WO1999056849A1 - Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe - Google Patents

Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe Download PDF

Info

Publication number
WO1999056849A1
WO1999056849A1 PCT/US1999/009827 US9909827W WO9956849A1 WO 1999056849 A1 WO1999056849 A1 WO 1999056849A1 US 9909827 W US9909827 W US 9909827W WO 9956849 A1 WO9956849 A1 WO 9956849A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
suppressor
analyte
detector
fluid flow
Prior art date
Application number
PCT/US1999/009827
Other languages
English (en)
Inventor
James M. Anderson, Jr.
Raaidah Saari-Nordhaus
Original Assignee
Alltech Associates, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alltech Associates, Inc. filed Critical Alltech Associates, Inc.
Priority to CA002331716A priority Critical patent/CA2331716C/fr
Priority to EP99920352A priority patent/EP1107817B1/fr
Priority to AU37870/99A priority patent/AU745924B2/en
Priority to AT99920352T priority patent/ATE444792T1/de
Priority to DE69941512T priority patent/DE69941512D1/de
Priority to JP2000546862A priority patent/JP4362228B2/ja
Publication of WO1999056849A1 publication Critical patent/WO1999056849A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • G01N2030/965Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns

Definitions

  • the present invention relates to the field of ion chromatography (IC), and, in
  • SIC Suppressed ion chromatography
  • the first column called the
  • analytical or separation column separates the analyte ions in a sample by elution of the
  • analyte ions through the column.
  • the analyte ions are flowed through the analytical
  • a mobile phase comprising electrolyte.
  • a mobile phase comprising electrolyte.
  • deionized water is used as the mobile phase. From the analytical column, the separated
  • analyte ions and mobile phase are then flowed to the second column, which is called the
  • the suppressor serves two primary purposes: (1) it lowers the
  • a suppressor operates by ion exchange of
  • suppressor ions which are located in the suppressor, with both the (1) the mobile phase
  • electrolyte counterions and (2) the sample counterions.
  • sample counterions In anion analysis, for example,
  • the suppressor ions normally comprise hydronium ions and the mobile phase comprises
  • electrolyte such as sodium hydroxide or mixtures of sodium carbonate and sodium
  • the suppressor ions normally comprise hydroxide ions
  • the mobile phase may comprise electrolytes such as hydrochloric acid or
  • the suppressor ions are located on a stationary phase, which may
  • both analyte ions and counterions of the analyte ions are flowed through the stationary
  • electrolyte counterions with suppressor ions converts the mobile phase to water or
  • sample counterions with suppressor ions i.e., hydronium or hydroxide ions
  • suppressor ions i.e., hydronium or hydroxide ions
  • the concentration of suppressor ions on the stationary phase is
  • Traditional IC systems usually contain a mobile phase source, a pump, a sample
  • phase is converted back to its strongly ionized form after suppression and, thus, may be
  • the present invention is capable of solving one or more of
  • an integrated suppressor and detector is
  • suppressor it is meant a device that is capable of converting the mobile
  • phase to water or a weakly conductive form such as, for example, sodium carbonate or
  • bicarbonate to carbonic acid and the ions to be detected e.g. the analyte ions
  • the suppressor is any substance that has their acid or base prior to detection.
  • the suppressor is any substance that has their acid or base prior to detection.
  • the suppressor is continuously regenerated during suppression.
  • suppressor comprises a stationary phase comprising suppressor ions which acts to
  • Electrolysis is performed 5 on the mobile phase to produce regenerating ions.
  • the regenerating ions are then flowed
  • electrolysis is performed on water present in the mobile phase.
  • an integrated suppressor and detector is
  • the integrated suppressor and detector comprises at least first and second
  • a stationary phase comprising suppressor ions is positioned in
  • the integrated suppressor and detector further comprises at least first
  • the mobile phase is recycled and may be
  • Figure 1 is a schematic view of a suppressor ion chromatography system
  • Figure 2 is a cross-section view of integrated suppressor and detector according to
  • Figure 3 a is a side perspective view of an integrated suppressor and detector
  • Figure 3b is a cross-section view taken along line B-B of Figure 3a.
  • Figure 4 is an exploded perspective view of an integrated suppressor and detector
  • Figure 4a is a side view of an integrated suppressor and detector depicted in
