WO1999058062A1 - Procede de mesure de l'effet d'un traitement sur un tissu - Google Patents

Procede de mesure de l'effet d'un traitement sur un tissu Download PDF

Info

Publication number
WO1999058062A1
WO1999058062A1 PCT/FR1999/001152 FR9901152W WO9958062A1 WO 1999058062 A1 WO1999058062 A1 WO 1999058062A1 FR 9901152 W FR9901152 W FR 9901152W WO 9958062 A1 WO9958062 A1 WO 9958062A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
treatment
attenuation
ultrasound
measuring
Prior art date
Application number
PCT/FR1999/001152
Other languages
English (en)
Inventor
Mathieu Ribault
François Lacoste
Jean-Yves Chapelon
Emmanuel Blanc
Original Assignee
Technomed Medical Systems
Institut National De La Sante Et De La Recherche Medicale (Inserm)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technomed Medical Systems, Institut National De La Sante Et De La Recherche Medicale (Inserm) filed Critical Technomed Medical Systems
Publication of WO1999058062A1 publication Critical patent/WO1999058062A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the subject of the invention is a method and a device for measuring the effect of a treatment on a fabric. It uses the measurement of the variation in the mean of the acoustic tissue attenuation as a function of frequency to determine the effects of the treatment.
  • the invention applies in particular to the field of therapeutic treatment of tissue by focused ultrasound, and more particularly to the field of tissue destruction inside an organism by causing high temperatures using focused ultrasound.
  • the oldest treatment is the lithotripsy treatment, which is applied to the destruction of hard bodies; this type of treatment uses shock waves, i.e. short, high-power pulses.
  • shock waves i.e. short, high-power pulses.
  • hyperthermia involves the sending to the tissues to be treated of ultrasound in the form of long pulses and of lower power.
  • HIFU treatments are now offered, generally called HIFU treatments (acronym for High Intensity Focused Ultrasounds).
  • HIFU treatments consist of heating fabrics at high temperatures, typically above 45 ° C.
  • High Intensity Focused Ultrasound (HIFU) therapy is an effective way to create clotting necrosis lesions in biological tissue to treat localized tumors.
  • the objective is to improve the effectiveness of the treatment, i.e. the destruction of the selected tissues.
  • a first problem is that of access to the targets or tissues to be treated. Because of the patient's anatomy, targets are sometimes difficult to access with ultrasound beams.
  • a third problem lies in the control of the results obtained: although good results are currently obtained, especially in urology, the devices used lack a control system making it possible to verify the effectiveness of the treatments. It has been proposed to use a fiber optic measurement of the temperature in the target; such a measure involves implanting fibers into the organ to be treated. This solution is for example proposed in the prostate treatment devices marketed by the company Dornier Medizintechnik under the reference Eurowave. It has also been proposed to use the echographic image of the treated area, which most often has variations in echogenicity at the level of the treated area. Unfortunately A. Sibille et al, “Characterization of extraco ⁇ oreal ablation of normal and tumor-bearing liver tissue by High Intensity Focused
  • the invention provides a non-invasive method and device for local measurement of the variation in attenuation; This measurement, applied to HIFU treatments, makes it possible to characterize the appearance of coagulation necrosis lesions during treatment, and therefore provides the therapist with a non-invasive, real-time measurement and control tool.
  • the invention proposes a method for measuring the effect of a therapy on a tissue, comprising:
  • the method further comprises calculating the variation in the average attenuation of the tissue over a frequency range.
  • the measurement steps include measuring the ultrasound emitted by an ultrasound transducer and backscattered.
  • the average attenuation is calculated by the so-called frequency band method.
  • the tissue may include the prostate.
  • the treatment preferably includes the induction of necrosis in the tissue, by sudden rise in temperature. This can be achieved by applying focused ultrasound to the tissue.
  • the invention also relates to an apparatus for treating tissue by forming necroses in the tissue, comprising means for measuring ultrasound. backscattered by the tissue before treatment, and measurement of ultrasound backscattered by the tissue after treatment.
  • the apparatus further comprises means for calculating the variation in the average attenuation of the tissue over a frequency range.
  • the measuring means advantageously conduct a measurement of the signals received on an ultrasound transducer.
  • the apparatus comprises means for displaying the variation in average attenuation in a plane pe ⁇ endicular to the direction of treatment.
  • the device comprises means for inducing necrosis in the tissue, by sudden rise in temperature, typically a transducer focusing ultrasound.
  • FIG. 5 the typical evolution of the attenuation as a function of the frequency, before and after the treatment
  • FIG. 6 shows the evolution the average variation the attenuation, normalized compared to the value obtained on the central section of the treatment
  • Figure 7 shows an example of evolution of the average variation of the attenuation in the longitudinal direction
  • - Figure 8 shows an example of evolution of the average variation of the attenuation in the transverse direction
  • FIGS. 12, 13 and 14 the average attenuation before the treatment, the average attenuation after the treatment and the variation of attenuation, on views similar to those of FIG. 9;
  • the invention is described in its application to the control of a HIFU treatment of the prostate, for a device sold under the brand Ablatherm by the company EDAP TECHNOMED, described in application PCT / FR94 / 00936 . 4
  • HIFU treatments consists in inducing in the focal area of an ultrasound transducer lesions of coagulation necrosis caused mainly by a sudden rise in temperature, even if cavitation phenomena are present.
  • This rise in temperature corresponds to a transformation of acoustic energy into heat linked to the absorption of ultrasound in the tissues by the relation: (g) oc nJ where ⁇ Q> is the density of acoustic power transformed per unit of volume, a is the tissue absorption and I is the ultrasonic intensity in the region considered.
  • the application of the invention to the control of treatments is based on the experimental observation that the appearance of lesions in a tissue, and in particular of lesions created by HIFU causes an increase in certain acoustic parameters of the tissues, and in particular attenuation.
  • the Ablatherm device combines in a endorectal probe a therapy transducer at 2.5 MHz and a biplane imaging transducer with mechanical scanning of central frequency of 5.5 MHz with a bandwidth of 2 MHz and a focal distance of 2.75 cm; the ultrasound transducer is connected to a C311 reference ultrasound system from the company KRETZ.
  • the therapy transducer creates individual cylindrical lesions of 1.6 mm in diameter and 20 mm in height.
  • the imaging transducer is used for the acquisition of RF signals allowing the measurement of the invention.
  • the stages of a representative treatment are presented in FIGS. 1 to 3.
  • the probe 1 is introduced into the rectum of the patient, facing the prostate 2; the imaging transducer 3 moves longitudinally in steps of 1.6 mm from the apex to the base of the organ allowing visualization in transverse sections 4, 5, 6 which the clinician defines as a function of the position of the areas to be treated.
  • the displacement of the imaging transducer is symbolized by the arrow in the figure. It should be noted that the probe itself remains fixed relative to the patient.
  • Figure 2 shows the processing step; the imaging transducer is retracted, as symbolized by the arrow and the therapy transducer 8 is placed parallel to the posterior face of the organ to be treated, to allow the emission of focused ultrasound towards the prostate.
  • the induced lesions are marked in gray.
  • Figure 3 shows a control step in which the imaging transducer allows visualization of the treated areas.
  • FIG. 4 shows the device for acquiring the RF signals backscattered by the tissues.
  • An RF output 10 has been installed on the ultrasound system 11 so as to be able to record the data in the memory of a microcomputer 12 (PC 486).
  • An 8-bit analog to digital conversion card 13 (STR 8100 D, Sonix) was used for digitizing the RF signals coming from the ultrasound system with a sampling frequency of 50 MHz.
  • a counter card 14 FPC 24 made it possible to choose a region of interest (ROI) on the echographic image by selecting the RF lines corresponding to the organ of study thanks to the synchronization signals lines and images coming from the ultrasound system .
  • ROI region of interest
  • this device makes it possible to acquire 250 lines of neighboring echoes corresponding to approximately 2/3 of the echographic image and containing all the echoes coming from the tissues to be studied. At the end of the movements, an entire volume of fabric was thus acquired, the dimensions 5x4x3 cm 3 of which correspond to 5000 adjacent RF lines.
  • the device in fact allows on-the-fly capture of the information provided by the ultrasound transducer; the combination of this information with the synchronization information makes it possible to determine a region of interest. It should be noted that the RF signals backscattered by the tissues over the entire area covered by the ultrasound system could also be analyzed, if this is necessary.
  • ⁇ 0 is the attenuation coefficient at the central frequency of the transducer f c
  • is the slope of the attenuation over the passband of the transducer.
  • G the transfer function of the ultrasonic source. It combines the electroacoustic and acoustoelectric conversion terms of the transducer during signal emission and reception.
  • D is the backscatter term assumed to be homogeneous and isotropic in the volume studied.
  • H is the term due to the diffraction of the transducer.
  • e ' " ⁇ '" is the transfer function of l attenuation of ultrasound in tissues. 6
  • the invention proposes to overcome the effects of diffraction by estimating the attenuation from recordings obtained before and after treatment on the same areas of tissue. During this operation, the calculation of the slope difference Sa -
  • a measuring device composed of two identical plane transducers (Imasonic, France) of nominal frequency 10 MHz and 10 mm in diameter.
  • a sine wave train of 50 periods was used in the 4-10 MHz band in 500 kHz steps.
  • the evolution of the attenuation function with and without treatment with HIFU was studied overall by comparing the measurements of series A with those of the first 7 sections of series B.
  • the function attenuation was estimated on average over the entire volume of lesions.
  • the purpose of the B series study was to define the spatial resolution of the method in order to make an image of the lesions.
  • the longitudinal resolution consisted of an inter-slice study of the acoustic parameters.
  • the cross-sectional study looked at the inter-line variation of the attenuation on a cross-section.
  • One of the liver samples was used to study the importance of the effect of temperature on the images created. To this end, measurements were made immediately after 8
  • thermocouple
  • the parameters ⁇ 0 and ⁇ of the reference phantoms were estimated in transmission as well as in reflection.
