WO1999063209A1 - Ölversorgungssystem für eine gasturbine - Google Patents

Ölversorgungssystem für eine gasturbine Download PDF

Info

Publication number
WO1999063209A1
WO1999063209A1 PCT/AT1999/000134 AT9900134W WO9963209A1 WO 1999063209 A1 WO1999063209 A1 WO 1999063209A1 AT 9900134 W AT9900134 W AT 9900134W WO 9963209 A1 WO9963209 A1 WO 9963209A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
primary
lines
water
combustion chambers
Prior art date
Application number
PCT/AT1999/000134
Other languages
English (en)
French (fr)
Inventor
Gottfried AUSSERWÖGER
Alexander Hess
Original Assignee
Linzer Elektrizitäts-, Fernwärme- Und Verkehrsbetriebe Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linzer Elektrizitäts-, Fernwärme- Und Verkehrsbetriebe Aktiengesellschaft filed Critical Linzer Elektrizitäts-, Fernwärme- Und Verkehrsbetriebe Aktiengesellschaft
Priority to US09/701,273 priority Critical patent/US6526742B1/en
Priority to DE59902200T priority patent/DE59902200D1/de
Priority to AU40223/99A priority patent/AU4022399A/en
Priority to EP99923296A priority patent/EP1084337B1/de
Publication of WO1999063209A1 publication Critical patent/WO1999063209A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/228Dividing fuel between various burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases

Definitions

  • the invention relates to an oil supply system for a gas turbine, the primary and secondary nozzle-equipped combustion chambers can be optionally gas or oil-fired, with an oil supply device, a water supply device and a blow-out device, which oil supply device is an oil supply line with a quantity divider adapted to the number of combustion chambers, individual, Primary oil lines leading from the flow divider to the combustion chambers for the oil supply to the primary nozzles and secondary oil lines running parallel to the primary oil lines leading to the combustion chambers for oil supply to the secondary nozzles, which water supply device has one water supply line and the number of primary water lines and secondary water supply connected to the water supply line via a distributor the primary and secondary nozzles or the associated firing zones and which off Blower device has an air supply line which is divided into two supply branches and two ring lines connected to the supply branches via connecting valves, each with a number of branching primary air lines and secondary air lines corresponding to the number of combustion chambers, for blowing out the primary or secondary nozzles.
  • oil supply device is an oil
  • these gas turbines are operated according to the dual-fuel-dry-low-nox (DLN) process, according to which thermal NOx is already in the combustion chamber is reduced by better mixing of gas and air, which is one per combustion chamber Multi-nozzle system consisting of primary nozzles and secondary nozzles.
  • the NOx reduction in oil operation is carried out by injecting water for flame cooling, water and oil being mixed together directly in front of the combustion chamber or being injected separately into the combustion chambers. If the turbine is switched from oil to gas operation, each oil and water channel of each combustion nozzle must be blown out with air in order to remove the oil residues and to ensure constant channel cooling.
  • the gas turbine therefore requires an oil supply system for oil operation, which comprises an oil supply device, a water supply device and a blow-out device and which, compared to gas operation, entails considerable difficulties with regard to the regulation and allocation of the operating resources.
  • the fuel oil supplied via an oil pump has been pumped through a flow divider into individual primary oil lines leading to the combustion chambers for the primary nozzle loading, from which primary oil lines the secondary oil lines branch off to the secondary nozzle loading.
  • Secondary valves allow the secondary oil lines to be switched on and off, since the secondary nozzles are only fired above a certain firing temperature, until then the entire amount of fuel is supplied to the primary nozzles, but the amount of fuel must then be distributed to the primary and secondary nozzles in a certain ratio.
  • the fuel distribution is set according to the resistances in the supply lines and there is an uncontrolled fuel allocation, which repeatedly leads to thermal overloads or uneven loads on the individual combustion chambers or the fuel nozzles Flame tubes, cross ignition tubes and. Like. Can lead and even cause total damage to the turbine.
  • water In order to reduce the NOx emissions during oil operation, water must be injected in a certain proportion to the oil for flame cooling, whereby the thermal NOx can be reduced.
  • the demineralized water is fed to the primary nozzles on the one hand and the secondary nozzles on the other hand by means of a corresponding high-pressure pump via multiple switching valves, only from the firing temperature at which the secondary nozzles Primary nozzles are switched on, the water is injected.
  • the control of the water injection is carried out via a flap valve, which initially reduces the pump pressure to the desired injection pressure, whereupon a control valve cooperating with a water meter determines the amount of water as a function of the amount of oil, in order to maintain the maximum allowed water / oil ratio of 0.85, for example .
  • the flap valve causes high load fluctuations, especially during the start of water injection, and the use of purely cut-in valves leads to an uneven distribution of the total amount of water between the individual combustion chambers due to the different line resistances, with uneven loads on the combustion chambers or combustion chamber parts.
  • both the primary and the secondary air lines are switched on suddenly via pure on / off valves, whereby the residual oil quantities are also suddenly blown into the combustion chamber so that it there is a sudden increase in performance, which in turn leads to load fluctuations, which affects the life of the turbine, jeopardizes availability due to the risk of turbine failure, and can even lead to turbine shutdown due to excessive temperatures in the combustion chambers.
  • the invention is therefore based on the object of specifying an oil supply system of the type described at the outset, which operates the oil properly Gas turbine is guaranteed even with operational changes in compliance with the emission limit values and this means that the combustion of the gas turbine and the combustion chamber parts is gentle.
  • the oil supply device comprises, in addition to the primary quantity divider for the primary oil lines, a secondary quantity divider for the secondary oil lines connected to the oil supply line and adapted to the number of combustion chambers, with an adjustable ratio in relation to the primary quantity divider, and / or in the water supply device as a distributor for the Primary or secondary water pipes, flow dividers or speed-controlled distributor pumps with adjustable part ratio are provided and / or that the blow-out device is equipped with proportional low-pressure valves for the supply branches.
  • the primary flow divider and the secondary flow divider which in a certain, preferably adjustable part ratio, for. B. 60: 40, the exact amount of oil delivered to the primary oil lines and the secondary oil lines, whereby the flow divider is a forced flow divider, such as a gear or piston flow divider, an exact oil quantity allocation is guaranteed both for the primary nozzles and for the secondary nozzles of the combustion chambers.
  • the amount of fuel burned by the primary or secondary nozzles is therefore predetermined correctly and there can never be a thermal overload of the combustion nozzles, flame tubes and the like.
  • the uniform burner operation increases the service life and increases the availability of the gas turbine and, last but not least, facilitates the regulation of the water for the necessary flame cooling and NOx reduction.
  • the water supply device itself through the use of flow dividers, which are flow dividers, in turn, forced flow dividers, or speed-controlled distribution pumps for the primary water pipes or secondary water pipes, also enables an exact quantity distribution in the specified division ratio of the primary nozzle loading to the secondary nozzle loading and additionally the quantity allocation depending on the respective one Oil volume supplied to combustion chambers.
  • an entry is sufficient feed pump lower pressure levels upstream of the flow dividers or distributor pumps, whereby the allocated water quantities can be increased and decreased gently and evenly from 0 to the maximum quantity. This further smoothes gas turbine operation and ensures the necessary reduction in thermal NOx during the entire oil service life, which means further protection of the turbine parts with simultaneous extension of the service life.
  • the blow-out pressure which must ultimately be significantly higher than the combustion chamber pressure, can be slowly increased over a ramp time from an adjustable admission pressure, which is equal to the combustion chamber pressure, up to Increase the final blow-out pressure, for example, 1.4 times the compressor pressure, the ramp time being able to adjust the actual - _ ⁇ level-adjusted ⁇ ⁇ Jvlittels ⁇ the air pressure is suddenly increased to the adjustable admission pressure when switching from oil operation to gas operation and then via the Ramp time increased evenly up to the final blow-out pressure, so that the remaining amount of fuel from the burner nozzles is only slowly injected into the combustion chamber, which prevents an undesired increase in output. There is a gentle change in the operating modes, which in turn extends the life of the turbine and increases its availability significantly.
  • a changeover valve with a connection on the one hand to a supply line to a primary oil line and on the other hand to a return line is integrated into the oil sump in the secondary oil lines.
  • This changeover valve which is provided as a multiple changeover valve for all secondary oil lines, makes it possible to connect the secondary oil lines to the primary oil lines at a firing temperature below a certain minimum temperature, so that the entire amount of oil is supplied to the primary nozzles. As soon as the minimum temperature is reached, the multiple changeover valve releases the secondary oil lines with simultaneous termination of the supply lines to the primary oil lines, which means that the primary and secondary nozzles of all combustion chambers are in the set partial ratio of the primary and secondary flow divider be supplied with the required fuel quantities.
  • the changeover valves switch the return line into the oil sump, the supply lines to the primary oil lines are also switched on, so that both the primary and secondary oil lines can relax in the oil sump. This prevents the oil locked in the primary and secondary oil lines from being pressed into the combustion chamber in an uncontrolled manner during a change of operation, which increases the CO emission of the gas flame extremely and would jeopardize compliance with the emission limits.
  • check valves are arranged in every oil, water and air line to the combustion nozzles and check valves also protect against the penetration of oil and water the exhaust air lines.
  • flat seat check valves have been used as check valves, which are located in front of the combustion nozzles with a large number of screw connections in each supply line.
  • the gas turbine In order to keep these valves running, the gas turbine must be regularly switched to oil according to the operating instructions, which adds up the disadvantages of the change in operation accordingly.
  • the large number of screw connections not only makes handling them cumbersome and time-consuming, but there is also a risk of fire due to the leaks.
  • the flat seat check valves coke relatively easily due to the constant contact with the media water and oil and the high temperatures, which leads to the blocking of the check valves or to incomplete closing, which in turn leads to a different mass flow rate with the risk of burning off the combustion nozzle flame tubes and the like. Like. And the uncontrolled entry of residual oil or water into the combustion chambers with the danger of the emission limit values are to be feared. The same applies to primary distributor valves, which divide the primary oil lines to the primary nozzles in each combustion chamber.
  • the primary nozzles of a combustion chamber are preceded by a primary valve head with connection bores for the primary oil, water and air lines which can be connected via check valves, air flushing channels connecting the air connection bore with the oil and water connection bores
  • the secondary nozzle of a combustion chamber is similar a secondary Upstream valve head with connection bores for the secondary oil, water and air lines that can be connected via check valves, air rinsing channels connecting the air connection bores to the oil and water connection bores.
  • Suitable air flushing channels also lead the blow-out air from the air connection hole to the oil and water connection holes, where they flush the corresponding ball check valves with blow-out air and protect them against coking or the like. Malfunction.
