリマー、 及びス チレン一ィソプレン一スチレントリブロックコポリマーである。 (A-B) m — X (m represents 2, 3 or 4, and X is, for example, silicon tetrachloride, tetrashidani tin, epoxidized soybean oil, a compound having 2 to 6 functional epoxy groups, polyhalogen Represents the residue of a coupling agent such as a hydrocarbon compound, a carboxylate ester, or a polybutyl compound such as dibutylbenzene, or the residue of an initiator such as a polyfunctional organolithium compound. It also includes a tapered block in which the boundaries of each block are random and the composition of which gradually changes. Particularly preferred are styrene-butadiene diblock copolymer, styrene-isoprene diblock copolymer, styrene-butadiene-styrene triblock copolymer, and styrene-isoprene-styrene triblock copolymer.
該ブロックコポリマーの数平均分子量は、 4 0, 0 0 0〜 4 5 0, 0 0 0であ り、 好ましくは 5 0, 0 0 0〜 4 5 0, 0 0 0である。 4 0, 0 0 0未満の低分 子量体では水素化して得られるポリマーの強度が不十分である。 4 5 0 , 0 0 0 を超える高分子量体では加工が困難になる。 ここでの分子量はゲルパーミエイシ ヨンクロマトグラフィー (G P C ) により測定したポリスチレン換算の値である。 本明細書中において、 ブロックコポリマ一中の共役ジェンブロックの数平均分 子量とは、 該ブロックコポリマ一の数平均分子量に共役ジェンの重量含有率をか けて得られる分子量である。 例えば、 数平均分子量が 1 0万のスチレン一ブタジ ェン一スチレントリブロックコポリマーにおいてスチレン含有量が 3 0重量。 /0で あれば、 ブタジエン含有量は 7 0重量%となり、 該ブロックコポリマ一中の共役 ジェンブロックの数平均分子量は 7万となる。 該ブロックコポリマー中の共役ジ ェンブロックが 2ブロック以上であっても、 また、 ブロックの境界がランダムに なりしかもその組成が徐々に変化していくテーパーブロックであっても、 共役ジ ェンプロックの数平均分子量はこの計算法によって求められる値である。 The number average molecular weight of the block copolymer is 40,000 to 450,000, preferably 50,000 to 450,000. With a low molecular weight of less than 40,000, the strength of the polymer obtained by hydrogenation is insufficient. If the molecular weight is higher than 450,000, processing becomes difficult. The molecular weight here is gel permeation It is a value in terms of polystyrene measured by Yon chromatography (GPC). In the present specification, the number average molecular weight of the conjugated gen block in the block copolymer is a molecular weight obtained by multiplying the number average molecular weight of the block copolymer by the weight content of the conjugated gen. For example, a styrene-butadiene-styrene triblock copolymer having a number average molecular weight of 100,000 has a styrene content of 30% by weight. If / 0 , the butadiene content is 70% by weight, and the number average molecular weight of the conjugated gen block in the block copolymer is 70,000. Even if the conjugated diene block in the block copolymer is two or more blocks, or even if the block boundaries are random and the composition of the tapered block gradually changes, the number average molecular weight of the conjugated diene block Is a value obtained by this calculation method.
該プロックコポリマー中の共役ジェンブロックの数平均分子量は、 3 0, 0 0 0以上であり、 好ましくは 3 0, 0 0 0以上、 4 0 0, 0 0 0以下である。 3 0, 0 0 0未満では、 共役ジェンプロック部分の水素化に伴う粘度の大きな上昇がな く、 固定床と攪拌槽での水素化速度の温度依存性の違いが顕著でなく、 1 5 0 °C 以上で反応速度が急激に上昇するという現象も見られない。 4 0 0, 0 0 0を超 えると得られたポリマーの加工が困難になる。  The number average molecular weight of the conjugated gen block in the block copolymer is at least 30,000, preferably at least 30,000 and at most 400,000. If it is less than 30,000, the viscosity does not increase significantly due to the hydrogenation of the conjugated gem block, and the difference in the temperature dependence of the hydrogenation rate between the fixed bed and the stirred tank is not remarkable. There is no phenomena that the reaction rate sharply rises above ° C. If it exceeds 400, 000, processing of the obtained polymer becomes difficult.
本発明におけるプロックコポリマーの水素化率は、 芳香環部分で全芳香環の 7 0 %以上が好ましく、 より好ましくは 8 5 %以上であり、 共役ジェンブロック部 分で全不飽和結合の 9 0 %以上であることが好ましい。 芳香環部分の水素化率が 7 0 %未満では、 ガラス転移温度の向上が小さく水素化されたポリマーの機械物 性の向上が小さい。 また、 共役ジェンブロック部分の水素化率が 9 0 %未満では 熱安定性に劣り、 劣化が起こり易い。 ここでの水素化率は紫外吸収スペク トル及 び1 H— NM Rスぺク トルによって測定した。 紫外吸収スぺク トルでは、 例えば、 芳香族ビニルモノマ一がスチレンである場合、 水素化前後での該ポリマーのシク 口へキサン溶液の 2 6 2 n mでの吸収度の減少を測定することで芳香環の水素化 率を求めた。 丄!^一 NM Rスペク トルでは、 例えば、 該ポリマーがスチレンーブ タジェン一スチレントリブ口ックコポリマーである場合、 水素化前後での該ポリ マ一を重クロ口ホルムに溶かし、 テトラメチルシランをケミカルシフト δ 0とし、 δ 0 . 4〜2 . 6、 4 . 6〜5 . 8、 及び 6 . 2〜 7 · 6のピークの積分値を測 定することで求めた。 The hydrogenation rate of the block copolymer in the present invention is preferably 70% or more, more preferably 85% or more of the whole aromatic ring in the aromatic ring portion, and 90% of the total unsaturated bond in the conjugated gen block portion. It is preferable that it is above. When the hydrogenation ratio of the aromatic ring portion is less than 70%, the improvement in the glass transition temperature is small, and the improvement in the mechanical properties of the hydrogenated polymer is small. If the hydrogenation ratio of the conjugated gen block is less than 90%, the thermal stability is poor, and deterioration is likely to occur. The hydrogenation rate here was measured by an ultraviolet absorption spectrum and a 1 H—NMR spectrum. In the ultraviolet absorption spectrum, for example, when the aromatic vinyl monomer is styrene, the decrease in the absorbance at 262 nm of a cyclohexane solution of the polymer before and after hydrogenation is measured. The hydrogenation rate of the ring was determined.丄! In the NMR spectrum, for example, if the polymer is a styrene butane-styrene triblock copolymer, the polymer before and after hydrogenation is dissolved in a double-mouthed form, and tetramethylsilane is converted into a chemical shift δ0. , Δ 0.4 to 2.6, 4.6 to 5.8, and 6.2 to 7.6 Was determined.
該ブロックコポリマーは溶媒に溶解させて水素化反応に供される。 用いられる 溶媒は、 該ブロックコポリマーを溶解させる飽和炭化水素であれば何でもよく、 具体的にはシクロペンタン、 シクロへキサン、 シクロヘプタン、 シクロオクタン、 メチルシクロへキサン、 デカリン等が用いられる。 n—へキサン、 n—ヘプタン、 等が混合されていてもよい。 また、 テトラヒ ドロフラン、 ジォキサン、 ジェチレ ングリコールジメチノレエーテノレ等のエーテル類や少量のメタノール、 エタノール 等のアルコール類が添加してあってもよい。  The block copolymer is dissolved in a solvent and subjected to a hydrogenation reaction. The solvent used is not particularly limited as long as it is a saturated hydrocarbon capable of dissolving the block copolymer, and specifically, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, decalin and the like are used. n-Hexane, n-heptane, etc. may be mixed. In addition, ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethinoleatenole, and a small amount of alcohols such as methanol and ethanol may be added.
さらに、 該ポリマー溶液中に、 リビングァニオン重合時に使用した重合開始剤 成分やポリマー構造を制御するために必要に応じて添加したエーテル類ゃァミン 類、 リビング末端を失活停止させるために添加したアルコール類、 カップリング 剤成分等が含まれていてもよい。  Further, in the polymer solution, a polymerization initiator component used at the time of living anion polymerization and ethers / diamines added as needed to control the polymer structure, and added to stop the deactivation of the living terminal. Alcohols, coupling agent components and the like may be contained.
該ポリマー溶液中のポリマー濃度は 5〜 3 0重量。/。であり、 好ましくは 5〜 2 5重量%である。 5 %未満の低濃度ではポリマーに対して使用する溶剤量が多い ために生産性が低く、 その溶剤の回収、 再利用が難しくなり、 また、 固定床と攪 拌槽での芳香環部分の水素化速度の温度依存性の違いが顕著でなくなる。 3 0 % を超える高濃度では溶液粘度が高いために水素ガスやポリマーの触媒への拡散が 遅くなるため、 芳香環及び共役ジェンプロック部分の水素化が進行しにくくなる。 本発明における白金族金属は、 パラジウム、 ロジウム及び白金からなる群から 選ばれる少なくとも 1種を含むものである。 特に好ましいものは少なくともパラ ジゥム及び Z又はロジウムを含むものである。  The polymer concentration in the polymer solution is 5 to 30% by weight. /. And preferably 5 to 25% by weight. At a low concentration of less than 5%, the productivity is low due to the large amount of solvent used for the polymer, making recovery and reuse of the solvent difficult, and the hydrogen in the aromatic ring portion in the fixed bed and the stirring tank. The difference in the temperature dependence of the formation rate is not noticeable. At a high concentration exceeding 30%, the diffusion of hydrogen gas or the polymer into the catalyst becomes slow due to the high solution viscosity, so that hydrogenation of the aromatic ring and the conjugated gemlock portion does not easily proceed. The platinum group metal in the present invention contains at least one selected from the group consisting of palladium, rhodium and platinum. Particularly preferred are those containing at least palladium and Z or rhodium.
本発明で使用する無機質担体は、 アルミナ、 シリカアルミナ、 シリカ、 マグネ シァ、 チタ-ァ、 ジルコニァ、 ゼォライ ト等が好ましい。 より好ましいものはァ ルミナ、 シリカ又はそれらを主成分とする成形体であり、 特に好ましくはアルミ ナである。 これは、 特開昭 5 8 _ 1 7 1 0 3号公報ゃ特開平 2— 2 6 5 6 4 7号 公報に記載されているように、 一般的に、 ポリマーを水素化するには担体細孔径 の大きいものが好適であることが知られており、 アルミナは細孔形状を制御しや すいためである。  The inorganic carrier used in the present invention is preferably alumina, silica-alumina, silica, magnesia, titer, zirconia, zeolite, or the like. More preferred are alumina, silica or a molded article containing them as a main component, and particularly preferred is alumina. As described in Japanese Patent Application Laid-Open No. 58-171703 and Japanese Patent Application Laid-Open No. 2-2656447, generally, in order to hydrogenate a polymer, carrier fine particles are used. It is known that those having a large pore diameter are suitable, and alumina is because the pore shape is easily controlled.
本発明に使用されるより好ましい担体は、 水銀圧入法により測定した孔直径が 100〜: 100, 000 nmである孔の孔容積が、 孔直径 5〜: 100, 000 nmである孔の孔容積の 50〜100%であり、 かつ窒素ガス吸着法により測定 した BET比表面積が 50〜50 Om Zgである担体である。 マクロ孔を有し、 かつ比較的大きな表面積を有する、 すなわち、 マクロ孔表面上にミクロ孔及び/ 又はメソ孔が存在する担体を用いて、 後述する担持法を行うことにより、 担体上 に予め担持したアルカリ金属、 アルカリ土類金属、 希土類元素等の金属塩基性成 分の分散化が効率良くなされ、 得られた触媒の活性が更に高くなる。 なお、 本発 明におけるマクロ孔とは孔直径が 50 nm以上、 メソ孔とは 1 0 n m以上 50 n m未満、 ミクロ孔とは 10 nm未満の孔と定義する。 A more preferred carrier used in the present invention has a pore diameter measured by a mercury intrusion method. The pore volume of the pores of 100 to: 100,000 nm is 50 to 100% of the pore volume of the pores of 5 to: 100,000 nm, and the BET specific surface area measured by the nitrogen gas adsorption method is A carrier that is 50-50 Om Zg. By using a carrier having macropores and a relatively large surface area, that is, a carrier having micropores and / or mesopores on the surface of the macropores, the carrier is preliminarily supported on the carrier by performing a support method described below. Dispersion of the metal-basic components such as alkali metals, alkaline earth metals, and rare earth elements is efficiently performed, and the activity of the obtained catalyst is further increased. In the present invention, macropores are defined as pores with a diameter of 50 nm or more, mesopores are defined as 10 nm or more and less than 50 nm, and micropores are defined as pores with a diameter of less than 10 nm.
