JPH0539315A - Production of hydrogenated aromatic resin - Google Patents

Production of hydrogenated aromatic resin

Info

Publication number
JPH0539315A
JPH0539315A JP21660791A JP21660791A JPH0539315A JP H0539315 A JPH0539315 A JP H0539315A JP 21660791 A JP21660791 A JP 21660791A JP 21660791 A JP21660791 A JP 21660791A JP H0539315 A JPH0539315 A JP H0539315A
Authority
JP
Japan
Prior art keywords
resin
indene
aromatic resin
aromatic
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21660791A
Other languages
Japanese (ja)
Inventor
Masashi Furumoto
正史 古本
Mikio Nagano
幹夫 永野
Shingo Ueda
真吾 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP21660791A priority Critical patent/JPH0539315A/en
Publication of JPH0539315A publication Critical patent/JPH0539315A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce a hydrogenated aromatic resin by hydrogenating an aromatic resin such as a coumarone-indene resin especially under industrially practicable conditions. CONSTITUTION:A process for producing a hydrogenated aromatic resin by hydrogenating an aromatic resin containing 50wt.% or above indene as a monomer component constituting the resin, wherein the hydrogenation is performed in the presence of a catalyst prepared by infiltrating 0.5-3.0wt.% platinum into an alumina support having a pore volume of 0.5cc/g or above and an average pore diameter of 100280Angstrom . A high-indene aromatic resin such as a difficultly hydrogenatable coumarone-indene resin can be hydrogenated easily under industrially and easily practicable gentle conditions. Further, the catalyst life can be prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素化芳香族樹脂の製造
方法に関する。更に詳しくは、重合成分としてインデン
を50wt%以上含む芳香族樹脂を水素化して得られる
水素化芳香族樹脂の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a hydrogenated aromatic resin. More specifically, it relates to a method for producing a hydrogenated aromatic resin obtained by hydrogenating an aromatic resin containing 50 wt% or more of indene as a polymerization component.

【0002】[0002]

【従来の技術】コールタールおよびコークス炉ガスより
回収される軽油分を蒸留して得られる留分を、フリーデ
ルクラフト触媒の存在下に重合して得られるいわゆるク
マロン−インデン樹脂は、主として粘着剤、塗料用樹脂
として用いられているが、これらの水素添加物は、その
耐候性、色調および優れた接着特性を活かして新たな利
用展開が図られている。例えば、特開平2−14742
号、特開平2−866455号にその特徴が記載されて
いる。
2. Description of the Related Art So-called coumarone-indene resin obtained by polymerizing a distillate obtained by distilling gas oil recovered from coal tar and coke oven gas in the presence of Friedel-Crafts catalyst is mainly an adhesive agent. , Which are used as coating resins, these hydrogenated products are being developed for new applications by taking advantage of their weather resistance, color tone and excellent adhesive properties. For example, JP-A-2-14742
And Japanese Patent Laid-Open No. 2-866455, its characteristics are described.

【0003】しかしながら、前記の水素化に供するクマ
ロン−インデン樹脂はその原料モノマーに比べてはるか
に水素化を受けにくく、更には石油ナフサの熱分解物を
同じくフリーデルクラフト触媒の存在下に重合して得ら
れる、いわゆる石油樹脂に比べてもはるかに水素化を受
けにくい。この理由は石油樹脂は比較的水素化を受けや
すいスチレン、メチルスチレンが主成分であるのに対
し、クマロン−インデン樹脂は水素化されにくいインデ
ンが主成分であるためと考えられる。例えば,本発明者
の行った実験において、安定化ニッケル触媒を用いた同
一分子量のスチレンオリゴマーとインデンオリゴマー
を、同一反応条件で水素化した場合、前者の水素化率は
100%であったのに対して、後者のそれは40%であ
った。なお、水素化石油樹脂の製造方法は、例えば、特
開昭59−75904号、特開昭59−136312号
および特開平1−190704号に記載されているが、
これらの方法では重合成分としてインデンを50wt%
以上含む芳香族樹脂を経済的に水素化することは不可能
である。
However, the above-mentioned coumarone-indene resin used for hydrogenation is much less susceptible to hydrogenation than the raw material monomer, and further, the thermal decomposition product of petroleum naphtha is polymerized in the presence of Friedel-Crafts catalyst. It is much less susceptible to hydrogenation than the so-called petroleum resin obtained. This is probably because petroleum resins have styrene and methylstyrene as the main components which are relatively susceptible to hydrogenation, whereas coumarone-indene resins have indene which is difficult to be hydrogenated as a main component. For example, in an experiment conducted by the present inventor, when hydrogenating a styrene oligomer and an indene oligomer having the same molecular weight using a stabilized nickel catalyst under the same reaction conditions, the former hydrogenation rate was 100%. In contrast, that of the latter was 40%. The method for producing a hydrogenated petroleum resin is described in, for example, JP-A-59-75904, JP-A-59-136312 and JP-A-1-190704.
In these methods, 50% by weight of indene is used as a polymerization component.
It is impossible to economically hydrogenate the aromatic resin containing the above.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は重合成
分としてインデンを50wt%以上含む芳香族樹脂の水
素化方法を提供することにある。また、本発明の他の目
的は前記水素化芳香族樹脂の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for hydrogenating an aromatic resin containing indene in an amount of 50 wt% or more as a polymerization component. Another object of the present invention is to provide a method for producing the hydrogenated aromatic resin.