  • the use of flushed and cooled ball check valves prevents the check valves from blocking or not closing properly, so that the need for regular operational changes to ensure the valve functions is unnecessary, which leads to enormous cost savings and an increase in availability.
  • the valve heads also facilitate the handling and assembly of the valves, the risk of leakage is minimized and the space available in the area of the combustion chamber piping is increased accordingly.
  • switching valves are often used in the area of the oil-carrying lines, which are controlled hydraulically via control valves, there is a risk that when switching from an oil firing system to a gas firing system, the control valves, which are then no longer operated, generally slide valves, will stick due to a thermal load and are no longer operational after the gas turbine has been switched back to oil firing.
  • the control valves can be actuated periodically when the control lines are closed between the control and the switching valves, so that their use is caused by the repeated actuation of the control valves - readiness can be guaranteed.
  • the control lines acting on the switching valves must of course be closed in order to prevent incorrect switching.
  • a further improvement in the blow-out effect can be achieved in that the oil and water connection bores converge to form a supply borehole which branches into several sub-bores and opens out through them into a distributor space, from which nozzle ducts lead to the primary nozzles via a distributor valve , wherein an annular insert is preferably inserted in the distribution space.
  • the division of the feed bore into partial bores avoids the accumulation of large amounts of residual oil in pipes of large cross-section and the air blown into the distribution space on the circumference can thus capture the entire distribution space well and blow it out cleanly.
  • Fig. 1 is a system diagram of a gas turbine with an inventive
  • Oil supply system Fig. 2 shows the diagram of this oil supply system on a larger scale and Fig. 3 is a block diagram for the periodic actuation of a control valve for hydraulic actuation of a switching valve in an oil-carrying
  • a gas turbine 1 with turbine part 2 and compressor part 3 is equipped, for example, with ten combustion chambers 4, each of which accommodates several, for example five, primary nozzles 5 distributed along the circumference and a central secondary nozzle 6, the combustion chambers 4 optionally being gas-fired via a gas supply system 7 or via one Oil supply system 8 are oil-fired.
  • the oil supply system 8 comprises an oil supply device 10, a water supply device 20 and a blow-out device 30, which devices for each combustion chamber 4 have a primary line for the primary nozzles 5 and a secondary line for the secondary nozzles 6, of which, for example, always ten primary lines and ten secondary lines always for the sake of simplicity only one is shown.
  • the oil supply device 10 has an oil supply line 103 leading via an oil pump 101 and an oil regulator 102, to which a primary quantity 104 and a secondary divider 105 are connected in parallel.
  • These flow dividers for example gear wheel flow dividers, are drive-connected to one another via a gear 106 in the sense of a specific, preferably adjustable part ratio, the flow dividers each supplying a large number of partial lines, for example ten primary oil lines 107 and ten secondary oil lines 108, according to the number of combustion chambers, with precisely divided partial oil quantities.
  • the primary oil lines 107 lead to a primary valve head 40 located upstream of the primary nozzles 5 of each combustion chamber 4 and the secondary oil lines 108 lead to a secondary valve head 50 located upstream from the secondary nozzles 6 of the combustion chambers 4.
  • a changeover valve 109 is integrated into each of the secondary oil lines 108, which changeover valves form one Multiple changeover valves are combined and each release the secondary oil lines 108 or optionally allow their connection on the one hand to a feed line 1010 to a primary oil line 107 or on the other hand to a return line 1011 in the oil sump 1012.
  • the water supply device 20 comprises a water supply line 203 leading via a feed pump 201 and a pressure regulator 202, to which two flow dividers 204, 205 for dividing the water supply line in the number of combustion chambers connect a corresponding number of primary water lines 206 and secondary water lines 207, the flow dividers 204, 205 in one the partial ratio corresponding to the partial ratio of primary and secondary flow divider 104, 105 are effective and make an exact distribution of the water quantity to the primary and secondary water pipes as a function of the respective oil quantities acting on the primary and secondary oil pipes.
  • the primary water lines 206 also open into the primary valve head 40 and the secondary water lines 207 into the secondary valve head 50.
  • the blow-out device 30 has an air supply line 301 which can be acted upon via the compressor part 3 of the gas turbine 1 and via an additional air compressor and an air cooler (not shown), which is divided into two supply branches 302, 303, which supply branches each have a proportional low pressure valve 304, 305 and Connecting valve 306, 307 lead to a ring line 308, 309, from which ring line 308, corresponding to the number of combustion chambers, many primary air lines 3010 and from which ring line 309, corresponding to the number of combustion chambers, many secondary air lines 3011 branch off, each of which in turn leads into the primary / valve head 40 or the secondary valve head 50 of the combustion chambers 4 open.
  • the primary valve heads 40 are provided with connection bores 401, 402, 403 for the primary oil, water and air lines 107, 206, 3010 and are equipped with ball check valves 404 for these lines, with air purge channels 405 leading from the air connection bore 405 to the oil and water connection bores 401, 402 go out.
  • the oil connection bore 401 merges with the water connection bore 402 to form a feed bore 406, which branches into a plurality of partial bores 407 and opens out into a distributor space 408 on the circumference thereof.
  • a nozzle valve 4010 leads from the distributor chamber 409 to the primary nozzles 5 via a distributor valve 409, in which distributor chamber 408 an annular insert 4011 can be inserted.
  • the secondary valve head 50 has a connection bore 501, 502, 503 for the secondary oil, water and air lines 108, 207, 3011 connected via check valves 504, air-flushing channels 505 connecting the air connection bore 503 to the oil and water connection bores 501, 502.
  • a nozzle channel 506 then leads from the secondary valve head 50 to the secondary nozzle 6.
  • the gas turbine When the gas turbine is in oil operation, oil is supplied via the supply line 103 with the appropriate pressure and in the required amount, and the primary and secondary flow dividers 104, 105 divide the amount of oil in a predetermined manner Quantity ratio, for example 60:40, on the primary or secondary lines. Up to a certain minimum firing temperature, the multiple changeover valve 109 is switched so that the secondary oil lines 108 are connected to the feed line 1010 and therefore the primary and secondary oil flow together through the primary oil line 107 to the combustion chambers.
  • Quantity ratio for example 60:40
  • the multiple valve 109 switches over and releases the secondary oil line 108, so that primary oil or secondary oil is now supplied in an appropriate distribution via the primary oil lines 107 and the secondary oil lines 108 to the primary nozzles or secondary nozzles of the combustion chambers.
  • the water supply device 20 is also activated, so that the demineralized water supplied via the feed pump 201 with the appropriate pressure and quantity is divided by the flow dividers 204, 205 onto the primary water lines 206 and the secondary water lines 207 and as a function of the delivered one Amount of oil is supplied to the combustion chambers up to a ratio of 0.85, where the water in the primary or secondary valve heads 40, 50 mixes with the oil and, together with the oil, acts on the primary or secondary nozzles 5, 6, which results in flame cooling and brings about a reduction in the thermal NOx in the combustion chambers.
  • the oil and water supply is switched off, the changeover valve 109 connecting the secondary oil line 108 and the supply line 1010 to the return line 1011, so that both the primary oil line 107 and the Relax secondary oil line 108 in oil sump 1012. Simultaneously with the switching off of the oil and water supply, blow-out air is discharged from the compressor part of the turbine via the blow-out air device 30 and the air supply line 301 is acted upon.
  • Blow-out air is thus supplied through the supply branches 302, 303 to the primary or secondary nozzle heads 40, 50 in a pressure reduced by the proportional pressure reducing valves 304, 305 to the combustion chamber pressure via the primary or secondary air lines 3010, 3011, where they differ from one another Combustion chamber pressure up to the correspondingly increased final blow-out pressure gently blows out the residual oil quantities in the check valve areas and in the channels and bores of the valve heads and thereby leaves the combustion process already switched to gas operation unaffected.
  • the switching valves 61 used in the oil-carrying lines 60 for example for the delivery rate control or other switching operations, also reliably after a longer interruption via control valves 62, according to FIG.
  • shut-off valves 64 which are advantageously designed as shut-off ball valves. This makes it possible, when the control lines 63 are blocked, to actuate the control valve 62 periodically via a control device 65 which acts on the one hand on the actuating drive 66 for the control valve 62 and on the other hand on the actuating drives 67 for the shut-off valves 64.
  • the electromagnetic actuation of the control valve 62 causes, during a periodic repetition, that the actuator of the control valve 62, for example a control piston, cannot stick in the housing, so that after the gas turbine has been switched over to oil firing, the controllability of the Oil supply system is secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Ein Ölversorgungssystem (8) für eine Gasturbine (1) umfaßt eine Ölzufuhreinrichtung (10), eine Wasserzufuhreinrichtung (20) und eine Ausblaseeinrichtung (30), welche Ölzufuhreinrichtung (10) eine Ölversorgungsleitung (103) mit einem an die Brennkammeranzahl angepaßten Mengenteiler (104), einzelne von Mengenteiler zu den Brennkammern (4) führende Primärölleitungen (107) und zu den Primärölleitungen parallelverlaufende, zu den Brennkammern (4) führende Sekundärölleitungen (108), welche Wasserzufuhreinrichtung (20) eine Wasserversorgungsleitung (203) und der Brennkammeranzahl entsprechend viele, über einen Verteiler an die Wasserversorgungsleitung angeschlossene Primärwasserleitungen (206) und Sekundärwasserleitungen (207) und welche Ausblaseeinrichtung (30) eine sich in zwei Versorgungsäste (302, 303) aufteilende Luftversorgungsleitung (301) und zwei an die Versorgungsäste über Zuschaltventile (306, 307) angeschlossene Ringleitungen (308, 309) mit jeweils der Brennkammeranzahl entsprechend vielen abzweigenden Primärluftleitungen (3010) und Sekundärluftleitungen (3011) aufweisen. Die Ölzufuhreinrichtung (10) umfaßt zusätzlich zum Primärmengenteiler (104) einen an die Ölversorgungsleitung (103) angeschlossenen, an die Brennkammeranzahl angepassten Sekundärmengenteiler (105) mit gegenüber dem Primärmengenteiler einstellbarem Teilverhältnis, als Verteiler für die Primär- bzw. Sekundärwasserleitungen (206, 207) Mengenteiler (204, 205) mit einstellbarem Teilverhältnis vorgesehen und mit Proportionalminderdruckventilen (304, 305) für die Versorgungsäste (302, 303) ausgestattet.

