EP0900351B1 - Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer - Google Patents

Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer Download PDF

Info

Publication number
EP0900351B1
EP0900351B1 EP19970923092 EP97923092A EP0900351B1 EP 0900351 B1 EP0900351 B1 EP 0900351B1 EP 19970923092 EP19970923092 EP 19970923092 EP 97923092 A EP97923092 A EP 97923092A EP 0900351 B1 EP0900351 B1 EP 0900351B1
Authority
EP
European Patent Office
Prior art keywords
fuel
fuel injection
combustion chamber
accordance
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970923092
Other languages
English (en)
French (fr)
Other versions
EP0900351A1 (de
Inventor
F. Richard Emmons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP0900351A1 publication Critical patent/EP0900351A1/de
Application granted granted Critical
Publication of EP0900351B1 publication Critical patent/EP0900351B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2205/00Pulsating combustion
    • F23C2205/10Pulsating combustion with pulsating fuel supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86549Selective reciprocation or rotation

Definitions

  • the invention relates to a method for fuel injection in a staged Gas turbine combustor with separate fuel injectors for each level, with at least one level for certain operating conditions can be switched off by interrupting the fuel supply. Furthermore, the Invention a fuel injection device for performing the invention Fuel injection process. To the known state of the Technology is only referred to WO 95/17632 by way of example.
  • Gas turbine combustion chambers in particular ring combustion chambers from Gas turbines with staged combustion or staged fuel injection work are becoming increasingly important.
  • a pilot combustion chamber and a main combustion chamber are provided, which each form a so-called level.
  • the Pilot combustion chamber has one or more pilot burners as the first stage, which in the preferred application of an annular combustion chamber from an annular arranged fuel injection nozzles exist, also has the second Stage, namely the main combustion chamber, several main burners, too in the form of a plurality of injection nozzles, preferably arranged in a ring again.
  • FIG. 2 A schematic diagram for such a stepped gas turbine combustion chamber shows the attached Fig. 2.
  • These two walls 20, 21 are still of envelope walls 20a, 21a which ultimately also surround the combustion chamber inlet 22a on the left and define the combustion chamber outlet 22b on the right-hand side.
  • pilot burners 26a At lower gas turbine load points, only the pilot burners 26a are operated, which means that the injectors of the main burners 26b are not supplied with fuel.
  • the main burners 26b are operated in addition to the pilot burners 26a, so that their injection nozzles are then supplied with fuel.
  • the pilot combustion chamber 25a which is also operated solely for starting the gas turbine and for starting up in idle mode, is usually operated in the entire operating map of the gas turbine, in particular flight gas turbine, in order to create an ignition source for the main burners 26b, which are only switched on as required .
  • staged combustion is to minimize pollutant emissions, especially NO x . This is achieved in that the respective burner size can be better adapted to the respective power requirement.
  • the combustion temperature should be as low as possible, which can be achieved by targeted air supply (admixing air 28) into the combustion zone.
  • the respective stages namely the pilot burners 26a and the main burners 26b, are designed for special air-fuel ratios. At low load points of the gas turbine, in which only relatively little fuel is burned overall, the air-fuel ratio coming to the main burners 26b would be too high to be able to support a sensible combustion at all. The main burners 26b are therefore only switched on at higher load points of the gas turbine.
  • FIG. 3 According to which strategy the individual burners, namely the pilot burners 26a as well as the main burners 26b are supplied with fuel, is shown in FIG. 3 shown.
  • the total fuel flow is on the abscissa of this diagram plotted for the two burners, on the ordinate the percentage Share of the pilot burner 26a or the main burner 26b in this Sum fuel flow.
  • the corresponding characteristic of the pilot burner 26a is designated by the letter A, that of the main burner 26b with the letter B. It can be seen that with initially only a small total fuel flow, d. H. in the left section of this diagram only the pilot burners 26a are operated so that their share in the total fuel flow Is 100%. With increasing total fuel flow the main burners 26b are now switched on, specifically at the switch-on point Z.
  • At least the stage that can be switched off ie. H. prefers the Main combustion chamber 25b explained above, with pulsed fuel injection operable.
  • the fuel will thus introduced into the combustion chamber virtually clocked, the pulsation frequency are in the range between a single Hz to a few 100 Hz can.
  • This pulsed injection at least theoretically, has one as well pulsed combustion.
  • combustion pulse is a favorable fuel-air ratio adjustable. Because not at least with low fuel quantities more continuously, but only occasionally fuel is injected, can thus when setting favorable fuel-air ratios overall significantly less fuel is injected than with a conventional one continuous injection is possible.
  • connection point Z also no instabilities To be feared, so that on the one hand a smooth transition when switching on the second stage can be achieved and on the other hand actually for each operating point or thrust value a defined amount of fuel in the combustion chamber is introduced regardless of whether it is an increase in thrust or a thrust redemption.
  • the pulsation frequency which should preferably be variable, in a variety set a favorable combustion from operating points can, preferably above the characteristic frequencies of possible combustion chamber vibrations, so that no negative Effects on combustion efficiency or on thrust as well as the generation of noise. Rather, it is always a combustion achievable with a low degree of efficiency, since for every combustion or injection pulse a favorable fuel-air ratio is present. While in the usual continuous fuel injection today the minimum value of the Fuel throughput due to the instability of the combustion lean fuel-air mixture is determined in an inventive pulsed fuel injection for each fuel pulse a larger one Air-fuel ratio realizable, so that through targeted selection of Pulsation frequency even with a significantly lower total fuel supply still a stable combustion or a series of stable combustion impulses is achievable.