  • Figure 4b is a cross-sectional view of an integrated suppressor and detector.
  • Figures 5-7 are chromatograms using an apparatus and method according to the
  • Figure 1 illustrates an IC system using the integrated suppressor and detector of
  • the IC system comprises a mobile phase source 10, a pump 11, a
  • sample injector 12 and analytical column 14 may be selected from the variety of types
  • preferred pumps include the ALLTECH
  • analytical columns include the ALLTECH ALLSEP or UNIVERSAL CATION
  • sample injectors include the RHEODYNE 7725 injection valve.
  • An integrated suppressor and detector 16 in fluid communication with the
  • analytical column 14 is further provided. As discussed below, the suppressor and
  • detector 16 is connected to a power source 18 and a measuring device 20. Preferred
  • power sources include the KENWOOD PR36-1.2A.
  • a preferred measuring device is a
  • the present invention is an electrochemical detector.
  • the measuring device 20 measures or
  • the direction of fluid flow is as follows.
  • the mobile phase is flowed
  • recycling valve 19 which directs fluid flow either to 8 waste or back to mobile phase source 10 as discussed below.
  • the recycling valve 19 is
  • the suppressor and detector 16 comprises a first
  • Electrodes are held in housing 17 of the suppressor and detector 16 by a threaded nut (not
  • Seals 241 and 241a are preferably included to provide a fluid-tight seal between
  • the seals 241 and 241a are preferably O-rings
  • the regeneration electrodes are flow-through electrodes.
  • flow-through electrodes it is meant that the electrodes allow sample analyte ions and
  • the electrodes are preferably made from carbon,
  • the most preferred electrodes are made of platinum coated titanium, ruthenium oxide
  • regeneration electrode 32 are connected to the power source 18. A fluid flow path
  • the fluid flow path may preferably extend from the first regeneration electrode 30 to the
  • the fluid flow path may be defined by internal walls
  • Housing 17 is preferably made from an inert material such as those
  • the housing 17 should be constructed from a relatively non-conductive
  • a stationary phase 39 is positioned in the fluid flow path.
  • the stationary phase 39 is positioned in the fluid flow path.
  • stationary phases include membranes and ion exchange resins, for example.
  • membranes and ion exchange resins for example.
  • the stationary phase comprises ion exchange resin.
  • anion analysis cation exchange
  • a preferred cation exchange resin is BIORAD AMINEX 50W-X12
  • stationary phases include DUPONT NAFION ion-exchange beads and membranes and
  • anion exchange resin comprises exchangeable hydronium ions.
  • anion exchange resin will be
  • a preferred anion exchange resin is BIORAD AMINEX AG1-X8 100-200 mesh
  • preferred anion exchange resin comprises exchangeable hydroxide ions.
  • the suppressor and detector 16 also comprise at least two sensor electrodes for
  • electrodes are preferably located in the fluid flow path between first regeneration
  • the sensor electrodes 37 and 38 are preferably in electrical 10 communication with a measuring device (not shown) for recording the analyte ions
  • second sensor electrodes preferably have a serpentine configuration across a cross-section
  • the first sensor electrode 37 is weaved through
  • holes 40-43 and the second electrode 38 is weaved through holes 44-47 formed in
  • the suppressor and the suppressor are electrical communication with the measuring device 20.
  • the suppressor and the suppressor are electrical communication with the measuring device 20.
  • detector 16 is 21mm x 7.5mm internal diameter.
  • the distance between the regeneration electrode 30 and sensor electrode is about 7.95mm.
  • the distance between regeneration electrode 32 and sensor electrode 38 is about 11.8mm.
  • the distance between sensor electrodes 37 and 38 is about 1.4mm.
  • the system of the present invention may be used for detecting analyte ions
  • preferred mobile phases include aqueous solutions of either hydrochloric
  • the mobile phase is aqueous and, therefore, no separate water-source is
  • analyte anions to be detected and analyte counterions e.g., cations
  • injector 12 and flowed to analytical column 14 by pump 11.
  • the analyte anions are
  • the stationary phase 39 in the suppressor and detector 16 is
  • ion exchange resin comprising exchangeable hydronium ions.
  • analyte counterions selected from, for example, K + ). Also, the sodium ions in the
  • mobile phase may be retained on the stationary phase 39 by ion exchange with the
  • the mobile phase is converted to the relatively non-conductive
  • the first regeneration electrode 30 is the anode at
  • regeneration electrode 32 is the cathode at which hydroxide ions are generated. As those
