WO1999059896A1 - Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention - Google Patents

Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention Download PDF

Info

Publication number
WO1999059896A1
WO1999059896A1 PCT/FR1999/001196 FR9901196W WO9959896A1 WO 1999059896 A1 WO1999059896 A1 WO 1999059896A1 FR 9901196 W FR9901196 W FR 9901196W WO 9959896 A1 WO9959896 A1 WO 9959896A1
Authority
WO
WIPO (PCT)
Prior art keywords
pocket
housing
dispenser body
body according
thickness
Prior art date
Application number
PCT/FR1999/001196
Other languages
English (en)
Inventor
Jacques Granger
Original Assignee
Cebal S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal S.A. filed Critical Cebal S.A.
Priority to BR9906502-9A priority Critical patent/BR9906502A/pt
Priority to EP99920892A priority patent/EP1005431A1/fr
Publication of WO1999059896A1 publication Critical patent/WO1999059896A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/62Contents and propellant separated by membrane, bag, or the like

Definitions

  • the invention relates to a distributor body dispensing pressurized liquid to pasty products, said body having a metal or metalloplastic pocket separating the product to be dispensed from the propellant gas.
  • Such a pocket dispenser is used for cosmetic, pharmaceutical, hygiene or food products.
  • the invention also relates to the process for obtaining the dispenser housing as well as the preformed pocket used to obtain the housing or the pocket blank and its shaping process after attachment to the housing.
  • Pocket dispensers also called two-chamber aerosols, make it possible to separate the product to be dispensed from the propellant.
  • the bag must be waterproof and flexible, waterproof to effectively and durably separate the product from the propellant, flexible to transmit pressure which allows to evacuate the product by opening a valve separating the inside of the bag from the outside
  • metal bag If a plastic bag can be chosen to solve the problem of flexibility, it is recommended to choose a metal bag when the problem of tightness with respect to the propellant gas is a predominant use constraint.
  • Metal an aluminum alloy preferably, has in fact, due to its low permeation, a gas barrier property clearly superior to that which the best of the plastic materials known at present can have.
  • a metallic or metalloplastic pocket must also be easily crumpled because it must be able to deform under the effect of the pressure of the propellant gas, occupying a volume which decreases as the consumption of the product
  • the bag must initially occupy the largest possible volume to contain the maximum amount of product to be dispensed.
  • Application EP 0 017 147 discloses a pocket aerosol in which the pocket is introduced into the rigid case after conformation thereof: the pocket has an outside diameter less than the diameter of the orifice of the neck of the rigid case formed during conification. Consequently, the capacity of the flexible bag, that is to say the quantity of product to be delivered, remains limited.
  • FR 2 310 287 and EP 0 755 877 recommend introducing a preformed pocket into a cylindrical case blank, then conifying the case and then fixing the pocket by "lifting" it up so that its neck can come out and be folded over the rolled edge of the case.
  • Other documents suggest deforming the pocket after having fixed it on the housing blank.
  • FR 2 140 804 recommends simultaneously shaping the rigid case and the pocket by joining them together before the necking is formed using an adhesive material.
  • EP 0 326 052 and EP 0 547 982 describe methods for manufacturing a dispenser body with a metal pocket consisting of a rigid housing and a flexible pocket, in which a seal is connected at their open ends cylindrical pocket blank and a cylindrical housing blank, these two parts are conified simultaneously and then an edge is produced by rolling outwards said connected open ends.
  • the boxes are conventionally produced by impact spinning, possibly followed by drawing.
  • DE 44 13 331 and US 4,562,942 suggest making the boxes by stamping or stamping-drawing.
  • the known pockets are produced by impact spinning.
  • US 4,562,942 suggests another method of shaping the pocket by showing in FIG. 1 a shallow plunger pocket resembling a food tray obtained by pressing and pleating, but such a pocket, fixed using a ring internal elastic, does not constitute a sufficiently tight separation between the product and the propellant due to the pleated wall in contact with the internal wall of the housing.
  • the pocket whatever it may be, must be able to deform under the effect of the pressure of the propellant gas. It must occupy a volume which decreases progressively with the consumption of the product. Its surface, constituting the separation between the gas and the conditioned product, necessarily decreases during the consumption of the product and, the elasticity of the metal being limited, there is the formation of folds.
  • the pocket is said to be crumplable in the sense that the folds are formed by elastic buckling without breaking the wall.
  • the main folds which form when the bag is empty, orient themselves in an orderly fashion.
  • There are many documents which recommend particular forms of pocket allowing to control this formation of folds by pre-orienting them.
  • the pocket must be deformed so that there is no collapse, that is to say a centripetal collapse of the wall which results in the formation of a knot trapping the product in the bottom of the pocket and preventing any movement of said product towards the valve.
  • the present invention makes it possible to solve this problem and therefore to obtain a distributor body distributing under pressure liquid to pasty products, with a metallic or metalloplastic pocket which resists collapse well and does not tear during the consumption of the packaged product. .
  • the product according to the invention is a pocket dispenser body consisting of a rigid metal case containing a crumpled metal or metalloplastic pocket, fixed in a sealed manner on the dispenser and having a substantially vertical smooth wall whose thickness is close to that of the bottom.
  • a pocket typically having a wall of constant uniform thickness less than 150 ⁇ m, preferably close to 80 ⁇ m, and a bottom almost as thin (thickness ratio typically less than 1.5, preferably 1, 2) can advantageously be carried out by stamping-stretching.
  • stamping-stretching typically a wall of constant uniform thickness less than 150 ⁇ m, preferably close to 80 ⁇ m, and a bottom almost as thin (thickness ratio typically less than 1.5, preferably 1, 2) can advantageously be carried out by stamping-stretching.
  • it is subjected to annealing which makes it possible to obtain a homogeneous fine-grain metallurgical structure at any point in the ladle.
  • the pockets have been produced by impact spinning, using the techniques and facilities provided for the cases.
  • the spinning ratio is such that it is impossible, with the machines and tools currently used, to produce pockets having bottoms of the same thickness as the vertical wall.
  • the bottom of an impact spun pocket keeps a thickness close to 0.4 mm when the wall locally reaches a thickness close to 0.2 mm. This has the effect of making the bottom much more rigid than the wall and of locating the deformation of the pocket at the junction of the cylindrical wall and the bottom, making this part more fragile than the rest of the pocket and liable to break more easily. at the end of use of the packaged product.
  • Stamping-stretching is a process that makes it possible to produce hollow bodies of very small thickness such as beverage cans or overcap capsules. No doubt because of the severe regulations governing the conditions of use of aerosol cans operating under pressure, also due to the quantities to be produced to reach an acceptable break-even point, no aerosol can producer has considered until 'now to produce stamped-drawn housings. This process is therefore poorly understood by manufacturers of aerosol cans of aluminum alloy, accustomed to the spinning by impact of thick pions. He asks for a bet At the meticulous point of tools which is only justified for very large quantities.
  • the Applicant has, however, used this process, not to produce the rigid housing but to produce the pockets.
  • the advantage of stamping and drawing lies in the fact that by this process, a better uniformity is easily obtained between the thickness of the bottom and the thickness of the vertical wall.
  • the metallurgical structure of the product obtained is more favorable, both vis-à-vis the tear resistance than vis-à-vis the ability to further shaping.
  • This process consists of transforming by stamping and then drawing a blank blank cut from a metal strip (aluminum, aluminum alloy, tin, etc.) or into a metalloplastic complex, comprising at least one metallic layer and one thermoplastic layer (by polyolefin, polyester (PET), etc.). After cutting the blank, a cylindrical blank is formed by stamping, the skirt of which is then subjected to a certain number of drawing passes.
  • a metal strip aluminum, aluminum alloy, tin, etc.
  • a metalloplastic complex comprising at least one metallic layer and one thermoplastic layer (by polyolefin, polyester (PET), etc.
  • the number of drawing passes is defined as a function of the wall thickness of the strip and of the desired taper.
  • the pocket can indeed be cylindrical but, for handling reasons, it advantageously has a frustoconical shape, which makes it easily stackable.
  • the capsule obtained after the stretching passes comprises a stepped succession of cylindrical skirts and is then compressed between a punch and a frustoconical matrix, so as to obtain a frustoconical pocket.
  • the stamped-stretched pocket thus obtained has a much more uniform thickness, the thickness of the bottom being able to be much closer to that of the vertical wall.
  • the drawing-drawing makes it possible to have a bottom of substantially identical thickness while the impact spinning leaves the bottom a thickness greater than 0, 25 mm.
  • the bottom of the stamped-stretched pocket can be almost as thin, therefore as flexible as its vertical wall.
  • the Applicant has found that as long as the thickness of the bottom remains less than twice the thickness of the wall located near the bottom, there is no localization of the deformation at the junction of the wall and the bottom when the bag empties of its contents during the distribution of the product.
  • the risk of rupture at this location - therefore of contact between the propellant and the conditioned product - is much lower as soon as the thickness of the bottom is less than twice the thickness of the vertical wall.
  • it will be sought that the thickness of the bottom does not exceed 1.5, or better still 1.2 times the thickness of the vertical wall.
  • Stamping-stretching also offers the advantage of obtaining a constant wall thickness of the pockets over the entire circumference to within 5 ⁇ m, while that of the wall of the pockets obtained hitherto by impact spinning varies in proportion almost ten times higher. This results in a much more regular deformation of the pocket when it empties of its content. This deformation better respects the pocket's symmetry of revolution and removes the risk of buckling or collapse during the distribution of the product.
  • the stamped-drawn blank from which the pocket will be produced has a variable height:
  • the pocket can be a "classic" pocket. In this case, it must occupy the largest possible volume and its height is close to that of the rigid case intended to contain it (typically 90 to 250 mm, depending on the diameter of the case)
  • the pocket can also be used as a plunger pocket. In this case, it is fixed approximately halfway up the rigid case, separating the product to be dispensed located in the upper part of the case and the propellant, located in the lower part of the case. As the product is used, the pocket is pushed upwards under the effect of the propellant gas pressure and turns like a sock to gradually occupy the upper volume of the case.
  • the height of the pocket used as a piston pocket is close to half the height of the rigid case intended to contain it.
  • the shape of the bottom intended for the pocket is produced directly on the stamped-stretched part.
  • the shape of the bottom does not matter.
  • the hollow shape of the bottom concave bottom, entering the volume occupied by the product is preferred because it promotes a gradual, non-abrupt reversal of the bag during the distribution of the packaged product.
  • the pocket has a slightly frustoconical shape. This facilitates the handling of pockets stacked on top of each other in large quantities. Overall, this stamped-stretched pocket looks like an overcap, like the one used on Champagne or wine bottles.
  • the taper of the pocket is defined by the ratio (Dl - D2) / H where Dl is the diameter of the open end, D2 is the diameter of the bottom and H the height of the part.
  • the diameter of the open end of the pocket corresponds to the diameter of the part of the housing or of the housing blank to which the pocket will be secured.
  • this diameter is close to one inch (25.4 mm)
  • the diameter of the bottom of the pocket is defined as a function of the pocket height and the taper chosen.
  • the pocket is secured to a blank of the housing before joint conformation of the two blanks (methods described in FR 2 140 804, EP 0 326 052 and EP A 0 547 982), the diameter of the open end of the pocket will be close to the inside diameter of the case.