  • the pulsation frequency of the discontinuous Fuel injection can be varied in a certain period of time amount of fuel injected to the respective operating point of the To be able to adapt the gas turbine. But it is also desirable to work with everyone Injection pulse, the amount of fuel that can be introduced can vary there are several options for this. For one, at a constant Fuel quantity per unit of time the injection duration can be changed to others can be introduced with a constant injection duration Amount of fuel to be changed. Of course it is also possible to combine these two strategies, as well as additionally the pulsation frequency can be adjusted so that overall by the many possible variations for each operating point of the gas turbine optimal fuel injection can be selected in each case. Be there pointed out that in high-load operating points of course from pulsed injection to continuous fuel injection can be switched.
  • pulsed fuel injection is also to be had pointed out.
  • the pulsation frequency namely the usual combustion frequencies are controlled in such a way that the so-called "combustion hum" that occurs when the combustion is unstable Low fuel flow can occur from the characteristic frequencies resulting from possible combustion chamber vibrations, minimized can be.
  • the first stage or pilot combustion chamber which is usually not in certain Operating states is switched off with a continuous fuel injection can or should work, especially one safe ignition of the fuel-air mixture in the second stage or Main combustion chamber to ensure.
  • An advantageous fuel injection device for performing such pulsed fuel injection can be done from an electromagnetic and / or hydraulically operated fuel injector, the The time and duration of the opening can be specifically adjusted.
  • Such fuel injectors are known from reciprocating internal combustion engines. Such fuel injectors can now be modified accordingly used to either direct the fuel into the combustion chamber to inject a gas turbine or they can be an essentially common one Be upstream fuel injector.
  • Pulsation control valve which is a conventional in the Combustion chamber opening fuel injector is connected upstream.
  • this injection nozzle can have a metering valve be connected upstream, it being particularly advantageous for the pulsation control valve and to combine the dosing valve in one component, which is referred to below as "pulse dosing device”.
  • FIG. 1 A preferred embodiment for such a pulse meter is in Fig. 1 shown in a principle section and is explained in more detail below.
  • Reference number 1 denotes a cylinder of the pulse dispenser described, within which a control piston 2 is rotatable about the cylinder axis 3 and is arranged displaceably in the direction of the cylinder axis 3.
  • a cylinder wall opening 4 leads into the interior of the cylinder 1 Fuel can be introduced according to arrow 18a, via a further control window 5 designated breakthrough in the cylinder wall is fuel from the cylinder interior Removable according to arrow 18b.
  • the cylinder wall opening 4 and the control window 5 are one with the fuel supply system switchable stage of a stepped gas turbine combustion chamber connected, the fuel discharged via the control window 5 (arrow 18b) to the Fuel injection nozzles led to this switchable combustion chamber stage becomes.
  • the control piston 2 is hollow at least in sections, so that there is a piston interior 6, which is only shown in broken lines, in which as can be seen, fuel that flows in accordance with arrow 18a over the wall opening 4 in flowed into the interior of the cylinder 1, can reach. So this piston interior 6, which is designed here in the form of two bores, with is connected to the gas turbine fuel supply system. At the At least one control slot 7 is provided on the outer wall of the control piston 2. the one with the piston interior 6 or with the corresponding bores communicates. This allows fuel to flow through the wall opening 4 is brought out, ultimately exit through the control slot 7.
  • the amount of fuel discharged via the control window 5 can be also by the frequency of rotation of the control piston 2 or control slot 7 are influenced. However, with regard to certain boundary conditions a certain rotation frequency is desired, so this is a preferred setting the amount of fuel delivered per fuel pulse is possible that the control piston 2 along the cylinder axis 3 in or against the direction of the arrow 14 is moved. This allows the effective length I of the control slot 7, via which this comes to cover with the control window 5, to be changed. With a larger value of length I becomes a larger one Amount of fuel discharged through the control window 5, with a smaller one Length I a smaller amount of fuel.
  • the control piston 2 can be set in rotation about the cylinder axis 3 from the gearbox of the gas turbine, but also, for example, from an electric motor, of which only the output pinion 8 is shown, with which a gear 9 meshes, which via a stub shaft 10 with a so-called.
  • Guide extension 11 of the control piston 2 is connected. This leadership process 11 is also guided within the cylinder 1 and has one Front side 12 'on which a hydraulic medium with constant pressure above this guide extension 11 via a control opening 13 'in reaches the interior of the cylinder 1, acts.
  • a comparable one Control opening 13 is located below the control piston 2 in the cylinder 1, see above that also act on this lower end face 12, a hydraulic medium can.
  • this can be as well as a variety of details, particularly constructive Kind of quite different from this shown embodiment be designed without leaving the content of the claims.
  • Essential is rather that in general at least the stage that can be switched off tiered gas turbine combustor with pulsed fuel injection is operable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Eine Gasturbinen-Brennkammer weist Pilot-Brenner (26a) sowie Haupt-Brenner (26b) auf, wobei letztere durch Unterbrechung der Kraftstoffzufuhr abschaltbar sind. Insbesondere um Probleme im Übergangsbereich vom alleinigen Betrieb der Pilot-Brenner zum Betrieb sowohl der Pilot- als auch der Haupt-Brenner zu vermeiden, sind die Haupt-Brenner mit gepulster Kraftstoff-Einspritzung betreibbar. Durch gezielte Variation der Pulsationsfrequenz sowie der mit jedem Einspritz-Impuls eingebrachten Kraftstoffmenge können über einen weiten Betriebsbereich die Haupt-Brenner jeweils mit dem günstigsten Luft-Kraftstoff-Verhältnis betrieben werden. Angegeben ist auch ein besonders vorteilhafter Puls-Dosierer zur Erzeugung dieser gepulsten Kraftstoff-Einspritzung.