【0005】[0005]

【課題を解決するための手段】本発明者は上記のような
問題点を解決するために水素化触媒に着目して鋭意研究
を行い、特定の白金触媒を使用すれば経済的に水素化樹
脂が製造できることを見出し、本発明を完成した。すな
わち、本発明は重合成分としてインデンを50wt%以
上含む芳香族樹脂を水素化するにあたり、細孔容積0.
5cc/g以上、好ましくは0.5cc/g以上0.7
cc/g以下、平均細孔直径100〜280Åのアルミ
ナ担体に、白金を0.5〜3.0wt%の範囲で担持し
た触媒を使用することを特徴とする水素化芳香族樹脂の
製造方法である。
In order to solve the above problems, the present inventor has conducted diligent research focusing on hydrogenation catalysts, and if a specific platinum catalyst is used, it is economical to use hydrogenated resins. The present invention has been completed by finding out that can be manufactured. That is, according to the present invention, when hydrogenating an aromatic resin containing 50 wt% or more of indene as a polymerization component, the pore volume of 0.
5 cc / g or more, preferably 0.5 cc / g or more 0.7
A method for producing a hydrogenated aromatic resin, which comprises using a catalyst in which platinum is supported in an amount of 0.5 to 3.0 wt% on an alumina carrier having a cc / g or less and an average pore diameter of 100 to 280Å. is there.

【0006】本発明で対象とする芳香族樹脂は、インデ
ンを全重合成分に対して50wt%以上含む芳香族油
を、三フッ化ホウ素、塩化アルミニウムのようなフリー
デルクラフト触媒の存在下に重合することによって得ら
れる。この際にインデンの他の重合成分としては、クマ
ロン、スチレン、α−メチルスチレン、p−メチルスチ
レン、メチルインデン等があげられるが、これらに加え
てフェノールおよびアルキルフェノールを含んでいても
よい。
The aromatic resin to be used in the present invention is obtained by polymerizing an aromatic oil containing indene in an amount of 50 wt% or more based on the total polymerization components in the presence of a Friedel-Crafts catalyst such as boron trifluoride or aluminum chloride. It is obtained by doing. At this time, other polymer components of indene include coumarone, styrene, α-methylstyrene, p-methylstyrene, methylindene, and the like, and in addition to these, phenol and alkylphenol may be contained.