  • upstream regeneration electrode will be the cathode and the regenerating ions will
  • regeneration electrode 30 are then flowed through the stationary phase 39 thereby
  • this aqueous sodium hydroxide may be 13 flowed through recycling valve 19 and back to mobile phase source 10. In this fashion, a
  • the fluid flow is preferably directed to waste.
  • the system is preferably configured to direct waste.
  • the analyte ions are detected while in
  • the source of these hydronium ions are the regeneration hydronium ions generated at
  • concentration of hydronium ions is greater than the concentration of sodium ions or
  • the amount of sample ions in the acid form is likewise optimized
  • the change in current is detected by a
  • first and second regeneration electrodes 30 and 32 may be omitted and the first and second regeneration electrodes 30 and 32 may
  • one of the sensor electrodes may be omitted
  • one of the regeneration electrodes may perform the function of both a regeneration
  • Figure 4 is an exploded view of an alternative configuration for
  • a first regeneration electrode 130 and a second regeneration electrode 132 are
  • the electrodes may be constructed from the same materials as previously
  • Second ion exchange membranes 134 and 135 are also provided. First and second ion
  • exchange membranes preferably comprise exchangeable ions selected from the group
  • adjacent first and second ion exchange membranes are second set of spacers 140 and 141,
  • preferably may comprise a permeable, inert material such as a TEFLON membrane.
  • the spacers may comprise an inert sheet constructed from MYLAR, PTFE,
  • sensor electrodes 137 and 138 respectively, which may be as previously described.
  • the sensor electrodes 137 and 138 are positioned at the downstream end of
  • paths 145a and 145b are defined by the combination of spacer 130a and membrane 134
  • electrolyte counterions are flowed to suppressor and detector 116 and fluid flow path 145.
  • electrode 130 The water in the mobile phase undergoes electrolysis.
  • electrode 130 the water in the mobile phase undergoes electrolysis.
  • electrode 130 the electrode 130
  • electrode 132 may be the cathode.
  • hydronium ions are
  • analyte ions and mobile phase are flowed through fluid flow path 145, the analyte
  • hydronium ions both from the
  • anions in their acid form may then be detected by sensor electrodes 137 and 138.
  • the released electrolyte counterions may then recombine with the hydroxide
  • sensor electrodes 137 and 138 may be positioned in one of the fluid
  • the sensor electrodes 137 and 138 are in electrical communication with a measuring
  • Figure 4b shows
  • the suppressor and detector is modified.
  • the sensor electrodes 337 and 338 are positioned in the fluid flow path 345.
  • the fluid flow path 345 Preferably,
  • the sensor electrodes are positioned towards the downstream end of fluid flow path 345.
  • the path of fluid flow is through fluid flow path 345 and
  • phase comprising electrolyte is flowed through fluid flow path 345 to fluid flow paths
  • sensor electrodes 337 and 338 which are preferably in electrical
  • the analyte anions (in their acid form) and water is then flowed to fluid flow
  • effluent from flow paths 345a and 345b may be flowed to waste.
  • one spacer defining a fluid flow path 145 ( Figure 4) or 345 ( Figure 4b) may be used.
  • sample anions were analyzed according to a method of the
  • the analytical column was an ALLTECH ALLSEP anion
  • the mobile phase was aqueous 0.7 mM sodium bicarbonate/1.2 mM
  • the mobile phase flow rate was 0.5 mL/min.
  • the inlet regenerating electrode and the first sensor electrode was 7.95 mm. The distance
  • the distance between the first and second sensor electrodes was 1.4 mm.
  • conductivity detector was an OAKTON 1000 series X A DIN conductivity and resistivity
  • the power source was a KENWOOD PR 32-1.2A regulated DC power
  • the amount of current applied was 100 mA (corresponding voltage of 15 V).
  • Figure 5 is the chromatogram for a sample anion mixture (100 ⁇ L).
  • Example 1 the same equipment and conditions as in Example 1 were used.
  • Figure 6 is the chromatogram for a sample anion mixture with three repetitive injections
  • sample cations were analyzed according to a method of the
  • the analytical column was an ALLTECH Universal cation column, 100 x 4.6
  • the mobile phase was aqueous 3.0 mM methane sulfonic acid.
  • the mobile phase flow 20 rate was 0.5 mL/min.
  • the integrated suppressor and detector was packed with
  • the integrated suppressor and detector had the dimensions as set forth in
  • Example 1 The conductivity detector was an OAKTON 1000 series l ⁇ DIN conductivity
  • Figure 7 is a chromatogram for a sample cation mixture, 4 repetitive injections of

