WO1999053507A1 - Nucleos y bobinas para transformadores electricos - Google Patents

Nucleos y bobinas para transformadores electricos Download PDF

Info

Publication number
WO1999053507A1
WO1999053507A1 PCT/MX1998/000014 MX9800014W WO9953507A1 WO 1999053507 A1 WO1999053507 A1 WO 1999053507A1 MX 9800014 W MX9800014 W MX 9800014W WO 9953507 A1 WO9953507 A1 WO 9953507A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
transformers
transformer
cores
losses
Prior art date
Application number
PCT/MX1998/000014
Other languages
English (en)
French (fr)
Inventor
Alfonso Hernandez Cruz
Original Assignee
Alfonso Hernandez Cruz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfonso Hernandez Cruz filed Critical Alfonso Hernandez Cruz
Priority to CA002328193A priority Critical patent/CA2328193A1/en
Priority to KR1020007011334A priority patent/KR20010106100A/ko
Priority to EP98917784A priority patent/EP1081723A4/en
Priority to JP2000543977A priority patent/JP2002511647A/ja
Priority to BR9815812-0A priority patent/BR9815812A/pt
Priority to PCT/MX1998/000014 priority patent/WO1999053507A1/es
Priority to AU70844/98A priority patent/AU7084498A/en
Priority to EA200001022A priority patent/EA200001022A1/ru
Priority to US09/673,130 priority patent/US6535099B1/en
Publication of WO1999053507A1 publication Critical patent/WO1999053507A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Definitions