Description

Die Erfindung betrifft ein Verfahren zur Kraftstoff-Einspritzung in eine gestufte Gasturbinen-Brennkammer mit separaten Kraftstoff-Einspritzdüsen für jede Stufe, wobei zumindest eine Stufe für bestimmte Betriebszustände durch Unterbrechung der Kraftstoffzufuhr abschaltbar ist. Ferner betrifft die Erfindung eine Kraftstoffeinspritzvorrichtung zur Durchführung des erfindungsgemäßen Kraftstoff-Einspritzverfahrens. Zum bekannten Stand der Technik wird lediglich beispielshalber auf die WO 95/17632 verwiesen.
Im Dokument US-A-3 688 495 wird ein getaktetes Brennstoffventil für eine Gasturbine beschrieben.
Gasturbinen-Brennkammern, insbesondere Ring-Brennkammern von Gasturbinen, die mit gestufter Verbrennung bzw. gestufter Kraftstoff-Einspritzung arbeiten, gewinnen zunehmend an Bedeutung. Üblicherweise ist eine Pilot-Brennkammer sowie eine Haupt-Brennkammer vorgesehen, die jeweils eine sog. Stufe bilden. Selbstverständlich können neben diesen beiden Stufen noch weitere Abstufungen bzw. Stufen vorgesehen sein. Die Pilot-Brennkammer besitzt als erste Stufe einen oder mehrere Pilot-Brenner, die im bevorzugten Anwendungsfall einer Ring-Brennkammer aus ringförmig angeordneten Kraftstoff-Einspritzdüsen bestehen, ebenso besitzt die zweite Stufe, nämlich die Haupt-Brennkammer, mehrere Haupt-Brenner, ebenfalls in Form mehrerer vorzugsweise wieder ringförmig angeordneter Einspritzdüsen.
Eine Prinzipdarstellung für eine derartige gestufte Gasturbinen-Brennkammer zeigt die beigefügte Fig. 2. Hier ist die Brennkammer-Außenwand mit der Bezugsziffer 20 und die Brennkammer-Innenwand mit der Bezugsziffer 21 bezeichnet. Diese beiden Wände 20, 21 sind noch von Hüllwänden 20a, 21a umgeben, welche letztlich auch linksseitig den Brennkammer-Eintritt 22a und rechtsseitig den Brennkammer-Austritt 22b definieren. Ferner ist die Mittellinie 23 dieser als Ring-Brennkammer ausgebildeten Gasturbinen-Brennkammer dargestellt.
Innerhalb der linken Hälfte dieser Brennkammer ist eine Trennwandstruktur 24 vorgesehen. Zwischen dieser Trennwandstruktur 24 sowie der Mittelachse 23 liegt die sog. Pilot-Brennkammer 25a, während sich unterhalb dieser Trennwandstruktur 24 die sog. Haupt-Brennkammer 25b befindet. Der Pilot-Brennkammer 25a sind Pilot-Brenner 26a zugeordnet, während für die Haupt-Brennkammer 25b Haupt-Brenner 26b vorgesehen sind. Über diese Brenner 26a, 26b wird Kraftstoff bzw. ein Kraftstoff-Luft-Gemisch in die Brennkammern eingeführt, während ein Hauptluftstrom 27 über den Brennkammer-Eintritt 22a in die einzelnen Brennkammern 25a, 25b gelangt. Ferner kann Zumischluft 28 über Durchbrüche in der Außenwand 20, in der Innenwand 21, sowie in der Trennwandstruktur 24 in die einzelnen Brennkammern 25a, 25b eintreten. Das in der Pilot-Brennkammer 25a bzw. in der Haupt-Brennkammer 25b sowie in der Zusammenführung dieser beiden Brennkammern verbrannte Kraftstoff-Luft-Gemisch wird schließlich über den Brennkammer-Austritt 22b abgeführt.
In niedrigeren Lastpunkten der Gasturbine werden lediglich die Pilot-Brenner 26a betrieben, was bedeutet, daß die Einspritzdüsen der Haupt-Brenner 26b nicht mit Kraftstoff versorgt werden. In höheren Lastpunkten der Gasturbine werden zusätzlich zu den Pilot-Brennern 26a die Haupt-Brenner 26b betrieben, so daß deren Einspritzdüsen dann mit Kraftstoff versorgt werden. Üblicherweise wird die Pilot-Brennkammer 25a, die auch zum Starten der Gasturbine und zum Hochfahren in den Leerlauf alleinig betrieben wird, im gesamten Betriebskennfeld der Gasturbine, insbesondere Flug-Gasturbine betrieben, um eine Zündquelle für die nur bedarfsweise zugeschalteten Haupt-Brenner 26b zu schaffen. Der Zweck der gestuften Verbrennung liegt in der Minimierung von Schadstoffemissionen, insbesondere von NOx. Erreicht wird dies dadurch, daß die jeweilige Brennergröße besser an den jeweiligen Leistungsbedarf angepaßt werden kann. So sollte zur NOx-Reduzierung die Verbrennungstemperatur möglichst gering sein, was durch gezielte Luftzufuhr (Zumischluft 28) in die Verbrennungszone erreichbar ist. Dabei sind die jeweiligen Stufen, nämlich die Pilot-Brenner 26a bzw. die Haupt-Brenner 26b auf spezielle Luft-Kraftstoff-Verhältnisse hin ausgelegt. Bei niedrigen Lastpunkten der Gasturbine, in denen insgesamt nur relativ wenig Kraftstoff verbrannt wird, wäre das den Haupt-Brennern 26b zukommende Luft-Kraftstoff-Verhältnis zu groß, um überhaupt eine sinnvolle Verbrennung unterstützen zu können. Daher werden die Haupt-Brenner 26b erst in höheren Lastpunkten der Gasturbine zugeschaltet.