Landscapes

  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

L'invention concerne un suppresseur-détecteur (16) intégré pour chromatographie d'adsorption ionique, comprenant une phase stationnaire (39), un parcours d'écoulement du fluide, au moins une première et une seconde électrodes (37, 38) de régénération, et au moins une première et une seconde électrodes (30, 32) de détection. L'invention concerne également des procédés de chromatographie d'adsorption ionique utilisant ledit suppresseur-détecteur (16) intégré.
PCT/US1999/009827 1998-05-06 1999-05-04 Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe WO1999056849A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002331716A CA2331716C (fr) 1998-05-06 1999-05-04 Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe
EP99920352A EP1107817B1 (fr) 1998-05-06 1999-05-04 Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe
AU37870/99A AU745924B2 (en) 1998-05-06 1999-05-04 Continuously regenerated and integrated suppressor and detector for suppressed ion chromatography and method
AT99920352T ATE444792T1 (de) 1998-05-06 1999-05-04 Kontinuierlich regenerierter integrierter suppressor sowie detektor und verfahren zur suppressor-ionenchromatographie
DE69941512T DE69941512D1 (de) 1998-05-06 1999-05-04 Kontinuierlich regenerierter integrierter suppressenchromatographie
JP2000546862A JP4362228B2 (ja) 1998-05-06 1999-05-04 抑制イオンクロマトグラフィー用の、連続的に再生される、一体化されたサプレッサー及び検出器並びに方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/073,652 1998-05-06
US09/073,652 US6200477B1 (en) 1998-05-06 1998-05-06 Continuously regenerated and integrated suppressor and detector for suppressed ion chromatography and method

Publications (1)

Publication Number Publication Date
WO1999056849A1 true WO1999056849A1 (fr) 1999-11-11

Family

ID=22114971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/009827 WO1999056849A1 (fr) 1998-05-06 1999-05-04 Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe

Country Status (8)