Description

Ölversorgungssystem für eine Gasturbine
Technisches Gebiet
Die Erfindung bezieht sich auf ein Ölversorgungssystem für eine Gasturbine, deren primär- und sekundärdüsenbestückte Brennkammern wahlweise gas- oder ölbefeuerbar sind, mit einer Olzufuhreinrichtung, einer Wasserzufuhreinrichtung und einer Ausblaseeinrichtung, welche Olzufuhreinrichtung eine Ölversorgungs- leitung mit einem an die Brennkammeranzahl angepaßten Mengenteiler, einzelne, vom Mengenteiler zu den Brennkammern führende Primärölleitungen zur Ölbeaufschlagung der Primärdüsen und zu den Primärölleitungen parallelverlaufende, zu den Brennkammern führende Sekundärölleitungen zur Ölbeaufschlagung der Sekundärdüsen aufweist, welche Wasserzufuhreinrichtung eine Wasserversorgungsleitung und der Brennkammeranzahl entsprechend viele, über einen Verteiler an die Wasserversorgungsleitung angeschlossene Primärwasserleitungen und Sekundärwasserleitungen zur Wasserbeaufschlagung der Primär- und Sekundärdüsen bzw. der zugehörigen Brennzonen aufweist und welche Ausblaseeinrichtung eine sich in zwei Versorgungsäste aufteilende Luftversorgungsleitung und zwei an die Versorgungsäste über Zuschaltventile angeschlossene Ringleitungen mit jeweils der Brennkammeranzahl entsprechend vielen abzweigenden Primärluftleitungen und Sekundärluftleitungen zum Ausblasen der Primär- bzw. Sekundärdüsen aufweist.
Stand der Technik
Um bei Gasturbinen mit wahlweise gas- oder öl befeuerbaren Brennkammern die vorgeschriebenen, oft schon sehr strengen Emissionswerte einhalten zu können, werden diese Gasturbinen nach dem Dual-Fuel-Dry-Low-Nox(DLN)-Verfahren betrieben, nach dem thermisches NOx bereits in der Brennkammer durch eine bessere Vermischung von Gas und Luft reduziert wird, was pro Brennkammer ein Mehrdüsensystem aus Primärdüsen und Sekundärdüsen voraussetzt. Die NOx- Reduzierung erfolgt bei Ölbetrieb durch Eindüsen von Wasser zur Flammenkühlung, wobei Wasser und Öl unmittelbar vor der Brennkammer zusammengemischt oder jeweils separat in die Brennkammern eingespritzt werden. Wird die Turbine von Öl- auf Gasbetrieb umgestellt, muß jeder Öl- und Wasserkanal jeder Brenndüse mit Luft ausgeblasen werden, um die Ölreste zu beseitigen und für eine ständige Kanalkühlung zu sorgen. Die Gasturbine benötigt daher für den Ölbetrieb ein Ölversorgungssystem, das eine Olzufuhreinrichtung, eine Wasserzufuhreinrichtung und eine Ausblaseeinrichtung umfaßt und das im Vergleich zum Gasbetrieb beträchtliche Schwierigkeiten hinsichtlich der Regelung und Zuteilung der Betriebsmittel mit sich bringt.
Bisher wird zur Ölversorgung das über eine Ölpumpe zugeförderte Brennöl durch einen Mengenteiler in einzelne, zu den Brennkammern führende Primärölleitun- gen für die Primärdüsenbeaufschlagung gepumpt, von welchen Primärölleitungen die Sekundärölleitungen zur Sekundärdüsenbeaufschlagung abzweigen. Sekundärventile erlauben dabei das Zu- und Abschalten der Sekundärölleitungen, da die Sekundärdüsen erst ab einer bestimmten Feuerungstemperatur befeuert werden, wobei bis dahin die gesamte Brennstoffmenge den Primärdüsen zugeht, dann die Brennstoffmenge aber in einem bestimmten Verhältnis auf die Primär- und Sekundärdüsen aufzuteilen ist. Durch die Abzweigung der Sekundärölleitungen von den Primärölleitungen stellt sich allerdings die Brennstoffaufteilung entsprechend den Widerständen in den Zuleitungen ein und es kommt zu einer unkontrollierten Brennstoffzuteilung, die immer wieder zu thermischen Überbela- stungen bzw. zu ungleichmäßigen Belastungen der einzelnen Brennkammern bzw. der Brennstoffdüsen, der Flammrohre, Querzündrohre u. dgl. führen und sogar einen Totalschaden der Turbine verursachen kann.
Um beim Ölbetrieb die NOx-Emissionen zu senken, muß Wasser in einem bestimmten Mengenverhältnis zum Öl zur Flammenkühlung eingedüst werden, wodurch das thermische NOx reduziert werden kann. Das vollentsalzte Wasser wird dazu mittels einer entsprechenden Hochdruckpumpe über Mehrfachzuschaltventile einerseits den Primärdüsen, anderseits den Sekundärdüsen zugeleitet, wobei erst ab der Feuerungstemperatur, bei der die Sekundärdüsen den Primärdüsen zugeschaltet werden, die Wassereindüsung erfolgt. Die Regelung der Wassereindüsung wird über ein Klappenventil vorgenommen, das vorerst den Pumpendruck auf den gewünschten Eindüsdruck reduziert, worauf ein mit einem Wasserzähler zusammenwirkendes Stellventil die Wassermenge in Abhängigkeit von der Ölmenge bestimmt, um das maximal erlaubte Mengenverhältnis Wasser/Öl von beispielsweise 0,85 einzuhalten. Auch hier entstehen durch das Klappenventil hohe Lastschwankungen, vor allem während des Beginns der Wassereindüsung, und durch die Verwendung reiner Zuschaltventile kommt es wegen der unterschiedlichen Leitungswiderstände zu einer ungleichmäßigen Auf- teilung der Gesamtwassermenge auf die einzelnen Brennkammern mit ungleichmäßigen Belastungen der Brennkammern bzw. Brennkammerteilen.
Bei der Umstellung von Öl- auf Gasbetrieb müssen die Öl- und Wasserkanäle der Brenndüsen mit Luft gekühlt werden und zusätzlich muß durch die Luft das in den Brenndüsen verbleibende Restöl zur Reinigung und zum Schutz vor Verkokung ausgeblasen werden. Es gibt daher eine Ausblaseeinrichtung mit entsprechenden Primär- und Sekundärluftleitungen, wobei die Ausblaseluft vom Gasturbinenkompressor abgezapft und dann mit einem eigenen mechanisch angetriebenen Luftkompressor auf einen beispielsweise 1 ,4fach erhöhten Kom- pressordruck zum Ausblasen gegen den Brennkammerdruck gebracht wird. Erfolgt die Umstellung auf Gasbetrieb bei einer Feuerungstemperatur, bei der Primär- und Sekundärdüsen arbeiten, werden sowohl die Primär- als auch die Sekundarluftleitungen schlagartig über reine Auf/Zu-Ventile zugeschaltet, wodurch die Restölmengen ebenfalls schlagartig in den Brennraum eingeblasen werden, so daß es zu einem plötzlichen Leistungsanstieg kommt, der wiederum Lastschwankungen nach sich zieht, was die Lebensdauer der Turbine beeinträchtigt, die Verfügbarkeit wegen der Gefahr eines Turbinenausfalles gefährdet und sogar zur Abschaltung der Turbine wegen Übertemperaturen in den Brennkammern führen kann.
Darstellung der Erfindung
Der Erfindung liegt daher die Aufgabe zugrunde, ein Ölversorgungssystem der eingangs geschilderten Art anzugeben, das einen einwandfreien Ölbetrieb der Gasturbine unter Einhaltung der Emissionsgrenzwerte auch bei Betriebsumstellungen gewährleistet und das ein die Brennkammern und die Brennkammerteile schonendes Befeuern der Gasturbine mit sich bringt.
Die Erfindung löst diese Aufgabe dadurch, daß die Olzufuhreinrichtung zusätzlich zum Primärmengenteiler für die Primärölleitungen einen an die Ölversorgungsleitung angeschlossenen, an die Brennkammeranzahl angepaßten Sekundarmengenteiler für die Sekundärölleitungen mit gegenüber dem Primärmengenteiler einstellbarem Teilverhältnis umfaßt und/oder daß in der Wasserzufuhr- einrichtung als Verteiler für die Primär- bzw. Sekundärwasserleitungen Mengenteiler oder drehzahlgesteuerte Verteilerpumpen mit einstellbarem Teilverhältnis vorgesehen sind und/oder daß die Ausblaseeinrichtung mit Proportional minder- druckventilen für die Versorgungsäste ausgestattet ist.
Durch den Primärmengenteiler und den Sekundarmengenteiler, die in einem bestimmten, vorzugsweise einstellbaren Teilverhältnis, z. B. 60 : 40, die angeförderte Ölmenge genau auf die Primärölleitungen und die Sekundärölleitungen aufteilen, wobei unter Mengenteiler ein Zwangsmengenteiler, wie ein Zahnradoder Kolbenmengenteiler, verstanden wird, ist sowohl für die Primärdüsen als auch für die Sekundärdüsen der Brennkammern eine exakte Olmengenzuteilung garantiert. In jedem Leistungsbereich wird daher die durch die Primär- bzw. Sekundärdüsen verbrannte Brennstoffmenge einwandfrei vorbestimmt und es kann nie zu einer thermischen Überbelastung der Brenndüsen, Flammrohre u. dgl. kommen. Der vergleichmäßigte Brennerbetrieb steigert die Lebensdauer und erhöht die Verfügbarkeit der Gasturbine und erleichtert nicht zuletzt die Zurege- lung des Wassers für die erforderliche Flammenkühlung und NOx-Reduktion.
Die Wasserzufuhreinrichtung selbst ermöglicht durch den Einsatz von Mengenteilern, welche Mengenteiler wiederum Zwangsmengenteiler sind, oder dreh- zahlgesteuerten Verteilerpumpen für die Primärwasserleitungen bzw. Sekundärwasserleitungen ebenfalls eine exakte Mengenaufteilung im vorgegebenen Teilungsverhältnis der Primärdüsenbeaufschlagung zur Sekundärdüsenbeauf- schlagung und zusätzlich die Mengenzuteilung in Abhängigkeit von der jeweiligen den Brennkammern zugeförderten Ölmenge. Außerdem genügt eine Ein- speisepumpe geringeren Druckniveaus vor den Mengenteilern bzw. Verteilerpumpen, wodurch die zugeteilten Wassermengen sanft und gleichmäßig von 0 bis zur maximalen Menge erhöht bzw. verringert werden können. Damit wird der Gasturbinenbetrieb weiter vergleichmäßigt und während der gesamten Ölbetriebsdauer für die erforderliche Reduktion des thermischen NOx gesorgt, was eine weitere Schonung der Turbinenteile mit gleichzeitiger Verlängerung der Lebensdauer bedeutet.