  • the pocket is shaped after stamping-stretching its blank by placing it on a forming mandrel having the desired shape of the neck then by deforming the wall of the blank using a capsulator with pockets or jaws which are pressed against the mandrel. Then we put the bag in the housing blank, the housing is conified and then the pocket is fixed to the housing according to one of the existing methods, such as those described in FR 2 310 287 or EP 0 755 877.
  • the metal of the pockets obtained according to the invention by stamping-drawing is advantageously made of a particularly ductile aluminum alloy, that is to say of which the elongation at break A% is greater than 12%. It is possible, for example, to choose an alloy usually used for making overcap capsules, that is to say a low alloy alloy of the 1000 series (in particular 1050, 1070, 1100, or 1200), or the alloy 3003, or the 801 1 alloy according to the standardized designation of the Aluminum Association.
  • the rigid housing can be produced according to any known process: spinning, drawing-drawing, but also stamping-drawing or rolling, welding and assembly.
  • a low alloy aluminum alloy of the 1070 type, is generally used or, preferably, an alloy having as good ductility but having better mechanical characteristics, such as than the aluminum alloy with low copper and manganese content presented by the applicant in French patent application FR 98 00869.
  • the pocket blank - part with a frustoconical skirt - is then heat treated for a time and at a chosen temperature so as to remove the lubricant (introduced at at least one of the stages of drawing - drawing) present on the surface of the capsule and to obtain a metallurgical structure in the annealed state.
  • a crystallographic structure recrystallized with fine grains the average diameter of which is generally close to 10 ⁇ m and in no place exceeds 80 ⁇ m.
  • Such a structure is much more favorable than that obtained by impact spinning, where the grains have roughly recrystallized, their average diameter possibly locally exceeding 200 ⁇ m.
  • the metallurgical structure resulting from impact spinning is thus more fragile and deforms in a less homogeneous manner, making the ladle more sensitive to collapse and rupture.
  • the pocket can also be produced from a metalloplastic complex composed of at least one metallic layer and one thermoplastic polymeric layer.
  • the structures are of the M / P, P / M / P or M / P / M type, where M denotes a metallic layer and P denotes a plastic layer, the layers being adherent to each other, possibly using 'an adhesive layer.
  • the metalloplastic strip preferably comprises more than 50% of metal by volume.
  • the metal is preferably chosen from the group formed by aluminum, aluminum alloys.
  • the polymeric material is preferably chosen from the group formed by polyolefins (polyethylenes, polypropylenes) - obtained in particular by metallocene catalysis when it is desired to improve their adhesive properties - and polyesters such as PET (polyethylene terephthalate).
  • polyolefins polyethylenes, polypropylenes
  • polyesters such as PET (polyethylene terephthalate).
  • the plastic layer is preferably located on the outside surface of the bag.
  • the P / M / P structure is preferred when the conditioned product is aggressive towards metal.
  • the M / P / M structure is an impermeable, tear-proof and remarkably flexible structure. By reducing the proportion of metal in the latter structure, a higher level of overall flexibility is obtained, which promotes the orderly formation of folds.
  • a metalloplastic pocket is generally more difficult to shape, its use makes the subsequent steps of the process easier since the joining of the pocket and the housing, described below, is greatly facilitated.
  • the pocket must resist collapse and the main folds that form when the pocket empties must orient themselves in an orderly fashion.
  • some longitudinal grooves are preferably produced on the wall of a "conventional” pocket and circumferential grooves on the wall of the piston pocket, the latter causing concentric rings, or rods, which stiffen the piston pocket and promote its vertical mobility.
  • the technique used on the capsules is used to make these grooves: the pocket is threaded onto a forming mandrel having the grooves to be formed on the pocket hollow, and the conical wall is deformed using a pocket or jaws, so that they press against the mandrel.
  • the bag is then removed from the mandrel using a valve or a pull tab or by blowing in compressed air.
  • grooves promote the formation of orderly folds and are effective against the risk of collapse.
  • conventional pockets one can for example choose the longitudinal grooves described in US 3,979,025. If the pocket is intended to be placed on an already conical casing, it is recommended to preform, using an expandable mandrel and a ring of elastomeric polymeric material, its open end so that a flared edge can come to bear on the rolled edge of the rigid case as indicated in EP 0 017 147.
  • the pocket is in fact a blank intended to be shrunk together with the housing blank (methods described in FR 2 140 804, EP 0 326 052 and EP 0 547 982), there is no particular shaping of the frustoconical pocket other than the formation of the grooves but it is preferable to choose it thicker at its open end to avoid the formation of folds during the shrinking.
  • it is a plunger pocket, it should preferably have a bottom and a wall near the bottom typically thinner than the wall at the top, near the open end intended to be fixed on the wall of the rigid housing. This prevents a lateral collapse from occurring before the plunger pocket begins to turn.
  • the watertight assembly of the metal bag and the rigid case is achieved by a cylindrical annular junction which is obtained either by chemical means, typically a thin adhesive layer - at most a few tenths of a millimeter thick - or by mechanical means such as force fitting.
  • the adhesive can be chosen from solutions or dispersions of resins, according to the case in aqueous medium or in solvent medium, based on EAA (ethylene-acrylic acid copolymer), EVA (ethylene copolymer - vinyl acetate), VMCH (terpolymer chloride vinyl - vinyl acetate - maleic acid), SURLYN (R) ionomer resin, or based on hot-melt resins, known as "hot-melt".
  • EAA ethylene-acrylic acid copolymer
  • EVA ethylene copolymer - vinyl acetate
  • VMCH terpolymer chloride vinyl - vinyl acetate - maleic acid
  • SURLYN (R) ionomer resin or based on hot-melt resins, known as "hot-melt”.
  • an adhesive containing VMCH is used, for example the mixture cyclohexanone (-69%), VMCH (-30%) and di-octyl phthalate (DOP,
  • the waterproof connection pocket - case can be done by a simple heat seal, by melting the outer plastic layer of the pocket either in contact with the interior varnish of the case or directly on the metal naked, the presence of a varnish is not essential since the interior of the rigid case is not in contact with the packaged product.
  • the outer plastic layer of the metalloplastic is for example a grafted polypropylene or else a polyolefin obtained by metallocene catalysis.
  • bonding is preferably carried out with the mixture cyclohexanone (-69%), VMCH (-30%) and di-octyl phthalate (DOP, -1%), which after drying serves as a sealing medium.
  • the pocket aerosol can thus obtained can be delivered to the conditioner which fills the pocket with the product to be dispensed and crimps a valve cup on the neck, after having introduced a seal.
  • the pressurization of the lower volume is carried out by injecting the propellant gas through a hole made in the middle of the bottom and then plugged for example using a strand or a Nicholson nozzle.
  • the adhesive is deposited. by roller on the internal cylindrical wall of the housing blank and / or on the external wall of the pocket, over a height which corresponds at least to the part intended to be shrinking during conification.
  • the pocket case thus obtained is then delivered to the conditioner.
  • the pocket When the pocket is formed independently of the housing, either before its introduction into the blank of the housing or after its introduction into the housing, it is desirable to make the junction between the flared edge of the pocket and the rolled edge of the housing in interposing an attached elastic seal, such as that referenced 3 in FR 2 310 287. It is also possible to replace this elastic seal with a thermofusible thermoplastic layer deposited by roller on the neck of the pocket.
  • the glue is deposited with a roller on the internal cylindrical wall of the blank of the casing and / or on the outside of the pocket, over at least ten millimeters then the piston pocket is placed on a conical mandrel whose upper part, which has the largest diameter, has an expandable part to ensure the compression of the glue or adhesive between pocket and case.
  • the wall of the rigid housing is maintained externally using a metal ring, preferably made up of several radially segmented sectors, the internal diameter of which is equal to the external diameter of the housing.
  • Figure 1 is a schematic view in vertical section of a pocket obtained by stamping - stretching
  • Figure 2 is a schematic view in vertical section of the blank obtained after joining by gluing at their open ends of the pocket of Figure 1 with the blank of the rigid housing.
  • FIG. 3 is a schematic view in vertical section of the pocket case obtained after conformation and rolling of the edge of the assembly of FIG. 2.
  • Figure 4 is a schematic view in vertical section of the blank obtained after joining by gluing a plunger pocket with a rigid housing blank.
  • FIG. 5 is a schematic view in vertical section of the piston pocket housing obtained after conformation and rolling of the edge of the assembly of FIG. 4.
  • this involves producing a 40 mm diameter pocket aerosol can, 170 mm high.
  • the pocket 1 of this example illustrated in FIG. 1, has a height of 163 mm, almost equal to that of the rigid case. After bonding to the interior wall of the housing, it is conified together with the rigid housing according to the method described in EP 0 547 982.
  • the pocket 1 is in the form of a frustoconical capsule with a convex or flat bottom 2, of appearance substantially similar to that of a capsule for a bottle of Champagne.
  • the thickness of the frustoconical wall 3 is 0.10 mm, that of the bottom 2 is 0.12 mm.
  • the diameter of the open end of the pocket is substantially equal to the inside diameter of the blank of the case (39.2 mm).
  • the conicity of the capsule is defined by the ratio (D l - D2) / H where Dl is the diameter of the open end 4, D2 is the diameter of the bottom 2, at the junction between the bottom 2 and the frustoconical wall 3 and H is the height of the room. In order to obtain a taper of 1/30, the diameter of the bottom 2 has approximately 34 mm.
  • the pocket 1 After threading on a forming mandrel then passage to the pocket or jaw capsulator, the pocket 1 has longitudinal grooves on its frustoconical wall.
  • the pocket 1 is then brought by translation into the interior of the housing blank 11 which is already fixed to the assembly turret and has already been coated with glue.
  • the glue used is a cyclohexanone mixture (-69%), VMCH (-30%) and di-octyl phthalate (DOP, -1%). It is deposited by roller on the internal wall of the housing blank 11 over a height equivalent to the part 16 which will be constricted during conification. It is possible, but not necessary, to also deposit it in the part 15 which will be rolled by dabbing to produce the rolled edge 25 on which the valve cup is crimped.
  • the upper part 6 of the pocket has a thickness of 0.2 mm. This is sufficient because the glue which secures the pocket and the case transmits part of the stiffness of the case to the pocket.
  • the thicknesses of the bottom 26 and of the wall 27 remain identical to the initial thicknesses of the bottom 2 and of the substantially vertical wall 3 of the stamped-drawn part.
  • this involves producing an aerosol can with a 40 mm diameter piston pocket and a height of 176 mm.
  • the pocket 31 of this example, illustrated in FIG. 4, has a height of 100 mm, slightly greater than half that of the rigid case. She is stuck on the inner wall of the housing, over an area 46 approximately 10 mm wide and approximately 130 mm distant from the bottom of the housing 42.
  • the pocket 31 is in the form of a frustoconical capsule with a hollow bottom 32.
  • the thickness of the frustoconical wall 33 is 0.1 mm, that of the bottom 2 is 0.12 mm.
  • the diameter of the open end of the pocket is substantially equal to the inside diameter of the blank of the case (39.2 mm).
  • the conicity of the capsule is here also equal to 1/30.
  • the bottom and the wall near the bottom must be typically thinner than the upper wall, near the bonding zone 46, which prevents a lateral collapse from occurring. occur before the beginning of the inversion of the pocket.
  • the thickness of the wall at the level of the bonding zone 46 is close to fifteen hundredths of a millimeter.
  • Concentric rings 48 are produced on the vertical wall of the pocket. They circumferentially stiffen the pocket and promote its vertical mobility.
  • the pocket 31 is then brought by translation into the interior of the housing blank 41 which is already fixed on the assembly turret and has already been coated with glue at the level of the zone 46 spaced 130 mm from the bottom of the housing 42.
  • the adhesive used is a mixture of cyclohexanone (-69%), VMCH (-30%) and di-octyl phthalate (DOP, -1%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Corps de distributeur à poche (21; 51) constitué d'un boîtier rigide (22; 52) en métal contenant une poche (1; 31) métallique ou métalloplastique froissable, fixée de façon étanche sur le boîtier rigide (22, 52) et ayant une paroi sensiblement verticale (27, 33) lisse dont l'épaisseur est voisine de celle du fond (26, 32). Une telle poche est obtenue de préférence par emboutissage-étirage.