Country Link
US (3) US6200477B1 (fr)
EP (1) EP1107817B1 (fr)
JP (1) JP4362228B2 (fr)
AT (1) ATE444792T1 (fr)
AU (1) AU745924B2 (fr)
CA (1) CA2331716C (fr)
DE (1) DE69941512D1 (fr)
WO (1) WO1999056849A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074837A1 (fr) * 1999-08-02 2001-02-07 Alltech Associates, Inc. Suppresseur et procédé électrochimique continu pour la chromatographie ionique utilisant un suppresseur
EP1092977A1 (fr) * 1999-10-13 2001-04-18 Alltech Associates, Inc. Dispositif de chromatographie ionique et procédé pour enlever le gaz avant la détection de l'échantillon
WO2006091404A2 (fr) * 2005-02-23 2006-08-31 Dionex Corporation Systeme de chromatographie d'echange d'ions utilisant une elimination de gaz catalytique
US7981284B2 (en) 2008-02-21 2011-07-19 Shimadzu Corporation Suppressor utilizing micro ion exchange tube and ion chromatograph utilizing the same
CN102854275A (zh) * 2012-07-29 2013-01-02 安徽皖仪科技股份有限公司 基于dsp的离子色谱数字电导检测装置
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610597T3 (de) * 1995-03-03 2005-11-03 Alltech Associates, Inc., Deerfield Verfahren und vorrichtung zur elektrochemischen veränderung von chromatographiematerial
US6688161B1 (en) * 2002-03-29 2004-02-10 The United States Of America As Represented By The Secretary Of The Navy Perchlorate analysis device and method
US7288176B2 (en) * 2003-04-23 2007-10-30 Dionex Corporation Method and apparatus for generating high purity eluant
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US20050100477A1 (en) * 2003-11-06 2005-05-12 Alltech Associates, Inc. Apparatus and method for removing gas prior to sample detection and/or analysis
US8216515B2 (en) * 2004-09-16 2012-07-10 Dionex Corporation Capillary ion chromatography
US7892848B2 (en) 2005-04-14 2011-02-22 Trovion Singapore Pte. Ltd., Co. Method of ion chromatography wherein a specialized electrodeionization apparatus is used
US9964510B2 (en) * 2013-09-16 2018-05-08 Dionex Corporation Electrolytic four-channel device and method
US9625430B2 (en) * 2013-10-18 2017-04-18 Dionex Corporation Multielectrode electrolytic device and method
CN106255665B (zh) * 2014-03-06 2019-07-19 德克萨斯大学系统董事会 用于测量流体电导率的方法和装置
CN104237450A (zh) * 2014-09-30 2014-12-24 华南理工大学 一种阴阳离子多功能离子色谱抑制器
CN105259279B (zh) * 2015-11-25 2017-01-11 华东理工大学 离子色谱抑制器-电荷检测器集成器件
US10948466B2 (en) * 2017-03-03 2021-03-16 Dionex Corporation Flow control in an electrolytic reagent concentrator for ion chromatography
WO2019195387A1 (fr) * 2018-04-03 2019-10-10 Cornell University Thérapie génique contre le stress oxydatif
US11860143B2 (en) 2021-12-21 2024-01-02 Dionex Corporation Method and system for self-regulating a suppressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459357A (en) * 1981-07-08 1984-07-10 Jansen Karl Heinz Process and apparatus for the quantitative determination of cations or anions by ion chromatography
US5633171A (en) * 1995-03-03 1997-05-27 Dionex Corporation Intermittent electrolytic packed bed suppressor regeneration for ion chromatography