Durch den Einbau jeweils eines Proportionalminderdruckventils in die Versor- gungsäste für die Primär- bzw. Sekundarluftleitungen läßt sich der Ausblasedruck, der im Endeffekt wesentlich höher sein muß als der Brennkammerdruck, langsam über eine Rampenzeit von einem einstellbaren Vordruck, der dem Brennkammerdruck gleicht, bis zum Endausblasedruck, beispielsweise dem 1 ,4fachen Kompressordruck, erhöhen, wobei die Rampenzeit den tatsächlichen - _^ebenheiieα-angepaßt^ein-kann^Jvlittels ^ wird daher beim Umstellen des Ölbetriebes auf Gasbetrieb der Luftdruck schlagartig bis auf den einstellbaren Vordruck erhöht und dann über die Rampenzeit gleichmäßig bis zum Endausblasedruck gesteigert, so daß auch die Restbrennstoffmenge aus den Brennerdüsen nur langsam in den Brennraum eingeblasen wird, wodurch ein ungewollter Leistungsanstieg ausbleibt. Es kommt zu einer schondenden Umstellung der Betriebsarten, was wiederum die Lebensdauer der Turbine verlängert und deren Verfügbarkeit wesentlich erhöht.
Besonders vorteilhaft ist es, wenn in die Sekundärölleitungen jeweils ein Um- schaltventil mit einem Anschluß einerseits an eine Zuleitung zu einer Primärölleitung und anderseits an eine Rückleitung in den Ölsumpf eingebunden ist. Dieses für alle Sekundärölleitungen als Mehrfachumschaltventil vorgesehene Umschaltventil erlaubt es, die Sekundärölleitungen bei einer Feuerungstemperatur unterhalb einer bestimmten Mindesttemperatur den Primärölleitungen zuzu- schalten, so daß die gesamte Ölmenge den Primärdüsen zugefördert wird. Ab dem Erreichen der Mindesttemperatur gibt dann das Mehrfachumschaltventil die Sekundärölleitungen unter gleichzeitigem Abschluß der Zuleitungen zu den Primärölleitungen frei, wodurch im eingestellten Teilverhältnis der Primär- und Sekundarmengenteiler die Primär- und Sekundärdüsen aller Brennkammern exakt mit den erforderlichen Brennstoffteilmengen beaufschlagt werden. Schalten die Umschaltventile die Rückleitung in den Ölsumpf zu, werden auch die Zuleitungen zu den Primärölleitungen zugeschaltet, so daß sowohl die Primär- als auch die Sekundärölleitungen in den Ölsumpf entspannen können. Dadurch läßt sich verhindern, daß bei einer Betriebsumstellung das in den Primär- und Sekundärölleitungen eingesperrte Öl unkontrolliert in den Brennraum gedrückt wird, womit die CO-Emission der Gasflamme extrem anstiege und die Einhaltung der Emissionsgrenzen gefährdet wäre.
Um bei einer Umstellung von Öl- auf Gasbetrieb das Nachtropfen von Öl und Wasser zu verhindern bzw. schlagartig zu unterbrechen, sind in jeder Öl-, Wasser- und Luftleitung zu den Brenndüsen Rückschlagventile angeordnet und Rückschlagventile schützen auch vor einem Eindringen von Öl und Wasser in die Ausblaseluftleitungen. Bisher werden nun als Rückschlagventile Flachsitzrück- schlagventile verwendet, die mit einer Vielzahl an Verschraubungen jeweils in jeder Zuleitung direkt vor den Brenndüsen sitzen. Um diese Ventile gängig zu halten, muß die Gasturbine laut Betriebsanleitung regelmäßig auf Öl umgestellt werden, wodurch sich die Nachteile der Betriebsumstellung entsprechend summieren. Außerdem ist durch die Vielzahl von Verschraubungen nicht nur deren Hantieren umständlich und zeitaufwendig, sondern es kommt auch aufgrund der Undichtheiten zur Brandgefahr. Die Flachsitzrückschlagventile verkoken wegen des ständigen Kontaktes mit den Medien Wasser und Öl und der hohen Temperaturen verhältnismäßig leicht, was immer wieder zum Blockieren der Rückschlagventile oder zu einem unvollständigen Schließen führt, wodurch wiederum ein unterschiedlicher Massendurchsatz mit der Gefahr eines Abbren- nens der Brenndüsenflammrohre u. dgl. und der unkontrollierte Eintrag von Restöl oder Wasser in die Brennkammern mit der Gefährdung der Emissionsgrenzwerte zu befürchten sind. Ähnliches gilt für Primärverteilerventile, die die Primärölleitungen zu den Primärdüsen jeweils einer Brennkammer aufteilen. Um diese Nachteile zu vermeiden, ist den Primärdüsen einer Brennkammer ein Primäπtentilkopf mit Anschlußbohrungen für die über Rückschlagventile anschließbaren Primäröl-, -wasser- und -luftleitungen vorgeordnet, wobei Luftspülkanäle die Luftanschlußbohrung mit den Öl- und Wasseranschlußbohrungen verbinden, und ähnlich ist der Sekundärdüse einer Brennkammer ein Sekundär- ventilkopf mit Anschlußbohrungen für die über Rückschlagventile anschließbaren Sekundäröl-, -wasser- und -luftleitungen vorgeordnet, wobei Luftspülkanäle die Luftanschlußbohrungen mit den Öl- und Wasseranschlußbohrungen verbinden. Diese Ventilköpfe erlauben es, die Rückschlagventile zu einem Ventilblock zu vereinen und Kugelrückschlagventile statt der Flachsitzrückschlagventile zu verwenden. Durch geeignete Luftspülkanäle wird außerdem die Ausblaseluft von der Luftanschlußbohrung zu den Öl- und Wasseranschlußbohrungen geleitet, wo sie die entsprechenden Kugelrückschlagventile mit Ausblaseluft umspülen und sie vor einer Verkokung od. dgl. Funktionsstörung schützen. Durch das Ver- wenden von umspülten und gekühlten Kugelrückschlagventilen wird ein Blockieren oder ein mangelndes Schließen der Rückschlagventile verhindert, so daß die Notwendigkeit der regelmäßigen Betriebsumstellungen für die Gewährleistung der Ventilfunktionen unnötig sind, was zu enormen Kosteneinsparungen und zu einer Erhöhung der Verfügbarkeit führt. Die Ventilköpfe erleichtern weiters die Handhabung und Montage der Ventile, die Gefahr von Leckagen wird minimiert und das Platzangebot im Bereich der Brennkammerverrohrung entsprechend vergrößert.
Da im Bereich der ölführenden Leitungen häufig Schaltventile zum Einsatz kommen, die über Steuerventile hydraulisch angesteuert werden, besteht die Gefahr, daß bei einer Umschaltung von einer Ölbefeuerung auf eine Gasbefeuerung die dann nicht mehr betätigten Steuerventile, im allgemeinen Schieberventile, aufgrund einer thermischen Belastung verkleben und nach einem Zurückschalten der Gasturbine auf eine Ölbefeuerung nicht mehr einsatzfähig sind. Um trotz dieser Verklebungsgefahr die Steuerfähigkeit sicherzustellen, können beim Vorsehen von Steuerventilen für eine hydraulische Steuerung von Schaltventilen in den ölführenden Leitungen die Steuerventile bei geschlossenen Steuerleitungen zwischen den Steuer- und den Schaltventilen periodisch betätigbar sein, so daß durch die sich wiederholende Betätigung der Steuerventile deren Einsatz- bereitschaft gewährleistet werden kann. Während der Betätigung der Steuerventile müssen die die Schaltventile beaufschlagenden Steuerleitungen selbstverständlich geschlossen sein, um Fehlschaltungen auszuschließen. Eine weitere Verbesserung der Ausblasewirkung läßt sich dadurch erreichen, daß die Öl- und Wasseranschlußbohrungen zu einer Zufuhrbohrung zusammenlaufen, die sich in mehrere Teilbohrungen verzweigt und durch diese umfangsei- tig in einen Verteilerraum einmündet, von dem über ein Verteilerventil Düsenka- näle zu den Primärdüsen führen, wobei vorzugsweise in den Verteilerraum ein Ringeinsatz eingelegt ist. Das Aufteilen der Zufohrbohrung in Teilbohrungen vermeidet das Ansammeln größerer Restölmengen in Leitungen großen Querschnittes und die umfangseitig in den Verteilerraum eingeblasene Luft kann so - den gesamten Verteilerraum gut erfassen und sauber ausblasen. Dieses Aus- blasen wird durch den Ringeinsatz für den Verteilerraum weiter verbessert, da durch den im Querschnitt keilförmigen Ringeinsatz Toträume beseitigt und die verbleibenden Restölmengen minimiert werden können. Da außerdem durch den Ventilkopf die Strömungswege zu den Brenndüsen möglichst kurz bleiben, wird insgesamt die Restölmenge weiter verringert und das Ausblasen dieser Rest- ölmenge erleichtert.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist der Erfindungsgegenstand beispielsweise veranschaulicht, und zwar zeigen
Fig. 1 ein Anlagenschema einer Gasturbine mit einem erfindungsgemäßen
Ölversorgungssystem, Fig. 2 das Schema dieses Ölversorgungssystems in größerem Maßstab und Fig. 3 ein Blockschaltbild zur periodischen Betätigung eines Steuerventil es zur hydraulischen Beaufschlagung eines Schaltventiles in einer ölführenden