  • a variety of electrical transformers are known, which transfer electrical energy by induction from one or more circuits to one or more circuits, at the same frequency and usually performing a transformation in the voltage and current values.
  • the single-phase transformers are constructed with a coil and two cores or two coils and a core, and the three-phase transformers are constructed with three coils and three or four cores.
  • the purpose is to close the electrical and magnetic circuits in the core and the coil, respectively, this being the type of transformer most used in the industry.
  • the core of the transformers is constructed of magnetic steel that is usually oriented grain silicon steel, of different thicknesses, coating and qualities. The higher the quality of the core materials, the electrical losses are lower.
  • Losses in the core are known as "empty” or “no load” losses as they are always present while the transformer is connected to the power lines, regardless of whether there is a load or not. These losses are measured in watts.
  • the process of manufacturing the coils consists of winding from several to thousands of turns of copper or aluminum conductors, either in the form of a sheet, rectangular section or round section, all with or without insulation.
  • the common practice is to first wind a low voltage conductor and then a high voltage conductor, always observing the traditional laws and principles of calculating transformers and electrical machines.
  • Traditional coils include schemes such as low voltage-high voltage and low-voltage-high voltage-low voltage, depending on the transformation needs required by the user.
  • the transformation ratio results from the number of turns of the high voltage section (primary) to the number of turns of the low voltage section (secondary);
  • the excitation current of the transformer which is a characteristic of the material and form of construction of the core.
  • the transformers are manufactured with a voltage regulation section to adjust the voltage of the transmission lines to the voltage required by the user, known as the tap changer section, which can change the output voltage in + 5% or some other specified percentage.
  • the transformers are placed inside a steel tank following the geometry of each construction, so that for single phase transformers the tank is generally round section and for three phase transformers the tank section is generally rectangular.
  • the tanks are equipped with a series of accessories such as high voltage insulators, low voltage insulators, changer to adjust the shunts, ground plate or bolt, drain and sampling valve for insulating oil, overpressure valve and relief, superior connection for tightness test, lifting or lifting hooks of the transformer, data plate with serial number and cooling radiators, as is well known in the art.
  • transformers Another type of transformers known is the pedestal type, which contain the same components described above. The basic difference of these transformers is the shape of the tank and the additional protection and control accessories that are normally added. Generally these transformers are used in the termination of the lines (radial type) and in networks with continuation of the line (ring type).
  • Evaluated Price Transit Price. + $ Losses in Vacuum + $ Losses Load
  • transformers The acquisition of transformers by electric companies is usually done through competitions, where the manufacturer with the lowest price evaluated is surely the one who should be designated as a supplier.
  • developments in transformer construction engineering have been aimed at improving building materials themselves only.
  • the cores there are better silicon steel sheets, in terms of electrical insulations the characteristics of power factor and voltage resistance tests have been improved by means of additives and resins.
  • the stacking factor is 82% maximum, while in silicon steel it is approximately 97%;
  • the maximum limit of magnetic saturation is 13.5 testes against 17 teslas of silicon steel; It has a lower density than silicon steel, that is, 7.18 gr / cm 3 versus 7.65 gr / cm 3 ; Y
  • the material used in its formation is normally oriented silicon steel sheet, in different thicknesses, which consists essentially of a low-carbon iron-silicon alloy and coated on both sides by an insulating material known as "Carlite” or with fiberglass.
  • Carlite an insulating material known as "Carlite” or with fiberglass.
  • Wescore the Wescore
  • the Cruciform the Toroidal.
  • the Wescore core was originally developed by Westinghouse in the 1960s. This type of core allows large volumes of production since there are generic machines on the market. This type of nuclei is generally found in post-type and substation type transformers, either single-phase or three-phase. This type of core is also known as "Distributed Air-Coiled Winding Core".
  • the Wescore core is formed of a continuously rolled sheet to which sequential cuts are made to allow them to be disassembled and reassembled around the coil.
  • the coil and the core are manufactured in two separate processes, the core being subsequently assembled on the coil thanks to the cuts made in the sheets of said core.
  • the cross section of this type of core is generally rectangular. The above allows a high volume of production.
  • the maximum recommended voltage for transformers manufactured with this type of core is approximately 69,000 volts and up to 3000 KVA, if it is armored.
  • the toroidal core is formed of a continuously rolled sheet, without cuts, in a circular manner. The coil conductors are wound around the core also forming a toroid.
  • This configuration allows the magnetic path of the core and the electrical path of the windings to be kept closer and that there are no losses in the core due to the cuts, for example, found in the Wescore core.
  • the result of using a toroidal core is an efficient transformer with a dramatic reduction in total losses.
  • the advantages of toroidal core transformers are, among others, low losses in the core, lower noise level, lower telephone interference, greater short-circuit support and. excellent thermal characteristics.
  • cruciform type nucleus which is generally formed of several cut and stacked sheets, one measure per leg and one or two measures per yoke, with a cruciform cross section.
  • This type of cores is used in distribution and power transformers. The construction of this type of core has a great advantage for power transformers but with low production. Its use is recommended only above 2,500 KVA of power.
  • a Wescore type transformer core is characterized in that the rolled sheets that form the body of said core have differences in their height such that a straight or progressive slope is formed which defines a or more sloping or curved walls. The slope is such that the cross-sectional area of the junction of two nuclei placed next to each other is an octagon, a hexagon or even an oval or circle.
  • a toroidal type core for transformer which is characterized in that the rolled sheet forming the body of said core has a gradual decrease in its width so that a straight or progressive slope is formed that defines one or more more sloping or curved walls.
  • the decrease in width is such that the cross-sectional area of the toroidal nucleus is an octagon, hexagon or even an oval or circle.
  • Figure 1 is a perspective view of a core for Wescore type transformer of the prior art
  • Figure 2 is a perspective view of a core assembly for Wescore type transformer, partially wound, of the prior art
  • Figure 3 is a cross-sectional view of a core assembly for Wescore type transformer and state-of-the-art coil, taken along line 3-3- of Figure 2;
  • Figure 4 is a perspective view of a transformer core according to the present invention
  • Figure 5 is a perspective view of a transformer core assembly, partially wound, of the present invention
  • Figure 6 is a cross-sectional view of a transformer and coil core assembly of the present invention, taken along line 6- 6- of Figure 5;
  • Figure 7 is a perspective view of a core for toroidal transformer according to the present invention.
  • Figure 8 is a perspective view of a core for a partially winding toroidal transformer of the present invention
  • Figure 9 is a comparative graph of the cost of manufacturing conventional transformers and transformers according to the invention.
  • Figure 10 is a comparative graph of electrical losses of conventional transformers against transformers according to the invention.
  • Figure 11 is a comparative graph of the evaluated price of conventional transformers against transformers according to the invention.
  • Figure 12 is a comparative graph of the evaluated price of conventional transformers against transformers according to the invention.
  • Figure 13 is a comparative graph of the total electrical losses of conventional transformers against transformers according to the invention.
  • Figure 14 is a comparative graph of the total cost of conventional transformers versus transformers according to the invention.
  • Figure 1 illustrates a core for Wescore type 10 transformer of the prior art, where there is a plurality of rectangular sheets 12, the which have a plurality of respective cross-sections 14, which together form a rectangle-shaped core which can be disassembled to assemble a coil around it.
  • the inner walls of the core for example the wall 16
  • the upper walls of the core for example the upper wall 18, that is, all the laminations of the core have the same height.
  • Figure 2 shows a two core assembly 20 for Wescore type transformer 22, 24 joined by a winding 26, which is partially shown, for illustrative purposes only.
  • Figure 3 is a cross-sectional view taken along line 3-
  • a core 40 for a transformer according to the invention is illustrated in Figure 4, wherein the upper wall 42 of the core 40, consisting of a plurality of sheets 44, whose height is such that the upper wall 42 in the same way an angle other than the right angle with the outer and inner faces of the core. In this way, it is necessary that the gradual decrease in the height of the sheets, from the outermost to the innermost, forms an inclined upper wall section 42 that joins the outer and inner walls with a predetermined angle of inclination.
  • the angle of inclination of the upper wall section is realized in such a way that by joining two cores to mount the corresponding winding, as shown in Figure 5, a cross-sectional area is formed that can be varied according to the design of the transformer
  • the cross-sectional area can, in this way be octagonal as illustrated in Figure 6, or it can Take other shapes such as hexagonal, rectangular with rounded corners or until you reach an oval or circle.
  • the coil 52 that is mounted around the core assembly 50 is accommodated more efficiently, since said coil can be formed closer to the core as there is no right angle in the change of direction of the conductor.
  • the coil 52 must have approximately the same geometric figure as the cross-sectional area of the cores, respecting the tolerances specified for the type of design. Without a mathematical analysis being necessary, it is known that the perimeter of a rectangle, which forms the cross-section of two joined cores to form a core assembly in a single-phase transformer, is larger than the perimeter of an octagon, which is the shape! Illustrated of the core assembly of the present invention in Figures 5 and 6. Therefore, the length of the winding conductors is shorter and therefore the electrical losses of the transformer are also smaller. Likewise, the area of the core is reduced, resulting in an increase in magnetic density and, therefore, in vacuum losses, whereby some parameters are modified to compensate for the area and thus obtain a decrease in losses in empty. That is why the size of the inclined wall section is calculated so that the lowest material cost and lower electrical losses are obtained.
  • the behavior of the main parameters is as follows: The losses in the windings decrease; The magnetic density increases, if the area that was removed from the corners of the core is not compensated;
  • Direct benefit in saving winding materials which can be up to 13%, and that includes the low voltage copper or aluminum sheet, the insulating paper that is placed between layers, the section insulator low-high voltage;
  • the transformer operates more efficiently by reducing losses
  • the operating temperature of the transformer has a decrease of between 1 and 2 ° C, since it has a greater surface area discovered between the coils and the core,
  • the life of the transformer is extended as a result of the decrease in operating temperature; A small decrease in the size of the tank, generated by the decrease in losses and whose immediate effect is the reduction of the insulating liquid;
  • the price evaluated is lower since the losses are lower, which is reflected in a lower consumption of energy (electricity) achieving a very important economic saving in fuel consumption of the generating plant and the associated ecological benefit.
  • the coils do not tend to arch to the center of the window as with conventional coils.
  • conventional coils if this effect is to be avoided, it is necessary to include a homo pressing process, which consumes labor, time and energy.
  • Figure 10 shows a graph of the total electrical losses, in comparative form, for a transformer with conventional coil-core assembly and ios of the present invention.
  • the losses using in coil-core assemblies of the present invention become up to about 4% for 300 kva transformers.
  • the evaluated price of a transformer manufactured in accordance with the present invention is lower by up to 3% compared to a state-of-the-art transformer, as can be seen in Figure 11.
  • toroidal core 70 as illustrated in Figure 7, and which has an inclined side wall section in either the inner wall 72, the outer wall 74 or both.
  • the toroidal core 70 also has advantages in winding the winding, as can be seen in Figure 8, since it is substantially easier to wind the conductors 82 using known generic machines.
  • the use of the toroidal core 70 of the present invention improves the distribution of the winding conductors and decreases the amount of material used in each of the conductor's turns, mainly in the low voltage winding that is closest to the core.
  • By winding the conductors over the core of the invention the gaps that are formed in a conventional toroidal core are avoided by causing a right angle turn, in addition to reducing the damage caused to the conductor by forcing it to turn said angle straight.
  • the total cost of a transformer manufactured in accordance with the present invention is less than those manufactured under the prior art.
  • a Wescore type transformer core characterized in that the rolled sheets that form the body of said core have differences in their height so that a straight or progressive slope is formed that defines one or more inclined or curved walls.
  • a Wescore type transformer coil characterized in that it is wound according to the geometry of any of the cores of claims 1 4.
  • a toroidal transformer core characterized in that the rolled sheet that forms the body of said core has a gradual decrease in its width so that a straight or progressive slope that defines one or more inclined or curved walls is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

