WO1999052116A1 - Coaxial cable, multicore cable, and electronics using them - Google Patents

Coaxial cable, multicore cable, and electronics using them Download PDF

Info

Publication number
WO1999052116A1
WO1999052116A1 PCT/JP1999/001744 JP9901744W WO9952116A1 WO 1999052116 A1 WO1999052116 A1 WO 1999052116A1 JP 9901744 W JP9901744 W JP 9901744W WO 9952116 A1 WO9952116 A1 WO 9952116A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial
conductor
insulator
cable
shaped conductor
Prior art date
Application number
PCT/JP1999/001744
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyonori Yokoi
Akinori Mori
Seiji Endo
Akira Yamamoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to DE69923740T priority Critical patent/DE69923740T2/en
Priority to KR1019997011217A priority patent/KR100613954B1/en
Priority to EP99910817A priority patent/EP0987720B1/en
Publication of WO1999052116A1 publication Critical patent/WO1999052116A1/en
Priority to US09/987,044 priority patent/US6894226B2/en
Priority to US10/964,693 priority patent/US7034228B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/183Co-axial cables with at least one helicoidally wound tape-conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors

Definitions

  • the present invention relates to a single-core coaxial element wire, a coaxial cable or a multi-core coaxial cable used for connecting a liquid crystal display inside a notebook computer or a sensor cable of a medical ultrasonic diagnostic apparatus, and an electronic apparatus using the same.
  • a single-core coaxial element wire a coaxial cable or a multi-core coaxial cable used for connecting a liquid crystal display inside a notebook computer or a sensor cable of a medical ultrasonic diagnostic apparatus, and an electronic apparatus using the same.
  • coaxial cables in which a sheath is applied to a coaxial element wire composed of a center conductor, an insulator, and an outer conductor have been used.
  • Such coaxial cables include a single-core cable in which a single coaxial cable is covered, a multi-core cable in which a plurality of single-core cables are provided with a common cover, and a plurality of coaxial cables.
  • a method of arranging coaxial wires or single-core cables in a multi-core cable there is a layered multi-core cable in which coaxial wires or single-core cables are mutually twisted with a flat multi-core cable arranged on a plane.
  • Such a single-core or multi-core coaxial cable may be a combination of cables of the same type or a composite cable combining other types of communication lines and power lines.
  • a metal tape or a laminated tape obtained by laminating a metal tape and an insulating film such as polyester is generally used as an outer conductor (shield).
  • an outer conductor shield
  • braided metal tapes such as those disclosed in Japanese Utility Model Laid-Open No. 2-74772 and Japanese Patent Laid-Open No. 2-77728 are known.
  • the outer conductor is a metal tape braid
  • FIG. 4 is a side view showing a conventional coaxial cable using a braided metal tape.
  • 11 is a center conductor
  • 12 is an insulator
  • 13 is an outer conductor braided with metal tape
  • 14 is a jacket.
  • a metal tape a slit of a wide metal tape is usually used, but a cut surface at the time of slitting the metal tape is used.
  • sharp edges such as burrs remain, and this portion may damage the insulator, or the voltage may be concentrated at this point, and the withstand voltage may decrease. In particular, this problem becomes serious in the case of a thin coaxial cable having a thin insulation thickness of 0.15 mm or less.
  • the conventional coaxial cable can be used to move the sensor wiring for electronic devices, especially for the medical sensor cable, where the cable moves whenever the rotating part, which is the connection between the monitor and the main unit of a notebook computer, or the medical treatment site is changed.
  • the coaxial cable is moved, the static noise is generated due to friction between the insulator and the outer conductor when the coaxial cable moves. Disclosure of the invention
  • the present invention has been obtained as a result of various studies on the above problems, and can be applied to the coaxial cables of the above various forms.
  • the present inventors have used, as an external conductor, a ripon-shaped conductor obtained by rolling and flattening a copper or copper alloy round wire, and spirally winding the ripon-shaped conductor on an insulator to form an outer conductor.
  • a coaxial element wire and a coaxial cable having flexibility, small generation of noise when mechanical movement is performed, and excellent in mechanical durability and having a small outer diameter. This led to the completion of the present invention.
  • the present invention firstly provides a coaxial strand comprising a center conductor, an insulator and an outer conductor, wherein the insulator has a thickness of 0.15 mm or less and a copper or copper alloy round wire is rolled as the outer conductor.
  • a coaxial strand characterized by using a ribbon-shaped conductor that has been flattened, and the ribbon-shaped conductor is spirally wound around an insulator.
  • the insulator is provided in contact with and around the core conductor, and the thickness of the insulator is 0.03 mm at the smallest part.
  • the outer conductor is 0.15 mm or less, and the outer conductor is formed by spirally winding one or more ripon-shaped conductors with a smooth cross section at four corners, with one long side facing the insulator. And a winding angle of the ripon-shaped conductor with respect to the axis of the coaxial wire is 45 degrees or more.
  • the thickness of the insulator is obtained as the thickness of the smallest part by measuring the thickness of the insulator in the circumferential direction.
  • the ribbon-shaped conductor is made of a metal containing copper, It is wound around the insulator with a tension of 30% or more of the tensile breaking tension of the conductor.
  • a single core coaxial cable may be provided by coating the single coaxial strand described above with a jacket.
  • a multi-core cable in which a plurality of the above-described coaxial wires are gathered and provided with a common jacket may be used. Further, the single core coaxial cable may be provided with a common jacket to form a multicore cable.
  • the electronic device is characterized in that the coaxial element wire, the coaxial cable or the multi-core cable is arranged at a position where the electronic device is mechanically turned or bent.
  • the substantially rectangular ripon-shaped conductor having a smooth cross section at four corners can be easily manufactured at low cost by rolling and flattening a copper or copper alloy round wire.
  • the ripon-shaped conductor does not have a sharp edge on the outer periphery of the cross section, there is no problem of damage to the insulator or voltage concentration when wound as an external conductor, and such a substantially rectangular ripon.
  • the conductor has high mechanical strength and is not braided, so it is easy to remove and handle in terminal treatment and the like. Further, the inventors have found that the noise generated in the coaxial cable due to the rotation and bending of the arrangement portion in the electronic device is the electrostatic noise generated due to the friction between the insulator and the outer conductor.
  • the outer conductor of the present invention is spirally wound with one long side of the substantially rectangular shape of the ribbon-shaped conductor facing the insulator, the contact surface between the ribbon-shaped conductor and the insulator has a wider friction. Because of the large size, even when the coaxial cable is bent, the phenomenon that the ripon-shaped conductor moves by rubbing against the insulator does not easily occur, and electrostatic noise is prevented.
  • FIG. 1 is a perspective view showing a single-core coaxial cable using a typical coaxial wire of the present invention
  • FIG. 2 is a schematic diagram for explaining how to wind a ripon-shaped conductor according to the present invention.
  • FIG. 3 is a schematic view showing a cross section of a flat cable as an example of the multi-core cable of the present invention.
  • FIG. 4 is a side view showing a conventional coaxial cable using a braid of metal tape.
  • Fifth a cross-sectional view of the ripon-shaped conductor of the present invention is shown in comparison with a round wire before rolling.
  • FIG. 6 is a diagram illustrating a bending test of a coaxial strand.
  • Fig. 7 shows the twist of the coaxial strand It is a figure explaining a round test.
  • the coaxial cable constituting the coaxial cable of the present invention basically has a thickness of the insulator of 0.15 mm or less, and the coaxial cable can be configured to have a small diameter. It is effective for coaxial cables wired in electronic devices and thin flat multi-core cables that are required to be miniaturized.
  • a copper or copper alloy round wire is rolled and flattened as a lipon-shaped conductor as an outer conductor, and this ripon-shaped conductor is spirally wound on an insulator to form a coaxial strand.
  • FIG. 1 is a perspective view schematically showing a single-core coaxial cable using a typical coaxial wire of the present invention. In FIG.
  • 1, 1 is a central conductor such as copper or a copper alloy
  • 2 is an insulator made of PFA, polyester, polyimide film, etc.
  • 3 is an outer conductor, and a ribbon having a substantially rectangular cross section and a smooth cross section at four corners. It consists of a conductor.
  • This ripon-shaped conductor can be manufactured by chamfering four corners of a rectangular conductor wire.