Description

CORPS DE DISTRIBUTEUR SOUS PRESSION AYANT UNE POCHE METALLIQUE OU METALLOPLASTIQUE, LADITE POCHE ET SON PROCEDE D'OBTENTION
DOMAINE TECHNIQUE
L'invention concerne un corps de distributeur distribuant sous pression des produits liquides à pâteux, ledit corps ayant une poche métallique ou métalloplastique séparant le produit à distribuer du gaz propulseur.
Un tel distributeur à poche est utilisé pour des produits cosmétiques, pharmaceutiques, d'hygiène ou alimentaires.
L'invention concerne également le procédé d'obtention du boîtier de distributeur ainsi que la poche préformée utilisée pour obtenir le boîtier ou l'ébauche de poche et son procédé de mise en forme après fixation sur le boîtier.
ETAT DE LA TECHNIQUE
Les distributeurs à poche, appelés également aérosols à deux chambres, permettent de séparer le produit à distribuer du gaz propulseur. Il arrive en effet que l'on cherche à éviter le contact entre le produit à distribuer et le gaz propulseur, soit pour des raisons purement mécaniques - par exemple les gels sont transformés en mousse s'ils sont mélangés au gaz propulseur -, soit pour des raisons chimiques: réaction du produit avec le propulseur, oxydation, vieillissement, transmission d'odeurs, etc....
La poche doit être étanche et souple, étanche pour séparer efficacement et durablement le produit du gaz propulseur, souple pour transmettre la pression qui permet d'évacuer le produit en ouvrant une valve séparant l'intérieur de la poche de l'extérieur
Si l'on peut choisir une poche en matière plastique pour résoudre le problème de la souplesse, il est recommandé de choisir une poche métallique lorsque le problème d'étanchéité vis-à-vis du gaz propulseur est une contrainte d'utilisation prépondérante. Le métal, un alliage d'aluminium de préférence, présente en effet, en raison de sa faible perméation, une propriété barrière aux gaz nettement supérieure à celle que peut présenter le meilleur des matériaux plastiques connus à l'heure actuelle.
Une poche métallique ou métalloplastique doit être également facilement froissable car elle doit pouvoir se déformer sous l'effet de la pression du gaz propulseur en occupant un volume qui diminue au fur et à mesure de la consommation du produit
Pour des raisons économiques évidentes, la poche doit occuper initialement le plus grand volume possible pour contenir le maximum de produit à distribuer.
La demande EP 0 017 147 divulgue un aérosol à poche dans lequel la poche est introduite dans le boîtier rigide après conification de celui-ci: la poche présente un diamètre extérieur inférieur au diamètre de l'orifice du col du boîtier rigide formé au cours de la conification. En conséquence la capacité de la poche souple, c'est-à-dire la quantité de produit à délivrer reste limitée.
Pour augmenter la capacité de la poche, FR 2 310 287 et EP 0 755 877 préconisent d'introduire une poche préformée dans une ébauche cylindrique de boîtier, de conifier ensuite le boîtier puis de fixer la poche en la "remontant" de telle sorte que son col puisse ressortir et être rabattu sur le bord roulé du boîtier. D'autres documents suggèrent de déformer la poche après l'avoir fixée sur l'ébauche de boîtier. FR 2 140 804 préconise de mettre en forme simultanément le boîtier rigide et la poche en les solidarisant avant la formation du rétreint à l'aide d'une matière adhésive. EP 0 326 052 et EP 0 547 982 décrivent des procédés de fabrication d'un corps de distributeur à poche métallique constitué d'un boîtier rigide et d'une poche souple, dans lesquels on relie de manière étanche au niveau de leurs extrémités ouvertes une ébauche cylindrique de poche et une ébauche cylindrique de boîtier, on conifie simultanément ces deux pièces puis on réalise un bord par roulage vers l'extérieur desdites extrémités ouvertes reliées.
Les boîtiers sont réalisés conventionnellement par filage par choc, suivi éventuellement d'un étirage. DE 44 13 331 et US 4 562 942 suggèrent de réaliser les boîtiers par emboutissage ou emboutissage-étirage. Les poches connues sont réalisées par filage par choc. US 4 562 942 suggère un autre procédé de mise en forme de la poche en montrant en figure 1 une poche- piston peu profonde ressemblant à une barquette alimentaire obtenue par enfoncement-plissage mais une telle poche, fixée à l'aide d'un anneau élastique interne, ne constitue pas une séparation suffisamment étanche entre le produit et le gaz propulseur en raison de la paroi plissée en contact avec la paroi interne du boîtier.
PROBLEME POSE
La poche, quelle qu'elle soit, doit pouvoir se déformer sous l'effet de la pression du gaz propulseur. Elle doit occuper un volume qui diminue au fur et à mesure de la consommation du produit. Sa surface, constituant la séparation entre le gaz et le produit conditionné, diminue obligatoirement au cours de la consommation du produit et, l'élasticité du métal étant limitée, on constate la formation de plis. La poche est dite froissable en ce sens que les plis se forment par flambement élastique sans pour autant qu'il y ait rupture de la paroi. Pour favoriser une distribution régulière et complète du produit, il est préférable que les plis principaux, qui se forment lorsque la poche se vide, s'orientent de façon ordonnée. On trouve de nombreux documents qui recommandent des formes particulières de poche permettant de contrôler cette formation des plis en les pré-orientant.
De plus, la poche doit se déformer de telle sorte qu'il n'y ait pas de collapse , c'est-à-dire un effondrement centripète de la paroi qui aboutit à la formation d'un noeud piégeant le produit dans le fond de la poche et empêchant tout mouvement dudit produit vers la valve.
Des poches telles que celle divulguée dans EP 0 547 982 résistent bien au collapse, mais on constate que certaines d'entre elles se déchirent en fin d'utilisation du boîtier d'aérosol. La déchirure est particulièrement néfaste puisqu'elle entraîne le phénomène que l'on voulait éviter: le mélange du gaz propulseur avec le produit résiduel.
La présente invention permet de résoudre ce problème et donc d'obtenir un corps de distributeur distribuant sous pression des produits liquides à pâteux, avec une poche métallique ou métalloplastique qui résiste bien au collapse et ne se déchire pas au cours de la consommation du produit conditionné.
OBJET DE L'INVENTION
Le produit selon l'invention est un corps de distributeur à poche constitué d'un boîtier rigide en métal contenant une poche métallique ou métalloplastique froissable, fixée de façon étanche sur le distributeur et ayant une paroi sensiblement verticale lisse dont l'épaisseur est voisine de celle du fond. Une telle poche, présentant typiquement une paroi d'épaisseur homogène constante inférieure à 150 μm, de préférence voisine de 80 μm, et un fond presque aussi mince (rapport d'épaisseur typiquement inférieur à 1 ,5, de préférence 1 ,2) peut être réalisée avantageusement par emboutissage- étirage. Ainsi réalisée, elle est soumise à un recuit qui permet d'obtenir en tout endroit de la poche une structure métallurgique homogène à grains fins.
Jusqu'à présent, les poches étaient réalisées par filage par choc, en utilisant les techniques et les installations prévues pour les boîtiers. Mais, la poche devant avoir une paroi de faible épaisseur, le rapport de filage est tel qu'il est impossible, avec les machines et les outillages utilisés actuellement, de réaliser des poches ayant des fonds de même épaisseur que la paroi verticale. Typiquement, le fond d'une poche filée par choc garde une épaisseur voisine de 0,4 mm lorsque la paroi atteint localement une épaisseur voisine de 0,2 mm. Ceci a pour conséquence de rendre le fond beaucoup plus rigide que la paroi et de localiser la déformation de la poche à la jonction de la paroi cylindrique et du fond, rendant cette partie plus fragile que le reste de la poche et susceptible de rompre plus facilement en fin d'utilisation du produit conditionné.