Nach welcher Strategie die einzelnen Brenner, nämlich die Pilot-Brenner 26a sowie die Haupt-Brenner 26b hierbei mit Kraftstoff versorgt werden, ist in Fig. 3 dargestellt. Auf der Abszisse dieses Diagrammes ist der Summen-Kraftstoff-Fluß für die beiden Brenner aufgetragen, auf der Ordinate der prozentuale Anteil der Pilot-Brenner 26a bzw. der Haupt-Brenner 26b an diesem Summen-Kraftstoff-Fluß. Die entsprechende Kennlinie des Pilot-Brenners 26a ist mit dem Buchstaben A bezeichnet, diejenige der Haupt-Brenner 26b mit dem Buchstaben B. Man erkennt, daß bei zunächst nur geringem Summen-Kraftstoff-Fluß, d. h. im linken Teilbereich dieses Diagrammes lediglich die Pilot-Brenner 26a betrieben werden, so daß deren Anteil am Summen-Kraftstoff-Fluß 100 % beträgt. Bei zunehmendem Summen-Kraftstoff-Fluß werden nun die Haupt-Brenner 26b zugeschaltet, und zwar im Zuschaltpunkt Z. Hierbei soll jedoch kein schlagartiger Leistungszuwachs erfolgen. Erwünscht ist vielmehr ein sanfter Leistungszuwachs, so daß mit einer zunächst relativ geringen Versorgung der Haupt-Brenner 26b gleichzeitig die Pilot-Brenner 26a mit einer geringeren Kraftstoffmenge versorgt werden. Dieser Zuschaltpunkt Z ist hinsichtlich seiner Auslegung daher äußerst kritisch, da sowohl in den Pilot-Brennern 26a, als auch in den Haupt-Brennern 26b stets ein geeignetes Kraftstoff-Luftverhältnis vorliegen muß. Die gleichen Überlegungen gelten dabei auch bezüglich einer Leistungsrücknahme der Gasturbine, wenn also die zunächst betriebenen Haupt-Brenner 26b wieder abgeschaltet werden. Um Instabilitäten in der direkten Umgebung dieses Zuschaltpunktes Z zu vermeiden, wird in der eingangs genannten WO 95/17632 hierfür eine Steuerung vorgeschlagen, die eine Hysterese enthält. Bei zunehmendem Schub werden die Haupt-Brenner erst bei einem höheren Gesamt-Kraftstoffdurchsatz zugeschaltet, als sie bei abnehmendem Schub abgeschaltet werden.
Da es jedoch erwünscht ist, in einem definierten Lastpunkt bzw. Schubzustand der Gasturbine stets auch einen definierten Kraftstoffdurchsatz zu haben - d. h. unabhängig davon, ob es sich um eine Schubzunahme oder um eine Schubrücknahme handelt -, hat sich die Erfindung die Aufgabe gestellt, eine andere Lösung für die oben geschilderte Problematik im Zusammenhang mit dem Zuschalten einer zweiten Stufe zu einer ersten Stufe aufzuzeigen.
Gelöst wird diese Aufgabe dadurch, daß zumindest die abschaltbare Stufe mit gepulster Kraftstoff-Einspritzung betreibbar ist. Geeignete Kraftstoffeinspritzvorrichtungen zur Durchführung dieses erfindungsgemäßen Kraftstoff-Einspritzverfahrens sind in den Ansprüchen 5 und 6 beschrieben, während die weiteren Unteransprüche vorteilhafte Aus- und Weiterbildungen zum Inhalt haben.
Erfindungsgemäß ist zumindest die abschaltbare Stufe, d. h. bevorzugt die oben erläuterte Haupt-Brennkammer 25b, mit gepulster Kraftstoff-Einspritzung betreibbar. Dies bedeutet, daß dann keine kontinuierliche, sondern eine diskontinuierliche Kraftstoff-Einspritzung erfolgt. Der Kraftstoff wird somit quasi getaktet in die Brennkammer eingeführt, wobei die Pulsationsfrequenz im Bereich zwischen einzigen Hz bis zu einigen 100 Hz liegen kann. Diese gepulste Einspritzung hat zumindest theoretisch eine ebenso gepulste Verbrennung zur Folge. Für jeden Einspritzimpuls bzw. für jeden sog. Verbrennungs-Impuls ist dabei ein günstiges Kraftstoff-Luft-Verhältnis einstellbar. Dadurch, daß zumindest bei niedrigen Kraftstoffmengen nicht mehr kontinuierlich, sondern nurmehr zeitweise Kraftstoff eingespritzt wird, kann somit bei Einstellung günstiger Kraftstoff-Luft-Verhältnisse insgesamt deutlich weniger Kraftstoff eingespritzt werden, als dies bei einer herkömmlichen kontinuierlichen Einspritzung möglich ist. Insbesondere sind aufgrund der gepulsten Einspritzung im sog. Zuschaltpunkt Z auch keine Instabilitäten zu befürchten, so daß zum einen ein weicher Übergang beim Zuschalten der zweiten Stufe erzielbar ist und zum anderen tatsächlich für jeden Betriebspunkt bzw. Schubwert eine definierte Kraftstoffmenge in die Brennkammer eingeführt wird, unabhängig davon, ob es sich nun um eine Schubzunahme oder um eine Schubrücknahme handelt.
Die Pulsationsfrequenz, die bevorzugt variierbar sein soll, um in einer Vielzahl von Betriebspunkten eine jeweils günstige Verbrennung einstellen zu können, kann bevorzugt oberhalb der charakteristischen Frequenzen von möglichen Brennkammer-Schwingungen liegen, so daß keine negativen Auswirkungen auf den Verbrennungswirkungsgrad bzw. auf den Schub sowie die Lärmerzeugung zu befürchten sind. Vielmehr ist stets eine Verbrennung mit einem günstigen Wirkungsgrad erreichbar, da für jeden Verbrennungs- bzw. Einspritzimpuls ein günstiges Kraftstoff-Luft-Verhältnis vorliegt. Während bei der heute üblichen kontinuierlichen Kraftstoff-Einspritzung in die (abschaltbare) Hauptbrennkammer der Minimalwert des Kraftstoffdurchsatzes durch die Instabilität der Verbrennung durch ein zu mageres Kraftstoff-Luft-Gemisch bestimmt ist, ist bei einer erfindungsgemäßen gepulsten Kraftstoff-Einspritzung für jeden Kraftstoffimpuls ein größeres Kraftstoff-Luft-Verhältnis realisierbar, so daß durch gezielte Auswahl der Pulsationsfrequenz auch bei deutlich geringerer Kraftstoff-Summenzufuhr noch eine stabile Verbrennung bzw. eine Reihe von stabilen Verbrennungs-Impulsen erzielbar ist.