【0007】本発明で使用する触媒は特定の金属を特定
の担体に担持したものでなければならない。本発明で対
象とする芳香族樹脂を水素化する場合には、触媒は芳香
環に対する高い水素化能を有することはもちろんである
が、モノマー成分の水素化に比べて触媒上の活性点に吸
着される際の立体障害が大きいために、樹脂の吸着が容
易に行われる構造を有する必要がある。すなわち、樹脂
の触媒細孔内への拡散−活性点への吸着−水素付加−活
性点からの脱着−触媒細孔からの離脱の各段階が速やか
に実行されることによって大きな反応速度を得ることが
できる。これは、触媒金属種の水素化活性、金属と担体
の相互作用、触媒細孔構造等を制御することにより初め
て実現が可能となる。本発明者らは、金属および担体の
探索、担体構造の検討を鋭意行った結果、驚くべきこと
に白金を細孔容積0.5cc/g以上、平均細孔直径1
00〜280Åのアルミナ担体に0.5〜3.0wt%
の範囲で担持した触媒を使用することにより工業的に十
分実施可能な反応速度が得られることを見出した。
The catalyst used in the present invention must have a specific metal supported on a specific carrier. When hydrogenating an aromatic resin targeted by the present invention, it goes without saying that the catalyst has a high hydrogenation ability for an aromatic ring, but it is adsorbed at an active site on the catalyst as compared with hydrogenation of a monomer component. Since the steric hindrance during the treatment is large, it is necessary to have a structure in which the resin is easily adsorbed. That is, it is possible to obtain a large reaction rate by rapidly executing the steps of diffusion of resin into catalyst pores-adsorption at active sites-hydrogenation-desorption from active sites-desorption from catalyst pores. You can This can be realized only by controlling the hydrogenation activity of the catalytic metal species, the interaction between the metal and the carrier, the catalyst pore structure, and the like. As a result of diligently searching for metals and carriers and studying the carrier structure, the present inventors have surprisingly found that platinum has a pore volume of 0.5 cc / g or more and an average pore diameter of 1
0.5-3.0wt% on an alumina carrier of 00-280Å
It was found that by using the catalyst supported in the above range, a reaction rate that is industrially sufficiently feasible can be obtained.

【0008】芳香環の水素化には通常白金の他にもロジ
ウム、パラジウム、ルテニウム等の貴金属あるいは安価
なニッケル触媒が工業的に使用されるが、本発明の芳香
族樹脂には通常、10〜2000ppmの硫黄分が含ま
れているため、硫黄によって永久被毒を受けるニッケル
触媒は好ましくない。また、ロジウム、パラジウム、ル
テニウムは本発明の芳香族樹脂の水素化では高い活性を
示さず、白金のみが高い活性を示す。
In addition to platinum, noble metals such as rhodium, palladium and ruthenium or inexpensive nickel catalysts are usually used industrially for hydrogenating aromatic rings, but the aromatic resin of the present invention usually contains 10 to 10 parts. Nickel catalysts that are permanently poisoned by sulfur are not preferred because they contain 2000 ppm of sulfur. Further, rhodium, palladium, and ruthenium do not show high activity in hydrogenation of the aromatic resin of the present invention, and only platinum shows high activity.

【0009】工業的に使用される担体としては、アルミ
ナの他にシリカ、チタニア、ボリア、マグネシア、カー
ボン、活性白土等があるが,アルミナ、特にγ−アルミ
ナを使った場合にのみ高い活性が得られる。この理由に
ついては解明されていないが、アルミナと白金の相互作
用、表面酸性度等が影響しているものと推察される。担
体に使用するアルミナの細孔容積は0.5cc/g以
上、好ましくは0.5cc/g以上0.7cc/g以
下、平均細孔直径が100〜280Å、好ましくは15
0〜250Åの範囲にあることが必要である。ここでい
う細孔容積とはガス吸着法で測定した細孔直径600Å
以下の容積の合計を表す。また、平均細孔直径は比表面
積と細孔容積の値から次式により計算される。ここで比
表面積は50〜250m2 /gの範囲にあることが好ま
しい。 平均細孔直径=4*(細孔容積)/(比表面積) 平均細孔直径が100Åより小さい場合に満足な水素化
速度が得られない理由は、樹脂の触媒細孔内での拡散が
円滑に行われないためと考えられる。また、300Åよ
り大きな場合は拡散には有利であるが、比表面積が小さ
くなるために活性点が少なくなり、活性が低下するもの
と考えられる。 細孔容積が0.5cc/gより小さい
とやはり活性点が少なくなって不利である。
As the carriers used industrially, silica, titania, boria, magnesia, carbon, activated clay, etc. are available in addition to alumina, but high activity can be obtained only when alumina, especially γ-alumina is used. Be done. Although the reason for this has not been clarified, it is presumed that the interaction between alumina and platinum, the surface acidity, etc. are influencing. The alumina used for the carrier has a pore volume of 0.5 cc / g or more, preferably 0.5 cc / g or more and 0.7 cc / g or less, and an average pore diameter of 100 to 280 Å, preferably 15
It must be in the range of 0 to 250Å. The pore volume referred to here is the pore diameter measured by the gas adsorption method 600Å
It represents the sum of the following volumes. The average pore diameter is calculated by the following formula from the values of specific surface area and pore volume. Here, the specific surface area is preferably in the range of 50 to 250 m 2 / g. Average pore diameter = 4 * (pore volume) / (specific surface area) The reason why a satisfactory hydrogenation rate cannot be obtained when the average pore diameter is smaller than 100Å is that the diffusion of the resin in the catalyst pores is smooth. It is considered that it is not done in. Further, if it is larger than 300Å, it is advantageous for diffusion, but it is considered that the specific surface area becomes small, so that the number of active sites becomes small and the activity is lowered. If the pore volume is smaller than 0.5 cc / g, the number of active sites is also small, which is disadvantageous.