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598930C3 (de) * 1965-10-06 1975-04-17 Victor Prof. Dr. Pretorius Detektorvorrichtung zum Überwachen der Zusammensetzung chromatographischer Eluate
US3920397A (en) * 1973-08-06 1975-11-18 Dow Chemical Co Apparatus and method for quantitative analysis of ionic species by liquid column chromatography
US3897213A (en) * 1973-08-06 1975-07-29 Dow Chemical Co Automated quantitative analysis of ionic species
US3926559A (en) * 1973-08-06 1975-12-16 Dow Chemical Co Method and apparatus for quantitative chromatographic analysis of cationic species
US3925019A (en) * 1973-08-06 1975-12-09 Dow Chemical Co Chromatographic analysis of ionic species
US4299698A (en) * 1980-10-21 1981-11-10 Culligan International Company Circuit and apparatus for controlling a water softener
US4751004A (en) * 1981-09-18 1988-06-14 The Dow Chemical Company Liquid chromatographic method and apparatus with a packed tube membrane device for post-column derivatization/suppression reactions
JPS60219554A (ja) * 1984-04-16 1985-11-02 Yokogawa Hokushin Electric Corp 多量成分中の微量成分を測定する方法およびその装置
US4888098A (en) * 1986-02-20 1989-12-19 Raychem Corporation Method and articles employing ion exchange material
DE3629712A1 (de) * 1986-09-01 1988-03-03 Kunz Gerhard K Verfahren und schaltungsanordnung zur messung des beladungsgrades eines ionenaustauschfilters
US4847598A (en) * 1987-11-27 1989-07-11 Aqua-Tronics, Inc. Water treatment regeneration system incorporating alternating current excitation and paired operational amplifiers with asymmetrical feedback elements
US4946899A (en) * 1988-12-16 1990-08-07 The University Of Akron Thermoplastic elastomers of isobutylene and process of preparation
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5163952A (en) * 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) * 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5811447A (en) * 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5248426A (en) * 1992-02-10 1993-09-28 Dionex Corporation Ion chromatography system using electrochemical suppression and detector effluent recycle
US5346605A (en) * 1992-08-24 1994-09-13 The Dow Chemical Company Apparatus for quantitative determination of chemical oxidizing or reducing agents in a fluid environment
US5531715A (en) * 1993-05-12 1996-07-02 Target Therapeutics, Inc. Lubricious catheters
US5994341A (en) * 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
DK1118325T4 (da) * 1993-07-29 2010-04-06 Us Health Anvendelse af paclitaxel og dets derivater ved fremstilling af et medikament til behandling af restenose
EP0898167B1 (fr) * 1993-08-27 2000-10-25 Dionex Corporation Chromatographie par échanges d'ions utilisant une régéneration fréquente du suppresseur du type élution fractionnée
US5480555A (en) * 1994-06-06 1996-01-02 Robertshaw Controls Company Control system for a water softener, control device therefor and methods of making the same
DE69610597T3 (de) * 1995-03-03 2005-11-03 Alltech Associates, Inc., Deerfield Verfahren und vorrichtung zur elektrochemischen veränderung von chromatographiematerial
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US5674242A (en) * 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5741331A (en) * 1996-07-29 1998-04-21 Corvita Corporation Biostable elastomeric polymers having quaternary carbons
US5914025A (en) 1997-01-09 1999-06-22 Dionex Corporation Ion chromatographic method and apparatus using ion reflux
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US5990684A (en) * 1997-12-02 1999-11-23 Merrill; John H. Method and apparatus for continuously monitoring an aqueous flow to detect and quantify ions
US6280411B1 (en) * 1998-05-18 2001-08-28 Scimed Life Systems, Inc. Localized delivery of drug agents
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459357A (en) * 1981-07-08 1984-07-10 Jansen Karl Heinz Process and apparatus for the quantitative determination of cations or anions by ion chromatography
US5633171A (en) * 1995-03-03 1997-05-27 Dionex Corporation Intermittent electrolytic packed bed suppressor regeneration for ion chromatography