  • copper or copper alloy round wires can be rolled and flattened, which is advantageous in terms of manufacturing cost.
  • the outer conductor 3 is formed by spirally winding the ribbon-shaped conductor around the insulator 2.
  • Thickness of insulator Electronic devices such as notebook computers and medical sensors change position and angle by human power, so they are required to be smaller and lighter, and coaxial cables to be used are also laid out in narrow spaces. Is done. For this reason, thinner coaxial cables are required.
  • the coaxial cable is deformed by the rotation or bending of the arrangement portion, the strain applied to the coaxial cable, especially to the outer conductor, increases as the outer diameter increases, and the noise generation also increases. For this reason, the thickness of the insulator of the coaxial strand of the present invention and the coaxial strand constituting the coaxial cable must be as thin as 0.15 mm or less.
  • the thickness of the insulator is better as it is thinner, it will be repeatedly deformed by bending and twisting during use, so it will be extremely thin within the range showing moderate mechanical durability and flexibility A value, for example, about 0.03 mm or more is desirable.
  • the ripon-shaped conductor that constitutes the outer conductor is made of a rolled and flattened round wire using a metal conductor such as copper or copper alloy, and this ribbon-shaped A conductor is spirally wound on an insulator to form an external conductor. Since the ripon-shaped conductor is obtained by rolling a round wire as described above, the four corners of the cross section have a smooth shape and a substantially rectangular shape without sharp edges on the entire circumference.
  • the outer conductor is formed by winding one long side of a substantially rectangular shape of the ribbon-shaped conductor toward the insulator.
  • the ribbon-shaped conductor does not have an acute edge like the slit tape of the conventional method, and is not likely to cause damage to the insulator or localization of the voltage, and has a stable withstand voltage characteristic. Obtainable.
  • the tension does not break when the wire is broken, and it is preferably 30% or more and 80% or less of the breaking tension of the ripon-shaped conductor.
  • a layer in which a metal is deposited on a thinner tape may be provided under the outer conductor, in which case the shielding effect can be improved and the dielectric strength characteristics of the insulator can be increased.
  • the winding angle of the ripon-shaped conductor is preferably 45 ° or more in terms of imparting flexibility, and more preferably 60 ° or more.If the angle is too close to a right angle, productivity is extremely reduced, which is preferable. There is no limit, about 80 degrees.
  • the outer conductor preferably has a thickness of not more than 0.03 mm in order to reduce the outer diameter of the coaxial strand and the coaxial cable, and has a thickness of not less than 0.01 mm from the viewpoint of mechanical strength. Desirably.
  • the width of the ripon-shaped conductor is preferably wide from the viewpoint of maintaining the characteristics as the external conductor, and is preferably 0.1 mm or more.The width is narrow from the viewpoint of workability of winding and cost.
  • the thickness is 0.3 mm or less.
  • the outer conductor is a tape with a thickness of 0.025 mm and a width of 0.20 mm produced by rolling a round wire with an outer diameter of 0.08 mm.
  • Conductors and tape-shaped conductors with a thickness of 0.012111111 and a width of 0.18 mm produced by rolling a round wire with an outer diameter of 0.05 mm have excellent properties.
  • Multi-core cable In particular, in the case of the multi-core cable of the present invention, coaxial strands are assembled. In both cases where a common jacket is applied, or when a single core coaxial cable is assembled and a common jacket is applied, the outer conductor of the coaxial wire is formed from a round wire by rolling to form an acute angle around the outer circumference. With a smooth surface without edges, etc., even if a force from the side surface, so-called side pressure, acts on the coaxial wire by twisting, etc., there is no risk that the insulator will be damaged by the external conductor, and the withstand voltage of the insulator will decrease. This eliminates the need to worry about multi-core cables while maintaining the mechanical durability and electrical characteristics of the multi-core cables, and enables thinner and thinner multi-core cables.
  • the present invention will be specifically described by the following examples.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • resin is applied as an insulator around a 0.09 mm outer diameter center conductor (7 strands of 30 m outer diameter tinplate copper alloy wire).
  • This coaxial wire was subjected to a withstand voltage test as its basic characteristics, a bending test and a torsion test, and an electrostatic noise test as insulation characteristics when used in a rotating or bent portion.
  • a withstand voltage test as its basic characteristics
  • a bending test and a torsion test as insulation characteristics when used in a rotating or bent portion.
  • an electrostatic noise test as insulation characteristics when used in a rotating or bent portion.
  • Fig. 6 schematically shows the test method.
  • the center part of the coaxial strand 20 is sandwiched between two metal rods 22 with an outer diameter of 5 mm, and a load of 50 gf is placed at the lower end.
  • Weight 21 was attached, and the upper end was wrapped 90 degrees around the left and right metal rods and stretched.
  • One bending was performed once for each of the left and right, and the bending was performed 100 times at a speed of 30 times Z. After that, the same pressure resistance test as above was performed, but no pressure failure was recognized, and excellent resistance to repeated bending was confirmed.
  • FIG. 7 schematically shows the test method. Fix the upper end of the 20 cm long coaxial strand 20 to the upper end fixing point 24, attach a load 23 of 50 gf to the lower end and suspend it vertically.This load 23 is the center axis of the coaxial cable. The work was performed clockwise and counterclockwise alternately by 180 degrees around the axis. With each twist of clockwise and counterclockwise as one twist, after twisting 100,000 times at a speed of 30 times, the same withstand voltage test as above was performed. It was not recognized, and excellent resistance to twisting was confirmed.
  • Electrostatic noise characteristics Fig. 7 schematically shows the test method.
  • a 50-cm long coaxial strand is stretched horizontally, a 20-cm-long cotton thread is tied at the center, and the A load of 20 gf was applied to the other end.
  • the weight was allowed to freely fall from the height of the coaxial wire, and the electrostatic noise characteristics were measured as the maximum value of the voltage fluctuation. .
  • the maximum value of the voltage fluctuation generated for this coaxial strand was a maximum of 2.5 mV.
  • the coaxial strands 10 were arranged in parallel and covered with a polyester tape with an adhesive as a jacket 4 to form a flat multicore cable.
  • a single core coaxial cable is formed by coating the coaxial strand with a single core coaxial cable, and the single core coaxial cable is twisted with 30 cores, and a common jacket is applied to the outside of the single core coaxial cable.
  • a thin multi-core cable was obtained while maintaining mechanical durability. It was confirmed that the multi-core cable obtained in this way also had good properties including insulation properties.
  • Example 2 In Example 1, the ribbon-shaped conductor was spirally wound with a tension of 55 gf Zl at a pitch of 0.18 mm and an angle of 75 degrees in a butt winding as shown in FIG. 2 (B). To produce a coaxial strand. The withstand voltage characteristics, bending characteristics, twisting characteristics, and electrostatic noise characteristics of the coaxial strand were also good. Using this coaxial wire, a single-core coaxial cable, a flat multi-core cable and a multi-core cable were produced in the same manner as in Example 1. It was confirmed that the coaxial cable and the multi-core cable obtained in this way also had good properties including insulation properties.
  • Example 1 As shown in FIG. 2 (C), the ripon-shaped conductor was spirally wound at a pitch of 0.29 mm and an angle of 68 degrees under tension of one piece of 65 gf Z (2 pieces in the same direction). Coaxial strands were produced by winding each sheet.
  • a second ribbon-shaped conductor was wound in the opposite direction at a pitch of 0.29 mm and an angle of 68 degrees. The withstand voltage characteristics, bending characteristics, torsion characteristics, and electrostatic noise characteristics of these coaxial wires were good, and the shield characteristics of the outer conductor layer were particularly excellent.
  • a substantially rectangular ripon-shaped conductor having a smooth cross section at the four corners is used as the external conductor, and the ripon-shaped conductor is spirally wound around the insulator to form a coaxial element without the external conductor. Therefore, by using this coaxial element wire, a thin coaxial cable having flexibility and high mechanical durability can be obtained.
  • a plurality of these simultaneous strands or coaxial cables can be assembled and sheathed to use as a multi-core cable.
  • the coaxial cable or multi-core cable obtained in this way in the rotating or bent part of the electronic device, it is possible to obtain an electronic device with excellent insulation characteristics and low electrostatic noise over a long period of time and high quality. Thus, high-speed internal signal transmission can be realized.