【0010】白金の担持量は0.5〜3.0wt%、好
ましくは1.0〜2.0wt%とするのがよい。0.5
wt%より少ない場合は満足な活性が得られず、3.0
wt%より多くしても金属量に比例しては活性は向上せ
ず経済的に不利である。
The amount of platinum supported is 0.5 to 3.0 wt%, preferably 1.0 to 2.0 wt%. 0.5
When it is less than wt%, satisfactory activity cannot be obtained, and 3.0
Even if it is more than wt%, the activity is not improved in proportion to the amount of metal and it is economically disadvantageous.

【0011】本発明で用いる触媒は一般的な含浸法によ
って調製することができる。すなわち担体のアルミナを
水中に分散させ、これに白金化合物、例えば、H2 Pt
Cl6 、[Pt(NH3 4 ]Cl2 、Pt(NO2
2 (NH3 2 等の水溶液を滴下し、含浸させる。水分
を蒸発させ乾燥させた後、水素雰囲気下で還元処理を行
う。必要に応じて還元処理の前に焼成処理を行ってもよ
い。
The catalyst used in the present invention can be prepared by a general impregnation method. That is, the carrier alumina is dispersed in water, and a platinum compound such as H 2 Pt
Cl 6 , [Pt (NH 3 ) 4 ] Cl 2 , Pt (NO 2 )
An aqueous solution of 2 (NH 3 ) 2 or the like is dropped to impregnate it. After evaporation of water and drying, reduction treatment is performed in a hydrogen atmosphere. If necessary, firing treatment may be performed before the reduction treatment.

【0012】反応の形式はバッチ式、連続式いずれでも
よい。本発明の触媒は樹脂および樹脂中の不純物によっ
てほとんど被毒されないため、容易に連続運転が可能で
ある。反応条件は、温度200〜350℃、圧力50〜
150kg/cm2 の範囲にあることが好ましく、溶媒
は使用してもしなくてもよい。溶媒を使用する場合は、
シクロヘキサン、メチルシクロヘキサン、ジメチルシク
ロヘキサン、エチルシクロヘキサン、デカリン等が好ま
しい。
The reaction may be carried out batchwise or continuously. Since the catalyst of the present invention is hardly poisoned by the resin and impurities in the resin, continuous operation can be easily performed. The reaction conditions include a temperature of 200 to 350 ° C. and a pressure of 50 to
It is preferably in the range of 150 kg / cm 2 , and the solvent may or may not be used. If a solvent is used,
Cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, decalin and the like are preferable.

【0013】[0013]

【実施例】以下、実施例をあげて本発明を具体的に説明
する。 実施例1 γ−アルミナと塩化白金酸(H2 PtCl6 )から含浸
法によって調製した1wt%Pt/アルミナ(細孔容積
0.605cc/g、比表面積105.9m2 /g、平
均細孔直径228Å)5gを仕込み、反応圧力100k
g/cm2 、温度280℃の条件下で6時間反応を行っ
た。生成物を取り出し 1H−NMR分析を行った結果、
芳香族水素量は2.5%であった。原料に用いたクマロ
ン−インデン樹脂のモノマー組成および芳香族水素量を
表1に示した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 1 wt% Pt / alumina prepared by an impregnation method from γ-alumina and chloroplatinic acid (H 2 PtCl 6 ) (pore volume: 0.605 cc / g, specific surface area: 105.9 m 2 / g, average pore diameter) 228Å) 5g was charged, reaction pressure 100k
The reaction was carried out under the conditions of g / cm 2 and a temperature of 280 ° C. for 6 hours. As a result of taking out the product and performing 1 H-NMR analysis,
The amount of aromatic hydrogen was 2.5%. Table 1 shows the monomer composition and aromatic hydrogen content of the coumarone-indene resin used as the raw material.