L'emboutissage-étirage est un procédé permettant de réaliser en très grande quantité des corps creux de faible épaisseur tels que des boîtes-boissons ou des capsules de surbouchage. Sans doute en raison de la réglementation sévère régissant les conditions d'utilisation de boîtiers d'aérosol fonctionnant sous pression, en raison également des quantités à produire pour atteindre un seuil de rentabilité acceptable, aucun producteur de boîtier d'aérosol n'a envisagé jusqu'à présent de produire des boîtiers emboutis-étirés. Ce procédé est donc mal connu chez les fabricants de boîtiers d'aérosols en alliage d'aluminium, habitués au filage par choc de pions épais. Il demande une mise αu point minutieuse d'outillages qui ne se justifie que pour des fabrications en très grande quantité.
La demanderesse a cependant fait appel à ce procédé, non pas pour réaliser le boîtier rigide mais pour réaliser les poches. L'intérêt de l'emboutissage- étirage réside dans le fait que par ce procédé, on obtient facilement une meilleure homogénéité entre l'épaisseur du fond et l'épaisseur de la paroi verticale. D'autre part, la structure métallurgique du produit obtenu est plus favorable, tant vis-à-vis de la résistance à la déchirure que vis-à-vis de l'aptitude à une mise en forme ultérieure.
Ce procédé consiste à transformer par emboutissage puis étirage un flan ébauche découpé dans une bande en métal (aluminium, alliage d'aluminium, étain, ...) ou en un complexe métalloplastique, comprenant au moins une couche métallique et une couche thermoplastique (par exemple polyolefine, polyester (PET), etc.). Après découpe du flan, on forme par emboutissage une ébauche cylindrique dont la jupe est ensuite soumise à un certain nombre de passes d'étirage.
Pour obtenir la poche, on définit le nombre de passes d'étirage en fonction de l'épaisseur de paroi de la bande et de la conicité recherchée. La poche peut en effet être cylindrique mais, pour des raisons de manutention, elle a avantageusement une forme tronconique, ce qui la rend facilement empilable. La capsule obtenue après les passes d'étirage comporte une succession étagée de jupes cylindriques et est ensuite comprimée entre un poinçon et une matrice tronconiques, de façon à obtenir une poche tronconique.
La poche emboutie-étirée ainsi obtenue a une épaisseur beaucoup plus homogène, l'épaisseur du fond pouvant être nettement plus proche de celle de la paroi verticale. Typiquement, pour une paroi verticale d'épaisseur de l'ordre de 0,1 mm, l'emboutissage-étirage permet d'avoir un fond d'épaisseur sensiblement identique alors que le filage par choc laisse au fond une épaisseur supérieure à 0,25 mm.
Le fond de la poche emboutie-étirée peut être presque aussi fin, donc aussi souple que sa paroi verticale. La demanderesse a constaté que tant que l'épaisseur du fond reste inférieure au double de l'épaisseur de la paroi située à proximité du fond, il n'y a pas localisation de la déformation à la jonction de la paroi et du fond lorsque la poche se vide de son contenu au cours de la distribution du produit. Le risque de rupture en cet endroit - donc de contact entre le gaz propulseur et le produit conditionné - est beaucoup plus faible dès que l'épaisseur du fond est inférieure au double de l'épaisseur de la paroi verticale. On peut ainsi viser des épaisseurs nettement plus faibles (une paroi verticale épaisse d'environ un dixième de millimètre). De préférence, on cherchera à ce que l'épaisseur du fond ne dépasse pas 1 ,5, ou mieux encore 1 ,2 fois l'épaisseur de la paroi verticale.
On peut par ailleurs souhaiter obtenir une paroi plus épaisse au niveau de l'extrémité ouverte de la poche, de façon à éviter la formation de plis lorsque celle-ci est rétreinte conjointement avec une ébauche de boîtier, selon l'un des procédés décrits dans FR 2 140 804, EP 0 326 052 ou EP-A-0 547 982. Ceci est possible en jouant sur le choix des bagues d'étirage et les profils des poinçons.
L'emboutissage-étirage offre également l'avantage d'obtenir une épaisseur de paroi des poches constante sur toute la circonférence à 5 μm près, alors que celle de la paroi des poches obtenues jusqu'à présent par filage par choc varie dans une proportion presque dix fois plus élevée. Il en résulte une déformation beaucoup plus régulière de la poche lorsqu'elle se vide de son contenu. Cette déformation respecte mieux la symétrie de révolution de la poche et éloigne les risques de flambage ou de collapse lors de la distribution du produit.
Suivant l'utilisation que l'on veut faire de la poche, l'ébauche emboutie-étirée à partir de laquelle la poche va être réalisée a une hauteur variable:
- La poche peut être une poche "classique". Dans ce cas, elle doit occuper le plus grand volume possible et sa hauteur est voisine de celle du boîtier rigide destiné à la contenir (typiquement 90 à 250 mm, suivant le diamètre du boîtier)
- La poche peut également être utilisée comme poche-piston. Dans ce cas, elle est fixée à peu près à mi-hauteur du boîtier rigide, séparant le produit à distribuer situé dans la partie supérieure du boîtier et le gaz propulseur, situé en partie basse du boîtier. Au fur et à mesure de l'utilisation du produit, la poche est poussée vers le haut sous l'effet de la pression du gaz propulseur et se retourne comme une chaussette pour occuper petit à petit le volume supérieur du boîtier. La hauteur de la poche employée comme poche piston est voisine de la moitié de la hauteur du boîtier rigide destiné à la contenir.
De préférence, en donnant une forme adaptée aux poinçons des dernières passes d'étirage, on réalise directement sur la pièce emboutie-étirée la forme du fond visée pour la poche. Pour une poche "classique", la forme du fond importe peu. Par contre pour les poches - pistons, la forme en creux du fond (fond concave, rentrant dans le volume occupé par le produit) est préférée car elle favorise un retournement progressif, non brutal de la poche au cours de la distribution du produit conditionné.
De préférence, la poche a une forme légèrement tronconique. Ceci facilite la manutention de poches empilées les unes sur les autres en grandes quantités. Globαlement, cette poche emboutie-étirée ressemble à une capsule de surbouchage, telle que celle utilisée sur les bouteilles de Champagne ou de vin.
La conicité de la poche est définie par le rapport (Dl - D2)/H où Dl est le diamètre de l'extrémité ouverte, D2 est le diamètre du fond et H la hauteur de la pièce. On vise une conicité voisine de 1 /30, qui correspond à un standard de capsule de surbouchage obtenue par emboutissage-étirage.
Le diamètre de l'extrémité ouverte de la poche correspond au diamètre de la partie du boîtier ou de l'ébauche de boîtier à laquelle la poche va être solidarisée. Dans la pratique, si la poche est solidarisée sur le boîtier déjà conifie (procédé décrit dans EP 0 01 7 147), ce diamètre est voisin d'un pouce (25,4 mm), valeur standard des orifices des boîtiers d'aérosols sur le bord desquels une coupelle de valve (également de dimension standard) est sertie. Le diamètre du fond de la poche est défini en fonction de la hauteur de poche et de la conicité choisies.
Par contre, si la poche est solidarisée sur une ébauche de boîtier avant conification conjointe des deux ébauches (procédés décrits dans FR 2 140 804, EP 0 326 052 et EP A 0 547 982), le diamètre de l'extrémité ouverte de la poche sera voisin du diamètre intérieur du boîtier.
Il est possible également de former la poche indépendamment du boîtier, soit avant son introduction dans l'ébauche de boîtier soit après introduction et fixation sur le boîtier déjà conifie. Dans le premier cas, on met en forme la poche après emboutissage-étirage de son ébauche en la plaçant sur un mandrin de formage possédant la forme voulue du col puis en déformant la paroi de l'ébauche à l'aide d'un capsulateur à poches ou à mâchoires qui viennent se plaquer contre le mandrin. Ensuite on introduit la poche dans l'ébauche de boîtier, on conifie le boîtier puis on fixe la poche sur le boîtier suivant l'un des procédés existants, tels que ceux décrits dans FR 2 310 287 ou EP 0 755 877. Dans le deuxième cas, on fixe l'ébauche de poche emboutie- étirée sur le bord roulé du boîtier déjà conifie, puis on met sous une pression interne, comprise typiquement entre 5 et 20 atmosphères, ladite ébauche de poche mince qui gonfle sous l'effet de la pression jusqu'à rencontrer la paroi du boîtier. La structure métallurgique particulière obtenue grâce à l'emboutissage-étirage confère à l'ébauche de poche une malléabilité importante qui lui permet d'être conformée sans risque de rupture à l'intérieur du boîtier.