La presente invencíon se refiere a núcleos y bobinas para transformadores eléctricos en donde las paredes laterales (10) de los núcleos, ya sea tipo Wescore o toroidal, son fabricadas enrollando láminas (12) de diferentes alturas o una sola lámina cuya anchura disminuye paulatinamente, de manera que dichas paredes laterales forman una ángulo con respecto a la pared superior (18) del núcleo. La bobina correspondiente es fabricada siguiendo la geometría del núcleo sobre el cual será colocada o devanada. Mediante el uso de los núcleos y bobinas de la presente invención se obtienen substanciales ahorros en los materiales utilizados para fabricar transformadores eléctricos al mismo tiempo que mejoran las características y pérdidas eléctricas, con carga y en vacío, resultantes.

Description

NÚCLEOS Y BOBINAS PARA TRANSFORMADORES ELÉCTRICOS
ANTECEDENTES DE LA INVENCIÓN Se conoce una diversidad de transformadores eléctricos, los cuales transfieren energía eléctrica por inducción desde uno o más circuitos hasta uno o más circuitos, a la misma frecuencia y realizando usualmente una transformación en los valores de tensión y de corriente.
Los transformadores monofásicos se construyen con una bobina y dos núcleos o dos bobinas y un núcleo, y los trifásicos se construyen con tres bobinas y tres o cuatro núcleos. El propósito es cerrar los circuitos eléctricos y magnéticos en el núcleo y la bobina, respectivamente, siendo éste el tipo de transformador más usado en la industria.
El núcleo de los transformadores se construye de acero magnético que es usualmente acero al silicio de grano orientado, de diferentes espesores, recubrimiento y calidades. A mayor calidad de los materiales del núcleo las pérdidas eléctricas son menores.
Las pérdidas en el núcleo son conocidas como pérdidas "en vacío" o "sin carga" ya que siempre están presentes mientras esté conectado el transformador a las líneas eléctricas, sin importar si hay carga o no. Dichas pérdidas son medidas en watts.
El proceso de fabricación de las bobinas consiste en enrollar desde varias hasta miles de vueltas de conductores de cobre o aluminio, ya sea en forma de lámina, de sección rectangular o de sección redonda, todos con o sin aislamiento. La práctica común consiste en enrollar primero un conductor de baja tensión y posteriormente uno de alta tensión, observando siempre las leyes y principios tradicionales del cálculo de transformadores y máquinas eléctricas. Los arreglos tradicionales de bobinas incluyen esquemas tales como el de baja tensión-alta tensión y baja-tensión-alta tensión-baja tensión, dependiendo de las necesidades de transformación requeridas por el usuario.
En el diseño de los transformadores se utilizan fórmulas y criterios tradicionales de la electricidad y el magnetismo tales como:
La relación de transformación resulta del número de vueltas de la sección de alta tensión (primario) al numero de vueltas de la sección de baja tensión (secundario);
La capacidad de corriente de los conductores, en amperios por milímetro cuadrado;
La inducción electromagnética causada por las vueltas de los conductores sobre la sección del núcleo, medida en teslas;
La impedancia en % causada por la resistencia en ohms de los conductores; y
La corriente de excitación del transformador, que es una característica del material y forma de construcción del núcleo.
Por otra parte, los transformadores son fabricados con una sección de regulación de voltaje para ajustar la tensión de las líneas de transmisión al voltaje que requiera el usuario, conocida como sección del cambiador de derivaciones (taps), que puede cambiar el voltaje de salida en un + 5% o algún otro porcentaje especificado. Los transformadores son colocados dentro de un tanque de acero siguiendo la geometría de cada construcción, de manera que para transformadores monofásicos el tanque es generalmente de sección redonda y para los transformadores trifásicos la sección del tanque es generalmente rectangular. Adicionalmente, los tanques son equipados con una serie de accesorios tales como aisladores de alto voltaje, aisladores de bajo voltaje, cambiador para ajustar las derivaciones, placa o perno de tierra, válvula de drenaje y muestreo para el aceite aislante, válvula de sobrepresión y alivio, conexión superior para prueba de hermeticidad, ganchos de levante o izaje del transformador, placa de datos con el numero de serie y radiadores de enfriamiento, como es bien conocido en la técnica.
Dependiendo de las necesidades del usuario existen transformadores autoprotegidos, tanto en alta como en baja tensión, por lo que se agregan accesorios como fusibles, interruptores, luces indicadores de falla, etc.
Otro tipo de transformadores conocido es el tipo pedestal, los cuales contienen los mismos componentes anteriormente descritos. La diferencia básica de estos transformadores es la forma del tanque y los accesorios adicionales de protección y control que normalmente son adicionados. Generalmente estos transformadores son utilizados en la terminación de las líneas (tipo radial) y en redes con continuación de línea (tipo de anillo).
Los transformadores requieren cumplir con una serie de pruebas de laboratorio y criterios de construcción, es decir, deben satisfacer o cumplir con diversas normas mexicanas e internacionales. Dentro de las principales normas aplicables a este campo se pueden mencionar las normas Mexicanas NMX J 116,
NMX J 285, NMX J 284, NMX J 169; de los Estados Unidos ANSÍ C 57 12.00 (1993),
NEMA MW 1000; de Canadá CSA: CS M91 , C 227.1 , C227.2, C 227.3, C 227.4, C
301.1 y C2 M91; e internacional IEC publicación 76 (1993). Con el fin de realizar comparaciones económicas entre transformadores, se debe tomar en cuenta el precio de venta del transformador y los índices de las compañías generadoras de electricidad del costo de la generación de electricidad por kilowatt (kW),
De esta manera, se tiene que el Precio Evaluado se obtiene al sumar el precio de venta del transformador más el costo de las pérdidas en vacío y la pérdidas debidas a la carga, según la fórmula: Precio Evaluado = Precio del Transí. + $ Pérdidas en Vacío + $ Pérdidas Carga en donde:
$ Pérdidas Vacío = índice v x Pérdidas de Vacío $ Pérdidas Carga = índice c x Pérdidas de Carga Los índices que comúnmente se utilizan en el mundo son $2.00 USD por watt de carga, índice c, y $4.00 USD por watt de pérdida en vacío, índice v.
La adquisición de transformadores por parte de las compañías eléctricas se hace generalmente por medio de concursos, en donde el fabricante que tenga el menor precio evaluado es seguramente quien deba designarse como proveedor. Desde hace muchos años, los desarrollos en la ingeniería de construcción de transformadores se han encaminado a la mejora de los materiales de construcción en si mismos únicamente. Respecto de los núcleos, existen mejores láminas de acero al silicio, en cuanto a aislamientos eléctricos se han mejorado las características de pruebas de factor de potencia y de resistencia al voltaje por medio de aditivos y resinas.
Al día de hoy, el desarrollo más sobresaliente en cuestión de materiales ha sido la invención del acero amorfo, el cual disminuye hasta en un 80% las pérdidas normales de vacío, sin embargo esta gran ventaja se ve disminuida por las siguientes razones: El espesor difícilmente alcanza 0.10 mm (0.004") por lo que la manufactura del núcleo constituye uno de los problemas más importantes por resolver;
El factor de apilamiento es de 82% máximo, mientras que en el acero al silicio es de 97% aproximadamente;
El limite máximo de saturación magnética es de 13.5 testas contra 17 teslas del acero al silicio; Tiene menor densidad que el acero al silicio, es decir 7.18 gr/cm3 contra 7.65 gr/cm3; y
La diferencia en precio de los aceros es de $1.80 USD por kilo de acero al silicio contra $4.08 USD por kilogramo de acero amorfo. Haciendo ahora referencia a los núcleos, el material utilizado en su formación normalmente es lámina de acero al silicio orientado, en diferentes espesores, que consiste fundamentalmente de una aleación de hierro-silicio de bajo contenido de carbón y recubierta en ambas caras por un material aislante conocido como "Carlite" o con fibra de vidrio. Actualmente se conocen tres tipos principales de núcleos; el Wescore, el Cruciforme y el Toroidal.
El núcleo Wescore fue originalmente desarrollado por Westinghouse en los años sesentas. Este tipo de núcleo permite grandes volúmenes de producción ya que existen máquinas genéricas en el mercado. Este tipo de núcleos se encuentra generalmente en transformadores tipo poste y tipo subestación, ya sean monofásicos o trifásicos. Este tipo de núcleo también es conocido como "Núcleo Enrollado de Entrehierro Distribuido".
El núcleo Wescore se forma de una lámina enrollada en forma continua a la cual se le realizan cortes secuenciales para permitir que se desarmen y que se vuelvan a armar alrededor de la bobina. En otras palabras, la bobina y el núcleo son fabricados en dos procesos separados, ensamblándose el núcleo posteriormente sobre la bobina merced a los cortes realizados en las láminas de dicho núcleo. La sección transversal de este tipo de núcleo es generalmente rectangular. Lo anterior permite un alto volumen de producción. El máximo voltaje recomendado para los transformadores fabricados con este tipo de núcleo es de aproximadamente 69,000 volts y hasta 3000 KVA, si es acorazado. Por otra parte, el núcleo tipo toroidal se forma de una lámina enrollada en forma continua, sin cortes, de manera circular. Los conductores de la bobina son devanados alrededor del núcleo formando también un toroide. Esta configuración permite que la trayectoria magnética del núcleo y la trayectoria eléctrica de los devanados se mantengan más cercanas y que en el núcleo no existan pérdidas debido a los cortes, por ejemplo, encontradas en el núcleo Wescore. El resultado de utilizar un núcleo toroidal es un transformador eficiente con una reducción dramática i en las pérdidas totales. A mayor abundamiento, las ventajas de los transformadores con núcleo toroidal son, entre otras, bajas pérdidas en el núcleo, nivel de ruido más bajo, interferencia telefónica menor, mayor soporte en corto circuito y. características térmicas excelentes.
Finalmente, se tiene el núcleo tipo cruciforme el cual se forma generalmente de varias láminas cortadas y apiladas, de una medida por pierna y una o dos medidas por yugo, con sección transversal cruciforme. Este tipo de núcleos es utilizado en transformadores de distribución y de potencia. La construcción de este tipo de núcleo presenta una gran ventaja para los transformadores de potencia pero con una baja producción. Su uso es recomendado solo por encima de 2,500 KVA de potencia.
En base a todo lo anterior, es un objeto de la presente invención proporcionar un conjunto de núcleo y bobina que cumpla con todos los requerimiento y normas nacionales e internacionales al mismo tiempo que presente significativos ahorros en materiales.
Es otro objetivo de la presente invención proporcionar un conjunto de núcleo y bobina que al ser incorporado en un transformador mejore significativamente el precio evaluado del mismo al disminuir considerablemente las pérdidas en vacío y con carga. BREVE DESCRIPCIÓN DE LA INVENCIÓN Se describe una modalidad preferida en la cual un núcleo tipo Wescore para transformador está caracterizado porque las láminas enrolladas que forman el cuerpo de dicho núcleo presentan diferencias en su altura de manera que se forma una pendiente recta o progresiva que define una o más paredes inclinadas o curvas. La pendiente es tal que el área en sección transversal de la unión de dos núcleos colocados uno junto al otro es un octágono, un hexágono o hasta un óvalo o círculo. En una segunda modalidad de la invención se describe un núcleo tipo toroidal para transformador que está caracterizado porque la lámina enrollada que forma el cuerpo de dicho núcleo presenta una disminución paulatina en su anchura de manera que se forma una pendiente recta o progresiva que define una o más paredes inclinadas o curvas. La disminución de anchura es tal que el área en sección transversal del núcleo toroidal es un octágono, hexágono o hasta un óvalo o círculo.
BREVE DESCRIPCIÓN DE LOS DIBUJOS La Figura 1 es una vista en perspectiva de un núcleo para transformador tipo Wescore del estado de la técnica;
La Figura 2 es una vista en perspectiva de un ensamble de núcleo para transformador tipo Wescore, parcialmente embobinado, del estado de la técnica;
La Figura 3 es una vista en sección transversal de un ensamble de núcleo para transformador tipo Wescore y bobina del estado de la técnica, tomada a lo largo de la línea 3-3- de la Figura 2;
La Figura 4 es una vista en perspectiva de un núcleo para transformador de acuerdo con la presente invención; La Figura 5 es una en perspectiva de un ensamble de núcleo para transformador, parcialmente embobinado, de la presente invención;
La Figura 6 es una vista en sección transversal de un ensamble de núcleo para transformador y bobina de la presente invención, tomada a lo largo de la línea 6- 6- de la Figura 5;
La Figura 7 es una vista en perspectiva de un núcleo para transformador tipo toroidal de acuerdo con la presente invención;
La Figura 8 es una vista en perspectiva de un de núcleo para transformador tipo toroidal, parcialmente embobinado, de la presente invención; La Figura 9 es una gráfica comparativa del costo de fabricación de transformadores convencionales y transformadores de acuerdo con la invención;
La Figura 10 es una gráfica comparativa de pérdidas eléctricas de transformadores convencionales contra transformadores de acuerdo con la invención;
La Figura 11 es una gráfica comparativa del precio evaluado de transformadores convencionales contra transformadores de acuerdo con la invención;
La Figura 12 es una gráfica comparativa del precio evaluado de transformadores convencionales contra transformadores de acuerdo con la invención;
La Figura 13 es una gráfica comparativa del total de pérdidas eléctricas de transformadores convencionales contra transformadores de acuerdo con la invención; y
La Figura 14 es una gráfica comparativa del costo total de transformadores convencionales contra transformadores de acuerdo con la invención.
DESCRIPCIÓN DE LAS MODALIDADES PREFERIDAS La Figura 1 ilustra un núcleo para transformador tipo Wescore 10 del estado de la técnica, en donde se tiene una pluralidad de láminas rectangulares 12, las cuales tienen una pluralidad de cortes transversales respectivos 14, que en conjunto forman un núcleo en forma de rectángulo el cual puede ser desarmado para ensamblar una bobina alrededor del mismo. Como se puede observar, las paredes internas del núcleo, por ejemplo la pared 16, forman un ángulo recto con las paredes superiores del núcleo, por ejemplo la pared superior 18, es decir, todas las laminaciones del núcleo presentan una misma altura..
En la Figura 2 se muestra un ensamble 20 de dos núcleos para transformador tipo Wescore 22, 24 unidos mediante un embobinado 26, el cual se muestra parcialmente, únicamente para fines ilustrativos. La Figura 3 es una vista en sección transversal tomada a lo largo de la línea 3-
3 de la Figura 2, en donde se puede ver al embobinado 26 uniendo dos paredes 32, 34 de los núcleos 22, 24, respectivamente.
En la Figura 4 se ilustra un núcleo 40 para un transformador de acuerdo con la invención, en donde la pared superior 42 del núcleo 40, consistente de una pluralidad de láminas 44, cuya altura es de tal manera que la pared superior 42 del mismo forma un ángulo distinto al ángulo recto con las caras externa e interna del núcleo. De esta manera, se tiene que el decremento paulatino en la altura de las láminas, desde la más extema hasta la más interna, forma una sección de pared superior 42 inclinada que une las paredes externa e internas con un ángulo de inclinación predeterminado.
El ángulo de inclinación de la sección de pared superior se realiza de tal manera que al unir dos núcleos para montar el correspondiente embobinado, tal como se muestra en la Figura 5, se forme un área en sección transversal que puede variarse de acuerdo con el diseño del transformador. El área en sección transversal puede, de esta manera ser octagonal tal como se ilustra en la Figura 6, o puede adoptar otras forma tales como hexagonal, rectangular con las esquinas redondeadas o hasta llegar a un óvalo o círculo.
De esta manera, la bobina 52 que es montada alrededor del ensamble de núcleos 50 es acomodada en forma más eficiente, ya que dicha bobina puede conformarse en forma más cercana al núcleo al no existir un ángulo recto en el cambio de dirección del conductor.
La bobina 52 deberá tener aproximadamente la misma figura geométrica que el área transversal de los núcleos, respetando las tolerancias especificadas para el tipo de diseño. Sin ser necesario un análisis matemático, es conocido que el perímetro de un rectángulo, que forma la sección transversal de dos núcleos unidos para formar un ensamble de núcleo en un transformador monofásico, es mayor que el perímetro de un octágono, que es la forma ¡lustrada del ensamble de núcleo de la presente invención en las Figuras 5 y 6. Por lo anterior, la longitud de los conductores del embobinado es menor y por lo tanto las pérdidas eléctricas del transformador también son menores. Así mismo, el área del núcleo es disminuida obteniéndose en consecuencia un aumento en la densidad magnética y, por lo tanto, en las pérdidas de vacío, por lo cual se modifican algunos parámetros para compensar el área y así obtener una disminución en las pérdidas en vacío. Es por ello que el tamaño de la sección de pared inclinada se calcula de manera que se obtenga el menor costo de materiales y menores pérdidas eléctricas.
A medida que se aumenta la inclinación de la pared 42 del núcleo 40, el comportamiento de los principales parámetros es como sigue: Las pérdidas en los devanados disminuyen; La densidad magnética aumenta, si no se compensa el área que se eliminó de las esquinas del núcleo;
El costo del transformador se reduce;
Las pérdidas de vacío aumentan, siendo este el parámetro que limita el comportamiento deseable de los tres puntos anteriores ya que juega un papel muy importante para la evaluación económica del transformador.
De todo lo anterior, es claro que la presente invención presenta la siguientes ventajas:
Beneficio directo en el ahorro de materiales del embobinado, el cual puede llegar a ser de hasta un 13%, y que incluye la lámina de cobre o aluminio de la baja tensión, el papel aislante que se coloca entre capas, el aislante de la sección de baja- alta tensión;
Disminuyen las pérdidas eléctricas al ser menor la longitud de los conductores de ios embobinados, obteniéndose una disminución de hasta aproximadamente el 4%;
El transformador opera en forma más eficiente al disminuir las pérdidas;
Un aumento considerable en la capacidad de resistir los esfuerzos mecánicos producidos por la prueba de corto circuito,
Las tolerancias de construcción del ensamble núcleos-bobina son menores en casi un 50%, obteniendo un ahorro adicional de material,
La temperatura de operación del transformador tiene una disminución de entre 1 y 2°C, ya que se tiene una mayor superficie descubierta entre las bobinas y el núcleo,
La vida útil del transformador se alarga como resultado de la disminución en la temperatura de operación; Una pequeña disminución en el tamaño del tanque, generada por la disminución de las pérdidas y cuyo efecto inmediato es la reducción del liquido aislante;
Además de los beneficios obtenidos en el costo del transformador, el precio evaluado es menor ya que las pérdidas son menores, lo cual se refleja en un menor consumo de energía (electricidad) logrando un ahorro económico muy importante en gasto de combustible de la central generadora y el beneficio ecológico asociado.
Por otra parte, al no tener un ángulo recto sino pequeñas curvas o ángulos de
45° o menores, las bobinas no tienden a arquearse al centro de la ventana tal como sucede con las bobinas convencionales. En el caso de las bobinas convencionales, si se desea evitar este efecto, es necesario incluir un proceso de prensado en homo, el cual consume mano de obra, tiempo y energía.
Transformadores trifásicos de 13,200 volts en alta tensión y 440Y/254 en baja tensión fabricados con los ensambles de núcleos-bobinas de la presente invención fueron evaluados en cuanto al costo de fabricación. Los resultados son presentados en la Figura 9, en donde de puede ver que el ahorro total, dependiendo de la potencia, va desde aproximadamente un 6% hasta aproximadamente 0.5%. Para el caso especifico de un transformador de 15 Kva se obtiene un ahorro del 7.57% en aluminio y de 5.65% en cobre, con un ahorro total de aproximadamente 5.8%.
La Figura 10 muestra una gráfica del total de pérdidas eléctricas, en forma comparativa, para un transformadores con ensamble de núcleos-bobina convencionales y ios de la presente invención. Como se puede ver, las pérdidas utilizando en ensamble núcleos-bobina de la presente invención llega a ser de hasta aproximadamente el 4% para transformadores de 300 kva. En resumen, el precio evaluado de un transformador fabricado de acuerdo con la presente invención es menor hasta en un 3% comparado con un transformador del estado de la técnica, tai como se puede observar en la Figura 11.
En una segunda modalidad de la invención, es posible fabricar un núcleo toroidal 70 tal como se ilustra en la Figura 7, ei cual tiene una sección de pared lateral inclinada ya sea en la pared interna 72, en la pared externa 74 o en ambas.
Ei núcleo toroidal 70 presenta además ventajas al devanar el embobinado, tal como se puede ver en la Figura 8, ya que es substancialmente más sencillo embobinar los conductores 82 utilizando maquinas genéricas conocidas. El uso del núcleo toroidal 70 de la presente invención mejora la distribución de los conductores del devanado y disminuye la cantidad de material utilizado en cada una de las vueltas del conductor, principalmente en el devanado de baja tensión que es el más cercano ai núcleo. Al devanar los conductores sobre el núcleo de la invención se evitan los huecos que se forman en un núcleo toroidal convencional al provocar dar la vuelta en ángulo recto, además de que se disminuye el daño causado en el conductor al forzarlo para dar dicha vuelta en ángulo recto.
Las ventajas del núcleo toroidal de la presente invención sobre los núcleos toroidales convencionales son los mismos que los discutidos anteriormente para el núcleo rectangular de la presente invención. Transformadores monofásicos de 13,200 volts en alta tensión y 120/240 en baja tensión fabricados con los núcleos toroidales de la presente invención fueron evaluados contra transformadores convencionales en cuanto al precio evaluado, es decir costo de fabricación más pérdidas, tal como se definió anteriormente. Los resultados son presentados en la Figura 12, en donde de puede ver que el ahorro total, dependiendo de la potencia, va desde aproximadamente un 6% hasta aproximadamente 16%. La Figura 13 muestra el total de pérdidas eléctricas en forma comparativa para un transformador con ensamble de núcleos-bobina convencionales y los de la presente invención. Comparando las pérdidas eléctricas del núcleo toroidal de la presente invención con los convencionales se tiene que se logra un ahorro de hasta un 7.19% en transformadores de 15 kva, según se puede ver en la siguiente gráfica.
Es importante mencionar que existen grandes diferencias en costos entre los transformadores tipo Wescore y los toroidales, siendo que el tipo toroidal es mucho más económico. La comparación se muestra en la Figura 14.
En resumen, el costo total de un transformador fabricado de acuerdo con la presente invención es menor que aquellos fabricados bajo el estado de la técnica.
De la anterior descripción será evidente para aquellos expertos en la materia que es posible realizar cambios o modificaciones que caen dentro del alcance y espíritu de la presente invención, de acuerdo con las siguientes:
REIVINDICACIONES
1. Un núcleo tipo Wescore para transformador caracterizado porque las láminas enrolladas que forman el cuerpo de dicho núcleo presentan diferencias en su altura de manera que se forma una pendiente recta o progresiva que define una o más paredes inclinadas o curvas.
2. El núcleo tipo Wescore de conformidad con lo reclamado en la reivindicación 1 , en donde dicha pendiente es tal que el área en sección transversal de la unión de dos núcleos colocados uno junto al otro es un octágono. 3. El núcleo tipo Wescore de conformidad con lo reclamado en la reivindicación 1, en donde dicha pendiente es tal que el área en sección transversal de la unión de dos núcleos colocados uno junto al otro es un hexágono.
4. El núcleo tipo Wescore de conformidad con lo reclamado en la reivindicación 1 , en donde dicha pendiente es tal que el área en sección transversal de la unión de dos núcleos colocados uno junto al otro es un óvalo o círculo.
5. Una bobina para transformador tipo Wescore caracterizada porque es devanada siguiendo la geometría de cualquiera de los núcleos de las reivindicaciones 1 4.
6. Un ensamble de núcleo tipo Wescore y bobina para transformador caracterizado porque comprende un núcleo de conformidad con las reivindicaciones
1, 2, 3 ó 4 y una bobina de conformidad con la reivindicación 5.
7. Un núcleo tipo toroidal para transformador caracterizado porque las lámina enrollada que forman el cuerpo de dicho núcleo presenta una disminución paulatina en su anchura de manera que se forma una pendiente recta o progresiva que define una o más paredes inclinadas o curvas.

Claims

8. El núcleo tipo toroidal de conformidad con lo reclamado en la reivindicación 7, en donde dicha disminución de anchura es tal que el área en sección transversal del núcleo toroidal es un octágono.
9. El núcleo tipo toroidal de conformidad con lo reclamado en la reivindicación 7, en donde dicha disminución de anchura es tal que ei área en sección transversal del núcleo toroidal es un hexágono.
10. El núcleo tipo toroidal de conformidad con io reclamado en la reivindicación 7, en donde dicha disminución de anchura es tal que el área en sección transversal del núcleo toroidal es óvalo o círculo. 11. Un ensamble de núcleo tipo toroidal y bobina para transformador caracterizado porque comprende un núcleo de conformidad con las reivindicaciones 7, 8, 9 ó 10 y una o más bobinas devanadas sobre el mismo.
PCT/MX1998/000014 1998-04-13 1998-04-13 Nucleos y bobinas para transformadores electricos WO1999053507A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002328193A CA2328193A1 (en) 1998-04-13 1998-04-13 Cores and coils for electrical transformers
KR1020007011334A KR20010106100A (ko) 1998-04-13 1998-04-13 전기 변압기용 코어 및 코일
EP98917784A EP1081723A4 (en) 1998-04-13 1998-04-13 CORES AND COILS FOR ELECTRICAL TRANSFORMERS
JP2000543977A JP2002511647A (ja) 1998-04-13 1998-04-13 電気変圧器用コア及びコイル
BR9815812-0A BR9815812A (pt) 1998-04-13 1998-04-13 Núcleos e bobinas para transformadores elétricos
PCT/MX1998/000014 WO1999053507A1 (es) 1998-04-13 1998-04-13 Nucleos y bobinas para transformadores electricos
AU70844/98A AU7084498A (en) 1998-04-13 1998-04-13 Cores and coils for electrical transformers
EA200001022A EA200001022A1 (ru) 1998-04-13 1998-04-13 Сердечники и обмотки для электрических трансформаторов
US09/673,130 US6535099B1 (en) 1998-04-13 1998-04-13 Cores and coils for electrical transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX1998/000014 WO1999053507A1 (es) 1998-04-13 1998-04-13 Nucleos y bobinas para transformadores electricos

Publications (1)

Publication Number Publication Date
WO1999053507A1 true WO1999053507A1 (es) 1999-10-21

Family

ID=19745011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX1998/000014 WO1999053507A1 (es) 1998-04-13 1998-04-13 Nucleos y bobinas para transformadores electricos

Country Status (8)

Country Link
US (1) US6535099B1 (es)
EP (1) EP1081723A4 (es)
JP (1) JP2002511647A (es)
KR (1) KR20010106100A (es)
AU (1) AU7084498A (es)
CA (1) CA2328193A1 (es)
EA (1) EA200001022A1 (es)
WO (1) WO1999053507A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315267A (zh) * 2021-06-22 2021-08-27 南通向方机电科技有限公司 一种低发热高效率的电动牙刷用马达

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003274848A1 (en) * 2002-11-01 2004-05-25 Magtech As Coupling device
KR100975341B1 (ko) * 2008-11-27 2010-08-12 우진전기 주식회사 비정질 코어의 제조방법
KR101064905B1 (ko) * 2009-03-06 2011-09-16 제룡산업 주식회사 아몰퍼스 변압기의 제조방법
US11255612B2 (en) 2014-07-25 2022-02-22 Enure, Inc. Wound strip machine
US10756583B2 (en) 2014-07-25 2020-08-25 Enure, Inc. Wound strip machine
WO2016014849A1 (en) 2014-07-25 2016-01-28 Prippel Technologies, Llc Fluid-cooled wound strip structure
USD771728S1 (en) * 2014-08-18 2016-11-15 Tokuden Co., Ltd. Three-leg iron core
USD800061S1 (en) 2014-08-26 2017-10-17 Tokuden Co., Ltd. Transformer
KR102136271B1 (ko) * 2020-03-09 2020-07-21 남도전기공업(주) 변압기용 코어 제조방법 및 이에 의해 제조된 변압기용 코어
CN113436873B (zh) * 2021-05-21 2022-11-29 深圳大学 一种立体卷变压器铁心制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960756A (en) * 1953-11-16 1960-11-22 Gen Electric Method of making magnetic cores
US3267557A (en) * 1961-11-13 1966-08-23 Porter Co Inc H K Method of making a laminated core
US4504813A (en) * 1982-12-03 1985-03-12 Mcgraw-Edison Company Energy saving wound core transformer
US4547721A (en) * 1980-12-01 1985-10-15 Drapp Joseph W Transformer structure
US4789849A (en) * 1985-12-04 1988-12-06 General Electric Company Amorphous metal transformer core and coil assembly
US5353494A (en) * 1992-11-03 1994-10-11 Kuhlman Corporatin Method for assembling a distribution transformer with conforming layers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534312A (en) * 1946-03-21 1950-12-19 Gen Electric Electric induction apparatus
US4283842A (en) * 1979-01-04 1981-08-18 Westinghouse Electric Corp. Method of making an electrical inductive apparatus
US4557039A (en) * 1979-10-19 1985-12-10 Susan V. Manderson Method of manufacturing transformer cores
FR2518306B1 (fr) * 1981-12-11 1986-11-28 Transfix Soc Nouv Transformateur electrique et procede pour sa fabrication
EP0273682B1 (en) * 1986-12-29 1993-03-17 Kitamura Kiden Co., Ltd. Method and apparatus for manufacturing wound core
US4993141A (en) * 1989-07-19 1991-02-19 Abb Power T&D Co., Inc. Method of making transformers and cores for transformers
JPH0541327A (ja) * 1991-08-05 1993-02-19 Denki Tetsushin Kogyo Kk 巻鉄心の製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960756A (en) * 1953-11-16 1960-11-22 Gen Electric Method of making magnetic cores
US3267557A (en) * 1961-11-13 1966-08-23 Porter Co Inc H K Method of making a laminated core
US4547721A (en) * 1980-12-01 1985-10-15 Drapp Joseph W Transformer structure
US4504813A (en) * 1982-12-03 1985-03-12 Mcgraw-Edison Company Energy saving wound core transformer
US4789849A (en) * 1985-12-04 1988-12-06 General Electric Company Amorphous metal transformer core and coil assembly
US5353494A (en) * 1992-11-03 1994-10-11 Kuhlman Corporatin Method for assembling a distribution transformer with conforming layers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1081723A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315267A (zh) * 2021-06-22 2021-08-27 南通向方机电科技有限公司 一种低发热高效率的电动牙刷用马达

Also Published As

Publication number Publication date
EP1081723A4 (en) 2003-05-21
US6535099B1 (en) 2003-03-18
CA2328193A1 (en) 1999-10-13
JP2002511647A (ja) 2002-04-16
EA200001022A1 (ru) 2001-06-25
KR20010106100A (ko) 2001-11-29
AU7084498A (en) 1999-11-01
EP1081723A1 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US8497755B2 (en) Hybrid transformer with transformation and improved harmonics functions, unbalanced current, and a power supply system thereof
AU753474B2 (en) Transformer
US8629746B2 (en) High frequency transformers
WO1999053507A1 (es) Nucleos y bobinas para transformadores electricos
AU726018B2 (en) Winding in transformer or inductor
CN105590735B (zh) 一种平面变压器
US20250062064A1 (en) Hybrid construction transformer
EP3062319B1 (en) Transformer for reducing eddy current losses of coil
US7471180B2 (en) Transformer having multi-layered winding structure
CN205487673U (zh) 一种平面变压器
US7656266B2 (en) Toroidal star-shaped transformer
CA1143435A (en) High voltage transformer for ac-dc converter
CN216119879U (zh) 共模电感
EP2187409B1 (en) Double active parts structure of reactor
KR101573813B1 (ko) 저손실 하이브리드 변압기 및 그 제조 방법
MXPA00010058A (es) Nucleos y bobinas para transformadores electricos
JP3544465B2 (ja) 単相単巻変圧器
US20230360845A1 (en) Winding arrangement for electrical transformer
CN222088387U (zh) 特种变压器及特种变压器低压引线联接结构
CN215377153U (zh) 一种具有异形压粉磁心的电感
CN209434020U (zh) 一种电流互感器
JPH06310350A (ja) 異容量負荷三相単相スコット結線変圧器
US20230402226A1 (en) Transformer with controlled leakage inductance
KR20240173485A (ko) 몰드 변압기 및 그 제조방법
US20240203637A1 (en) Winding arrangement for transformer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2328193

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020007011334

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/010058

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998917784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200001022

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 09673130

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998917784

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007011334

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998917784

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007011334

Country of ref document: KR