  • the relative error between the two techniques is less than 5% for the following calculation and acquisition parameters: sampling frequency 50 MHz
  • the entire length of the RF lines is also preferably used; this improves accuracy.
  • the tissue attenuation corresponds to an average estimate on the thickness of the tissue studied, i. e. over the entire depth of the RF line. Insofar as the tissues on either side of the lesion - in front and behind the lesion - are not affected by the treatment, the results obtained are very representative of the treatment carried out.
  • Figure 5 shows the typical change in attenuation as a function of frequency, before and after treatment, for a sample in series B.
  • the attenuation curves before and after treatment show general patterns that are practically similar but with very different average levels. The same characteristics were observed on all the samples in series B.
  • Table 2 shows the attenuation slope differential ⁇ as well as the attenuation differential ⁇ ôT obtained on all the pieces of liver on treated areas (first 7 slices of series B) and untreated (series A). Table confirms that if the values of Aâ vary significantly during treatment, the values of ⁇ do not vary much. The invention therefore proposes to use the variations in the average attenuation to assess the effects of the treatment on the tissues.
  • Centrooid MNB method centroid MNB method (dB / cm / MHz) -0.01 ⁇ 0.02 -0.01 ⁇ 0.02 0.13 ⁇ 0.14 0.02 ⁇ 0.11
  • the average of the average attenuation coefficients measured before treatment over all the samples is 3.8 ⁇ 1.07 dB / cm. This was determined from the measurements of series A and of the measurements carried out before treatment of series B. The average of the attenuation slopes estimated before treatment is 0.43 ⁇ 0.17 dB / cm / MHz. In the case without treatment, Aâ and ⁇ make it possible to determine the reproducibility of the estimation of this and ⁇ . The reproducibility errors are 2.3% and 3.15% respectively. In the case with treatment, we note that the average variation of this is 86% and that of ⁇ is 30% and 4.7% respectively with the centroid method and the MNB method
  • can be studied section by section over the entire treated area. This evolution is generally symmetrical around the central section which presents a maximum.
  • Figure 6 presents the evolution of Aâ normalized compared to the value obtained on the central section of the treatment. Error bars represent standard deviations for all pieces of liver. It can be seen in the figure that the measured values are in all cases much greater than the standard deviation, so that the measurement according to the invention always remains representative of the processing.
  • the invention also proposes a measurement which has good longitudinal resolution, ie in the direction of the processing.
  • Figure 7 presents an example of evolution of Aâ on 12 slices (series B) in a plane containing the treated area. Slices 1 to 7 are processed, and slices 8 to 12 are not; slice number 8 which is not part of the target zone has an attenuation differential greater than 1 dB / cm which seems to show that the lesion zone has exceeded the framework defined by the user. On the other sections, it can be seen that the evolution of Aa is much greater for the tissues actually treated. Spatial resolution 10
  • FIG. 8 presents an example of transverse evolution of Aâ on a treated slice as well as on an untreated slice.
  • was estimated on a minimum volume of 5 RF lines. Again, the figure shows that Aâ is representative of the treatment in the area.
  • FIG. 9 represents a frontal image in gray scale of the attenuation differential subsequently named "Aâ image".
  • a frontal image is an image obtained in plane containing parallel to the therapy transducer. This was obtained by decomposing each cross section into 50 blocks of 5 RF lines on which Aâ is estimated, leading to a 50x12 matrix. Each element of the matrix corresponds to a square of 0.102x1.60 mm 2 which makes it possible to give a metric scale to the "Aâ images”.
  • a threshold at -12dB of the maximum seems to be optimum for delimiting the areas of lesions.
  • the high levels greater than -12 dB; are shown in dark, while the other levels are shown in light.
  • the limit by the white rectangle corresponds to the theoretical limit of the target, as programmed in the processing. It can be seen in FIG. 9 that the dark areas almost cover the treated area, and that the visualization of Aâ allows a reliable assessment of the treated area.
  • Figures 10 and 11 show images similar to those of Figure 9:
  • Figure 10 is an image made immediately after treatment and
  • Figure 11 is an image made after tissue cooling.
  • the variation is calculated with respect to the tissues before treatment.
  • the attenuation differential decreased slightly with cooling its maximum is 1 dB / cm lower than that calculated immediately after treatment.
  • the comparison of these two figures clearly shows that the method of the invention can be used both in real time, immediately before and after a treatment shot, and deferred, after the end of treatment, for an evaluation of the effects of this one.
  • the invention thus applies not only assistance in the conduct of a treatment by providing the practitioner with immediate measures allowing him to adapt his treatment; it also applies after the end of a treatment, to allow the practitioner to assess the effects of a treatment.
  • Figures 12, 13 and 14 represent respectively, with the same conventions as Figure 9, and for the same tissue area, the average attenuation before treatment, the average attenuation after treatment and the variation in attenuation.
  • the white rectangle represents the target.
  • the heterogeneities of the fabric show significant variations in gray levels.
  • an area with the highest attenuation appears in the targeted area, but the heterogeneities do not allow the area treated to be clearly delimited.
  • there is no ambiguity on the image of figure 14 which represents the variations of average attenuation.
  • the average attenuation coefficient has not changed outside the target area, which attests to the validity of the acquisition system, the slight differences being due to the errors of estimate.
  • the invention therefore makes it possible to characterize the appearance of lesions of coagulation necrosis during HIFU treatments by means of a measurement of local variation in the average attenuation in the tissues.
  • the experiment was carried out on pieces of pork liver using an ultrasound therapy device used in exactly the same conditions as during treatments of the human prostate.
  • the attenuation of the ultrasound in the examples was estimated over the entire length of the RF signals, thus only allowing an average estimate on the thickness of the tissues.
  • the figures show that the estimation of the average variation of the attenuation, and in particular on images in frontal section, makes it possible to visualize the. user defined lesion area, which agrees with the region where Aâ is greater than a threshold defined at -12dB maximum.
  • the target area in the figures corresponds to a block of 42 lesions (6 by 7).
  • the frontal area in the middle of the treated region then represents 1.08cm 2 .
  • the average surface area of the lesions estimated on the Aâ images is 1.3cm 2 or 20% larger. This slight spreading can be explained by the thermal conduction phenomena during the treatments. These are also the cause of a greater temperature accumulation in the central part of the treatment.
  • the Aâ images according to the invention offer several advantages compared to conventional attenuation images.
  • the integration of an image of absolute attenuation made on tissue treated with HIFU is not simple insofar as it is difficult to separate the zones of strong attenuation due to lesions from the zones of strong attenuation preexisting in the tissue, as shown in Figures 12 and 13.
  • Some weakly attenuating areas may also see their level of attenuation increase during the creation of lesions without it being distinguished from the average level of attenuation of the tissue. Differential measurement eliminates these problems.
  • the absolute attenuation images are limited by the diffraction problems of the imaging probe as well as by the presence of heterogeneities in the tissue (shaded areas, specular echoes ...) which make the term Diffusion may vary with depth.
  • the technique used here overcomes the diffraction problems inherent in the imaging probe since the measurements before and after treatment are carried out at exactly the same positions. A small variation may nevertheless occur due to the volume dilation of the tissues during the creation of the lesions, but this is negligible with respect to the inter-slice space which is
  • the Ablatherm device thanks to its probe, makes it possible to avoid movements of the probe, and thus ensures that the measurement is essentially independent of the patient's movements, and in particular the respiratory movements.
  • the corresponding images can be displayed on the control screen of the processing device or the ultrasound system, for example by superimposition of the echographic image; this allows the doctor to easily locate the treated areas, and to adapt his treatment accordingly.
  • the term attenuation has been used.
  • the abso ⁇ tion does not take into account diffusion phenomena and other losses in the medium.
  • the attenuation is generally calculated from the overall attenuation of the signal.
  • the ratio of attenuation and absso ⁇ tion is generally constant for a given tissue.
  • the measurement of the variations in attenuation according to the invention allows control and monitoring of the formation of lesions in a focused ultrasound treatment.
  • the above description mentions the application to focused ultrasound for treatment with HIFU; the invention also applies to other types of treatment, for example treatments by hyperthermia, and more generally all treatments in which the acoustic attenuation is representative of the state of the tissues treated.
  • the invention can also be applied to the measurement of the effects of a hyperthermia treatment using microwaves, or lasers, or radiofrequency waves. It applies in particular to the control of the treatment of prostatic adenoma by the endourethral route using devices delivering microwaves, such as that marketed by the same company under the brand Prostatron.
  • the invention only provides a measure of the variation in the acoustic attenuation, and from this point of view, applies independently of the treatment envisaged or applied; the invention does not immediately suggest the type or processing power or total energy to be applied for a given target.
  • the measurement of the acoustic attenuation according to the invention is therefore independent of the exercise by a doctor or a surgeon of his art, by the choice of the organs to be treated, the power to be applied, the duration or the type of treatment or other parameters.
  • the measure has no functional relationship with the therapeutic effect of the treatment, which is determined by the doctor implementing the treatment.
  • the present invention is not limited to the examples and embodiments described and shown, but it is susceptible of numerous variants accessible to those skilled in the art. It is clear that if the invention has been described in its application to the example of the prostate, it can also be applied to other tissues. The invention could thus be used for hyperthermia of the breast, the liver, or other organs or tissues. It is also clear that the invention is not limited to the mode of 14