Le métal des poches obtenues selon l'invention par emboutissage-étirage est avantageusement en un alliage d'aluminium particulièrement ductile, c'est-à- dire dont l'allongement à rupture A% est supérieur à 12%. On peut par exemple choisir un alliage habituellement utilisé pour réaliser des capsules de surbouchage, c'est-à-dire un alliage faiblement allié de la série 1000 (notamment 1050, 1070, 1 100, ou 1200), ou l'alliage 3003, ou encore l'alliage 801 1 selon la désignation normalisée de l'Aluminium Association.
Le boîtier rigide peut être réalisé selon tout procédé connu: filage, filage- étirage, mais aussi emboutissage-étirage ou roulage, soudage et assemblage. En réalisant le boîtier par filage par choc, éventuellement suivi d'un étirage, on utilise généralement un alliage d'aluminium peu allié, du type 1070 ou, de préférence, un alliage possédant une aussi bonne ductilité mais présentant de meilleures caractéristiques mécaniques, tel que l'alliage d'aluminium à faible teneur en cuivre et manganèse présenté par la demanderesse dans la demande de brevet français FR 98 00869. L'ébauche de poche - pièce à jupe tronconique - est ensuite traitée thermiquement pendant un temps et à une température choisis de manière à éliminer le lubrifiant (introduit à au moins une des étapes de l'emboutissage - étirage) présent sur la surface de la capsule et à obtenir une structure métallurgique à l'état recuit. On observe alors dans l'épaisseur de la paroi fine de la poche une structure cristallographique recristallisée à grains fins, dont le diamètre moyen est en général voisin de 10 μm et ne dépasse en aucun endroit 80 μm. Une telle structure est beaucoup plus favorable que celle obtenue par filage par choc, où les grains ont recristallisé grossièrement, leur diamètre moyen pouvant dépasser localement 200μm. La structure métallurgique issue du filage par choc est ainsi plus fragile et se déforme de façon moins homogène en rendant la poche plus sensible au collapse et à la rupture.
La poche peut également être réalisée à partir d'un complexe métalloplastique composé au moins d'une couche métallique et d'une couche polymérique thermoplastique. Les structures sont du type M/P, P/M/P ou M/P/M, où M désigne une couche métallique et P une couche de matière plastique, les couches étant adhérentes les unes aux autres, éventuellement à l'aide d'une couche adhésive. Pour être facilement emboutissable-étirable, la bande métalloplastique comprend de préférence plus de 50% de métal en volume. Le métal est choisi de préférence dans le groupe formé par l'aluminium, les alliages d'aluminium. Le matériau polymérique est choisi de préférence dans le groupe formé par les polyoléfines (polyéthylènes, polypropylènes) - obtenues notamment par catalyse métallocène lorsqu'on veut améliorer leurs propriétés adhésives - et les polyesters tels que le PET (polyéthylène téréphtalate).
Dans la structure M/P, la couche plastique est de préférence située sur la surface extérieure de la poche. La structure P/M/P est préférée lorsque le produit conditionné est agressif vis-à-vis du métal. Enfin la structure M/P/M est une structure imperméable, indéchirable et remarquablement souple. En diminuant la proportion de métal dans cette dernière structure, on obtient un niveau supérieur de souplesse globale, qui favorise la formation ordonnée des plis.
Si une poche métalloplastique est en général plus difficile à mettre en forme, son emploi rend les étapes ultérieures du procédé plus aisées car la solidarisation de la poche et du boîtier, décrite ci-après, est grandement facilitée.
Qu'il s'agisse d'une poche "classique" ou d'une poche-piston, la poche doit résister au collapse et les plis principaux qui se forment lorsque la poche se vide doivent s'orienter de façon ordonnée. Dans ce but, on réalise de préférence quelques cannelures longitudinales sur la paroi d'une poche "classique" et des cannelures circonférentielles sur la paroi de la poche-piston, ces dernières provoquant des anneaux concentriques, ou joncs, qui rigidifient la poche-piston et favorisent sa mobilité verticale.
On utilise pour réaliser ces cannelures la technique employée sur les capsules: la poche est enfilée sur un mandrin de formage possédant en creux les cannelures à former sur la poche et on déforme la paroi conique à l'aide d'un capsulateur à poches ou à mâchoires, de telle sorte qu'elles viennent se plaquer contre le mandrin. La poche est ensuite retirée du mandrin à l'aide d'une soupape ou d'une tirette ou encore en insufflant de l'air comprimé.
Plusieurs formes de cannelures favorisent la formation de plis ordonnés et sont efficaces contre le risque de collapse. En ce qui concerne les poches classiques, on peut par exemple choisir les cannelures longitudinales décrites dans US 3 979 025. Si la poche est destinée à être posée sur un boîtier déjà conifie, il est recommandé de préformer, à l'aide d'un mandrin expansible et d'un anneau en matériau polymérique élastomère, son extrémité ouverte de telle sorte qu'un bord évasé puisse venir en appui sur le bord roulé du boîtier rigide comme indiqué dans EP 0 017 147.
Si la poche est en fait une ébauche destinée à être rétreinte conjointement avec l'ébauche de boîtier (procédés décrits dans FR 2 140 804, EP 0 326 052 et EP 0 547 982), il n'y a pas de mise en forme particulière de la poche tronconique autre que la formation des cannelures mais il est préférable de la choisir plus épaisse au niveau de son extrémité ouverte pour éviter la formation de plis lors du rétreint.
S'il s'agit d'une poche-piston, celle-ci doit présenter de préférence un fond et une paroi à proximité du fond typiquement plus minces que la paroi en partie haute, à proximité de l'extrémité ouverte destinée à être fixée sur la paroi du boîtier rigide. On évite ainsi qu'un collapse latéral ne se produise avant que la poche-piston n'amorce son retournement.
L'assemblage étanche de la poche métallique et du boîtier rigide est réalisé par une jonction annulaire cylindrique qui est obtenue soit par des moyens chimiques, typiquement une couche adhésive de faible épaisseur - au plus de quelques dixièmes de millimètre d'épaisseur -, soit par des moyens mécaniques tels qu'un emboîtage à force.
Lorsqu'une couche adhésive est employée, on peut choisir l'adhésif parmi des solutions ou dispersions de résines, selon le cas en milieu aqueux ou en milieu solvant, à base d'EAA (copolymère éthylène - acide acrylique), EVA (copolymère éthylène - acétate de vinyle), VMCH (terpolymère chlorure de vinyle - acétate de vinyle - acide maléique), de résine ionomère SURLYN (R), ou à base de résines thermofusibles, connues sous le nom de "hot-melt". De préférence on utilise une colle contenant du VMCH, par exemple le mélange cyclohexanone (-69%), VMCH (-30%) et di-octyle phtalate (DOP, -1 %) qui semble particulièrement bien adapté.
Lorsque la poche est réalisée en un complexe métalloplastique, l'assemblage étanche poche - boîtier peut se faire par un simple scellage thermique, par fusion de la couche plastique extérieure de la poche soit en contact avec le vernis intérieur du boîtier soit directement sur le métal nu, la présence d'un vernis ne s'imposant pas puisque l'intérieur du boîtier rigide n'est pas en contact avec le produit conditionné. Dans ce dernier cas, la couche plastique extérieure du métalloplastique est par exemple un polypropylène greffé ou encore une polyolefine obtenue par catalyse métallocène.
Pour obtenir un assemblage étanche de la poche avec le boîtier déjà conifie, on effectue de préférence un collage avec le mélange cyclohexanone (-69%), VMCH (-30%) et di-octyle phtalate (DOP, -1 %), qui après séchage sert de moyen d'étanchéité. Le boîtier d'aérosol à poche ainsi obtenu peut être livré au conditionneur qui remplit la poche du produit à distribuer et sertit une coupelle de valve sur le col, après avoir introduit un joint d'étanchéité. La mise sous pression du volume inférieur est effectuée en injectant le gaz propulseur par un trou réalisé au milieu du fond puis bouché par exemple à l'aide d'un toron ou d'un embout Nicholson.
