WO1999053534A1 - Process system - Google Patents

Process system Download PDF

Info

Publication number
WO1999053534A1
WO1999053534A1 PCT/JP1999/001908 JP9901908W WO9953534A1 WO 1999053534 A1 WO1999053534 A1 WO 1999053534A1 JP 9901908 W JP9901908 W JP 9901908W WO 9953534 A1 WO9953534 A1 WO 9953534A1
Authority
WO
WIPO (PCT)
Prior art keywords
process chamber
chamber
transfer chamber
stage
exhaust
Prior art date
Application number
PCT/JP1999/001908
Other languages
French (fr)
Japanese (ja)
Inventor
Kaisha Ultraclean Technology Research Institute Kabushiki
Original Assignee
Ohmi, Tadahiro
Nitta, Takahisa
Hirayama, Masaki
Morii, Akio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohmi, Tadahiro, Nitta, Takahisa, Hirayama, Masaki, Morii, Akio filed Critical Ohmi, Tadahiro
Publication of WO1999053534A1 publication Critical patent/WO1999053534A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67751Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers

Definitions

  • the present invention relates to a process device such as a semiconductor. More specifically, the present invention relates to a process apparatus which realizes a completely axisymmetric process on a large substrate and has a small loss of high frequency when applied to a high frequency plasma process.
  • each side (side) of the polygonal transfer chamber 101 has a process chamber 102a, 1b.
  • This is a process device having a structure in which 02 b and 102 c are connected via gate valves 104 a, 104 b and 104 c, respectively.
  • an arm 105 for transferring an object to be processed 107 such as a wafer is provided in the transfer chamber 101.
  • the arm 105 is rotatable and has an extendable structure. The transfer is performed by opening and closing the gate valves 104a and 104b when the object 107 is delivered.
  • the process chamber 201 is vertically divided by a plate 206 with a plurality of holes called a baffle plate, and the process chamber is formed by being partitioned by a baffle plate 206.
  • This is a process device having a structure in which a vacuum pump 207 is provided on a side surface of a lower space 202 of 201.
  • the baffle plate 206 is introduced from a gas introduction pipe 208 provided in communication with the process chamber 201, and aims to uniformly exhaust the process gas from around the workpiece 209. It is provided as.
  • the baffle plate 206 is not provided, the process gas This is because the flow is biased toward the side where the pump 207 is provided, and uniform processing cannot be performed on the object to be processed 209.
  • the diameter of the object to be processed is 20 Omm or more, the unevenness of the process due to the uneven flow of the gas appears remarkably.
  • reference numeral 203 denotes a transfer chamber connected to a side surface of the process chamber 201 via a gate valve 204.
  • a plurality of exhaust holes 306 are formed in the bottom of the container forming the process chamber 301 so as to communicate with the outside, and a flexible exhaust pipe 302 is connected to the exhaust holes 306. Further, a vacuum pump 307 is connected to the exhaust pipe 302.
  • reference numeral 203 denotes a transfer chamber connected to a side surface of the process chamber 201 via a gate valve 204.
  • Reference numeral 305 denotes a stage for holding the object, and reference numeral 308 denotes a process gas introduction pipe.
  • the process chamber 101 and the gate valves 104a, 104b, 104c, and 04d are in contact with each other via an insulating ring (not shown). Therefore, in the high-frequency excitation plasma, the high-frequency current flowing through the wall forming the process chamber 101 is widely cut off by the gate valves 104a, 104b, 104c, and 104d. Flow from gate valve 104a, 104b, 104c, 104d The high-frequency current that is lost is greatly lost by the bellows of the gate valves 104a, 104b, 104c, and 104d, so that the loss of high-frequency power increases as a whole. In addition, the asymmetrical flow of the high-frequency current resulted in an asymmetrical plasma potential on the wall, which tended to make the plasma shape non-uniform.
  • the plurality of exhaust pipes 302 extend below the process chamber 301, and the space below the process chamber 301 is occupied by the exhaust pipe 302. Therefore, for example, a space for performing maintenance such as a stage 305 on which the object to be processed 309 is mounted has become narrow.
  • An object of the present invention is to provide a process apparatus capable of making a gas flow and a plasma shape uniform and occupying a small area of the apparatus.
  • An object of the present invention is to provide a process apparatus capable of efficiently generating and maintaining plasma by reducing loss of high frequency power supplied in a high frequency plasma process.
  • An object of the present invention is to provide a process apparatus capable of uniformly exhausting a large amount of process gas from around an evaporator without significantly reducing the conductance of an exhaust line.
  • the process apparatus of the present invention includes: a transfer chamber for transferring an object to be processed;
  • a process chamber provided above the transfer chamber via a gate
  • the transfer chamber is provided below the process chamber. Therefore, the gate between the process room and the transfer room exists below the process room, not on the side of the process room.
  • the shape of the process chamber can be formed to be axially symmetric, and the generation of turbulence in the gas flow can be prevented without increasing the size of the process chamber.
  • disturbance of the plasma shape can be prevented. As a result, even when the object to be processed has a large diameter exceeding 20 O mm, the processing can be performed uniformly.
  • the gate valve does not exist on the side of the process chamber, the high-frequency current flowing through the wall forming the process chamber 101 in the high-frequency excited plasma generated by the conventional technology is generated by the gate valves 104 a and 1. There is no widespread interruption in section 04b, and high-frequency power loss can be reduced.
  • the gate valve since the gate valve is located below the process chamber, it cannot completely eliminate the occurrence of high-frequency power loss, but the flow of high-frequency current is symmetric, and therefore the plasma potential is also reduced. Since it is symmetrical, uniform plasma can be obtained in the process chamber, and uniform processing can be performed even on a large-diameter workpiece exceeding 200 mm.
  • the mounting section is in the process chamber, that is, when the stage is raised, the object to be processed is carried into the process chamber, and the process processing such as film formation is performed, the transfer chamber and the process chamber are not connected.
  • the seal can be done, for example, as follows.
  • a flange having a diameter larger than the diameter of the gate may be provided on the side surface of the stage, a groove may be formed on the upper surface of the flange, and an O-ring may be placed in the groove. When the stage is raised, this ring contacts the lower surface of the process chamber. The seal between the process chamber and the transfer chamber is secured with a simple structure that can be touched.
  • the process apparatus of the present invention comprises: a process chamber;
  • a plurality of exhaust passages communicating with the respective exhaust holes
  • a vacuum pump is connected to at least one of the side holes.
  • a plurality of exhaust holes and an exhaust passage communicating with the exhaust holes are formed in a block below the process chamber so as to be substantially axially symmetric with respect to the center of the object to be processed.
  • the number of exhaust holes may be odd or even.
  • four or more are preferable from the viewpoint of more uniform exhaust. It is preferable that the size of the hole be such that the conductance is at least about five times the conductance of the process chamber.
  • FIG. 1 is a plan view of the process apparatus according to the first embodiment.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG.
  • FIG. 3 is an operation process diagram of the process device according to the first embodiment.
  • FIG. 4 is an operation process diagram of the process device according to the first embodiment.
  • FIG. 5 is an operation process diagram of the process device according to the first embodiment.
  • FIG. 6 is an operation process diagram of the process device according to the first embodiment.
  • FIG. 7 is a plan view of the process device according to the first embodiment.
  • FIG. 8 is a sectional view taken along line 8-8 in FIG.
  • FIG. 9 is a plan view of a process device according to a conventional example.
  • FIG. 10 is a cross-sectional view taken along the line 10—10 of FIG.
  • FIG. 11 is a side sectional view of a process apparatus according to another conventional example.
  • FIG. 12 is a side sectional view of a process apparatus according to another conventional example.
  • FIG. 13 is a cross-sectional view of a process device according to the third embodiment.
  • FIG. 14 is a process diagram illustrating an operation procedure of the process device according to the third embodiment.
  • FIG. 1 and 2 show a process apparatus according to the present embodiment.
  • the process apparatus of this example includes a transfer chamber 402 for transferring the object 4 15, and a process chamber 4 provided above the transfer chamber 402 via a gate 4 16 (FIG. 4). 0 3 and
  • a stage 4 06 which is sealed from the outside and has a mounting portion 4 12 for mounting the object 4 15,
  • the 200 mm wafer plasma process cluster tool shown in Fig. 2 has one transport chamber 402 and one loader / unloader chamber 401 mounted above it and three radial chambers. It consists of a microwave-excited plasma process chamber 403 using a line slot antenna.
  • the transfer chamber 402 is made of aluminum, and has a wafer transfer robot (Mex ⁇ ⁇ ⁇ ' ⁇ '-250H) 400 in the center.
  • the transfer chamber 402 is evacuated with a turbo molecular pump (Seiko Seiki STP-300) (not shown).
  • Loader Z unloader room 401 is made of aluminum, and contains a cassette in which up to six sheets can be set.
  • the inside of the loader-Z unloader room 401 is evacuated by a turbo molecular pump (STP-300, manufactured by Seiko Seiki Co., Ltd.) (not shown). There is also a leak port for taking out the cassette.
  • the cassette mounting table 418 has an elevating mechanism 410.
  • the lifting mechanism 410 is composed of a bellows 410 with one end attached to the bottom of the cassette Aichi University 418 and the other end attached to the bottom of the transfer chamber 402. ing.
  • a vacuum seal between the loader / unloader chamber 401 and the transfer chamber 402 is made by an O-ring 417 mounted on the upper surface of the cassette mounting table 418.
  • the process chamber 403 is made of aluminum, and is provided with a radial line slot antenna 419 for uniformly introducing a microwave of 2.45 GHz into the chamber.
  • the surface of the wafer stage 406 is coated with alumina, and peripheral mechanisms such as a heater, a temperature sensor, a lift pin, an electrostatic chuck, and a high-frequency bias applying mechanism are attached. These peripheral mechanisms will be maintained as needed.
  • a flange 4 13 having a diameter larger than the diameter of the gate 4 16 is provided on a side surface of the object mounting portion 4 12 of the wafer stage 4 06. Has a 0 ring 4 1 4.
  • one end of the bellows 410 is fixedly welded to the bottom of the flange 413.
  • the other end of the bellows 410 is fixed to the bottom of the transfer chamber 402 by welding. Therefore, the transfer chamber 402 is sealed from the atmosphere by the bellows. Further, the wafer stage 406 is moved up and down by the reduction of the bellows 410.
  • the wafer stage 406 moves upward, and the upper surface of the flange 413 (and the O-ring 414) comes into contact with the outer bottom surface of the process chamber 403. Thereby, the seal between the transfer chamber 402 and the process chamber 403 is performed.
  • the wafer stage 406 is lowered. The wafer stage 406 descends so that its upper surface is at the height of the transfer arm.
  • the process chamber 403 is generally formed by engraving the inside of the block, but also in this example, it is formed by engraving.
  • a plurality of exhaust holes 408 are formed in the bottom of the process chamber 403.
  • four exhaust holes 408 were formed around the wafer stage 406. In order to uniformly exhaust the process gas, the four exhaust holes 408 are formed at symmetric positions about the center of the object to be processed 4 15.
  • a lateral hole 407 is formed to allow the exhaust passages 421 to communicate with each other.
  • the lateral hole 407 communicates with a vacuum pump 409 formed on the bottom of the corner of the transfer chamber 402 and opening to the outside.
  • the vacuum pump port 409 is connected to a turbo molecular pump (STP-600H, manufactured by Seiko Seiki Co., Ltd.) (not shown).
  • the chamber 401 leaks to the atmospheric pressure, and the cassette 400 containing a silicon wafer with a diameter of 200 mm is placed in the loader Z unloader chamber 401 and the vacuum is applied. To pull.
  • the cassette 4104 is lowered by contracting the bellows 410.
  • the bellows 410 is contracted to lower the process stage 400 of the process chamber 403, and the process robot 405 is moved to the process stage 406 by using the transfer robot 405. Transfer 15 from cassette 4 04 onto the lift pin of wafer stage 4 06.
  • the cassette 404 is raised, the lift pins of the wafer stage 406 are stored, and the wafer 415 is moved to the wafer stage 406. Place on top.
  • e-stage 406 is lifted, and placed in process chamber 403.
  • the space between the process chamber 403 and the transfer chamber 402 is sealed by a 0-ring 414 placed on a flange 413 formed on the side surface of the wafer stage 406.
  • the wafer 415 is processed in the process chamber 403, and the wafer 415 is returned to the cassette 404 in a reverse process to the above.
  • Loader 1 Z unloader 1 and the process chamber are installed beside the transfer chamber, providing a vacuum seal between the rotor / unloader and the transfer chamber, and between the transfer chamber and the process chamber.
  • the cluster occupation tool having the structure of the present invention was able to reduce the device occupation area to about one third.
  • the high frequency applied to the wafer stage 406 was 13.56 MHz in frequency and 2000 W in power.
  • Argon gas was supplied to the process chamber 403 via the gas supply pipe 4 1 1 100 sccm, and the pressure in the process chamber 403 was set to 2 OmTorr.
  • the emission intensity of the plasma generated by the device of the present invention is about 10% stronger than that of the conventional device, and the high-frequency power efficiently supplies the plasma.
  • the plasma density distribution was biased to the side of the hole connected to the gate valve on the inner wall of the chamber in the conventional equipment, but it was visually confirmed that the process equipment of this example was able to generate axially symmetric plasma. Was done.
  • argon gas was used for the process device of this example and the conventional process device having the baffle plate 206 shown in Fig. 11.
  • the pressure in the chamber at a flow rate of 5000 sccm at the chamber was 0.5 Torr in the conventional apparatus, whereas it was 0.2 Torr in the apparatus of the present invention, which could be drawn to a higher vacuum. .
  • the process apparatus of this example includes a process chamber 201,
  • a vacuum pump 207 is connected to at least one of the side holes 407.
  • the process device of this example was compared with a conventional process device.
  • the same turbo molecular pump (Seiko Seiki STP—600 H, exhaust speed 600 L / sec) was used for the process device of this example and the conventional process device having the baffle plate 206 shown in FIG.
  • the argon gas was exhausted using.
  • the flow rate is 500 sccm
  • the pressure in the chamber is 0.5 Torr in the conventional apparatus, whereas it is 0.3 Torr in the apparatus of the present invention.
  • the process apparatus of this example has a case where the exhaust of the process chamber 403 is connected to the vacuum pump 307 by connecting the exhaust pipe 302 to the exhaust holes 306 as shown in FIG. In comparison, the space beneath the process chamber 403 is wider and easier to maintain.
  • Fig. 13 shows the process equipment of this example.
  • an introduction structure that has an opening in the upper wall 10a of the process chamber, moves the process chamber up and down while being isolated from the inside of the process chamber, and seals the opening at the upper position.
  • the main body 11 is provided with a force, and a mounting portion 4 is provided on an upper portion of the introduction main body 11 via an elastic support 5.
  • the mounting portion 4 is configured to be capable of adsorbing and detaching the carrier 9 to be processed. I have.
  • the wafer carrier 9 for transporting the wafer 1 to be processed is composed of a storage box 3 for storing the wafer 1, a lid 2 for sealing the inside of the storage box 3, and a force.
  • the bottom of the storage box 3 is formed with a flange 3a, and the width of the bottom of the storage box 3 including the flange 3a is substantially the same as the diameter of the opening provided in the process chamber.
  • the lid 2 is also formed with a flange 3a.
  • the diameter of the lid 2 including the flange 2a is formed slightly larger than the diameter of the bottom of the storage box 3, and the bottom of the flange 2a is formed of the flange 3a.
  • the inside of the wafer carrier is sealed by contacting the upper surface of the wafer carrier.
  • the inside of the wafer carrier is evacuated through an exhaust port (not shown) and is maintained in a reduced pressure state.
  • the introduction body 11 has an outer flange 11a at the top.
  • the outer flange 11a has a larger diameter than the opening formed in the upper wall of the process chamber.
  • a bellows 6 is fixed between the bottom surface of the outer flange 11a and the lower wall 10b of the process chamber. Therefore, the introduction body 6 moves up and down as the bellows expands and contracts.
  • the introduction body 11 itself is outside the process room and is isolated from the process room. When the introduction main body 11 is positioned above, the outer flange 11 a abuts the upper wall 10 a of the process chamber, and the opening is sealed.
  • a mounting section 4 is provided above the introduction main body 11 via an elastic support (panel).
  • the storage box 3 of the wafer carrier 9 is mounted on the mounting section 4.
  • an internal flange 1 lb is provided on the introduction main body 11 and a spring 5 is provided on the upper surface of the internal flange 1 lb.
  • a communication port 13 is formed in the inner flange 11, and the space below the receiver 4 and the space 12 in the introduction body 11 communicate with each other through the communication port 13. .
  • An exhaust port 7 is formed in the introduction main body 12, and a space 12 inside the introduction main body 11 can be evacuated through the exhaust port 7.
  • the mounting portion 4 is formed of an electromagnetic magnet, and the bottom surface of the storage box 3 can be attracted and adhered by turning on and off the electromagnetic magnet.
  • FIG. 141 shows a state before the wafer carrier 9 is placed.
  • the introduction main body 11 is located above, the outer flange 11 a abuts on the upper wall of the process chamber, and the opening is sealed.
  • FIG. 142 shows a state in which the wafer carrier 9 is mounted on the mounting portion 4 and the storage box of the wafer carrier 9 is attracted to the upper surface of the mounting portion with the electromagnetic switch turned on. Since the inside of the wafer carrier 9 is in a decompressed state, the storage box will not be detached from the lid only by adsorbing the bottom surface of the storage box to the mounting portion 4.
  • Fig. 14 (3) shows a state in which the inside of the introduction body 11 is exhausted through the exhaust port 7.
  • the storage box 3 and the lid 2 are separated from each other, and the lid 2 is a force that is held by the upper wall 10 a of the process chamber at the flange 2 a. Descends due to its own weight
  • FIG. 144 shows a state in which the bellows is in a contracted state, and the storage box 2 is lowered to reach the height of the arm 30. In this state, the wafer is delivered to the arm. The flange 2a of the lid 2 is in contact with the upper wall 10a of the process chamber, so that the process chamber is sealed from the outside.
  • Figure 145 shows a state where the wafer processing is completed and the storage box is returned.
  • the space 12 inside the introduction body 11 is returned to the atmospheric pressure, and the bellows 6 is extended.
  • the upper surface of the flange of the storage box (3) contacts the lower surface of the flange of the lid (2), and the upper surface of the outer flange (11a) contacts the lower surface of the upper wall of the process chamber, thereby sealing the process chamber from the outside. Is stopped.
  • the electromagnetic switch is set to ⁇ ff, the wafer carrier 9 is detached from the receiver 4, and is “transported” to another location.
  • the wafer By introducing the wafer into the process chamber using the above procedure, the wafer can be formed on a wafer without confinement without being exposed to the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A process system requiring a smaller floor space and capable of providing a smooth flow of gas and a desirable plasma, which efficiently produces and maintains a plasma while reducing losses of high-frequency power supplied for plasma processing. The system comprises a process chamber (403) connected to an upper part of a transfer chamber (402) through a gate (416) (Figure 4), a stage (406) isolated from the outside and provided with a plate (412) for supporting an object (415) of processing, means (410) for moving the plate (412) of the stage (406) through the gate (416) between the transfer chamber (402) and the process chamber (403) while isolating the transfer chamber (402) from the outside, and means (413, 414) for isolating the transfer chamber (402) from the process chamber (403) when the plate (412) is in process chamber (403).

Description

明細書 プロセス装置 技術分野  Description Process equipment Technical field
本発明は、 半導体などのプロセス装置に係る。 より詳細には、 大型基板上での 完全軸対称なプロセスを実現し、 高周波プラズマプロセスに適用する場合は高周 波の損失が少ないプロセス装置に関する。 背景技術  The present invention relates to a process device such as a semiconductor. More specifically, the present invention relates to a process apparatus which realizes a completely axisymmetric process on a large substrate and has a small loss of high frequency when applied to a high frequency plasma process. Background art
従来、 半導体プロセス装置としては以下のような技術が知られている。  Conventionally, the following technology is known as a semiconductor process device.
( 1 ) 図 9及び図 9の 1 0 - 1 0断面図である図 1 0に示すように、 多角形の 搬送室 1 0 1の各辺 (側部) にプロセス室 1 0 2 a, 1 0 2 b , 1 0 2 cをそれ ぞれゲ一トバルブ 1 0 4 a, 1 0 4 b , 1 0 4 cを介して接続した構造を有する プロセス装置である。  (1) As shown in Fig. 9 and Fig. 10, which is a cross-sectional view taken along the line 10--10 in Fig. 9, each side (side) of the polygonal transfer chamber 101 has a process chamber 102a, 1b. This is a process device having a structure in which 02 b and 102 c are connected via gate valves 104 a, 104 b and 104 c, respectively.
このプロセス装置においては、 図 1 0に示すように、 搬送室 1 0 1内にはゥェ ハなどの被処理体 1 0 7の受け渡しを行うためのアーム 1 0 5が設けられてい る。 このアーム 1 0 5は回転可能であり、 また伸縮可能な構造を有している。 被処理体 1 0 7の受け渡しに際してゲートバルブ 1 0 4 a、 1 0 4 bを開閉す ることにより行う。  In this process apparatus, as shown in FIG. 10, an arm 105 for transferring an object to be processed 107 such as a wafer is provided in the transfer chamber 101. The arm 105 is rotatable and has an extendable structure. The transfer is performed by opening and closing the gate valves 104a and 104b when the object 107 is delivered.
また従来、 他のプロセス装置としては以下のような技術が知られている。  Conventionally, the following technology is known as another process device.
( 2 ) 図 1 1に示すように、 バッフル板と呼ばれる複数の穴の空いた板 2 0 6 でプロセス室 2 0 1を上下に仕切り、 バッフノレ板 2 0 6で仕切られて形成された プロセス室 2 0 1の下側の空間 2 0 2の側面に真空ポンプ 2 0 7を設けておく構 造を有するプロセス装置である。  (2) As shown in Fig. 11, the process chamber 201 is vertically divided by a plate 206 with a plurality of holes called a baffle plate, and the process chamber is formed by being partitioned by a baffle plate 206. This is a process device having a structure in which a vacuum pump 207 is provided on a side surface of a lower space 202 of 201.
ここでバッフル板 2 0 6は、 プロセス室 2 0 1に連通せしめて設けられている ガス導入管 2 0 8から導入され、 プロセスガスを被処理体 2 0 9周辺から均一に 排気することを目的として設けられたものである。  Here, the baffle plate 206 is introduced from a gas introduction pipe 208 provided in communication with the process chamber 201, and aims to uniformly exhaust the process gas from around the workpiece 209. It is provided as.
すなわち、 もしバッフル板 2 0 6を設けておかないと、 プロセスガスは排気ポ ンプ 207力設けられた側に偏って流れてしまい、 被処理体 209に対して均一 な処理ができなくなってしまうからである。 特に被処理体の径が 20 Omm以上 になるとかかるガスの流れの偏りによる処理の不均一性が顕著に現れる。 That is, if the baffle plate 206 is not provided, the process gas This is because the flow is biased toward the side where the pump 207 is provided, and uniform processing cannot be performed on the object to be processed 209. In particular, when the diameter of the object to be processed is 20 Omm or more, the unevenness of the process due to the uneven flow of the gas appears remarkably.
なお、 図 1 1において 203は、 プロセス室 20 1の側面に、 ゲ一トバルブ 204を介して接続されている搬送室である。  In FIG. 11, reference numeral 203 denotes a transfer chamber connected to a side surface of the process chamber 201 via a gate valve 204.
(3) 図 1 2に示すように、 プロセス室 30 1を形成する容器の底面に、 複数 の排気孔 306を外部と通じて形成し、 この排気孔 306にフレキシブルな排気 管 302を接続し、 さらに排気管 302に真空ポンプ 307を接続したプロセス 装置である。  (3) As shown in FIG. 12, a plurality of exhaust holes 306 are formed in the bottom of the container forming the process chamber 301 so as to communicate with the outside, and a flexible exhaust pipe 302 is connected to the exhaust holes 306. Further, a vacuum pump 307 is connected to the exhaust pipe 302.
なお、 図 1 1において 203は、 プロセス室 20 1の側面に、 ゲートバルブ 204を介して接続されている搬送室である。 また、 305は被処理体を保持す るためのステージ、 308はプロセスガス導入管である。  In FIG. 11, reference numeral 203 denotes a transfer chamber connected to a side surface of the process chamber 201 via a gate valve 204. Reference numeral 305 denotes a stage for holding the object, and reference numeral 308 denotes a process gas introduction pipe.
しかし、 上記従来技術には、 次のような問題がある。  However, the above prior art has the following problems.
上記 ( 1 ) の技術では、 ゲートバルブ 104 bの接続されるプロセス室 1 0 1 の側面に被処理体が通る大きな孔を形成しなければならないため、 プロセス室 1 0 1の形状が軸対称からはずれる。  In the technique (1), since a large hole through which the object to be processed must be formed on the side surface of the process chamber 101 to which the gate valve 104b is connected, the shape of the process chamber 101 is changed from the axial symmetry. Deviate.
プロセス室 1 0 1の形状が軸対称からはずれるとプロセスガスの流れに乱れが 生じる。 また、 プラズマプロセスの場合はプラズマ形状に乱れが生じてしまう。 その結果、 被処理体に対する処理の不均一性をもたらす。 特に、 ゥエーハサイズ が直 S200 mmを超えるとこの問題が顕著になってくる。  If the shape of the process chamber 101 deviates from the axial symmetry, the flow of the process gas is disturbed. In the case of the plasma process, the shape of the plasma is disturbed. As a result, non-uniform processing of the object to be processed is brought about. In particular, this problem becomes remarkable when the wafer size exceeds S200 mm.
一方、 かかるプ口セスガスの流れゃプラズマ形状の乱れによる影響を抑えるた めにはプロセス室 1 0 1を大きくしてプロセス室 1 0 1を形成する壁を被処理体 から遠ざければよいが、 プロセス室 1 0 1を大きくすると、 プロセス室の占有面 積が大きくなつてしまう。  On the other hand, in order to suppress the influence of the flow of the process gas ゃ the turbulence of the plasma shape, it is sufficient to enlarge the process chamber 101 and keep the wall forming the process chamber 101 away from the object to be processed. Increasing the size of the process chamber 101 increases the area occupied by the process chamber.
また、 上記 ( 1 ) の技術では、 プロセス室 1 0 1とゲ一トバルブ 1 04 a, 1 04 b、 1 04 c、 〗 04 dとが絶縁性の〇リング (図示せず) を介して接触 しているため、 高周波励起プラズマにおいてはプロセス室 1 0 1を形成する壁を 流れる高周波電流がゲ一トバルブ 104 a, 1 04b、 1 04 c、 104 d部で 広く遮断される。 ゲートバルブ 1 04 a, 1 04 b、 1 04 c、 1 04 dから流 れる分の高周波電流は、 ゲートバルブ 1 0 4 a, 1 0 4 b、 1 0 4 c、 1 0 4 d のべローズなどで大きく損失するため、 全体として高周波電力の損失が大きくな つてしまう。 また、 高周波電流の流れが非対称になることにより、 壁のプラズマ ポテンシャルが非対称になり、 ブラズマ形状が不均一になりやすかつた。 In the technique (1), the process chamber 101 and the gate valves 104a, 104b, 104c, and 04d are in contact with each other via an insulating ring (not shown). Therefore, in the high-frequency excitation plasma, the high-frequency current flowing through the wall forming the process chamber 101 is widely cut off by the gate valves 104a, 104b, 104c, and 104d. Flow from gate valve 104a, 104b, 104c, 104d The high-frequency current that is lost is greatly lost by the bellows of the gate valves 104a, 104b, 104c, and 104d, so that the loss of high-frequency power increases as a whole. In addition, the asymmetrical flow of the high-frequency current resulted in an asymmetrical plasma potential on the wall, which tended to make the plasma shape non-uniform.
上記 (2 ) の技術では、 バッフル板 2 0 6の存在のために排気ラインのコンダ ク夕ンスが低下し、 大流量のガスを効率よく流すことができなかった。  In the technique (2), the conductance of the exhaust line was reduced due to the presence of the baffle plate 206, and a large flow rate of gas could not be flowed efficiently.
上記 (3 ) の技術では、 複数の排気管 3 0 2がプロセス室 3 0 1の下に伸びて おり、 プロセス室 3 0 1の下の空間が排気管 3 0 2により占められてしまう。 そ のため、 例えば、 被処理体 3 0 9を載置するためのステージ 3 0 5などのメンテ ナンスを行うための空間が狭くなつていた。  In the technique (3), the plurality of exhaust pipes 302 extend below the process chamber 301, and the space below the process chamber 301 is occupied by the exhaust pipe 302. Therefore, for example, a space for performing maintenance such as a stage 305 on which the object to be processed 309 is mounted has become narrow.
本発明は、 ガスの流れやプラズマ形状を均一にすることが可能であり、 かつ、 装置の占有面積が小さなプロセス装置を提供することを目的とする。  SUMMARY OF THE INVENTION An object of the present invention is to provide a process apparatus capable of making a gas flow and a plasma shape uniform and occupying a small area of the apparatus.
本発明は、 高周波プラズマプロセスで投入した高周波電力の損失を減らし、 効 率的にプラズマを発生、 維持させることが可能なプロセス装置を提供することを 目的とする。  An object of the present invention is to provide a process apparatus capable of efficiently generating and maintaining plasma by reducing loss of high frequency power supplied in a high frequency plasma process.
本発明は、 排気ラインのコンダクタンスを大きく絞らずにゥエーハ周辺から大 量のプロセスガスを均一に排気することが可能なプロセス装置を提供することを 目的とする。  An object of the present invention is to provide a process apparatus capable of uniformly exhausting a large amount of process gas from around an evaporator without significantly reducing the conductance of an exhaust line.
本発明は、 排気ラインをコンパクトにしてプロセス室の下方においけるメンテ ナンスのための空間を広く取ることが可能なプロセス装置を提供することを目的 とする。 発明の開示  SUMMARY OF THE INVENTION It is an object of the present invention to provide a process apparatus capable of making an exhaust line compact and providing a large space for maintenance below a process chamber. Disclosure of the invention
本発明のプロセス装置は、 被処理体を搬送するための搬送室と、  The process apparatus of the present invention includes: a transfer chamber for transferring an object to be processed;
該搬送室の上部にゲートを介して設けられたプロセス室と、  A process chamber provided above the transfer chamber via a gate,
外部からシールされ、 被処理体を載置する載置部を有するステージと、 搬送室と外部とをシールしつつ、 該ステージの載置部をゲートを介して搬送室 とプロセス室との間を出入するように移動させるための手段と、  A stage which is sealed from the outside and has a mounting portion for mounting the object to be processed, and a sealing portion between the transfer chamber and the process chamber through the gate while moving the mounting portion of the stage between the transfer chamber and the outside while sealing the transfer chamber and the outside. Means for moving in and out;
該載置部がプロセス室内にあるときに搬送室とプロセス室とをシールするため W To seal the transfer chamber and the process chamber when the receiver is in the process chamber W
4  Four
の手段と、 Means,
を有することを特徴とする。 It is characterized by having.
本発明では、 プロセス室の下方に搬送室が設けられている。 そのためプロセス 室と搬送室とのゲートは、 プロセス室の下方に存在し、 プロセス室の側面には存 在しない。  In the present invention, the transfer chamber is provided below the process chamber. Therefore, the gate between the process room and the transfer room exists below the process room, not on the side of the process room.
そのため、 プロセス室の形状を軸対称に形成することができ、 プロセス室を大 きくせずともガスの流れに乱れ力生じることを防止することができる。 また、 プ ラズマプロセスの場合はプラズマ形状の乱れを防止することができる。 その結 果、 被処理体が 2 0 O mm径を超える大口径であっても処理を均一に行うことが できる。  Therefore, the shape of the process chamber can be formed to be axially symmetric, and the generation of turbulence in the gas flow can be prevented without increasing the size of the process chamber. In addition, in the case of the plasma process, disturbance of the plasma shape can be prevented. As a result, even when the object to be processed has a large diameter exceeding 20 O mm, the processing can be performed uniformly.
ゲー卜バルブはプロセス室の側面には存在しないため、 従来技術で生じてい た、 高周波励起プラズマにおいてはプロセス室 1 0 1を形成する壁を流れる高周 波電流がゲートバルブ 1 0 4 a , 1 0 4 b部で広く遮断されるということはな く、 高周波電力の損失を小さくすることができる。  Since the gate valve does not exist on the side of the process chamber, the high-frequency current flowing through the wall forming the process chamber 101 in the high-frequency excited plasma generated by the conventional technology is generated by the gate valves 104 a and 1. There is no widespread interruption in section 04b, and high-frequency power loss can be reduced.
本発明では、 ゲートバルブはプロセス室の下方に存在するため、 それにより高 周波電力の損失の発生を完全には除去できなし、が、 高周波電流の流れは対称であ り、 従って、 プラズマポテンシャルも対称であり、 プロセス室においては均一な プラズマを得ることが可能となり、 2 0 0 mmを超える大口径の被処理体に対し ても均一な処理を行うことができる。  In the present invention, since the gate valve is located below the process chamber, it cannot completely eliminate the occurrence of high-frequency power loss, but the flow of high-frequency current is symmetric, and therefore the plasma potential is also reduced. Since it is symmetrical, uniform plasma can be obtained in the process chamber, and uniform processing can be performed even on a large-diameter workpiece exceeding 200 mm.
本発明において、 搬送室と外部とをシールしつつ、 該ステージの載置部をゲー トを介して搬送室とプロセス室との間を出入するように移動させるための手段と しては、 搬送室側壁とステージとの間に設けられたべローズを用いることが好ま しい。  In the present invention, as means for moving the mounting portion of the stage so as to move in and out of the space between the transfer chamber and the process chamber via the gate while sealing the transfer chamber and the outside, It is preferable to use a bellows provided between the room side wall and the stage.
また、 載置部がプロセス室内にある状態、 すなわち、 ステージを上昇させ、 プ ロセス室に被処理体を搬入し成膜などのプ口セス処理を行つているときにおける 搬送室とプロセス室とのシールは例えば次ぎのように行えばよ t、。  In addition, when the mounting section is in the process chamber, that is, when the stage is raised, the object to be processed is carried into the process chamber, and the process processing such as film formation is performed, the transfer chamber and the process chamber are not connected. The seal can be done, for example, as follows.
すなわち、 ステージ側面に、 ゲートの径より大きな径を有するフランジを設け ておき、 さらに、 このフランジの上面に溝を形成し、 その溝内に 0リングを載置 しておけばよい。 ステージを上昇させるとこの〇リングはプロセス室の下面と接 触し、 簡単な構造でプ口セス室と搬送室との間のシールが確保される。 That is, a flange having a diameter larger than the diameter of the gate may be provided on the side surface of the stage, a groove may be formed on the upper surface of the flange, and an O-ring may be placed in the groove. When the stage is raised, this ring contacts the lower surface of the process chamber. The seal between the process chamber and the transfer chamber is secured with a simple structure that can be touched.
本発明のプロセス装置は、 プロセス室と、  The process apparatus of the present invention comprises: a process chamber;
該プロセス室の底面に、 被処理体の中心に関して略軸対称をなして形成された 複数の排気孔と、  A plurality of exhaust holes formed in the bottom surface of the process chamber so as to be substantially axially symmetric with respect to the center of the object;
該それぞれの排気孔に連通する複数の排気通路と、  A plurality of exhaust passages communicating with the respective exhaust holes,
該複数の排気通路同士を連通する横穴と、  A lateral hole communicating the plurality of exhaust passages;
を該プロセス室の下方に有し、 Below the process chamber,
該横穴の少なくとも 1つに真空ポンプを接続したことを特徴とする。  A vacuum pump is connected to at least one of the side holes.
本発明では、 バッフル板を設ける代わりに、 被処理体の中心に関して略軸対称 をなして複数の排気孔及びこの排気孔に連通する排気通路をプロセス室下のプロ ックに形成する。 排気孔の数は奇数、 偶数を問わない。 また、 4個以上がより均 一性のある排気を行う上からは好ましい。 この孔の大きさとしては、 プロセス室 のコンダクタンスの約 5倍以上のコンダクタンスとなるようすることが好まし い。  In the present invention, instead of providing a baffle plate, a plurality of exhaust holes and an exhaust passage communicating with the exhaust holes are formed in a block below the process chamber so as to be substantially axially symmetric with respect to the center of the object to be processed. The number of exhaust holes may be odd or even. In addition, four or more are preferable from the viewpoint of more uniform exhaust. It is preferable that the size of the hole be such that the conductance is at least about five times the conductance of the process chamber.
このような排気孔及び排気通路を被処理体の周囲に軸対称をなすように形成す ることにより均一排気が可能となる。 また、 バッファ板を用いることもないため 排気ラィンのコンダクタンスの低下という問題もなく大流量のガスを効率よく流 すことができる。  By forming such an exhaust hole and an exhaust passage so as to be axially symmetric around the object to be processed, uniform exhaust can be achieved. Also, since no buffer plate is used, a large flow rate of gas can be flowed efficiently without the problem of a decrease in the conductance of the exhaust line.
また、 チューブ管も用いられていためメインテナンスを用意に行うことができ る。 図面の簡単な説明  In addition, since a tube tube is also used, maintenance can be easily performed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1に係るプロセス装置の平面図である。  FIG. 1 is a plan view of the process apparatus according to the first embodiment.
図 2は、 図 1の 2— 2断面図である。  FIG. 2 is a sectional view taken along line 2-2 of FIG.
図 3は、 実施例 1に係るプロセス装置の操作行程図である。  FIG. 3 is an operation process diagram of the process device according to the first embodiment.
図 4は、 実施例 1に係るプロセス装置の操作行程図である。  FIG. 4 is an operation process diagram of the process device according to the first embodiment.
図 5は、 実施例 1に係るプロセス装置の操作行程図である。  FIG. 5 is an operation process diagram of the process device according to the first embodiment.
図 6は、 実施例 1に係るプロセス装置の操作行程図である。  FIG. 6 is an operation process diagram of the process device according to the first embodiment.
図 7は、 実施例 1に係るプロセス装置の平面図である。 図 8は、 図 7の 8— 8断面図である。 FIG. 7 is a plan view of the process device according to the first embodiment. FIG. 8 is a sectional view taken along line 8-8 in FIG.
図 9は、 従来例に係るプロセス装置の平面図である。  FIG. 9 is a plan view of a process device according to a conventional example.
図 1 0は、 図 9の 1 0— 1 0断面図である。  FIG. 10 is a cross-sectional view taken along the line 10—10 of FIG.
図 1 1は、 他の従来例に係るプロセス装置の側断面図である。  FIG. 11 is a side sectional view of a process apparatus according to another conventional example.
図 1 2は、 他の従来例に係るプロセス装置の側断面図である。  FIG. 12 is a side sectional view of a process apparatus according to another conventional example.
図 1 3は、 実施例 3に係るプロセス装置の断面図である。  FIG. 13 is a cross-sectional view of a process device according to the third embodiment.
図 1 4は、 実施例 3に係るプロセス装置の操作手順をしめすプロセス図であ る。  FIG. 14 is a process diagram illustrating an operation procedure of the process device according to the third embodiment.
(符号の説明)  (Explanation of code)
1 ウェハ、 2 蓋、 2 a フランジ、 3 収納ボックス、  1 wafer, 2 lids, 2a flange, 3 storage box,
3 a フランジ、 4 載置部 (マグネット) 、 5 弾性支持体 (パネ) 、 3 a flange, 4 mounting part (magnet), 5 elastic support (panel),
6 ベロ一ズ、 7 排気ポート、 9 ウェハキャリア、 6 bellows, 7 exhaust port, 9 wafer carrier,
1 0 a プロセス室上壁、 1 0 b プロセス室下壁、  10 a Process chamber upper wall, 10 b Process chamber lower wall,
1 0 c プロセス室側壁、 1 1 導入本体、 1 1 a 外部フランジ、 l i b 内部フランジ、 1 2 空間、 1 0 1 搬送室、  1 0 c Process chamber side wall, 1 1 Introductory body, 1 1 a External flange, l i b Internal flange, 1 2 space, 1 0 1 transfer chamber,
1 02 a, 1 02 b, 1 02 c プロセス室、  102 a, 102 b, 102 c process chamber,
1 0 4 a, 1 04 b, 1 04 c ゲ一トバルブ、  1 04 a, 104 b, 104 c Gate valve,
1 05 アーム、 1 07 被処理体、 206 ノくッフル板、  1 05 Arm, 1 07 Workpiece, 206 Knuffle plate,
2 0 1 プロセス室、 203 搬送室、 207 真空ポンプ、  201 Process chamber, 203 transfer chamber, 207 vacuum pump,
208 ガス導入管、 209 被処理体、 204 ゲ一トバルブ、  208 gas inlet pipe, 209 workpiece, 204 gate valve,
30 1 プロセス室、 302 排気管、 305 ステージ、  30 1 process room, 302 exhaust pipe, 305 stage,
306 排気孔、 307 真空ポンプ、 308 プロセスガス導入管、 4 0 1 ローダ一ノアンローダー室、 402 搬送室、  306 exhaust hole, 307 vacuum pump, 308 process gas introduction pipe, 401 loader-unloader room, 402 transfer room,
403 プロセス室、 404 カセッ ト、 405 搬送ロボッ ト、  403 process chamber, 404 cassette, 405 transfer robot,
4 06 ステージ、 407 横穴、 408 排気孔、  4 06 stage, 407 side hole, 408 exhaust hole,
4 09 真空ポンプ口、  4 09 Vacuum pump port,
4 1 0 移動させるための手段'昇降機構 (ベローズ) 、  4 1 0 Means for moving 'elevating mechanism (bellows),
4 1 2 載置部、 4 1 3 フランジ、 4 1 4 0リング、  4 1 2 Mounting section, 4 1 3 flange, 4 1 4 0 ring,
4 1 5 被処理体 (ウェハ) 、 4 1 6 ゲート、 4 1 7 〇リング、 4 1 8 カセッ ト載置台、 4 1 9 ラジアルラインスロッ トアンテナ、 4 1 5 ウェハ、 4 2 1 排気通路。 発明を実施するための最良の形態 4 1 5 Workpiece (wafer), 4 16 gate, 4 17 〇 ring, 4 18 cassette mounting table, 4 19 radial line slot antenna, 4 15 wafer, 4 2 1 exhaust passage. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
図 1及び図 2に本実施例に係るプロセス装置を示す。  1 and 2 show a process apparatus according to the present embodiment.
本例のプロセス装置は、 被処理体 4 1 5を搬送するための搬送室 4 0 2と、 搬送室 4 0 2の上部にゲート 4 1 6 (図 4 ) を介して設けられたプロセス室 4 0 3と、  The process apparatus of this example includes a transfer chamber 402 for transferring the object 4 15, and a process chamber 4 provided above the transfer chamber 402 via a gate 4 16 (FIG. 4). 0 3 and
外部からシールされ、 被処理体 4 1 5を載置する載置部 4 1 2を有するステー ジ 4 0 6と、  A stage 4 06, which is sealed from the outside and has a mounting portion 4 12 for mounting the object 4 15,
搬送室 4 0 2と外部とをシールしつつ、 ステージ 4 0 6の載置部 4 1 2をゲ一 ト 4 1 6を介して搬送室 4 0 2とプロセス室 4 0 3との間を出入するように移動 させるための手段 4 1 0と、  While the transfer chamber 402 is sealed off from the outside, the mounting section 412 of the stage 406 enters and exits between the transfer chamber 402 and the process chamber 403 via the gate 416. Means 4 1 0 to move
載置部 4 1 2がプロセス室 4 0 3内にあるときに搬送室 4 0 2とプロセス室 4 0 3とをシールするための手段 (4 1 3, 4 1 4 ) と、  Means (413, 414) for sealing the transfer chamber 402 and the process chamber 403 when the receiver 4122 is in the process chamber 403;
を有する。 Having.
以下、 本発明の実施例をより詳細に説明する。  Hereinafter, examples of the present invention will be described in more detail.
図 2に示す 2 0 0 mmゥヱーハプラズマプロセスクラスタ一ツールは 1台の搬 送室 4 0 2とその上に設置された 1台のローダー/アンローダー室 4 0 1と 3台 のラジアルラインスロッ トアンテナを用いたマイクロ波励起プラズマプロセス室 4 0 3からなる。  The 200 mm wafer plasma process cluster tool shown in Fig. 2 has one transport chamber 402 and one loader / unloader chamber 401 mounted above it and three radial chambers. It consists of a microwave-excited plasma process chamber 403 using a line slot antenna.
搬送室 4 0 2はアルミニウム製で、 中央にウェハ搬送ロボット (メックス社製 υ Τ λ'— 2 5 0 0 H) 4 0 5力設置されている。 搬送室 4 0 2はターボ分子ボン プ (セイコー精機社製 S T P— 3 0 0 ) (図示せず) で真空引きしている。 ローダー Zアンローダー室 4 0 1はアルミニウム製で、 6枚までゥヱ一ハがセ ッ トできるカセッ 卜が中に入る。 ローダ一 Zアンローダー室 4 0 1内は、 ターボ 分子ポンプ (セイコー精機社製 S T P— 3 0 0 ) (図示せず) で真空引きする。 またカセッ ト取り出しのためのリークポ一卜が設置されている。 また、 カセッ ト載置台 4 1 8には昇降機構 4 1 0がついており、 スロッ ト番号 を指定するとそのスロッ ト力搬送ロボット 4 0 5のアームの高さになるよう自動 調節する。 なお、 昇降機構 4 1 0はカセッ ト愛知大 4 1 8の底面に一端が取り付 けられ、 搬送室 4 0 2の底面に他の一端が取り付けられているべローズ 4 1 0に より構成されている。 The transfer chamber 402 is made of aluminum, and has a wafer transfer robot (Mex ッ ク ス 'λ'-250H) 400 in the center. The transfer chamber 402 is evacuated with a turbo molecular pump (Seiko Seiki STP-300) (not shown). Loader Z unloader room 401 is made of aluminum, and contains a cassette in which up to six sheets can be set. The inside of the loader-Z unloader room 401 is evacuated by a turbo molecular pump (STP-300, manufactured by Seiko Seiki Co., Ltd.) (not shown). There is also a leak port for taking out the cassette. The cassette mounting table 418 has an elevating mechanism 410. When a slot number is specified, the cassette mounting table 418 automatically adjusts to the height of the arm of the slot force transfer robot 405. The lifting mechanism 410 is composed of a bellows 410 with one end attached to the bottom of the cassette Aichi University 418 and the other end attached to the bottom of the transfer chamber 402. ing.
ローダー/アンローダー室 4 0 1と搬送室 4 0 2との間の真空シールは、 カセ ッ ト載置台 4 1 8の上面に取り付けられた 0リング 4 1 7によってなされる。 プロセス室 4 0 3はアルミニウム製で、 上部には 2 . 4 5 G H zのマイクロ波 をチャンバ一内に均一に導入するラジアルラインスロッ トアンテナ 4 1 9が設置 されている。  A vacuum seal between the loader / unloader chamber 401 and the transfer chamber 402 is made by an O-ring 417 mounted on the upper surface of the cassette mounting table 418. The process chamber 403 is made of aluminum, and is provided with a radial line slot antenna 419 for uniformly introducing a microwave of 2.45 GHz into the chamber.
ウェハステージ 4 0 6は表面がアルミナでコ一ティングされており、 ヒー ター、 温度センサー、 リフ トピン、 静電チャック、 高周波バイアス印加機構など の周辺機構が取り付けてある。 これらの周辺機構は必要に応じてメインテナンス が行われる。  The surface of the wafer stage 406 is coated with alumina, and peripheral mechanisms such as a heater, a temperature sensor, a lift pin, an electrostatic chuck, and a high-frequency bias applying mechanism are attached. These peripheral mechanisms will be maintained as needed.
ウェハステージ 4 0 6の被処理体載置部 4 1 2の側面にはゲ一ト 4 1 6の径ょ り大きな径を有するフランジ 4 1 3が設けてあり、 このフランジ 4 1 3の上面に は 0リング 4 1 4が設けてある。  A flange 4 13 having a diameter larger than the diameter of the gate 4 16 is provided on a side surface of the object mounting portion 4 12 of the wafer stage 4 06. Has a 0 ring 4 1 4.
本例では、 フランジ 4 1 3の底面にベローズ 4 1 0の一端を溶接固着してあ る。 また、 ベロ一ズ 4 1 0の他端は搬送室 4 0 2の底面に溶接固着してある。 従 つて、 搬送室 4 0 2はこのベローズにより大気からシールされる。 また、 このべ ローズ 4 1 0の仲縮によりウェハステージ 4 0 6の上下移動が行われる。  In this example, one end of the bellows 410 is fixedly welded to the bottom of the flange 413. The other end of the bellows 410 is fixed to the bottom of the transfer chamber 402 by welding. Therefore, the transfer chamber 402 is sealed from the atmosphere by the bellows. Further, the wafer stage 406 is moved up and down by the reduction of the bellows 410.
ベローズ 4 1 0を伸ばすとウェハステージ 4 0 6は上方に移動しフランジ 4 1 3の上面 (及び 0リング 4 1 4 ) がプロセス室 4 0 3の外部底面に当接す る。 これにより搬送室 4 0 2とプロセス室 4 0 3との間のシールが行われる。 ま た、 ベローズ 4 1 0を縮ませるとウェハステージ 4 0 6は下降する。 ウェハス テ一ジ 4 0 6は、 その上面が搬送アームの高さになるように下降する。  When the bellows 410 is extended, the wafer stage 406 moves upward, and the upper surface of the flange 413 (and the O-ring 414) comes into contact with the outer bottom surface of the process chamber 403. Thereby, the seal between the transfer chamber 402 and the process chamber 403 is performed. When the bellows 410 is contracted, the wafer stage 406 is lowered. The wafer stage 406 descends so that its upper surface is at the height of the transfer arm.
プロセス室 4 0 3は一般にプロックの内部を彫り込み加工することにより形成 するが本例でも彫り込み加工により形成している。 本例ではさらに、 プロセス室 4 0 3を彫り込み加工した後、 プロセス室 4 0 3の底面に複数個の排気孔 4 0 8 とこの排気孔 4 0 8にそれぞれ連通する排気通路 4 2 1を形成した。 本例では排 気孔 4 0 8は、 ウェハステージ 4 0 6の周りに 4個形成した。 プロセスガスの均 一な排気を行う上から、 4個の排気孔 4 0 8は、 被処理体 4 1 5の中心を軸とす る轴対称の位置に形成してある。 The process chamber 403 is generally formed by engraving the inside of the block, but also in this example, it is formed by engraving. In this example, after further engraving the process chamber 403, a plurality of exhaust holes 408 are formed in the bottom of the process chamber 403. And exhaust passages 421 communicating with the exhaust holes 408, respectively. In this example, four exhaust holes 408 were formed around the wafer stage 406. In order to uniformly exhaust the process gas, the four exhaust holes 408 are formed at symmetric positions about the center of the object to be processed 4 15.
また、 各排気通路 4 2 1同士を連通せしめるために横穴 4 0 7を形成してあ る。 横穴 4 0 7は、 搬送室 4 0 2の角部底面に形成された外部に開口する真空ポ ンプロ 4 0 9に連通せしめてある。 真空ポンプ口 4 0 9にはターボ分子ポンプ (セイコー精機社製 S T P— 6 0 0 H ) (図示せず) が接続されている。  Further, a lateral hole 407 is formed to allow the exhaust passages 421 to communicate with each other. The lateral hole 407 communicates with a vacuum pump 409 formed on the bottom of the corner of the transfer chamber 402 and opening to the outside. The vacuum pump port 409 is connected to a turbo molecular pump (STP-600H, manufactured by Seiko Seiki Co., Ltd.) (not shown).
以下にクラスターツールの操作手順につ t、て説明する。  The operation procedure of the cluster tool is described below.
口一ダ一ノアンロ一ダ一室 4 0 1を大気圧にリークし、 直径 2 0 0 mmのシリ コンゥヱーハをセッ トしたカセッ 卜 4 0 4をローダー Zアンローダー室 4 0 1内 に置き、 真空引きする。  The chamber 401 leaks to the atmospheric pressure, and the cassette 400 containing a silicon wafer with a diameter of 200 mm is placed in the loader Z unloader chamber 401 and the vacuum is applied. To pull.
次に、 図 3に示すように、 ベローズ 4 1 0を縮ませることによりカセッ ト 4 0 4を下降させる。  Next, as shown in FIG. 3, the cassette 4104 is lowered by contracting the bellows 410.
次に図 4に示すように、 ベローズ 4 1 0を縮ませることによりプロセス室 4 0 3のゥヱ一ハステージ 4 0 6を下降させ、 搬送ロボッ ト 4 0 5を用いてゥ ェ一ハ 4 1 5をカセッ ト 4 0 4からゥェ一ハステージ 4 0 6のリフトピンの上に 移し替える。  Next, as shown in FIG. 4, the bellows 410 is contracted to lower the process stage 400 of the process chamber 403, and the process robot 405 is moved to the process stage 406 by using the transfer robot 405. Transfer 15 from cassette 4 04 onto the lift pin of wafer stage 4 06.
次に、 図 5に示すように、 カセッ ト 4 0 4は上昇させ、 ゥエーハステージ 4 0 6のリフ トピンを格納して、 ゥヱ一ハ 4 1 5をゥェ一ハステージ 4 0 6の上 面に載せる。  Next, as shown in FIG. 5, the cassette 404 is raised, the lift pins of the wafer stage 406 are stored, and the wafer 415 is moved to the wafer stage 406. Place on top.
次に図 6に示すようにゥエーハステージ 4 0 6を上昇させ、 ゥェ一ハ 4 1 5力 プロセス室 4 0 3の中に置かれる。 プロセス室 4 0 3と搬送室 4 0 2の間はゥ エーハステージ 4 0 6の側面に形成されたフランジ 4 1 3に置かれた 0リング 4 1 4でシールされる。  Next, as shown in FIG. 6, e-stage 406 is lifted, and placed in process chamber 403. The space between the process chamber 403 and the transfer chamber 402 is sealed by a 0-ring 414 placed on a flange 413 formed on the side surface of the wafer stage 406.
引き続きプロセス室 4 0 3内でゥヱ一ハ 4 1 5が処理され、 上で述べたのと逆 の工程でゥェ一ハ 4 1 5がカセット 4 0 4に戻される。  Subsequently, the wafer 415 is processed in the process chamber 403, and the wafer 415 is returned to the cassette 404 in a reverse process to the above.
ローダ一 Zアンローダ一とプロセス室が搬送室の横に設置され、 ローター/ Ύ ンローダーと搬送室との間、 および搬送室とプロセス室との間の真空シールに ゲ一トバルブを用いている図 9に示す従来のクラスターツールと比べて、 本発明 の構造を有するクラスタ一ツールは、 装置占有面積が約 3分の 1と小さくするこ とができた。 Loader 1 Z unloader 1 and the process chamber are installed beside the transfer chamber, providing a vacuum seal between the rotor / unloader and the transfer chamber, and between the transfer chamber and the process chamber. Compared to the conventional cluster tool shown in FIG. 9 using a gate valve, the cluster occupation tool having the structure of the present invention was able to reduce the device occupation area to about one third.
図 1に示すプロセス装置を用いて、 ゥヱーハステージに高周波を印加して、 プ ラズマを発生させた。 プロセス室 403の上部はラジアルラインスロットアンテ ナの代わりに石英板を置き、 上部からブラズマの発光強度を測定できるようにし た。  Using the process apparatus shown in Fig. 1, high frequency was applied to the wafer stage to generate plasma. A quartz plate was placed on the upper part of the process chamber 403 instead of the radial line slot antenna so that the emission intensity of the plasma could be measured from the upper part.
ゥヱーハステージ 406に印加した高周波は、 周波数が 1 3. 56MHz、 電 力が 2000Wとした。 プロセス室 403にはアルゴンガスをガス供給管 4 1 1 を介して 1 00 s c cm供給し、 プロセス室 403内の圧力は 2 OmT o r rと した。  The high frequency applied to the wafer stage 406 was 13.56 MHz in frequency and 2000 W in power. Argon gas was supplied to the process chamber 403 via the gas supply pipe 4 1 1 100 sccm, and the pressure in the process chamber 403 was set to 2 OmTorr.
同様のプ口セス条件で図 9に示す従来のクラスタ一ツールのプロセス室でも同 様の条件でプラズマを発生させた。  Under the same process conditions, plasma was generated under the same conditions in the process chamber of the conventional cluster tool shown in Fig. 9.
同じ高周波電力を投入したにもかかわらず、 本発明の装置で発生させたプラズ マの発光強度は、 従来の装置と比べて約 1 0 %強くなつており、 高周波電力が効 率よくプラズマに与えられていることが確認された。  Despite the same high-frequency power being applied, the emission intensity of the plasma generated by the device of the present invention is about 10% stronger than that of the conventional device, and the high-frequency power efficiently supplies the plasma. Was confirmed.
また、 プラズマ密度の分布は、 従来の装置ではチャンバ一内壁のゲートバルブ に通じる穴側に偏っていたが、 本例のプロセス装置では、 軸対称なプラズマが生 成できていることが目視で確認された。  In addition, the plasma density distribution was biased to the side of the hole connected to the gate valve on the inner wall of the chamber in the conventional equipment, but it was visually confirmed that the process equipment of this example was able to generate axially symmetric plasma. Was done.
本例のプロセス装置と、 図 1 1に示すバッフル板 206を有する従来プロセス 装置について、 同じターボ分子ポンプ (セイコー精機社製 STP— 600H、 排 気速度 6 0 0 L/ s e c ) を用いてアルゴンガスを排気した。 流量 5000 s c cmの場台のチャンバ一圧力は、 従来の装置で 0. 5 T o r rであ るのに対し、 本発明の装置では 0. 2To r rとより高真空度まで引くことが出 来た。  Using the same turbo-molecular pump (STP-600H manufactured by Seiko Seiki Co., Ltd., exhaust speed 600 L / sec), argon gas was used for the process device of this example and the conventional process device having the baffle plate 206 shown in Fig. 11. Was evacuated. The pressure in the chamber at a flow rate of 5000 sccm at the chamber was 0.5 Torr in the conventional apparatus, whereas it was 0.2 Torr in the apparatus of the present invention, which could be drawn to a higher vacuum. .
したがって、 排気ラインのコンダクタンスが本発明の装置では小さく、 同じプ ロセス圧力の場台には本例のプロセス装置の方が大量のガスを流せることが確認 された。  Therefore, it was confirmed that the conductance of the exhaust line was small in the apparatus of the present invention, and that the process apparatus of the present example was able to flow a larger amount of gas on the same stage at the same process pressure.
また、 本例のプロセス装置は、 プロセス室 403の排気を図 1 2に示すように 各排気孔 3 0 6に排気管 3 0 2を接続して真空ポンプ 3 0 7につないだ場合と比 ベて、 プロセス室 4 0 3下のスペースが広く空いて、 メンテナンスしやすくなつ i Further, in the process apparatus of this example, as shown in FIG. Compared to connecting the exhaust pipe 302 to each exhaust hole 306 and connecting to the vacuum pump 307, the space under the process chamber 403 is wider and easier to maintain.
(実施例 2 )  (Example 2)
図 7及び図 8に基づ L、て実施例 2に係るプロセス装置を説明する。  The process apparatus according to the second embodiment will be described with reference to FIGS. 7 and 8.
本例のプロセス装置は、 プロセス室 2 0 1と、  The process apparatus of this example includes a process chamber 201,
プロセス室 2 0 1の底面に、 被処理体 2 0 9の中心に関して略軸対称をなして 形成された複数の排気孔 4 0 8と、  A plurality of exhaust holes 408 formed on the bottom surface of the process chamber 201 so as to be substantially axially symmetric with respect to the center of the processing object 209;
それぞれの排気孔 4 0 8に連通する複数の排気通路 4 2 1と、  A plurality of exhaust passages 4 2 1 communicating with the respective exhaust holes 4 08;
複数の排気通路 4 2 1同士を連通する横穴 4 0 7と、  A plurality of exhaust passages 4 2 1 and lateral holes 4 0 7 communicating with each other;
をプロセス室 2 0 1の下方に有し、 Below the process chamber 201,
横穴 4 0 7の少なくとも 1つに真空ポンプ 2 0 7を接続してある。  A vacuum pump 207 is connected to at least one of the side holes 407.
本例のプロセス装置について実施例 1と同様に、 従来のプロセス装置と比較し た。  As in the first embodiment, the process device of this example was compared with a conventional process device.
本例のプロセス装置と、 図 1 1に示すバッフル板 2 0 6を有する従来プロセス 装置について、 同じターボ分子ポンプ (セイコー精機社製 S T P— 6 0 0 H、 排 気速度 6 0 0 L / s e c ) を用いてアルゴンガスを排気した。 流量 5 0 0 0 s c c mの場合のチャンバ一圧力は、 従来の装置で 0 . 5 T o r rであ るのに対し、 本発明の装置では 0 . 3 T o r rとより高真空度まで引くことが出 来た。  The same turbo molecular pump (Seiko Seiki STP—600 H, exhaust speed 600 L / sec) was used for the process device of this example and the conventional process device having the baffle plate 206 shown in FIG. The argon gas was exhausted using. When the flow rate is 500 sccm, the pressure in the chamber is 0.5 Torr in the conventional apparatus, whereas it is 0.3 Torr in the apparatus of the present invention. Came.
したがって、 排気ラインのコンダクタンスが本発明の装置では小さく、 同じプ 口セス圧力の場合には本例のプ口セス装置の方が大量のガスを流せること力確認 された。  Therefore, it was confirmed that the conductance of the exhaust line was small in the apparatus of the present invention, and that at the same outlet pressure, the outlet apparatus of this example could flow a larger amount of gas at the same outlet pressure.
また、 本例のプロセス装置は、 プロセス室 4 0 3の排気を図 1 2に示すように 各排気孔 3 0 6に排気管 3 0 2を接続して真空ポンプ 3 0 7につないだ場合と比 ベて、 プロセス室 4 0 3下のスペースが広く空いて、 メンテナンスしやすくなつ た。  Further, the process apparatus of this example has a case where the exhaust of the process chamber 403 is connected to the vacuum pump 307 by connecting the exhaust pipe 302 to the exhaust holes 306 as shown in FIG. In comparison, the space beneath the process chamber 403 is wider and easier to maintain.
(実施例 3 )  (Example 3)
本例のプロセス装置を図 1 3に示す。 本例では、 プロセス室の上壁 1 0 aに開口を有し、 プロセス室の内部から隔離 された状態でプロセス室を上下に移動し、 上方の位置において開口を封止する構 造を有する導入本体 1 1力設けられ、 導入本体 1 1の上部に弾性支持体 5を介し て載置部 4が設けられ、 載置部 4は、 被処理物キャリア 9を吸着 ·脱着可能に構 成されている。 Fig. 13 shows the process equipment of this example. In this example, there is an introduction structure that has an opening in the upper wall 10a of the process chamber, moves the process chamber up and down while being isolated from the inside of the process chamber, and seals the opening at the upper position. The main body 11 is provided with a force, and a mounting portion 4 is provided on an upper portion of the introduction main body 11 via an elastic support 5. The mounting portion 4 is configured to be capable of adsorbing and detaching the carrier 9 to be processed. I have.
以下より詳細に説明する。  This will be described in more detail below.
被処理物であるウェハ 1を搬送するウェハキャリア 9は、 ウェハ 1を収納する 収納ボックス 3と、 収納ボックス 3内をシールする蓋 2と力、らなっている。 本例では、 収納ボックス 3の底面にはフランジ 3 aが形成され、 フランジ 3 a を含めた収納ボックス 3の底面の幅はプロセス室に設けられた開口の径とほぼ同 じ径となっている。 蓋 2にもフランジ 3 aが形成されており、 フランジ 2 aを含 めた蓋 2の径は収納ボックス 3の底面の径より少し大きく形成されており、 フラ ンジ 2 aの底面がフランジ 3 aの上面に当接してウェハキヤリア内が封止され る。 なお、 ウェハキャリア内は排気口 (図示せず) により排気され減圧状態に保 持される。  The wafer carrier 9 for transporting the wafer 1 to be processed is composed of a storage box 3 for storing the wafer 1, a lid 2 for sealing the inside of the storage box 3, and a force. In this example, the bottom of the storage box 3 is formed with a flange 3a, and the width of the bottom of the storage box 3 including the flange 3a is substantially the same as the diameter of the opening provided in the process chamber. . The lid 2 is also formed with a flange 3a.The diameter of the lid 2 including the flange 2a is formed slightly larger than the diameter of the bottom of the storage box 3, and the bottom of the flange 2a is formed of the flange 3a. The inside of the wafer carrier is sealed by contacting the upper surface of the wafer carrier. The inside of the wafer carrier is evacuated through an exhaust port (not shown) and is maintained in a reduced pressure state.
導入本体 1 1は上部に外部フランジ 1 1 aを有している。 外部フランジ 1 1 a はプロセス室上壁に形成された開口より大きな径を有している。 また、 外部フラ ンジ 1 1 aの底面とプロセス室下壁 1 0 bとの間にべローズ 6が固着されてい る。 従って、 ベローズの伸縮に伴い導入本体 6は上下動する。 また、 導入本体 1 1自体はプロセス室の外部にありプロセス室からは隔離されている。 導入本体 1 1が上方に位置したときには、 外部フランジ 1 1 aはプロセス室上壁 1 0 aに 当接し、 開口は封止される。  The introduction body 11 has an outer flange 11a at the top. The outer flange 11a has a larger diameter than the opening formed in the upper wall of the process chamber. A bellows 6 is fixed between the bottom surface of the outer flange 11a and the lower wall 10b of the process chamber. Therefore, the introduction body 6 moves up and down as the bellows expands and contracts. The introduction body 11 itself is outside the process room and is isolated from the process room. When the introduction main body 11 is positioned above, the outer flange 11 a abuts the upper wall 10 a of the process chamber, and the opening is sealed.
導入本体 1 1の上方には、 弾性支持体 (パネ) を介して載置部 4が設けられて いる。 この載置部 4にウェハキャリア 9の収納ボックス 3が載置される。 図 1 3 に示す例では、 導入本体 1 1に内部フランジ 1 l bを設け、 内部フランジ 1 l b の上面にバネ 5を設けてある。 内部フランジ 1 1には連通口 1 3が形成されてお り、 この連通口 1 3を介して載置部 4の下の空間と、 導入本体 1 1内の空間 1 2 とが連通している。 導入本体 1 2には排気ポート 7が形成され、 導入本体 1 1の 内部の空間 1 2は排気ポート 7を介して排気可能となっている。 なお、 本例では、 載置部 4は電磁マグネットにより構成されており、 電磁マグ ネッ トの o n、 o f f により収納ボックス 3の底面を吸着 · fl兑着することができ る。 A mounting section 4 is provided above the introduction main body 11 via an elastic support (panel). The storage box 3 of the wafer carrier 9 is mounted on the mounting section 4. In the example shown in Fig. 13, an internal flange 1 lb is provided on the introduction main body 11 and a spring 5 is provided on the upper surface of the internal flange 1 lb. A communication port 13 is formed in the inner flange 11, and the space below the receiver 4 and the space 12 in the introduction body 11 communicate with each other through the communication port 13. . An exhaust port 7 is formed in the introduction main body 12, and a space 12 inside the introduction main body 11 can be evacuated through the exhaust port 7. In this example, the mounting portion 4 is formed of an electromagnetic magnet, and the bottom surface of the storage box 3 can be attracted and adhered by turning on and off the electromagnetic magnet.
次に、 図 1 4を用いてウェハの導入手順を説明する。  Next, the procedure for introducing a wafer will be described with reference to FIG.
図 1 4①は、 ウェハキャリア 9を載置前の状態を示している。 導入本体 1 1は 上方に位置しており、 外部フランジ 1 1 aはプロセス室上壁に当接し開口は封止 されている。  FIG. 14① shows a state before the wafer carrier 9 is placed. The introduction main body 11 is located above, the outer flange 11 a abuts on the upper wall of the process chamber, and the opening is sealed.
図 1 4②は、 ウェハキャリア 9を載置部 4に載置するとともに電磁スィッチを o nとしてウェハキヤリア 9の収納ボックスを載置部上面に吸着させた状態を示 している。 ウェハキャリア 9の内部は減圧状態であるため収納ボックスの底面を 載置部 4に吸着させただけでは、 収納ボックスは蓋からは脱離しない。  FIG. 14② shows a state in which the wafer carrier 9 is mounted on the mounting portion 4 and the storage box of the wafer carrier 9 is attracted to the upper surface of the mounting portion with the electromagnetic switch turned on. Since the inside of the wafer carrier 9 is in a decompressed state, the storage box will not be detached from the lid only by adsorbing the bottom surface of the storage box to the mounting portion 4.
図 1 4③では、 導入本体 1 1の内部を排気ポート 7を介して排気した状態を示 している。 導入本体 1 1の内部の空間 1 2を減圧状態にすると収納ボックス 3と 蓋 2とは脱離し、 蓋 2はフランジ 2 aにおいてプロセス室上壁 1 0 aに保持され る力、 収納ボックス 3は自重のため下降  Fig. 14 (3) shows a state in which the inside of the introduction body 11 is exhausted through the exhaust port 7. When the space 1 2 inside the introduction main body 1 1 is decompressed, the storage box 3 and the lid 2 are separated from each other, and the lid 2 is a force that is held by the upper wall 10 a of the process chamber at the flange 2 a. Descends due to its own weight
する。 I do.
図 1 4④はべローズが縮の状態であり、 収納ボックス 2は下降してアーム 3 0 の高さとなった状態を示している。 この状態でウェハをアームに引き渡す。 蓋 2 のフランジ 2 aはプロセス室上壁 1 0 aに当接しており、 そのため、 プロセス室 は外部から封止される。  FIG. 14④ shows a state in which the bellows is in a contracted state, and the storage box 2 is lowered to reach the height of the arm 30. In this state, the wafer is delivered to the arm. The flange 2a of the lid 2 is in contact with the upper wall 10a of the process chamber, so that the process chamber is sealed from the outside.
図 1 4⑤は、 ウェハの処理が終了し、 収納ボックスを戻す状態を示している。 ウェハ処理が終了した場合導入本体 1 1の内部の空間 1 2を大気圧に戻し、 ベ ローズ 6を伸びの状態にする。 収納ボックスの 3のフランジの上面は、 蓋 2のフ ランジの下面に当接し、 また、 外部フランジ 1 1 aの上面は、 プロセス室上壁の 下面に当接し、 これによりプロセス室は外部から封止される。  Figure 14⑤ shows a state where the wafer processing is completed and the storage box is returned. When the wafer processing is completed, the space 12 inside the introduction body 11 is returned to the atmospheric pressure, and the bellows 6 is extended. The upper surface of the flange of the storage box (3) contacts the lower surface of the flange of the lid (2), and the upper surface of the outer flange (11a) contacts the lower surface of the upper wall of the process chamber, thereby sealing the process chamber from the outside. Is stopped.
次に電磁スィツチを ο f f にして、 ウェハキャリア 9を載置部 4から脱離し、 別の場所に 「搬送する。  Next, the electromagnetic switch is set to ο ff, the wafer carrier 9 is detached from the receiver 4, and is “transported” to another location.
以上のような手順でウェハのプロセス室内に導入すれば、 ウェハは大気にさら されることなく、 コン夕ミネーシヨンの無いウェハに成膜などを行うことができ ることとなる。 産業上の利用可能性 By introducing the wafer into the process chamber using the above procedure, the wafer can be formed on a wafer without confinement without being exposed to the atmosphere. The Rukoto. Industrial applicability
本発明によれば次の諸々の効果を達成することができる。  According to the present invention, the following various effects can be achieved.
①ガスの流れやプラズマ形状を均一にすることが可能であり、 かつ、 装置の占 有面積が小さなプロセス装置を提供することができる。  (1) It is possible to provide a process device that can make the gas flow and the plasma shape uniform and that occupies a small area.
②、 高周波プラズマプロセスで投入した高周波電力の損失を減らし、 効率的に プラズマを発生、 維持させることが可能なプロセス装置を提供することができ る。  (2) It is possible to provide a process device capable of efficiently generating and maintaining plasma by reducing loss of high-frequency power supplied in the high-frequency plasma process.
③排気ラインのコンダクタンスを大きく絞らずにゥェ一ハ周辺から大量のプロ セスガスを均一に排気することが可能なプロセス装置を提供することができる。 (3) It is possible to provide a process device capable of uniformly exhausting a large amount of process gas from around the wafer without significantly reducing the conductance of the exhaust line.
④排気ラインをコンパクトにしてプロセス室の下方においけるメンテナンスの ための空間を広く取ることが可能なプロセス装置を提供することができる。 また、 占有面積が少なく、 そのためクリーンルーム内に複数の装置を設置する ことが可能である。 生産ラインにおいては、 大量のウェハを処理可能な大型半導 体生産ラインを構築する代わりに、 月産 3 0 0 0〜 5 0 0 0枚の比較的小さなラ ィンをパラレルに数ラインもつ並列分散型半導体生産ラインとすることが好まし い。 こうすることにより改良されたプロセスで生産ラインをアップバージョンす ることが非常にやりやすくなる。 (4) It is possible to provide a process apparatus capable of making the exhaust line compact and providing a wide maintenance space below the process chamber. Also, the occupied area is small, so it is possible to install multiple devices in a clean room. In the production line, instead of constructing a large semiconductor production line capable of processing a large number of wafers, a parallel production system with several 300 to 5,000 relatively small lines per month in parallel A distributed semiconductor production line is preferred. This makes it very easy to upgrade the production line with an improved process.

Claims

請求の範囲 The scope of the claims
1 . 被処理体を搬送するための搬送室と、 1. A transfer chamber for transferring the object to be processed,
該搬送室の上部にゲートを介して設けられたプロセス室と、  A process chamber provided above the transfer chamber via a gate,
外部からシールされ、 被処理体を載置する載置部を有するステージと、 搬送室と外部とをシールしつつ、 該ステージの載置部をゲートを介して搬送室 とプロセス室との間を出入するように移動させるための手段と、  A stage which is sealed from the outside and has a mounting portion for mounting the object to be processed, and a sealing portion between the transfer chamber and the process chamber through the gate while moving the mounting portion of the stage between the transfer chamber and the outside while sealing the transfer chamber and the outside. Means for moving in and out;
該載置部がプロセス室内にあるときに搬送室とプロセス室とをシールするため の手段と、  Means for sealing the transfer chamber and the process chamber when the receiver is in the process chamber;
を有することを特徴とするプロセス装置。 A process apparatus comprising:
2 . 搬送室と外部とをシールしつつ、 該ステージの載置部をゲートを介して 搬送室とプロセス室との間を出入するように移動させるための手段は、 搬送室側 壁とステージとの間に設けられたべローズであることを特徴とする請求項 1記載 の半導体プロセス装置。  2. The means for moving the mounting portion of the stage so as to move in and out of the space between the transfer chamber and the process chamber via the gate while sealing the transfer chamber and the outside is provided by the transfer chamber side wall and the stage. 2. The semiconductor process device according to claim 1, wherein the semiconductor process device is a bellows provided between the two.
3 . 前記載置部がプロセス室内にあるときに搬送室と プロセス室とをシ一ルするための手段は、 ステージ側面に設けられた、 ゲートよ り大きな径を有するフランジと、 該フランジの上面に設けられた〇リングにより 構成されていることを特徴とする請求項 1または 2記載のプ口セス装置。 3. The means for sealing the transfer chamber and the process chamber when the mounting section is in the process chamber includes a flange provided on the side of the stage and having a larger diameter than the gate, and an upper surface of the flange. 3. The access device according to claim 1, wherein the access device is constituted by an o-ring provided on the device.
4 . 前記被処理体の径は 2 0 0 mm以上であることを特徴とする請求項 1ない し 3の L、ずれか 1項記載のプロセス装置。 4. The process apparatus according to any one of claims 1 to 3, wherein the diameter of the object to be processed is 200 mm or more.
5 . プロセス室の底面に、 被処理体の中心に関して略軸対称をなして形成され た複数の排気孔と、 5. A plurality of exhaust holes formed in the bottom of the process chamber so as to be substantially axially symmetric with respect to the center of the workpiece,
該それぞれの排気孔に連通する複数の排気通路と、  A plurality of exhaust passages communicating with the respective exhaust holes,
該複数の排気通路同士を連通する横穴と、  A lateral hole communicating the plurality of exhaust passages;
を該プロセス室の下方に有し、 Below the process chamber,
該横穴の少なくとも 1つに真空ポンプを接続したことを特徴とする請求項 1な いし 4のいずれか 1項記載のプロセス装置。  5. The process apparatus according to claim 1, wherein a vacuum pump is connected to at least one of the side holes.
6 . プロセス室と、  6. Process room and
該プロセス室の底面に、 被処理体の中心に関して略軸対称をなして形成された 複数の排気孔と、 該それぞれの排気孔に連通する複数の排気通路と、 A plurality of exhaust holes formed in the bottom surface of the process chamber so as to be substantially axially symmetric with respect to the center of the object; A plurality of exhaust passages communicating with the respective exhaust holes,
該複数の排気通路同士を連通する横穴と、  A lateral hole communicating the plurality of exhaust passages;
を該プロセス室の下方に有し、 Below the process chamber,
該横穴の少なくとも 1つに真空ポンプを接続したことを特徴とするプロセス装  A vacuum pump connected to at least one of the side holes.
7 . プロセス室の上壁に開口を有し、 7. An opening in the upper wall of the process chamber,
プロセス室の内部から隔離された状態でプロセス室を上下に移動し、 上方の位 置において該開口を封止する構造を有する導入本体が設けられ、  An introduction main body having a structure for moving the process chamber up and down while being isolated from the inside of the process chamber, and sealing the opening at an upper position;
該導入本体の上部に弾性体を介して載置部が設けられ、 該載置部は、 被処理物 キヤリァを吸着 .脱着可能に構成されていることを特徴とする請求項 1ないし 6 のいずれか 1項記載のプロセス装置。  A mounting portion is provided on an upper portion of the introduction main body via an elastic body, and the mounting portion is configured to be capable of adsorbing and detaching the object carrier. Or the process device according to item 1.
8 . プロセス室の上壁に開口を有し、  8. An opening in the upper wall of the process chamber,
プロセス室の内部から隔離された状態でプ口セス室を上下に移動し、 上方の位 置において該開口を封止する構造を有する導入本体力ぐ設けられ、  An introduction main body having a structure for moving the process chamber up and down while being isolated from the inside of the process chamber, and sealing the opening at an upper position;
該導入本体の上部に弾性体を介して載置部が設けられ、 該載置部は、 被処理物 キャリアを吸着 ·脱着可能に構成されていることを特徴とするプロセス装置。  A process apparatus, wherein a mounting portion is provided on an upper portion of the introduction main body via an elastic body, and the mounting portion is configured to be capable of adsorbing and desorbing a carrier to be processed.
PCT/JP1999/001908 1998-04-09 1999-04-09 Process system WO1999053534A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/97979 1998-04-09
JP9797998 1998-04-09
JP10/169213980602 1998-06-02
JP16921398A JP4270413B2 (en) 1998-04-09 1998-06-02 Process equipment

Publications (1)

Publication Number Publication Date
WO1999053534A1 true WO1999053534A1 (en) 1999-10-21

Family

ID=26439100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001908 WO1999053534A1 (en) 1998-04-09 1999-04-09 Process system

Country Status (2)

Country Link
JP (1) JP4270413B2 (en)
WO (1) WO1999053534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054910A1 (en) * 2001-12-20 2003-07-03 Aisapack Holding Sa Device for treating objects by plasma deposition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496803B2 (en) * 2004-02-26 2010-07-07 株式会社村田製作所 Vacuum equipment
JP6819450B2 (en) * 2017-04-28 2021-01-27 トヨタ自動車株式会社 Wafer vacuum processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590163A (en) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd Thin film forming apparatus
JPH0629225A (en) * 1992-07-10 1994-02-04 Nissin Electric Co Ltd Vapor growth apparatus for semiconductor thin film
JPH08260158A (en) * 1995-01-27 1996-10-08 Kokusai Electric Co Ltd Substrate treating device
JPH08321497A (en) * 1988-01-11 1996-12-03 Tadahiro Omi Target holding mechanism of thin film forming equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321497A (en) * 1988-01-11 1996-12-03 Tadahiro Omi Target holding mechanism of thin film forming equipment
JPH0590163A (en) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd Thin film forming apparatus
JPH0629225A (en) * 1992-07-10 1994-02-04 Nissin Electric Co Ltd Vapor growth apparatus for semiconductor thin film
JPH08260158A (en) * 1995-01-27 1996-10-08 Kokusai Electric Co Ltd Substrate treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054910A1 (en) * 2001-12-20 2003-07-03 Aisapack Holding Sa Device for treating objects by plasma deposition

Also Published As

Publication number Publication date
JP2001102423A (en) 2001-04-13
JP4270413B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4454234B2 (en) Plasma semiconductor processing apparatus and method
US6402848B1 (en) Single-substrate-treating apparatus for semiconductor processing system
US20160284581A1 (en) Method of Manufacturing Semiconductor Device
JP2009062604A (en) Vacuum treatment system, and method for carrying substrate
JPH04308090A (en) Load-lock mechanism for vapor-phase chemical reaction device
JP2021125675A (en) Substrate processing apparatus and substrate processing method
JP2011061037A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
WO2002056357A1 (en) Sheet-fed treating device
US20020063084A1 (en) Apparatus and method for reducing contamination in a wafer transfer chamber
US6860711B2 (en) Semiconductor-manufacturing device having buffer mechanism and method for buffering semiconductor wafers
JP7345289B2 (en) Substrate processing equipment, substrate processing system, and substrate transport method
US11056277B2 (en) Magnetized substrate carrier apparatus with shadow mask for deposition
WO1999053534A1 (en) Process system
JP2007027339A (en) Plasma processing device
JP5010620B2 (en) Process equipment
EP0626724B1 (en) System for transferring wafer
JP2004339566A (en) Substrate treatment apparatus
JP3121022B2 (en) Decompression processing equipment
TW452832B (en) Semiconductor manufacturing apparatus
JP2003163206A (en) Plasma treating device, plasma treating method and multi-chamber system
KR102174063B1 (en) Transfer unit, apparatus for treating substrate including the same and substrate treating method
JP2011204735A (en) Substrate processing apparatus and manufacturing method of semiconductor device
JPH06181249A (en) Substrate conveying equipment
KR20230103889A (en) Apparatus for treating substrate and method for cleaning chamber
TW202403999A (en) Symmetric semiconductor processing chamber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WA Withdrawal of international application