Wie bereits erläutert, kann die Pulsationsfrequenz der diskontinuierlichen Kraftstoff-Einspritzung variiert werden, um die in einer gewissen Zeitspanne eingespritzte Kraftstoff-Summenmenge an den jeweiligen Betriebspunkt der Gasturbine anpassen zu können. Es ist aber auch erwünscht, die mit jedem Einspritz-Impuls einbringbare Kraftstoffmenge variieren zu können, wobei hierfür mehrere Möglichkeiten existieren. Zum einen kann bei einer konstanten Kraftstoffmenge je Zeiteinheit die Einspritzdauer geändert werden, zum anderen kann bei einer konstanten Einspritzdauer die hierbei eingebrachte Kraftstoffmenge verändert werden. Selbstverständlich ist es auch möglich, diese beiden Strategien miteinander zu kombinieren, ebenfalls wie zusätzlich die Pulsationsfrequenz angepaßt werden kann, so daß insgesamt durch die vielen Variationsmöglichkeiten für jeden Betriebspunkt der Gasturbine die jeweils optimale Kraftstoff-Einspritzung gewählt werden kann. Dabei sei darauf hingewiesen, daß in Hochlast-Betriebspunkten selbstverständlich von der gepulsten Einspritzung auf eine kontinuierliche Kraftstoff-Einspritzung umgeschaltet werden kann.
Ferner sei noch auf einen weiteren Vorteil der gepulsten Kraftstoff-Einspritzung hingewiesen. Durch gezielte Auswahl der Pulsationsfrequenz können nämlich die üblichen Verbrennungsfrequenzen derart gesteuert werden, daß das sog. "Verbrennungs-Brummen", das bei instabiler Verbrennung bei geringem Kraftstoffdurchsatz auftreten kann aus den charakteristischen Frequenzen von möglichen Brennkammer-Schwingungen resultiert, minimiert werden kann. Im übrigen sei noch darauf hingewiesen, daß bevorzugt die erste Stufe oder Pilotbrennkammer, welche üblicherweise nicht in bestimmten Betriebszuständen abgeschaltet wird, mit einer kontinuierlichen Kraftstoff-Einspritzung arbeiten kann bzw. sollte, insbesondere auch um eine sichere Zündung des Brennstoff-Luft-Gemisches in der zweiten Stufe oder Hauptbrennkammer zu gewährleisten.
Eine vorteilhafte Kraftstoffeinspritzvorrichtung zur Durchführung einer derartigen gepulsten Kraftstoff-Einspritzung kann aus einem elektromagnetisch und/oder hydraulisch betätigten Kraftstoff-Einspritzventil bestehen, dessen Öffnungszeitpunkt und Öffnungsdauer gezielt einstellbar ist. Derartige Kraftstoff-Einspritzventile sind von Hubkolben-Brennkraftmaschinen her bekannt. Entsprechend abgewandelt können derartige Kraftstoff-Einspritzventile nun dazu verwendet werden, entweder direkt den Kraftstoff in die Brennkammer einer Gasturbine einzuspritzen oder sie können einer im wesentlichen üblichen Kraftstoff-Einspritzdüse vorgeschaltet sein.
Eine weitere Kraftstoff-Einspritzvorrichtung zur Durchführung einer erfindungsgemäßen gepulsten Kraftstoff-Einspritzung kann aus einem geeigneten Pulsations-Steuerventil bestehen, das einer an sich üblichen, in der Brennkammer mündenden Kraftstoff-Einspritzdüse vorgeschaltet ist. Zusätzlich zum Pulsations-Steuerventil kann dieser Einspritzdüse ein Dosierventil vorgeschaltet sein, wobei es besonders vorteilhaft ist, das Pulsations-Steuerventil sowie das Dosierventil in einem Bauelement zusammenzufassen, welches im folgenden als "Puls-Dosierer" bezeichnet wird.
Ein bevorzugtes Ausführungsbeispiel für einen derartigen Puls-Dosierer ist in Fig. 1 in einem Prinzipschnitt dargestellt und wird im folgenden näher erläutert.
Mit der Bezugsziffer 1 ist ein Zylinder des beschriebenen Puls-Dosierers bezeichnet, innerhalb dessen ein Steuerkolben 2 um die Zylinderachse 3 verdrehbar sowie in Richtung der Zylinderachse 3 verschiebbar angeordnet ist. Über einen Zylinder-Wanddurchbruch 4 ist in den Innenraum des Zylinders 1 Kraftstoff gemäß Pfeil 18a einleitbar, über einen weiteren als Steuerfenster 5 bezeichneten Durchbruch in der Zylinderwand ist Kraftstoff aus dem Zylinder-Innenraum gemäß Pfeil 18b abführbar. Der Zylinder-Wanddurchbruch 4 sowie das Steuerfenster 5 sind mit dem Kraftstoff-Versorgungssystem einer abschaltbaren Stufe einer gestuften Gasturbinen-Brennkammer verbunden, wobei der über das Steuerfenster 5 abgeführte Kraftstoff (Pfeil 18b) zu den Kraftstoff-Einspritzdüsen dieser abschaltbaren Brennkammer-Stufe hingeführt wird.
Der Steuerkolben 2 ist zumindest abschnittsweise hohl ausgebildet, so daß ein lediglich gestrichelt dargestellter Kolben-Innenraum 6 vorliegt, in welchen wie ersichtlich Kraftstoff, der gemäß Pfeil 18a über den Wanddurchbruch 4 in das Innere des Zylinders 1 einströmte, gelangen kann. Somit ist dieser Kolben-Innenraum 6, der hier in Form zweier Bohrungen ausgebildet ist, mit dem Kraftstoffversorgungssystem der Gasturbine verbunden ist. An der Außenwand des Steuerkolbens 2 ist zumindest ein Steuerschlitz 7 vorgesehen, der mit dem Kolben-Innenraum 6 bzw. mit den entsprechenden Bohrungen in Verbindung steht. Somit kann Kraftstoff, der über den Wanddurchbruch 4 herangeführt wird, letztlich über den Steuerschlitz 7 austreten.
Etwa in Höhe des Steuerschlitzes 7 befindet sich in der Wand des Zylinders 1 das bereits erläuterte Steuerfenster 5. Wird nun der Steuerkolben 2 um die Zylinderachse 3 kontinuierlich gedreht, so wird über das Steuerfenster 5 Kraftstoff, der über den Wanddurchbruch 4 herangeführt wurde, gepulst abgeführt. Jedesmal, wenn der Steuerschlitz 7 bei Rotation des Steuerkolbens 2 mit dem Steuerfenster 5 zur Deckung kommt, kann nämlich eine Kraftstoffteilmenge gemäß Pfeil 18b durch das Steuerfenster 5 austreten und letztlich zur Kraftstoff-Einspritzdüse der Brennkammer-Stufe gelangen. Sobald jedoch der rotierende Steuerschlitz 7 das Steuerfenster 5 passiert hat, wird dieser Kraftstoff-Fluß wieder unterbrochen. Allein durch Rotation des Steuerkolbens 2 im Zylinder 1 ist somit eine gepulste Kraftstoff-Einspritzung in eine Gasturbinen-Brennkammer-Stufe erzielbar. Dabei ist die Pulsationsfrequenz durch die Drehgeschwindigkeit des Steuerkolbens 2 im Zylinder 1 vorgegeben, so daß mit gezielter Auswahl der Drehgeschwindigkeit eine bestimmte Pulsationsfrequenz einstellbar ist.
Die Menge des über das Steuerfenster 5 abgeführten Kraftstoffes kann zwar auch durch die Rotationsfrequenz des Steuerkolbens 2 bzw. Steuerschlitzes 7 beeinflußt werden. Ist jedoch im Hinblick auf gewisse Randbedingungen eine gewisse Rotationsfrequenz erwünscht, so ist eine bevorzugte Einstellung der je Kraftstoff-Impuls abgegebenen Kraftstoffmenge dadurch möglich, daß der Steuerkolben 2 längs der Zylinderachse 3 in bzw. gegen Pfeilrichtung 14 verschoben wird. Hierdurch kann die wirksame Länge I des Steuerschlitzes 7, über welche dieser mit dem Steuerfenster 5 zur Deckung kommt, verändert werden. Bei einem größeren Wert der Länge I wird eine größere Menge Kraftstoff über das Steuerfenster 5 abgeführt, bei einer kleineren Länge I eine geringere Kraftstoffmenge.
In Rotation um die Zylinderachse 3 versetzt werden kann der Steuerkolben 2 von der gearbox der Gasturbine, aber auch beispielsweise von einem Elektromotor, von dem lediglich das Abtriebsritzel 8 dargestellt ist, mit welchem ein Getrieberad 9 kämmt, das über einen Achsstummel 10 mit einem sog. Führungsfortsatz 11 des Steuerkolbens 2 verbunden ist. Dieser Führungsfortsatz 11 ist ebenfalls innerhalb des Zylinders 1 geführt und weist eine Stirnseite 12' auf, auf die mit konstantem Druck ein Hydraulikmedium, welches oberhalb dieses Führungsfortsatzes 11 über eine Steueröffnung 13' in den Innenraum des Zylinders 1 gelangt, einwirkt. Eine vergleichbare Steueröffnung 13 findet sich unterhalb des Steuerkolbens 2 im Zylinder 1, so daß auch auf diese untere Stirnseite 12 ein Hydraulikmedium einwirken kann. Wird nun der Hydraulikdruck in der Steueröffnung 13 gegenüber demjenigen in der Steueröffnung 13' erhöht, so wird der Steuerkolben 2 gemäß Pfeilrichtung 14 nach oben verschoben. Eine Erniedrigung des Druckes in der Steueröffnung 13 gegenüber demjenigen in der Steueröffnung 13' hingegen bewirkt eine Verschiebung des Steuerkolbens gegen Pfeilrichtung 14 nach unten. Diese beschriebene Verschiebebewegung in bzw. gegen Pfeilrichtung 14 kann im übrigen auch das Getrieberad 9 bezüglich des Abtriebsritzels 8 durchführen, da letzteres deutlich breiter ausgebildet ist, als das Getrieberad 9.
Vorgesehen ist ferner ein über eine Stellstange 15a sowie über einen Federteller 15b auf den Steuerkolben 2 einwirkendes Federelement 16, wobei zusätzlich eine Einstellschraube 17 vorgesehen ist, die ebenfalls auf den Federteller 15b einwirken kann, derart, daß er maximale Kraftstoffdurchfluß über den Steuerschlitz 7 sowie das Steuerfenster 5 eingestellt werden kann. Jedoch kann dies sowie eine Vielzahl von Details, insbesondere konstruktiver Art durchaus abweichend von diesem gezeigten Ausführungsbeispiel gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen. Wesentlich ist vielmehr, daß ganz allgemein zumindest die abschaltbare Stufe einer gestuften Gasturbinen-Brennkammer mit gepulster Kraftstoff-Einspritzung betreibbar ist.

Claims (9)

  1. Verfahren zur Kraftstoff-Einspritzung in eine gestufte Gasturbinen-Brennkammer mit separaten Kraftstoff-Einspritzdüsen für jede Stufe, wobei zumindest eine Stufe für bestimmte Betriebszustände durch Unterbrechung der Kraftstoffzufuhr abschaltbar ist,
    dadurch gekennzeichnet, daß zumindest die abschaltbare Stufe mit gepulster Kraftstoff-Einspritzung betreibbar ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß die Pulsationsfrequenz der diskontinuierlichen Kraftstoff-Einspritzung variierbar ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die mit jedem Einspritz-lmpuls einbringbare Kraftstoffmenge variierbar ist.
  4. Verfahren nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß von diskontinuierlicher, gepulster Kraftstoff-Einspritzung auf kontinuierliche Einspritzung umgeschaltet werden kann.
  5. Kraftstoff-Einspritzvorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß ein elektromagnetisch und/oder hydraulisch betätigtes Kraftstoff-Einspritzventil zum Einsatz kommt, dessen Öffnungszeitpunkt und Öffnungsdauer gezielt einstellbar ist.
  6. Kraftstoff-Einspritzvorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß einer in der Brennkammer mündenden Kraftstoff-Einspritzdüse ein Pulsations-Steuerventil und/oder ein Dosierventil vorgeschaltet ist.
  7. Kraftstoff-Einspritzvorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, daß das Pulsations-Steuerventil und das Dosierventil in einem Bauelement in Form eines sog. Puls-Dosierers zusammengefaßt sind.
  8. Kraftstoff-Einspritzvorrichtung nach Anspruch 7,
    dadurch gekennzeichnet, daß der Puls-Dosierer einen in einem Zylinder (1) verdrehbar sowie in Zylinderachsrichtung (3) verschiebbar angeordneten Steuerkolben (2) aufweist, dessen Außenwand einen mit dem Kolbeninnenraum (6), der mit dem Kraftstoffversorgungssystem der Brennkammer verbunden ist, verbundenen Steuerschlitz (7) aufweist, der mit einem Steuerfenster (5) im Zylinder (1), welches ebenfalls mit dem Kraftstoff-Versorgungssystem verbunden ist, zur Deckung bringbar ist.
  9. Kraftstoff-Einspritzvorrichtung nach Anspruch 8, gekennzeichnet durch zumindest eines der folgenden Merkmale:
    der Steuerkolben (2) wird von einem Elektromotor oder von der gearbox der Gasturbine in Rotation versetzt
    der Steuerkolben (2) wird durch auf zumindest eine seiner Stirnseiten (12, 12') einwirkenden Hydraulikdruck in Zylinderachsrichtung (3) positioniert.
EP19970923092 1996-05-23 1997-05-15 Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer Expired - Lifetime EP0900351B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1996120874 DE19620874A1 (de) 1996-05-23 1996-05-23 Kraftstoffeinspritzung für eine gestufte Gasturbinen-Brennkammer
DE19620874 1996-05-23
PCT/EP1997/002511 WO1997044622A1 (de) 1996-05-23 1997-05-15 Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer

Publications (2)

Publication Number Publication Date
EP0900351A1 EP0900351A1 (de) 1999-03-10
EP0900351B1 true EP0900351B1 (de) 2001-11-21

Family

ID=7795168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970923092 Expired - Lifetime EP0900351B1 (de) 1996-05-23 1997-05-15 Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer

Country Status (5)

Country Link
US (1) US6381947B2 (de)
EP (1) EP0900351B1 (de)
DE (2) DE19620874A1 (de)
ES (1) ES2165057T3 (de)
WO (1) WO1997044622A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2144000A (en) * 1998-10-27 2000-05-15 Affymetrix, Inc. Complexity management and analysis of genomic dna
SE522267C2 (sv) * 2000-04-28 2004-01-27 Turbec Ab Bränsleinsprutning för en gasturbin
US6543232B1 (en) * 2001-09-27 2003-04-08 United Technologies Corporation Valve assembly for use in a gas fuel nozzle
WO2003091365A1 (en) * 2002-04-23 2003-11-06 The Lubrizol Corporation Method of operating internal combustion engine by introducing antioxidant into combustion chamber
DE10247955A1 (de) 2002-10-12 2004-05-13 Alstom (Switzerland) Ltd. Brenner
US6996991B2 (en) * 2003-08-15 2006-02-14 Siemens Westinghouse Power Corporation Fuel injection system for a turbine engine
US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
US7752850B2 (en) * 2005-07-01 2010-07-13 Siemens Energy, Inc. Controlled pilot oxidizer for a gas turbine combustor
GB0515034D0 (en) * 2005-07-21 2005-08-31 Rolls Royce Plc Method and system for operating a multi-stage combustor
US7640725B2 (en) * 2006-01-12 2010-01-05 Siemens Energy, Inc. Pilot fuel flow tuning for gas turbine combustors
US7950215B2 (en) * 2007-11-20 2011-05-31 Siemens Energy, Inc. Sequential combustion firing system for a fuel system of a gas turbine engine
DE102008053755A1 (de) 2008-10-28 2010-04-29 Pfeifer, Uwe, Dr. Register Pilotbrennersystem für Gasturbinen
US8650880B1 (en) * 2009-02-13 2014-02-18 Jansen's Aircraft Systems Controls, Inc. Active combustion control for turbine engine
US9938906B2 (en) * 2015-06-01 2018-04-10 Solar Turbines Incorporated Combustion stability logic during off-load transients
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11346281B2 (en) * 2020-08-21 2022-05-31 Woodward, Inc. Dual schedule flow divider valve, system, and method for use therein

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980090A (en) * 1956-02-24 1961-04-18 Bendix Corp Fuel injection system
US3002349A (en) * 1956-07-26 1961-10-03 Bendix Corp Fuel control apparatus for an internal combustion engine
DE1890295U (de) * 1961-07-26 1964-04-02 Alois Steimer Duesenstock fuer intermittierende brennstoffeinspritzung.
US3756763A (en) * 1969-10-27 1973-09-04 Pulsepower Systems Pulsed high pressure liquid propellant combustion powered gas generators
US3688495A (en) * 1970-04-17 1972-09-05 Adolf Fehler Control system for metering the fuel flow in gas turbine engines
US4194358A (en) * 1977-12-15 1980-03-25 General Electric Company Double annular combustor configuration
DE4000446A1 (de) * 1990-01-09 1991-07-11 Siemens Ag Armatur zur verbindung mindestens eines hybridbrenners mit einrichtungen zur zustellung eines fluidischen brennstoffes
GB9013154D0 (en) * 1990-06-13 1990-08-01 Chato John D Improvements in pulsating combustors
GB9118790D0 (en) * 1991-09-03 1991-10-16 British Ceramic Service Co Ltd Improvements in or relating to flame safeguard devices
US5349811A (en) * 1992-12-16 1994-09-27 Avco Corporation Pulsed fuel injection system for reducing NOx emissions
DE4329955C2 (de) * 1993-09-04 1997-01-16 Danfoss As Pumpenanordnung für einen Ölbrenner und Verfahren zur Kapazitätsregelung dieses Ölbrenners
US5402634A (en) * 1993-10-22 1995-04-04 United Technologies Corporation Fuel supply system for a staged combustor
US5465570A (en) 1993-12-22 1995-11-14 United Technologies Corporation Fuel control system for a staged combustor
US5456594A (en) * 1994-03-14 1995-10-10 The Boc Group, Inc. Pulsating combustion method and apparatus

Also Published As

Publication number Publication date
US20010027639A1 (en) 2001-10-11
WO1997044622A1 (de) 1997-11-27
DE59706046D1 (de) 2002-02-21
EP0900351A1 (de) 1999-03-10
ES2165057T3 (es) 2002-03-01
US6381947B2 (en) 2002-05-07
DE19620874A1 (de) 1997-11-27

Similar Documents

Publication Publication Date Title
EP0900351B1 (de) Kraftstoffeinspritzung für eine gestufte gasturbinenbrennkammer
DE102005054442B4 (de) Brennkammer für eine Gasturbine
DE2338673C2 (de) Nachbrenneranordnung für ein Gasturbinenstrahltriebwerk
DE69506142T2 (de) Verbesserte Verbrennungsanlage mit niedriger Schadstoffemission für Gasturbinen
DE69719591T2 (de) Arbeitsweise einer katalytischen Brennkammer
DE69719588T2 (de) Kraftstoffzufuhrsystem für eine Gasturbine
DE10044624B4 (de) Koaxial-Einspritzdüse
EP1180211B1 (de) Verfahren zum einspritzen von kraftstoff und einspritzventil zur durchführung des verfahrens
DE102007004864A1 (de) Brennkammer einer Gasturbine und Verbrennungssteuerverfahren für eine Gasturbine
DE2927781A1 (de) Steuerungseinrichtung fuer das spiel zwischen einem rotor und dessen ummantelung
EP2225488A1 (de) Vormischbrenner für eine gasturbine
EP1716327B1 (de) Fördervorrichtung
CH701827A2 (de) Brennkammer mit Verbrennungsdynamiksteuerung mehrerer Brennstoffdüsen.
CH650836A5 (de) Kraftstoff-einspritzverfahren fuer direkt einspritzende, selbstzuendende und fremdgezuendete brennkraftmaschinen.
EP3431743B1 (de) Verfahren und vorrichtung zum betreiben eines gasmotors bei betrieb mit niedriger leistung
EP2071156B1 (de) Brennstoffverteilungssystem für eine Gasturbine mit mehrstufiger Brenneranordnung
DE60132922T2 (de) Verfahren und vorrichtung zur versorgung einer brennkammer mit brennstoff
DE60005580T2 (de) Gasturbinentriebwerk
DE3430143C2 (de)
DE10239397A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19712806A1 (de) Brennstoffeinspritzdüse
EP1055061B1 (de) Verfahren zur gemischbildung in einem brennraum eines verbrennungsmotors
EP0166995B1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE19754353C2 (de) Gasmotor
WO2002052201A1 (de) Brenner mit gestufter brennstoffeindüsung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010130

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59706046

Country of ref document: DE

Date of ref document: 20020221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2165057

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080512

Year of fee payment: 12

Ref country code: DE

Payment date: 20080425

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080421

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080414

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080425

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090515

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090516