Lorsqu'il s'agit de solidariser par collage la poche avec l'ébauche de boîtier non encore conifiée (selon l'un des procédés décrits dans FR 2 140 804, EP 0 326 052 ou EP 0 547 982), on dépose la colle au rouleau sur la paroi interne cylindrique de l'ébauche de boîtier et/ou sur la paroi externe de la poche, sur une hauteur qui correspond au moins à la partie destinée à être rétreinte au cours de la conification. On réalise la conification commune de la poche et de l'ébauche de boîtier puis on réalise un bord roulé. Le boîtier à poche ainsi obtenu est ensuite livré au conditionneur.
Quand la poche est formée indépendamment du boîtier, que ce soit avant son introduction dans l'ébauche de boîtier ou après son introduction dans le boîtier, il est souhaitable de réaliser la jonction entre le bord évasé de la poche et le bord roulé du boîtier en intercalant un joint élastique rapporté, tel que celui référencé 3 dans FR 2 310 287. Il est aussi possible de remplacer ce joint élastique par une couche thermoplastique thermofusible déposée au rouleau sur le col de la poche.
Lorsqu'il s'agit de solidariser par collage une poche-piston sur l'ébauche de boîtier non encore conifiée, on dépose la colle au rouleau sur la paroi interne cylindrique de l'ébauche de boîtier et/ou sur l'extérieur de la poche, sur au moins une dizaine de millimètres puis on amène la poche-piston posée sur un mandrin conique dont la partie supérieure, qui a le plus grand diamètre, comporte une partie expansible pour assurer la compression de la colle ou de l'adhésif entre la poche et le boîtier. De façon à éviter les déformations, on assure le maintien externe de la paroi du boîtier rigide à l'aide d'une bague métallique, de préférence constituée de plusieurs secteurs segmentés radialement et dont le diamètre interne est égal au diamètre externe du boîtier.
MODE DE REALISATION DE L'INVENTION - EXEMPLE
Le procédé selon l'invention sera mieux compris par la description détaillée de la réalisation d'un boîtier d'aérosol à poche particulier, exposé ici à titre d'exemple non limitatif.
La figure 1 est une vue schématique en coupe verticale d'une poche obtenue par emboutissage - étirage
La figure 2 est une vue schématique en coupe verticale de l'ébauche obtenue après solidarisation par collage au niveau de leurs extrémités ouvertes de la poche de la figure 1 avec l'ébauche du boîtier rigide.
La figure 3 est une vue schématique en coupe verticale du boîtier à poche obtenu après conification et roulage du bord de l'assemblage de la figure 2.
La figure 4 est une vue schématique en coupe verticale de l'ébauche obtenue après solidarisation par collage d'une poche-piston avec une ébauche de boîtier rigide.
La figure 5 est une vue schématique en coupe verticale du boîtier à poche piston obtenu après conification et roulage du bord de l'assemblage de la figure 4.
EXEMPLE 1 (Figures 1 à 3)
Il s'agit dans cet exemple de réaliser un boîtier d'aérosol à poche de diamètre 40 mm, de hauteur 170 mm.
De façon à contenir le maximum de produit, la poche 1 de cet exemple, illustrée en figure 1 , a une hauteur de 163 mm, presque égale à celle du boîtier rigide. Après collage sur la paroi intérieure du boîtier, elle est conifiée conjointement avec le boîtier rigide selon le procédé décrit dans EP 0 547 982.
Après emboutissage-étirage, la poche 1 se présente sous la forme d'une capsule tronconique au fond 2 bombé ou plat, d'aspect sensiblement voisin à celui d'une capsule pour bouteille de Champagne. L'épaisseur de la paroi tronconique 3 est de 0,10 mm, celle du fond 2 est de 0, 12 mm.
Le diamètre de l'extrémité ouverte de la poche est sensiblement égal au diamètre intérieur de l'ébauche du boîtier (39,2 mm).
La conicité de la capsule est définie par le rapport (D l - D2)/H où Dl est le diamètre de l'extrémité ouverte 4, D2 est le diamètre du fond 2, à la jonction entre le fond 2 et la paroi tronconique 3 et H est la hauteur de la pièce. De façon à obtenir une conicité de 1 /30, le diamètre du fond 2 a 34 mm environ.
Après enfilage sur un mandrin de formage puis passage au capsulateur à poche ou à mâchoires, la poche 1 présente des cannelures longitudinales sur sa paroi tronconique.
La poche 1 est ensuite amenée par translation à l'intérieur de l'ébauche de boîtier 11 qui est déjà fixée sur la tourelle d'assemblage et a déjà été enduite de colle. La colle utilisée est un mélange cyclohexanone (-69%), VMCH (-30%) et di-octyle phtalate (DOP, -1 %). Elle est déposée au rouleau sur la paroi interne de l'ébauche de boîtier 11 sur une hauteur équivalent à la partie 16 qui sera rétreinte au cours de la conification. Il est possible, mais non nécessaire, d'en déposer également dans la partie 15 qui sera roulée par tamponnage pour réaliser le bord roulé 25 sur lequel est sertie la coupelle de valve. Lorsque l'extrémité ouverte 4 de la poche arrive au regard de l'extrémité ouverte 14 de l'ébauche de boîtier 11 , le mouvement de translation s'arrête et le mandrin d'amenée de la poche se retire. Après un faible temps d'attente (5 à 25 centièmes de seconde, selon la cadence de fabrication), la poche 1 et l'ébauche de boîtier 11 sont confiées conjointement. Enfin un bord roulé 25 est obtenu par tamponnage.
Afin d'éviter la formation de plis au cours de la conification conjointe du boîtier et de la poche, la partie supérieure 6 de la poche a une épaisseur de 0,2 mm. Cela suffit car la colle qui solidarise la poche et le boîtier transmet à la poche une partie de la rigidité du boîtier.
La poche 1 n'étant déformée qu'au niveau de son extrémité ouverte 4, les épaisseurs du fond 26 et de la paroi 27 restent identiques aux épaisseurs initiales du fond 2 et de la paroi sensiblement verticale 3 de la pièce emboutie-étirée.
EXEMPLE 2 (Figures 4 et 5)
Il s'agit dans cet exemple de réaliser un boîtier d'aérosol à poche piston de diamètre 40 mm, de hauteur 176 mm.
La poche 31 de cet exemple, illustrée en figure 4, a une hauteur de 100 mm, légèrement supérieure à la moitié de celle du boîtier rigide. Elle est collée sur la paroi intérieure du boîtier, sur une zone 46 large d'environ 10 mm et distante d'environ 130 mm du fond du boîtier 42.
Après emboutissage-étirage, la poche 31 se présente sous la forme d'une capsule tronconique au fond 32 creux. L'épaisseur de la paroi tronconique 33 est de 0,1 mm, celle du fond 2 est de 0,12 mm. Le diamètre de l'extrémité ouverte de la poche est sensiblement égal au diamètre intérieur de l'ébauche du boîtier (39,2 mm). La conicité de la capsule est ici aussi égale à 1 /30.
Pour que la poche-piston fonctionne correctement, le fond et la paroi à proximité du fond doivent être typiquement plus minces que la paroi haute, à proximité de la zone de collage 46, ce qui permet d'éviter qu'un collapse latéral ne se produise avant l'amorce du retournement de la poche. Ici l'épaisseur de la paroi au niveau de la zone de collage 46 est voisine de quinze centièmes de millimètre.
Des anneaux concentriques 48, ou joncs, sont réalisés sur la paroi verticale de la poche. Ils rigidifient circonférentiellement la poche et favorisent sa mobilité verticale.
La poche 31 est ensuite amenée par translation à l'intérieur de l'ébauche de boîtier 41 qui est déjà fixée sur la tourelle d'assemblage et a déjà été enduite de colle au niveau de la zone 46 distante de 130 mm du fond du boîtier 42. La colle utilisée est un mélange cyclohexanone (-69%), VMCH (-30%) et di-octyle phtalate (DOP, -1 %).
Lorsque l'extrémité ouverte 34 de la poche arrive au regard de la zone 46 de l'ébauche de boîtier 41, le mouvement de translation s'arrête et le mandrin d'amenée de la poche se retire. Après un faible temps d'attente, l'extrémité ouverte de l'ébauche de boîtier 41 est conifiée. Enfin un bord roulé 55 est obtenu par tamponnage.
AVANTAGES DU PROCEDE SELON L'INVENTION
• Très faible risque de fuite du propulseur dans le produit pendant toute la vie de l'aérosol.
• Risque de collapse diminué en raison de l'homogénéité circonferentielle de l'épaisseur
• Pas de risque de migration du gaz propulseur au travers de la poche