Landscapes

  • Communication Cables (AREA)

Abstract

A coaxial cable capable of facilitating an external conductor removing work for terminal treatment, providing an excellent insulation characteristics, and reducing noise even if it is bent or rotated, wherein one or more pieces of coaxial strands (1) having an external conductor which are formed by spirally winding a ribbon-shaped conductor having smoothly cornered generally rectangular cross section, at an angle of 45° or higher, around the periphery of an insulating body are used so as to form a coaxial cable, and the coaxial cables are disposed at those positions where they are subject to mechanical rotation and bending so as to form electronics.

Description

明細書 同軸ケーブル、 多心ケーブル及びそれを用いた電子機器 技術分野  Description Coaxial cable, multi-core cable and electronic equipment using the same
この発明は、 ノートバソコン内部の液晶ディスプレイ接続用や医療用超音波診 断装置のセンサーケーブル等に使用される単心の同軸素線、 同軸ケーブル又は多 心の同軸ケーブル及びそれを用いた電子機器に関する。 背景技術  The present invention relates to a single-core coaxial element wire, a coaxial cable or a multi-core coaxial cable used for connecting a liquid crystal display inside a notebook computer or a sensor cable of a medical ultrasonic diagnostic apparatus, and an electronic apparatus using the same. About. Background art
従来より、 中心導体、 絶縁体、 外部導体からなる同軸素線に外被を施した同 軸ケーブルが利用されている。 このような同軸ケーブルには 1本の同軸素線に外 被を施した単心ケーブル、 複数本の単心ケーブルに共通の外被を施す多心ケ一ブ ル、 そして複数本の同軸素線に共通の外被を施す多心ケ一ブルなどがある。 また 多心ケーブル内の同軸素線又は単心ケーブルの配列方法としては同軸素線または 単心ケーブルを平面上に整列した平型多心ケーブルと相互に撚り合わせた層撚り 多心ケーブルがある。 このような単心または多心の同軸ケーブルは同種のケープ ルを集合する場合と他の種類の通信線や電力線等を複合した複合ケーブルとする 場合がある。  Conventionally, coaxial cables in which a sheath is applied to a coaxial element wire composed of a center conductor, an insulator, and an outer conductor have been used. Such coaxial cables include a single-core cable in which a single coaxial cable is covered, a multi-core cable in which a plurality of single-core cables are provided with a common cover, and a plurality of coaxial cables. There is a multi-core cable for applying a common jacket. As a method of arranging coaxial wires or single-core cables in a multi-core cable, there is a layered multi-core cable in which coaxial wires or single-core cables are mutually twisted with a flat multi-core cable arranged on a plane. Such a single-core or multi-core coaxial cable may be a combination of cables of the same type or a composite cable combining other types of communication lines and power lines.
従来の同軸ケーブルにおいては、 金属テープ或いは金属テープとポリエステル 等の絶縁フィルムを積層した積層テープが外部導体 (シールド) として一般的に 使用されている。 例えば、 実開平 2— 4 7 7 2 6号公報、 2— 4 7 7 2 8号公報 に示されるような金属テープの編組体が知られている。 この外部導体が金属テー プ編組の場合にはばらけない利点がある。 反面、 端末処理等のために外部導体を 除去しょうとするときに手間がかかるという欠点がある。  In a conventional coaxial cable, a metal tape or a laminated tape obtained by laminating a metal tape and an insulating film such as polyester is generally used as an outer conductor (shield). For example, braided metal tapes such as those disclosed in Japanese Utility Model Laid-Open No. 2-74772 and Japanese Patent Laid-Open No. 2-77728 are known. When the outer conductor is a metal tape braid, there is an advantage that it does not vary. On the other hand, there is a disadvantage that it takes time and effort to remove the external conductor for terminal treatment.
第 4図は編組金属テープを使用した従来の同軸ケーブルを示す側面図である。 第 4図において、 1 1は中心導体、 1 2は絶縁体、 1 3は金属テープを編組した 外部導体、 1 4は外被である。 このような金属テープとしては、 通常巾広の金属 テープをスリットしたものが使用されるが、 金属テープのスリッ卜の際の切断面 にかえり、バリ等のシャープなエッジが残り、 この部分が絶縁体を損傷させたり、 またこの点に電圧が集中すること等により絶縁耐圧が低下する場合がある。 特に 絶縁厚が 0 . 1 5 mm以下と薄い細径の同軸ケーブルの場合にはこの問題が深刻 となる。 FIG. 4 is a side view showing a conventional coaxial cable using a braided metal tape. In FIG. 4, 11 is a center conductor, 12 is an insulator, 13 is an outer conductor braided with metal tape, and 14 is a jacket. As such a metal tape, a slit of a wide metal tape is usually used, but a cut surface at the time of slitting the metal tape is used. On the contrary, sharp edges such as burrs remain, and this portion may damage the insulator, or the voltage may be concentrated at this point, and the withstand voltage may decrease. In particular, this problem becomes serious in the case of a thin coaxial cable having a thin insulation thickness of 0.15 mm or less.
また、 従来の同軸ケーブルを電子機器内の機器配線、 特にノート型コンピュー 夕のモニタ部と本体部の結合部分にあたる回動部や診療箇所を変えるたびにケ一 ブルが動く医療用センサーケーブルの可動部に配置した場合に、 同軸ケーブルが 動く際に絶縁体と外部導体との摩擦による静電雑音が発生する問題があった。 発明の開示  In addition, the conventional coaxial cable can be used to move the sensor wiring for electronic devices, especially for the medical sensor cable, where the cable moves whenever the rotating part, which is the connection between the monitor and the main unit of a notebook computer, or the medical treatment site is changed. When the coaxial cable is moved, the static noise is generated due to friction between the insulator and the outer conductor when the coaxial cable moves. Disclosure of the invention
この発明は、 上記課題について種々検討した結果得られたものであって、 上記 の種々の形態の同軸ケーブルに適用できる。 発明者らは、 外部導体として銅また は銅合金の丸線を圧延して偏平化させたリポン状導体を用い、 且つこのリポン状 導体を絶縁体上にらせん状に巻装して外部導体を構成することにより、 可撓性を 有し、 機械的な運動を行った場合の雑音の発生が小さく、 且つ機械的耐久性に富 み外径の細い同軸素線及び同軸ケーブルが得られることを見出し、 この発明を完 成するに至った。  The present invention has been obtained as a result of various studies on the above problems, and can be applied to the coaxial cables of the above various forms. The present inventors have used, as an external conductor, a ripon-shaped conductor obtained by rolling and flattening a copper or copper alloy round wire, and spirally winding the ripon-shaped conductor on an insulator to form an outer conductor. By configuring, it is possible to obtain a coaxial element wire and a coaxial cable having flexibility, small generation of noise when mechanical movement is performed, and excellent in mechanical durability and having a small outer diameter. This led to the completion of the present invention.
この発明は、 まず、 中心導体と絶縁体と外部導体からなる同軸素線であって、 絶縁体の厚さが 0 . 1 5 mm以下で、 外部導体として銅または銅合金の丸線を圧 延して扁平化したリボン状導体を用い、 リボン状導体を絶縁体の周囲にらせん状 に巻装したことを特徴とする同軸素線である。  The present invention firstly provides a coaxial strand comprising a center conductor, an insulator and an outer conductor, wherein the insulator has a thickness of 0.15 mm or less and a copper or copper alloy round wire is rolled as the outer conductor. A coaxial strand characterized by using a ribbon-shaped conductor that has been flattened, and the ribbon-shaped conductor is spirally wound around an insulator.
