JPH0376706A - Production of hydrogenated styrenic resin - Google Patents

Production of hydrogenated styrenic resin

Info

Publication number
JPH0376706A
JPH0376706A JP21471889A JP21471889A JPH0376706A JP H0376706 A JPH0376706 A JP H0376706A JP 21471889 A JP21471889 A JP 21471889A JP 21471889 A JP21471889 A JP 21471889A JP H0376706 A JPH0376706 A JP H0376706A
Authority
JP
Japan
Prior art keywords
catalyst
styrenic resin
hydrogenation
palladium
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21471889A
Other languages
Japanese (ja)
Inventor
Yoshinori Hara
善則 原
Hiroyoshi Endou
浩悦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP21471889A priority Critical patent/JPH0376706A/en
Publication of JPH0376706A publication Critical patent/JPH0376706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To carry out the hydrogenation of a styrenic resin mild conditions to thereby avoid the significant mol.wt. degradation by hydrogenating arom. rings of the styrenic resin in the presence of a palladium catalyst catalyst carried by a specific carrier. CONSTITUTION:A silica carrier having a specific surface area of 100-500m<2>/g and a mean pore diameter of 200-500Angstrom is impregnated with an aq. soln. of palladium salts, and then reduced to give a palladium catalyst carrying 0.001-30wt.% palladium. The resulting catalyst is added to a 5-50wt.% solvent soln. (e.g. a cycloheptane soln.) of a styrenic resin contg. at least 50wt.% styrene in an amt. of the catalyst of 1-100wt.% based on the styrenic resin. Then the soln. is reacted in hydrogen under an atmospheric pressure to 300kg/cm<2> at 0-300 deg.C to hydrogenate atom. rings of the styrenic resin, thus producing a hydrogenated styrenic resin wherein 70% or higher of the arom. rings are hydrogenated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高分子量の水素化スチレン系樹脂の製造方法に
関するものであり本発明に斯かる水素化スチレン系樹脂
は光学及び光エレクトロニック用材料として好適である
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high molecular weight hydrogenated styrene resin. suitable.

[従来の技術] スチレン系樹脂を溶媒を用いて水素化触媒の存在下に核
水素化することは既に知られている。
[Prior Art] It is already known that styrenic resins are subjected to nuclear hydrogenation using a solvent in the presence of a hydrogenation catalyst.

水素化反応に用いられる触媒として代表的な例として周
期律表第■族の金属の使用が一般的であり、ニッケル、
ルテニウム、ロジウム、パラジウム、白金等が挙げられ
る。多くの場合、これ等の金属をカーボン、アルミナ、
シリカ、シリカ−アルミ、す、ケイソウ土等の多孔性担
体に担持させて使用している。
Typical examples of catalysts used in hydrogenation reactions include metals from Group I of the periodic table, including nickel,
Examples include ruthenium, rhodium, palladium, platinum, and the like. In many cases, these metals are carbon, alumina,
It is used by being supported on a porous carrier such as silica, silica-aluminum, diatomaceous earth, etc.

例えば活性炭担持ルテニウム触媒(特開昭63−439
10号公報)を用いる方法あるいはケイソウ土担持ニッ
ケル触媒(特開昭64−62307号公報)等が知られ
ている。
For example, activated carbon-supported ruthenium catalyst (Japanese Patent Application Laid-Open No. 63-439
A method using a nickel catalyst supported on diatomaceous earth (Japanese Patent Application Laid-open No. 64-62307) is known.

しかしながらルテニウム触媒を用いたスチレン系樹脂の
水素化反応では、比較的緩和な反応条件が採用できると
いう利点があるものの、水素化反応に伴って樹脂の分解
や水素化分解が起こり、低分子量の水素化スチレン系樹
脂しか得られないという問題に加えて、水素化反応終了
後の重合体含有高粘性溶液からの触媒の分離がむずかし
いという問題があった。
However, although the hydrogenation reaction of styrenic resins using a ruthenium catalyst has the advantage of being able to use relatively mild reaction conditions, decomposition and hydrogenolysis of the resin occur during the hydrogenation reaction, resulting in the production of low molecular weight hydrogen. In addition to the problem that only styrene-based resins can be obtained, there is a problem that it is difficult to separate the catalyst from the highly viscous solution containing the polymer after the hydrogenation reaction is completed.

一方ニッケル触媒を用いた水素化反応では、比較的樹脂
の分解、水素化分解が少ないものの、所望の水素化率を
達成するためには苛酷な反応条件を採用しなければなら
ないという問題があった。
On the other hand, in the hydrogenation reaction using a nickel catalyst, there is relatively little resin decomposition and hydrogenolysis, but there is a problem in that harsh reaction conditions must be adopted in order to achieve the desired hydrogenation rate. .

[発明が解決しようとする課題] 本発明者らは高分子量のスチレン系樹脂の水素化反応の
水素化触媒として、鋭意検討した結果特定のシリカ担体
に担持したパラジウム触媒を用いると重合体の水素化分
解が少なく、かつ水素化反応終了後の重合体含有高粘性
溶液からの触媒分離が容易で緩和な条件下で高活性を示
す触媒である事を見い出し本発明に至った [課題を解決するための手段] 本発明に係る水素化スチレン系樹脂の製造法は、比表面
積が100〜500m’/gで平均細孔径が200〜5
00Aを有するシリカ担体に担持させたパラジウム触媒
を用いてスチレン系樹脂を核水素化する事を特徴とする
[Problems to be Solved by the Invention] The present inventors have conducted extensive studies as a hydrogenation catalyst for the hydrogenation reaction of high-molecular-weight styrene-based resins, and found that using a palladium catalyst supported on a specific silica carrier reduces the hydrogenation of the polymer. We have discovered that this is a catalyst that causes less chemical decomposition, is easy to separate from a polymer-containing highly viscous solution after the hydrogenation reaction is completed, and exhibits high activity under mild conditions, leading to the present invention. Means for producing hydrogenated styrene resin according to the present invention has a specific surface area of 100 to 500 m'/g and an average pore diameter of 200 to 5.0 m'/g.
It is characterized by nuclear hydrogenation of styrenic resin using a palladium catalyst supported on a silica carrier having 00A.

本発明において、スチレン系樹脂とは、スチレン単独重
合体又はスチレンを50重量%以上含み、これと不飽和
単量体との1種以上の共重合体をいう。
In the present invention, the styrenic resin refers to a styrene homopolymer or one or more copolymers containing styrene in an amount of 50% by weight or more and an unsaturated monomer.

斯かる不飽和単量体としては、ブロムスチレン、クロロ
スチレン、パラメチルスチレン、α−メチルスチレン等
のスチレン類、アクリル酸エステル、メタクリル酸エス
テル等のエステル類、アクリロニトリル類、ブタジェン
類等が例示される。
Examples of such unsaturated monomers include styrenes such as bromustyrene, chlorostyrene, paramethylstyrene, and α-methylstyrene, esters such as acrylic esters and methacrylic esters, acrylonitriles, and butadines. Ru.

重合様式は特に限定されず、ランダム共重合体、ブロッ
ク共重合体、グラフト共重合体等が例示され、更にはス
チレン単独重合体を含めたこれらのスチレン系樹脂のフ
レンド体であってもよい。
The polymerization mode is not particularly limited, and examples thereof include random copolymers, block copolymers, graft copolymers, etc., and friend forms of these styrene resins including styrene homopolymers may also be used.

スチレン系樹脂の核水素化率は70%以上、特に80%
以上であることが好ましい。70%未満であると樹脂は
複屈折率が大きく光学材料として改善が必要となるので
好ましくない。
The nuclear hydrogenation rate of styrene resin is over 70%, especially 80%.
It is preferable that it is above. If it is less than 70%, the resin has a large birefringence and needs to be improved as an optical material, which is not preferable.

反応溶媒としては上記スチレン系樹脂を溶解するもので
あれば何んでもよく、具体的にはシクロヘプタン、シク
ロヘキサン、シクロオクタン、メチルシクロヘキサン、
デカリン、テトラリン等の炭化水素類、テトラヒドロフ
ラン、ジオキサン、ジエチレングリコールジメチルエー
テル、等のエーテル類、酢酸メチル、酢酸ブチル等のエ
ステル類、γ−ブチロラクトン等のラクトン類、ジメチ
ルホルムアミド、ジメチルアセトアミド等のアミド類が
例示される。これら溶媒を2種以上用いて混合溶媒とし
て用いてもよい。
Any reaction solvent may be used as long as it dissolves the above styrene resin, specifically cycloheptane, cyclohexane, cyclooctane, methylcyclohexane,
Examples include hydrocarbons such as decalin and tetralin, ethers such as tetrahydrofuran, dioxane, and diethylene glycol dimethyl ether, esters such as methyl acetate and butyl acetate, lactones such as γ-butyrolactone, and amides such as dimethylformamide and dimethylacetamide. be done. Two or more of these solvents may be used as a mixed solvent.

本発明で用いられる水素化触媒は担体として比表面積が
100〜500m2/gであり、平均細孔径が200〜
500Aを有するシリカに担持したパラジウム触媒が用
いられる。シリカの物性としては好ましくは比表面積が
100〜250m2/g、平均細孔径が250〜400
人のものがよい。
The hydrogenation catalyst used in the present invention as a carrier has a specific surface area of 100 to 500 m2/g and an average pore diameter of 200 to 500 m2/g.
A palladium-supported silica catalyst with 500A is used. The physical properties of silica are preferably a specific surface area of 100 to 250 m2/g and an average pore diameter of 250 to 400.
People's stuff is better.

ここで言う比表面積の値は窒素吸着量を測定し、BET
式を用いて算出した値であり、平均細孔径の値は水銀圧
入法により測定された値である。
The value of specific surface area mentioned here is determined by measuring the amount of nitrogen adsorption, and
This is a value calculated using the formula, and the value of the average pore diameter is a value measured by mercury intrusion method.

上記条件を逸脱したシリカを使用した場合には、触媒当
りの水素化活性が大巾に低下するかあるいは水素化反応
後の触媒分離が困難となる。
If silica that does not meet the above conditions is used, the hydrogenation activity per catalyst will be greatly reduced or separation of the catalyst after the hydrogenation reaction will become difficult.

担持触媒を用いて水素化する場合に従来からケイソウ土
、シリカ−アルミナ、アルミナ、活性炭等が使用されて
いるが、ケイソウ土、シリカ−アルミナ、アルミナ等を
担体に用いた場合は水素化活性が低く、活性炭では水素
化活性は得られるものの反応終了後の触媒の濾過分離が
困難となる。しかしながら、本発明の特定のシリカを用
いると上記の問題が解決され、高水素化活性、低水素化
分解、極めて良好な分離性を有する担持触媒の調整が可
能となる。
When carrying out hydrogenation using a supported catalyst, diatomaceous earth, silica-alumina, alumina, activated carbon, etc. have been used conventionally, but when diatomaceous earth, silica-alumina, alumina, etc. are used as a carrier, the hydrogenation activity is low. Although hydrogenation activity can be obtained with activated carbon, it is difficult to separate the catalyst by filtration after the reaction is completed. However, when the specific silica of the present invention is used, the above problems are solved, and it becomes possible to prepare a supported catalyst having high hydrogenation activity, low hydrogenolysis, and extremely good separability.

パラジウム金属のシリカ担体への担持のさせ方は通常の
担体担持方法を用いれば良い。例えばパラジウムの各種
塩の水溶液等を前記シリカ担体に含浸させた後還元する
こと等によってシリカ担持触媒が得られる。
Palladium metal may be supported on a silica carrier by a conventional carrier-supporting method. For example, a silica-supported catalyst can be obtained by impregnating the silica carrier with an aqueous solution of various palladium salts, followed by reduction.

シリカ担体へのパラジウム金属の担持量は通常担体当た
り0.001〜30重量%であり、好ましくは0.01
〜10重量%である。
The amount of palladium metal supported on the silica carrier is usually 0.001 to 30% by weight per carrier, preferably 0.01% by weight.
~10% by weight.

反応は粉末触媒を用いてバッチ式オートクレーブ中で行
っても、又、成形触媒を用いて連続固定床で行ってもよ
い。
The reaction may be carried out in a batch autoclave using a powdered catalyst or in a continuous fixed bed using a shaped catalyst.

スチレン系樹脂を当該溶媒に5〜50重量%の濃度で溶
解し、触媒を樹脂に対して1〜100重量%添加して反
応温度は0〜300’Cであり好ましくは20〜200
°Cである。水素圧は大気圧〜300kg/cm2の範
囲であり、好ましくは5〜150kg/cm”の範囲で
ある。
A styrene resin is dissolved in the solvent at a concentration of 5 to 50% by weight, a catalyst is added to the resin at a concentration of 1 to 100%, and the reaction temperature is 0 to 300'C, preferably 20 to 200'C.
It is °C. The hydrogen pressure ranges from atmospheric pressure to 300 kg/cm2, preferably from 5 to 150 kg/cm''.

水素化反応終了後、担体担持触媒を濾過法等により水素
化スチレン樹脂含有溶液から分離し、しかるのち水素化
スチレン樹脂を分離する。
After the hydrogenation reaction is completed, the carrier-supported catalyst is separated from the hydrogenated styrene resin-containing solution by filtration or the like, and then the hydrogenated styrene resin is separated.

[実施例] 以下本発明を実施例により更に詳細に説明するが、本発
明はその要旨を越えない限りこれら等の実施例に限定さ
れるものではない。
[Examples] The present invention will be explained in more detail by Examples below, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

なお、実施例中の核水素化率の算定は紫外吸収スペクト
ル分析によって行った。
In addition, calculation of the nuclear hydrogenation rate in Examples was performed by ultraviolet absorption spectrum analysis.

実施例1 担体として比表面積181m2/g、細孔容積1.35
me/g、平均細孔径320Aのシリカ(洞海化学社製
D−150−300A)を用いて担持量が2重量%にな
るようにPdを担持させた触媒を調整した。
Example 1 Specific surface area as a carrier: 181 m2/g, pore volume: 1.35
A catalyst on which Pd was supported was prepared using silica (D-150-300A, manufactured by Dokai Kagaku Co., Ltd.) with me/g and average pore diameter of 320A so that the amount supported was 2% by weight.

PdCl2の水溶液に担体を含浸した後、窒素雰囲気下
で150°Cで2時間焼成後、水・紫雲囲気下で150
°Cで2時間還元して2%Pd/5iOJ媒を得た。
After impregnating the carrier with an aqueous solution of PdCl2, it was calcined at 150°C for 2 hours under a nitrogen atmosphere, and then heated at 150°C under an atmosphere of water and Shiun.
The mixture was reduced at °C for 2 hours to obtain a 2% Pd/5iOJ medium.

スチレン樹脂(三菱モンサント化戒(株)製、商品名ダ
イヤレックス@HF−55;重量平均分子量26万)2
gをテトラヒドロフラン15gに溶解し、上記の方法で
調整した触媒を0.4gと共に70meスピナー撹拌オ
ートクレーブに仕込み、室温下で130KGの水素圧を
圧太し、170°Cで2.5時間反応を行った。
Styrene resin (manufactured by Mitsubishi Monsanto Kakai Co., Ltd., trade name Dialex@HF-55; weight average molecular weight 260,000) 2
g was dissolved in 15 g of tetrahydrofuran, and 0.4 g of the catalyst prepared in the above method was charged into a 70 me spinner stirring autoclave, and a hydrogen pressure of 130 KG was applied at room temperature, and the reaction was carried out at 170 °C for 2.5 hours. Ta.

反応抜水素化ポリスチレンをとり出し核水素化率を測定
した所79%であった。又水素化反応後の数平均分子量
は19万であった。
The hydrogenated polystyrene after reaction was taken out and the nuclear hydrogenation rate was measured and found to be 79%. The number average molecular weight after the hydrogenation reaction was 190,000.

比較例1 担体として比表面積420m27g、細孔容量1.25
m(/g、平均細孔径120Aのシリカ(洞海化学社製
D−150−120A)を用いて実施例1と同様の方法
で2%Pd/SiO2を調整した。
Comparative Example 1 Specific surface area 420m27g, pore volume 1.25 as carrier
2% Pd/SiO2 was prepared in the same manner as in Example 1 using silica (D-150-120A manufactured by Dokai Kagaku Co., Ltd.) having an average pore diameter of 120A.

実施例1と同条件で反応を行った清水素化率30%であ
り、重量平均分子量は24万であった。
The reaction was carried out under the same conditions as in Example 1, and the hydrogenation rate was 30%, and the weight average molecular weight was 240,000.

比較例2 比表面積78m2/g、平均細孔径615A、 HJ孔
容量1.2me/gのシリカ(富士デビソン社製MV−
500)を用いて実施例1と同様の方法で触媒を調整し
た。
Comparative Example 2 Silica with a specific surface area of 78 m2/g, average pore diameter of 615 A, and HJ pore capacity of 1.2 me/g (MV- manufactured by Fuji Davison)
A catalyst was prepared in the same manner as in Example 1 using 500).

実施例1と同じ反応条件で触媒の活性試験を行った所、
水素化率36%であり、反応後の重量平均分子量は18
万であった。
When the catalyst activity test was conducted under the same reaction conditions as in Example 1,
The hydrogenation rate is 36%, and the weight average molecular weight after reaction is 18.
It was 10,000.

実施例2 実施例1で使用した担体を用いて担持量が5重量%にな
るようにPdを担持させた触媒を調整した。
Example 2 Using the carrier used in Example 1, a catalyst was prepared in which Pd was supported so that the supported amount was 5% by weight.

PdCl2の水溶液に担体を含浸させた後、N2雰囲気
下150’Cで2時間焼成後、N2で300’C12時
間還元して5%Pd/5i02を調整した。
After the carrier was impregnated with an aqueous solution of PdCl2, it was calcined at 150'C for 2 hours in an N2 atmosphere, and then reduced with N2 at 300'C for 12 hours to prepare 5% Pd/5i02.

実施例1と同じポリスチレンを30gをテトラヒドロフ
ラン75gに溶解されて200meの誘導撹拌オートク
レーブに仕込み、上記の方法で調整した触媒を3g仕込
み、撹拌速度11000rp、水素圧力100KG、温
度170°Cにて定圧反応を6時間行った。反応接水素
化ポリスチレン含有反応液をテトラヒドロフラン200
mffで希釈して、濾過により触媒除去した。
30g of the same polystyrene as in Example 1 was dissolved in 75g of tetrahydrofuran and charged into a 200me induction stirring autoclave, 3g of the catalyst prepared in the above method was charged, and a constant pressure reaction was carried out at a stirring speed of 11,000 rpm, a hydrogen pressure of 100 KG, and a temperature of 170°C. for 6 hours. The reaction mixture containing hydrogenated polystyrene was diluted with 200% tetrahydrofuran.
The catalyst was removed by dilution with mff and filtration.

多量のメタノール中に反応液を注ぎ、水素化ポリスチレ
ンを回収した。
The reaction solution was poured into a large amount of methanol to recover hydrogenated polystyrene.

このものの水素化率は100%であり、重量平均分子量
は18万であった。
The hydrogenation rate of this product was 100%, and the weight average molecular weight was 180,000.

実施例3 比表面積110m21g、細孔容量1.05me、平均
細孔径aooAのシリカ(富士デビソン社製CARiA
CT−30)を用いて実施例2と同様の方法で5%Pd
/SiO2触媒を調整した。
Example 3 Silica with a specific surface area of 110 m21 g, a pore volume of 1.05 me, and an average pore diameter of aooA (CARiA manufactured by Fuji Davison)
CT-30) in the same manner as in Example 2 to obtain 5% Pd.
/SiO2 catalyst was prepared.

実施例2と同様の条件で反応を行った清水素化率が94
%であり重量平均分子量が20万であった。
The hydrogenation rate was 94 when the reaction was carried out under the same conditions as in Example 2.
% and the weight average molecular weight was 200,000.

比較例3 5%Pd/SiO2活性炭田本エンゲルハルト製)2g
を触媒に用いて実施例2と同様の反応条件で水素化反応
を行った。
Comparative Example 3 5% Pd/SiO2 activated carbon (manufactured by Tamoto Engelhard) 2 g
A hydrogenation reaction was carried out under the same reaction conditions as in Example 2 using as a catalyst.

得られたポリスチレン水素化率は100%であり、重量
平均分子量は19万であった。
The hydrogenation rate of the obtained polystyrene was 100%, and the weight average molecular weight was 190,000.

しかしながら反応後炉別により触媒の回収を試みたが、
困難であり、濾過助剤を加えて触媒を炉別しなければな
らなかった。
However, although attempts were made to recover the catalyst by separate furnaces after the reaction,
This was difficult and required filter aids to be added and the catalyst to be filtered out.

[発明の効果] 本発明にかかわる特定のシリカ担持したパラジウム触媒
を用いると、比較的温和な条件で分子量の低下の少ない
水素化ポリスチレン系樹脂を製造することができる。
[Effects of the Invention] When the specific silica-supported palladium catalyst according to the present invention is used, a hydrogenated polystyrene resin with little decrease in molecular weight can be produced under relatively mild conditions.

Claims (1)

【特許請求の範囲】[Claims] (1)スチレン系樹脂の芳香族環を担体に担持させたパ
ラジウム触媒を用いて水素化する際に、担体として比表
面積が100〜500m^2/gで、平均細孔径が20
0〜500Åのシリカを用いる事を特徴とするスチレン
系樹脂の核水素化による水素化スチレン系樹脂の製造方
法。
(1) When hydrogenating using a palladium catalyst in which the aromatic ring of a styrene resin is supported on a carrier, the carrier has a specific surface area of 100 to 500 m^2/g and an average pore diameter of 20 m^2/g.
A method for producing a hydrogenated styrenic resin by nuclear hydrogenation of a styrenic resin, characterized by using silica having a thickness of 0 to 500 Å.
JP21471889A 1989-08-21 1989-08-21 Production of hydrogenated styrenic resin Pending JPH0376706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21471889A JPH0376706A (en) 1989-08-21 1989-08-21 Production of hydrogenated styrenic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21471889A JPH0376706A (en) 1989-08-21 1989-08-21 Production of hydrogenated styrenic resin

Publications (1)

Publication Number Publication Date
JPH0376706A true JPH0376706A (en) 1991-04-02

Family

ID=16660474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21471889A Pending JPH0376706A (en) 1989-08-21 1989-08-21 Production of hydrogenated styrenic resin

Country Status (1)