【0014】[0014]

【表1】 ─────────────────────── 成 分 割 合(wt%) ─────────────────────── インデン 74 クマロン 3 スチレン 14 p−メチルスチレン 3 フェノール 6 ─────────────────────── 芳香族水素量 48% ─────────────────────── 硫黄分 50ppm ───────────────────────[Table 1] ─────────────────────── Component ratio (wt%) ──────────────── ───────── Indene 74 Coumaron 3 Styrene 14 p-Methylstyrene 3 Phenol 6 ──────────────────────── Aromatic hydrogen content 48% ─────────────────────── Sulfur content 50ppm ────────────────────────

【0015】実施例2 0.2lオートクレーブにクマロン−インデン樹脂を5
0g、1wt%Pt/アルミナ(細孔容積0.590m
l/g、比表面積129.7m2 /g、平均細孔直径1
82Å)5gを仕込み、実施例1と同じ条件で水素化を
行った。生成物の芳香族水素量は2.1%であった。原
料樹脂の組成および芳香族水素量を表2に示した。
Example 2 Five coumarone-indene resins were added to a 0.2 l autoclave.
0 g, 1 wt% Pt / alumina (pore volume 0.590 m
1 / g, specific surface area 129.7 m 2 / g, average pore diameter 1
82 Å) 5 g was charged and hydrogenation was carried out under the same conditions as in Example 1. The amount of aromatic hydrogen in the product was 2.1%. The composition of the raw material resin and the amount of aromatic hydrogen are shown in Table 2.

【0016】[0016]

【表2】 ─────────────────────── 成 分 割 合(wt%) ─────────────────────── インデン 59 クマロン 6 スチレン 18 p−メチルスチレン 9 フェノール 8 ─────────────────────── 芳香族水素量 46% ─────────────────────── 硫黄分 70ppm ───────────────────────[Table 2] ─────────────────────── Component ratio (wt%) ──────────────── ───────── Indene 59 Coumaron 6 Styrene 18 p-Methylstyrene 9 Phenol 8 ─────────────────────── Aromatic hydrogen content 46% ─────────────────────── Sulfur content 70ppm ────────────────────────

【0017】実施例3 実施例2の触媒の金属量を2wt%に代えた他は実施例
2と同様の操作を行った。生成物の芳香族水素量は1.
9%であった。
Example 3 The same operation as in Example 2 was carried out except that the amount of metal in the catalyst of Example 2 was changed to 2 wt%. The amount of aromatic hydrogen in the product is 1.
It was 9%.

【0018】実施例4 直径1mmの球状に成型したγ−アルミナに塩化白金酸
を含浸させて調製した1wt%Pt/アルミナ(細孔容
積0.605ml/g、比表面積105.9m2 /g、
平均細孔直径228Å)50mlを固定床反応器に充填
し、エチルシクロヘキサンに実施例1の樹脂を溶解して
50wt%溶液とした原料を、反応温度300℃、圧力
100kg/cm2 、LHSV0.3h-1、ガス/液比
2500(v/v)の条件で通油し、水素化を行った。
200時間通油後の生成油からエチルシクロヘキサンを
蒸発除去し、樹脂分の芳香族水素量を測定したところ
0.9%であった。連続2500時間の運転を行った
が、この間触媒活性に変化はなかった。
Example 4 1 wt% Pt / alumina prepared by impregnating spherical γ-alumina having a diameter of 1 mm with chloroplatinic acid (pore volume 0.605 ml / g, specific surface area 105.9 m 2 / g,
The average pore diameter 228Å) 50ml was packed into a fixed bed reactor, the raw material was 50 wt% solution by dissolving the resin of Example 1 in ethyl cyclohexane, the reaction temperature 300 ° C., a pressure 100kg / cm 2, LHSV0.3h -1 , oil was passed under the condition of gas / liquid ratio of 2500 (v / v) to carry out hydrogenation.
Ethylcyclohexane was removed by evaporation from the produced oil after passing for 200 hours, and the amount of aromatic hydrogen in the resin component was measured and found to be 0.9%. The operation was continued for 2500 hours continuously, but during this period, the catalyst activity did not change.