第二に、 中心導体と絶縁体と外部導体からなる同軸素線であって、 絶縁体は中 心導体に接してその周囲に設けられ、 絶縁体の厚みは最も小さい部分で 0 . 0 3 mm以上 0 . 1 5 mm以下であり、 外部導体は断面の四隅が滑らかな形状の略矩 形の 1または複数のリポン状導体を一つの長辺を絶縁体に向けて螺旋状に巻装さ れてなり、 リポン状導体の同軸素線の軸に対する巻き角度が 4 5度以上であるこ とを特徴とする同軸素線である。 ここで、 中心導体が複数の導体線の燃り線の場 合、 絶縁体の厚みは周方向に絶縁体の厚みを測定して最も小さい部分の厚みとし て得られる。 さらに、 ここで、 リボン状導体は銅を含む金属から構成され、 リボ ン状導体の引張り破断張力の 3 0 %以上の張力で絶縁体の周囲に巻装することを 特徴とする。 Second, it is a coaxial wire consisting of a center conductor, an insulator, and an outer conductor, and the insulator is provided in contact with and around the core conductor, and the thickness of the insulator is 0.03 mm at the smallest part. The outer conductor is 0.15 mm or less, and the outer conductor is formed by spirally winding one or more ripon-shaped conductors with a smooth cross section at four corners, with one long side facing the insulator. And a winding angle of the ripon-shaped conductor with respect to the axis of the coaxial wire is 45 degrees or more. Here, when the center conductor is a fire wire of a plurality of conductor wires, the thickness of the insulator is obtained as the thickness of the smallest part by measuring the thickness of the insulator in the circumferential direction. Here, the ribbon-shaped conductor is made of a metal containing copper, It is wound around the insulator with a tension of 30% or more of the tensile breaking tension of the conductor.
また上記の同軸素線 1本に、 外被を施し単心同軸ケーブルとしても良い。  Also, a single core coaxial cable may be provided by coating the single coaxial strand described above with a jacket.
また、 複数本の上記の同軸素線を集合して共通の外被を施した多心ケーブルと しても良い。 また、 上記の単心同軸ケーブルに共通の外被を施して多心ケーブル としても良い。  Also, a multi-core cable in which a plurality of the above-described coaxial wires are gathered and provided with a common jacket may be used. Further, the single core coaxial cable may be provided with a common jacket to form a multicore cable.
さらに、 上記の同軸素線、 同軸ケーブルまたは多心ケーブルを電子機器の機械 的な回動や屈曲を受ける箇所に配置したことを特徴とする電子機器である。  Further, the electronic device is characterized in that the coaxial element wire, the coaxial cable or the multi-core cable is arranged at a position where the electronic device is mechanically turned or bent.
ここで用いる断面の四隅が滑らかな形状の略矩形のリポン状導体は、 銅または 銅合金の丸線を圧延して偏平化させることにより、容易に低コストで製造できる。 この発明では、 リポン状導体が断面外周に鋭角的なエッジを有さないため、 外部 導体として巻装したときに絶縁体の損傷や電圧集中の問題が生じず、 またこのよ うな略矩形のリポン状導体は機械強度も高く、 編組されていないため端末処理等 において除去が容易で扱いやすい。 さらに、 発明者らの検討により、 電子機器内 の配置部位の回動屈曲により同軸ケーブルに発生する雑音が、 絶縁体と外部導体 の摩擦により発生する静電雑音であることがわかった。 この発明の外部導体はリ ボン状導体の略矩形の一つの長辺を絶縁体に向けた状態で螺旋状に巻装してなる ため、 リボン状導体と絶縁体との密着面が広く摩擦が大きいため、 同軸ケーブル が曲げられた場合にもリポン状導体が絶縁体を擦って動く現象が生じにくく、 静 電雑音が防止される。 図面の簡単な説明  The substantially rectangular ripon-shaped conductor having a smooth cross section at four corners can be easily manufactured at low cost by rolling and flattening a copper or copper alloy round wire. In the present invention, since the ripon-shaped conductor does not have a sharp edge on the outer periphery of the cross section, there is no problem of damage to the insulator or voltage concentration when wound as an external conductor, and such a substantially rectangular ripon. The conductor has high mechanical strength and is not braided, so it is easy to remove and handle in terminal treatment and the like. Further, the inventors have found that the noise generated in the coaxial cable due to the rotation and bending of the arrangement portion in the electronic device is the electrostatic noise generated due to the friction between the insulator and the outer conductor. Since the outer conductor of the present invention is spirally wound with one long side of the substantially rectangular shape of the ribbon-shaped conductor facing the insulator, the contact surface between the ribbon-shaped conductor and the insulator has a wider friction. Because of the large size, even when the coaxial cable is bent, the phenomenon that the ripon-shaped conductor moves by rubbing against the insulator does not easily occur, and electrostatic noise is prevented. BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明の代表的な同軸素線を用いた単心同軸ケーブルを示す斜視図 であり、第 2図はこの発明によるリポン状導体の巻き方を説明する模式図である。 第 3図はこの発明の多心ケーブルの 1例としてフラットケ一ブルの横断図を示す 模式図である。  FIG. 1 is a perspective view showing a single-core coaxial cable using a typical coaxial wire of the present invention, and FIG. 2 is a schematic diagram for explaining how to wind a ripon-shaped conductor according to the present invention. FIG. 3 is a schematic view showing a cross section of a flat cable as an example of the multi-core cable of the present invention.
第 4図は金属テープの編組を用いた従来の同軸ケーブルを示す側面図である。 第 5はこの発明のリポン状導体の断面図を圧延前の丸線と比較して示した図で ある。 第 6図は同軸素線の屈曲試験を説明する図である。 第 7図は同軸素線の捻 回試験を説明する図である。 発明を実施するための最良の形態 FIG. 4 is a side view showing a conventional coaxial cable using a braid of metal tape. Fifth, a cross-sectional view of the ripon-shaped conductor of the present invention is shown in comparison with a round wire before rolling. FIG. 6 is a diagram illustrating a bending test of a coaxial strand. Fig. 7 shows the twist of the coaxial strand It is a figure explaining a round test. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明を図面に基いて詳細に説明する。 この発明の同軸ケーブルを構 成する同軸素線は基本的に絶縁体の厚さが 0 . 1 5 mm以下であり、 同軸素線が 細径に構成でき、 特に配線空間が小さく電線の占める容積の小型化が求められる 電子機器内に配線される同軸ケーブルや厚みの薄い平型多心ケーブルなどにおい て効果を発揮する。 また、 外部導体として銅または銅合金の丸線を圧延して偏平 化させたリポン状導体を用い、 このリポン状導体を絶縁体上にらせん状に巻装し て同軸素線を構成する。 第 1図は、 この発明の代表的な同軸素線を用いた単心同 軸ケーブルを模式的に示す斜視図である。 第 1図において、 1は銅又は銅合金等 の中心導体、 2は P F A、 ポリエステル、 ポリイミドフィルム等からなる絶縁体、 3は外部導体であり、 断面が略矩形で四隅が滑らかな断面を有するリポン状導体 からなる。 このリポン状導体は、 矩形の導体線の四隅を面取りするなどして製造 することができる。 また、 銅または銅合金の丸線を圧延して偏平化して製造する ことができ、 製造コストの面で有利である。 このリボン状導体を絶縁体 2の周囲 にらせん状に巻装して外部導体 3を形成する。  Hereinafter, the present invention will be described in detail with reference to the drawings. The coaxial cable constituting the coaxial cable of the present invention basically has a thickness of the insulator of 0.15 mm or less, and the coaxial cable can be configured to have a small diameter. It is effective for coaxial cables wired in electronic devices and thin flat multi-core cables that are required to be miniaturized. In addition, a copper or copper alloy round wire is rolled and flattened as a lipon-shaped conductor as an outer conductor, and this ripon-shaped conductor is spirally wound on an insulator to form a coaxial strand. FIG. 1 is a perspective view schematically showing a single-core coaxial cable using a typical coaxial wire of the present invention. In FIG. 1, 1 is a central conductor such as copper or a copper alloy, 2 is an insulator made of PFA, polyester, polyimide film, etc., 3 is an outer conductor, and a ribbon having a substantially rectangular cross section and a smooth cross section at four corners. It consists of a conductor. This ripon-shaped conductor can be manufactured by chamfering four corners of a rectangular conductor wire. In addition, copper or copper alloy round wires can be rolled and flattened, which is advantageous in terms of manufacturing cost. The outer conductor 3 is formed by spirally winding the ribbon-shaped conductor around the insulator 2.
( 1 ) 絶縁体の厚さ:ノート型コンピュータや医療用センサー等の電子機器は 人力により位置や角度を変えるためますます小型化、 軽量化が求められており、 用いる同軸ケーブルも狭いスペースに配線される。 このため同軸ケーブルの細線 化が求められている。 一方、 同軸ケーブルが配置部分の回動や屈曲により変形さ せられる際に同軸ケーブル、 特に外部導体に加えられる歪は外径が大きいほど大 きく、 雑音の発生も大きくなつていた。 このため、 本発明の同軸素線及び同軸ケ —ブルを構成する同軸素線の絶縁体の厚さは 0 . 1 5 mm以下と薄いことが必要 である。 他方、 絶縁体厚さは薄ければ薄いほど良いとは言うものの、 使用期間中 に繰り返し曲げや捻りによる変形を受けるため、 一応の機械的耐久性、 可撓性を 示す範囲内で極細となる値、 例えば 0 . 0 3 mm程度以上が望ましい。  (1) Thickness of insulator: Electronic devices such as notebook computers and medical sensors change position and angle by human power, so they are required to be smaller and lighter, and coaxial cables to be used are also laid out in narrow spaces. Is done. For this reason, thinner coaxial cables are required. On the other hand, when the coaxial cable is deformed by the rotation or bending of the arrangement portion, the strain applied to the coaxial cable, especially to the outer conductor, increases as the outer diameter increases, and the noise generation also increases. For this reason, the thickness of the insulator of the coaxial strand of the present invention and the coaxial strand constituting the coaxial cable must be as thin as 0.15 mm or less. On the other hand, although the thickness of the insulator is better as it is thinner, it will be repeatedly deformed by bending and twisting during use, so it will be extremely thin within the range showing moderate mechanical durability and flexibility A value, for example, about 0.03 mm or more is desirable.
( 2 ) 外部導体:外部導体を構成するリポン状導体としては、 銅又は銅合金等 の金属導体を用いた丸線を圧延して偏平化させたものを用い、 且つこのリボン状 導体を絶縁体上にらせん状に巻装して外部導体とする。 このようにリポン状導体 が丸線を圧延して得られたものであるので、 その断面の四隅は滑らかな形状とな り全周に鋭角的なェッジを有しない略矩形の形態をとる。 外部導体はこのリボン 状導体の略矩形の一つの長辺を絶縁体に向けて巻装して構成する。 リボン状導体 がこのような形態を有する結果、 従来法のスリットテープのような鋭角的なエツ ジを有することがなく、 絶縁体の破損や電圧の局在化が生じにくく安定した絶縁 耐圧特性を得ることができる。 更に、 丸線を圧延して偏平化させた銅または銅合 金を軟化せずにリボン状導体として使用することにより、 従来法のようにわざわ ざ編組しなくても巻き付けるだけでばらけないという利点がある。 リボン状導体 を巻装する際の張力は絶縁体の特性を損なうことなく、 巻かれたリボン状導体が 常に絶縁体を締め付ける力を保ちつつ、 同軸素線又は同軸ケーブルが曲げられた り捻回された際に破断しない張力であることが必要で、 リポン状導体の破断張力 の 3 0 %以上 8 0 %以下であることが好ましい。 また、 外部導体の下に更に薄肉 のテープに金属を蒸着した層を設けても良く、 その場合には遮蔽効果の改善と絶 縁体の絶縁耐圧特性を高めることができる。 (2) Outer conductor: The ripon-shaped conductor that constitutes the outer conductor is made of a rolled and flattened round wire using a metal conductor such as copper or copper alloy, and this ribbon-shaped A conductor is spirally wound on an insulator to form an external conductor. Since the ripon-shaped conductor is obtained by rolling a round wire as described above, the four corners of the cross section have a smooth shape and a substantially rectangular shape without sharp edges on the entire circumference. The outer conductor is formed by winding one long side of a substantially rectangular shape of the ribbon-shaped conductor toward the insulator. As a result of the ribbon-shaped conductor having such a form, it does not have an acute edge like the slit tape of the conventional method, and is not likely to cause damage to the insulator or localization of the voltage, and has a stable withstand voltage characteristic. Obtainable. In addition, by using flattened copper or copper alloy by rolling a round wire as a ribbon-shaped conductor without softening, it can be unwound simply by winding without the need for special braiding as in the conventional method. There is an advantage. The tension when winding the ribbon-shaped conductor does not impair the properties of the insulator, and the coaxial strand or cable is bent or twisted while the wound ribbon-shaped conductor always keeps the strength to tighten the insulator. It is necessary that the tension does not break when the wire is broken, and it is preferably 30% or more and 80% or less of the breaking tension of the ripon-shaped conductor. Further, a layer in which a metal is deposited on a thinner tape may be provided under the outer conductor, in which case the shielding effect can be improved and the dielectric strength characteristics of the insulator can be increased.
リポン状導体導体の巻き角度は、 4 5度以上あればフレキシビリティを持たせ る点で望ましく、 より好ましくは 6 0度以上であるが、 直角に近くなり過ぎると 生産性が極端に低下し好ましくないので 8 0度程度が限度である。 また、 外部導 体の寸法としては、 同軸素線及び同軸ケーブルの外径を小さくするために厚みが 0 . 0 3 mm以下であることが好ましく、 機械強度の点から 0 . 0 1 mm以上で あることが望ましい。 またリポン状導体の幅は外部導体としての特性の保持の観 点からは広い方が良く、 0 . 1 mm以上であることが好ましく、 巻装の作業性と コス卜の点からは幅が狭い方が材料価格が安く、 かつ巻装する際の皺が生じにく いため、 0 . 3 mm以下のものが好ましい。 特に、 電気特性、 機械特性、 製造性 の面から外部導体としては、外径 0 . 0 8 mmの丸線を圧延して製造した厚み 0 . 0 2 5 mm, 幅 0 . 2 0 mmのテープ状の導体や、 外径 0 . 0 5 mmの丸線を圧 延して製造した厚み 0 . 0 1 2 111111、 幅0 . 1 8 mmのテープ状の導体が優れた 特性を有する。  The winding angle of the ripon-shaped conductor is preferably 45 ° or more in terms of imparting flexibility, and more preferably 60 ° or more.If the angle is too close to a right angle, productivity is extremely reduced, which is preferable. There is no limit, about 80 degrees. The outer conductor preferably has a thickness of not more than 0.03 mm in order to reduce the outer diameter of the coaxial strand and the coaxial cable, and has a thickness of not less than 0.01 mm from the viewpoint of mechanical strength. Desirably. The width of the ripon-shaped conductor is preferably wide from the viewpoint of maintaining the characteristics as the external conductor, and is preferably 0.1 mm or more.The width is narrow from the viewpoint of workability of winding and cost. Since the material cost is lower and wrinkles during winding are less likely to occur, it is preferable that the thickness is 0.3 mm or less. In particular, from the viewpoints of electrical characteristics, mechanical characteristics, and manufacturability, the outer conductor is a tape with a thickness of 0.025 mm and a width of 0.20 mm produced by rolling a round wire with an outer diameter of 0.08 mm. Conductors and tape-shaped conductors with a thickness of 0.012111111 and a width of 0.18 mm produced by rolling a round wire with an outer diameter of 0.05 mm have excellent properties.
( 3 ) 多心ケーブル:特に、 本発明の多心ケーブルの場合は、 同軸素線を集合 して共通の外被を施す場合も、 単心同軸ケーブルを集合して共通の外被を施す場 合も、 同軸素線の外部導体が丸線から圧延により製造することにより外周に鋭角 的なエッジ等がない平滑な表面を備えるため、 より合わせ等により同軸素線に側 面からの力、 いわゆる側圧が働いても、 絶縁体が外部導体によって傷つけられる おそれがなく、 絶縁体の耐圧低下等の心配がなく、 多心ケーブルとして機械的耐 久性と電気特性を維持しつつ、 多心ケーブルの薄肉化、 細径化が実現できる。 この発明を以下の実施例により具体的に説明する。 (3) Multi-core cable: In particular, in the case of the multi-core cable of the present invention, coaxial strands are assembled. In both cases where a common jacket is applied, or when a single core coaxial cable is assembled and a common jacket is applied, the outer conductor of the coaxial wire is formed from a round wire by rolling to form an acute angle around the outer circumference. With a smooth surface without edges, etc., even if a force from the side surface, so-called side pressure, acts on the coaxial wire by twisting, etc., there is no risk that the insulator will be damaged by the external conductor, and the withstand voltage of the insulator will decrease. This eliminates the need to worry about multi-core cables while maintaining the mechanical durability and electrical characteristics of the multi-core cables, and enables thinner and thinner multi-core cables. The present invention will be specifically described by the following examples.
(実施例 1 )  (Example 1)
外部導体に使用するために、 第 5図 (A) に断面形状を示す外径 0 . 0 5 mm の銅合金をスズメツキした丸線を圧延して、 同図(B ) に断面形状を示す厚み 0 . 0 1 2 mm, 幅 0 . 1 8 mmの長尺のリポン状導体を作製した。 絶縁体として P F A (テトラフロロエチレン—パーフロロアルキルビニルエーテル共重合体) 樹 脂を外径 0 . 0 9 mmの中心導体 (外径 3 0 mのスズメツキ銅合金線の 7本撚 り) の周りに公知の押出被覆法により外径 0 . 2 3 mmの円形の外形を形成する ように被覆した後に、 第 2図 (A) に開き巻きとして示すように、 その外周に前 記テープ状導体を 6 0 g f Z 1本の張力で、 ピッチ 0 . 2 9 mmとして間隔を空 けて、 同軸素線の軸に対して 6 8度の角度をなすようにらせん状に巻装して同軸 素線を作製した。  For use as an external conductor, a round wire made of tin-plated copper alloy with an outer diameter of 0.05 mm, whose cross-sectional shape is shown in Fig. 5 (A), is rolled, and the thickness is shown in Fig. 5 (B). A long lipon-shaped conductor having a length of 0.12 mm and a width of 0.18 mm was produced. PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) resin is applied as an insulator around a 0.09 mm outer diameter center conductor (7 strands of 30 m outer diameter tinplate copper alloy wire). After coating by a known extrusion coating method so as to form a circular outer shape having an outer diameter of 0.23 mm, as shown in FIG. 0 gf Z With one tension, spaced at a pitch of 0.29 mm, spirally wound around the axis of the coaxial wire at an angle of 68 degrees to wind the coaxial wire. Produced.
この同軸素線について、 その基本特性としての耐圧試験、 回動部や屈曲部に使 用した場合の絶縁特性としての屈曲試験と捻回試験、 静電雑音試験を行った。 こ の際、 同軸ケーブルは同軸素線を種々の形態で組合せて製造する為、 外被の影響 を除いた状態で評価する為同軸素線の状態で評価を実施した。  This coaxial wire was subjected to a withstand voltage test as its basic characteristics, a bending test and a torsion test, and an electrostatic noise test as insulation characteristics when used in a rotating or bent portion. At this time, since the coaxial cable was manufactured by combining coaxial strands in various forms, the evaluation was performed with the coaxial strands in order to evaluate without the influence of the jacket.
耐圧試験: 3 0 0 mの同軸素線を用いて、 中心導体と外部導体の間に 1 0 0 0 Vの直流電圧を 1分間にわたって加え、 絶縁破壊の有無を調査した。 この結果、 絶縁層が破壊する耐圧不良は認められず、 良好な同軸ケーブルとしての特性が確 認できた。  Withstand voltage test: Using a 300 m coaxial wire, a DC voltage of 100 V was applied between the center conductor and the outer conductor for 1 minute, and the presence or absence of dielectric breakdown was examined. As a result, no withstand voltage failure in which the insulating layer was destroyed was observed, and characteristics as a good coaxial cable were confirmed.
マンドレル屈曲試験:第 6図に試験方法を模式的に示す。 同軸素線 2 0の中央 部を 2本の外形 5 mmの金属棒 2 2にはさんだ状態として、 下端に 5 0 g f の荷 重 2 1を取り付けて、 上端を左右それぞれ金属棒に 9 0度巻き付け伸ばす作業を 行った。 左右各 1回の屈曲を 1回として 3 0回 Z分の速度で 1 0 0 0回の屈曲を 行った。 この後、 上記と同様の耐圧試験を実施したが耐圧不良は認めれず、 繰り 返し曲げに対する優れた耐性が確認できた。 Mandrel bending test: Fig. 6 schematically shows the test method. The center part of the coaxial strand 20 is sandwiched between two metal rods 22 with an outer diameter of 5 mm, and a load of 50 gf is placed at the lower end. Weight 21 was attached, and the upper end was wrapped 90 degrees around the left and right metal rods and stretched. One bending was performed once for each of the left and right, and the bending was performed 100 times at a speed of 30 times Z. After that, the same pressure resistance test as above was performed, but no pressure failure was recognized, and excellent resistance to repeated bending was confirmed.
捻回試験:第 7図に試験方法を模式的に示す。 長さ 2 0 c mの同軸素線 2 0の 上端を上端固定点 2 4に固定し、 下端に 5 0 g f の荷重 2 3を取り付けて垂直に 懸架し、 この荷重 2 3を同軸ケーブルの中心軸を軸として時計周り、 半時計周り 交互にそれぞれ 1 8 0度旋回させる作業を行った。 時計周り、 半時計周り各 1回 の捻回を 1回として、 3 0回 分の速度で 1 0 0 0回の捻回を行った後、 上記と 同様の耐圧試験を実施したが耐圧不良は認められず、 捻回に対する優れた耐性が 確認できた。  Torsion test: Fig. 7 schematically shows the test method. Fix the upper end of the 20 cm long coaxial strand 20 to the upper end fixing point 24, attach a load 23 of 50 gf to the lower end and suspend it vertically.This load 23 is the center axis of the coaxial cable. The work was performed clockwise and counterclockwise alternately by 180 degrees around the axis. With each twist of clockwise and counterclockwise as one twist, after twisting 100,000 times at a speed of 30 times, the same withstand voltage test as above was performed. It was not recognized, and excellent resistance to twisting was confirmed.
静電雑音特性:第 7図に試験方法を模式的に示す。 さらに、 急速な変形を加え られた場合の静電雑音の大きさを評価するため、 長さ 5 0 c mの同軸素線を水平 に張り、 中央に長さ 2 0 c mの綿糸を結びつけ、 綿糸の他端に 2 0 g f の荷重を 付けた。 この同軸素線の中心導体と外部導体の間の電圧を電圧計により測定しな がら、 前記重りを同軸素線の高さから自由落下させ、 電圧変動の極大値として静 電雑音特性を測定した。 同様の測定を 1 0回行った結果、 この同軸素線について 発生した電圧変動の極大値は最大 2 . 5 mVであった。 一方同軸素線の外部導体 を従来の第 4図に示す編組に変更して、 同様の評価を行った場合極大値が 1 0 0 mVに達する電圧変動が見られた。 この結果から、 本発明の利用により静電雑音 の大幅な改善効果が確認できた。  Electrostatic noise characteristics: Fig. 7 schematically shows the test method. In addition, to evaluate the magnitude of electrostatic noise when rapid deformation is applied, a 50-cm long coaxial strand is stretched horizontally, a 20-cm-long cotton thread is tied at the center, and the A load of 20 gf was applied to the other end. While measuring the voltage between the center conductor and the outer conductor of the coaxial wire with a voltmeter, the weight was allowed to freely fall from the height of the coaxial wire, and the electrostatic noise characteristics were measured as the maximum value of the voltage fluctuation. . As a result of performing the same measurement 10 times, the maximum value of the voltage fluctuation generated for this coaxial strand was a maximum of 2.5 mV. On the other hand, when the outer conductor of the coaxial wire was changed to the conventional braid shown in Fig. 4 and the same evaluation was performed, voltage fluctuations with the maximum value reaching 100 mV were observed. From these results, it was confirmed that the use of the present invention significantly improved electrostatic noise.
次に、 第 3図に示すように、 この同軸素線 1 0心を並列に並べ接着剤付きポリ エステルテープを外套 4としてこれらを覆い、 平型多心ケ一ブルにした。 また、 この同軸素線に外被を施して単心同軸ケーブルとし、 その単心同軸ケーブル 3 0 心を撚り合わせ、 その外側に共通の外被を施すことにより、 多心ケーブルとして 可撓性、 機械的耐久性を維持しつつ細径の多心ケーブルを得た。 このようにして 得られた多心ケーブルについても絶縁特性をはじめとする特性が良好であること を確認した。  Next, as shown in FIG. 3, the coaxial strands 10 were arranged in parallel and covered with a polyester tape with an adhesive as a jacket 4 to form a flat multicore cable. In addition, a single core coaxial cable is formed by coating the coaxial strand with a single core coaxial cable, and the single core coaxial cable is twisted with 30 cores, and a common jacket is applied to the outside of the single core coaxial cable. A thin multi-core cable was obtained while maintaining mechanical durability. It was confirmed that the multi-core cable obtained in this way also had good properties including insulation properties.
(実施例 2 ) 実施例 1において、 リボン状導体を 5 5 g f Z l本の張力でピッチ 0 . 1 8 m m、 7 5度の角度でらせん状に第 2図 (B ) に示すように突き合わせ巻きで巻装 して同軸素線を作製した。 この同軸素線の耐圧特性、 屈曲特性、 捻回特性、 静電 雑音特性も良好であった。 この同軸素線を使用して実施例 1と同様に単心同軸ケ —ブル、 平型多心ケーブル及び多心ケーブルを作製した。 このようにして得られ た同軸ケーブル及び多心ケ一ブルについても絶縁特性をはじめとする特性が良好 であることを確認した。 (Example 2) In Example 1, the ribbon-shaped conductor was spirally wound with a tension of 55 gf Zl at a pitch of 0.18 mm and an angle of 75 degrees in a butt winding as shown in FIG. 2 (B). To produce a coaxial strand. The withstand voltage characteristics, bending characteristics, twisting characteristics, and electrostatic noise characteristics of the coaxial strand were also good. Using this coaxial wire, a single-core coaxial cable, a flat multi-core cable and a multi-core cable were produced in the same manner as in Example 1. It was confirmed that the coaxial cable and the multi-core cable obtained in this way also had good properties including insulation properties.
(実施例 3 )  (Example 3)
実施例 1において、 第 2図 (C ) に示すように、 リポン状導体を 6 5 g f Z 1 本の張力でピッチ 0 . 2 9 mm、 6 8度の角度でらせん状に (同一方向に 2枚巻 きで各開き巻き) 巻装して同軸素線を作製した。 また、 第 2図 (D) に示される ように、 ピッチ 0 . 2 9 mm、 6 8度の角度で 2枚目のリポン状導体を逆方向に 巻いたものも作製した。 これらの同軸素線の耐圧特性、 屈曲特性、 捻回特性、 静 電雑音特性も良好であって、外部導体層のシ一ルド特性は特に優れていた。更に、 これらの同軸素線についても実施例 1と同様に単心同軸ケーブル、 平型多心ケ一 ブル及び多心ケーブルを作製した。 このようにして得られた同軸ケーブル、 多心 ケーブルについても絶縁特性をはじめとする特性が良好であることを確認した。 産業上の利用可能性  In Example 1, as shown in FIG. 2 (C), the ripon-shaped conductor was spirally wound at a pitch of 0.29 mm and an angle of 68 degrees under tension of one piece of 65 gf Z (2 pieces in the same direction). Coaxial strands were produced by winding each sheet. In addition, as shown in FIG. 2 (D), a second ribbon-shaped conductor was wound in the opposite direction at a pitch of 0.29 mm and an angle of 68 degrees. The withstand voltage characteristics, bending characteristics, torsion characteristics, and electrostatic noise characteristics of these coaxial wires were good, and the shield characteristics of the outer conductor layer were particularly excellent. Further, with respect to these coaxial strands, a single-core coaxial cable, a flat multi-core cable and a multi-core cable were produced in the same manner as in Example 1. It was confirmed that the coaxial cable and multi-core cable obtained in this way also had good properties including insulation properties. Industrial applicability
以上の通り、 外部導体として断面の四隅が滑らかな略矩形のリポン状導体を用 レ 且つこのリポン状導体を絶縁体の周囲にらせん状に巻装して外部導体となし 同軸素線を形成しているから、 この同軸素線を用いることで可撓性を有し且つ機 械的耐久性に富む細径の同軸ケーブルが得られる。 この同時素線又は同軸ケープ ルを複数本の集合して外被を施し、 多心ケーブルとして使用することもできる。 またこのようにして得られる同軸ケーブルあるいは多心ケーブルを電子機器の回 動部、 屈曲部に配置することで長期間にわたり絶縁特性に優れ、 静電雑音の少な い電子機器が得られ、 高品質で高速の機器内信号伝送が実現できる。  As described above, a substantially rectangular ripon-shaped conductor having a smooth cross section at the four corners is used as the external conductor, and the ripon-shaped conductor is spirally wound around the insulator to form a coaxial element without the external conductor. Therefore, by using this coaxial element wire, a thin coaxial cable having flexibility and high mechanical durability can be obtained. A plurality of these simultaneous strands or coaxial cables can be assembled and sheathed to use as a multi-core cable. In addition, by arranging the coaxial cable or multi-core cable obtained in this way in the rotating or bent part of the electronic device, it is possible to obtain an electronic device with excellent insulation characteristics and low electrostatic noise over a long period of time and high quality. Thus, high-speed internal signal transmission can be realized.

Claims

請求の範囲 The scope of the claims
1 . 中心導体と絶縁体と外部導体からなる同軸素線を備え、 前記絶縁体の厚 さが 0 . 1 5 mm以下で、 外部導体として銅または銅合金の丸線を圧延して扁平 化したリポン状導体を用い、 前記リボン状導体を前記絶縁体の周囲に、 らせん状 に巻装して同軸素線としたことを特徴とする同軸素線。 1. A coaxial element wire consisting of a center conductor, an insulator, and an outer conductor is provided. The thickness of the insulator is 0.15 mm or less, and a copper or copper alloy round wire is rolled and flattened as the outer conductor. A coaxial element comprising a ribbon-shaped conductor, wherein the ribbon-shaped conductor is spirally wound around the insulator to form a coaxial element.
2 . 中心導体と絶縁体と外部導体からなる同軸素線を備え、 前記絶縁体は前 記中心導体に接してその周囲に設けられ、 前記絶縁体の厚みは最も小さい部分で 0 . 0 3 mm以上 0 . 1 5 mm以下であり、 前記外部導体は断面の四隅が滑らか な形状の略矩形の 1または複数のリポン状導体を一つの長辺を絶縁体に向けて螺 旋状に巻装されてなり、 前記リポン状導体の同軸素線の軸に対する巻き角度が 4 5度以上であることを特徴とする同軸素線。  2. A coaxial strand comprising a center conductor, an insulator, and an outer conductor is provided, and the insulator is provided in contact with and surrounding the center conductor, and the thickness of the insulator is 0.03 mm at the smallest portion. 0.15 mm or less, and the outer conductor is formed by spirally winding one or a plurality of substantially rectangular ripon-shaped conductors having smooth cross-sections at four corners with one long side facing the insulator. The winding angle of the ripon-shaped conductor with respect to the axis of the coaxial strand is 45 degrees or more.
3 . 前記リボン状導体は銅を含む金属から構成され、 前記リポン状導体の引 張り破断張力の 3 0 %以上の張力で前記絶縁体の周囲に巻装することを特徴とす る請求の範囲 2に記載の同軸素線。  3. The ribbon-shaped conductor is made of a metal containing copper, and is wound around the insulator with a tension of 30% or more of a tensile breaking tension of the ripon-shaped conductor. The coaxial strand described in 2.
4. 請求項 1乃至 3に記載の 1本の同軸素線に外被を施したことを特徴とす る同軸ケーブル。  4. A coaxial cable, wherein the single coaxial strand according to claim 1 is covered with a jacket.
5 . 請求項 4に記載の同軸ケーブルを複数本集合して共通の被覆を施したこ とを特徴とする多心ケーブル。  5. A multi-core cable, wherein a plurality of the coaxial cables according to claim 4 are assembled and coated in common.
6 . 請求項 1 乃至 3に記載の同軸素線を複数本集合して共通の外被を施した ことを特徴とする多心ケーブル。 6. A multi-core cable, wherein a plurality of coaxial strands according to claims 1 to 3 are assembled to form a common jacket.
7 . 請求の範囲 4に記載の同軸ケーブルまたは請求の範囲 5または 6に記載 の多心ケーブルのうち少なくとも一つを電子機器の機械的な回動や屈曲を受ける 箇所に配置したことを特徴とする電子機器。  7. At least one of the coaxial cable described in claim 4 or the multi-core cable described in claim 5 or 6 is arranged at a position where the electronic device is mechanically rotated or bent. Electronic equipment.
PCT/JP1999/001744 1998-04-06 1999-04-01 Coaxial cable, multicore cable, and electronics using them WO1999052116A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69923740T DE69923740T2 (en) 1998-04-06 1999-04-01 COAXIAL CABLE, MULTI-POLE CABLE, AND ITS APPLICATION IN ELECTRICAL SYSTEMS
KR1019997011217A KR100613954B1 (en) 1998-04-06 1999-04-01 Coaxial cable, multicore cable, and electronics using them
EP99910817A EP0987720B1 (en) 1998-04-06 1999-04-01 Coaxial cable, multicore cable, and electronics using them
US09/987,044 US6894226B2 (en) 1998-04-06 2001-11-13 Coaxial cables, multicore cables, and electronic apparatuses using such cables
US10/964,693 US7034228B2 (en) 1998-04-06 2004-10-15 Coaxial cables, multicore cables, and electronic apparatuses using such cables

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/108450 1998-04-06
JP10108450A JPH11297132A (en) 1998-04-06 1998-04-06 Coaxial cable and multicore cable using it

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US44512699A A-371-Of-International 1998-04-06 1999-12-02
US09/987,044 Continuation-In-Part US6894226B2 (en) 1998-04-06 2001-11-13 Coaxial cables, multicore cables, and electronic apparatuses using such cables

Publications (1)

Publication Number Publication Date
WO1999052116A1 true WO1999052116A1 (en) 1999-10-14

Family

ID=14485097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001744 WO1999052116A1 (en) 1998-04-06 1999-04-01 Coaxial cable, multicore cable, and electronics using them

Country Status (6)

Country Link
EP (1) EP0987720B1 (en)
JP (1) JPH11297132A (en)
KR (1) KR100613954B1 (en)
DE (1) DE69923740T2 (en)
TW (1) TW424241B (en)
WO (1) WO1999052116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355341A (en) * 2015-12-04 2016-02-24 北京玻钢院复合材料有限公司 Solid core rod, insulator and manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200445224Y1 (en) * 2008-11-26 2009-07-08 권정태 The cable for transmission of voice signal
JP2012227055A (en) * 2011-04-21 2012-11-15 Hitachi Cable Fine Tech Ltd Flat cable and cable harness using the same
CH707152A8 (en) 2012-10-26 2014-07-15 Huber+Suhner Ag Microwave cable and method for making and using such a microwave cable.
CN103680694A (en) * 2013-11-08 2014-03-26 东莞讯滔电子有限公司 Round cable
DE102014013555B4 (en) * 2014-09-18 2016-09-22 Hartmut Bayer Cable for signal transmission, method for its manufacture and use of such a cable for the transmission of audio signals
JP6380873B1 (en) * 2017-11-28 2018-08-29 日立金属株式会社 Braided shielded cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419923A (en) * 1990-05-11 1992-01-23 Hitachi Cable Ltd Metal tape winding method
JPH0583940U (en) * 1992-04-17 1993-11-12 東京特殊電線株式会社 Curl cable
JPH07169334A (en) * 1993-10-08 1995-07-04 Furukawa Electric Co Ltd:The Foamed fluororesin insulated cable and manufacture thereof
JPH08195130A (en) * 1995-01-17 1996-07-30 Hitachi Cable Ltd Cable for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365109A (en) * 1980-01-25 1982-12-21 The United States Of America As Represented By The Secretary Of The Air Force Coaxial cable design
DE8804552U1 (en) * 1988-04-06 1988-06-09 Sun Audio Unterhaltungselektronik Vertriebs Gmbh, 8000 Muenchen, De
EP0759624A1 (en) * 1995-08-19 1997-02-26 Alcatel Kabel AG & Co. Electrical telecommunications cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419923A (en) * 1990-05-11 1992-01-23 Hitachi Cable Ltd Metal tape winding method
JPH0583940U (en) * 1992-04-17 1993-11-12 東京特殊電線株式会社 Curl cable
JPH07169334A (en) * 1993-10-08 1995-07-04 Furukawa Electric Co Ltd:The Foamed fluororesin insulated cable and manufacture thereof
JPH08195130A (en) * 1995-01-17 1996-07-30 Hitachi Cable Ltd Cable for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0987720A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355341A (en) * 2015-12-04 2016-02-24 北京玻钢院复合材料有限公司 Solid core rod, insulator and manufacturing method
CN105355341B (en) * 2015-12-04 2017-01-11 北京玻钢院复合材料有限公司 Solid core rod, insulator and manufacturing method

Also Published As

Publication number Publication date
KR100613954B1 (en) 2006-08-18
TW424241B (en) 2001-03-01
JPH11297132A (en) 1999-10-29
EP0987720A4 (en) 2002-03-20
EP0987720A1 (en) 2000-03-22
DE69923740D1 (en) 2005-03-24
EP0987720B1 (en) 2005-02-16
KR20010013227A (en) 2001-02-26
DE69923740T2 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US6894226B2 (en) Coaxial cables, multicore cables, and electronic apparatuses using such cables
JP5953764B2 (en) Multi-core cable and manufacturing method thereof
JP3678179B2 (en) Double horizontal winding 2-core parallel micro coaxial cable
JPH053085B2 (en)
JP2007188738A (en) Multicore cable
JP5928305B2 (en) Shielded cable
JP6893496B2 (en) coaxial cable
KR100613954B1 (en) Coaxial cable, multicore cable, and electronics using them
JP2008181755A (en) Coaxial cable and multicore cable
JP3606141B2 (en) Coaxial strand, coaxial cable, and electronic equipment using the same
JP5821892B2 (en) Multi-core cable and manufacturing method thereof
JP5949360B2 (en) Multi-core cable
JP2984071B2 (en) Electronic equipment cable
JPH0526648Y2 (en)
JP2019169267A (en) Fireproof wire
JP2594619Y2 (en) Shielded cable
JP4134714B2 (en) Double horizontal winding 2-core parallel micro coaxial cable
JP7433053B2 (en) coaxial cable
WO2023276629A1 (en) Rectangular cross-section multi-core insulated wire, and method for manufacturing same
WO2020080540A1 (en) Round cable
JP3024782B2 (en) Electronic equipment cable
JP6939324B2 (en) Coaxial wire and multi-core cable
JP5323360B2 (en) Assembly cable
JP2023048669A (en) composite cable
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997011217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09445126

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999910817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999910817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997011217

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999910817

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997011217

Country of ref document: KR