Claims

REVENDICATIONS
1 . Corps de distributeur à poche (21 ; 51 ) constitué d'un boîtier rigide (22; 52) en métal contenant une poche (1 ; 31 ) métallique ou métalloplastique froissable, fixée de façon étanche sur le boîtier rigide (22, 52) et ayant une paroi sensiblement verticale (27, 33) lisse dont l'épaisseur est voisine de celle du fond (26, 32).
2. Corps de distributeur à poche (21 ; 51 ) selon la revendication 1 , caractérisé en ce que le rapport entre l'épaisseur du fond (26, 32) de la poche ( 1 , 31 ) et l'épaisseur de la paroi sensiblement verticale (27, 33) de ladite poche ( 1 , 31 ) est inférieur à 2.
3. Corps de distributeur à poche (21 ; 51 ) selon la revendication 1 ou 2, caractérisé en ce que l'épaisseur de la paroi sensiblement verticale (27, 33) de la poche ( 1 , 31 ) est inférieure à 150 μm.
4. Corps de distributeur à poche (21 ; 51 ) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite poche ( 1 ; 31 ) est réalisée par emboutissage-étirage.
5. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite poche ( 1 ; 31 ) est réalisée à partir d'une bande en un alliage d'aluminium appartenant au groupe comprenant les alliages 1050, 1070, 1 100, 1200 et 801 1 .
6. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite poche ( 1 ; 31 ) est réalisée à partir d'une bande en un complexe métalloplastique, composé au moins d'une couche métallique et d'une couche polymérique thermoplastique.
7. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit assemblage étanche du boîtier (1 1 ; 41 ) avec une poche souple ( 1 ; 31 ) est réalisé par collage en utilisant une colle contenant un mélange cyclohexanone, acétochlorure de vinyle modifié maléique (VMCH) et di-octyle phtalate (DOP).
8. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit assemblage étanche du boîtier (1 1 ; 41 ) avec une poche souple (1 ; 31 ) est réalisé par soudage et/ou par déformation.
9. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit assemblage étanche du boîtier (1 1 ; 41 ) avec une poche souple ( 1 ; 31 ) est réalisé en interposant un joint élastique entre le bord roulé du boîtier et le bord de la poche.
10. Corps de distributeur à poche selon la revendication 6, caractérisé en ce que ledit assemblage étanche du boîtier ( 1 1 ; 41 ) avec une poche souple (1 ; 31 ) est réalisé par thermoscellage.
1 1 . Corps de distributeur à poche selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la poche est munie de cannelures en vue d'améliorer la résistance de la poche au collapse et la pré-orientation des plis principaux.
12. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la poche est plus épaisse au voisinage de son extrémité ouverte et en ce qu'elle est conifiée conjointement avec l'ébauche de boîtier.
13. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la poche est évasée au voisinage de son extrémité ouverte, puis introduite dans le boîtier rigide et collée sur le bord roulé du boîtier.
14. Corps de distributeur à poche selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la poche emboutie-étirée est collée à mi- hauteur de l'ébauche du boîtier rigide sur une hauteur de 10 mm environ.
15. Corps de distributeur à poche selon la revendication 14, caractérisé en ce que ladite poche possède des anneaux concentriques et en ce que son fond est concave.
1 6. Poche (1 , 31 ) destinée à coopérer avec le boîtier rigide (22, 52) du corps de distributeur (21 , 51 ) selon l'une quelconque des revendications 1 à 15, caractérisée en ce que la paroi sensiblement verticale (27, 33) de ladite poche est lisse, exempte de plis et a une épaisseur sensiblement égale à celle du fond (26, 32) de la dite poche.
PCT/FR1999/001196 1998-05-20 1999-05-20 Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention WO1999059896A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR9906502-9A BR9906502A (pt) 1998-05-20 1999-05-20 "corpo de distribuidor sob pressão que possui uma câmara metálica ou metaloplástica, a dita câmara e seu processo de obtenção"
EP99920892A EP1005431A1 (fr) 1998-05-20 1999-05-20 Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9806560 1998-05-20
FR98/06560 1998-05-20