【0019】比較例1 実施例1のPtに代えてRhを使用した他は実施例1と
同様の操作を行った。生成物の芳香族水素量は6.3%
であった。
Comparative Example 1 The same operation as in Example 1 was carried out except that Rh was used instead of Pt in Example 1. The amount of aromatic hydrogen in the product is 6.3%
Met.

【0020】比較例2 実施例1のPtに代えてRuを使用した他は実施例1と
同様の操作を行った。生成物の芳香族水素量は32.1
%であった。
Comparative Example 2 The same operation as in Example 1 was carried out except that Ru was used instead of Pt in Example 1. The amount of aromatic hydrogen in the product is 32.1
%Met.

【0021】比較例3 実施例1のPtに代えてPdを使用した他は実施例1と
同様の操作を行った。生成物の芳香族水素量は19.0
%であった。
Comparative Example 3 The same operation as in Example 1 was carried out except that Pd was used instead of Pt in Example 1. The amount of aromatic hydrogen in the product is 19.0
%Met.

【0022】比較例4 実施例1のPtに代えて0.5wt%Ru−0.5wt
%Rhを使用した他は実施例1と同様の操作を行った。
生成物の芳香族水素量は19.3%であった。
Comparative Example 4 0.5 wt% Ru-0.5 wt in place of Pt in Example 1
The same operation as in Example 1 was performed except that% Rh was used.
The amount of aromatic hydrogen in the product was 19.3%.

【0023】比較例5 実施例1のアルミナに代えてジルコニアを使用した他は
実施例1と同様の操作を行った。生成物の芳香族水素量
は28.2%であった。
Comparative Example 5 The same operation as in Example 1 was carried out except that zirconia was used in place of the alumina of Example 1. The amount of aromatic hydrogen in the product was 28.2%.

【0024】比較例6 実施例1の触媒に代えて1wt%Pt/アルミナ(細孔
容積0.580ml/g、比表面積277.5m2
g、平均細孔直径84Å)を使用した他は実施例1と同
様の操作を行った。生成物の芳香族水素量は6.0%で
あった。1
Comparative Example 6 In place of the catalyst of Example 1, 1 wt% Pt / alumina (pore volume 0.580 ml / g, specific surface area 277.5 m 2 /
g, average pore diameter 84Å) was used, and the same operation as in Example 1 was performed. The amount of aromatic hydrogen in the product was 6.0%. 1

【0025】比較例7 実施例1の触媒に代えて1wt%Pt/アルミナ(細孔
容積0.537ml/g、比表面積71.6m2 /g、
平均細孔直径300Å)を使用した他は実施例1と同様
の操作を行った。生成物の芳香族水素量は6.5%であ
った。
Comparative Example 7 In place of the catalyst of Example 1, 1 wt% Pt / alumina (pore volume 0.537 ml / g, specific surface area 71.6 m 2 / g,
The same operation as in Example 1 was performed except that an average pore diameter of 300Å) was used. The amount of aromatic hydrogen in the product was 6.5%.

【0026】比較例8 実施例1のPtに代えてRhを使用し、反応温度を32
0℃とした他は実施例1と同様の操作を行った。生成物
の芳香族水素量は4.1%であり、比較例1より改善さ
れたが、分解反応のために生成物の軟化点が実施例1に
比べて20℃低下した。
Comparative Example 8 Pt in Example 1 was replaced with Rh, and the reaction temperature was 32.
The same operation as in Example 1 was performed except that the temperature was 0 ° C. The aromatic hydrogen content of the product was 4.1%, which was improved as compared with Comparative Example 1, but the softening point of the product was lowered by 20 ° C. as compared with Example 1 due to the decomposition reaction.