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074837A1 (fr) * 1999-08-02 2001-02-07 Alltech Associates, Inc. Suppresseur et procédé électrochimique continu pour la chromatographie ionique utilisant un suppresseur
US6444475B1 (en) 1999-08-02 2002-09-03 Alltech Associates, Inc. Ion chromatography apparatus and method for removing gas prior to sample detection
US6468804B1 (en) 1999-08-02 2002-10-22 Alltech Associates, Inc. Suppressor for continuous electrochemically suppressed ion chromatography and method
EP1092977A1 (fr) * 1999-10-13 2001-04-18 Alltech Associates, Inc. Dispositif de chromatographie ionique et procédé pour enlever le gaz avant la détection de l'échantillon
EP1640714A2 (fr) * 1999-10-13 2006-03-29 Alltech Associates, Inc. Suppresseur et procédé électrochimique continu pour la chromatographie ionique utilisant un suppresseur
EP1640714A3 (fr) * 1999-10-13 2006-07-05 Alltech Associates, Inc. Suppresseur et procédé électrochimique continu pour la chromatographie ionique utilisant un suppresseur
WO2006091404A2 (fr) * 2005-02-23 2006-08-31 Dionex Corporation Systeme de chromatographie d'echange d'ions utilisant une elimination de gaz catalytique
WO2006091404A3 (fr) * 2005-02-23 2007-02-15 Dionex Corp Systeme de chromatographie d'echange d'ions utilisant une elimination de gaz catalytique
US7329346B2 (en) 2005-02-23 2008-02-12 Dionex Corporation Ion chromatography system using catalytic gas elimination
US8043507B2 (en) 2005-02-23 2011-10-25 Dionex Corporation Ion chromatography system using catalytic gas elimination
US8308952B2 (en) 2005-02-23 2012-11-13 Dionex Corporation Ion chromatography system using catalytic gas elimination
US8784655B2 (en) 2005-02-23 2014-07-22 Dionex Corporation Ion chromatography system using catalytic gas elimination
US7981284B2 (en) 2008-02-21 2011-07-19 Shimadzu Corporation Suppressor utilizing micro ion exchange tube and ion chromatograph utilizing the same
CN102854275A (zh) * 2012-07-29 2013-01-02 安徽皖仪科技股份有限公司 基于dsp的离子色谱数字电导检测装置
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method

Also Published As

Publication number Publication date
DE69941512D1 (de) 2009-11-19
AU745924B2 (en) 2002-04-11
US20030209494A1 (en) 2003-11-13
CA2331716C (fr) 2005-01-11
JP4362228B2 (ja) 2009-11-11
EP1107817A1 (fr) 2001-06-20
EP1107817A4 (fr) 2002-02-13
CA2331716A1 (fr) 1999-11-11
ATE444792T1 (de) 2009-10-15
US20010019031A1 (en) 2001-09-06
US6709583B2 (en) 2004-03-23
AU3787099A (en) 1999-11-23
JP2002513912A (ja) 2002-05-14
US6200477B1 (en) 2001-03-13
EP1107817B1 (fr) 2009-10-07

Similar Documents

Publication Publication Date Title
EP1107817B1 (fr) Supresseur-detecteur integre regenere en continu pour chromatographie d'adsorption ionique, et procede associe
US6325976B1 (en) Continuous electrolytically regenerated packed bed suppressor for ion chromatography
EP1924852B1 (fr) Recyclage de regenerants de suppresseur
CA2420411C (fr) Suppresseur a remplissage electrolytiquement regenere de facon continue pour chromatographie d'echange d'ions
US5759405A (en) Apparatuses and methods for electrochemically modifying the retention of species on chromatography material
JP3946632B2 (ja) 電解サプレッサと分離溶離剤発生器との組合せ
WO2000042426A1 (fr) Suppresseurs presentant un bon compromis efficacite/intensite et procede d'utilisation
WO1999011351A1 (fr) Procede et appareil de chromatographie par echange d'ions utilisant un supresseur et un generateur d'eluant combines
Liu et al. Recent developments in electrolytic devices for ion chromatography
AU2001285169A1 (en) Continuous electrolytically regenerated packed suppressor for ion chromatography
CA2314850C (fr) Neutralisateur et methode pour la chromatographie en continu d'ions neutralises electrochimiquement
US6444475B1 (en) Ion chromatography apparatus and method for removing gas prior to sample detection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2331716

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 546862

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999920352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 37870/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999920352

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 37870/99

Country of ref document: AU