Leitung.
Bester Weg zur Ausführung der Erfindung
Eine Gasturbine 1 mit Turbinenteil 2 und Kompressorteil 3 ist beispielsweise mit zehn Brennkammern 4 ausgerüstet, die jeweils mehrere, beispielsweise fünf, entlang des Umfangs verteilte Primärdüsen 5 und eine zentrale Sekundärdüse 6 aufnehmen, wobei die Brennkammern 4 wahlweise über ein Gasversorgungssystem 7 gasbefeuerbar oder über ein Ölversorgungssystem 8 ölbefeuerbar sind. Das Ölversorgungssystem 8 umfaßt eine Olzufuhreinrichtung 10, eine Wasserzufuhreinrichtung 20 und eine Ausblaseeinrichtung 30, welche Einrichtungen für jede Brennkammer 4 eine Primärleitung für die Primärdüsen 5 und eine Sekundärleitung für die Sekundärdüsen 6 aufweisen, von welchen beispielsweise zehn Primärleitungen und zehn Sekundärleitungen der Einfachheit halber jeweils immer nur eine dargestellt ist.
Die Olzufuhreinrichtung 10 weist eine über eine Ölpumpe 101 und einen Ölregler 102 führende Ölversorgungsleitung 103 auf, an die parallel ein Primärmengen- teuer 104 und ein Sekundarmengenteiler 105 angeschlossen sind. Diese Mengenteiler, beispielsweise Zahnradmengenteiler, sind miteinander über ein Getriebe 106 im Sinne eines bestimmten, vorzugsweise einstellbaren Teilverhältnisses antriebsverbunden, wobei die Mengenteiler jeweils der Brennkammeranzahl entsprechend viele Teilleitungen, beispielsweise zehn Primärölleitungen 107 und zehn Sekundärölleitungen 108 mit genau aufgeteilten Teilölmengen beaufschlagen. Die Primärölleitungen 107 führen zu einem den Primärdüsen 5 jeder Brennkammer 4 vorgeordneten Primärventil köpf 40 und die Sekundärölleitungen 108 zu einem den Sekundärdüsen 6 der Brennkammern 4 vorgeordneten Sekundärventilkopf 50. Außerdem ist in jede der Sekundärölleitungen 108 ein Umschalt- ventil 109 eingebunden, welche Umschaltventile zu einem Mehrfachumschaltventil zusammengefaßt sind und jeweils die Sekundärölleitungen 108 freigeben oder wahlweise ihren Anschluß einerseits an eine Zuleitung 1010 an eine Primärölleitung 107 oder anderseits an eine Rückleitung 1011 in den Ölsumpf 1012 erlauben.
Die Wasserzufuhreinrichtung 20 umfaßt eine über eine Einspeisepumpe 201 und einen Druckregler 202 führende Wasserversorgungsleitung 203, an die zwei Mengenteiler 204, 205 zur Aufteilung der Wasserversorgungsleitung in der Brennkammeranzahl entsprechend viele Primärwasserleitungen 206 und Sekun- därwasserleitungen 207 anschließen, wobei die Mengenteiler 204, 205 in einem dem Teilverhältnis von Primär- und Sekundarmengenteiler 104, 105 entsprechenden Teilverhältnis wirksam sind und eine exakte Wassermengenaufteilung auf die Primär- und Sekundärwasserleitungen in Abhängigkeit von den jeweiligen die Primär- und Sekundärölleitungen beaufschlagenden Ölmengen vornehmen. Die Primärwasserleitungen 206 münden ebenfalls in den Primärventilkopf 40 und die Sekundärwasserleitungen 207 in den Sekundärventilkopf 50.
Die Ausblaseeinrichtung 30 weist eine über den Kompressorteil 3 der Gasturbine 1 luftbeaufschlagbare, über einen nicht weiter dargestellten zusätzlichen Luftkompressor und einen Luftkühler führende Luftversorgungsleitung 301 auf, die sich in zwei Versorgungsäste 302, 303 aufteilt, welche Versorgungsäste jeweils über ein Proportionalminderdruckventil 304, 305 und ein Zuschaltventil 306, 307 zu einer Ringleitung 308, 309 führen, von welcher Ringleitung 308 der Brenn- kammeranzahl entsprechend viele Primärluftleitungen 3010 und von welcher Ringleitung 309 der Brennkammeranzahl entsprechend viele Sekundärluftleitungen 3011 abzweigen, die jeweils wiederum in den Primäπ/entilkopf 40 bzw. den Sekundärventil köpf 50 der Brennkammern 4 einmünden.
Die Primärventilköpfe 40 sind mit Anschlußbohrungen 401 , 402, 403 für die Primäröl-, -wasser- und -luftleitungen 107, 206, 3010 versehen und mit Kugelrückschlagventilen 404 für diese Leitungen ausgestattet, wobei von der Luftanschlußbohrung 403 Luftspülkanäle 405 zu den Öl- und Wasseranschlußbohrungen 401 , 402 ausgehen. Die Ölanschlußbohrung 401 läuft mit der Wasser- anschlußbohrung 402 zu einer Zufuhrbohrung 406 zusammen, die sich in mehrere Teilbohrungen 407 verzweigt und über diese umfangseitig in einen Verteilerraum 408 mündet. Aus dem Verteilerraum führen über ein Verteilerventil 409 Düsenkanäle 4010 zu den Primärdüsen 5, in welchem Verteilerraum 408 ein Ringeinsatz 4011 eingelegt sein kann.
Der Sekundärventilkopf 50 weist Anschlußbohrung 501 , 502, 503 für die über Rückschlagventile 504 anschließenden Sekundäröl-, -wasser- und -luftleitungen 108, 207, 3011 auf, wobei Luftspülkanäle 505 die Luftanschlußbohrung 503 mit den Öl- und Wasseranschlußbohrungen 501 , 502 verbinden. Vom Sekundärven- tilkopf 50 führt dann ein Düsenkanal 506 zur Sekundärdüse 6.
Bei Ölbetrieb der Gasturbine wird Öl über die Versorgungsleitung 103 mit entsprechendem Druck und in erforderlicher Menge zugefördert und die Primär- und Sekundarmengenteiler 104, 105 teilen die Ölmenge im vorbestimmten Mengenverhältnis, beispielsweise 60 : 40, auf die Primär- bzw. Sekundarolleitungen auf. Bis zu einer bestimmten Feuerungsmindesttemperatur ist das Mehrfachumschaltventil 109 so geschaltet, daß die Sekundärölleitungen 108 an die Zuleitung 1010 angeschlossen sind und daher die Primär- und Sekundäröl menge gemeinsam durch die Primärölleitung 107 den Brennkammern zufließen. Bei Überschreiten dieser Mindesttemperatur schaltet das Mehrfachventil 109 um und gibt die Sekundärölleitung 108 frei, so daß nun in entsprechender Aufteilung Primäröl bzw. Sekundäröl über die Primärölleitungen 107 und die Sekundärölleitungen 108 den Primärdüsen bzw. Sekundärdüsen der Brennkammern zu- gefördert wird. Ab dem Zuschalten der Sekundärdüsen wird auch die Wasserzufuhreinrichtung 20 aktiviert, so daß das über die Speisepumpe 201 mit entsprechendem Druck und entsprechender Menge zugeförderte entsalzte Wasser durch die Mengenteiler 204, 205 auf die Primärwasserleitungen 206 und die Sekundärwasserleitungen 207 aufgeteilt und in Abhängigkeit von der jeweils gelieferten Ölmenge bis zu einem Verhältnis von 0,85 den Brennkammern zugefördert wird, wo das Wasser in den Primär- bzw. Sekundärventilköpfen 40, 50 mit dem Öl vermischt und gemeinsam mit dem Öl die Primär- bzw. Sekundärdüsen 5, 6 beaufschlagt, was eine Flammenkühlung und eine Reduktion des thermischen NOx in den Brennkammern mit sich bringt. Wird der Betrieb von Öl auf Gas umgestellt, was bei beliebigen Feuerungstemperaturen erfolgen kann, wird die Öl- und Wasserzufuhr abgeschaltet, wobei das Umschaltventil 109 die Sekundärölleitung 108 und die Zuleitung 1010 an die Rückleitung 1011 anschließt, so daß sowohl die Primärölleitung 107 als auch die Sekundärölleitung 108 in den Ölsumpf 1012 entspannen. Gleichzeitig mit dem Abschalten von Öl- und Wasserzufuhr wird über die Ausblaselufteinrichtung 30 Ausblaseluft vom Kompressorteil der Turbine abgeleitet und die Luftversorgungsleitung 301 beaufschlagt. Ausblaseluft wird so durch die Versorgungsäste 302, 303 in einem durch die Proportionaldruckminderventile 304, 305 entsprechend auf den Brennkammerdruck abgesenkten Druck über die Primär- bzw. Sekundärluftleitungen 3010, 3011 den Primär- bzw. Sekundärdüsenköpfen 40, 50 zugeführt, wo sie bei einem sich vom Brennkammerdruck bis zum entsprechend erhöhten Endausblasedruck steigernden Druck die Restölmengen in den Rückschlagventilbereichen und in den Kanälen und Bohrungen der Ventilköpfe sanft ausbläst und dadurch den auf Gasbetrieb bereits umgestellten Verbrennungsvorgang unbeeinträchtigt läßt. Um die beispielsweise für die Fördermengenregelung oder andere Schaltvorgänge in den ölführenden Leitungen 60 eingesetzten Schaltventile 61 über Steuerventile 62 auch nach einer längeren Unterbrechung sicher ansteuern zu können, sind gemäß der Fig. 3 in den hydraulischen Steuerleitungen 63 für die Ölzu- und -abfuhr zwischen dem Schaltventil 61 und dem Steuerventil 62 Absperrventile 64 vorgesehen, die vorteilhaft als Absperrkugelhähne ausgebildet sind. Damit wird es möglich, bei gesperrten Steuerleitungen 63 das Steuerventil 62 über eine Steuereinrichtung 65 periodisch zu betätigen, die einerseits den Stelltrieb 66 für das Steuerventil 62 und anderseits die Stelltriebe 67 für die Absperrventile 64 beaufschlagt. Die beispielsweise elektromagnetische Betätigung des Steuerventil es 62 über den Stelltrieb 66 bewirkt bei einer periodischen Wiederholung, daß sich das Stellglied des Steuerventil es 62, beispielsweise ein Steuerkolben, nicht im Gehäuse festkleben kann, so daß nach dem Umschalten der Gasturbine auf eine Ölbefeuerung die Steuerfähigkeit des Ölversorgungs- Systems gesichert ist.

Claims

P a t e n t a n s p r ü c h e
1. Ölversorgungssystem für eine Gasturbine, deren primär- und sekundärdü- senbestückte Brennkammern wahlweise gas- oder ölbefeuerbar sind, mit einer Olzufuhreinrichtung, einer Wasserzufuhreinrichtung und einer Ausblaseeinrichtung, welche Olzufuhreinrichtung eine Ölversorgungsleitung mit einem an die Brennkammeranzahl angepaßten Mengenteiler, einzelne, vom Mengenteiler zu den Brennkammern führende Primärölleitungen zur Ölbeaufschlagung der Primärdüsen und zu den Primärölleitungen parallelverlaufende, zu den Brennkammern führende Sekundärölleitungen zur Ölbeaufschlagung der Sekundärdüsen aufweist, welche Wasserzufuhreinrichtung eine Wasserversorgungsleitung und der Brennkammeranzahl entsprechend viele, über einen Verteiler an die Wasserversorgungsleitung angeschlossene Primärwasserleitungen und Sekundärwasserleitungen zur Wasserbeaufschlagung der Primär- und Sekundärdüsen bzw. der zugehörigen Brennzonen aufweist und welche Ausblaseeinrichtung eine sich in zwei Versorgungsäste aufteilende Luftversorgungsleitung und zwei an die Versorgungsäste über Zuschaltventile angeschlossene Ringleitungen mit jeweils der Brennkammeranzahl entsprechend vielen abzweigenden Primärluftleitungen und Sekundärluftleitungen zum Ausblasen der Primär- bzw. Sekundärdüsen aufweist, dadurch gekennzeichnet, daß die Olzufuhreinrichtung (10) zusätzlich zum Primärmengenteiler (104) für die Primärölleitungen (107) einen an die Ölversorgungsleitung (103) angeschlossenen, an die Brennkammeranzahl angepaßten Sekundarmengenteiler (105) für die Sekundärölleitungen (108) mit gegenüber dem Primärmengenteiler (104) einstellbarem Teilverhältnis umfaßt und/oder daß in der Wasserzufuhreinrichtung (20) als Verteiler für die Primärbzw. Sekundärwasserleitungen (206, 207) Mengenteiler (204, 205) oder dreh- zahlgesteuerte Verteilerpumpen mit einstellbarem Teilverhältnis vorgesehen sind und/oder daß die Ausblaseeinrichtung (30) mit Proportionalminderdruckventilen (304, 305) für die Versorgungsäste (302, 303) ausgestattet ist.
2. Ölversorgungssystem nach Anspruch 1 , dadurch gekennzeichnet, daß in die Sekundärölleitungen (108) jeweils ein Umschaltventil (109) mit einem Anschluß einerseits an eine Zuleitung (1010) zu einer Primärölleitung (107) und anderseits an eine Rückleitung (1011) in den Ölsumpf (1012) eingebunden ist.
3. Ölversorgungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß den Primärdüsen (5) einer Brennkammer (4) ein Primärventilkopf (40) mit Anschlußbohrungen (401 , 402, 403) für die über Rückschlagventile (404) anschließbaren Primäröl-, -wasser- und -luftleitungen (107, 206, 3010) vorgeordnet ist, wobei Luftspülkanäle (405) die Luftanschlußbohrung (403) mit den Öl- und Wasseranschlußbohrungen (401 , 402) verbinden.
4. Ölversorgungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß beim Vorsehen von Steuerventilen (62) für eine hydraulische Steuerung von Schaltventilen (61) in den ölführenden Leitungen (60) die Steuerventile (62) bei geschlossenen Steuerleitungen (63) zwischen den Steuer- und den Schaltventilen (61, 62) periodisch betätigbar sind.
5. Ölversorgungssystem nach Anspruch 3, dadurch gekennzeichnet, daß die Öl- und Wasseranschlußbohrungen (401 , 402) zu einer Zufuhrbohrung (406) zusammenlaufen, die sich in mehrere Teilbohrungen (407) verzweigt und durch diese umfangseitig in einen Verteilerraum (408) einmündet, von dem über ein Verteilerventil (409) Düsenkanäle (4010) zu den Primärdüsen (5) führen, wobei vorzugsweise im Verteilerraum (408) ein Ringeinsatz (4011) eingelegt ist.
6. Ölversorgungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Sekundärdüse (6) einer Brennkammer (4) ein Sekundärventilkopf (50) mit Anschlußbohrungen (501 , 502, 503) für die über Rückschlagventile (504) anschließbaren Sekundäröl-, -wasser- und -luftleitungen (108, 207, 3011) vorgeordnet ist, wobei Luftspülkanäle (505) die Luftanschlußbohrung (503) mit den Öl- und Wasseranschlußbohrungen (501 , 502) verbinden.
PCT/AT1999/000134 1998-05-29 1999-05-27 Ölversorgungssystem für eine gasturbine WO1999063209A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/701,273 US6526742B1 (en) 1998-05-29 1999-05-27 Oil and water supply system for a gas turbine
DE59902200T DE59902200D1 (de) 1998-05-29 1999-05-27 Ölversorgungssystem für eine gasturbine
AU40223/99A AU4022399A (en) 1998-05-29 1999-05-27 Oil supply system for a gas turbine
EP99923296A EP1084337B1 (de) 1998-05-29 1999-05-27 Ölversorgungssystem für eine gasturbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0092498A AT408787B (de) 1998-05-29 1998-05-29 Ölversorgungssystem für eine gasturbine
ATA924/98 1998-05-29

Publications (1)

Publication Number Publication Date
WO1999063209A1 true WO1999063209A1 (de) 1999-12-09

Family

ID=3502983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1999/000134 WO1999063209A1 (de) 1998-05-29 1999-05-27 Ölversorgungssystem für eine gasturbine

Country Status (6)

Country Link
US (1) US6526742B1 (de)
EP (1) EP1084337B1 (de)
AT (1) AT408787B (de)
AU (1) AU4022399A (de)
DE (1) DE59902200D1 (de)
WO (1) WO1999063209A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098140B1 (de) * 1999-11-05 2010-08-04 General Electric Company Verfahren und Vorrichtung für die gestufte Versorgung von Gasturbinenbrennstoffdüsen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938425B2 (en) * 2003-08-11 2005-09-06 Siemens Westinghouse Power Corporation System and method for controlling water injection in a turbine engine
DE102004004135A1 (de) * 2004-01-28 2005-09-29 Alstom Technology Ltd Fördervorrichtung
US7640379B2 (en) * 2005-02-12 2009-12-29 Broadcom Corporation System method for I/O pads in mobile multimedia processor (MMP) that has bypass mode wherein data is passed through without being processed by MMP
US7352198B2 (en) * 2006-01-18 2008-04-01 Electroglas, Inc. Methods and apparatuses for improved stabilization in a probing system
FR2950934B1 (fr) * 2009-10-06 2013-07-26 Ge Energy Products France Snc Turbine a gaz
EP2441936A1 (de) * 2010-10-12 2012-04-18 GE Energy Products France SNC Gasturbine mit Wassereinspritzsteuerung
US10557413B1 (en) * 2014-11-26 2020-02-11 Caldwell Tanks, Inc. Systems and methods for controlling liquid flow to a turbine fogging array
CN109854387A (zh) * 2019-03-21 2019-06-07 贵州黎阳天翔科技有限公司 一种小型涡喷柴油发动机分段供油装置和分段燃烧方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214435A (en) * 1977-07-25 1980-07-29 General Electric Company Method for reducing nitrous oxide emissions from a gas turbine engine
US4259837A (en) * 1979-06-13 1981-04-07 General Electric Company Water and steam injection system for emission control of gas turbines
US4603548A (en) * 1983-09-08 1986-08-05 Hitachi, Ltd. Method of supplying fuel into gas turbine combustor
EP0517646A2 (de) * 1991-05-03 1992-12-09 United Technologies Corporation Zufuhranlage für die Brennstoff- und Wassereinspritzung in den Verbrennungsteil einer rotierenden Maschine und Verfahren zum Betrieb der Brennstoffzufuhranlage
EP0590829A2 (de) * 1992-09-15 1994-04-06 Westinghouse Electric Corporation Methode und Vorrichtung zur automatischen NOx Kontrolle bei Gasturbinen
US5469700A (en) * 1991-10-29 1995-11-28 Rolls-Royce Plc Turbine engine control system
US5617719A (en) * 1992-10-27 1997-04-08 Ginter; J. Lyell Vapor-air steam engine
DE19548739A1 (de) * 1995-12-23 1997-06-26 Asea Brown Boveri Verfahren zur Brennstoffverteilung in einer axial gelagerten Brennkammer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9025778D0 (en) * 1990-11-27 1991-01-09 Rolls Royce Plc Improvements in or relating to gas generators
EP0915406B1 (de) * 1997-11-10 2003-05-07 ALSTOM (Switzerland) Ltd Verfahren zur Überwachung des Versorgungssystems einer Gasturbine mit Mehrbrennersystem sowie Vorrichtung zur Durchführung des Verfahrens
EP0952317A3 (de) * 1998-04-21 2002-04-17 Mitsubishi Heavy Industries, Ltd. Spülsystem für die Kraftstoffzufuhr einer Gasturbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214435A (en) * 1977-07-25 1980-07-29 General Electric Company Method for reducing nitrous oxide emissions from a gas turbine engine
US4259837A (en) * 1979-06-13 1981-04-07 General Electric Company Water and steam injection system for emission control of gas turbines
US4603548A (en) * 1983-09-08 1986-08-05 Hitachi, Ltd. Method of supplying fuel into gas turbine combustor
EP0517646A2 (de) * 1991-05-03 1992-12-09 United Technologies Corporation Zufuhranlage für die Brennstoff- und Wassereinspritzung in den Verbrennungsteil einer rotierenden Maschine und Verfahren zum Betrieb der Brennstoffzufuhranlage
US5469700A (en) * 1991-10-29 1995-11-28 Rolls-Royce Plc Turbine engine control system
EP0590829A2 (de) * 1992-09-15 1994-04-06 Westinghouse Electric Corporation Methode und Vorrichtung zur automatischen NOx Kontrolle bei Gasturbinen
US5617719A (en) * 1992-10-27 1997-04-08 Ginter; J. Lyell Vapor-air steam engine
DE19548739A1 (de) * 1995-12-23 1997-06-26 Asea Brown Boveri Verfahren zur Brennstoffverteilung in einer axial gelagerten Brennkammer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098140B1 (de) * 1999-11-05 2010-08-04 General Electric Company Verfahren und Vorrichtung für die gestufte Versorgung von Gasturbinenbrennstoffdüsen

Also Published As

Publication number Publication date
EP1084337B1 (de) 2002-07-31
EP1084337A1 (de) 2001-03-21
ATA92498A (de) 2001-07-15
DE59902200D1 (de) 2002-09-05
AT408787B (de) 2002-03-25
US6526742B1 (en) 2003-03-04
AU4022399A (en) 1999-12-20

Similar Documents

Publication Publication Date Title
DE60217768T2 (de) Kraftstofffördervorrichtung
DE60310284T2 (de) Kraftstoffzufuhrsystem
EP1781988B1 (de) Hybridbrennerlanze
DE3543908C1 (de) Einrichtung zur Steuerung der Brennstoffzufuhr zum Nachbrenner eines Nebenstrom-Gasturbinenstrahltriebwerkes
EP1319895B1 (de) Magervormischbrenner für eine Gasturbine sowie Verfahren zum Betrieb eines Magervormischbrenners
WO2010066516A2 (de) Brennstofflanze für einen brenner
DE2046810B2 (de) Zweiwellen-Gasturbinenanlage
EP2103876A2 (de) Brenner für Gasturbine mit Spülmechanismus für die Brennstoffdüse
CH707462A2 (de) Brennstoffzufuhrsysteme für eine Gasturbinenantriebsmaschine.
CH702737B1 (de) Brennkammer mit zwei Brennräumen.
EP1084337B1 (de) Ölversorgungssystem für eine gasturbine
WO2012007341A1 (de) Gasturbine mit einem sekundärluftsystem und verfahren zum betreiben einer solchen gasturbine
EP2071156B1 (de) Brennstoffverteilungssystem für eine Gasturbine mit mehrstufiger Brenneranordnung
EP1855054B1 (de) Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
EP0900351B1 (de) Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer
EP0974789B1 (de) Verfahren zum Betrieb einer Gasturbinenbrennkammer mit flüssigem Brennstoff
DE2252980A1 (de) Treibstoffverteilungssystem fuer gasturbinentriebwerke
DE60132922T2 (de) Verfahren und vorrichtung zur versorgung einer brennkammer mit brennstoff
DE102004027702A1 (de) Injektor für Flüssigbrennstoff sowie gestufter Vormischbrenner mit diesem Injektor
CH705822B1 (de) Axialverdichter für eine Strömungsmaschine, insbesondere eine Gasturbine.
EP1740806B1 (de) Verfahren zum kontinuierlichen Betreiben einer Flüssigkeitsfördervorrichtung
DE4418680C2 (de) Brennstoffversorgungseinrichtung für ein Turbo-Strahltriebwerk mit Nachbrenner
DE2841375C2 (de) Brennstoffversorgungsanlage für Gasturbinentriebwerke von Flugzeugen
DE2906223A1 (de) Brennstoffsteuerung fuer turbinen-nachbrenner
WO2011036205A1 (de) Brennstoffleitungssystem, verfahren zum betrieb einer gasturbine und ein verfahren zum spülen des brennstoffleitungssystems einer gasturbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999923296

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09701273

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999923296

Country of ref document: EP

ENP Entry into the national phase

Ref country code: AT

Ref document number: 1999 9048

Date of ref document: 19991209

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 19999048

Country of ref document: AT

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999923296

Country of ref document: EP