【0027】[0027]

【発明の効果】本発明によれば、水素化が困難なクマロ
ン−インデン樹脂等の芳香族樹脂を工業的に実施容易な
おだやかな条件で容易に水素化することができる。ま
た、触媒寿命も長くすることができる。
Industrial Applicability According to the present invention, aromatic resins such as coumarone-indene resin, which are difficult to hydrogenate, can be easily hydrogenated under mild conditions that are industrially easy to carry out. In addition, the catalyst life can be extended.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重合成分としてインデンを50wt%以上
含む芳香族樹脂を水素化するにあたり、細孔容積0.5
cc/g以上、平均細孔直径100〜280Åのアルミ
ナ担体に、白金を0.5〜3.0wt%の範囲で担持し
た触媒を使用することを特徴とする水素化芳香族樹脂の
製造方法。
1. A pore volume of 0.5 when hydrogenating an aromatic resin containing 50 wt% or more of indene as a polymerization component.
A method for producing a hydrogenated aromatic resin, which comprises using a catalyst in which platinum is supported on an alumina carrier having a cc / g or more and an average pore diameter of 100 to 280Å in a range of 0.5 to 3.0 wt%.
JP21660791A 1991-08-02 1991-08-02 Production of hydrogenated aromatic resin Withdrawn JPH0539315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21660791A JPH0539315A (en) 1991-08-02 1991-08-02 Production of hydrogenated aromatic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21660791A JPH0539315A (en) 1991-08-02 1991-08-02 Production of hydrogenated aromatic resin

Publications (1)

Publication Number Publication Date
JPH0539315A true JPH0539315A (en) 1993-02-19

Family

ID=16691082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21660791A Withdrawn JPH0539315A (en) 1991-08-02 1991-08-02 Production of hydrogenated aromatic resin

Country Status (1)

Country Link
JP (1) JPH0539315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005278A1 (en) * 1998-07-23 2000-02-03 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of hydrocarbons which contain oxygen
WO2000005279A1 (en) * 1998-07-23 2000-02-03 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of special catalysts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005278A1 (en) * 1998-07-23 2000-02-03 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of hydrocarbons which contain oxygen
WO2000005279A1 (en) * 1998-07-23 2000-02-03 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of special catalysts
US6420491B1 (en) 1998-07-23 2002-07-16 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of hydrocarbons which contain oxygen
US6509510B1 (en) 1998-07-23 2003-01-21 Bayer Aktiengesellschaft Method for hydrogenating aromatic polymers in the presence of special catalysts

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
US4452951A (en) Process for hydrogenating conjugated diene polymers
CN1117103C (en) Process for hydrogenating aromatic polymers
JP3200057B2 (en) Polymer hydrogenation catalyst
JP2004513101A (en) Method for catalytic hydrogenation of organic compounds and supported catalysts therefor
US6399538B1 (en) Process for hydrogenating unsaturated polymers
US4629767A (en) Hydrogenation process and catalyst
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
US3806466A (en) Carbon molecular sieve catalyst
US3793224A (en) Carbon molecular sieve catalysts
US4954576A (en) Process for hydrogenating conjugated diene polymers
EP1317492B1 (en) Improved process for hydrogenating unsaturated polymers
JP3998044B2 (en) Method for preparing a catalyst suitable for use in hydrocarbon isomerization, catalyst obtained thereby, and method of use thereof
JP4255150B2 (en) Polymer hydrogenation process
JPH0539315A (en) Production of hydrogenated aromatic resin
JP4481554B2 (en) Hydrogenation catalyst for petroleum resin and method for producing hydrogenated petroleum resin
JPH0376706A (en) Production of hydrogenated styrenic resin
JPS581626B2 (en) Ethylene oxide
EP3991842A1 (en) Catalyst for hydrogenation reaction and method for producing same
RU2783119C2 (en) Catalyst of light alkane isomerization, its production method and use
JPH03202152A (en) Hydrogenating catalyst
KR100505526B1 (en) Pd-Ti-K catalyst for selective hydrogenation of acetylene and production method of the same
KR20010071017A (en) Method for Hydrogenating Aromatic Polymers in the Presence of Hydrocarbons Which Contain Oxygen
GB2087403A (en) Hydrogenation of Polymers
JP2009525356A (en) Method for hydrogenating polymers and hydrogenation catalyst suitable therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112