Publications (1)

Publication Number Publication Date
WO1999059896A1 true WO1999059896A1 (fr) 1999-11-25

Family

ID=9526680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001196 WO1999059896A1 (fr) 1998-05-20 1999-05-20 Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention

Country Status (3)

Country Link
EP (1) EP1005431A1 (fr)
BR (1) BR9906502A (fr)
WO (1) WO1999059896A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820127A1 (fr) 2001-01-30 2002-08-02 Pechiney Emballage Alimentaire Poche et boitier muni de cette poche permettant d'obtenir un distributeur a taux de restitution ameliore
USD903424S1 (en) 2017-02-07 2020-12-01 Ball Corporation Tapered cup
USD906056S1 (en) 2018-12-05 2020-12-29 Ball Corporation Tapered cup
USD950318S1 (en) 2018-05-24 2022-05-03 Ball Corporation Tapered cup
USD953811S1 (en) 2020-02-14 2022-06-07 Ball Corporation Tapered cup
US11370579B2 (en) 2017-02-07 2022-06-28 Ball Corporation Tapered metal cup and method of forming the same
USD968893S1 (en) 2019-06-24 2022-11-08 Ball Corporation Tapered cup
USD974845S1 (en) 2020-07-15 2023-01-10 Ball Corporation Tapered cup
USD1012617S1 (en) 2021-02-22 2024-01-30 Ball Corporation Tapered cup
USD1035386S1 (en) 2021-12-08 2024-07-16 Ball Corporation Tapered cup

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140804A5 (fr) * 1971-06-08 1973-01-19 Scal Gp Condit Aluminium
US3979025A (en) * 1975-07-24 1976-09-07 Richard Friedrich Devices for holding and discharging liquid and paste-like substances under pressure
US4062475A (en) * 1975-04-25 1977-12-13 S. C. Johnson & Son, Inc. Pressurized container for two-phase system
US4562942A (en) * 1984-07-03 1986-01-07 Diamond George B Rolling diaphragm barrier for pressurized container
EP0326052A2 (fr) * 1988-01-27 1989-08-02 Gerd Stoffel Procédé de fabrication d'un joint d'étanchéité entre deux chambres sous pression
EP0547982A1 (fr) * 1991-12-17 1993-06-23 Cebal S.A. Procédé de fabrication d'un corps de distributeur à poche en métal, corps de distributeur et distributeur correspondant
US5248063A (en) * 1990-12-05 1993-09-28 Abbott Joe L Barrier pack container with inner laminated tube
DE4413331A1 (de) * 1994-04-18 1995-10-19 Gerd Stoffel Verfahren zum Herstellen einer Zweikammer-Druckpackung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140804A5 (fr) * 1971-06-08 1973-01-19 Scal Gp Condit Aluminium
US4062475A (en) * 1975-04-25 1977-12-13 S. C. Johnson & Son, Inc. Pressurized container for two-phase system
US3979025A (en) * 1975-07-24 1976-09-07 Richard Friedrich Devices for holding and discharging liquid and paste-like substances under pressure
US4562942A (en) * 1984-07-03 1986-01-07 Diamond George B Rolling diaphragm barrier for pressurized container
EP0326052A2 (fr) * 1988-01-27 1989-08-02 Gerd Stoffel Procédé de fabrication d'un joint d'étanchéité entre deux chambres sous pression
US5248063A (en) * 1990-12-05 1993-09-28 Abbott Joe L Barrier pack container with inner laminated tube
EP0547982A1 (fr) * 1991-12-17 1993-06-23 Cebal S.A. Procédé de fabrication d'un corps de distributeur à poche en métal, corps de distributeur et distributeur correspondant
DE4413331A1 (de) * 1994-04-18 1995-10-19 Gerd Stoffel Verfahren zum Herstellen einer Zweikammer-Druckpackung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820127A1 (fr) 2001-01-30 2002-08-02 Pechiney Emballage Alimentaire Poche et boitier muni de cette poche permettant d'obtenir un distributeur a taux de restitution ameliore
US11370579B2 (en) 2017-02-07 2022-06-28 Ball Corporation Tapered metal cup and method of forming the same
US10875076B2 (en) 2017-02-07 2020-12-29 Ball Corporation Tapered metal cup and method of forming the same
USD903424S1 (en) 2017-02-07 2020-12-01 Ball Corporation Tapered cup
USD950318S1 (en) 2018-05-24 2022-05-03 Ball Corporation Tapered cup
USD906056S1 (en) 2018-12-05 2020-12-29 Ball Corporation Tapered cup
USD962710S1 (en) 2018-12-05 2022-09-06 Ball Corporation Tapered cup
USD968893S1 (en) 2019-06-24 2022-11-08 Ball Corporation Tapered cup
USD953811S1 (en) 2020-02-14 2022-06-07 Ball Corporation Tapered cup
USD974845S1 (en) 2020-07-15 2023-01-10 Ball Corporation Tapered cup
USD978618S1 (en) 2020-07-15 2023-02-21 Ball Corporation Tapered cup
USD1042036S1 (en) 2020-07-15 2024-09-17 Ball Corporation Tapered cup
USD1012617S1 (en) 2021-02-22 2024-01-30 Ball Corporation Tapered cup
USD1035386S1 (en) 2021-12-08 2024-07-16 Ball Corporation Tapered cup

Also Published As

Publication number Publication date
EP1005431A1 (fr) 2000-06-07
BR9906502A (pt) 2000-09-19

Similar Documents

Publication Publication Date Title
EP0524897B1 (fr) Tête de tube en matière plastique à revêtement intérieur à effet barrière et pièce utilisable pour ce revêtement
EP0354137A1 (fr) Procédé de fabrication et de conditionnement d'un distributeur à poche, sous-ensembles et distributeurs correspondants
EP2094483B1 (fr) Capsule de bouchage a joint de forme multicouche
WO1998047785A1 (fr) Capsule a manchon en matiere plastique
WO1999059896A1 (fr) Corps de distributeur sous pression ayant une poche metallique ou metalloplastique, ladite poche et son procede d'obtention
EP2022724A1 (fr) Tubes souples en matière plastique et leur procédé de fabrication
EP0680444B1 (fr) Procede de fabrication d'un tube a paroi contenant plus de 60 % de matiere plastique et ayant une jupe et une tete retreinte, et tube correspondant
WO2008065280A2 (fr) Perfectionnement d'un procede de fabrication de tubes souples lamines
CA2414828C (fr) Capsules de surbouchage a jupe roulee
EP4117887B1 (fr) Procédé de fabrication d'une bouteille en pâte à papier ayant une doublure intérieure moulée
FR2820127A1 (fr) Poche et boitier muni de cette poche permettant d'obtenir un distributeur a taux de restitution ameliore
FR2510070A1 (fr) Couvercle de fermeture, emballage hermetique comprenant un tel couvercle et outillage a rouler les bords de ce couvercle
EP3619035B1 (fr) Structure multicouche de tube plastique
EP1693306A1 (fr) Récipient thermoforme à deux compartiments
EP0547982B1 (fr) Procédé de fabrication d'un corps de distributeur à poche en métal, corps de distributeur et distributeur correspondant
FR2713137A1 (fr) Composants de boîtes en complexe métalloplastique obtenus par emboutissage.
FR2713138A1 (fr) Boîtes embouties-étirées en complexe métalloplastique et leur procédé de fabrication.
FR2827844A1 (fr) Dispositif a recipient rigide et poche cylindrique souple pour le conditionnement de fluides
FR2540757A1 (fr) Recipient metallique presentant un joint lateral circonferentiel
EP4302962A1 (fr) Structure multicouche de tube plastique
FR2713113A1 (fr) Procédé de fabrication de couvercles et de boîtes en complexes métal-polymère-métal munis d'un bord roulé.
FR2516058A1 (fr) Dispositif d'obturation de goulot de recipient pour produits sous pression
FR2642699A1 (fr) Procede de fabrication et de conditionnement d'un distributeur a poche, sous-ensembles et distributeurs correspondants
FR2880826A1 (fr) Procede de fabrication d'une coiffe destine a l'habillage d'une bouteille et coiffe issue d'un tel procede
BE529512A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CZ HU JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999920892

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999920892

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999920892

Country of ref document: EP