本発明に使用される更に好ましい担体は、 水銀圧入法による孔分布測定におい て得られる細孔分布曲線で孔直径 100〜10, 000 nmにピークが存在し、 かつ孔直径 1 00 nm以下にもピークが存在するバイモーダルの孔分布を有する 担体である。 特に好ましいものは細孔分布曲線で孔直径 100〜10, 000 nmにピークが存在し、 かつ孔直径 1 0 nm以下にピークが存在するバイモ一ダ ル担体である。 なお、 ゼォライ ト成形体の例のように水銀圧入法では孔直径 2 nm以下の孔分布測定ができない場合であっても実質上は公知情報として孔直径 2 nm以下にミクロ孔を有するものとされる担体の場合は、 水銀圧入法による孔 分布測定において得られる細孔分布曲線で孔直径 100〜10, O O O nmにピ ークが存在すれば、 上記のバイモーダルの孔分布を有する担体に含まれる。  Further preferred carriers used in the present invention are those having a peak at a pore diameter of 100 to 10,000 nm and a pore diameter of 100 nm or less in a pore distribution curve obtained by a pore distribution measurement by a mercury intrusion method. The carrier has a bimodal pore distribution with a peak. Particularly preferred is a bimodal carrier having a pore distribution curve with a peak at a pore diameter of 100 to 10,000 nm and a peak at a pore diameter of 10 nm or less. Even if the pore distribution measurement with a pore diameter of 2 nm or less cannot be performed by the mercury intrusion method, as in the case of the zeolite molded body, it is assumed that micropores with a pore diameter of 2 nm or less are practically known as information. If a peak exists at a pore diameter of 100 to 10 nm and OOO nm in the pore distribution curve obtained by the pore distribution measurement by the mercury intrusion method, it is included in the carrier with the bimodal pore distribution described above. It is.
また、 担体の形状は球形や円筒形等の粒状であれば特に限定されないが、 サイ ドカツトを入れた押出し成形体やリング状のものが外表面積を向上させることが できることから好んで用いられる場合もある。 触媒のサイズは、 形状を球とした 場合は直径で 0. 5〜10mm、 形状が円筒形の場合、 直径が 1 32〜3/8 インチ (0. 79〜9. 53 mm) 、 長さは 0. 2〜 2 c mが好ましい。 粒径が 小さすぎると触媒層にポリマー溶液を通液する際の圧力損失が大きくなりすぎ、 逆に大きすぎると触媒のコア部分に対して表層部分の割合が小さくなるために触 媒の総量が多くなりすぎる。  The shape of the carrier is not particularly limited as long as it is granular such as a sphere or a cylinder.However, an extruded body or a ring-shaped body containing a side cut is preferably used because it can improve the outer surface area. is there. The size of the catalyst is 0.5 to 10 mm in diameter when the shape is a sphere, 132 to 3/8 inch (0.79 to 9.53 mm) in the case of a cylindrical shape, and the length is 0.2 to 2 cm is preferred. If the particle size is too small, the pressure loss when passing the polymer solution through the catalyst layer becomes too large.On the other hand, if the particle size is too large, the ratio of the surface layer portion to the catalyst core portion becomes small, so that the total amount of the catalyst becomes small. Too much.
該白金族金属の無機質担体への担持方法は公知の担持方法を用いてもよい。 例 えば、 白金族金属塩の水溶液等を担体に含浸させた後還元する方法等によって担 持触媒が得られる。 また、 有機溶媒に可溶の白金族金属化合物を用いて、 有機溶 媒中で化合物を吸着させてもよい。 As a method for supporting the platinum group metal on the inorganic carrier, a known supporting method may be used. For example, the carrier is impregnated with an aqueous solution of a platinum group metal salt or the like and then reduced. A supported catalyst is obtained. Alternatively, a platinum group metal compound soluble in an organic solvent may be used to adsorb the compound in the organic solvent.
担体への白金族金属の担持量は 0 . 1〜1 0重量%であり、 より好ましくは 0 . 3〜 5重量。/。である。 0 . 1重量%未満では触媒量が多くなりすぎ、 また、 1 0 重量%を超える担持では担体表面でのメタル凝集が起こって活性が低下する。 本発明において好ましい白金族金属の無機質担体への担持方法は、 可溶性の白 金族金属化合物と担体上に予め担持したアルカリ金属、 アルカリ土類金属、 希土 類元素等の金属塩基性成分との化学反応によって、 白金族金属成分を不溶固定化 する原理を利用するものである。 すなわち、 アルカリ金属、 アルカリ土類金属、 及び稀土類金属からなる群から選ばれる少なくとも 1種の金属塩基性成分を含浸 した後に乾燥及び Z又は焼成して得られる担体と白金族金属化合物溶液とを混合 することを含む工程により調製されるものである。  The amount of the platinum group metal supported on the carrier is 0.1 to 10% by weight, more preferably 0.3 to 5% by weight. /. It is. If the amount is less than 0.1% by weight, the amount of the catalyst becomes too large, and if the amount exceeds 10% by weight, metal aggregation occurs on the surface of the carrier, and the activity decreases. In the present invention, a preferred method for supporting a platinum group metal on an inorganic carrier is a method of mixing a soluble platinum group metal compound with a metal basic component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported on the carrier. It utilizes the principle of insolubilizing and fixing platinum group metal components by chemical reaction. That is, a carrier obtained by impregnating at least one metal basic component selected from the group consisting of an alkali metal, an alkaline earth metal, and a rare earth metal, followed by drying and Z or firing, and a platinum group metal compound solution are used. It is prepared by a process including mixing.
該白金族金属化合物は、 水に可溶性の塩であれば特に限定されない。 好ましい 化合物としてはパラジウムでは塩化パラジウム等のハロゲン化パラジウム類、 テ トラクロ口パラジウム酸及びその塩類、 へキサクロ口パラジウム酸カリウム等の へキサクロ口パラジウム塩類、 テトラブロモパラジウム酸ナトリゥム等のテトラ ブロモパラジウム酸塩、 酢酸パラジウム、 硝酸パラジウム、 テトラニトロパラジ ゥム塩、 テトラアンミンパラジウム塩化物等のパラジウムアンミン錯体、 ビスェ チレンジアミンパラジゥム塩化物等のパラジウムエチレンジアミン錯体、 ロジゥ ムでは塩化ロジウム等のハロゲン化ロジウム類、 へキサクロ口ロジウム酸等のへ キサハロゲン化ロジウム酸類及びその塩類、 へキサニトロロジウム酸ナトリウム 等のへキサニトロロジウム酸塩類、 酢酸ロジウム、 へキサアンミンロジウム塩化 物等のロジウムアンミン錯体、 ルテニウムでは塩化ルテニウム等のハロゲン化ル テニゥム類、 へキサクロ口ルテニウム酸及びその塩類、 ペンタクロロアクアルテ 二ゥム酸力リゥム等のペンタクロロアクアルテニウム塩類やペンタクロロ二トロ シルルテニウム塩類、 酢酸ルテニウム、 へキサアンミンルテニウム塩化物等のル テニゥムアンミン錯体、 白金ではへキサクロ口白金酸やその塩類、 テトラクロ口 白金酸やその塩類、 へキサブロモ白金酸やその塩類、 テトラブロモ白金酸やその 塩類、 テトラニトロ白金酸塩、 テトラアンミン白金塩化物等のテトラアンミン白 金錯体が挙げられる。 より好ましくは、 塩化パラジウム等のハロゲン化パラジゥ ム類、 テトラクロ口パラジウム酸及びその塩類、 へキサクロ口パラジウム酸カリ ゥム等のへキサク口口パラジウム塩類、 テトラブロモパラジウム酸ナトリゥム等 のテトラブロモパラジウム酸塩、 塩化ロジウム等のハロゲン化ロジウム類、 へキ サクロロロジウム酸等のへキサハロゲン化ロジウム酸類及びその塩類、 塩化ルテ ニゥム等のハロゲン化ルテニウム類、 へキサクロロルテニウム酸及びその塩類、 へキサクロ口白金酸やその塩類、 テトラクロ口白金酸やその塩類、 へキサブロモ 白金酸やその塩類、 テトラプロモ白金酸やその塩類であり、 特に好ましくは、 塩 化パラジウム等のハロゲン化パラジウム類、 塩化ロジウム等のハロゲン化ロジゥ ム類、 塩化ルテニウム等のハロゲン化ルテニウム類、 へキサクロ口白金酸の塩類 ゃテトラクロ口白金酸の塩類である。 The platinum group metal compound is not particularly limited as long as it is a salt soluble in water. Preferred examples of the compound include palladium halides such as palladium chloride, palladium tetrachloride and salts thereof, palladium salts such as potassium hexabutyl palladium, and salts of tetrabromopalladium such as sodium tetrabromopalladium. , Palladium acetate, palladium nitrate, palladium ammine complexes such as tetranitropalladium chloride, tetraamminepalladium chloride, palladium ethylenediamine complexes such as bisethylenediamine palladium chloride, and rhodium halides such as rhodium chloride for rhodium. Hexahalogenated rhodium acids and salts thereof, such as hexaclorophic rhodium acid, hexanitrorhodates such as sodium hexanitrorhodate, rhodium acetate, hexammine rhodium Rhodium ammine complexes such as chlorides; ruthenium; ruthenium chlorides and other ruthenium halides; hexacloporruthenic acid and salts thereof; pentachloroaquarthenium salts such as pentachloroaquarthene diamic acid rim; Ruthenium ammine complexes such as silruthenium salts, ruthenium acetate, and hexammineruthenium chloride; for platinum, hexacloplatinic acid and its salts; Tetraamine white such as salts, tetranitroplatinate, tetraammineplatinum chloride Gold complexes. More preferably, halogenated palladiums such as palladium chloride, palladium tetrachloride and salts thereof, palladium salts of palladium hexakis such as potassium palladium hexachloride, tetrabromopalladiums such as sodium tetrabromopalladium, etc. Salts, rhodium halides such as rhodium chloride, hexahalogenated rhodium acids such as hexachlororhodic acid and salts thereof, ruthenium halides such as ruthenium chloride, hexachlororuthenic acid and salts thereof, hexaclomouth Platinic acid and its salts, tetrachloroplatinic acid and its salts, hexabromoplatinic acid and its salts, tetrabromoplatinic acid and its salts, particularly preferably palladium halides such as palladium chloride, rhodium chloride and the like Rhodium halides, ruthenium chloride, etc. Ruthenium halide compound, a salt Ya tetrachloroethene opening salts of chloroplatinic acid in Kisakuro port chloroplatinic acid to.
本発明における金属塩基性成分を含む担体は、 予めリチウム、 ナトリウム、 力 リウム、 ルビジウム、 セシウム等のアルカリ金属、 ベリリウム、 マグネシウム、 カルシウム、 ストロンチウム、 バリウム等のアルカリ土類金属、 ランタン、 セリ ゥム、 プラセォジゥム等の稀土類元素の中から選ばれる単独又は複数の金属塩基 性成分を担持したものである。 担持する金属塩基性成分としては、 例えば、 硝酸 塩や酢酸塩等の焼成等の操作によって酸化物となるものが好ましい。 アルカリ金 属、 アルカリ土類金属、 稀土類元素等の金属塩基性成分を担持した担体の乾燥は、 1 0 0 °C以上、 好ましくは 1 1 0 °C以上の温度で、 1〜4 8時間で行われる。 焼 成は 3 0 0〜 8 0 0 °C、 好ましくは 3 0 0〜 7 0 0 °Cの温度で:!〜 4 8時間の範 囲で行われる。  The carrier containing the metal basic component in the present invention may be prepared in advance by using an alkali metal such as lithium, sodium, potassium, rubidium, and cesium; an alkaline earth metal such as beryllium, magnesium, calcium, strontium, and barium; lanthanum; It carries one or more metal basic components selected from rare earth elements such as praseodymium. As the metal basic component to be supported, for example, those which become an oxide by an operation such as baking of nitrate or acetate are preferable. Drying of a carrier supporting a metal basic component such as an alkali metal, an alkaline earth metal, and a rare earth element is performed at a temperature of 100 ° C. or higher, preferably 110 ° C. or higher, for 1 to 48 hours. Done in The calcination is at a temperature of 300 to 800 ° C, preferably at a temperature of 300 to 700 ° C :! It takes place in the range of ~ 48 hours.