Country Link
JP (1) JPH0376706A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034896A1 (en) * 1995-05-04 1996-11-07 The Dow Chemical Company A process for hydrogenating aromatic polymers
EP0739930A3 (en) * 1995-04-24 1997-04-09 Matsushita Electric Ind Co Ltd Solvent for reducing volume and for recycling of polystyrene foam
US6365694B1 (en) 1997-12-18 2002-04-02 Bayer Aktiengesellschaft Amorphous vinyl cyclohexane polymers
US6376622B1 (en) 1999-12-08 2002-04-23 The Dow Chemical Company Process for hydrogenating aromatic polymers
US6399538B1 (en) 1999-12-08 2002-06-04 The Dow Chemical Company Process for hydrogenating unsaturated polymers
EP1702934A1 (en) * 2005-03-14 2006-09-20 Mitsubishi Gas Chemical Company, Inc. Method of producing hydrogenated polymers
WO2009020096A1 (en) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl /(meth)acrylate copolymers
DE19713376B4 (en) * 1996-04-03 2011-09-15 Mitsubishi Gas Chemical Co., Inc. Process for the preparation of a hydrogenation catalyst for the production of hydrogen peroxide
US8841498B2 (en) 2007-10-19 2014-09-23 Shell Oil Company Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739930A3 (en) * 1995-04-24 1997-04-09 Matsushita Electric Ind Co Ltd Solvent for reducing volume and for recycling of polystyrene foam
WO1996034896A1 (en) * 1995-05-04 1996-11-07 The Dow Chemical Company A process for hydrogenating aromatic polymers
DE19713376B4 (en) * 1996-04-03 2011-09-15 Mitsubishi Gas Chemical Co., Inc. Process for the preparation of a hydrogenation catalyst for the production of hydrogen peroxide
US6365694B1 (en) 1997-12-18 2002-04-02 Bayer Aktiengesellschaft Amorphous vinyl cyclohexane polymers
US6376622B1 (en) 1999-12-08 2002-04-23 The Dow Chemical Company Process for hydrogenating aromatic polymers
US6399538B1 (en) 1999-12-08 2002-06-04 The Dow Chemical Company Process for hydrogenating unsaturated polymers
EP1702934A1 (en) * 2005-03-14 2006-09-20 Mitsubishi Gas Chemical Company, Inc. Method of producing hydrogenated polymers
US7446152B2 (en) 2005-03-14 2008-11-04 Mitsubishi Gas Chemical Company, Inc. Method of producing hydrogenated polymers
WO2009020096A1 (en) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl /(meth)acrylate copolymers
US8575277B2 (en) 2007-08-06 2013-11-05 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl/(meth)acrylate copolymers
JP5540703B2 (en) * 2007-08-06 2014-07-02 三菱瓦斯化学株式会社 Method for producing nuclear hydrogenated aromatic vinyl compound / (meth) acrylate copolymer
US8841498B2 (en) 2007-10-19 2014-09-23 Shell Oil Company Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation

Similar Documents

Publication Publication Date Title
JP4111540B2 (en) Aromatic polymer hydrogenation process
JP3200057B2 (en) Polymer hydrogenation catalyst
EP1240211B1 (en) A process for hydrogenating unsaturated polymers
JPH0376706A (en) Production of hydrogenated styrenic resin
JPWO2009020096A1 (en) Method for producing nuclear hydrogenated aromatic vinyl compound / (meth) acrylate copolymer
US4954576A (en) Process for hydrogenating conjugated diene polymers
JP4488468B2 (en) Hydrogenated block copolymer
EP1317492B1 (en) Improved process for hydrogenating unsaturated polymers
JP4255150B2 (en) Polymer hydrogenation process
EP1404730B1 (en) Core-hydrogenated block copolymers having an asymmetric structure
JPH0597916A (en) Production of hydrogenated styrenic resin
US6420491B1 (en) Method for hydrogenating aromatic polymers in the presence of hydrocarbons which contain oxygen
AU768449B2 (en) Method for hydrogenating aromatic polymers in the presence of special catalysts
TWI229093B (en) Process for hydrogenating aromatic polymers in the presence of specific catalysts
DE60112122T2 (en) HYDROGENATED BLOCK COPOLYMERS WITH HYDROGENATED VINYLAROMATIC BLOCKS OF VARIATING SIZE
JPH0381301A (en) Production of hydrogenated styrenic resin
JPH0539315A (en) Production of hydrogenated aromatic resin
JPH0376705A (en) Production of hydrogenated styrenic resin
JP2009525356A (en) Method for hydrogenating polymers and hydrogenation catalyst suitable therefor
JPS6136002B2 (en)
JP2014077043A (en) Method of manufacturing nucleus hydrogenation polymer with less coloring
JPH07247302A (en) Method for hydrogenating unsaturated polyhydroxyhydrocarbon polymer
JPH09100317A (en) Method for hydrogenating polymer of polyhydroxylated unsaturated hydrocarbon
JPH03106905A (en) Production of hydrogenated hydrocarbon resin
JPH09176233A (en) Method for hydrogenating hydroxy conjugated diene polymer