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

L'invention concerne un procédé de mesure de l'effet d'un traitement sur un tissu; elle propose de mesurer les variations de la moyenne de l'atténuation acoustique en fonction de la fréquence, par mesure des ultrasons rétrodiffusés par le tissu avant le traitement; mesure des ultrasons rétrodiffusés par le tissu après le traitement. L'invention s'applique notamment au contrôle des thérapies par ultrasons focalisés, qui induisent dans les tissus des lésions de nécrose, provoquées par des augmentations de température brutales.

Description

PROCEDE DE MESURE DE LΕFFET D'UN TRAITEMENT SUR UN TISSU
L'invention a pour objet un procédé et un dispositif de mesure de l'effet d'un traitement sur un tissu. Elle utilise la mesure de la variation de la moyenne de l'atténuation tissulaire acoustique en fonction de la fréquence pour déterminer les effets du traitement.
L'invention s'applique notamment au domaine du traitement thérapeutique des tissus par ultrasons focalisés, et plus particulièrement le domaine de la destruction de tissus à l'intérieur d'un organisme en provoquant de hautes températures à l'aide d'ultrasons focalisés. Dans le domaine général des ultrasons focalisés, comme l'homme du métier le sait, on distingue différents types de traitements: le traitement le plus ancien est le traitement par lithotripsie, qui s'applique à la destruction de corps durs; ce type de traitement utilise des ondes de chocs, i.e. des impulsions courtes et de forte puissance. Il a ensuite été proposé de traiter les tissus mous par hyperthermie, en chauffant les tissus à des températures peu élevées, i.e. inférieures à 45°C. L'hyperthermie implique l'envoi vers les tissus à traiter d'ultrasons sous forme d'impulsions longues et de puissance plus faible. Enfin, sont maintenant proposés des traitements de tissus mous par ultrasons focalisés de haute intensité, généralement appelés traitements HIFU (acronyme de l'anglais High Intensity Focused Ultrasounds). Les traitements HIFU consistent à chauffer de tissus à des températures élevées, typiquement supérieures à 45°C. Les traitements par ultrasons focalisés de haute intensité (HIFU) représentent un moyen efficace de créer des lésions de nécrose de coagulation dans les tissus biologiques en vue de traiter les tumeurs localisées. Pour la HIFU se posent différents problèmes. De façon générale, l'objectif est d'améliorer l'efficacité du traitement, i.e. la destruction des tissus choisis. Un premier problème est celui de l'accès aux cibles ou tissus à traiter. A cause de l'anatomie du patient, les cibles sont parfois difficilement accessibles aux faisceaux ultrasonores. Il a été proposé de déplacer le transducteur; toutefois, le déplacement du transducteur peut aussi être limité par la moφhologie du patient. Dans le cas du traitement de la prostate par une sonde endorectale, différentes solutions à ce problème ont été proposées, voir par exemple FR 91 02 620, FR 93 09 158, FR 96 08 096, FR 94 01 304, FR 94 06 539. Ces différentes solutions pourraient encore être améliorées, pour assurer un meilleur traitement, dans des zones précises, par hyperthermie ou par HIFU.
Un deuxième problème réside dans le choix des paramètres de l'émission ultrasonore; ceux-ci, et en particulier la fréquence doivent être choisis très 2
précisément. Ils dépendent généralement de nombreux facteurs, tels que: profondeur de la cible, nature du tissu, type de nécrose recherchée.
Un troisième problème réside dans le contrôle des résultats obtenus : bien que de bons résultats soient actuellement obtenus, notamment en urologie, les appareils utilisés manquent d'un système de contrôle permettant de vérifier l'efficacité des traitements. Il a été proposé d'utiliser une mesure par fibre optique de la température dans la cible ; un tel type de mesure implique d'implanter dans l'organe à traiter des fibres. Cette solution est par exemple proposée dans les dispositifs de traitement de la prostate commercialisés par la société Dornier Medizintechnik sous la référence Eurowave. Il a encore été proposé d'utiliser l'image echographique de la zone traitée, qui présente le plus souvent des variations d'échogénicité au niveau de la zone traitée. Malheureusement A. Sibille and al, , « Characterization of extracoφoreal ablation of normal and tumor-bearing liver tissue by High Intensity Focused
Ultrasound », Ultrasound in Med. And Biol., Vol 19, No. 9, pp. 803-813, 1993 montre qu'il n'existe pas de corrélation entre le niveau d'échogénicité et le taux de destruction tissulaire.
L'invention propose un procédé et un dispositif non invasif, de mesure locale de la variation d'atténuation ; cette mesure, appliquée aux traitements par HIFU, permet de caractériser l'apparition des lésions de nécrose de coagulation pendant le traitement, et fournit donc au thérapeute un outil de mesure et de contrôle du traitement, non-invasif et en temps réel.
Plus précisément, l'invention propose un procédé de mesure de l'effet d'une thérapie sur un tissu, comprenant :
- la mesure des ultrasons rétrodiffusés par le tissu avant le traitement ; - la mesure des ultrasons rétrodiffusés par le tissu après le traitement.
Avantageusement, le procédé comprend en outre le calcul de la variation de l'atténuation moyenne du tissu sur une plage de fréquence.
Dans un mode de réalisation, les étapes de mesure comprennent la mesure des ultrasons émis par un transducteurs d'échographie et rétrodiffusés. Avantageusement, l'atténuation moyenne est calculée par la méthode dite des bandes de fréquence.
Le tissu peut comprendre la prostate.
Le traitement comprend de préférence l'induction de nécroses dans le tissu, par élévation brutale de température. Ceci peut être obtenu par application d'ultrasons focalisés sur le tissu.
L'invention concerne aussi un appareil de traitement d'un tissu par formation de nécroses dans le tissu, comprenant des moyens de mesure des ultrasons rétrodiffusés par le tissu avant le traitement, et de mesure des ultrasons rétrodiffusés par le tissu après le traitement.
De préférence, l'appareil comprend en outre des moyens de calcul de la variation de l'atténuation moyenne du tissu sur une plage de fréquence. Les moyens de mesure conduisent avantageusement une mesure des signaux reçus sur un transducteur d'échographie.
Dans un mode de réalisation, l'appareil comprend des moyens d'affichage de la variation d'atténuation moyenne dans un plan peφendiculaire à la direction de traitement. De préférence, l'appareil comprend des moyens d'induction de nécroses dans le tissu, par élévation brutale de température, typiquement un transducteur focalisant des ultrasons.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes de réalisation de l'invention, donnée à titre d'exemple et en référence aux dessins annexés qui montrent:
- figures 1 à 3, les différentes étapes d'un traitement par ultrasons focalisés dans un appareil pouvant mettre en œuvre l'invention;
- figure 4 le dispositif d'acquisition des signaux RF rétrodiffusés par les tissus; figure 5 l'évolution typique de l'atténuation en fonction de la fréquence, avant et après le traitement;
- figure 6 présente l'évolution la variation moyenne l'atténuation, normalisée par rapport à la valeur obtenue sur la tranche centrale du traitement ; figure 7 présente un exemple d'évolution de la variation moyenne de l'atténuation dans le sens longitudinal ; - figure 8 présente un exemple d'évolution de la variation moyenne de l'atténuation dans le sens transversal ;
- figure 9, une représentation graphique de la variation moyenne de l'atténuation, dans un plan peφendiculaire à la direction principale de propagation des ultrasons ; - figures 10 et 11, des représentations analogues à celle de la figure 9, effectuées à des instants différents ;
- figures 12, 13 et 14, l'atténuation moyenne avant le traitement, l'atténuation moyenne après le traitement et la variation d'atténuation, sur des vues analogues à celles de la figure 9 ; Dans la suite de la description, l'invention est décrite dans son application au contrôle d'un traitement par HIFU de la prostate, pour un appareil commercialisé sous la marque Ablatherm par la société EDAP TECHNOMED, décrit dans la demande PCT/FR94/00936. 4
Le principe des traitements par HIFU consiste à induire dans la zone focale d'un transducteur ultrasonore des lésions de nécrose de coagulation provoquées principalement par une brusque élévation de la température, même si des phénomènes de cavitation sont présents. Cette élévation de température correspond à une transformation de l'énergie acoustique en chaleur liée à l'absoφtion des ultrasons dans les tissus par la relation : (g) oc nJ où <Q> est la densité de puissance acoustique transformée par unité de volume, a est l'absoφtion du tissu et I est l'intensité ultrasonore dans la région considérée. La rapidité du phénomène permet de s'affranchir des problèmes liés à la conduction thermique et à la perfusion des tissus et de considérer chaque lésion comme une lésion élémentaire qu'il suffit de reproduire sur tout le volume à traiter.
L'application de l'invention au contrôle de traitements repose sur la constatation expérimentale que l'apparition des lésions dans un tissu, et notamment de lésions créées par HIFU provoque une augmentation de certains paramètres acoustiques des tissus, et notamment de l'atténuation.
L'appareil Ablatherm combine dans une sonde endorectale un transducteur de thérapie à 2.5 MHz et un transducteur d'imagerie biplan à balayage mécanique de fréquence centrale de 5.5 MHz avec une bande passante de 2 MHz et une distance focale de 2.75 cm ; le transducteur d'échographie est reliée à un échographe de référence C311 de la société KRETZ.
Dans les conditions normales d'utilisation, le transducteur de thérapie crée des lésions individuelles cylindriques de 1.6 mm de diamètre et de 20 mm de hauteur. Le transducteur d'imagerie est utilisé pour l'acquisition des signaux RF permettant la mesure de l'invention. Les étapes d'un traitement représentatif sont présentées sur les figures 1 à 3. Dans une première étape représentée sur la figure 1, la sonde 1 est introduite dans le rectum du patient, face à la prostate 2 ; le transducteur d'imagerie 3 se déplace longitudinalement par pas de 1.6 mm de l'apex à la base de l'organe permettant une visualisation en coupes transversales 4, 5, 6 que le clinicien définit en fonction de la position des zones à traiter. Les déplacement du transducteur d'imagerie est symbolisé par la flèche sur la figure. Il convient de noter que la sonde elle-même reste fixe par rapport au patient.
La figure 2 montre l'étape de traitement ; le transducteur d'imagerie est rétracté, comme symbolisé par la flèche et le transducteur de thérapie 8 se place parallèlement à la face postérieure de l'organe à traiter, pour permettre l'émission d'ultrasons focalisés vers la prostate. Les lésions induites sont marquées en grisé.
La figure 3 montre une étape de contrôle dans laquelle le transducteur d'imagerie permet une visualisation des zones traitées. Dans l'exemple de ces 5
figures, les acquisitions ont été effectuées pendant les phases d'imagerie pré traitement et post traitement à des positions identiques. Etant donné que le tissu étudié est parfaitement immobile, la sonde ne se déplaçant pas, on peut dire que ces acquisitions ont été effectuées sur les mêmes tranches transversales de tissu. La figure 4 montre le dispositif d'acquisition des signaux RF rétrodiffusés par les tissus. Une sortie RF 10 a été implantée sur l'échographe 11 de façon à pouvoir enregistrer les données dans la mémoire d'un micro calculateur 12 (PC 486). Une carte 13 de conversion analogique numérique 8 bits (STR 8100 D, Sonix) a été utilisée pour la digitalisation des signaux RF en provenance de l'échographe avec une fréquence d'échantillonnage de 50 MHz. Une carte à compteur 14 FPC 24 a permis de choisir une région d'intérêt (ROI) sur l'image echographique en sélectionnant les lignes RF correspondant à l'organe d'étude grâce aux signaux de synchronisation lignes et images provenant de l'échographe.
Sur chaque tranche transversale, ce dispositif permet d'acquérir 250 lignes d'échos voisines correspondant à environ 2/3 de l'image echographique et contenant tous les échos provenant des tissus à étudier. A la fin des déplacements on a ainsi acquis une volume entier de tissu dont les dimensions 5x4x3 cm3 correspondent à 5000 lignes RF adjacentes.
Le dispositif permet en fait une saisie au vol des informations fournies par le transducteur d'échographie ; la combinaison de ces informations avec les informations de synchronisation permet de déterminer une région d'intérêt. On notera que l'on pourrait aussi bien procéder à l'analyse des signaux RF rétrodiffusés par les tissus sur l'ensemble de la zone couverte par l'échographe, si ceci est nécessaire.
On décrit maintenant la mesure de l'atténuation selon l'invention. Cette mesure suppose que, dans la bande passante du transducteur, l'atténuation a des tissus suit une loi affine en fonction de la fréquence (f) = a0 + β f - fc) . où α0 est le coefficient d'atténuation à la fréquence centrale du transducteur fc, et β est la pente de l'atténuation sur la bande passante du transducteur. Dans ces conditions, le spectre de puissance du signal acoustique rétrodiffusé par le tissu située à une distance z du transducteur est défini par :
S(f,Z) = \G(f)\2\D(ff\H ffe^^ (1) où G est la fonction de transfert de la source ultrasonore. Elle regroupe les termes de conversion électroacoustique et acoustoélectrique du transducteur lors de l'émission et de la réception du signal. D est le terme de rétrodiffusion supposé homogène et isotrope dans le volume étudié. H est le terme dû à la diffraction du transducteur. e'"^'" est la fonction de transfert de l'atténuation des ultrasons dans les tissus. 6
Dans la suite sont décrits deux modes de mesure de l'atténuation. L'un repose sur l'étude du décalage de la fréquence centrale du spectre vers les basses fréquences, méthode dite du centroïde ; l'autre s'intéresse à la diminution d'amplitude des composantes du spectre, méthode dite des bandes de fréquence (MNB method). Dans le premier mode, on n'estime que le paramètre β, tandis que le second mode permet de mesurer aussi le coefficient α0. L'une et l'autre des méthodes valident la reproductibilité des mesures d'atténuation et confirment la possibilité de mettre en œuvre l'invention.
M. Fink, F. Hottier and J.F. Cardoso, « Diffraction effects in pulse-echo measurement »,IEEE Trans Sonics Ultrasonics, Vol. SU-31, N°4, pp 313-329, explique que la diffraction perturbe l'estimation de l'atténuation, notamment lorsque les mesures se situent dans le champ proche de transducteurs focalisés : ses effets sont contenus dans le terme |H2(z,/)| de l'Eq. 1. La technique généralement utilisée pour la corriger consiste à utiliser un spectre norme obtenu en divisant le spectre réel par un spectre de calibration calculé à partir des signaux rétrodiffusés par un milieu atténuant homogène et isotrope placé à différentes distances du transducteur, comme expliqué dans . Ce spectre norme est alors utilisé pour estimer l'atténuation absolue (β et ou α0) des tissus.
L'invention propose de s'affranchir des effets de la diffraction en estimant l'atténuation à partir d'enregistrements obtenus avant et après traitement sur les mêmes zones de tissu. Lors de cette opération, le calcul de la différence de pente Sa -
Sb des composantes spectrales Safter\f,z) et Sbφreyf, z) , calculées en accord avec la relation (1), permet de s'affranchir des effets de diffraction :
( ( C λ ΛΛ
Sb = slope 10.log - Ï| = sic pe l0.1og -^4^e-2(α-( )--( ))
V \ Sbefore\fl > Z))j \ Db re f) ) aaf f) - abefore{f) dans laquelle le terme de diffraction |H2(z,/)| a disparu. Les termes de diffusion des tissus D^f^-XlT) et Dafter(f) sont supposés être indépendant de la distance z.
Le choix selon l'invention de mesurer les variations de l'atténuation moyenne en fonction de la fréquence permet ainsi d'éviter les étapes de calibration nécessaires dans les dispositifs de l'art antérieur. L'appareil des figures 1 à 4 permet une précision millimétrique qui garantit les résultats de la mesure.
On décrit maintenant le protocole expérimental de validation des résultats des mesures d'atténuation. Ce protocole confirme la possibilité de mettre en œuvre l'invention, dans un dispositif du type de l'Ablatherm. La validation des mesures a été effectuée à partir d'une méthode de référence en transmission dont le principe expérimental est décrit dans G. Kossoff, E. K. Fry, J. Jellings, "Average velocity of 7
ultrasound in the human female breast ", J. Acoust. Soc. Am. 53 (6), pp 1730-1736, 1973 . On a utilisé un dispositif de mesure composé de deux transducteurs plans identiques (Imasonic, France) de fréquence nominale 10 MHz et de diamètre 10 mm. Un train d'onde sinusoïdal de 50 périodes a été utilisé dans la bande 4-10 MHz par pas de 500 kHz.
Cette méthode a servi d'étalon pour les mesures d'atténuation en réflexion. Des fantômes de référence, mousses BULPREN S90 et BULPREN S20 (Rectiel Inc., Kesteren, The Netherlends), ont été étudiés avec les deux dispositifs de façon à déterminer les valeurs optimales des paramètres de calcul utilisés pour la méthode du centroïde et des bandes de fréquence. Cette calibration avait aussi pour but de déterminer le volume d'étude minimum nécessaire à une estimation de la valeur absolue de l'atténuation avec une erreur inférieure à 10%.
L'étude a porté sur 10 morceaux de foie de porc de boucherie. Chaque morceau était placé dans un support cylindrique en plastic dont les extrémités, limitées par une membrane en latex, servaient de fenêtre acoustique. L'ensemble était rempli de liquide physiologique et dégazé pendant 20 minutes grâce à une pompe à vide (Ref).
Pour chaque échantillon, deux séries de mesures successives ont été faites :
Série A : 7 tranches successives traitées à puissance nulle (aucune lésion créée) ont été étudiées sur chaque morceau. Cette série avait pour but de tester la reproductibilité des mesures sur une même zone du tissu. Le temps moyen de cette séquence était de 10 mn.
Série B : 12 tranches successives ont été étudiées sur chaque morceau. Les 7 premières ont été traitées à puissance nominale pour créer un volume de lésions de 2.15cm3 (6 lésions par tranche). Les 5 tranches suivantes, traitées à puissance nulle, ne comportaient aucune lésion.
Pour chaque morceau de foie l'évolution de la fonction d'atténuation avec et sans traitement par HIFU a été étudiée globalement en comparant les mesures de la série A à celles des 7 premières tranches de la série B. Lors de cette étude, la fonction d'atténuation a été estimée en moyenne sur tout le volume de lésions. L'étude de la série B avait pour but de définir la résolution spatiale de la méthode en vue de faire une image des lésions. Pour estimer la résolution transversale et longitudinale, le nombre minimum de lignes RF, défini lors de la calibration en transmission, a été utilisé. La résolution longitudinale a consisté en une étude inter tranche des paramètres acoustiques. L'étude transversale s'est intéressée à la variation inter-ligne de l'atténuation sur une tranche transversale. Un des échantillons de foie a été utilisé pour étudier l'importance de l'effet de la température sur les images créées. A cet effet, des mesures ont été faites immédiatement après 8
traitement puis 30 minutes après, en contrôlant la température des tissus avec un thermocouple
Les paramètres α0 et β des fantômes de référence ont été estimés en transmission ainsi qu'en réflexion. L'erreur relative entre les deux techniques est inférieure à 5 % pour les paramètres de calculs et d'acquisition suivants : fréquence d'échantillonnage 50 MHz
450 lignes RF de 2048 points (41μs) chacune. taille des fenêtres de calcul 128 points (2.56 μs) avec un fenêtrage de Hamming
Bande de fréquence étudiée : 4 à 7 MHz Ces résultats prouvent la validité de la méthode en réflexion pour estimer les valeurs absolues d'atténuation avec le transducteur d'imagerie utilisée pendant les traitements. Un volume minimum correspondant à 50 lignes RF de 2048 points est avantageusement utilisé pour obtenir une erreur inférieure à 10 % sur l'estimation de β. De préférence, on utilise au moins 5 lignes pour estimer c avec la même précision sur la même profondeur de champ ; le tableau 1 montre le coefficient c d'atténuation moyenne mesuré en transmission, et le coefficient obtenu avec 450 lignes RF, 9 tranches de 50 lignes RF et 90 blocs de 5 lignes RF.
On utilise aussi de préférence toute la longueur des lignes RF ; ceci permet d'améliorer la précision. L'atténuation des tissus, exprimée dans la suite, correspond à une estimation moyenne sur l'épaisseur du tissu étudié, i. e. sur toute la profondeur de la ligne RF. Dans la mesure où les tissus de part et d'autre de la lésion - en avant et en arrière de la lésion - ne sont pas affectés par le traitement, les résultats obtenus sont bien représentatifs du traitement effectué.
| Nombre de lignes (MultiNarrowBand)
Mesure en 450 RF 50 RF 5 RF Transmission
BS 20 (dB/cm) 2.021 2.005 2.026±0.13 2.071±0.26
BS 90 (dB/cm) 3.028 2.800 2.85±0.07 2.902±0.23
Figure imgf000010_0001
La figure 5 présente l'évolution typique de l'atténuation en fonction de la fréquence, avant et après le traitement, pour un échantillon de la série B. Les courbes d'atténuation avant et après traitement montrent des allures générales pratiquement semblables mais avec des niveaux moyens très différents. Les mêmes caractéristiques ont été observées sur tous les échantillons de la série B.
Le tableau 2 représente le différentiel de pente d'atténuation Δβ ainsi que le différentiel d'atténuation ΔôT obtenus sur l'ensemble des morceaux de foie sur des zones traitées (7 premières tranches de la série B) et non traitées (série A). Le tableau confirme que si les valeurs de Aâ varient de façon significative lors du traitement, les valeurs de Δβ ne varient pas beaucoup. L'invention propose en conséquence d'utiliser les variations de la moyenne de l'atténuation pour évaluer les effets du traitement sur les tissus.
Sans traitement Avec traitement
Δâ (dB/cm) Méthode MNB Méthode MNB -0.1210.09 3.26±1.7
Δβ Centroïde Méthode MNB centroïde Méthode MNB
Figure imgf000011_0001
(dB/cm/MHz) -0.01±0.02 -0.01±0.02 0.13±0.14 0.02±0.11
La moyenne des coefficients d'atténuation moyenne a mesurés avant traitement sur l'ensemble des échantillons est de 3.8±1.07 dB/cm. Celle-ci a été déterminée à partir des mesures de la série A et des mesures effectuées avant traitement de la série B. La moyenne des pentes d'atténuation estimées avant traitement est de 0.43±0.17 dB/cm/MHz. Dans le cas sans traitement, Aâ et Δβ permettent de déterminer la reproductibilité de l'estimation de ce et β. Les erreurs de reproductibilité sont respectivement 2.3 % et 3.15 %. Dans le cas avec traitement, on note que la variation moyenne de ce est de 86 % et celle de β est de 30 % et 4.7 % respectivement avec la méthode du centroïde et la méthode MNB
L'évolution de Aâ peut être étudiée tranche par tranche sur toute la zone traitée. Cette évolution est généralement symétrique autour de la tranche centrale qui présente un maximum. La figure 6 présente l'évolution de Aâ normalisée par rapport à la valeur obtenue sur la tranche centrale du traitement. Les barres d'erreur représentent les écarts types pour l'ensemble des morceaux de foie. On constate sur la figure que les valeurs mesurées sont dans tous les cas largement supérieures à l'écart type, de sorte que la mesure selon l'invention reste toujours représentative du traitement.
L'invention propose aussi une mesure qui présente une bonne résolution longitudinale, i. e. dans le sens du traitement. La figure 7 présente un exemple d'évolution de Aâ sur 12 tranches (série B) dans un plan contenant la zone traitée. Les tranches 1 à 7 sont traitées, et les tranches 8 à 12 ne le sont pas ; la tranche numéro 8 qui ne fait pas partie de la zone cible présente un différentiel d'atténuation supérieur à 1 dB/cm qui semble montrer que la zone de lésion a dépassé le cadre défini par l'utilisateur. Sur les autres tranches, on constate que l'évolution de Aâ est nettement plus importante pour les tissus effectivement traités. La résolution spatiale 10
dans le procédé selon l'invention permet effectivement d'identifier clairement les zones traitées.
L'invention assure aussi une bonne résolution transversale, i. e. dans une direction peφendiculaire à la direction principale de propagation des ultrasons. La figure 8 présente un exemple d'évolution transversale de Aâ sur une tranche traitée ainsi que sur une tranche non traitée. Aâ a été estimé sur un volume minimum de 5 lignes RF. De nouveau, la figure montre que Aâ est représentatif du traitement dans la zone.
L'invention propose d'utiliser une représentation du coefficient Aâ pour la visualisation des effets du traitement : la figure 9 représente une image frontale en échelle de gris du différentiel d'atténuation nommée par la suite « Aâ image ». Une image frontale est une image obtenue dans plan contenant parallèle au transducteur de thérapie. Celle-ci a été obtenue en décomposant chaque tranche transversale en 50 blocs de 5 lignes RF sur lesquels Aâ est estimé, conduisant à une matrice 50x12. Chaque élément de la matrice correspond à un carré de 0.102x1.60 mm2 ce qui permet de donner une échelle métrique aux « Aâ images ». Un seuil à -12dB du maximum semble être optimum pour délimiter les zones de lésions. Sur la figure, les niveaux élevés, supérieurs à -12 dB ; sont représentés en foncé, tandis que les autres niveaux sont représentés en clair. La limite par le rectangle blanc correspond à la limite théorique de la cible, telle que programmée dans le traitement. On constate sur la figure 9 que les zones foncées recouvrent quasiment la zone traitée, et que la visualisation de Aâ permet une appréciation fiable de la zone traitée.
Les figures 10 et 11 montrent des images analogues à celles de la figure 9 : la figure 10 est une image faite immédiatement après traitement et la figure 11 est une image faite après refroidissement des tissus. Dans les deux cas, la variation est calculée par rapport aux tissus avant le traitement. Le temps nécessaire pour que le centre de la zone traitée retrouve sa température d'origine, à 2 °C près, a été de 30 minutes. Le différentiel d'atténuation a légèrement diminué avec le refroidissement son maximum est de 1 dB/cm inférieur à celui calculé immédiatement après traitement. La comparaison de ces deux figures montre clairement que le procédé de l'invention peut être utilisé aussi bien en temps réel, immédiatement avant et après un tir de traitement, qu'en différé, après la fin du traitement, pour une évaluation des effets de celui ci. L'invention s'applique ainsi non seulement l'assistance à la conduite d'un traitement en fournissant au praticien les mesures immédiates lui permettant d'adapter son traitement ; elle s'applique aussi après la fin d'un traitement, pour permettre au praticien d'évaluer les effets d'un traitement.
Les figures 12, 13 et 14 représentent respectivement, avec les mêmes conventions que la figure 9, et pour une même zone de tissu, l'atténuation moyenne avant le traitement, l'atténuation moyenne après le traitement et la variation d'atténuation. Sur les trois figures, le rectangle blanc représente la cible. Sur la figure 12, les hétérogénéités du tissu font apparaître des variations importantes des niveaux de gris. Sur la figure 13, une zone de plus forte atténuation apparaît dans la zone ciblée, mais les hétérogénéités ne permettent pas de bien délimiter la zone traitée. Par contre il n'y a pas d'équivoque sur l'image de la figure 14 qui représente les variations d'atténuation moyenne. On peut remarquer également sur les figures 12 et 13 que le coefficient d'atténuation moyen n'a pas changé en dehors de la zone cible, ce qui atteste de la validité du système d'acquisition, les légères différences étant dues aux erreurs d'estimation.
L'invention permet donc caractériser l'apparition de lésions de nécrose de coagulation lors de traitements par HIFU grâce à une mesure de variation locale de l'atténuation moyenne dans les tissus. L'expérimentation a été réalisée sur des morceaux de foie de porc grâce à un appareil de thérapie ultrasonore utilisé exactement dans les mêmes conditions que lors des traitements de la prostate humaine.
Pour des raisons de précision de calcul, l'atténuation des ultrasons dans les exemples a été estimée sur toute la longueur des signaux RF ne permettant ainsi qu'une estimation moyenne sur l'épaisseur des tissus. Dans la mesure où il est nécessaire de disposer d'une précision plus importante dans le sens de la profondeur, on peut réduire la longueur d'étude sur les lignes RF et de préférence augmenter leur nombre pour conserver une faible variance sur l'estimation de l'atténuation. Ceci pourrait être fait en augmentant le nombre de tranches d'acquisition.
Les figures montrent que l'estimation de la variation moyenne de l'atténuation, et notamment sur des images en coupe frontale, permet de bien visualiser la. zone de lésion définie par l'utilisateur, qui s'accorde avec la région où Aâ est supérieur à un seuil défini à -12dB du maximum. La zone cible dans les figures correspond à un pavé de 42 lésions (6 par 7). Comme chaque lésion est équivalente à un cylindre de 1.6mm de diamètre et 20 mm de hauteur, la surface frontale au milieu de la région traitée représente alors 1.08cm2. La surface moyenne des lésions estimée sur les Aâ images est de 1.3cm2 soit 20% plus importante. Ce léger étalement peut être expliqué par les phénomènes de conduction thermique lors des traitements. Ceux-ci sont aussi la cause d'une accumulation de température plus importante dans la partie centrale du traitement. On trouve ainsi un Aâ maximum au centre de la région cible sur les Aâ images des figures 9 à 13 ainsi que sur la figure 6. Il est probable que ces phénomènes sont moins importants sur les prostates traitées en clinique à cause de la vascularisation. 12
Les Aâ images selon l'invention offrent plusieurs avantages par rapport aux images classiques d'atténuation. L'inteφrétation d'une image d'atténuation absolue faite sur du tissu traité par HIFU n'est pas simple dans la mesure où il est difficile de séparer les zones de forte atténuation dues aux lésions aux zones de forte atténuation préexistant dans le tissu, comme le montrent les figures 12 et 13. Certaines zones faiblement atténuantes pourront aussi voir leur niveau d'atténuation augmenter lors de la création des lésions sans que celui-ci se distingue du niveau d'atténuation moyen du tissu. Une mesure différentielle permet d'éliminer ces problèmes. De surcroît, les images d'atténuation absolue sont limitées par les problèmes de diffraction de la sonde d'imagerie ainsi que par la présence d'hétérogénéités dans le tissu (zones d'ombre, échos spéculaires ...) qui font que le terme de diffusion peut varier avec la profondeur. La technique utilisée ici s'affranchit des problèmes de diffraction inhérents à la sonde d'imagerie puisque les mesures avant et après traitement sont effectuées exactement au mêmes positions. Une petite variation peut néanmoins intervenir à cause de la dilatation volumique des tissus lors de la création des lésions, mais celle-ci est négligeable vis à vis de l'espace inter tranche qui est de
1.6 mm dans le mode de réalisation retenu.
L'appareil Ablatherm, grâce à sa sonde, permet d'éviter les mouvements de la sonde, et assure ainsi que la mesure est essentiellement indépendante des mouvements du patient, et notamment des mouvements respiratoires.
L'influence de la température des tissus sur les Aâ images peut être discutée. Les mesures effectuées ici sont faites quelques minutes seulement après la création des lésions alors que les tissus traités présentent un gradient de température élevé à cause de l'accumulation de chaleur. Une mesure effectuée après refroidissement d'un échantillon a permis de constater que la température n'était pas le facteur déterminant dans les variations d'atténuation moyenne. La différence maximale de Aâ diffère seulement de ldB/cm, et les dimensions mesurées sur les Aâ images ne varient que de 3%. La comparaison des figures 10 et 11 montrent que l'invention peut être utilisée à des instants différents. Le procédé de l'invention peut être directement appliqué au contrôle des traitements in vivo puisque les conditions d'expérimentation sont celles utilisées en clinique. Son implémentation temps réel est possible car les algorithmes de calculs (basés sur des calcul de FFT) sont très rapides, peu gourmands en mémoire et qu'il n'est pas nécessaire de faire de correction de diffraction. Enfin, pour augmenter l'efficacité des traitements par HIFU, une estimation en profondeur de Aâ est utile : Les images en coupes frontales des figures 9, 10, 11 ou 14 donnent cependant une indication sur l'épaisseur de la zone traitée puisque les niveaux forts correspondent aux régions où l'épaisseur de tissu traité est maximum. 13
Dans une réalisation pratique, les images correspondantes peuvent être affichées sur l'écran de contrôle de l'appareil de traitement ou de l'échographe, par exemple en surimpression de l'image echographique ; ceci permet au médecin de repérer facilement les zones traitées, et d'adapter son traitement en conséquence. Dans l'ensemble de la présente description, on a utilisé le terme d'atténuation.
On pourrait aussi utiliser le terme d'absoφtion ; de façon stricte, l'absoφtion ne prend pas en compte les phénomènes de diffusion et les autres pertes dans le milieu. Au contraire, l'atténuation est généralement calculée à partir de l'affaiblissement global du signal. Dans la pratique, le rapport de l'atténuation et de l'absoφtion est généralement constant pour un tissu donné.
La mesure des variations de l'atténuation selon l'invention permet un contrôle et un suivi de la formation des lésions dans un traitement par ultrasons focalisés. La description qui précède mentionne l'application aux ultrasons focalisés pour un traitement par HIFU ; l'invention s'applique aussi à d'autres types de traitements, par exemple des traitements par hyperthermie, et plus généralement tous les traitements dans lesquels l'atténuation acoustique est représentative de l'état des tissus traités. De ce point de vue, l'invention peut aussi être appliquée à la mesure des effets d'un traitement par hyperthermie utilisant des micro-ondes, ou encore des lasers, ou des ondes radiofréquences. Elle s'applique notamment pour le contrôle du traitement de l'adénome prostatique par voie endo-urétrale à l'aide d'appareils délivrant des microondes, tel celui commercialisé par la même société sous la marque Prostatron.
On notera que l'invention ne fournit qu'une mesure de la variation de l'atténuation acoustique, et de ce point de vue, s'applique indépendamment du traitement envisagé ou appliqué ; l'invention ne permet pas de suggérer immédiatement le type ou la puissance de traitement ou l'énergie totale à appliquer pour une cible donnée. En ce sens, la mesure de l'atténuation acoustique selon l'invention est donc indépendant de l'exercice par un médecin ou un chirurgien de son art, par le choix des organes à traiter, de la puissance à appliquer, de la durée ou le type du traitement ou des autres paramètres. En fait, la mesure n'a aucun rapport fonctionnel avec l'effet thérapeutique du traitement, qui est déterminé par le médecin mettant en oeuvre le traitement.
Bien entendu, la présente invention n'est pas limitée aux exemples et modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art. Il est clair que si l'invention a été décrite dans son application à l'exemple de la prostate, elle peut s'appliquer aussi à d'autres tissus. On pourrait ainsi utiliser l'invention pour l'hyperthermie du sein, du foie, ou d'autres organes ou tissus. Il est aussi clair que l'invention n'est pas limitée au mode de 14
réalisation des figures 1, et peut s'appliquer à d'autres appareils endo-cavitaires ou non.

Claims

REVENDICATIONS
1.- Procédé de mesure de l'effet d'une thérapie sur un tissu, comprenant : - la mesure des ultrasons rétrodiffusés par le tissu avant le traitement ; la mesure des ultrasons rétrodiffusés par le tissu après le traitement.
2.- Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre le calcul de la variation de l'atténuation moyenne du tissu sur une plage de fréquence.
3.- Procédé selon la revendication 1 ou 2, caractérisé en ce que les étapes de mesure comprennent la mesure des ultrasons émis par un transducteurs d'échographie et rétrodiffusés.
4.- Procédé selon la revendication 2 ou 3, caractérisé en ce que l'atténuation moyenne est calculée par la méthode dite des bandes de fréquence.
5.- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le tissu comprend la prostate.
6.- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le traitement comprend l'induction de nécroses dans le tissu, par élévation brutale de température.
7.- Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le traitement comprend l'application d'ultrasons focalisés sur le tissu.
8.- Un appareil de traitement d'un tissu par formation de nécroses dans le tissu, comprenant des moyens de mesure des ultrasons rétrodiffusés par le tissu avant le traitement, et de mesure des ultrasons rétrodiffusés par le tissu après le traitement.
9.- Appareil selon la revendication 8, caractérisé en ce qu'il comprend en outre des moyens de calcul de la variation de l'atténuation moyenne du tissu sur une plage de fréquence.
10.- Appareil selon la revendication 8 ou 9, caractérisé en ce que les moyens de mesure comprennent une mesure des signaux reçus sur un transducteur d'échographie. 16
I - Appareil selon la revendication 9 ou 10, caractérisé par des moyens d'affichage de la variation d'atténuation moyenne dans un plan peφendiculaire à la direction de traitement.
12.- Appareil selon l'une des revendications 8 à 11, caractérisé par des moyens d'induction de nécroses dans le tissu, par élévation brutale de température.
13.- Appareil selon la revendication 12, caractérisé en ce que lesdits moyens comprennent un transducteur focalisant des ultrasons.
PCT/FR1999/001152 1998-05-13 1999-05-12 Procede de mesure de l'effet d'un traitement sur un tissu WO1999058062A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9806044A FR2778574B1 (fr) 1998-05-13 1998-05-13 Procede de mesure de l'effet d'un traitement sur un tissu
FR98/06044 1998-05-13

Publications (1)

Publication Number Publication Date
WO1999058062A1 true WO1999058062A1 (fr) 1999-11-18

Family

ID=9526313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001152 WO1999058062A1 (fr) 1998-05-13 1999-05-12 Procede de mesure de l'effet d'un traitement sur un tissu

Country Status (2)