本発明において担体に分散固定化するアルカリ金属、 アルカリ土類金属、 稀土 類元素の塩基性成分の量は、 担持する白金族金属の量によってその最適量は異な るが、 担持する白金族金属に対し、 1〜1 0 0倍モル、 好ましくは 2〜 5 0倍モ ルの範囲で選ばれる。  In the present invention, the optimum amount of the alkali metal, alkaline earth metal, or basic element of the rare earth element to be dispersed and immobilized on the carrier varies depending on the amount of the platinum group metal to be supported. On the other hand, it is selected in the range of 1 to 100 times mol, preferably 2 to 50 times mol.
可溶性の白金族金属化合物と担体上に担持した金属塩基性成分との反応は 7 0 °C以上の温度で行うことが好ましい。 白金族金属の担持量や担体に予め担持する 金属塩基性成分の量により異なるが、 温度が低くなりすぎると反応が遅くなり白 金族金属の担持層の分布が広がる。 本発明においては、 反応温度はより好ましく は 8 0 °C以上、 さらに好ましくは 9 0 °C以上である。 加圧下で沸点以上の温度で 反応を行ってもよいが、 加圧設備の煩雑さと水蒸気の圧力を考慮すると、 上限温 度は 1 5 0 °C以下である。 The reaction between the soluble platinum group metal compound and the metal basic component supported on the carrier is preferably performed at a temperature of 70 ° C. or higher. Depending on the amount of the platinum group metal supported and the amount of the metal basic component previously supported on the carrier, if the temperature is too low, the reaction slows down and the distribution of the supported layer of the platinum group metal is widened. In the present invention, the reaction temperature is more preferable. Is at least 80 ° C, more preferably at least 90 ° C. The reaction may be performed at a temperature equal to or higher than the boiling point under pressure, but the upper limit temperature is 150 ° C. or less in consideration of the complexity of the pressurizing equipment and the pressure of steam.
本発明における予め金属塩基性成分を含む担体と白金族金属化合物溶液とは、 担体粒子間での担持白金量のばらつきをなくすために、 できるだけ同時に接触さ せることが好ましい。 このためには白金族金属化合物溶液に予め金属塩基性成分 を含む担体を瞬時に投入する方法等がある。  In the present invention, the carrier containing the metal basic component in advance and the platinum group metal compound solution are preferably brought into contact at the same time as much as possible in order to eliminate variations in the amount of supported platinum among the carrier particles. For this purpose, there is a method in which a carrier containing a metal basic component is instantaneously charged into a platinum group metal compound solution in advance.
本発明の担体に固定化担持された白金族金属化合物は還元操作によって白金族 金属に還元される。 白金族金属化合物を分散固定化した担体を水溶液等に分散さ せ、 力き混ぜながら、 ホルマリンギ酸、 ヒ ドラジン、 メタノール、 水素化ホウ素 ナトリウム (ソジゥムボロハイドライド) 又は水素ガスを用いる還元処理によつ て白金族金属に還元を施すことができる。 また、 白金族金属化合物を分散固定化 した担体を反応器に充填しておいて、 そこにホルマリンギ酸、 ヒ ドラジン、 メタ ノール、 水素化ホウ素ナトリウム (ソジゥムポロハイドライド) を含む溶液又は 高温下にて水素ガスを導入することによる還元処理によって白金族金属に還元す ることができる。 ホルマリンギ酸、 ヒドラジン、 メタノール、 水素化ホウ素ナト リウム (ソジゥムボロハイドライド) を用いた場合の還元温度は室温から 2 0 0 °Cまでの温度である。 沸点以上の場合は液層を保っために必要な圧力をかけてお く。 室温〜 1 6 0 °C、 常圧〜数気圧の還元条件が好ましい。 金属粒径をより小さ くするために、 6 0〜1 6 0 °Cの条件がより好ましい。  The platinum group metal compound immobilized and supported on the carrier of the present invention is reduced to a platinum group metal by a reduction operation. Disperse the carrier in which the platinum group metal compound is dispersed and immobilized in an aqueous solution, etc., and perform a reduction process using formalin formic acid, hydrazine, methanol, sodium borohydride (sodium borohydride) or hydrogen gas while stirring. Thus, the platinum group metal can be reduced. In addition, a carrier in which a platinum group metal compound is dispersed and immobilized is charged into a reactor, and a solution containing formalin formic acid, hydrazine, methanol, sodium borohydride (sodium borohydride) or under high temperature Can be reduced to a platinum group metal by a reduction treatment by introducing hydrogen gas. When using formalin formic acid, hydrazine, methanol, or sodium borohydride (sodium borohydride), the reduction temperature is from room temperature to 200 ° C. If the boiling point is exceeded, apply the necessary pressure to maintain the liquid layer. The reduction conditions are preferably room temperature to 160 ° C. and normal pressure to several atmospheres. In order to make the metal particle size smaller, a condition of 60 to 160 ° C. is more preferable.
本発明の好ましい担持法である、 可溶性の白金族金属化合物と担体上に予め担 持したアル力リ金属、 アル力リ土類金属、 希土類元素等の金属塩基性成分との化 学反応によって白金族金属成分を不溶固定化する上記担持方法によれば、 該白金 族金属の表面積が 4 0〜2 5 O m 2ノ g—金属である高い表面積を達成できる。 この表面積が 4 0〜2 5 O m 2Z g—金属であると生産性が高く、 生産性が安定 するのにかかる時間が短縮される。 該金属表面積はガス化学吸着法により測定し た。 また、 白金族金属の担持位置を担体の外表面から深さ方向に担体径の 1 1 0以内の表層部に 9 0 %以上担持することも達成できる。 この距離の測定は触媒 を樹脂に包埋し研磨して得た試料を電子線マイクロアナリシス (E P MA) によ つて触媒粒子断面の深さ方向の線分析を行うことによって求めた。 白金族金属担 持位置を担体の外表面から深さ方向に担体径の iZi 0以内の表層部に、 より好 ましくは 1 20以内の表層部に担持することにより白金族金属とポリマーとの 接触が容易となり、 触媒活性が向上する。 該触媒を用いることによって生産性が 向上し、 白金族金属成分の溶出を抑制することができる。 Platinum is obtained by a chemical reaction between a soluble platinum group metal compound and a metal basic component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported on a carrier, which is a preferred support method of the present invention. According to the supporting method of insoluble immobilized group metal component can be achieved a high surface area surface area of platinum group metal is 4 0~2 5 O m 2 Bruno g- metal. The surface area is 4 0~2 5 O m 2 and high productivity is Z g- metal, productivity is reduced it takes time to stabilize. The metal surface area was measured by a gas chemisorption method. In addition, it is also possible to achieve a loading of the platinum group metal on the surface layer portion within 110 of the carrier diameter in the depth direction from the outer surface of the carrier to 90% or more. The distance was measured by embedding the catalyst in a resin and polishing the sample to obtain it by electron beam microanalysis (EP MA). Then, it was determined by performing line analysis in the depth direction of the cross section of the catalyst particles. By supporting the platinum group metal carrying position in the depth direction from the outer surface of the carrier on the surface layer within iZi 0 of the carrier diameter, more preferably on the surface layer within 120, the platinum group metal and the polymer The contact is easy and the catalytic activity is improved. By using the catalyst, productivity is improved and elution of the platinum group metal component can be suppressed.
本発明における固定床での水素化とは、 縦型の反応塔内部に粒状触媒を充填し ておいて、 そこにブロックポリマー溶液と水素ガスを流通し、 水素化を行うもの である。 ポリマー溶液と水素ガスの流れ方向は並流であつても向流であつても実 施できるが、 並流が好ましく、 その方向は上昇流であっても下降流であってもよ い。  The term “hydrogenation in a fixed bed” in the present invention refers to a method in which a granular catalyst is filled in a vertical reaction tower, and a block polymer solution and hydrogen gas are circulated therein to perform hydrogenation. The flow direction of the polymer solution and the hydrogen gas may be either co-current or counter-current. However, co-current is preferable, and the direction may be an upward flow or a downward flow.
本発明においては、 該ブロックコポリマー溶液を反応塔に充填した触媒層に、 触媒層温度 1 50〜 250 °C、 好ましくは 1 50〜 220 °C、 より好ましくは 1 80 ~ 220 °C、 水素圧 2〜 25 M P a、 好ましくは 3〜20MP a、 より好ま しくは 4〜1 5MP a、 水素ガス流量 ポリマー溶液流量比 10〜 1, 000 NL/L、 好ましくは 20〜: 1, 000 NLZL、 より好ましくは 20〜800 NL/L、 液時空間速度 (LHSV) 0. 01〜: 10 (lZh r) 、 好ましくは 0. 03〜: 10 ( lZh r ) 、 より好ましくは 0. 05〜: 10 (l Zh r ) の条 件で流通させて水素化を行う。  In the present invention, the catalyst layer filled with the block copolymer solution in the reaction tower has a catalyst layer temperature of 150 to 250 ° C, preferably 150 to 220 ° C, more preferably 180 to 220 ° C, and hydrogen pressure. 2 to 25 MPa, preferably 3 to 20 MPa, more preferably 4 to 15 MPa, hydrogen gas flow rate, polymer solution flow rate ratio of 10 to 1,000 NL / L, preferably 20 to: 1,000 NLZL, Preferably 20 to 800 NL / L, liquid hourly space velocity (LHSV) 0.01 to 10 (lZhr), preferably 0.03 to 10 (lZhr), more preferably 0.05 to 10 (lZhr) l Zh r) for hydrogenation.
本発明における触媒層温度とは、 固定床触媒層で温度の分布を生じるため、 触 媒層中の最高温度を意味する。 この温度が 1 50°C未満では芳香環の水素化速度 が極端に低下し、 250°Cを超えると分子鎖開裂を併発して好ましくない。 また、 水素圧が 2MP a未満では水素化速度が十分でなく、 25 MP aを超えると設備 が高価なものになる。 水素ガス流量ノポリマー溶液流量比が 10NLZL未満で は水素化率が低下し、 1, 000 NLZLを超えると水素ガスの回収リサイクル 設備が高価なものになる。 液時空間速度 (LHS V) が 0. 01未満では生産性 が低下し、 1 0を超えると水素化率が低下する。  The catalyst layer temperature in the present invention means the highest temperature in the catalyst layer because a temperature distribution occurs in the fixed bed catalyst layer. When the temperature is lower than 150 ° C, the hydrogenation rate of the aromatic ring is extremely reduced, and when the temperature is higher than 250 ° C, molecular chain cleavage is undesirably caused. If the hydrogen pressure is less than 2 MPa, the hydrogenation rate is not sufficient, and if it exceeds 25 MPa, the equipment becomes expensive. If the flow rate of hydrogen gas is less than 10 NLZL, the hydrogenation rate will decrease, and if it exceeds 1,000 NLZL, the equipment for collecting and recycling hydrogen gas will be expensive. If the liquid hourly space velocity (LHSV) is less than 0.01, the productivity will decrease, and if it exceeds 10, the hydrogenation rate will decrease.
ポリマー溶液を前以つて不活性ガスや水素ガスで置換しておいてから通液して もよい。  The polymer solution may be replaced with an inert gas or hydrogen gas in advance, and then passed through.
固定床反応器としては公知のものが使用でき特に限定されないが、 水素化での 発熱量が大きいので、 効率よく除熱するために多管式反応器を用いてもよい。 ま た、 水素化率を目標値に到達させるために固定床の流出液をリサイクルして通液 固定床で該ブロックコポリマーを水素化する場合、 低温領域では、 ブロックコ ポリマー中の共役ジェンプロック部分が芳香環部分と比較して先に水素化されや すい。 共役ジェンプロック部分の水素化が進むにつれて分子鎖の広がりが拡大し、 溶液粘度が大きく上昇する。 そのため、 プロックコポリマーの担体細孔内への拡 散が遅くなつて、 芳香環部分は水素化されないまま残ることになる。 この現象は 該ブロックコポリマーが高分子量体になるにつれて、 濃度が高くなるにつれて、 また、 共役ジェンブロックが長くなるにつれて顕著になる。 一方、 高温領域では、 高分子量体、 高濃度、 かつ、 共役ジェンブロックが長い場合でも効率よく芳香環 部分と共役ジェンブロック部分が水素化された。 これは、 芳香環と共役ジェンブ ロックの水素化が競争的に進行するために (1 ) 芳香環部分の水素化によって粘 度の上昇が抑えられること、 (2 ) 水素化されずに残っているブロックコポリマ —は鎖の広がりが拡大していないので、 相対的に細孔内への拡散しやすいことに よるものと考えられる。 Known fixed-bed reactors can be used and are not particularly limited. Since the calorific value is large, a multitubular reactor may be used for efficient heat removal. When the block copolymer is hydrogenated in the fixed bed by recycling the effluent of the fixed bed to reach the target value of the hydrogenation rate in the fixed bed, in the low temperature region, the conjugated gem block in the block copolymer is used. Is more likely to be hydrogenated earlier than the aromatic ring portion. As the hydrogenation of the conjugated gem block progresses, the molecular chains expand and the solution viscosity increases significantly. As a result, the diffusion of the block copolymer into the pores of the carrier becomes slow, and the aromatic ring remains unhydrogenated. This phenomenon becomes more pronounced as the block copolymer becomes higher molecular weight, as the concentration increases, and as the conjugated gen block becomes longer. On the other hand, in the high temperature region, the aromatic ring portion and the conjugated gen block were efficiently hydrogenated even when the high molecular weight compound, the concentration was high, and the conjugated gen block was long. This is because the hydrogenation of the aromatic ring and the conjugated genblock proceeds competitively, (1) the increase in viscosity is suppressed by hydrogenation of the aromatic ring portion, and (2) the hydrogenation remains without hydrogenation. Block copolymers are considered to be relatively easy to diffuse into the pores because the chain spread is not expanded.
この固定床での芳香環部分の水素化速度の温度依存性は攪袢槽の場合と大きく 異なっており、 固定床では高温域で芳香環部分の水素化速度が急激に立ち上がる。 攪拌槽では、 低温域で共役ジェンプロック部分の水素化が先に進んで粘度が上昇 しても、 攪拌によって系の物質移動速度を高めることができるために温度依存性 が固定床に比べて小さくなつていると考えられる。  The temperature dependence of the hydrogenation rate of the aromatic ring portion in this fixed bed is significantly different from that in the stirred tank, and the hydrogenation rate of the aromatic ring portion rapidly rises in the fixed bed at a high temperature. In a stirred tank, even if the conjugated gem block portion is hydrogenated at a low temperature and the viscosity increases, the mass transfer rate of the system can be increased by stirring, so the temperature dependence is smaller than that of a fixed bed. It is thought that it is.
また、 固定床での触媒寿命については、 高温域の方がポリマーの拡散が良く、 これが触媒寿命に良い影響を与えると考えられる。  Also, regarding the catalyst life in the fixed bed, the diffusion of the polymer is better in the high temperature range, which is considered to have a good effect on the catalyst life.
このように固定床における高濃度、 高分子量体、 かつ、 共役ジェンブロックが 長い場合の水素化では、 (1 ) 芳香環部分の水素化速度の温度依存性が攪拌槽で の水素化に比べて高温域では高くなる、 (2 ) 触媒寿命が低温域よりも高温域で 長くなるという驚くべき事実を本発明者らは発見し、 かかる発見に基づいて効率 よく該ブロックコポリマーを水素化する方法を発明した。  As described above, in the hydrogenation with a high concentration, high molecular weight, and long conjugated gen block in the fixed bed, (1) the temperature dependence of the hydrogenation rate of the aromatic ring portion is higher than that in the stirred tank. The present inventors have discovered the surprising fact that the catalyst life becomes longer in a high temperature range than in a low temperature range, and based on such a finding, a method for efficiently hydrogenating the block copolymer based on such a finding is obtained. Invented.
目標とする水素化率に達した水素化反応流出物は、 公知の方法によって、 水素 ガス、 溶媒、 水素化ポリマーとに分離される。 水素ガスと溶媒は再利用される。 本発明の水素化方法は、 攪拌槽での水素化と比較すると、 触媒寿命が長く、 触 媒ゃ触媒成分の得られたポリマーへの混入もなく、 また、 得られたブロックコポ リマ一は着色しにくく透明性に優れ、 光学材料、 医療用材料、 電気絶縁材料、 電 気 ·電子部品材料として用いることができる。 また、 得られたポリマーは耐熱性、 耐候性、 成形加工性、 弾性等の優れた熱可塑性プロックコポリマーとして利用さ れる。 The hydrogenation reaction effluent that has reached the target hydrogenation rate is hydrogenated by a known method. It is separated into gas, solvent and hydrogenated polymer. Hydrogen gas and solvent are recycled. The hydrogenation method of the present invention has a longer catalyst life, no catalyst / catalyst component is mixed into the obtained polymer, and the obtained block copolymer is colored, as compared with hydrogenation in a stirred tank. It has high transparency and can be used as optical materials, medical materials, electrical insulating materials, and electrical and electronic parts materials. Further, the obtained polymer is used as a thermoplastic block copolymer having excellent heat resistance, weather resistance, moldability, elasticity, and the like.
次に、 本発明を実施例及び比較例によってさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to examples and comparative examples.
なお、 固定床と攪拌槽を比較する際、 固定床では触媒粒径が 3〜4 mmサイズ の触媒を用いた。 粒径が小さいと圧力損失が大きくなつて通液できないためであ る。 攪拌槽では約 60 /m粒径の触媒を用いた。 触媒径が大きいと攪拌で粉碎さ れてしまうためである。 したがって、 2つの反応形式での触媒粒径は異なってお り、 触媒活性は攪拌槽の方が高いが、 水素化速度の温度依存性や得られたポリマ —物性については、 固定床と攪拌槽の水素化方法の違いを示している。  When comparing the fixed bed with the stirring tank, a catalyst with a catalyst particle size of 3 to 4 mm was used in the fixed bed. This is because if the particle size is small, the liquid cannot pass through due to a large pressure loss. In the stirring tank, a catalyst having a particle size of about 60 / m was used. This is because if the catalyst diameter is large, it will be crushed by stirring. Therefore, the catalyst particle size is different in the two types of reaction, and the catalytic activity is higher in the stirred tank, but the temperature dependence of the hydrogenation rate and the obtained polymer properties are fixed bed and stirred tank. Shows the differences in the hydrogenation methods.
<測定方法 >  <Measurement method>
ブロックコポリマーの数平均分子量及び重量平均分子量は標準ポリスチレンを 用いて、 ゲルパーミエイシヨンクロマトグラフィ一 (GPC) (東ソ一 (株) 製 HLC— 81 20GPCシステム) にて測定した。  The number average molecular weight and weight average molecular weight of the block copolymer were measured by gel permeation chromatography (GPC) (HLC-8120 GPC system, manufactured by Tosoh Corporation) using standard polystyrene.
芳香族ビニル含有量は紫外吸収スぺク トル ( (株) 島津製作所製 MPS— 2 000) にて求めた。  The aromatic vinyl content was determined using an ultraviolet absorption spectrum (MPS-2000, manufactured by Shimadzu Corporation).
プロックコポリマーの水素化率は芳香環については紫外吸収スぺク トル又は The hydrogenation rate of the block copolymer is determined by the UV absorption spectrum or
1H— NMRスペク トル (日本電子 (株) 製 J EOL— GX270) にて測定 した。 共役ジェン部分のミクロ構造、 例えば、 ブタジエンの場合の 1, 2—結合 と 1, 4一結合比は1 H— NMRスペク トルによって測定した。 ォレフィン部の 水素化率も1 H— NMRスぺクトルによって測定した。 1 H-NMR spectrum (JEOL-GX270 manufactured by JEOL Ltd.) was measured. The microstructure of the conjugated gen moiety, for example, the ratio of 1,2-bonds to 1,4-bonds in the case of butadiene, was determined by 1 H-NMR spectrum. The hydrogenation rate of the olefin portion was also measured by 1 H-NMR spectrum.
メルトフローレ一トは J I S K7210に準じ、 2. 1 6 k g荷重、 230 °Cの条件で測定した。  The melt flow rate was measured under the condition of 2.16 kg load and 230 ° C. according to JIS K7210.
機械物性 (破断強度、 破断伸び) は J I S K63◦ 1に準じ、 試料は 2 mm 厚の圧縮成型シートを用い、 試料片は 3号ダンベルとして測定した。 ポリマー中のメタル量は、 ポリマーを硝酸中で超音波をかけて加熱分解した後、 高周波誘導プラズマ質量分析装置 (ファイソン社製 VG— ΡΟΩ) により測定 を行って求めた。 The mechanical properties (rupture strength and elongation at break) were measured according to JIS K63◦1, using a compression molded sheet with a thickness of 2 mm for the sample, and measuring the sample piece as a No. 3 dumbbell. The amount of metal in the polymer was determined by subjecting the polymer to thermal decomposition in nitric acid by applying ultrasonic waves, and then performing measurement using a high-frequency induction plasma mass spectrometer (VG-ΡΟΩ manufactured by Fison).
ポリマ一着色テストは 1 80°C、 168時間の熱履歴後の着色の有無を目視で 比較した。  In the polymer coloration test, the presence or absence of coloring after heat history at 180 ° C for 168 hours was visually compared.
使用した担体の細孔分布は水銀圧入法測定装置 ( (株) 島津製作所製 ポアサ イズー 9220) によって測定した。  The pore distribution of the used carrier was measured by a mercury intrusion method measuring apparatus (Pore Size 9220, manufactured by Shimadzu Corporation).
担体の比表面積は、 窒素ガス吸着による BET表面測定 (カルロエルバ社製 ソープトマチック 1 800) によって行った。  The specific surface area of the carrier was measured by a BET surface measurement by nitrogen gas adsorption (Carlo Elba's Soapmatic 1800).
触媒中の白金族金属量は X線光電子分光分析 (理学電機 (株) 製 R I X30 00) を用いて行った。  The amount of platinum group metal in the catalyst was measured by using X-ray photoelectron spectroscopy (RIX3000 manufactured by Rigaku Corporation).
白金族金属の表面積は全自動触媒ガス吸着装置 (大倉理研 (株) 製 R— 60 1 5) を用いて測定した。  The surface area of the platinum group metal was measured using a fully automatic catalytic gas adsorption device (R-6015 manufactured by Okura Riken Co., Ltd.).
白金族金属の分布は電子線マイクロプローブ ( (株) 立製作所製 X 65 0) 及びエネルギー分散型 X線検出器 ( (株) 堀場製作所製 EMAX 5770 W) を用いて測定した。  The distribution of the platinum group metal was measured using an electron beam microprobe (X650, manufactured by Tate Works Co., Ltd.) and an energy dispersive X-ray detector (EMAX 5,770 W, manufactured by Horiba, Ltd.).
実施例 1  Example 1
プロックコポリマーの調製  Preparation of block copolymer
窒素置換した 40 Lのォ一トクレーブに乾燥、 精製したシク口へキサン 26 L、 テトラヒ ドロフラン 73 g、 スチレン3 10 gを仕込み、 60°Cに昇温した後、 n—プチルリチウム 3. 3 gを含むシクロへキサン溶液を攪拌下で添加、 重合を 開始させ、 スチレン重合終了後、 次いでブタジエンを 2, 480 g添加し、 重合 が完結した後、 さらにスチレン 3 1 O gを添加し、 重合反応を完結させた。 使用 したリチウムに対して 1. 2等量のメタノールを添加して成長末端を停止した。 このようにして数平均分子量 9. 8万、 スチレン含有量 20重量%、 ブタジエン ブロック 7. 8万、 ブタジエン部分の 1, 2— /1, 4一結合比 =0. 40/0. 60、 濃度 1 3. 5重量0/。のスチレン一ブタジエン一スチレン (S B S) トリブ 口ックコポリマ一/シクロへキサン溶液を得た。 O dried to an Tokurebu nitrogen substituted 40 L, hexanes 26 L to purified consequent opening, as tetrahydrofuran 7 3 g, was charged styrene 3 10 g, was heated to 60 ° C, n-heptyl lithium 3.3 g of cyclohexane solution was added with stirring to start polymerization, and after completion of styrene polymerization, 2,480 g of butadiene was added.After the polymerization was completed, 31 Og of styrene was further added, followed by polymerization. The reaction was completed. The growth terminal was stopped by adding 1.2 equivalents of methanol to the lithium used. In this way, the number average molecular weight is 98,000, styrene content is 20% by weight, butadiene block is 78,000, butadiene part has 1,2-// 1,4 single bond ratio = 0.40 / 0.60, concentration 13.5 weight 0 /. A styrene-butadiene-styrene (SBS) trib solution was obtained.
分子量等の異なるポリマーはこの方法に従って調製した。 固定床水素化 Polymers with different molecular weights, etc. were prepared according to this method. Fixed bed hydrogenation
0. 5重量0 /。パラジウム (P d) Ζα—アルミナ球 (径 3 mm) (ェヌ .ィー ケムキャッ ト社製) 触媒 30 Om を内径 27 mmの反応管に充填して、 上記 の 13. 5重量%スチレン一ブタジエン一スチレントリブロックコポリマー Zシ クロへキサン溶液を LHS V (1/h r) 0. 1、 水素ガス流量 ポリマー流量 比 =400NL/Lにて水素ガスと共に並流、 上昇流で流した。 その後、 水素圧 を 6MP a、 触媒層温度を 1 80°Cに調整した。 設定温度に達してから 1 5時間 後の流出ポリマーの水素化率は芳香環 95. 0%、 1, 4一ブタジエン部分 98. 3%、 1, 2—ブタジエン部分 99. 1 %であった。 ポリマー中の P d量は 0. l p pm以下であった。 ポリマー着色テストでは、 着色は発生しなかった。 0.5 weight 0 /. Palladium (Pd) Ζα-alumina spheres (diameter 3 mm) (manufactured by N.C. Chemical Cat.) 30 Om of catalyst is charged into a reaction tube having an inner diameter of 27 mm, and the above 13.5% by weight styrene-butadiene is charged. The monostyrene styrene triblock copolymer Z cyclohexane solution was co-flowed with the hydrogen gas at an LHS V (1 / hr) of 0.1, a hydrogen gas flow rate of 400 NL / L, and an upflow. Thereafter, the hydrogen pressure was adjusted to 6 MPa and the temperature of the catalyst layer was adjusted to 180 ° C. After 15 hours from reaching the set temperature, the hydrogenation rate of the effluent polymer was 95.0% for the aromatic ring, 98.3% for the 1,4-butadiene portion, and 99.1% for the 1,2-butadiene portion. The Pd content in the polymer was less than 0.1 pm. No coloration occurred in the polymer coloration test.
また、 200時間後での留出ポリマーの水素化率は芳香環 96. 2%、 1, 4 —ブタジェン部分 99. 3 %、 1, 2—ブタジェン部分 98. 6 %であり、 触媒 活性の低下はなかった。 得られたポリマーのメルトフ口一レートは 7. 2 g/ 1 The hydrogenation rate of the distillate polymer after 200 hours was 96.2% for aromatic ring, 99.3% for 1,4-butadiene part, and 98.6% for 1,2-butadiene part, and the catalyst activity decreased. There was no. Melt edge rate of the obtained polymer is 7.2 g / 1
0分、 破断強度 220 k g f /cm", 破断伸び 710 %であつた。 ポリマー中 の P d量は 0. 1 p pm以下であった。 ポリマー着色テストでは、 着色は発生し なかった。 表 1に結果を示す。 At 0 minutes, the breaking strength was 220 kgf / cm "and the breaking elongation was 710%. The amount of Pd in the polymer was 0.1 ppm or less. No coloring occurred in the polymer coloring test. Table 1 Shows the results.
実施例 2  Example 2
固定床での温度依存性を見るために、 実施例 1の固定床テストにおいて、 LH SVを 0. 3に上げ、 温度を 1 80°C、 140°C、 100 °Cと変えた以外は同様 にして、 それぞれの条件での水素化率を測定して水素化速度を求めた。 結果を表 1に示す。 140°C以下では、 芳香環の水素化速度が極端に低下した。 表 1に結 果を示す。  In order to observe the temperature dependence of the fixed bed, in the fixed bed test of Example 1, the LH SV was increased to 0.3 and the temperature was changed to 180 ° C, 140 ° C, and 100 ° C. Then, the hydrogenation rate under each condition was measured to determine the hydrogenation rate. Table 1 shows the results. Below 140 ° C, the hydrogenation rate of the aromatic ring was extremely reduced. Table 1 shows the results.
比較例 1  Comparative Example 1
攪拌槽水素化  Stirred tank hydrogenation
5%P d/アルミナ粉末 (平均径 60 μ m) (ェヌ .ィー ケムキャッ ト社 製) を用いて攪拌槽で水素化を行った。 1 Lオートクレープに触媒 4 gとポリマ 一溶液 400 gを仕込み、 水素圧 6 MP a、 攪拌速度 800 r p m、 反応時間 3 時間の条件で、 温度を 1 80°C、 140°C、 100°Cと変えてテストした。 冷却 後、 内容物を取り出し、 触媒を濾過分離し、 溶媒を減圧留去した。 得られたポリ マーの水素化率を求めた。 結果を表 1に示す。 ブタジエン部分の水素化が先に進 行しているが、 芳香環部分の水素化も進行しており、 芳香環部分の水素化速度の 温度依存性は、 固定床の場合に比べて高温域で立ち上がらなかった。 1 80°Cの 場合のポリマー中の P d量は 21 p pmであった。 表 1に結果を示す。 Hydrogenation was carried out in a stirring tank using 5% Pd / alumina powder (average diameter 60 μm) (manufactured by N.C. Chemcat). Charge 1 g of the catalyst and 400 g of the polymer solution to a 1 L autoclave, and set the temperature to 180 ° C, 140 ° C, and 100 ° C under the conditions of a hydrogen pressure of 6 MPa, a stirring speed of 800 rpm, and a reaction time of 3 hours. And tested. After cooling, the content was taken out, the catalyst was separated by filtration, and the solvent was distilled off under reduced pressure. Poly obtained The hydrogenation rate of the mer was determined. Table 1 shows the results. Although the hydrogenation of the butadiene part is progressing first, the hydrogenation of the aromatic ring part is also progressing.The temperature dependence of the hydrogenation rate of the aromatic ring part is higher at higher temperatures than in the fixed bed. Did not stand up. The Pd content in the polymer at 180 ° C was 21 ppm. Table 1 shows the results.
比較例 2  Comparative Example 2
攪拌槽水素化  Stirred tank hydrogenation
比較例 1の 1 80°Cのテストに準じて、 触媒を濾過分離リサイクルして繰り返 しテストを行つた。 結果を表 1に示すように触媒活性が低下した。  According to the test at 180 ° C. in Comparative Example 1, the catalyst was filtered, separated and recycled, and the test was repeated. As shown in Table 1, the catalytic activity decreased.
比較例 3  Comparative Example 3
比較例 1の 1 80°Cのテストに準じて、 反応時間を 10時間に変えた以外は同 様に行った。 水素化率は高かったが、 ポリマー中に P dが 37 p pm含まれてい た。 ポリマー着色テストでは着色を生じた。 表 1に結果を示す。  The test was performed in the same manner as in Comparative Example 1 except that the reaction time was changed to 10 hours according to the test at 180 ° C. Although the hydrogenation rate was high, the polymer contained 37 dpm of Pd. The polymer coloring test resulted in coloration. Table 1 shows the results.
比較例 4  Comparative Example 4
実施例 1のポリマーを用いて、 公知のメタ口セン水素化触媒でブタジエン部分 のみを水素化した。 得られたポリマーのメルトフローレートは 0. 3 gZl O分、 破断強度 1 50 k g f Zc m2、 破断伸び 440 %と低かった。 結果を表 1に示 す。 Using the polymer of Example 1, only the butadiene portion was hydrogenated with a known meta-mouthed hydrogenation catalyst. The melt flow of the resulting polymer rate 0. 3 GZL O content, the breaking strength 1 50 kgf Zc m 2, was as low as elongation at break 440%. The results are shown in Table 1.
実施例 3  Example 3
LHSV0. 05、 温度 1 60°Cと変えた以外は、 実施例 1と同様にテストを 行った。 得られたポリマ一のメルトフローレートは 7. O g/10分、 破断強度 The test was performed in the same manner as in Example 1 except that LHSV was 0.05 and the temperature was changed to 160 ° C. The resulting polymer has a melt flow rate of 7. O g / 10 min, breaking strength
220 k g f /cm2, 破断伸び 700%であった。 ポリマー着色テストでは、 着色は発生しなかった。 表 1に結果を示す。 220 kgf / cm 2 and elongation at break were 700%. No coloration occurred in the polymer coloration test. Table 1 shows the results.
実施例 4及び 5  Examples 4 and 5
各種のプロックコポリマーを用いて、 実施例 1の触媒にて固定床での水素化を 行った。 結果を表 2に示す。 水素化率も良く、 着色のないポリマーを与えた。 な お、 表の構造の S、 Bはスチレン、 ブタジエンを表す。  Using various block copolymers, hydrogenation was performed in a fixed bed with the catalyst of Example 1. Table 2 shows the results. The hydrogenation rate was good, and a colorless polymer was obtained. S and B in the structures in the table represent styrene and butadiene.
実施例 6  Example 6
実施例 5において 100時間後の水素化率を測定した。 触媒活性の低下はなか つた。 結果を表 2に示す。 実施例 7〜 1 0 In Example 5, the hydrogenation rate after 100 hours was measured. There was no decrease in catalytic activity. Table 2 shows the results. Examples 7 to 10
各種のプロックコポリマーを用いて、 実施例 1の触媒にて固定床での水素化を 行った。 結果を表 2に示す。 水素化率も良く、 着色のないポリマーを与えた。 な お、 表の構造の S、 B、 Iはスチレン、 ブタジエン、 イソプレンを表す。 また、 実施例 1 0の (S B ) 4 S iは珪素化合物によってカップリングさせたポリマー である。 Using various block copolymers, hydrogenation was performed in a fixed bed with the catalyst of Example 1. Table 2 shows the results. The hydrogenation rate was good, and a colorless polymer was obtained. Note that S, B, and I in the structures in the table represent styrene, butadiene, and isoprene. (SB) 4 Si in Example 10 is a polymer coupled with a silicon compound.
比較例 5  Comparative Example 5
実施例 5において、 触媒層温度を 1 4 0 °Cにすると L H S Vを下げても水素化 率が低下した。 結果を表 2に示す。  In Example 5, when the temperature of the catalyst layer was set at 140 ° C., the hydrogenation rate was lowered even when the LHSV was lowered. Table 2 shows the results.
比較例 6  Comparative Example 6
比較例 5において 1 0 0時間後の水素化率を測定した。 結果を表 2に示す。 触 媒活性が低下していた。 In Comparative Example 5, the hydrogenation rate after 100 hours was measured. Table 2 shows the results. The catalytic activity was reduced.
ο ο
表 1 table 1
SBSポリマー:数平均分子 3:9. 8万、 スチレン含有量 20重 ί t%、 ブタブタジェン部 1 , 2-/ , 4 -結合比 =0. 40/0. 60 13. 5重置%シク口へキサン溶液  SBS polymer: number-average molecule 3: 98,000, styrene content 20 weight% t%, butabutadiene part 1,2-/, 4-bonding ratio = 0.40 / 0.60 13.5 weight% cycle Mouth hexane solution
Figure imgf000021_0001
Figure imgf000021_0001
(注 2 ) メタ口セン触媒での水素化 (Note 2) Hydrogenation with meta-mouth catalyst
t>5 t> 5
o o  o o
表 2 Table 2
ポリマー LHSV 温度 水素化军  Polymer LHSV Temperature Hydrogenation
構造 数平均分子量 渥度 スチレン 共役ジェン スチレン部 1.4- 1,2- 含有量 ブロック ブタジエン部 ブタジエン部 Structure Number average molecular weight Atsushi styrene Conjugated styrene Styrene 1.4- 1,2-content Block Butadiene Butadiene
(万) (%) (%) (万) (1/hr) (¾) (%) ( ) (%) 卖^ SBS 42.0 11.5 34 27.7 0.05 210 87.1 94.5 90.2 実施例 5 SBS 4.6 16.2 29 3.3 0.2 180 98.0 99.3 99.5 実施例 6 同上 0.2 180 98.2 99.1 98.8 実施例 7 SIS 9.1 12.7 28 6.6 0.1 180 92.6 (注) イソプレン部 (Million) (%) (%) (million) (1 / hr) (¾) (%) () (%) 卖 ^ SBS 42.0 11.5 34 27.7 0.05 210 87.1 94.5 90.2 Example 5 SBS 4.6 16.2 29 3.3 0.2 180 98.0 99.3 99.5 Example 6 Same as above 0.2 180 98.2 99.1 98.8 Example 7 SIS 9.1 12.7 28 6.6 0.1 180 92.6 (Note) Isoprene part
1.4-結 • 98.8 実施例 8 SB 7.5 21.8 40 4.5 0.5 160 93.3 99.8 99.7 実施例 9 SBSB 23.1 12.2 20 18.5 0.1 210 90.5 91.9 94.1 実施例 1 0 (SB) 4S i 32.0 11.7 31 22.1 0.05 210 92.6 90.7 93.1 比較例 5 SBS 4.6 16.2 29 3.3 0.05 140 66.2 70.2 68.9 比較例 6 同上 0.05 140 53.7 61.6 63.5 1.4-conclusion • 98.8 Example 8 SB 7.5 21.8 40 4.5 0.5 160 93.3 99.8 99.7 Example 9 SBSB 23.1 12.2 20 18.5 0.1 210 90.5 91.9 94.1 Example 10 (SB) 4 Si 32.0 11.7 31 22.1 0.05 210 92.6 90.7 93.1 Comparative Example 5 SBS 4.6 16.2 29 3.3 0.05 140 66.2 70.2 68.9 Comparative Example 6 Same as above 0.05 140 53.7 61.6 63.5
実施例 1.1 Example 1.1
触媒調製  Catalyst preparation
ゼォライ ト Z SM— 5粒子とアルミナ粉末 (20重量%含む) の混合物に水を 添カ卩して 1 1 6インチ (1. 59mm) サイズの径に押出成型した。 乾燥は 1 20 °Cにて 20時間、 焼成は 600 °Cにて 6時間行った。 得られた担体の窒素ガ ス吸着による BET比表面積は 355m 8、 孔容積は 0. 38m Zgを示 し、 水銀圧入法による孔容積は 0. 25m /g、 比表面積は 1 5. 4m2/g、 細孔分布曲線で孔直径 380 nmにピーク トップを示した。 また、 孔直径 100 〜1 00, 000 nmである孔の孔容積は 0. 21 m / gであり、 孔直径 5〜 100, 000 nmである孔の孔容積の 84%を占めた。 この担体には孔直径約 0. 6 nmの孔が存在するため、 実質的にバイモーダル孔分布担体である。 次に 得られた担体に 1 5重量%硝酸マグネシウム水溶液を含浸させた後、 600°Cの 電気炉で 5時間焼成を行い、 酸化マグネシゥムを吸着させた担体を調製した。 冷却管を取り付けた 2リットルサイズの丸底フラスコに塩化パラジウム 3. 3 4 g、 塩ィ匕ナトリウム 2. 22 gおよび蒸留水 1000ミリリットルを入れ、 9 5 °Cに加熱して溶解させた。 この溶液に 50 °Cで予備加熱しておいた担体 400 gを投入添加し、 ゆるやかに振とうさせながら 20分反応させた。 傾倒して溶液 を除いた後に蒸留水にて 10回洗浄した。 こうして得られたパラジウム化合物担 持の担体を空気中で風乾した。 Water was added to a mixture of Zeolite Z SM-5 particles and alumina powder (containing 20% by weight) and extruded to a diameter of 11.6 inches (1.59 mm). Drying was performed at 120 ° C for 20 hours, and baking was performed at 600 ° C for 6 hours. The BET specific surface area of the carrier obtained by nitrogen gas adsorption was 355 m 8 , the pore volume was 0.38 m Zg, the pore volume by the mercury intrusion method was 0.25 m / g, and the specific surface area was 15.4 m 2 / g g, Peak top at 380 nm pore diameter in pore distribution curve. The pore volume of pores having a pore diameter of 100 to 100,000 nm was 0.21 m / g, which accounted for 84% of the pore volume of pores having a pore diameter of 5 to 100,000 nm. Since this carrier has pores with a pore diameter of about 0.6 nm, it is substantially a bimodal pore distribution carrier. Next, the obtained carrier was impregnated with a 15% by weight aqueous solution of magnesium nitrate, and calcined in an electric furnace at 600 ° C. for 5 hours to prepare a carrier having magnesium oxide adsorbed thereon. 3.34 g of palladium chloride, 2.22 g of sodium chloride and 1,000 ml of distilled water were placed in a 2-liter round bottom flask equipped with a cooling tube, and dissolved by heating to 95 ° C. 400 g of the carrier preheated at 50 ° C. was added to the solution, and the mixture was reacted for 20 minutes while gently shaking. After tilting to remove the solution, it was washed 10 times with distilled water. The thus obtained carrier carrying the palladium compound was air-dried in air.
10 %ヒ ドラジン水溶液 1, 000ミリリットルにパラジゥム化合物が担持さ れた担体を添加した。 ゆるやかに振とうさせながら 20分還元反応を行った。 傾 倒して溶液を除いた後に蒸留水にて 10回洗浄した。 こうして得られたパラジゥ ム触媒を加熱乾燥窒素気流下にて乾燥保管した。 パラジウム金属の担持量は 0. A carrier supporting a palladium compound was added to 1,000 ml of a 10% aqueous hydrazine solution. The reduction reaction was performed for 20 minutes while gently shaking. After tilting to remove the solution, it was washed 10 times with distilled water. The palladium catalyst thus obtained was dried and stored under a heated and dried nitrogen stream. The loading amount of palladium metal is 0.
5重量。/。であり、 金属表面積は 146m2Zg— P d金属 (0. 732m ノ g —触媒) であった。 パラジウムは担体の外表面から 80 //m以内に担持されてい た。 5 weight. /. The metal surface area was 146 m 2 Zg—Pd metal (0.732 m g—catalyst). Palladium was supported within 80 // m from the outer surface of the carrier.
ポリマー調製  Polymer preparation
窒素置換した 40リツトルのオートクレーブに乾燥、 精製したシクロへキサン 26リツトル、 テトラヒ ドロフラン 73 g、 スチレン 3 10 gを仕込み、 60°C に昇温した後、 n_ブチルリチウム 3. 3 gを含むシクロへキサン溶液を攪拌下 で添加、 重合を開始させ、 スチレン重合終了後、 次いでブタジエンを 2, 480 g添加し、 重合が完結した後、 さらにスチレン 3 1 0 gを添加し、 重合反応を完 結させた。 使用したリチウムに対して 1. 2等量のメタノールを添カ卩して成長末 端を停止した。 このようにして重量平均分子量 1 0. 1万 (分子量分布 1. 0 3) 、 スチレン含有量 20重量。 /。、 ブタジエン部分の 1, 2— /1, 4—結合比 =0. 40/0. 60、 濃度 1 3. 5重量%のスチレン一ブタジエン一スチレン トリプロックコポリマー/シク口へキサン溶液を得た。 なお、 分子量等の異なる ポリマーはこの方法を少し変更して調製した。 Dried and purified 26 liters of cyclohexane, 73 g of tetrahydrofuran, and 3 10 g of styrene were charged into a 40-liter autoclave purged with nitrogen, and 60 ° C Then, a cyclohexane solution containing 3.3 g of n_butyllithium was added with stirring to start polymerization, and after completion of styrene polymerization, 2,480 g of butadiene was added, and the polymerization was completed. Thereafter, 310 g of styrene was further added to complete the polymerization reaction. The end of growth was stopped by adding 1.2 equivalents of methanol to the lithium used. Thus, the weight average molecular weight is 101,000 (molecular weight distribution 1.03), and the styrene content is 20% by weight. /. A styrene-butadiene-styrene triploc copolymer / cyclohexane solution having a 1,2 -— / 1,4-bond ratio of butadiene portion of 0.40 / 0.60 and a concentration of 13.5% by weight was obtained. Polymers having different molecular weights were prepared by slightly modifying this method.
固定床ポリマー水素化  Fixed bed polymer hydrogenation
上記の触媒 2 1 3 gを内径 2 2 mmのステンレス製反応管 (触媒層容積 3 1 2 mi) に充填して、 最初にシクロへキサン溶媒と水素ガスを下部から上部に向け て通液しながら、 触媒層温度 (内温) が 1 80°Cになるように昇温した。 通液の 予熱は触媒層下部に設けた予熱層部分を加熱することで行った。 LHSV 1. 0 にて 8時間流し続けた。  The above catalyst (213 g) was filled in a stainless steel reaction tube (catalyst layer volume: 312 mi) with an inner diameter of 22 mm, and cyclohexane solvent and hydrogen gas were first passed from the bottom to the top. Then, the temperature was raised so that the catalyst layer temperature (internal temperature) became 180 ° C. Preheating of the liquid flow was performed by heating the preheating layer provided below the catalyst layer. The flow was continued at LHSV 1.0 for 8 hours.
その後、 温度を下げてから通液をスチレン一ブタジエン一スチレントリブロッ クコポリマー (重量平均分子量 1 0. 1万、 分子量分布 1. 03、 スチレン含有 量 20重量0 /0、 1, 2-/1 , 4一ブタジエン結合比 0. 40ノ 0. 60) シ クロへキサン溶液 (ポリマー濃度 1 3. 5重量0 /0) に切り替え、 80 g (1 03 ミリリットル) / h rで、 1 5NLZh rの水素ガスと共に通液を開始した。 こ の時の LHSVは 0. 3 3 (1/h r) であった。 触媒層の温度を見ながら予熱 層を加熱し、 最終的には触媒層温度を 20 2QCに保った。 水素圧は 6. 5MP a であった。 連続 1 00時間の水素化テストを行ったが、 この間水素化率の低下は 観測されず、 ォレフィン部分の水素化率は 1, 2—部分 9 8%以上、 1, 4一部 分 9 7。/。以上を、 又芳香環の水素化率は 9 2〜 9 5 %を維持した。 1 00時間後 に得られたポリマーの重量平均分子量は 1 0. 0万、 分子量分布は 1. 03であ つた。 また、 流出液を乾燥して得たポリマー中のパラジウム量は 0. 0 5 5 p p mでめつに。 Thereafter, styrene one butadiene one styrene tri block Kukoporima (weight average molecular weight of 01,000 to liquid passing from the lower the temperature, molecular weight distribution 1.03, styrene content 20 wt 0/0, 1, 2/1 , 4 switched to a combined butadiene ratio 0.40 Bruno 0.60) cyclo hexane solution (polymer concentration 1 3.5 wt 0/0), at 80 g (1 03 milliliters) / hr, hydrogen 1 5NLZh r The flow was started with the gas. The LHSV at this time was 0.33 (1 / hr). While watching the temperature of the catalyst layer was heated preheating layer, and finally maintaining the catalyst layer temperature to 20 2 Q C. The hydrogen pressure was 6.5 MPa. A hydrogenation test was performed for 100 hours in a continuous manner, but no decrease in the hydrogenation rate was observed during this period. The hydrogenation rate in the olefin portion was 1,8-98% or more, and 1,4 part was 97. /. As described above, the hydrogenation rate of the aromatic ring was maintained at 92 to 95%. After 100 hours, the polymer obtained had a weight average molecular weight of 100,000 and a molecular weight distribution of 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.055 ppm.
実施例 1 2 触媒調製 Example 1 2 Catalyst preparation
ゼォライ ト アルミナ担体に変えて、 バイモーダルアルミナ球状担体 (住友化 学工業 (株) 製、 粒径 8〜14メッシュ、 BET比表面積 8 l m2/g、 細孔容 積 0. 53 ml/ g、 水銀圧入法による孔分布測定では、 細孔分布曲線で孔直径 1 800 nmと 6 nmにピーク トップが存在し、 孔直径 1 00〜: 100, 000 nmである孔の孔容積が孔直径 5〜100, 000 nmである孔の孔容積の 63 %を占めた。 ) を用い、 パラジウム水溶液に投入すべき担体を 80°Cで予備加熱 した以外は実施例 1と同様にパラジウムを担持した。 得られた触媒のパラジウム 金属の担持量は 0. 5重量%であり、 金属表面積は 1 52. 6m2 g— P d金 属 (0. 763 m2/g—触媒) であった。 パラジウムは担体の外表面から 10 0 μ m以内に担持されていた。 Instead of zeolite alumina carrier, bimodal alumina spherical carrier (manufactured by Sumitomo Chemical Co., Ltd., particle size 8-14 mesh, BET specific surface area 8 lm 2 / g, pore volume 0.53 ml / g, In the pore distribution measurement by the mercury intrusion method, the pore distribution curve has peak peaks at the pore diameters of 1800 nm and 6 nm, and the pore volume of pores having a pore diameter of 100 to 100,000 nm has a pore diameter of 5 to 100 nm. It occupied 63% of the pore volume of the pore having a diameter of 100,000 nm. The obtained catalyst had a supported amount of palladium metal of 0.5% by weight and a metal surface area of 152.6 m 2 g—Pd metal (0.763 m 2 / g—catalyst). Palladium was supported within 100 μm from the outer surface of the carrier.
固定床ポリマー水素化  Fixed bed polymer hydrogenation
上記の触媒 1 90 gを固定床反応器に充填した以外は実施例 1 1と同様にテス トした。 連続 300時間の水素化テストを行ったが、 この間水素化率の低下は観 測されず、 ォレフィン部分の水素化率は 1, 2_部分及び 1, 4_部分99%以 上を、 又芳香環の水素化率は 98%以上を維持した。 300時間後に得られたポ リマ一の重量平均分子量は 10. 0万、 分子量分布は 1. 03であった。 また、 流出液を乾燥して得たポリマー中のパラジウム量は 0. 071 p pmであった。 実施例 1 3  The test was conducted in the same manner as in Example 11 except that 190 g of the above catalyst was charged into a fixed bed reactor. A hydrogenation test was conducted continuously for 300 hours. During this period, no decrease in the hydrogenation rate was observed. Ring hydrogenation remained above 98%. The polymer obtained after 300 hours had a weight average molecular weight of 1,000,000 and a molecular weight distribution of 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.071 ppm. Example 13
実施例 1 1において担体として α—アルミナ球 (径約 3 mm、 比表面積 6. 4 m2/g、 ほぼ孔容積の 100%が孔直径 50 nm以上の孔であった。 ) を用い、 予め担体にマグネシウム化合物を担持することを行わなかったこと以外は実施例 1 1と同様の操作を実施した。 得られた触媒のパラジウム金属の担持量は 0. 5 重量%であり、 金属表面積は 34.
Figure imgf000025_0001
— P d金属 (0. 1 7m2Zg— 触媒) と小さく、 パラジウムは担体内部まで担持されていた。
In Example 11, α-alumina spheres (diameter: about 3 mm, specific surface area: 6.4 m 2 / g, and almost 100% of the pore volume were pores having a pore diameter of 50 nm or more) were used in Example 11 as a support. The same operation as in Example 11 was performed except that the support of the magnesium compound was not performed. The amount of palladium metal supported on the obtained catalyst was 0.5% by weight, and the metal surface area was 34.
Figure imgf000025_0001
- P d metal (0. 1 7m 2 Zg- catalyst) and small, palladium was supported to the interior support.
この触媒 300 gを反応器に充填して実施例 1と同様に水素化を行った。 ポリ マー溶液通液後 8時間でのォレフィン部分の水素化率は 1, 2—部分 63. 5 %、 1, 4_部分57. 6%、 又芳香環の水素化率は 52. 4%と低かった。  300 g of this catalyst was charged into a reactor and hydrogenated in the same manner as in Example 1. Eight hours after passing through the polymer solution, the hydrogenation rate of the olefin portion was 1,3.5—63.5%, 1,4_portion 57.6%, and the hydrogenation ratio of the aromatic ring was 52.4%. It was low.
実施例 14 実施例 1 2において、 硝酸マグネシウムの代わりに硝酸ナトリゥムを含浸、 焼 成して調整した担体を用いた以外は、 実施例 1 2と同様にテストを行った。 得ら れた触媒のパラジウム金属の担持量は 0. 5重量%であり、 金属表面積は 1 55.
Figure imgf000026_0001
— P d金属 (0. 778m Zg—触媒) であった。 パラジウムは担 体の外表面から 100ミクロン以内に担持されていた。 固定床水素化で 10時間 後に得られたポリマーのォレフィン部分の水素化率は 1, 2_部分及び1, 4- 部分 99 %以上、 また芳香環の水素化率は 98. 3 %であり、 高活性が示された。 ポリマーの重量平均分子量は 10. 0万、 分子量分布は 1. 03であった。 また、 流出液を乾燥して得たポリマー中のパラジウム量は 0. 065 p pmであった。 実施例 1 5
Example 14 A test was performed in the same manner as in Example 12 except that the carrier prepared by impregnating and calcining sodium nitrate was used instead of magnesium nitrate in Example 12. The resulting catalyst had a supported amount of palladium metal of 0.5% by weight and a metal surface area of 15.5.
Figure imgf000026_0001
— Pd metal (0.778 mZg—catalyst). Palladium was supported within 100 microns from the outer surface of the support. The hydrogenation rate of the olefin portion of the polymer obtained after 10 hours in fixed bed hydrogenation is over 99% for the 1,2_ and 1,4-portions, and the hydrogenation rate for the aromatic ring is 98.3%. High activity was shown. The weight average molecular weight of the polymer was 100,000, and the molecular weight distribution was 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.065 ppm. Example 15
実施例 14において、 硝酸ナトリゥムの代わりに硝酸セリゥムを用いた以外は、 実施例 1 5と同様のテストを行った。 得られた触媒のパラジウム金属の担持量は 0. 5重量%でぁり、 金属表面積は141. 2m2Zg— P d金属 (0. 706 m2Zg—触媒) であった。 パラジウムは担体の外表面から 100 /im以内に担 持されていた。 固定床水素化にて得られたポリマーのォレフィン部分の水素化率 は、 1, 2—部分及び 1, 4一部分について 99 %以上、 また芳香環の水素化率 は 95. 9° /。であり、 高活性が示された。 ポリマーの重量平均分子量は 10. 0 万、 分子量分布は 1. 03であった。 また、 流出液を乾燥して得たポリマー中の パラジウム量は 0. 083 p pmであった。 The same test as in Example 15 was performed, except that in Example 14, sodium nitrate was used instead of sodium nitrate. Supported amount of palladium metal in the resulting catalyst 0.5 wt% Deari, metal surface area was 141. 2m 2 Zg- P d metal (0. 706 m 2 Zg- catalyst). Palladium was supported within 100 / im from the outer surface of the support. The hydrogenation rate of the olefin portion of the polymer obtained by fixed-bed hydrogenation is 99% or more for the 1,2- and 1,4-parts, and the hydrogenation rate of the aromatic ring is 95.9 ° /. And showed high activity. The weight average molecular weight of the polymer was 100,000, and the molecular weight distribution was 1.03. The amount of palladium in the polymer obtained by drying the effluent was 0.083 ppm.
実施例 1 5  Example 15
実施例 1 1の触媒調整時の塩化パラジウムを使用する代わりに、 塩化ロジウム 8. 1 3 gを使用し、 固定床ポリマー水素化時に触媒 90 gを触媒層容積 1 66 m に充填し、 LHSVを0. 5をした以外は実施例 1 1と同じ条件で反応を行な つた。 ォレフィン部分の水素化率は 1, 2—部分について 97%、 1, 4一部分 について 96 %、 芳香環の水素化率は 93。/。であった。  Example 11 Instead of using palladium chloride at the time of preparing the catalyst of 1, using 8.13 g of rhodium chloride, 90 g of the catalyst was filled in a catalyst bed volume of 166 m during hydrogenation of the fixed bed polymer, and LHSV was added. The reaction was carried out under the same conditions as in Example 11 except that 0.5 was performed. The hydrogenation rate of the olefin moiety is 97% for the 1,2-part, 96% for the 1,4 part, and the hydrogenation rate of the aromatic ring is 93. /. Met.
産業上の利用可能性  Industrial applicability
本発明によって、 ポリマー溶液と触媒の分離が不要であり、 高分子量、 かつ、 共役ジェンブロックが長く、 しかも、 高濃度溶液の条件にて、 水素化率が高くて 生産性が良く、 触媒や触媒成分の混入がなくてポリマー着色の問題もなく、 触媒 寿命の長い水素化方法を提供することが可能となつた。 According to the present invention, separation of a polymer solution and a catalyst is not required, a high molecular weight, a long conjugated gen block, and a high hydrogenation rate and high productivity can be obtained under a condition of a high concentration solution. No mixing of components, no problem of polymer coloring, catalyst It has become possible to provide a long-life hydrogenation method.

Claims

請求の範囲 The scope of the claims
1. 白金族金属を無機質担体に担持した水素化触媒を充填した固定床反応器 に、 水素ガスと共に、 芳香族ビニルと共役ジェンとのブロックコポリマーの溶液 を通液して、 該ブロックコポリマー中の芳香環部分及び共役ジェンプロック部分 の不飽和結合を水素化して飽和結合にすることを含むプロックコポリマー水素化 方法であって、 (1) 該ブロックコポリマーの数平均分子量が 40, 000〜4 50, 000であり、 (2) 該ブロックコポリマー中の共役ジェンブロックの数 平均分子量が 30, 000以上であり、 (3) 該ブロックコポリマー溶液中のポ リマ一濃度が 5〜 30重量%濃度であり、 ( 4 ) 該固定床の触媒層温度が 1 50 〜 250 °Cである上記方法。 1. A solution of a block copolymer of aromatic vinyl and a conjugated gen is passed along with hydrogen gas through a fixed bed reactor filled with a hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier. A block copolymer hydrogenation method comprising hydrogenating unsaturated bonds of an aromatic ring portion and a conjugated genlock portion to form a saturated bond, wherein (1) the block copolymer has a number average molecular weight of 40,000 to 450, (2) the number average molecular weight of the conjugated gen block in the block copolymer is 30,000 or more, (3) the polymer concentration in the block copolymer solution is 5 to 30% by weight, (4) The above method, wherein the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
2. (1) 白金族金属を無機質担体に担持した水素化触媒が、 予めアルカリ 金属、 アルカリ土類金属、 及び稀土類金属からなる群から選ばれる少なくとも 1 種の金属塩基性成分を含む担体と白金族金属化合物溶液とを接触させることによ つて該白金族金属成分を不溶固定化することを含む工程により調製されたもので あり、 (2) 該白金族金属の担持量が該担体に対して 0. 1〜10重量。 /0であり、2. (1) A hydrogenation catalyst in which a platinum group metal is supported on an inorganic carrier, the carrier comprising at least one metal basic component selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals in advance. It is prepared by a process including insolubilizing and fixing the platinum group metal component by contacting with a platinum group metal compound solution, and (2) the amount of the platinum group metal supported on the carrier 0.1 to 10 weight. / 0 and
(3) 該白金族金属の表面積が 40〜25 Om2Zg—金属であり、 (4) 該白 金族金属が該担体の外表面から深さ方向に担体径の lZl 0以内の表層部に 90 %以上担持されている請求項 1記載の方法。 (3) The platinum group metal has a surface area of 40 to 25 Om 2 Zg-metal, and (4) the platinum group metal has a surface layer within lZl 0 of the carrier diameter in the depth direction from the outer surface of the carrier. 2. The method according to claim 1, wherein 90% or more is supported.
3. 水銀圧入法により測定した孔直径が 100〜: 100, O O O nmである 無機質担体の孔の孔容積が、 孔直径 5〜100, O O O n mである孔の孔容積の 50〜 100 %である請求項 1又は 2記載の方法。  3. The pore diameter measured by the mercury intrusion method is 100 ~: 100, OOO nm The pore volume of the pores of the inorganic carrier is 5 ~ 100, 50 ~ 100% of the pore volume of the pores with OOO nm 3. The method according to claim 1 or 2.
4. 白金族金属がパラジゥム及び/又はロジウムである請求項 1又は 2記載 の方法。  4. The method according to claim 1, wherein the platinum group metal is palladium and / or rhodium.
5. 無機質担体がアルミナ、 アルミナシリカ、 シリカ、 チタ二了、 マグネシ ァ、 ジルコユア及びゼォライ トからなる群から選ばれる請求項 1又は 2記載の方 法。  5. The method according to claim 1, wherein the inorganic carrier is selected from the group consisting of alumina, alumina silica, silica, titania, magnesium, zirconia, and zeolite.
6. 固定床条件が水素圧 2〜 25MP a、 水素ガス流量/ポリマー溶液流量 比が 1 0〜 1, 000NLZL、 液時空間速度 (LHS V) が 0. 01〜: 1 0 ( 1 / h r ) である請求項 1記載の方法。 6. Fixed bed conditions are hydrogen pressure 2 ~ 25MPa, hydrogen gas flow rate / polymer solution flow rate ratio is 10 ~ 1,000NLZL, liquid hourly space velocity (LHSV) is 0.01 ~ 10. 2. The method of claim 1, wherein (1 / hr).
7 . ブロックコポリマーが、 A— B、 A— B _ A、 A—B— A— B、 及び 7. The block copolymer is A—B, A—B_A, A—B—A—B, and
(A— B ) m— Xからなる群 (ここで、 Aは芳香族ビニルからなるブロックを、 Bは共役ジェンからなるブロックを表し、 mは 2、 3又は 4を表し、 Xは多官能 性の力ップリング剤を表す。 ) から選ばれる少なくとも 1種である請求項 1記載 の方法。 (A— B) m — a group consisting of X (where A represents a block composed of aromatic vinyl, B represents a block composed of a conjugated diene, m represents 2, 3 or 4, and X represents polyfunctionality. The method according to claim 1, which is at least one member selected from the group consisting of:
8 . ブロックコポリマ一がスチレン一ブタジエンジブロックコポリマー、 ス チレン一ブタジエン一スチレントリブロックコポリマ一、 スチレンーィソプレン ジブ口ックコポリマー、 及びスチレンーィソプレン一スチレントリプロックコポ リマーからなる群から選ばれる少なくとも 1種である請求項 7記載の方法。  8. The block copolymer is selected from the group consisting of styrene-butadiene diblock copolymer, styrene-butadiene-styrene triblock copolymer, styrene-isoprene diblock copolymer, and styrene-isoprene-styrene triplep copolymer. 8. The method according to claim 7, which is at least one selected from the group consisting of:
9 . 白金族金属を無機質担体に担持した水素化触媒を充填した固定床反応器 に、 水素ガスと共に、 芳香族ビニルと共役ジェンとのブロックコポリマーの溶液 を通液して、 該ブロックコポリマ一中の芳香環部分及び共役ジェンブロック部分 の不飽和結合を水素化して飽和結合にすることを含む水素化プロックコポリマー の製造方法であって、 (1 ) 該ブロックコポリマーの数平均分子量が 4 0, 0 0 0〜4 5 0, 0 0 0であり、 (2 ) 該ブロックコポリマー中の共役ジェンブロッ クの数平均分子量が 3 0, 0 0 0以上であり、 ( 3 ) 該ブロックコポリマー溶液 中のポリマー濃度が 5〜3 0重量%濃度であり、 (4 ) 該固定床の触媒層温度が 1 5 0〜2 5 0 °Cである上記方法。 9. A solution of a block copolymer of aromatic vinyl and a conjugated diene was passed along with hydrogen gas through a fixed-bed reactor filled with a hydrogenation catalyst in which a platinum group metal was supported on an inorganic carrier. A method for producing a hydrogenated block copolymer comprising hydrogenating an unsaturated bond of an aromatic ring portion and a conjugated gen block portion to a saturated bond, wherein (1) the block copolymer has a number average molecular weight of 40,0 (2) the number average molecular weight of the conjugated gen block in the block copolymer is at least 30,000, and (3) the polymer concentration in the block copolymer solution. (5) The method as described above, wherein the catalyst bed temperature of the fixed bed is 150 to 250 ° C.
INTERNATIONAL SEARCH REPORT International application No. INTERNATIONAL SEARCH REPORT International application No.
PCT/JP99/ 03080 PCT / JP99 / 03080
A. CLASSIFICATION OF SUBJECT MATTER A. CLASSIFICATION OF SUBJECT MATTER
Int . CI6 C08F8 / 04 , C08F297 / 04 Int. CI 6 C08F8 / 04, C08F297 / 04
According to International Patent Classification (IPC) or to both national classification and IPC  According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED  B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)  Minimum documentation searched (classification system followed by classification symbols)
Int . CI6 C08F8/ 04 . C08F297 / 04 Int. CI 6 C08F8 / 04. C08F297 / 04
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.  Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
JP , 59 - 136312 , A (Arakawa Chemical Industries Ltd ) , L-9 4 August , 1984 ( 04 . 08 . 84 ) f JP, 59-136312, A (Arakawa Chemical Industries Ltd), L-94 August, 1984 (04.08.84) f
Claims ; page 2 , lower left column, lines 13 , 18 , 19 ;  Claims; page 2, lower left column, lines 13, 18, 19;
page 3 , upper left column , lines 14 to 16 , upper right  page 3, upper left column, lines 14 to 16, upper right
column , lines 14 , 15  column, lines 14, 15
& DE , 3338393 , -A & US , 4540480 , A  & DE, 3338393, -A & US, 4540480, A
JP , 7 - 118336 , A ( Japan Synthetic Rubber Co . f Ltd . ) , L-9 9 May , 1995 ( 09 . 05 . 95 ) JP, 7-118336, A (Japan Synthetic Rubber Co. f Ltd.), L-9 9 May, 1995 (09.05.95)
Claims ( Family: none )  Claims (Family: none)
〖 I Further documents are listed in the continuation of Box C. ι ι See patent family annex. 〖I Further documents are listed in the continuation of Box C. ι ι See patent family annex.
* Special categories of cited documents: later document published after the international filing date or priority * Special categories of cited documents: later document published after the international filing date or priority
"A" document defining the general state of the art which is not date and not in conflict with the application but cited to understand considered to be of particular relevance the principle or theory underlying the invention "A" document defining the general state of the art which is not date and not in conflict with the application but cited to understand considered to be of particular relevance the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be "L" document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step cited to establish the publication date of another citation or other when the document is taken alone "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be "L" document which may throw doubts on priority claim (s) or which is considered novel or cannot be considered to involve an inventive step cited to establish the publication date of another citation or other when the document is taken alone
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is means combined with one or more other such documents, such combination special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be O "document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is means combined with one or more other such documents, such combination
"P" document published prior to the international filing date but later than being obvious to a person skilled in the art "P" document published prior to the international filing date but later than being obvious to a person skilled in the art
the priority date claimed document member of the same patent family  the priority date claimed document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report  Date of the actual completion of the international search Date of mailing of the international search report
8 September , 1999 ( 08 . 09 . 99 ) 21 September , 1999 ( 21 . 09 . 99 )  8 September, 1999 (08.09.99) 21 September, 1999 (08.09.99)
Name and mailing address of the ISA/ Authorized officer Name and mailing address of the ISA / Authorized officer
Japanese Patent O fice  Japanese Patent Ofice
Facsimile No. Telephone No.  Facsimile No. Telephone No.
Form PCT/ISA/210 (second sheet) (July 1992)  Form PCT / ISA / 210 (second sheet) (July 1992)
PCT/JP1999/003080 1998-06-10 1999-06-09 Method of hydrogenating block copolymer WO1999064479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41648/99A AU4164899A (en) 1998-06-10 1999-06-09 Method of hydrogenating block copolymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17653798A JP4063407B2 (en) 1998-06-10 1998-06-10 Block copolymer hydrogenation process
JP10/176537 1998-06-10
JP28206198A JP4255150B2 (en) 1998-09-18 1998-09-18 Polymer hydrogenation process
JP10/282061 1998-09-18

Publications (1)

Publication Number Publication Date
WO1999064479A1 true WO1999064479A1 (en) 1999-12-16

Family

ID=26497414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003080 WO1999064479A1 (en) 1998-06-10 1999-06-09 Method of hydrogenating block copolymer

Country Status (2)

Country Link
AU (1) AU4164899A (en)
WO (1) WO1999064479A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395841B1 (en) 2000-09-06 2002-05-28 The Dow Chemical Company Process for hydrogenating unsaturated polymers
WO2003029307A1 (en) * 2001-09-21 2003-04-10 Zeon Corporation Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic conjugated diene polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136312A (en) * 1983-01-26 1984-08-04 Arakawa Chem Ind Co Ltd Production of hydrogenated petroleum resin
JPH07118336A (en) * 1993-10-25 1995-05-09 Japan Synthetic Rubber Co Ltd Hydrogenated diene copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136312A (en) * 1983-01-26 1984-08-04 Arakawa Chem Ind Co Ltd Production of hydrogenated petroleum resin
JPH07118336A (en) * 1993-10-25 1995-05-09 Japan Synthetic Rubber Co Ltd Hydrogenated diene copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395841B1 (en) 2000-09-06 2002-05-28 The Dow Chemical Company Process for hydrogenating unsaturated polymers
WO2003029307A1 (en) * 2001-09-21 2003-04-10 Zeon Corporation Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic conjugated diene polymer
CN1310959C (en) * 2001-09-21 2007-04-18 日本瑞翁株式会社 Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic conjugated diene polymer
US7923514B2 (en) 2001-09-21 2011-04-12 Zeon Corporation Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic, conjugated diene polymer

Also Published As

Publication number Publication date
AU4164899A (en) 1999-12-30

Similar Documents

Publication Publication Date Title
CN1177866C (en) Process for hydrogenizing aromatic polymer
CA1216397A (en) Process for hydrogenating conjugated diene polymers
CN102140153B (en) Preparation method for Carbon 5/Carbon 9 hydrogenated petroleum resin
EP0378104A2 (en) Polymer hydrogenation catalysts
JP4930741B2 (en) Method for producing hydrogenated petroleum resin and hydrogenation catalyst used in the production method
GB2061961A (en) Catalytic hydrogenation of diene copolymers
JP4255150B2 (en) Polymer hydrogenation process
US5378767A (en) Fixed bed hydrogenation of low molecular weight polydiene polymers
WO1999064479A1 (en) Method of hydrogenating block copolymer
EP1317492B1 (en) Improved process for hydrogenating unsaturated polymers
EP1169358B1 (en) Hydrogenated block copolymers
JP4063407B2 (en) Block copolymer hydrogenation process
JPH0376706A (en) Production of hydrogenated styrenic resin
ES2666370T3 (en) Procedure to produce polymer
JP7026641B2 (en) Manufacturing method of protective resin catalyst
JP2003529646A (en) Method for producing hydrogenated aromatic polymer
JP2019065128A (en) Method for hydrogenating hydrocarbon resin
KR20010033298A (en) Process for hydrogenation of macromolecular organic substrates
US6455656B2 (en) Process for preparing hydrogenated aromatic polymers
JPH0597916A (en) Production of hydrogenated styrenic resin
JP2684796B2 (en) Polymer hydrogenation method
JP4245912B2 (en) Method for producing hydrogenated polymer
JP2002521509A (en) Method for hydrogenating aromatic polymers in the presence of special catalysts
JP2002536470A (en) Hydrogenation of aromatic polymer using special catalyst
JPS6335641B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase