WO1999056907A1 - Dispositif de façonnage de matiere avec un faisceau laser injecte dans un jet de liquide - Google Patents

Dispositif de façonnage de matiere avec un faisceau laser injecte dans un jet de liquide Download PDF

Info

Publication number
WO1999056907A1
WO1999056907A1 PCT/CH1999/000180 CH9900180W WO9956907A1 WO 1999056907 A1 WO1999056907 A1 WO 1999056907A1 CH 9900180 W CH9900180 W CH 9900180W WO 9956907 A1 WO9956907 A1 WO 9956907A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
liquid
nozzle channel
radiation
opening
Prior art date
Application number
PCT/CH1999/000180
Other languages
German (de)
English (en)
Inventor
Bernold Richerzhagen
Original Assignee
Synova S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synova S.A. filed Critical Synova S.A.
Priority to CA002330426A priority Critical patent/CA2330426C/fr
Priority to KR1020007012090A priority patent/KR100584310B1/ko
Publication of WO1999056907A1 publication Critical patent/WO1999056907A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid

Definitions

  • the invention relates to a method for material processing according to the preamble of patent claim 1 and a material processing device according to the preamble of patent claim 4.
  • Material processing with laser radiation is used in a wide variety of ways for cutting, drilling, welding, marking and generally for material removal.
  • a predetermined intensity of the radiation on the material surface to be processed must be achieved. This high radiation intensity was achieved by focusing the laser radiation at the focal point.
  • the disadvantage here is the small axial extent of the focal point (beam waist) in which this high intensity was achieved. Should make deep cuts or holes - 2 -
  • the location of the focus point had to be observed very precisely or even adjusted.
  • the beam tapers conically towards the focal point. I.e. In particular when cutting deep, enough material had to be removed from the surface that the conical jet could penetrate to the machining location. Deep cuts or holes therefore always had to be created with sloping side walls.
  • EP-A 0 515 983 now tried to avoid these disadvantages by constructing an optical unit with a water jet-shaping nozzle block.
  • a water accumulation chamber with a water inlet and a focusing lens that closes off the chamber from the nozzle inlet for focusing the laser radiation.
  • the location and focal length of the focusing lens were chosen in such a way that the focal point of the laser radiation came to lie in the axial center within the nozzle channel. It was now shown in the machining operation that the nozzle was extremely quickly damaged by the laser radiation, as a result of which the radiation could no longer be formed properly.
  • the object of the invention is to provide a method for material processing and a material processing device with a laser beam coupled into a liquid jet, with which or with which material processing with a long machine running time is ensured.
  • a machining interruption should only take place after specified service intervals.
  • An unpredictable interruption, in particular as a result of damage to the nozzle block forming the liquid jet, should be ruled out.
  • FIG. 1 shows a cross section through an optical unit of the material processing device according to the invention
  • FIG. 2 shows a longitudinal section through the optical unit shown in FIG. 1 with an enlarged representation of the liquid feeds to the liquid jet-shaping nozzle block, - 4 -
  • FIG. 3 shows a longitudinal section through the nozzle block shown in FIG. 2 and held in a nozzle holder
  • Fig. 4 shows a cross section along the line IV - IV in Figure 2 and
  • FIG. 5 shows an enlargement for illustration in FIG. 3, which shows in particular the generation and guidance of the liquid jet in the nozzle channel.
  • the optical unit 1 of the material processing device according to the invention is connected to a laser radiation source 6 by means of a radiation conductor 3 via a radiation conductor plug 5.
  • the radiation source 6 is only shown symbolically here. It is a high-power laser such as an Nd: YAG laser.
  • the radiation 7 emerging from the radiation conductor 3 in the plug 5 is collimated with a collimator 9 to form a beam 10.
  • the beam 10 is guided to a beam expansion unit 11. With the beam expansion unit 11, the diameter of the incoming beam 10 can be changed to that of the emerging beam 13, i. H. expandable. A diameter factor of two to eight is provided for the beam expansion.
  • This expansion ratio permits a variation of the beam waist 15 (diameter of the focal point) of the laser beam 13 described below.
  • the beam expansion factor of the beam expansion unit can be changed by a motor by signals from an adjusting unit (not shown) (“motorized beam expander”).
  • the expanded beam 13 is then provided with a deflecting mirror 17 deflected by 90 ° and directed to a focusing lens 23 as a focusing unit with a further deflection mirror 21 having an adjusting unit 19.
  • the mode of operation and use of the adjusting unit 19 is described below.
  • the theoretical focal point of the focusing optics 23 does not necessarily have to coincide with the beam waist 15 of the focused laser beam 13. A deviation of both locations is given by a beam divergence of the laser beam 13, which u. a. can be influenced with the beam expansion unit 11.
  • a nozzle block 27 with a nozzle channel 29 is used to form a liquid jet 25.
  • the focusing optics 23 and the beam expansion unit 11 are set or arranged such that the beam waist 15 of the focused beam 13 comes to rest in the nozzle channel input plane 30 of the nozzle channel opening 28.
  • FIGS. 2 to 5 show the immediate area around the entrance to the liquid jet-shaping nozzle channel 29.
  • the nozzle block 27 is shown in a further enlarged view in FIG. 3 compared to FIG. 2.
  • the nozzle channel 29 is designed to be circular-cylindrical.
  • the nozzle block 27 is made of a material that is transparent to the laser radiation (here with a wavelength of 1.06 ⁇ m) and is mechanically hard, such as quartz. However, since it is extremely small, it can also consist of diamond.
  • a nozzle block 27 made of diamond has a longer service life than one made of quartz, the end of the service life being noticeable by a liquid jet 25 which bubbles up after a short liquid jet length.
  • the nozzle block does not necessarily have to be made of a material which is transparent to the laser radiation in order to take advantage of the conditions of total reflection on the nozzle channel wall. It can also consist of a non-transparent, radiation-absorbing material, provided that the nozzle channel wall is provided with a coating which reflects the laser radiation and which should be abrasion-resistant to the liquid jet. In the case of a non-transparent nozzle stone material, the nozzle surface should also have a reflective coating (protection in the event of adjustment errors) and also the underside of the nozzle stone (protection against radiation which is reflected by the workpiece or the plasma cloud on the workpiece).
  • the nozzle block 27 is inserted into a nozzle holder 33.
  • the transition 34 between the nozzle holder 33 and the nozzle block 27 is designed such that there is no step. A step would also produce fluid vortices which would continue into the fluid jet 25 formed with the nozzle channel 29.
  • the nozzle block 27 shown in FIG. 3 has an outside diameter of 2 mm and a height of 0.9 mm. A copy made of a diamond is still within a reasonable cost range with this size.
  • the liquid jet-shaping nozzle channel 29 is circular-cylindrical, here for example with a diameter of 150 ⁇ m and a length of approximately 300 ⁇ m.
  • the length of the nozzle channel 29 should not be greater than twice the diameter of the nozzle channel.
  • a conically widened opening 26 adjoins the outlet of the nozzle channel 29.
  • the cone tip angle here is eighty degrees.
  • the inner jacket 35 of this cone continues in the nozzle holder 33.
  • the conical design of the inner jacket 35 facilitates the application of a reflective coating, in no way disturbs the liquid jet and, by virtue of its inclination, reinforces the reflection behavior for possibly from the liquid jet 25 as a result of mechanical inhomogeneities (shock wave, impurities which have slipped despite filtering ...) emerging radiation.
  • the cone angle is chosen so large that radiation emerging from the liquid jet does not hit it at all or only at a very flat angle.
  • the liquid supply to the nozzle channel 29 takes place via a narrow, disk-shaped interior 36, the height of which corresponds approximately to half the diameter of the nozzle channel 29.
  • the diameter of the interior 36 corresponds to the diameter of the nozzle holder 33.
  • feed lines 37 are round in cross section, the adjacent side walls of which merge into one another when they open into the interior 36.
  • This arrangement of the supply lines 37 supports a vortex-free (radial) liquid supply to the nozzle channel 27.
  • a pressure-reducing filter 39 is arranged on the inlet side of the supply lines 37.
  • An annular space 40 adjoins this filter 39 and is supplied with liquid via a supply line 41.
  • the filter 39 serves to generate a uniform liquid pressure in the twenty supply lines 37, as a result of which there is a symmetrical liquid flow towards the nozzle inlet.
  • the supply line 41 takes place on only one side, the feed lines 37 adjacent to the supply line 41 would have a higher pressure than the opposite ones without a filter 39. Tangential flow components in the region of the nozzle channel opening 28 cannot therefore develop. So that the laser radiation can penetrate to the nozzle inlet opening, the disk-shaped interior 36 is covered in a liquid-tight manner with a cover 43 which is transparent for the laser radiation used. - 7 -
  • the low height of the interior 36 gives the liquid a high flow rate. As a result of the high flow rate, heating of the liquid in the focusing cone 38 by the laser radiation penetrating it is excluded (or greatly reduced). Due to the configuration described above, the disk-shaped interior 36 is such that, in particular in the radiation focusing cone 38 of the laser radiation, no liquid stowage space, which would favor the formation of a thermal lens preferably by radiation absorption, cannot form. A thermal lens would make it impossible to focus the laser beam properly and in the center (axis 32) of the nozzle channel opening 28. The presence of a thermal lens would result in poorer focusing of the radiation since the thermal lens acts as a diverging lens. The laser radiation would hit the opening edge of the nozzle and / or the nozzle surface and thus damage it. Furthermore, the thermal lens formed by heating the liquid would not be stable in place. An optimal radiation coupling into the liquid jet 25 would then no longer exist.
  • the inner wall 35 is conical and provided with a reflective coating.
  • the laser radiation emerging as a result of irregularities in the surface of the liquid jet jacket is thus reflected here and cannot penetrate through the nozzle block 27 to the materials to be absorbed. If the workpiece 45 is pierced or cut through, there are no or shock waves with only minimal energy.
  • the insert 48 receiving the transparent cover 43 has a groove 54 which runs around its outer jacket and which opens into a control bore 50. If there is liquid in the control bore 50, the sealing ring 58a has become leaky. If the sealing ring 58b now also leaked, liquid could reach the surface 60 of the transparent cover 43, which would lead to a severe impairment in the focusing and guiding of the laser beam. To avoid this, the sealing rings 58a and 58b are replaced whenever liquid is registered in the control bore 50.
  • a force sensor 47 is arranged below the workpiece 45 to be machined.
  • the position of the force sensor 47 is selected such that it emits a maximum electrical signal to a control device 49 when it is hit completely by the liquid jet 25 (without deflection).
  • the force sensor 47 is in the geometric axis 32 of the - 9 -
  • Liquid jet 25 arranged. If the liquid jet 25 strikes a still unprocessed workpiece 45 with the laser beam coupled in, then no signal is present, since the workpiece 45 first has to be pierced by the jet 25. If the workpiece 45 has already been drilled through or has an incision through which the beam 25 passes, then the beam 25 strikes the slot side or borehole wall when the workpiece 45 is moved. In this case, only a part of the beam 25 still hits the force sensor 47. The signal emitted to the control device 49 is smaller than when the beam 25 is fully incident. The degree of material removal can thus be determined with the force sensor 47.
  • the control device 49 is also connected to a displacement device of the workpiece 45.
  • the displacement device is only symbolically indicated in FIG. 1 by two double arrows in the horizontal directions x and y 51a and 51b, which are intended to indicate a flat, two-dimensional displacement possibility.
  • the control device 49 now controls the displacement speed of the workpiece 45 according to a predetermined cutting pattern in the two directions 51a and 51b.
  • the force sensor 47 can thus regulate the feed of the workpiece 45 to be machined in an energy-optimized manner, in which the workpiece 45 is always moved when sufficient material removal has been achieved.
  • the control device 49 is also connected to the radiation source 6.
  • the laser output power can thus also be set as a function of the measured value of the force sensor and the workpiece displacement speed. If, for example, a step mode for workpiece displacement is used in a pulsed laser, the laser emits a number of pulses at one point before the workpiece 45 is moved on by one step.
  • the step mode can, for example, take place with a step repetition frequency of 100 Hz.
  • the optical unit has means for optimal adjustment and monitoring of the position of the laser beam waist (focal point of the radiation) with respect to the nozzle inlet opening or the axis 32 of the nozzle channel 29.
  • the radiation 52 of a white light source 53 is superimposed on the expanded laser beam 13. This is done with the deflection mirror 17.
  • the deflection mirror 17 reflects the laser radiation completely, but transmits the white light radiation 52 from the white light source 53 located behind it.
  • the radiation from the source 53 is guided together with the laser radiation via the deflecting mirror 21 into the focusing unit 23 and, with correct optical alignment, is focused in the nozzle inlet plane 30 at the location of the axis 32.
  • the deflection mirror 21 is partially transparent to the white light radiation 52. To check the correct beam adjustment, only the radiation from source 53 is used without a laser beam. If there is a misalignment, the white light radiation focused with the focusing unit 23 illuminates the nozzle edge 31 or its surroundings. The surface surrounding area of the nozzle inlet opening is viewed with a video camera 55 via a telescope 56 and the deflecting mirror 21, which is partially transparent to the white light radiation.
  • the white light experiences a beam displacement as it passes through the deflecting mirror 21 due to its thickness. This beam displacement is corrected by a plane-parallel glass plate 57.
  • the deflecting mirror 21 can be tilted by an adjustment unit 19.
  • the deflection mirror 21 is now tilted with the adjusting elements in such a way that the focal point of the white light beam comes to lie symmetrically to the location of the channel axis 32.
  • the deflecting mirror 21 is tilted until a radiation reflex can be detected at the nozzle channel edge 31, and then is tilted in the opposite direction while measuring the tilt angle ( ⁇ displacement path of the jet on the nozzle channel opening) until on on the opposite nozzle channel edge 31, a radiation reflex of the same reflected intensity can also be determined, followed by a renewed tilting movement with half the tilt angle.
  • the focal point now lies in a plane which contains the nozzle channel axis 32. To align with the location of the channel axis 32, a further analog beam axis setting is now made perpendicular to the previous tilt direction.
  • the white light source 53 can be dispensed with if the deflecting mirror 21 is made slightly transparent (approximately 2%) for the radiation from the laser source 6.
  • the telescope and the glass plate 57 must then also be designed and non-reflective for the laser radiation.
  • the video camera 55 must be provided with a chip that is sensitive to the laser radiation.
  • the laser radiation is then reflected from the nozzle edge or its surroundings.
  • the reflected radiation is then viewed via the telescope with the video camera 55 and an adjustment is made via the above-mentioned adjustment unit 19 and the beam expansion unit 11.
  • the adjustment is carried out with reduced laser power. Since the laser beam properties can change at high beam intensities compared to those at lower power, the deflection mirror 21 and possibly the beam expansion unit 11 are started to be adjusted while continuously increasing the laser power.
  • the output lens of the beam expansion unit 11 can now be adjusted such that the diameter of the beam waist of the laser beam 13 is increased until the nozzle channel edge 31 (ie the nozzle channel opening 28) is illuminated uniformly. Only with uniform lighting has a central alignment been achieved beforehand.
  • the exit lens of the beam expansion unit 11 is now shifted in the opposite direction until a uniform nozzle opening edge illumination occurs again.
  • the intermediate position then results in a setting for optimal focusing on the nozzle channel entrance plane, the focused beam being symmetrical about the channel axis 32.
  • water can be used as the liquid for the liquid jet. Water has a low radiation absorption at 1.06 ⁇ m.
  • a silicone oil in particular from the group of the polymethylsiloxanes, is therefore preferably used in certain applications. If water is used as the liquid, then laser radiation should be used which has an absorption of less than 0.2 cm "1 , preferably less than 0.15 cm 1.
  • the liquid jet is used If radiation with a higher absorption is used, the liquid jet is used If the radiation absorption in the liquid is high, evaporation effects can occur, for example, the formation of the thermal lens at the focal point before the nozzle entry cannot be sufficiently suppressed even when the flow is optimized, resulting in low absorption values for water as the liquid used with radiation in the wavelength range from 150 nm to 1100 nm, preferably from 190 nm to 920 nm and between 1040 nm and 1080 nm (in the range around 1000 nm there is an absorption peak). It is therefore preferred to use diode lasers, YAG lasers, frequency-doubled YAG - Lasers, excimer lasers and copper vapor lasers can be used.
  • a YAG laser has, for example - 12 -
  • the radiation can be continuous or pulsed.
  • the liquid can cool cut edges produced using the method explained above. Heat generated by absorbed radiation in the liquid jet is also dissipated. Because water has a very high heat capacity, high radiation powers can be pulsed into the liquid jet.
  • a Nd'.YAG laser and water as the liquid, up to 20 kW pulse power with pulse lengths of 20 to 500 ⁇ s, an average power of 600 W and a pulse rate of up to 5 kHz are coupled in.
  • quality-switched Nd YAG lasers (Q-switched YAG) with pulse lengths of typically 50 to 250 ns with an average power of 20 to 120 W and a pulse rate of up to 60 kHz can also be used. It is also possible to use mode-coupled lasers with pulse lengths in the femtosecond range. Continuously radiating lasers (e.g. cw YAG) can also be used. Here, however, the average power is limited by the lack of radiation interruption. Then only about 700 W radiation power of an Nd: YAG laser can be coupled into an 80 ⁇ m thick water jet. At higher laser power densities, the water would heat up so much due to the radiation absorption that evaporation would start from a certain beam length. This would cause the beam to drip; proper radiation control would no longer exist.
  • the nozzle block 27 described above was produced from quartz or diamond, that is to say from a material transparent to the laser radiation.
  • the nozzle outlet and also the adjoining wall of the nozzle holder 33 were conical and were mirrored for the laser radiation.
  • the nozzle block 27 can now also be produced from a material that strongly reflects the laser radiation.
  • a gold nozzle block can be used for a laser radiation of 1.06 ⁇ m. Since pure gold is too soft, traces of copper and silver must be added to achieve a hardness of 150 to 225 HV.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé ainsi qu'un dispositif pour l'usinage de pièces (45) avec un faisceau laser injecté dans un jet de liquide (25). Le liquide à former en un jet (25) à l'aide d'un canal de buse (29) est acheminé à l'orifice (28) du canal de buse sans turbulence, notamment sans composante d'écoulement tangentielle par rapport à l'axe (32) du canal de buse. Le faisceau laser est focalisé sur le plan d'entrée (30) du canal et le liquide est guidé jusqu'à l'orifice (28) du canal de manière à éviter un espace de retenue de liquide dans le cône de focalisation de faisceau (38) et son environnement immédiat.
PCT/CH1999/000180 1998-04-30 1999-04-30 Dispositif de façonnage de matiere avec un faisceau laser injecte dans un jet de liquide WO1999056907A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002330426A CA2330426C (fr) 1998-04-30 1999-04-30 Dispositif de faconnage de matiere avec un faisceau laser injecte dans un jet de liquide
KR1020007012090A KR100584310B1 (ko) 1998-04-30 1999-04-30 분사액체로 주입되는 레이저빔으로 소재를 가공하는방법과 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19819429.3 1998-04-30
DE19819429 1998-04-30

Publications (1)

Publication Number Publication Date
WO1999056907A1 true WO1999056907A1 (fr) 1999-11-11

Family

ID=7866347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1999/000180 WO1999056907A1 (fr) 1998-04-30 1999-04-30 Dispositif de façonnage de matiere avec un faisceau laser injecte dans un jet de liquide

Country Status (4)

Country Link
KR (1) KR100584310B1 (fr)
CN (1) CN1134322C (fr)
CA (1) CA2330426C (fr)
WO (1) WO1999056907A1 (fr)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075966A1 (fr) * 2000-04-04 2001-10-11 Synova S.A. Procede de coupe d'un objet et de traitement ulterieur du materiau coupe et support permettant de maintenir ledit objet ou ledit materiau coupe
WO2001066036A3 (fr) * 2000-03-06 2002-01-03 Advanced Laser Applic Holding Prothese d'administration de medicament radialement extensible a perforation intraluminale
US6563080B2 (en) 2001-02-15 2003-05-13 Scimed Life Systems, Inc. Laser cutting of stents and other medical devices
WO2004004966A1 (fr) * 2002-07-03 2004-01-15 Boston Scientific Limited Procede et systeme de decoupage au laser/jet de fluide
US6737606B2 (en) 2001-09-10 2004-05-18 Micron Technology, Inc. Wafer dicing device and method
WO2004094096A1 (fr) * 2003-04-16 2004-11-04 Boston Scientific Limited Systeme combinant un dispositif de decoupage au laser et un jet de liquide de nettoyage
EP1657020A1 (fr) * 2004-11-10 2006-05-17 Synova S.A. Méthode et dispositif pour optimiser la cohérence d'un jet de fluide utilisé pour le travail de matériaux et buse pour un tel dispositif
WO2006122441A1 (fr) * 2005-05-17 2006-11-23 Technikus Ag Procede d'usinage de materiau au moyen d'un laser guide par jet d'eau et dispositif pour mettre ledit procede en oeuvre
DE102006038001B3 (de) * 2006-08-14 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Werkstücktrocknung und/oder Trockenhaltung bei der flüssigkeitsstrahlgeführten Bearbeitung eines Werkstücks
US7358154B2 (en) 2001-10-08 2008-04-15 Micron Technology, Inc. Method for fabricating packaged die
US7375009B2 (en) 2002-06-14 2008-05-20 Micron Technology, Inc. Method of forming a conductive via through a wafer
US7476034B2 (en) 2003-08-28 2009-01-13 Boston Scientific Scimed, Inc. Dynamic bushing for medical device tubing
US7722661B2 (en) 2007-12-19 2010-05-25 Boston Scientific Scimed, Inc. Stent
EP2208568A1 (fr) * 2009-01-20 2010-07-21 Synova S.A. Appareil et procédé pour le traitement de matériaux avec un laser
WO2010099892A3 (fr) * 2009-03-02 2010-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cellules solaires à contact arrière et leur procédé de fabrication
US7919727B2 (en) * 2005-11-30 2011-04-05 Tokyo Electron Limited Laser processing apparatus and laser processing method
DE102010011580A1 (de) * 2010-03-16 2011-09-22 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Vermessen eines, insbesondere als Lichtleiter genutzten, Flüssigkeitsstrahls
US8969760B2 (en) 2012-09-14 2015-03-03 General Electric Company System and method for manufacturing an airfoil
US8993923B2 (en) 2012-09-14 2015-03-31 General Electric Company System and method for manufacturing an airfoil
US9232960B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Minimally invasive devices for multi-fluid tissue ablation
DE102014223716A1 (de) 2014-11-20 2016-05-25 Siemens Aktiengesellschaft Vorrichtung sowie Verfahren zur Bearbeitung eines Bauteils mittels eines in einem Flüssigkeitsstrahl propagierenden Laserstrahls
US9484225B2 (en) 2003-05-06 2016-11-01 Micron Technology, Inc. Method for packaging circuits
US9510853B2 (en) 2009-03-06 2016-12-06 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
EP3124165A1 (fr) 2015-07-28 2017-02-01 Synova SA Procédé de traitement d'une pièce utilisant un faisceau laser guidé par jet de liquide
DE102008048697B4 (de) * 2007-09-28 2017-09-07 Sugino Machine Ltd. Vorrichtung zur Laserbearbeitung mit Hilfe eines in eine Flüssigkeitsstrahlsäule eingeleiteten Laserstrahls
US9770785B2 (en) 2014-11-18 2017-09-26 General Electric Company System and method for forming a cooling hole in an airfoil
US9776284B2 (en) 2015-01-22 2017-10-03 General Electric Company System and method for cutting a passage in an airfoil
US9895755B2 (en) 2014-12-09 2018-02-20 Kennametal Inc. Cutting insert with internal coolant passages and method of making same
DE102016116512A1 (de) 2016-09-03 2018-03-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bearbeitung eines Werkstückes
WO2018065410A1 (fr) 2016-10-03 2018-04-12 Synova Sa Dispositif pour générer un jet de liquide
WO2018072808A1 (fr) * 2016-10-17 2018-04-26 Abb Schweiz Ag Dispositif de nettoyage et procédé de commande d'un foyer laser à l'intérieur d'un faisceau de fluide, et un système comprenant le dispositif de nettoyage
DE102017112113A1 (de) 2017-06-01 2018-12-06 Lohmann-Koester Gmbh & Co. Kg Verfahren zur Herstellung eines siebförmigen Entformungswerkzeuges und siebförmiges Entformungswerkzeug
US10240254B2 (en) 2014-11-07 2019-03-26 Element Six Technologies Limited Method of fabricating plates of super-hard material using a collimated cutting beam
EP3470165A1 (fr) * 2017-10-13 2019-04-17 Synova S.A. Appareil d'usinage d'une pièce au moyen d'un faisceau laser guidé par un jet liquide et son assemblage
US10342615B2 (en) 2008-03-06 2019-07-09 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
JP2019155480A (ja) * 2014-06-16 2019-09-19 シノヴァ エスアーSynova Sa 加工ヘッド
US10524822B2 (en) 2009-03-06 2020-01-07 Procept Biorobotics Corporation Image-guided eye surgery apparatus
US10653438B2 (en) 2012-02-29 2020-05-19 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US20200282493A1 (en) * 2017-10-05 2020-09-10 Synova S.A. Apparatus for Machining a Workpiece with a Laser Beam
CN113618232A (zh) * 2021-07-28 2021-11-09 中国科学院宁波材料技术与工程研究所 一种双光束耦合水导加工头装置及加工方法
US11440135B2 (en) 2013-05-23 2022-09-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser machining nozzle for a laser machining device, and laser machining device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844715B2 (ja) * 2005-08-25 2011-12-28 澁谷工業株式会社 ハイブリッドレーザ加工装置
DE102011001322A1 (de) * 2011-03-16 2012-09-20 Ipg Laser Gmbh Maschine und Verfahren zur Materialbearbeitung von Werkstücken mit einem Laserstrahl
CN102259236A (zh) * 2011-07-01 2011-11-30 中国电子科技集团公司第四十五研究所 一种微水导激光耦合对准装置
CN102259237B (zh) * 2011-07-01 2014-09-03 中国电子科技集团公司第四十五研究所 激光光束与水射流耦合调节装置
JP5877432B2 (ja) * 2012-02-29 2016-03-08 株式会社スギノマシン レーザー加工装置
WO2014187467A1 (fr) * 2013-05-23 2014-11-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Buse de traitement au laser pour dispositif de traitement au laser et dispositif de traitement au laser
US10160059B2 (en) 2016-03-03 2018-12-25 General Electric Company Decoupled liquid-jet guided laser nozzle cap
US10335900B2 (en) 2016-03-03 2019-07-02 General Electric Company Protective shield for liquid guided laser cutting tools
ES2921237T3 (es) * 2017-01-23 2022-08-22 Subaru Corp Dispositivo de granallado por láser y procedimientos de granallado por láser
CN108132511A (zh) * 2017-12-21 2018-06-08 暨南大学 一种用于钻石激光切割的复合镜头
CN108480842B (zh) * 2018-06-12 2022-11-29 桂林电子科技大学 水导激光耦合分流稳压装置
EP3965990A1 (fr) * 2019-05-08 2022-03-16 Wsoptics Technologies GmbH Procédé d'usinage par faisceau d'une pièce

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643284A1 (de) * 1986-12-18 1988-06-30 Aesculap Ag Verfahren und vorrichtung zum schneiden eines materials mittels eines laserstrahles
EP0515983A1 (fr) * 1991-05-28 1992-12-02 Lasag Ag Dispositif d'ablation de matière, notamment pour la dentisterie
WO1995032834A1 (fr) * 1994-05-30 1995-12-07 Bernold Richerzhagen Dispositif pour l'usinage d'un materiau au laser
US5773791A (en) * 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643284A1 (de) * 1986-12-18 1988-06-30 Aesculap Ag Verfahren und vorrichtung zum schneiden eines materials mittels eines laserstrahles
EP0515983A1 (fr) * 1991-05-28 1992-12-02 Lasag Ag Dispositif d'ablation de matière, notamment pour la dentisterie
WO1995032834A1 (fr) * 1994-05-30 1995-12-07 Bernold Richerzhagen Dispositif pour l'usinage d'un materiau au laser
US5773791A (en) * 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135039B2 (en) 2000-03-06 2006-11-14 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
WO2001066036A3 (fr) * 2000-03-06 2002-01-03 Advanced Laser Applic Holding Prothese d'administration de medicament radialement extensible a perforation intraluminale
US8267991B2 (en) 2000-03-06 2012-09-18 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
WO2001075966A1 (fr) * 2000-04-04 2001-10-11 Synova S.A. Procede de coupe d'un objet et de traitement ulterieur du materiau coupe et support permettant de maintenir ledit objet ou ledit materiau coupe
US7163875B2 (en) 2000-04-04 2007-01-16 Synova S.A. Method of cutting an object and of further processing the cut material, and carrier for holding the object and the cut material
US6563080B2 (en) 2001-02-15 2003-05-13 Scimed Life Systems, Inc. Laser cutting of stents and other medical devices
US6867389B2 (en) 2001-02-15 2005-03-15 Scimed Life Systems, Inc. Laser cutting of stents and other medical devices
US6737606B2 (en) 2001-09-10 2004-05-18 Micron Technology, Inc. Wafer dicing device and method
US8138617B2 (en) 2001-10-08 2012-03-20 Round Rock Research, Llc Apparatus and method for packaging circuits
US7358154B2 (en) 2001-10-08 2008-04-15 Micron Technology, Inc. Method for fabricating packaged die
US7375009B2 (en) 2002-06-14 2008-05-20 Micron Technology, Inc. Method of forming a conductive via through a wafer
US6888098B1 (en) 2002-07-03 2005-05-03 Scimed Life Systems, Inc. Tubular cutting process and system
US9180032B2 (en) 2002-07-03 2015-11-10 Boston Scientific Scimed, Inc. Tubular cutting process and system
WO2004004966A1 (fr) * 2002-07-03 2004-01-15 Boston Scientific Limited Procede et systeme de decoupage au laser/jet de fluide
WO2004094096A1 (fr) * 2003-04-16 2004-11-04 Boston Scientific Limited Systeme combinant un dispositif de decoupage au laser et un jet de liquide de nettoyage
US10453704B2 (en) 2003-05-06 2019-10-22 Micron Technology, Inc. Method for packaging circuits
US10811278B2 (en) 2003-05-06 2020-10-20 Micron Technology, Inc. Method for packaging circuits
US9484225B2 (en) 2003-05-06 2016-11-01 Micron Technology, Inc. Method for packaging circuits
US7476034B2 (en) 2003-08-28 2009-01-13 Boston Scientific Scimed, Inc. Dynamic bushing for medical device tubing
WO2006050622A1 (fr) * 2004-11-10 2006-05-18 Synova Sa Procede et dispositif pour produire un jet de liquide pour realiser un traitement de matiere, et buse a liquide destinee a un dispositif de ce type
EP1657020A1 (fr) * 2004-11-10 2006-05-17 Synova S.A. Méthode et dispositif pour optimiser la cohérence d'un jet de fluide utilisé pour le travail de matériaux et buse pour un tel dispositif
US10016845B2 (en) 2004-11-10 2018-07-10 Synova Sa Method and device for generating a jet of fluid for material processing and fluid nozzle for use in said device
WO2006122441A1 (fr) * 2005-05-17 2006-11-23 Technikus Ag Procede d'usinage de materiau au moyen d'un laser guide par jet d'eau et dispositif pour mettre ledit procede en oeuvre
US7919727B2 (en) * 2005-11-30 2011-04-05 Tokyo Electron Limited Laser processing apparatus and laser processing method
DE102006038001B3 (de) * 2006-08-14 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Werkstücktrocknung und/oder Trockenhaltung bei der flüssigkeitsstrahlgeführten Bearbeitung eines Werkstücks
US9364250B2 (en) 2007-01-02 2016-06-14 Aquabeam, Llc Minimally invasive devices for the treatment of prostate diseases
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
US10321931B2 (en) 2007-01-02 2019-06-18 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US11478269B2 (en) 2007-01-02 2022-10-25 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
US9237902B2 (en) 2007-01-02 2016-01-19 Aquabeam, Llc Multi-fluid tissue ablation methods for treatment of an organ
US9232960B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Minimally invasive devices for multi-fluid tissue ablation
US10251665B2 (en) 2007-01-02 2019-04-09 Aquabeam, Llc Multi fluid tissue resection methods and devices
DE102008048697B4 (de) * 2007-09-28 2017-09-07 Sugino Machine Ltd. Vorrichtung zur Laserbearbeitung mit Hilfe eines in eine Flüssigkeitsstrahlsäule eingeleiteten Laserstrahls
US7922756B2 (en) 2007-12-19 2011-04-12 Boston Scientific Scimed, Inc. Stent
US7722661B2 (en) 2007-12-19 2010-05-25 Boston Scientific Scimed, Inc. Stent
US11759258B2 (en) 2008-03-06 2023-09-19 Aquabeam, Llc Controlled ablation with laser energy
US11172986B2 (en) 2008-03-06 2021-11-16 Aquabeam Llc Ablation with energy carried in fluid stream
EP3622910A1 (fr) 2008-03-06 2020-03-18 AquaBeam LLC Ablation et cautérisation de tissus à l'aide de l'énergie optique véhiculée dans un courant de fluide
US11033330B2 (en) 2008-03-06 2021-06-15 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
US10342615B2 (en) 2008-03-06 2019-07-09 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
EP2208568A1 (fr) * 2009-01-20 2010-07-21 Synova S.A. Appareil et procédé pour le traitement de matériaux avec un laser
WO2010099892A3 (fr) * 2009-03-02 2010-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cellules solaires à contact arrière et leur procédé de fabrication
US9510853B2 (en) 2009-03-06 2016-12-06 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US10524822B2 (en) 2009-03-06 2020-01-07 Procept Biorobotics Corporation Image-guided eye surgery apparatus
DE102010011580B4 (de) 2010-03-16 2020-01-02 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Vermessen eines, insbesondere als Lichtleiter genutzten, Flüssigkeitsstrahls sowie Einrichtung zum Bearbeiten eines Werkstücks
DE102010011580A1 (de) * 2010-03-16 2011-09-22 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Vermessen eines, insbesondere als Lichtleiter genutzten, Flüssigkeitsstrahls
US11737776B2 (en) 2012-02-29 2023-08-29 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10653438B2 (en) 2012-02-29 2020-05-19 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US8969760B2 (en) 2012-09-14 2015-03-03 General Electric Company System and method for manufacturing an airfoil
US8993923B2 (en) 2012-09-14 2015-03-31 General Electric Company System and method for manufacturing an airfoil
US11440135B2 (en) 2013-05-23 2022-09-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser machining nozzle for a laser machining device, and laser machining device
JP2019155480A (ja) * 2014-06-16 2019-09-19 シノヴァ エスアーSynova Sa 加工ヘッド
US10240254B2 (en) 2014-11-07 2019-03-26 Element Six Technologies Limited Method of fabricating plates of super-hard material using a collimated cutting beam
US9770785B2 (en) 2014-11-18 2017-09-26 General Electric Company System and method for forming a cooling hole in an airfoil
DE102014223716A1 (de) 2014-11-20 2016-05-25 Siemens Aktiengesellschaft Vorrichtung sowie Verfahren zur Bearbeitung eines Bauteils mittels eines in einem Flüssigkeitsstrahl propagierenden Laserstrahls
US9895755B2 (en) 2014-12-09 2018-02-20 Kennametal Inc. Cutting insert with internal coolant passages and method of making same
US9776284B2 (en) 2015-01-22 2017-10-03 General Electric Company System and method for cutting a passage in an airfoil
US11318560B2 (en) 2015-07-28 2022-05-03 Synova Sa Process of treating a workpiece using a liquid jet guided laser beam
EP3124165A1 (fr) 2015-07-28 2017-02-01 Synova SA Procédé de traitement d'une pièce utilisant un faisceau laser guidé par jet de liquide
DE102016116512A1 (de) 2016-09-03 2018-03-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bearbeitung eines Werkstückes
US11059130B2 (en) 2016-10-03 2021-07-13 Synova Sa Device for generating a jet of liquid
WO2018065410A1 (fr) 2016-10-03 2018-04-12 Synova Sa Dispositif pour générer un jet de liquide
WO2018072808A1 (fr) * 2016-10-17 2018-04-26 Abb Schweiz Ag Dispositif de nettoyage et procédé de commande d'un foyer laser à l'intérieur d'un faisceau de fluide, et un système comprenant le dispositif de nettoyage
DE102017112113A1 (de) 2017-06-01 2018-12-06 Lohmann-Koester Gmbh & Co. Kg Verfahren zur Herstellung eines siebförmigen Entformungswerkzeuges und siebförmiges Entformungswerkzeug
US20200282493A1 (en) * 2017-10-05 2020-09-10 Synova S.A. Apparatus for Machining a Workpiece with a Laser Beam
US11697175B2 (en) 2017-10-05 2023-07-11 Synova S.A. Apparatus for machining a workpiece with a laser beam
EP3470165A1 (fr) * 2017-10-13 2019-04-17 Synova S.A. Appareil d'usinage d'une pièce au moyen d'un faisceau laser guidé par un jet liquide et son assemblage
CN113618232A (zh) * 2021-07-28 2021-11-09 中国科学院宁波材料技术与工程研究所 一种双光束耦合水导加工头装置及加工方法
CN113618232B (zh) * 2021-07-28 2024-03-19 中国科学院宁波材料技术与工程研究所 一种双光束耦合水导加工头装置及加工方法

Also Published As

Publication number Publication date
CA2330426A1 (fr) 1999-11-11
CA2330426C (fr) 2007-11-13
CN1306467A (zh) 2001-08-01
CN1134322C (zh) 2004-01-14
KR20010043171A (ko) 2001-05-25
KR100584310B1 (ko) 2006-05-26

Similar Documents

Publication Publication Date Title
WO1999056907A1 (fr) Dispositif de façonnage de matiere avec un faisceau laser injecte dans un jet de liquide
DE102008048697B4 (de) Vorrichtung zur Laserbearbeitung mit Hilfe eines in eine Flüssigkeitsstrahlsäule eingeleiteten Laserstrahls
EP3210714B1 (fr) Dispositif et procédé de surveillance, en particulier de réglage d'un processus de coupe
DE112009001200B4 (de) Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung hierfür
EP1417072B1 (fr) Procede et dispositif pour realiser des trous dans des pieces au moyen de rayons laser
DE102008022014B3 (de) Dynamische Strahlumlenkung eines Laserstrahls
EP2349636B1 (fr) Buse d'usinage laser pour usiner des tôles ; machine de coupage laser avec une buse correspondante
EP2219813A1 (fr) Palier aérostatique et procédé de fabrication
DE102012003202A1 (de) Vorrichtung und Verfahren zum Bearbeiten von Werkstücken, insbesondere von Schneiden oder mit Schneiden versehenen Werkstücken, mit einem Nasslaser
EP1180409B1 (fr) Machine d'usinage au laser, avec enceinte de guidage du faisceau purgée par gaz
DE102011119478B4 (de) Vorrichtung zur fremdbeleuchteten Visualisierung eines mittels eines hochenergetischen Bearbeitungsstrahls erfolgenden Bearbeitungsprozesses sowie Umlenkelement
DE69831382T2 (de) Verfahren zum schweissen von beschichteten blechen mittels eines energiestrahles wie eines laserstrahles
WO2021032355A1 (fr) Procédé d'oxycoupage au moyen d'un faisceau laser
WO2012101533A1 (fr) Machine de traitement au laser, en particulier machine de coupe au laser, ainsi que procédé permettant de centrer un faisceau laser, en particulier un faisceau focalisé
DE10340931A1 (de) Verfahren und Vorrichtung zum Bohren feinster Löcher
WO2009074140A2 (fr) Procédé de découpage par fusion au laser sans 'trou de serrure' au moyen de faisceaux laser antérieurs et postérieurs
DE102016220067B4 (de) Verfahren zum Tiefschweißen eines Werkstücks, wobei eine verkippte Dampfkapillare mittels zweier Laserstrahlen erzeugt wird
EP1658921B1 (fr) Appareil de soudage laser pour un laser à haute puissance avec faisceau de haute qualité et optique focale de longue distance focale
DE3626944A1 (de) Verfahren und vorrichtung zum fokussieren und steuern einer hochleistungsenergiequelle
DE4123716A1 (de) Vorrichtung zum hochgeschwindigkeitsschneiden duenner bleche mittels laserstrahlung
DE2211195A1 (de) Verfahren und Vorrichtung zur Materialschweißung
DE102009042199B4 (de) Laserstrahl-Ausrichteinheit und Laserbearbeitungsgerät zur Bearbeitung eines Materials
DE102006047947B3 (de) Fokussierspiegeloptik für Laserstrahlung
EP2801471B1 (fr) Dispositif de soudage par transmission de surfaces circonférentielles internes d'une pièce au moyen d'un rayonnement laser
EP1491279A1 (fr) Procédé de soudage multifocal et appareil de soudage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807575.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN KR SG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2330426

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020007012090

Country of ref document: KR

Ref document number: IN/PCT/2000/580/CHE

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020007012090

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1020007012090

Country of ref document: KR