Country Link
FR (1) FR2778574B1 (fr)
WO (1) WO1999058062A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794018B1 (fr) 1999-05-26 2002-05-24 Technomed Medical Systems Appareil de localisation et de traitement par ultrasons
FR2849781B1 (fr) 2003-01-14 2005-03-25 Edap S A Sonde de therapie
US7662097B2 (en) 2004-09-20 2010-02-16 Resonant Medical, Inc. Radiotherapy treatment monitoring using ultrasound
US9451928B2 (en) 2006-09-13 2016-09-27 Elekta Ltd. Incorporating internal anatomy in clinical radiotherapy setups
EP2175931B1 (fr) 2007-07-20 2016-09-07 Elekta Ltd. Systèmes pour compenser des changements dans l'anatomie de patients de radiothérapie
US10531858B2 (en) 2007-07-20 2020-01-14 Elekta, LTD Methods and systems for guiding the acquisition of ultrasound images
US8135198B2 (en) 2007-08-08 2012-03-13 Resonant Medical, Inc. Systems and methods for constructing images
US8189738B2 (en) 2008-06-02 2012-05-29 Elekta Ltd. Methods and systems for guiding clinical radiotherapy setups
US10542962B2 (en) 2009-07-10 2020-01-28 Elekta, LTD Adaptive radiotherapy treatment using ultrasound
US20110172526A1 (en) 2010-01-12 2011-07-14 Martin Lachaine Feature Tracking Using Ultrasound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936308A (en) * 1988-05-27 1990-06-26 Agency Of Industrial Science & Technology Method and apparatus for measuring acoustic characteristics and temperature
FR2673542A1 (fr) 1991-03-05 1992-09-11 Technomed Int Sa Sonde endo-rectale de therapie et appareil de destruction de tissus tumoraux, en particulier de la prostate, en comportant application de preference en combinaison avec une sonde endo-uretrale de visualisation.
GB2279742A (en) * 1993-06-29 1995-01-11 Cancer Res Inst Royal Apparatus for monitoring ultrasonic surgical ablation
WO1995002994A1 (fr) 1993-07-26 1995-02-02 Innelect Sonde endocavitaire de therapie et d'imagerie et appareil de traitement therapeutique en comportant application
FR2708207A1 (fr) 1993-07-26 1995-02-03 Technomed Int Sa Sonde endocavitaire à transducteurs de thérapie et d'imagerie et appareil de traitement thérapeutique en comportant application.
FR2715822A1 (fr) 1994-02-04 1995-08-11 Edap Int Sonde de traitement et de visualisation.
FR2720260A1 (fr) 1994-05-30 1995-12-01 Technomed Medical Systems Utilisation d'un échographe en mode A pour la surveillance de la position d'un patient pendant une séance de thérapie, et procédé et appareil en comportant application.
FR2750340A1 (fr) 1996-06-28 1998-01-02 Technomed Medical Systems Sonde de therapie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936308A (en) * 1988-05-27 1990-06-26 Agency Of Industrial Science & Technology Method and apparatus for measuring acoustic characteristics and temperature
FR2673542A1 (fr) 1991-03-05 1992-09-11 Technomed Int Sa Sonde endo-rectale de therapie et appareil de destruction de tissus tumoraux, en particulier de la prostate, en comportant application de preference en combinaison avec une sonde endo-uretrale de visualisation.
GB2279742A (en) * 1993-06-29 1995-01-11 Cancer Res Inst Royal Apparatus for monitoring ultrasonic surgical ablation
WO1995002994A1 (fr) 1993-07-26 1995-02-02 Innelect Sonde endocavitaire de therapie et d'imagerie et appareil de traitement therapeutique en comportant application
FR2708207A1 (fr) 1993-07-26 1995-02-03 Technomed Int Sa Sonde endocavitaire à transducteurs de thérapie et d'imagerie et appareil de traitement thérapeutique en comportant application.
FR2715822A1 (fr) 1994-02-04 1995-08-11 Edap Int Sonde de traitement et de visualisation.
FR2720260A1 (fr) 1994-05-30 1995-12-01 Technomed Medical Systems Utilisation d'un échographe en mode A pour la surveillance de la position d'un patient pendant une séance de thérapie, et procédé et appareil en comportant application.
FR2750340A1 (fr) 1996-06-28 1998-01-02 Technomed Medical Systems Sonde de therapie

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. SIBIÖÖE ET AL.: "Characterization of extracorporeal ablation of normal and tumor-bearing liver tissue by high intensity focused ultrasound", ULTRASOUND IN MED. AND BIOL., vol. 19, no. 9, 1993, pages 803 - 813
BUSH ET AL.: "Acoustic properties of lesions generated with an ultrasound therapy system", ULTRASOUND IN MEDICINE AND BIOLOGY, vol. 19, no. 9, 1993, UK, pages 789 - 801, XP002096169 *
G. KOSSOFF, E.K. FRY, J. JELLINGS: "Average velocity of ultrasound in the human female breast", J. ACOUST. SOC. AM., vol. 53, no. 6, 1973, pages 1730 - 1736
LIZZI ET AL.: "Ultrasonic spectrum analysis for tissue assays and therpy evaluation", INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, vol. 8, no. 1, 1997, US, pages 3 - 10, XP000686838 *
M. FINK, F. HOTTIER, J.F. CARDOSO: "Diffraction effects in pulse-echo measurement", IEEE TRANS SONICS ULTRASONICS, vol. SU-31, no. 4, pages 313 - 329

Also Published As

Publication number Publication date
FR2778574A1 (fr) 1999-11-19
FR2778574B1 (fr) 2000-12-08

Similar Documents

Publication Publication Date Title
EP2121136B1 (fr) Procede d&#39;optimisation de la focalisation d&#39;ondes au travers d&#39;un element introducteur d&#39;aberrations
US10806346B2 (en) Photoacoustic tracking and registration in interventional ultrasound
EP1531734B1 (fr) Procede non invasif pour obtenir un champ predetermine d&#39;ondes acoustiques dans un milieu sensiblement homogene masque par une barriere osseuse, procede d&#39;imagerie et dispositif pour la mise en oeuvre de ces procedes
Jensen Medical ultrasound imaging
WO1999058196A1 (fr) Reglage de frequence dans un appareil de traitement par ultrasons focalises de haute intensite
US20090227997A1 (en) System and method for photoacoustic imaging and monitoring of laser therapy
Xia et al. An optimized ultrasound detector for photoacoustic breast tomography
WO2013055795A1 (fr) Thérapie par ultrasons de cavitation pulsée ayant une rétroaction d&#39;élastographie d&#39;ondes de cisaillement
US20020002333A1 (en) Correction of phasefront aberrations and pulse reverberations in medical ultrasound imaging
FR2987255A1 (fr) Recalage d&#39;un ultrason focalise haute intensite avec une imagerie
US10332250B2 (en) Three-dimensional cavitation quantitative imaging method for microsecond-resolution cavitation spatial-temporal distribution
FR2706275A1 (fr) Installation de mammographie par ultrasons, à haute résolution et fort contraste, avec appareil de surveillance cardiaque et scanographe à réseau émettant par les bords.
EP3967239B1 (fr) Procédé et système de caractérisation ultrasonore d&#39;un milieu
JP3833597B2 (ja) 超音波撮像装置及び超音波撮像方法
WO1999058062A1 (fr) Procede de mesure de l&#39;effet d&#39;un traitement sur un tissu
EP2084702B1 (fr) Procede de generation d&#39;ondes mecaniques par generation de force de radiation acoustique interfaciale
Özsoy et al. Real-time assessment of high-intensity focused ultrasound heating and cavitation with hybrid optoacoustic ultrasound imaging
Bouchoux et al. Dual-mode ultrasound transducer for image-guided interstitial thermal therapy
Kripfgans et al. Ultrasonic imaging: physics and mechanism
Lay et al. Microultrasound characterisation of ex vivo porcine tissue for ultrasound capsule endoscopy
Roux et al. Acoustical imaging through a multiple scattering medium using a time-reversal mirror
EP4214500A1 (fr) Procédé et système de caractérisation ultrasonore d&#39;un milieu
Ashkenazi et al. High frequency ultrasound imaging using Fabry-Perot optical etalon
Hoelen et al. Photoacoustic tissue scanning (PATS)
JP2008080101A (ja) 光トモグラフィ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase