WO1999051782A1 - Process for producing sugar materials for fermentation - Google Patents

Process for producing sugar materials for fermentation Download PDF

Info

Publication number
WO1999051782A1
WO1999051782A1 PCT/JP1998/001554 JP9801554W WO9951782A1 WO 1999051782 A1 WO1999051782 A1 WO 1999051782A1 JP 9801554 W JP9801554 W JP 9801554W WO 9951782 A1 WO9951782 A1 WO 9951782A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
lower section
raw material
section
fermentation
Prior art date
Application number
PCT/JP1998/001554
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Tamura
Terutsugu Hori
Hiroshi Tai
Kazumi Wagatsuma
Keiji Ishii
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to BRPI9809714-8A priority Critical patent/BR9809714B1/en
Priority to CN98806718A priority patent/CN1099466C/en
Priority to PCT/JP1998/001554 priority patent/WO1999051782A1/en
Priority to MYPI99001279A priority patent/MY129273A/en
Publication of WO1999051782A1 publication Critical patent/WO1999051782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to a method for producing a saccharide raw material for fermentation used in various fermentation industries. More specifically, the present invention provides various useful products represented by various amino acid-producing fermentations (eg, glutamic acid fermentation, lysine fermentation) or various nucleic acid-related substance producing fermentations (eg, inosine fermentation, guanosine fermentation, inosinic acid fermentation).
  • various amino acid-producing fermentations eg, glutamic acid fermentation, lysine fermentation
  • nucleic acid-related substance producing fermentations eg, inosine fermentation, guanosine fermentation, inosinic acid fermentation.
  • Raw material used as a fermentation medium in the fermentation industry that produces quality on an industrial scale that is, starch that can be easily processed into a raw material for sugar by hydrolysis, or fermentation that can be used directly as a component of a fermentation medium
  • the present invention relates to a method of producing a sugar solution for a culture medium from various starchy raw materials without substantially producing waste by-products and minimizing the amount of water used.
  • Japanese Patent Publication No. 57-18991 discloses a method of liquefying and saccharifying raw starch materials without steaming.
  • raw starch materials such as raw sweet potato and raw sorghum are used in a cellular system.
  • the enzyme is hydrolyzed under the action of a complex enzyme preparation containing glucose, hemicellulase, pectinase, dalcoamylase, and acid-active monoamylase. Have gained.
  • Japanese Patent Application Laid-Open No. 58-141794 discloses a method for producing a concentrated sugar solution from a starchy raw material.
  • a starchy material such as potatoes
  • the liquefied starch enzyme is successively reacted with the saccharified starch enzyme in this manner, thereby producing a concentrated sugar solution.
  • Alfa-Laval Alfa-Laval Equipment for Starch Production from Fresh Manioc Roots (ALFA-LAVAL)
  • a specialized book is known, which describes that saccharification of the obtained evening power starch is used to produce a sugar solution that can be used for various uses, including for fermentation raw materials.
  • Many of the conventional techniques for separating and purifying starch from a starchy raw material or producing a sugar solution for a fermentation raw material from the obtained starch still have the following problems. That is,
  • a main object of the present invention is to solve these problems of the prior art and to provide a method for producing a so-called saccharide material for fermentation or starch which is friendly to the global environment.
  • Another object of the present invention is to provide the above-mentioned method capable of producing a sugar solution useful as a fermentation raw material by a consistent continuous process without isolating starch from a starchy raw material in the middle of the process.
  • Still another object of the present invention is to make it possible to reduce the amount of water used to the utmost by making it possible to circulate and reuse the water used in the above-mentioned continuous continuous process as appropriate between the processes, and to substantially produce by-product wastewater. Is to provide the above method that can eliminate the above.
  • Still another object of the present invention is to prevent almost all of the water-soluble sugar contained in the starchy raw material from being lost to the wastewater flowing out of the system of the production equipment without losing the water-soluble sugar.
  • An object of the present invention is to provide the above-mentioned method which can be transferred to and recovered from a raw material for fermentation saccharide as a product.
  • Still another object of the present invention is to provide a fiber fraction separated from a starchy raw material in the process of producing a saccharide raw material for fermentation, that is, containing a high concentration of easily digestible fiber, protein, or plant nutritionally useful ash.
  • An object of the present invention is to provide a method as described above, wherein solid fractions collected are collected as by-products and can be effectively used as feed for livestock, especially ruminants, or as fertilizer applied to cultivated cultivated land for producing starchy raw materials.
  • Still another object of the present invention is to transfer most of the starch and water-soluble saccharide originally contained in the starchy raw material to the target product, a fermentable saccharide raw material, at a high rate of 90% or more. It is an object of the present invention to provide the above-mentioned method which can be recovered.
  • the method for producing a saccharide raw material for fermentation from a starchy raw material according to the present invention comprises:
  • the first separated upper section that has been ground in the second grinding step is the second separated upper section.
  • the third separation upper section is led out of the system, the third separation lower section is forwarded to the inlet side of the first grinding step, and fermentation is performed from the second separation lower section. A carbohydrate raw material is obtained.
  • a starchy raw material suitable for use is a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn, that is, sediment collected from the above-ground growth site of a cultivated crop plant. It is a raw material with little contamination.
  • the method further comprises a solid-liquid separation step of separating the solid section from the second lower separation section.
  • the method further comprises a washing step of washing the starch material with water prior to the first grinding step, wherein the washing step includes circulating washing water, Is subjected to a purification treatment for separating and removing contained solid matter during the circulation process.
  • the starchy raw material suitable for use is a raw material derived from at least one selected from the group consisting of cassava, potato, and sweet potato, i.e., collected from an underground growth site of a cultivated crop plant, such as soil and sand. It is a raw material that may be mixed.
  • the second separation step and Z or the third separation step are preferably performed according to a compressed floating separation method (Compressed Floating Separation).
  • the method comprises a hydrolysis step of liquefying and saccharifying the second separation lower section; and a relatively light fourth separation upper section for separating the product from the hydrolysis step. Further comprising a fourth separation step of separating the fraction from the heavy fourth separation lower section, wherein the fourth separation upper section is led out of the system and is a fermentation sugar which is a target product.
  • the raw material is obtained as a sugar liquid from the fourth separation lower section.
  • the fourth separation step is preferably performed according to a filtration and / or centrifugation method.
  • a method for producing a saccharide raw material for fermentation from a starchy raw material comprises:
  • the third separation upper section is led out of the system, the third separation lower section is sent to the inlet side of the first grinding step, and the fermentation saccharide as a target product is provided.
  • Raw materials are obtained from the second separated lower section.
  • the starchy raw material used here is preferably a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn, that is, collected from the above-ground growth site of the cultivated crop plant. It is a raw material with little contamination such as earth and sand.
  • the method according to this another aspect may further comprise a step of separating the solid section from the second separation lower section.
  • the second separation step is preferably performed according to a pressure floating separation method
  • the third separation step is preferably performed according to a solid-liquid separation method such as filtration.
  • the above method may further include a step of allowing the second separation lower section to settle and settle, and in this case, the supernatant liquid after the settling and settling is sent to the second separation step as separation water, and Certain fermentable carbohydrate raw materials are obtained from a second settled lower section that has settled down.
  • a hydrolysis step of liquefying and saccharifying the second separation lower section may further include a fourth separation step of separating a product from the water splitting step into a relatively light fourth separation upper section and a heavy fourth separation lower section.
  • the separated upper section is led out of the system together with the third separated upper section, the fiber section is obtained as a by-product of feed or fertilizer, and the target saccharide raw material for fermentation is the 4th separated upper section. Obtained as a sugar solution from the lower separation section.
  • said fourth separation step is performed according to a filtration or centrifugation method.
  • the method may further comprise one or more additional separation steps of separating the second separation lower section into a relatively light additional separation upper section and a heavy additional separation lower section, wherein: The additional separation upper section is introduced into the third separation step, and the target product, a saccharide raw material for fermentation, is obtained from the additional separation lower section.
  • the method may further comprise a step of separating the solid fraction from the additional separation lower section, and the additional separation step is preferably performed according to a pressurized flotation method.
  • the method further comprises: a hydrolysis step of liquefying and saccharifying the additional separation lower section; and separating the product from the hydrolysis step into a relatively light fourth separation upper section and a heavy fourth separation lower section.
  • the fourth separation upper section is led out of the system, and the fermentation saccharide raw material that is the target product is the fourth separation lower section. Obtained as a sugar solution.
  • a raw material derived from sago palm is specifically used as the starchy raw material. That is, starchy raw materials derived from sago palm have conventionally been regarded as raw materials in which contaminants such as fibers are likely to be mixed into the final carbohydrate product.
  • starchy raw materials derived from sago palm have conventionally been regarded as raw materials in which contaminants such as fibers are likely to be mixed into the final carbohydrate product.
  • a multi-stage separation process it is possible to obtain a high-quality sugar solution from which impurities such as fibers are completely removed as a raw material for fermentation sugar, which is the target product.
  • the carbohydrate raw material for fermentation produced by the method of the present invention is a sugar liquid used as a main component of a culture medium in various fermentation applications and a starch which is a main raw material of the sugar liquid.
  • the sugar product or sugar solution for fermentation which is the target product obtained in the present invention, can be used for a wide variety of fermentations without any particular limitation on the type of fermentation. It is suitable for use in, for example, glutamic acid fermentation, lysine fermentation, or fermentation for producing various nucleic acid-related substances, for example, inosine fermentation, guanosine fermentation, for example, inosine acid fermentation.
  • the fermentation saccharide raw material obtained by the method according to the present invention in fermentation other than these, for example, fermentation for producing pharmaceuticals such as antibiotics, alcohol fermentation, and brewing of alcoholic beverages is a high-quality sugar liquid raw material that gives good results. It can be used, and in that case, no remarkable trouble is found in such use.
  • the starchy raw material used as a main starting material in the method of the present invention is not particularly limited as long as it is an agricultural and forestry product containing starch at an appropriate concentration and preferably can be supplied in a large amount and stably, and a processed product thereof. Can be used.
  • the starchy raw material may be in any form such as seeds, rhizomes, underground roots, stem accumulations, and may be a fresh product immediately after being harvested from the cultivated arable land, or may be dehydrated, washed, It may be a semi-finished or processed product that has undergone preliminary processing such as drying, air drying, cutting, steaming, freezing, crushing, and grinding. Further, the starchy raw material may be not only a starchy product after the purification treatment but also a crude raw material containing a considerable amount of components or impurities other than starch.
  • starchy raw material there are raw materials containing carbohydrates other than starch, for example, a water-soluble sugar at a considerable concentration, but in the method according to the present invention, even a water-soluble sugar is a target product. It is incorporated into the sugar raw material (sugar solution) for fermentation and can be used without any excess.
  • sugar raw material sucgar solution
  • the conventional method for producing starch or the method for producing a sugar solution after separating starch all the water-soluble sugar contained in the starch raw material width is discharged together with wastewater during the production process, and is disposed of. It had been.
  • starchy raw materials that can be used in the present invention are listed below according to the crop plant from which they are derived.
  • A Example where the main location of starch is above ground
  • Potato raw potato Potato frozen cut dried, Potato whole lump peeled frozen dried product, Potato potato powder B3) From sweet potato:
  • Sweet potatoes Sweet potatoes, Sweet potatoes, Sweet potatoes, Sweet potato flour
  • the method according to the present invention includes two grinding steps of the first grinding step and the second grinding step in the series of steps.
  • the grinding method and the equipment used in these grinding steps there is no particular limitation on the grinding method and the equipment used in these grinding steps, and various known grinding methods and equipment can be used. For example, grinding methods and equipment using rotating stones are the most common. It is possible to use it.
  • the grinding treatment may be performed in a single stage or in multiple stages.
  • the method according to the present invention in a series of steps, at least three separation steps of a first separation step, a second separation step and a third separation step, preferably a total of four separation steps further including a fourth separation step, More preferably, it comprises five or more separation steps with one or more additional separation steps.
  • a process to separate and acquire the relatively light upper separation section and the heavy separation lower section in the section to be separated is performed.
  • the lighter separation upper section contains more fiber components and the heavier separation lower section contains more starch or saccharified glucose.
  • an appropriate separation method and apparatus can be used according to the form of the section to be separated and the purpose of the separation, for example, wet sieving, passage through a strainer, centrifugation, filtration, static
  • a suitable method may be selected from separation methods such as sedimentation and equipment, and used.
  • the second separation step and the additional separation step it is preferable to apply a separation treatment by a pressure flotation method.
  • the pressure flotation method is used when separating the first separation upper section ground in the second grinding step, and the second separation step is performed in the second grinding step.
  • a solid-liquid separation method such as filtration.
  • the liquid after the starch hydrolysis is separated into an upper separation section containing fine fiber components and a lower separation section which is a highly viscous saccharified liquid produced by hydrolysis.
  • filtration, pressure filtration or high speed continuous liquid centrifugation such as the use of a Sharpless centrifuge, is particularly suitable.
  • air bubbles are generated at the bottom of a tank containing a liquid in which fine solids are dispersed.
  • Pressurized gas is introduced through the nozzle, and while the bubbles ejected from the nozzle float in the liquid, fine solids in the liquid adhere to the surface of the bubbles, causing the bubbles to float.
  • Fine solids adhering to the surface of the bubbles are brought to the surface of the liquid along with the top, and fine solids are spilled over the upper edge of the side wall of the tank to the outside due to the lump of air bubbles. It is discharged outside and separated.
  • This pressurized flotation method has been used in similar ways to purify wastewater or beneficiation in mines, but few examples have been applied to starch production or related technical fields. .
  • each of the upper separation sections resulting from the third and fourth separation steps contains a large amount of fiber components, but has a low starch or sugar content, so that it is out of the system as a by-product.
  • These derived upper separations can be used as livestock feed or fertilizer for each separation step or for both separation steps together. Therefore, the by-product derived outside the system by the method of the present invention is not a waste but a resource that can be effectively used.
  • the third separation lower section generated in the third separation step is a liquid still containing a saccharide useful for the target product, such as a starch or a sugar solution.
  • the third separation lower section is sent to the first grinding step, where it is reused for the required grinding water.
  • the supernatant liquid resulting from the solid-liquid separation may contain some starch.
  • it is a dilute dispersion containing fibers, the entire amount of these supernatants is also circulated to the inlet side of the immediately preceding separation step and reused.
  • the separation supernatant liquid generated inside the series of steps is itself of low utility value, it is circulated and reused between the steps, thereby achieving the entire process. It is possible to remarkably reduce the amount of water used in the above. Also, useful substances such as starch contained in these liquids or easily water-soluble sugars contained in the raw materials of starch are introduced into the process again without being discharged into the system and discarded. The components are available with almost complete efficiency. Therefore, there will be almost no waste generated from each separation step.
  • the fourth separation lower section generated from the fourth separation step is a section of the sugar liquid itself as a fermentation saccharide raw material which is a target product.
  • This category contains not only glucose produced by hydrolysis of starch, but also water-soluble sugars contained in the starting starchy material, especially water-soluble sugars. All sugars are accumulated in a concentrated manner without being leaked out of the system and discarded in the middle of the process.
  • the water-soluble sugar contained in the starchy raw material is discharged out of the system during the treatment process, and the biological oxygen demand (B0D) in the surrounding environment is reduced. Although it did not cause much increase in the amount of water and caused environmental pollution, in the method of the present invention, not only the starch contained in the starchy raw material but also the water-soluble sugars were completely produced without any excess. Since it is collected in waste, there is no place to generate any waste that causes environmental pollution.
  • the second separation lower section resulting from the second separation step, or the additional separation lower section obtained by subjecting the second separation lower section to one or more additional separation steps, or furthermore, these separation lower sections are allowed to stand and settle.
  • the sedimentation section obtained by the treatment is a section mainly composed of starch separated from the starchy raw material. From these lower sections, starch can be separated and obtained by an appropriate solid-liquid separation method, or this lower section can be directly subjected to hydrolysis treatment to be processed into a sugar liquid as a sugar material for fermentation. can do. Either a strong acid hydrolysis method or an enzymatic hydrolysis method can be used for the hydrolysis treatment. However, in general, from the viewpoint of using the produced sugar solution as a raw material for fermentation, and from the viewpoint of the convenience of the treatment operation, it is generally used. Employs an enzymatic hydrolysis method.
  • this method comprises a liquefaction step in which starch is subjected to Hi-amylase as a starch liquefying enzyme, and a saccharification step in which glycamylase acts as an enzyme for saccharifying the liquefied starch to produce an easily fermentable sugar such as glucose. And is included.
  • Enzymatic hydrolysis maintains a high reaction rate and contaminates the process due to various bacteria.
  • the sugar solution obtained as a raw material for fermentation carbohydrate obtained through the hydrolysis treatment step can be supplied to the fermentation step directly as it is or after being concentrated to an appropriate concentration as a fermentation medium.
  • the distance from the point of production of the sugar solution for fermentation sugar material to the fermentation plant is remote, or when the sugar solution for fermentation sugar material is produced, it is accumulated and then the fermentation process is started.
  • the sugar solution may be transported or stored after being concentrated to a concentration suitable for the fermentation medium.
  • the starchy raw material is washed with water before being introduced into the first milling step.
  • the washing water used in this washing step is circulated and used, and the accompanying solid matter is removed by purification treatment in the course of the circulation path to become clean water. That is, according to the present invention, the starchy raw material is once cleaned with the cleaning water that is used in the cleaning step to purify the water used in the cleaning step and circulate again. Therefore, even in the washing process, the amount of washing water used can be reduced to the minimum required.
  • the purification equipment installed in the circulation path includes any equipment capable of solid-liquid separation, such as a settling tank, a strainer, and a filtration net.
  • the solid matter mixed or attached to the starch raw material physically moves into the washing water and is separated and removed from the raw material.
  • These solids include, for example, in the case of starchy raw materials consisting of underground growth sites such as cassava, potato or sweet potato, soil, sand, mud, or skin peeled off from raw materials mixed with or attached to raw materials And so on.
  • washing water used in the washing process or the grinding water used in the first grinding process is the water that circulates in the system as mentioned above. Safe new water such as water is replenished.
  • FIG. 1 is a flowchart showing a flow of a method for producing a saccharide raw material for fermentation according to one embodiment of the present invention.
  • FIG. 2 is a process chart showing a flow of a method for producing a saccharide raw material for fermentation according to another embodiment of the present invention.
  • the starchy raw material SM is first washed with washing water WW in a washing step WS.
  • the cleaning water W after the cleaning is subjected to a purification process in the purification process PR, solids SS are removed from the cleaning water out of the system, and the cleaning water thus purified is again provided for cleaning.
  • the washed raw material SM is sent to the first grinding step G1 and is ground under water.
  • the water WG used in this grinding step is the entire amount of the third separation lower section SPL3 generated from the third separation step S3 described later in the process system, and if it is insufficient, additional water WA is supplied from outside the system.
  • the raw material sufficiently finely ground in the first grinding step G1 is sent to the first separation step S1, where it is divided into a relatively light first separation upper section SPU1 and a relatively heavy first separation lower section SPL1.
  • First Separation Upper Section SPU1 is mainly composed of fibrous material, which still contains small amounts of starch and sugar.
  • the first separated lower section SPL1 contains a small amount of solid matter, but is mostly a liquid containing a large amount of starch and sugar.
  • the first separation upper section SPU1 is sent to the second grinding step G2 and is ground again, while the first separation lower section SPL1 is sent to the second separation step S2 and the relatively lighter second separation upper section It is separated into Category SPU2 and a relatively heavy second separation lower Category SPL2.
  • Most of the solids contained in the first separation lower section SPL1 have been transferred to the second separation upper section SPU2, and the second separation lower section SPL2 is included in the first separation lower section SPL1.
  • Most of the starch and sugars that have been transferred have been transferred.
  • 3rd Separation Upper Section SPU3 has a low starch or sugar content but a high fibrous content, so it is extracted out of the system as a by-product BP and used as livestock feed or fertilizer.
  • the third separation lower section SPL3 is a liquid that does not contain fiber but contains a small amount of sugar, and is circulated to the first grinding step G1 as grinding water and reused.
  • the second separation lower section SPL2 contains high concentrations of starch and sugar, so when starch is directly obtained from it, it is sent to the solid-liquid separation process SE by filtration or centrifugation, etc., and the starch cake or solid starch ST is obtained. Is obtained.
  • the second separated lower section SPL2 is sent to the hydrolysis step HY.
  • the hydrolysis step HY liquefaction and saccharification of starch are performed by an enzyme, and the decomposition product solution is sent to a fourth separation step S4 by filtration or centrifugation.
  • the decomposition product liquid is separated into a fourth separation upper section SPU4, which is mostly solid matter and hardly contains saccharides, and a fourth separation lower section SPL4 as a high-quality sugar solution.
  • the fourth separated upper section SPU4 is led out of the system together with the third separated upper section SPU3 as a by-product BP and is effectively used as feed or fertilizer.
  • the target product, the fermentation carbohydrate raw material FM is obtained from the fourth separation lower section SPL4.
  • the fourth separation lower section SPL4 is obtained as the sugar liquid FM concentrated in the concentration step CC as necessary. I have.
  • a clean starchy raw material SM with almost no dirt is used.
  • the starchy raw material SM is directly finely ground in the first grinding step G1, and then separated in the first separation step S1 into the same first separation upper section SPU1 and first separation lower section SPL1 as described above. .
  • the first separation lower section SPL1 is further finely ground in the second grinding step G2, and then separated into the second separation upper section SPU2 and the second separation lower section SPL2 in the second separation step S2.
  • the second separation lower section SPL2 is subjected to standing sedimentation treatment D1 for an appropriate time, and the supernatant SNS1 is refluxed to the inlet side of the second separation step S2.
  • the second separation lower section SPL2 that has passed through the stationary sedimentation treatment D1 passes stepwise through the first additional separation step SA and the second additional separation step SB. That is, the additional separation upper sections SPUA and SPUB generated from each additional separation step SA and SB are sent to the third separation step S3 together with the first separation upper section SPU1 and the second separation upper section SPU2, while the first additional separation step
  • the additional separation lower section SPLA generated from SA is sent to the second additional separation step SB via the stationary settling process D2 at the back, and the additional separation lower section SPLB generated from the second additional separation step SB is set at the downstream. Settlement treatment sent to D3.
  • the supernatant SNS2 generated in the stationary sedimentation treatment D2 is returned to the inlet side of the first additional separation step SA, and the supernatant SNS3 generated in the stationary sedimentation treatment D3 enters the second additional separation step SB. Recirculated to the side.
  • the first separation upper section SPU1, the second separation upper section SPU2, and the additional separation upper sections SPUA and SPUB merge to form the third separation upper section SPU3 of the solid section by solid-liquid separation.
  • a third separation lower section SPL3 of the liquid section As in the embodiment shown in FIG. 1 described above, the third separated upper section SPU3 is led out of the system as a by-product BP that is effectively used as feed or fertilizer, and the third separated lower section SPL3 is Grinding process It is recycled in the system as water for G1.
  • the second separation lower section SPL2 passes through a plurality of additional separation processes SA and SB and the stationary sedimentation treatment D1, D2, D3, and passes through the final stationary sedimentation treatment D3. And separated into upper section DCU3 containing sugar and sugar and lower section DCL3 containing relatively high concentrations of starch and sugar.
  • This upper section DCU3 is circulated in the system together with the third separation lower section SPL3 as water for the first milling process Gl, while the lower section DCL3 contains high concentrations of starch and sugar, and therefore will be directly When starch is obtained, it is sent to a solid-liquid separation step SE by filtration or centrifugation to obtain a starch cake or solid starch ST.
  • the second separated lower section SPL2 is sent to the hydrolysis step HY.
  • liquefaction and saccharification of starch are performed by an enzyme, and the decomposition product stream is sent to a fourth separation step S4 by filtration or centrifugation.
  • the decomposition product stream is separated into a fourth separation upper section SPU4, which is mostly solid matter and contains almost no saccharide, and a fourth separation lower section SPL4 as a high-quality sugar solution.
  • the fourth separated upper section SPU4 is led out of the system together with the third separated upper section SPU3 as a by-product BP and is effectively used as feed or fertilizer.
  • the target product, the fermentation carbohydrate raw material FM is obtained from the fourth separation lower section SPL4.
  • the fourth separation lower section SPL4 is obtained as the sugar liquid FM concentrated in the concentration step CC as necessary. I have.
  • a sugar solution useful as a sugar raw material for fermentation was produced from raw potatoes of cassava produced by Mas-Ija, Indonesia, as described below, in a semi-continuous process.
  • WS Cleaning process
  • Fresh cassava potatoes (manioc roots) were weighed immediately after harvest from the field, and about 1050 kg of the potatoes were poured into the washing basket of the washing tank and washed continuously.
  • the washing basket has a large number of holes in the wall and is a cylindrical iron plate that rotates in the washing water.
  • Table 1 shows the contents of starch, reducing sugar (denoted as D-sugar), protein, lipid, crude fiber, ash and moisture in the green cassava after washing.
  • the analysis method for each component was the same as that for commonly used starch-related products.
  • tap water was initially used for the washing water WW, but after the supply of washing water was balanced, the water recovered from the washing tank was purified by the purification device PR and circulated and supplied to the washing tank. , Reused. That is, the water after washing the potatoes in the washing tank is led to a conical bottom settling tank arranged in the circulation system, and then a two-stage metal grid type with a grid spacing of 10 and 5 thighs The sludge is passed through a strainer, where the mud contained in the washing water and solid matter SS such as potato skin peeled off from the surface of the raw potatoes are separated, whereby purified water WW is supplied again to the washing tank.
  • a strainer where the mud contained in the washing water and solid matter SS such as potato skin peeled off from the surface of the raw potatoes are separated, whereby purified water WW is supplied again to the washing tank.
  • the potatoes after the washing treatment were weighed again, and 1000 kg thereof was subjected to a grinding treatment.
  • the raw potatoes were first cut into slices using a large slicer, and then the cut raw potato slices were ground using a rotary mill-type grinding device under the supply of grinding water. .
  • the tissue of the raw potato is obtained as a completely collapsed paste-like raw potato pulp, which can pass through a strainer with a grid spacing of 5 hires installed at the outlet of the grinding device. there were.
  • the total amount of service water supplied during the grinding process is 1800 kg, of which 710 kg is tap water newly supplied, and the remaining 1090 k is the third lower separation section SPL3 circulated from the third separation step S3 described later.
  • the water for grinding was adjusted to be continuously supplied at a weight of about 1.5 to 2.0 times the raw potato slices.
  • the amount of raw potato pulp obtained after the grinding treatment was 2800 kg. lc) 1st separation step (SI)
  • First grinding step Raw potato pulp obtained by grinding in Gl was continuously subjected to a first separation step S1.
  • a wet sieving device was used for this separation, and the grid spacing of the used sieves was 4 mm.
  • Table 2 shows the sieved material obtained in the first separation step S1, that is, the first separated upper section SPU1 containing a large amount of potato bark fiber and the like, and the slurry that passed through the sieve, that is, the first separated lower section SPL1, The yield (kg), distribution rate, classification yield (kg), starch concentration) and total solid content (%) of each component are shown. Table 2
  • the yield is a value obtained by processing 1000k of starch raw material.
  • the slurry-like first separation lower section SPL1 obtained through the sieve in the first separation step S1 was continuously subjected to the second separation step S2.
  • a pressure flotation device was used for separation.
  • the pressurized flotation separator includes a separation tank and an overflow tank surrounding the separation tank, and a nozzle having a number of holes is arranged at the bottom in the separation tank.
  • the slurry-like first separation lower section SPL1 was fed into the separation tank, and pressurized air was supplied to the nozzle at the bottom of the separation tank.
  • a relatively light second separation upper section SPU2 floats along with bubbles ejected from a number of nozzle holes, and the floating second separation upper section SPU2 is separated.
  • the second separation upper section SPU2 obtained in the overflow tank contained a large amount of potato bark fiber and the like, and was a gray-white fibrous material as a whole.
  • the second separation lower section SPL2 remaining in the separation tank was a white or light yellow-brown starch slurry in a wet state.
  • Table 3 shows the yield (kg), distribution rate, classification yield (kg), and distribution of each component for the second separation upper section SPU2 and the second separation lower section SPL2 obtained in the second separation step S2. The starch concentration (%) and the total solid content (%) are shown.
  • the yield is the value when 1,000 kg of starch material is treated
  • the sieved material obtained in the first separation step S1, that is, the first separation upper section SPU1 contains a large amount of potato bark fiber and the like.Therefore, the first separation upper section SPU1 is again subjected to the grinding using a rotary stone type grinding machine. Grinding was performed until the tissue of the potato fiber was completely disintegrated to give a fine pulp. The obtained product was refined enough to pass through a strainer with a lattice spacing of 3 mm installed at the outlet of the grinding device.
  • the second grinding step G2 was refined.
  • the first separation upper section SPU1 and the aforementioned second separation upper section SPU2 were combined and subjected to a third separation step 3S.
  • a pressurized flotation apparatus having the same configuration as described above was used.
  • the pressurized air having a higher pressure is supplied to a larger number of nozzle holes having a smaller diameter than in the case of the second separation step S2.
  • the relatively light third separation upper sediment white section SPU3 which was relatively light, floated along with the rise of the bubbles, and steadily climbed over the upper edge of the separation tank and overflowed into the overflow tank.
  • a relatively heavy third separation lower section SPL3 remained in the separation tank, and this lower section settled and separated at the bottom of the separation tank when the supply of pressurized air was interrupted.
  • the majority of the SPU3 in the third separation upper section is fine fiber derived from 4 potato skins.
  • Table 4 shows the yields (kg), distribution ratios, and total yields (kg) of each component of the third separation upper section SPU3 and the third separation lower section SPL3 obtained in the third separation step S3. ), Starch concentration) and total solid content (%).
  • the yield is the value when 1,000 kg of starch material is treated
  • the second separation lower section SPL2 obtained in the second separation step S2 is the starch separated from the raw material. Is a slurry-like category containing a large amount and high concentration of The second separation lower section SPL2 was heated to 93 ° C to 97 ° C with stirring and with the addition of heat-resistant heat-amylase liquefying enzyme (Kristase T-5, trade name: 5500u / g). Liquefied. Thereafter, the temperature of the solution was lowered to 60 ° C, and glucoamylase saccharifying enzyme (trade name: Gluczym NL 4.2, titer: 4200u / g) was added in an amount equivalent to 0.07% (3u) in terms of the weight ratio to starch.
  • heat-resistant heat-amylase liquefying enzyme Keristase T-5, trade name: 5500u / g. Liquefied. Thereafter, the temperature of the solution was lowered to 60 ° C, and glucoamylase
  • the saccharified solution obtained in HY is filtered using a filter cloth made of polypropylene mixed spinning, and the 4th upper separation SPU4 as a filter cake remaining on the filter cloth and the filtrate passed through the filter cloth And SPL4.
  • the fourth upper division SPU4 contains fine fibrous substances and brown proteinaceous substances, and the fourth lower division SPL4 is a pale yellow sugar solution.
  • Table 5 shows the fourth separation upper section SPU4 containing a large amount of fine fibers and the like obtained in the fourth separation step S4 and the fourth separation lower section SPL4 of the target product sugar solution (sugar raw material for fermentation).
  • the yield (kg), distribution rate, total yield (kg), and glucose concentration (5 and total solid content (3 ⁇ 4)) of each component are shown.
  • the yield is the value when 1,000 kg of starch material is treated
  • the fourth separation lower section SPL4 was concentrated to about 60% volume under a weak reduced pressure.
  • This concentrated sugar solution FM can be used as a fermentation sugar raw material for fermentation of various amino acids such as glutamic acid-producing fermentation or fermentation of nucleic acid-related substances such as nucleosides and nucleotides.
  • the third separation lower section SPL3 which is slightly turbid due to the presence of a small amount of starch etc., is recirculated from the third separation step S3 to the first grinding step G1 and supplied as water to the rotating millstone-type grinding equipment in operation Was done. lk) Derivation / effective use of by-product BP
  • the third separation upper section SPU3 and the fourth separation upper section SPU4 contain a large amount of potato bark fiber and the like refined by the preceding grinding treatment, and as shown in Tables 4 and 5, unrecovered Contains starch, D-sugar, protein, etc.
  • Table 6 shows the yield and composition ratio of each component of the mixture BP obtained by combining these two separated upper sections SPU3 and SPU4.
  • this mixture can be effectively used as feed for livestock, especially feed or feed additives for ruminants such as red oaks and sheep. It is also useful as a feed additive for monogastric animals such as bush.
  • the third separation upper section SPU3 and the fourth separation upper section SPU4 are obtained in a wet state whether individually or mixed. When used as feed, it can be used in the wet state as obtained, or it can be used after being subjected to appropriate dehydration and drying treatments and then stored and matured as necessary.
  • the 3rd upper separation section SPU3 and 4th upper separation section SPU4 are also useful as fertilizers for cultivated plants or as raw materials for individual divisions or as a mixture. Available. As shown in Table 6, they contain a significant concentration of ash and are therefore particularly useful as fertilizers applied to cassava fields.
  • Table 7 shows the overall yield of each component in the method of this example, which goes through a series of the first grinding step G1 and the second grinding step G2 and the first separation step S1 to the fourth separation step S4. Shown in Table 7 shows the yield of each component not only for the sugar product FM, which is the target product, but also for the by-product BP used in feeds and the like.
  • Glucose-minic acid fermentation was carried out using the sugar solution FM obtained as described above as a carbohydrate raw material for fermentation, and it was derived from other starchy raw materials that were conventionally used at the actual production scale. It has been confirmed that glucuramic acid can be produced preferably while maintaining a sugar yield and a glucumic acid accumulation concentration in the medium that are equal to or higher than those obtained when using a sugar raw material for fermentation, for example, a sugar solution derived from cane molasses. Was done.
  • the sagobis was peeled off from the sago palm trunk immediately after logging, the starch-containing portion of the sagobis was separated, and the contaminated bark and wood chips were removed.
  • Starch contained in fractionated Sagobis Table 8 shows the composition ratio (3 ⁇ 4) of flour, fiber and moisture and the composition weight (kg) per 1000 kg.
  • the milled sagobis was in the form of pulp, and the composition and weight of the main components contained in it were as shown in Table 9.
  • the sagobis pulp was sieved and separated by a wet sieve to obtain a first separated upper section SPU1 containing coarse fibers such as hulls and a first separated lower section SPL1 containing starch. still, The effective sieve slit interval of the used wet sieve was 0.12.
  • Table 10 shows the composition ratios and weights of starch, fiber, and water contained in the upper and lower separation sections SPU1 and SPL1 obtained in the first separation step S1.
  • the first separation lower section SPL1 is ground again by a rotary stone type grinding device in which the grinding surface is more finely adjusted than the grinding device used in the first grinding process G1, The starch particles contained in the fiber structure were released from the fiber structure.
  • Second grinding step The fine first separation lower section SPL1 further ground in G2 is separated by pressure flotation, and mainly contains the light second separation upper section SPU2 containing fibers and mainly starch 2nd Separation Lower Division SPL2 was separately acquired.
  • This second separation lower section SPL2 was further subjected to stationary sedimentation treatment D1, and the supernatant SNS1 generated there was recirculated and reused in the pressurized flotation separation treatment in the second separation step S2.
  • the amount of water circulated to the second separation step S2 was 10620 kg (three times the amount of liquid introduced from the second grinding step G2).
  • Table 11 shows the component ratios and weights of the components contained in the upper and lower separation sections SPU2 and SPL2 obtained in the second separation step S2.
  • the second separation lower section SPL2 is allowed to stand still and sedimentation treatment
  • the sediment-containing liquid obtained through D1 is subjected to separation processing again by the pressure flotation method, and the first additional separation section containing fibers
  • the first addition including SPUA and starch Separated lower section SPLA was obtained.
  • the amount of the sediment-containing liquid introduced from the stationary sedimentation treatment D1 was 2996 kg
  • the water content was 2713 kg
  • the water for pressurized flotation treatment in the first additional separation process SA was
  • the supernatant SNS2 generated from the stationary sedimentation treatment D2 was refluxed and reused.
  • the amount of water circulated to the first additional separation step SA was 8987 kg (three times the amount of the sediment-containing liquid introduced from the second separation step S2).
  • Table 12 shows the composition ratio and weight of the components contained in SPUA and SPLA.
  • Composition ratio Weight (kg) Composition ratio (50 Weight (kg)
  • First additional separation lower section SPLA is allowed to stand still, and the sediment-containing liquid obtained by passing through D2 is subjected to further separation treatment by pressurized flotation, and the second additional separation upper section containing fibers SPUB and starch containing starch 2 Additional separation lower section SPLB was acquired.
  • the amount of the sediment-containing liquid introduced from the stationary settling treatment D2 in the former stage was 2525 kg, the water content was 2289 kg, and the water for pressurized flotation treatment in the second additional separation process SB was added to the latter stage.
  • the supernatant SNS3 generated in the stationary sedimentation treatment D3 was refluxed and reused.
  • the second additional separation step refluxing was water amount in the SB is 7576Kg c was (first additional separation 3 times the process has been introduced from the SA sediment-containing liquid volume) the second additional isolation lower section SPLB, subsequent The fiber was almost completely removed to the extent that the process did not interfere.
  • Table 13 shows the composition ratio and weight of the SPUB and SPLB components in both upper and lower separation sections after SB.
  • Second additional separation lower section SPLB was further passed through a stationary sedimentation treatment D3 to be separated into a settling separation upper section DCU3 (almost all of water) and a settling separation lower section DCL3 (starch slurry).
  • the total volume of the second additional separation section was 2,213 kg, of which the water content was 2008 kg.
  • the starch in the sedimentation-separation lower section (starch slurry) DCL3 was 71.4% of the starch in the starting material Sagobis.
  • heat-resistant heat-amylase liquefying enzyme trade name: Krystase T-5, titer: 5500 u / g. It was liquefied by steam heating to 97 ° C. Thereafter, the temperature of the solution was lowered to 60 ° C, and glucoamylase saccharifying enzyme (trade name: Dalkzy
  • the temperature of the enzyme reaction system was maintained within the range of 55 ° C to 60 ° C, and light stirring was continued. After about 48 hours, the starch granules were completely dissolved and disappeared. Next, it was confirmed that the sugar concentration in the reaction system had reached a predetermined value, and a starch liquefaction reaction and a saccharified solution in which the saccharification reaction had been completed were obtained.
  • the saccharified solution obtained in HY is filtered while hot using a nylon-blend filter cloth, passed through the fourth separation upper section SPU4 consisting mainly of fibers remaining on the filter cloth, and the filter cloth And the fourth filtrate SPL4 as the separated filtrate was obtained separately.
  • the fourth upper division SPU4 contains fine fibrous substances and brown proteins, and the like, and the fourth lower division SPL4 is a pale yellow sugar solution.
  • Table 15 shows the components of the 4th separation upper section SPU4 obtained in the 4th separation step S4 and the 4th separation lower section SPL4 of the sugar product (sugar raw material for fermentation) that is the target product. (Kg), distribution rate, total yield (kg), glucose concentration) and total solids content (%) of the product.
  • the fibers remaining in the fourth separation lower section SPL4 were only 0.2% or less of the fibers in the starting material Sagobis.
  • the 4th separation lower section SPL4 was concentrated to about 60% volume under weak reduced pressure to obtain the target product, a sugar solution FM as a sugar material for fermentation.
  • the first separation upper section SPU1, the second separation upper section SPU2, the first additional separation upper section SPUA and the second additional separation upper section SPUB are mixed to form a mixture MX, and the mixture MX is subjected to the third separation step S3. Introduced.
  • Table 16 shows the composition ratio and the weight of the components contained in the mixture MX.
  • the mixture MX was sieved with a wet rotary sieve to obtain a third separation upper section SPU3 and a third separation lower section SPL3.
  • the effective sieving interval of the wet rotary sieve is 0.089.
  • Table 17 shows the composition ratios and weights of the components contained in the upper and lower separation sections SPU3 and SPL3 after the third separation step.
  • the third separation upper section SPU3 and the fourth separation upper section SPU4 were mixed and led out of the system to obtain by-product BP.
  • This by-product BP is mainly composed of finely divided fibers, contains starch and sugar (glucose), and is wet, or after drying, feed, especially ruminant feed, or fertilizer, especially tropical. It is effectively used as a fertilizer for crops.
  • Table 18 shows the component ratios and weights of the by-products BP (mixture of SPU3 in the third separation upper section and SPU4 in the fourth separation upper section).
  • the starch contained in this by-product was 5.7% of the starting material Sagobis starch, and the fiber content was 91.0% of the raw material Sagobis fiber. It was observed that some of the fibers had migrated to this by-product.
  • the third separation lower section SPL3 which is slightly turbid due to the presence of a small amount of starch etc., flows from the third separation step S3 to the first grinding step G1, where it is used by the operating rotary stone for the type grinding equipment. Supplied as In addition, the sedimentation separation upper section DCU3 obtained from the final standing sedimentation treatment D3 was also returned to the first grinding step G1 and reused as grinding water. DCU3, the upper part of the final sedimentation sedimentation treatment, was mostly water, and its amount was 1530 kg. SPL3, the third lower section, consisted of 62 kg of starch, 8 kg of fiber, and 2548 kg of water. The starch and fiber present in the starting material sagobis were mixed into the grinding water at a ratio of 22.9 and 8.8%, respectively, and were refluxed.
  • the sugar solution FM obtained as described above is comparable to the conventional method using cane molasses in sugar production FM in fermentation on a commercial scale, and yields in sugar medium comparable to those obtained by the conventional method. It was confirmed that it was a raw material capable of producing glumic acid while maintaining the concentration of glucumic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A process for producing various sugar materials usable in fermentation from various starch materials while minimizing the amount of water employed and thus being substantially free from waste water or waste matters. The starch materials are ground and then divided into the light upper fraction and the heavy lower fraction by separation procedures such as pressure floatation. Then the lower fraction is repeatedly ground and separated and the sugar materials for fermentation are obtained by hydrolyzing the finally separated lower fraction. The separated upper fractions are usable as feeds or fertilizers. The filtrates and supernatants formed by the separation procedures are fed back into the separation step or grinding step immediately before the same and reused.

Description

明 細 書  Specification
発酵用糖質原料の製造方法 技術分野  Production method of sugar raw material for fermentation
本発明は、 種々の発酵工業において使用される発酵用糖質原料の製造方法に関 するものである。 さらに詳しくは、 本発明は、 各種のアミノ酸生産発酵 (例えば グルタミン酸発酵、 リジン発酵) あるいは各種の核酸関連物質生産発酵 (例えば イノシン発酵、 グアノシン発酵、 イノシン酸発酵) に代表される各種の有用な物 質を工業的規模で生産する発酵工業において発酵培地として使用される糖質原料、 すなわち加水分解により容易に糖質原料に加工し得る澱粉、 または直接に発酵培 地の構成成分として使用可能な発酵培地用糖液などを、 廃棄物の副生を実質的に 伴うことなく、 また用水の使用量を最小限に抑止して、 各種の澱粉質原料から製 造する方法に関するものである。 背景技術  The present invention relates to a method for producing a saccharide raw material for fermentation used in various fermentation industries. More specifically, the present invention provides various useful products represented by various amino acid-producing fermentations (eg, glutamic acid fermentation, lysine fermentation) or various nucleic acid-related substance producing fermentations (eg, inosine fermentation, guanosine fermentation, inosinic acid fermentation). Raw material used as a fermentation medium in the fermentation industry that produces quality on an industrial scale, that is, starch that can be easily processed into a raw material for sugar by hydrolysis, or fermentation that can be used directly as a component of a fermentation medium The present invention relates to a method of producing a sugar solution for a culture medium from various starchy raw materials without substantially producing waste by-products and minimizing the amount of water used. Background art
各種の澱粉質原料から、 発酵において使用する糖質原料を製造する方法には、 従来より多くの方法が既に知られている。 また、 各種の澱粉質原料から澱粉を製 造する際に適用して好都合な方法も数多く知られている。  As a method for producing a saccharide raw material used in fermentation from various starchy raw materials, many methods have been already known. Also, there are many known methods which can be advantageously applied when producing starch from various starchy raw materials.
例えば、 特閧昭 57-18991号公報には、 生澱粉原料を蒸煮することなく液化し糖 化する方法が示されており、 この方法では、 生サツマィモ、 生キヤサバなどの澱 粉質原料がセルラ一ゼ、 へミセルラ一ゼ、 ぺクチナ一ゼ、 ダルコアミラーゼおよ び酸性活性ひ一アミラーゼを含む複合酵素剤の作用のもとに加水分解処理され、 この加水分解による液化および糖化処理によって糖液を得ている。  For example, Japanese Patent Publication No. 57-18991 discloses a method of liquefying and saccharifying raw starch materials without steaming. In this method, raw starch materials such as raw sweet potato and raw sorghum are used in a cellular system. The enzyme is hydrolyzed under the action of a complex enzyme preparation containing glucose, hemicellulase, pectinase, dalcoamylase, and acid-active monoamylase. Have gained.
また、 特開昭 58— 141794号公報には、 澱粉質原料から濃厚糖液を製造する方法 が示されており、 そこでは、 コメ、 トウモロコシ、 コゥリヤン、 ォォムギ、 コム ギ、 サツマィモ、 夕ピオ力、 ジャガイモなどの澱粉質原料が、 特定の温度条件下 で順次液化澱粉酵素と糖化澱粉酵素により反応され、 これにより濃厚糖液が製造 されている。 Japanese Patent Application Laid-Open No. 58-141794 discloses a method for producing a concentrated sugar solution from a starchy raw material. When a starchy material such as potatoes The liquefied starch enzyme is successively reacted with the saccharified starch enzyme in this manner, thereby producing a concentrated sugar solution.
キヤッサパ根から夕ピオ力澱粉を製造する技術だけでも、 アルファ 'ラヴァー ル刊 『生キヤッサバ根からの澱粉製造用アルファ ·ラーバル設備』 (ALFA-LAVAL : Alfa-Laval Equipment for Starch Production from Fresh Manioc Roots ) と題 する専門書が知られており、 そこには、 取得した夕ピオ力澱粉を糖化して発酵原 料用を含む各種の用途に利用し得る糖液を製造することが記載されている。 澱粉質原料から澱粉を分離 ·精製し、 或いは得られた澱粉から発酵原料用糖液 を製造するための従来技術の多くは、 以下に列挙する課題を依然として抱えてい る。 すなわち、  Alfa-Laval: Alfa-Laval Equipment for Starch Production from Fresh Manioc Roots (ALFA-LAVAL) A specialized book is known, which describes that saccharification of the obtained evening power starch is used to produce a sugar solution that can be used for various uses, including for fermentation raw materials. Many of the conventional techniques for separating and purifying starch from a starchy raw material or producing a sugar solution for a fermentation raw material from the obtained starch still have the following problems. That is,
(a) 多量の用水の供給を必須とし、  (a) Require a large amount of water supply,
(b) 多量の産業廃棄物を副生し、  (b) By-produce a large amount of industrial waste,
(c ) 副生した廃棄物の処理に多大の処理費用を要し、 この処理費用の増大傾向 は今後益々加速されることが予想され、  (c) The disposal of by-product waste requires a great deal of disposal costs, and this increasing trend in disposal costs is expected to accelerate further in the future.
(d) 主に比較的高品位の澱粉質原料の使用を前提としており、 これに対し、 今 後は工業用澱粉質原料として、 従来は利用されることが稀であつた低品位 の澱粉質原料についても有効利用が要望されており、 そして  (d) It is premised on the use of relatively high-grade starch materials, whereas low-grade starch materials, which are rarely used in the past as industrial starch materials, There is a demand for effective use of raw materials, and
(e) 澱粉質原料の生産地おける生産環境、 特に原料作物栽培耕地における地力 の維持は考慮外であった。 発明の開示  (e) The production environment in the production area of starch raw materials, especially the maintenance of soil strength in the cultivated land for raw material crops was not considered. Disclosure of the invention
本発明の主要な目的は、 従来技術の抱えているこれらの課題を解決し、 所謂地 球環境に優しい発酵用糖質原料または澱粉の製造方法を提供することにある。 本発明の別の目的は、 澱粉質原料から途中過程で澱粉を単離することなく一貫 した連続工程により発酵用原料として有用な糖液を製造可能な上記方法を提供す とである。 A main object of the present invention is to solve these problems of the prior art and to provide a method for producing a so-called saccharide material for fermentation or starch which is friendly to the global environment. Another object of the present invention is to provide the above-mentioned method capable of producing a sugar solution useful as a fermentation raw material by a consistent continuous process without isolating starch from a starchy raw material in the middle of the process. And
本発明の更に別の目的は、 上記の一貫した連続工程で使用する用水を工程間で 適宜循環再利用可能とすることにより、 用水の使用量を極限まで減少可能で実質 的に廃水の副生を無にすることが出来る上記方法を提供することである。  Still another object of the present invention is to make it possible to reduce the amount of water used to the utmost by making it possible to circulate and reuse the water used in the above-mentioned continuous continuous process as appropriate between the processes, and to substantially produce by-product wastewater. Is to provide the above method that can eliminate the above.
本発明の更に別の目的は、 澱粉質原料に含有される可水溶性の糖が製造装置の 系外へ流出する廃水中に失われることなく、 これらの可水溶性の糖の殆ど全量を 目的生産物である発酵用糖質原料に移行させて回収することのできる上記方法を 提供することである。  Still another object of the present invention is to prevent almost all of the water-soluble sugar contained in the starchy raw material from being lost to the wastewater flowing out of the system of the production equipment without losing the water-soluble sugar. An object of the present invention is to provide the above-mentioned method which can be transferred to and recovered from a raw material for fermentation saccharide as a product.
本発明の更に別の目的は、 発酵用糖質原料の製造工程で澱粉質原料から分離さ れる繊維区分、 即ち、 易消化性の繊維、 蛋白、 あるいは植物栄養上有用な灰分を 高濃度に含有する固形質区分を副生品として回収し、 家畜、 特に反芻獣の飼料、 または澱粉質原料の栽培生産耕地に施用する肥料として有効活用可能な上記方法 を提供することである。  Still another object of the present invention is to provide a fiber fraction separated from a starchy raw material in the process of producing a saccharide raw material for fermentation, that is, containing a high concentration of easily digestible fiber, protein, or plant nutritionally useful ash. An object of the present invention is to provide a method as described above, wherein solid fractions collected are collected as by-products and can be effectively used as feed for livestock, especially ruminants, or as fertilizer applied to cultivated cultivated land for producing starchy raw materials.
本発明の更に別の目的は、 澱粉質原料に元来含有される澱粉および可水溶性の 糖の大部分を 90%以上の高率を以つて目的生産物である発酵用糖質原料に移行さ せ回収し得る上記方法を提供することである。  Still another object of the present invention is to transfer most of the starch and water-soluble saccharide originally contained in the starchy raw material to the target product, a fermentable saccharide raw material, at a high rate of 90% or more. It is an object of the present invention to provide the above-mentioned method which can be recovered.
以上に述べた目的は、 各請求項に特定されている特徴を備えた本発明による製 造方法よつて達成される。  The above objective is accomplished by a manufacturing method according to the present invention having the features specified in the claims.
すなわち、 本発明により澱粉質原料から発酵用糖質原料を製造する方法は、 That is, the method for producing a saccharide raw material for fermentation from a starchy raw material according to the present invention comprises:
(a) 澱粉質原料を磨砕する第 1磨砕工程、 (a) a first grinding step of grinding starchy raw materials,
(b) 第 1磨碎工程で磨碎された後の澱粉質原料を相対的に軽質の第 1分離上部 区分と重質の第 1分離下部区分とに分離する第 1分離工程、  (b) a first separation step of separating the starchy material ground in the first grinding step into a relatively light first separation upper section and a heavy first separation lower section;
( c ) 第 1分離上部区分を磨砕する第 2磨碎工程、  (c) a second grinding step for grinding the first separated upper section,
(d) 第 1分離下部区分を相対的に軽質の第 2分離上部区分と重質の第 2分離下 部区分とに分離する第 2分離工程、 および  (d) a second separation step of separating the first separated lower section into a relatively lighter second separated upper section and a heavy second separated lower section; and
( e) 第 2磨砕工程で磨砕された後の第 1分離上部区分を前記第 2分離上部区分 と共に相対的に軽質の第 3分離上部区分と重質の第 3分離下部区分とに分離する 第 3分離工程、 (e) The first separated upper section that has been ground in the second grinding step is the second separated upper section. A third separation step of separating into a relatively light third separation upper section and a heavy third separation lower section,
を備えており、 ここで、 前記第 3分離上部区分は系外へ導出され、 前記第 3分離 下部区分は前記第 1磨碎工程の入側へ回送され、 前記第 2分離下部区分から発酵 用糖質原料が取得される。 Wherein the third separation upper section is led out of the system, the third separation lower section is forwarded to the inlet side of the first grinding step, and fermentation is performed from the second separation lower section. A carbohydrate raw material is obtained.
この場合、 使用に好適な澱粉質原料は、 サゴヤシ、 コメ、 コムギ、 トウモロコ シからなる群から選ばれた少なくとも一つに由来する原料、 即ち、 栽培作物植物 の地上成長部位から採取される、 土砂などの混入の少ない原料である。  In this case, a starchy raw material suitable for use is a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn, that is, sediment collected from the above-ground growth site of a cultivated crop plant. It is a raw material with little contamination.
本発明の好適な態様によれば、 上記方法は前記第 2分離下部区分からその固形 区分を分取する固液分離工程を更に備えている。  According to a preferred aspect of the present invention, the method further comprises a solid-liquid separation step of separating the solid section from the second lower separation section.
本発明の別の好適な態様によれば、 上記方法は前記第 1磨碎工程に先立ち澱粉 質原料を水洗する洗浄工程を更に備えており、 該洗浄工程では洗浄水が循環され、 該洗浄水は循環過程中に含有固形物を分離除去するための浄化処理に付される。 この場合、 使用に好適な前記澱粉質原料はキヤッサバ、 ジャガイモ、 サッマイ モからなる群から選ばれた少なくとも一つに由来する原料、 即ち、 栽培作物植物 の地下成長部位から採取される、 土砂などの混入の可能性のある原料である。 こ のような原料を、 上記洗浄工程において循環再利用される洗浄水により水洗する ことにより、 目的生産物である発酵用糖質原料に対する土砂等の混入の恐れを排 除することができる。  According to another preferred embodiment of the present invention, the method further comprises a washing step of washing the starch material with water prior to the first grinding step, wherein the washing step includes circulating washing water, Is subjected to a purification treatment for separating and removing contained solid matter during the circulation process. In this case, the starchy raw material suitable for use is a raw material derived from at least one selected from the group consisting of cassava, potato, and sweet potato, i.e., collected from an underground growth site of a cultivated crop plant, such as soil and sand. It is a raw material that may be mixed. By washing such a raw material with washing water that is circulated and reused in the above-mentioned washing step, it is possible to eliminate the possibility that soil and the like are mixed in the fermentation saccharide raw material as the target product.
前記第 2分離工程および Zまたは前記第 3分離工程は好ましくは加圧浮遊分離 法 (Compressed Floating Separation)に従って実行される。  The second separation step and Z or the third separation step are preferably performed according to a compressed floating separation method (Compressed Floating Separation).
本発明の更に別の好適な態様によれば、 上記方法は前記第 2分離下部区分を液 化および糖化する加水分解工程と、 加水分解工程からの生成物を相対的に軽質の 第 4分離上部区分と重質の第 4分離下部区分との分離する第 4分離工程とを更に 備えており、 ここで、 前記第 4分離上部区分は系外へ導出され、 目的生産物であ る発酵用糖質原料は前記第 4分離下部区分から糖液として取得される。 この場合、 前記第 4分離工程は好ましくは濾過および/または遠心分離分離法 に従って実行される。 According to yet another preferred aspect of the present invention, the method comprises a hydrolysis step of liquefying and saccharifying the second separation lower section; and a relatively light fourth separation upper section for separating the product from the hydrolysis step. Further comprising a fourth separation step of separating the fraction from the heavy fourth separation lower section, wherein the fourth separation upper section is led out of the system and is a fermentation sugar which is a target product. The raw material is obtained as a sugar liquid from the fourth separation lower section. In this case, the fourth separation step is preferably performed according to a filtration and / or centrifugation method.
本発明の更に別の態様により澱粉質原料から発酵用糖質原料を製造する方法は、 According to yet another aspect of the present invention, a method for producing a saccharide raw material for fermentation from a starchy raw material comprises:
(a) 濺粉質原料を磨砕する第 1磨碎工程、 (a) the first grinding step of grinding the milled raw material,
(b) 第 1磨碎工程で磨砕された後の澱粉質原料を相対的に軽質の第 1分離上部 区分と重質の第 1分離下部区分とに分離する第 1分離工程、  (b) a first separation step of separating the starchy material ground in the first grinding step into a relatively light first separation upper section and a heavy first separation lower section;
(c) 第 1分離下部区分を磨砕する第 2磨碎工程、  (c) a second grinding step for grinding the first separated lower section,
( 第 2磨碎工程で磨碎された後の第 1分離下部区分を相対的に軽質の第 2分 離上部区分と重質の第 2分離下部区分とに分離する第 2分離工程、 および  (A second separation step of separating the first separated lower section after being ground in the second grinding step into a relatively light second separated upper section and a heavy second separated lower section, and
(e) 第 1分離上部区分を前記第 2分離上部区分と共に相対的に軽質の第 3分離 上部区分と重質の第 3分離下部区分とに分離する第 3分離工程、  (e) a third separation step of separating the first separated upper section together with the second separated upper section into a relatively light third separated upper section and a heavy third separated lower section.
を備えており、 ここで、 前記第 3分離上部区分は系外へ導出され、 前記第 3分離 下部区分は前記第 1磨砕工程の入側へ回送され、 目的生産物である発酵用糖質原 料は前記第 2分離下部区分から取得される。 Wherein the third separation upper section is led out of the system, the third separation lower section is sent to the inlet side of the first grinding step, and the fermentation saccharide as a target product is provided. Raw materials are obtained from the second separated lower section.
ここで使用される前記澱粉質原料は、 好ましくはサゴヤシ、 コメ、 コムギ、 ト ゥモロコシからなる群から選ばれた少なくとも一つに由来する原料、 即ち、 栽培 作物植物の地上成長部位から採取される、 土砂などの混入の少ない原料である。 この別の態様に係る方法も、 前記第 2分離下部区分からその固形区分を分取す る工程を更に備えることができる。  The starchy raw material used here is preferably a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn, that is, collected from the above-ground growth site of the cultivated crop plant. It is a raw material with little contamination such as earth and sand. The method according to this another aspect may further comprise a step of separating the solid section from the second separation lower section.
前記第 2分離工程は好ましくは加圧浮遊分離法に従って実行され、 前記第 3分 離工程は好ましくは濾過などの固液分離法に従って実行される。  The second separation step is preferably performed according to a pressure floating separation method, and the third separation step is preferably performed according to a solid-liquid separation method such as filtration.
上記方法は前記第 2分離下部区分を静置沈降する工程を更に含むこともでき、 この場合、 静置沈降後の上澄液は前記第 2分離工程へ分離用水として回送され、 目的生産物である発酵用糖質原料は、 静置沈降された第 2分離下部区分から取得 される。  The above method may further include a step of allowing the second separation lower section to settle and settle, and in this case, the supernatant liquid after the settling and settling is sent to the second separation step as separation water, and Certain fermentable carbohydrate raw materials are obtained from a second settled lower section that has settled down.
上記方法は、 前記第 2分離下部区分を液化および糖化する加水分解工程と、 加 水分解工程からの生成物を相対的に軽質の第 4分離上部区分と重質の第 4分離下 部区分との分離する第 4分離工程とを更に備えることもでき、 ここで、 前記第 4 分離上部区分は前記第 3分離上部区分と共に系外へ導出されてその繊維区分が飼 料または肥料としての副生品として取得されると共に、 目的生産物である発酵用 糖質原料は前記第 4分離下部区分から糖液として取得される。 A hydrolysis step of liquefying and saccharifying the second separation lower section; The method may further include a fourth separation step of separating a product from the water splitting step into a relatively light fourth separation upper section and a heavy fourth separation lower section. The separated upper section is led out of the system together with the third separated upper section, the fiber section is obtained as a by-product of feed or fertilizer, and the target saccharide raw material for fermentation is the 4th separated upper section. Obtained as a sugar solution from the lower separation section.
好ましくは前記第 4分離工程は濾過または遠心分離法に従って実行される。 上記方法は、 前記第 2分離下部区分を相対的に軽質の追加分離上部区分と重質 の追加分離下部区分とに分離する 1段以上の追加分離工程を更に備えることもで き、 ここで、 追加分離上部区分は前記第 3分離工程へ導入され、 目的生産物であ る発酵用糖質原料は追加分離下部区分から取得される。  Preferably, said fourth separation step is performed according to a filtration or centrifugation method. The method may further comprise one or more additional separation steps of separating the second separation lower section into a relatively light additional separation upper section and a heavy additional separation lower section, wherein: The additional separation upper section is introduced into the third separation step, and the target product, a saccharide raw material for fermentation, is obtained from the additional separation lower section.
この場合、 上記方法は前記追加分離下部区分からその固形区分を分取する工程 を更に備えていてもよく、 また前記追加分離工程は好ましくは加圧浮遊分離法に 従って実行される。  In this case, the method may further comprise a step of separating the solid fraction from the additional separation lower section, and the additional separation step is preferably performed according to a pressurized flotation method.
更に上記方法は、 前記追加分離下部区分を液化および糖化する加水分解工程と、 加水分解工程からの生成物を相対的に軽質の第 4分離上部区分と重質の第 4分離 下部区分との分離する第 4分離工程とを付加的に備えることもでき、 この場合、 前記第 4分離上部区分は系外へ導出されると共に、 目的生産物である発酵用糖質 原料は前記第 4分離下部区分から糖液として取得される。  Further, the method further comprises: a hydrolysis step of liquefying and saccharifying the additional separation lower section; and separating the product from the hydrolysis step into a relatively light fourth separation upper section and a heavy fourth separation lower section. In this case, the fourth separation upper section is led out of the system, and the fermentation saccharide raw material that is the target product is the fourth separation lower section. Obtained as a sugar solution.
特に好適には、 上記方法では澱粉質原料としてサゴヤシに由来する原料が特定 的に使用される。 即ち、 サゴヤシに由来する澱粉質原料は、 従来は最終糖質製品 に繊維などの夾雑物が混入し易い原料とされていたが、 本発明による方法にあつ ては、 特に加圧浮遊分離法による複数段階の分離工程を採用した場合に目的生産 物である発酵用糖質原料として繊維などの夾雑物の混入が完全に排除された高品 質の糖液を取得することが可能となる。  Particularly preferably, in the above method, a raw material derived from sago palm is specifically used as the starchy raw material. That is, starchy raw materials derived from sago palm have conventionally been regarded as raw materials in which contaminants such as fibers are likely to be mixed into the final carbohydrate product. When a multi-stage separation process is employed, it is possible to obtain a high-quality sugar solution from which impurities such as fibers are completely removed as a raw material for fermentation sugar, which is the target product.
本発明による方法で製造される発酵用糖質原料とは、 各種の発酵用途において 培地の主要成分として使用される糖液および該糖液の主原料となる澱粉である。 本発明で得られる目的生産物である発酵用糖質原料もしくは糖液は、 発酵の種 類には特に限定されることなく広く多種類の発酵に使用可能であるが、 特に各種 のアミノ酸生産発酵、 例えばグルタミン酸発酵、 リジン発酵あるいは各種の核酸 関連物質生産発酵、 例えばイノシン発酵、 グアノシン発酵、 例えばイノシン酸発 酵等に使用して好適である。 The carbohydrate raw material for fermentation produced by the method of the present invention is a sugar liquid used as a main component of a culture medium in various fermentation applications and a starch which is a main raw material of the sugar liquid. The sugar product or sugar solution for fermentation, which is the target product obtained in the present invention, can be used for a wide variety of fermentations without any particular limitation on the type of fermentation. It is suitable for use in, for example, glutamic acid fermentation, lysine fermentation, or fermentation for producing various nucleic acid-related substances, for example, inosine fermentation, guanosine fermentation, for example, inosine acid fermentation.
もちろん、 これら以外の発酵、 例えば抗生物質などの医薬品を生産する発酵、 アルコール発酵、 酒類の醸造にも本発明による方法で得られる発酵用糖質原料は 好結果を齎す高品質の糖液原料として使用でき、 その場合、 係る使用に格段の支 障は認められない。  Of course, the fermentation saccharide raw material obtained by the method according to the present invention in fermentation other than these, for example, fermentation for producing pharmaceuticals such as antibiotics, alcohol fermentation, and brewing of alcoholic beverages, is a high-quality sugar liquid raw material that gives good results. It can be used, and in that case, no remarkable trouble is found in such use.
本発明の方法で主要な出発原料として使用される澱粉質原料としては、 澱粉を 適当濃度に含有し、 好ましくは多量且つ安定に供給し得る農林産物およびそれら の加工品であれば、 特に限定なく使用可能である。  The starchy raw material used as a main starting material in the method of the present invention is not particularly limited as long as it is an agricultural and forestry product containing starch at an appropriate concentration and preferably can be supplied in a large amount and stably, and a processed product thereof. Can be used.
すなわち、 澱粉質原料は、 種子、 地下茎、 地下根、 樹幹蓄積物など何れの形態 のであってもよく、 また栽培耕地から収穫された直後の新鮮な生産物であっても、 或いは脱水、 洗浄、 乾燥、 風乾、 切削、 蒸煮、 凍結、 破砕、 粉碎などの予備的処 理を経た半加工品または加工品であってもよい。 さらに、 澱粉質原料としては精 製処理後の澱粉質製品は勿論、 相当量の澱粉以外の成分あるいは夾雑物を含有乃 至混入する粗原料であってもよい。  That is, the starchy raw material may be in any form such as seeds, rhizomes, underground roots, stem accumulations, and may be a fresh product immediately after being harvested from the cultivated arable land, or may be dehydrated, washed, It may be a semi-finished or processed product that has undergone preliminary processing such as drying, air drying, cutting, steaming, freezing, crushing, and grinding. Further, the starchy raw material may be not only a starchy product after the purification treatment but also a crude raw material containing a considerable amount of components or impurities other than starch.
澱粉質原料は、 その種類によっては澱粉以外の炭水化物、 例えば可水溶性の糖 を相当濃度に含有する原料も存在するが、 本発明による方法では、 易水溶性糖で さえも目的生産物である発酵用糖質原料 (糖液) 中に取り込まれ、 余すところな く利用し得る。 これに対して、 従来の澱粉の製造法あるいは澱粉を分離後に糖液 を製造する方法では、 その製造工程中で澱粉質原料巾に含有される可水溶性の糖 は全て廃水と共に流出され、 廃棄されていた。  Depending on the type of starchy raw material, there are raw materials containing carbohydrates other than starch, for example, a water-soluble sugar at a considerable concentration, but in the method according to the present invention, even a water-soluble sugar is a target product. It is incorporated into the sugar raw material (sugar solution) for fermentation and can be used without any excess. On the other hand, in the conventional method for producing starch or the method for producing a sugar solution after separating starch, all the water-soluble sugar contained in the starch raw material width is discharged together with wastewater during the production process, and is disposed of. It had been.
本発明で使用可能な澱粉質原料の具体例を、 由来する作物植物別に列挙すれば 以下の通りである。 (A) 澱粉の主な所在位置が地上部位である例 Specific examples of starchy raw materials that can be used in the present invention are listed below according to the crop plant from which they are derived. (A) Example where the main location of starch is above ground
A1 ) サゴヤシ由来:  A1) Sago palm origin:
サゴヤシ樹幹の木髄(ビス、 Pith)、 粗製サゴ澱粉、 精製サゴ澱粉 A2 ) コメ由来:  Sago palm stem pulp (bis, Pith), crude sago starch, refined sago starch A2) From rice:
碎米、 等外米、 古米、 浸水米、 米粉、 玄米、 白糠 (吟醸酒醸造用米の精 白時に生成する副生物)  Crushed rice, etc., old rice, flooded rice, rice flour, brown rice, shiranuka (by-products produced during rice polishing for ginjo sake brewing)
A3 ) コムギ由来:  A3) From wheat:
小麦粉、 脱グルテン小麦澱粉、 浮粉(グルテン製造時の副生微細粒澱粉) A4) トゥモロコシ由来:  Flour, deglutenized wheat starch, floating starch (by-product fine-grained starch during gluten production) A4) From corn:
コーンスターチ、 コ一ングリッツ、 コーンフラワー、 フレークドコーン A5 ) その他の作物由来:  Corn starch, corn grits, cornflower, flaked corn A5) Other crop origin:
玄コゥリヤン、 精白コゥリヤン、 玄蓠麦粒  Gencole yang, refined georgian, gen barley grain
(B) 澱粉の主な所在位置が地下部位である例  (B) Example where the main location of starch is underground
B1 ) キヤッサバ由来:  B1) From cassava:
キヤッサパ生芋、 夕ピオ力チップス、 夕ピオカスライス、 夕ピオ力粉末、 夕ピオ力澱粉、 夕ピオカパール  Evening potato, Evening pio chips, Evening pio slice, Evening pio powder, Evening pio starch, Evening pioka pearl
B2 ) ジャガイモ由来:  B2) From potato:
馬鈴薯生芋、 馬鈴薯冷凍切干、 馬鈴薯全塊剥皮冷凍乾燥品、 馬鈴薯芋粉 B3 ) サツマィモ由来:  Potato raw potato, Potato frozen cut dried, Potato whole lump peeled frozen dried product, Potato potato powder B3) From sweet potato:
甘藷生芋、 甘藷切干、 甘藷生切干、 甘藷芋粉  Sweet potatoes, Sweet potatoes, Sweet potatoes, Sweet potato flour
B4) その他の作物由来:  B4) From other crops:
葛澱粉、 葛根、 生夕口芋  Kuzu starch, kakkon, raw sweet potato
本発明による方法は、 その一連の工程中に、 前記第 1磨碎工程および第 2磨砕 工程の二つの磨碎工程を含んでいる。 これらの磨砕工程における磨碎の手法およ び使用する装置には特に限定はなく、 公知の各種の磨砕法および装置を使用する ことができる。 たとえば、 回転する石曰を使用する磨碎法および装置は最も一般 的に使用可能である。 また、 第 1磨砕工程および第 2磨碎工程のいずれにおいて も、 磨碎処理は単一段階もしくは複数段階で実施してよい。 The method according to the present invention includes two grinding steps of the first grinding step and the second grinding step in the series of steps. There is no particular limitation on the grinding method and the equipment used in these grinding steps, and various known grinding methods and equipment can be used. For example, grinding methods and equipment using rotating stones are the most common. It is possible to use it. In both the first grinding step and the second grinding step, the grinding treatment may be performed in a single stage or in multiple stages.
本発明による方法では、 一連の工程中に、 第 1分離工程、 第 2分離工程および 第 3分離工程の少なくとも三つの分離工程、 好適には更に第 4分離工程を加えた 計四つの分離工程、 更に好適には単一もしくは複数段階の追加分離工程を加えた 五つ以上の分離工程を含んでいる。 これら各分離工程とも被分離区分中の相対的 に軽質の分離上部区分と重質の分離下部区分とを分離取得する処理を実施する。 何れの分離工程にあっても、 軽質の分離上部区分は繊維成分をより多く含み、 ま た重質の分離下部区分は澱粉あるいは糖化したグルコースをより多く含む。  In the method according to the present invention, in a series of steps, at least three separation steps of a first separation step, a second separation step and a third separation step, preferably a total of four separation steps further including a fourth separation step, More preferably, it comprises five or more separation steps with one or more additional separation steps. In each of these separation steps, a process to separate and acquire the relatively light upper separation section and the heavy separation lower section in the section to be separated is performed. In any of the separation steps, the lighter separation upper section contains more fiber components and the heavier separation lower section contains more starch or saccharified glucose.
これらの各分離工程にあっては、 被分離区分の形態および分離目的に応じて適 切な分離法および装置を使用することができ、 例えば、 湿式篩分、 ストレーナ一 通過、 遠心分離、 濾過、 静置沈降等の分離法および装置の中から適合したものを 選択して使用すればよい。  In each of these separation steps, an appropriate separation method and apparatus can be used according to the form of the section to be separated and the purpose of the separation, for example, wet sieving, passage through a strainer, centrifugation, filtration, static A suitable method may be selected from separation methods such as sedimentation and equipment, and used.
ここで、 特に第 2分離工程および追加分離工程においては、 加圧浮上分離法に よる分離処理を適用することが好ましい。 尚、 第 3分離工程については、 第 2磨 砕工程で磨砕された第 1分離上部区分を分離処理する場合には加圧浮上分離法を、 また第 2磨碎工程で磨砕された第 1分離下部区分を分離処理する場合は濾過等の 固液分離法を適用することが好ましい。 また、 第 4分離工程においては、 澱粉を 加水分解した後の液体について、 微細な繊維成分を含む分離上部区分と加水分解 により生成した粘度の高い糖化液である分離下部区分とを分離する目的に適合さ せて、 濾過、 加圧濾過あるいは高速度連続液体遠心分離、 例えばシャープレス遠 心分離機の使用等が特に適当である。  Here, in the second separation step and the additional separation step in particular, it is preferable to apply a separation treatment by a pressure flotation method. In the third separation step, the pressure flotation method is used when separating the first separation upper section ground in the second grinding step, and the second separation step is performed in the second grinding step. (1) When the lower separation section is subjected to separation treatment, it is preferable to apply a solid-liquid separation method such as filtration. In the fourth separation step, the liquid after the starch hydrolysis is separated into an upper separation section containing fine fiber components and a lower separation section which is a highly viscous saccharified liquid produced by hydrolysis. As appropriate, filtration, pressure filtration or high speed continuous liquid centrifugation, such as the use of a Sharpless centrifuge, is particularly suitable.
上記の通り、 第 2分離工程と追加分離工程および場合によっては第 3分離工程 に適用して好適な加圧浮遊分離法では、 微細な固形質の分散した液体を収容する 槽の底部に気泡発生ノズルを介して加圧気体が導入され、 ノズルから噴出する気 泡が液中を浮上する間に気泡の表面に液中の微細な固形質が付着され、 気泡の浮 上に随伴して気泡表面に付着した微細な固形質が液の表面まで持ち来たされ、 気 泡の塊が槽の側壁の上縁を乗り越えて外部に溢流することにより微細な固体も槽 外に排出分離される。 As described above, in the pressurized floating separation method, which is suitable for the second separation step, the additional separation step, and in some cases, the third separation step, air bubbles are generated at the bottom of a tank containing a liquid in which fine solids are dispersed. Pressurized gas is introduced through the nozzle, and while the bubbles ejected from the nozzle float in the liquid, fine solids in the liquid adhere to the surface of the bubbles, causing the bubbles to float. Fine solids adhering to the surface of the bubbles are brought to the surface of the liquid along with the top, and fine solids are spilled over the upper edge of the side wall of the tank to the outside due to the lump of air bubbles. It is discharged outside and separated.
この加圧浮遊分離法は、 従来から似たような手法で廃水浄化あるいは鉱山にお ける選鉱に利用されているが、 澱粉の製造あるいはその関連技術分野に適用され た例は殆ど知られていない。  This pressurized flotation method has been used in similar ways to purify wastewater or beneficiation in mines, but few examples have been applied to starch production or related technical fields. .
なお、 本発明による方法において、 第 3分離工程および第 4分離工程から生じ るいずれの分離上部区分も繊維成分を多く含有するが、 澱粉または糖分の含有量 は少ないので、 副生物として系外に導出される。 導出されたこれらの分離上部区 分は、 各分離工程毎に、 あるいは両分離工程の分離上部区分を一緒にして、 家畜 飼料または肥料として利用される。 従って、 本発明の方法で系外に導出される副 生物は廃棄物ではなく、 有効利用される資源である。  In the method according to the present invention, each of the upper separation sections resulting from the third and fourth separation steps contains a large amount of fiber components, but has a low starch or sugar content, so that it is out of the system as a by-product. Derived. These derived upper separations can be used as livestock feed or fertilizer for each separation step or for both separation steps together. Therefore, the by-product derived outside the system by the method of the present invention is not a waste but a resource that can be effectively used.
本発明において、 第 3分離工程で生じる第 3分離下部区分は、 澱粉あるいは糖 液等、 目的生産物に有用な糖質を依然として含む液体である。 本発明では、 この 第 3分離下部区分は第 1磨碎工程に回送され、 そこで必要とされる磨碎用水に再 利用される。 また、 第 2分離工程および場合によっては単一もしくは複数段の追 加分離工程から生じる各分離下部区分を静置沈降により更に固液分離する場合、 固液分離で生じる上澄液は多少の澱粉あるいは繊維分を含有する希薄分散液であ るので、 これらの上澄液も全量が直前の分離工程の入側部分に循環して再利用さ れる。 この様に、 本発明では、 一連の工程の内部で生じる分離上澄液を、 それ自 体は利用価値の低いものであっても、 工程間に循環して再利用し、 それによりェ 程全体における用水の使用量を顕著に節減可能である。 また、 これら液中に含ま れる澱粉あるいは澱粉原料に含有される易水溶性糖等の有用物を、 系外に流出廃 棄することなく、 再度、 工程内に取り込むことにより、 出発原料中の有用成分を ほぼ完全に近い高効率で利用可能である。 従って、 各分離工程から廃棄物を生成 することはほぼ皆無となろう。 尚、 第 4分離工程から生じる第 4分離下部区分は、 目的生産物である発酵用糖 質原料としての糖液そのものの区分である。 この区分には、 澱粉の加水分解によ り生成したグルコースが余すところ無く含有されている他に、 出発原料である澱 粉質原料に含まれていた可水溶性の糖分、 特に易水溶性の糖分が途中の工程で系 外に流出 ·廃棄されることなく全て集中して蓄積されている。 In the present invention, the third separation lower section generated in the third separation step is a liquid still containing a saccharide useful for the target product, such as a starch or a sugar solution. In the present invention, the third separation lower section is sent to the first grinding step, where it is reused for the required grinding water. In addition, when each separation lower section resulting from the second separation step and possibly single or multiple additional separation steps is further subjected to solid-liquid separation by standing sedimentation, the supernatant liquid resulting from the solid-liquid separation may contain some starch. Alternatively, since it is a dilute dispersion containing fibers, the entire amount of these supernatants is also circulated to the inlet side of the immediately preceding separation step and reused. As described above, according to the present invention, even if the separation supernatant liquid generated inside the series of steps is itself of low utility value, it is circulated and reused between the steps, thereby achieving the entire process. It is possible to remarkably reduce the amount of water used in the above. Also, useful substances such as starch contained in these liquids or easily water-soluble sugars contained in the raw materials of starch are introduced into the process again without being discharged into the system and discarded. The components are available with almost complete efficiency. Therefore, there will be almost no waste generated from each separation step. Incidentally, the fourth separation lower section generated from the fourth separation step is a section of the sugar liquid itself as a fermentation saccharide raw material which is a target product. This category contains not only glucose produced by hydrolysis of starch, but also water-soluble sugars contained in the starting starchy material, especially water-soluble sugars. All sugars are accumulated in a concentrated manner without being leaked out of the system and discarded in the middle of the process.
なお、 従来の澱粉の製造法にあっては、 澱粉質原料に含有される可水溶性の糖 分は処理工程の間に系外へ流出され、 周辺環境における生物的酸素要求量 ( B0D ) を増大させ、 環境汚染の原因となることも少なく無かったが、 本発明の方法にあ つては、 澱粉質原料に含有される澱粉は勿論のこと、 可水溶性の糖分も余すとこ ろ無く目的生産物中に回収されるため、 環境汚染の原因となる廃棄物を全く生成 するところが無い。  In the conventional starch production method, the water-soluble sugar contained in the starchy raw material is discharged out of the system during the treatment process, and the biological oxygen demand (B0D) in the surrounding environment is reduced. Although it did not cause much increase in the amount of water and caused environmental pollution, in the method of the present invention, not only the starch contained in the starchy raw material but also the water-soluble sugars were completely produced without any excess. Since it is collected in waste, there is no place to generate any waste that causes environmental pollution.
本発明において、 第 2分離工程から生じる第 2分離下部区分、 もしくはそれを 更に 1段以上の追加分離工程に付して得られる追加分離下部区分、 或いは更にこ れら分離下部区分を静置沈降処理して得られる沈降下部区分は、 澱粉質原料から 分離された澱粉を主成分とする区分である。 これらの下部区分からは、 適当な固 液分離法により澱粉を分離取得することもできるし、 あるいはこの下部区分をそ のまま加水分解処理に付して発酵用糖質原料としての糖液に加工することができ る。 加水分解処理には、 強酸加水分解法あるいは酵素加水分解法の何れも採用可 能であるが、 生成する糖液を発酵用原料として利用する観点から、 また処理操作 の便宜上の観点からも、 一般には酵素加水分解法が採用される。  In the present invention, the second separation lower section resulting from the second separation step, or the additional separation lower section obtained by subjecting the second separation lower section to one or more additional separation steps, or furthermore, these separation lower sections are allowed to stand and settle. The sedimentation section obtained by the treatment is a section mainly composed of starch separated from the starchy raw material. From these lower sections, starch can be separated and obtained by an appropriate solid-liquid separation method, or this lower section can be directly subjected to hydrolysis treatment to be processed into a sugar liquid as a sugar material for fermentation. can do. Either a strong acid hydrolysis method or an enzymatic hydrolysis method can be used for the hydrolysis treatment. However, in general, from the viewpoint of using the produced sugar solution as a raw material for fermentation, and from the viewpoint of the convenience of the treatment operation, it is generally used. Employs an enzymatic hydrolysis method.
酵素加水分解法としては、 従来より澱粉の糖化法として実施されている方法が 適用可能である。 この方法は、 一般には澱粉に澱粉液化酵素としてひ一アミラー ゼを作用させる液化工程と、 液化した澱粉を糖化してグルコース等易発酵性糖を 生成させるための酵素としてグルクアミラーゼを作用させる糖化工程とを含んで いる。  As the enzymatic hydrolysis method, a method conventionally used as a saccharification method of starch can be applied. In general, this method comprises a liquefaction step in which starch is subjected to Hi-amylase as a starch liquefying enzyme, and a saccharification step in which glycamylase acts as an enzyme for saccharifying the liquefied starch to produce an easily fermentable sugar such as glucose. And is included.
なお、 酵素加水分解では、 高い反応速度を保持し、 且つ雑菌による工程の汚染 を回避する目的から、 高温活性の澱粉液化酵素および澱粉糖化酵素を使用すると よい。 また、 澱粉液化酵素および澱粉糖化酵素の作用条件を共通にできる場合に は、 両酵素を混合して使用してもよい。 Enzymatic hydrolysis maintains a high reaction rate and contaminates the process due to various bacteria. In order to avoid this, it is preferable to use high-temperature-active starch liquefying enzymes and starch saccharifying enzymes. If the starch liquefying enzyme and the starch saccharifying enzyme can be used in common, the enzymes may be used in combination.
本発明において加水分解処理工程を経て取得される発酵用糖質原料としての糖 液は、 そのまま直接に、 あるいは発酵用培地として適当な濃度に濃縮して、 発酵 工程に供給可能である。 この発酵用糖質原料としての糖液の生産地点から発酵ェ 場までの距離が遠隔である場合、 あるいは発酵用糖質原料としての糖液を生産し た時点から、 それを蓄積した後に発酵工程に使用するまでの時間が長い場合には、 糖液を発酵用培地に適する濃度以上に濃縮して輸送または保存してもよい。  In the present invention, the sugar solution obtained as a raw material for fermentation carbohydrate obtained through the hydrolysis treatment step can be supplied to the fermentation step directly as it is or after being concentrated to an appropriate concentration as a fermentation medium. When the distance from the point of production of the sugar solution for fermentation sugar material to the fermentation plant is remote, or when the sugar solution for fermentation sugar material is produced, it is accumulated and then the fermentation process is started. In the case where the time until the use is long, the sugar solution may be transported or stored after being concentrated to a concentration suitable for the fermentation medium.
本発明の好適な態様においては、 澱粉質原料は第 1磨碎工程に導入される以前 に水洗される。 この水洗工程に使用される洗浄水は循環使用され、 循環経路の途 中で浄化処理により随伴固形物を除去されて清浄水となる。 即ち、 本発明によれ ば、 澱粉質原料は、 一度、 洗浄工程で使用された水を浄化して再度循環してくる 洗浄水で洗浄される。 従って、 洗浄工程にあっても洗浄水の使用量は必要最小量 に節減し得る。  In a preferred embodiment of the present invention, the starchy raw material is washed with water before being introduced into the first milling step. The washing water used in this washing step is circulated and used, and the accompanying solid matter is removed by purification treatment in the course of the circulation path to become clean water. That is, according to the present invention, the starchy raw material is once cleaned with the cleaning water that is used in the cleaning step to purify the water used in the cleaning step and circulate again. Therefore, even in the washing process, the amount of washing water used can be reduced to the minimum required.
循環経路中に設置される精製装置には、 固液分離可能な任意の装置、 例えば沈 降槽、 ストレーナ一、 濾過網等が含まれる。  The purification equipment installed in the circulation path includes any equipment capable of solid-liquid separation, such as a settling tank, a strainer, and a filtration net.
洗浄工程では、 澱粉質原料に混在または付着している固形質が物理的に洗浄水 中に移行し、 原料から分離除去される。 これらの固形質としては、 例えば、 キヤ ッサバ、 ジャガイモあるいはサヅマイモなどの地下成長部位からなる澱粉質原料 の場合は、 生の原料に混在または付着している土、 砂、 泥あるいは原料から剥離 した表皮等である。  In the washing step, the solid matter mixed or attached to the starch raw material physically moves into the washing water and is separated and removed from the raw material. These solids include, for example, in the case of starchy raw materials consisting of underground growth sites such as cassava, potato or sweet potato, soil, sand, mud, or skin peeled off from raw materials mixed with or attached to raw materials And so on.
尚、 洗浄工程で使用する洗浄水または第 1磨砕工程で使用する磨砕用水の大部 分は前述の通り系内で循環する用水であるが、 循環水だけでは不足する場合は適 宜水道水などの安全な新水が補充される。  Most of the washing water used in the washing process or the grinding water used in the first grinding process is the water that circulates in the system as mentioned above. Safe new water such as water is replenished.
本発明の上述およびそれ以外の特徴と利点は、 本発明の技術的範囲を限定する 意図のない単なる例示のための添付図面を参照した以下の好適な実施例の説明か ら一層明確に理解されよう。 図面の簡単な説明 The above and other features and advantages of the invention limit the scope of the invention BRIEF DESCRIPTION OF THE DRAWINGS The following description of the preferred embodiments, taken in conjunction with the accompanying drawings, which are for purposes of illustration only, will in part be understood more clearly. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態による発酵用糖質原料の製造方法の流れを示すェ 程図である。  FIG. 1 is a flowchart showing a flow of a method for producing a saccharide raw material for fermentation according to one embodiment of the present invention.
図 2は、 本発明の別の実施形態による発酵用糖質原料の製造方法の流れを示す 工程図である。  FIG. 2 is a process chart showing a flow of a method for producing a saccharide raw material for fermentation according to another embodiment of the present invention.
尚、 図 1および図 2中で同一符号は相当する部分または工程を示す。 発明を実施するための最良の形態  The same reference numerals in FIGS. 1 and 2 indicate corresponding parts or steps. BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照して、 ここに示された一連のプロセスによれば、 澱粉質原料 SMは、 まず始めに洗浄工程 WSにおいて洗浄水 WWにより水洗される。 洗浄後の洗浄水 W は 浄化工程 PRにおいて浄化処理を受け、 洗浄水中から固形物 SSが系外に除去され、 このようにして浄化された洗浄水が再び洗浄に供される。  Referring to FIG. 1, according to the series of processes shown here, the starchy raw material SM is first washed with washing water WW in a washing step WS. The cleaning water W after the cleaning is subjected to a purification process in the purification process PR, solids SS are removed from the cleaning water out of the system, and the cleaning water thus purified is again provided for cleaning.
洗浄された原料 SMは第 1磨碎工程 G1に送られて加水下にて磨碎される。 この磨 碎工程で使用する用水 WGはプロセス系内の後述する第 3分離工程 S3から生じる第 3分離下部区分 SPL3の全量であり、 不足する場合は系外から追加用水 WAが補給さ れる。  The washed raw material SM is sent to the first grinding step G1 and is ground under water. The water WG used in this grinding step is the entire amount of the third separation lower section SPL3 generated from the third separation step S3 described later in the process system, and if it is insufficient, additional water WA is supplied from outside the system.
第 1磨碎工程 G1で十分微細に磨砕された原料は第 1分離工程 S1に送られ、 そこ で比較的軽質の第 1分離上部区分 SPU1および比較的重質の第 1分離下部区分 SPL1 に分離される。 第 1分離上部区分 SPU1はその主要部が繊維質からなり、 これに僅 かの澱粉及び糖を依然として含んでいる。 第 1分離下部区分 SPL1は僅かの固形質 分を含むが、 大部分は澱粉及び糖を大量に含む液体である。  The raw material sufficiently finely ground in the first grinding step G1 is sent to the first separation step S1, where it is divided into a relatively light first separation upper section SPU1 and a relatively heavy first separation lower section SPL1. Separated. First Separation Upper Section SPU1 is mainly composed of fibrous material, which still contains small amounts of starch and sugar. The first separated lower section SPL1 contains a small amount of solid matter, but is mostly a liquid containing a large amount of starch and sugar.
一方で第 1分離上部区分 SPU1は第 2磨砕工程 G2に送られて再び磨砕され、 他方 で第 1分離下部区分 SPL1は第 2分離工程 S2に送られて比較的軽質の第 2分離上部 区分 SPU2および比較的重質の第 2分離下部区分 SPL2に分離される。 この第 2分離 上部区分 SPU2には、 第 1分離下部区分 SPL1に含まれていた殆どの固形質分が移行 しており、 また第 2分離下部区分 SPL2には第 1分離下部区分 SPL1に含まれていた 殆どの澱粉及び糖が移行している。 On the other hand, the first separation upper section SPU1 is sent to the second grinding step G2 and is ground again, while the first separation lower section SPL1 is sent to the second separation step S2 and the relatively lighter second separation upper section It is separated into Category SPU2 and a relatively heavy second separation lower Category SPL2. Most of the solids contained in the first separation lower section SPL1 have been transferred to the second separation upper section SPU2, and the second separation lower section SPL2 is included in the first separation lower section SPL1. Most of the starch and sugars that have been transferred have been transferred.
第 2磨碎工程 G2で再度磨砕された第 1分離上部区分 SPU1と、 第 2分離工程 か ら生じる第 2分離上部区分 SPU2は、 共に第 3分離工程 S3に導入され、 そこで比較 的軽質の第 3分離上部区分 SPU3および比較的重質の第 3分離下部区分 SPL3に分離 される。 第 3分離上部区分 SPU3は、 澱粉または糖分の含有量は少ないが、 繊維性 分を多く含有するので、 副生物 BPとして系外に導出されて家畜飼料または肥料と して利用される。 一方、 第 3分離下部区分 SPL3は、 繊維質を含まないが少量の糖 を含んだ液体であり、 第 1磨碎工程 G1へ磨碎用水として循環され再利用される。 第 2分離下部区分 SPL2は澱粉及び糖を高濃度で含有しており、 従ってこれから 直接澱粉を取得する場合は濾過または遠心分離などによる固液分離工程 SEへ送ら れ、 澱粉ケーキまたは固形澱粉 STが取得される。  The first separation upper section SPU1, which has been ground again in the second grinding step G2, and the second separation upper section SPU2 resulting from the second separation step, are both introduced into the third separation step S3, where relatively lighter It is separated into the third separated upper section SPU3 and the relatively heavy third separated lower section SPL3. 3rd Separation Upper Section SPU3 has a low starch or sugar content but a high fibrous content, so it is extracted out of the system as a by-product BP and used as livestock feed or fertilizer. On the other hand, the third separation lower section SPL3 is a liquid that does not contain fiber but contains a small amount of sugar, and is circulated to the first grinding step G1 as grinding water and reused. The second separation lower section SPL2 contains high concentrations of starch and sugar, so when starch is directly obtained from it, it is sent to the solid-liquid separation process SE by filtration or centrifugation, etc., and the starch cake or solid starch ST is obtained. Is obtained.
また、 発酵用糖質原料として糖液を取得するためには、 第 2分離下部区分 SPL2 は加水分解工程 HYへ送られる。 加水分解工程 HYでは澱粉の液化および糖化反応処 理が酵素により実行され、 分解生成液は濾過又は遠心分離による第 4分離工程 S4 に送 ¾れ 。  In addition, in order to obtain a sugar solution as a sugar raw material for fermentation, the second separated lower section SPL2 is sent to the hydrolysis step HY. In the hydrolysis step HY, liquefaction and saccharification of starch are performed by an enzyme, and the decomposition product solution is sent to a fourth separation step S4 by filtration or centrifugation.
第 4分離工程 S4では、 上記分解生成液は大部分が固形質分で糖質を殆ど含まな い第 4分離上部区分 SPU4および良質の糖液としての第 4分離下部区分 SPL4に分離 される。 第 4分離上部区分 SPU4は前述第 3分離上部区分 SPU3と共に副生品 BPとし て系外へ導出され, 飼料あるいは肥料として有効利用される。 目的生産物である 発酵用糖質原料 FMは第 4分離下部区分 SPL4から取得され、 図示の例では第 4分離 下部区分 SPL4を必要に応じて濃縮工程 CCによって濃縮した糖液 FMとして取得して いる。  In the fourth separation step S4, the decomposition product liquid is separated into a fourth separation upper section SPU4, which is mostly solid matter and hardly contains saccharides, and a fourth separation lower section SPL4 as a high-quality sugar solution. The fourth separated upper section SPU4 is led out of the system together with the third separated upper section SPU3 as a by-product BP and is effectively used as feed or fertilizer. The target product, the fermentation carbohydrate raw material FM, is obtained from the fourth separation lower section SPL4.In the example shown, the fourth separation lower section SPL4 is obtained as the sugar liquid FM concentrated in the concentration step CC as necessary. I have.
次に、 図 2に示された別の実施形態による一連のプロセスでは、 土砂などによ る汚れの殆どない清浄な澱粉質原料 SMが使用される。 この場合、 澱粉質原料 SMは 直接第 1磨砕工程 G1で微細に磨碎され、 次いで第 1分離工程 S1で前述と同様の第 1分離上部区分 SPU1および第 1分離下部区分 SPL1に分離される。 Next, a series of processes according to another embodiment shown in FIG. A clean starchy raw material SM with almost no dirt is used. In this case, the starchy raw material SM is directly finely ground in the first grinding step G1, and then separated in the first separation step S1 into the same first separation upper section SPU1 and first separation lower section SPL1 as described above. .
第 1分離下部区分 SPL1は第 2磨碎工程 G2で更に微細に磨砕され、 次いで第 2分 離工程 S2で第 2分離上部区分 SPU2および第 2分離下部区分 SPL2に分離される。 第 2分離下部区分 SPL2は適当な時間に亘つて静置沈降処理 D1に付され、 その上澄液 SNS1は第 2分離工程 S2の入側に環流される。  The first separation lower section SPL1 is further finely ground in the second grinding step G2, and then separated into the second separation upper section SPU2 and the second separation lower section SPL2 in the second separation step S2. The second separation lower section SPL2 is subjected to standing sedimentation treatment D1 for an appropriate time, and the supernatant SNS1 is refluxed to the inlet side of the second separation step S2.
静置沈降処理 D1を経た第 2分離下部区分 SPL2は、 第 1の追加分離工程 SAと第 2 の追加分離工程 SBとを段階的に経由する。 即ち、 各追加分離工程 SAおよび SBから 生じる追加分離上部区分 SPUAおよび SPUBは、 第 1分離上部区分 SPU1および第 2分 離上部区分 SPU2と共に第 3分離工程 S3へ送られる一方、 第 1追加分離工程 SAから 生じる追加分離下部区分 SPLAは後置の静置沈降処理 D2を経由して第 2追加分離ェ 程 SBへ送られ、 第 2追加分離工程 SBから生じる追加分離下部区分 SPLBは後置の静 置沈降処理 D3へ送られる。 尚、 この場合、 静置沈降処理 D2で生じる上澄液 SNS2は 第 1追加分離工程 SAの入側に環流され、 静置沈降処理 D3で生じる上澄液 SNS3は第 2追加分離工程 SBの入側に環流されている。  The second separation lower section SPL2 that has passed through the stationary sedimentation treatment D1 passes stepwise through the first additional separation step SA and the second additional separation step SB. That is, the additional separation upper sections SPUA and SPUB generated from each additional separation step SA and SB are sent to the third separation step S3 together with the first separation upper section SPU1 and the second separation upper section SPU2, while the first additional separation step The additional separation lower section SPLA generated from SA is sent to the second additional separation step SB via the stationary settling process D2 at the back, and the additional separation lower section SPLB generated from the second additional separation step SB is set at the downstream. Settlement treatment sent to D3. In this case, the supernatant SNS2 generated in the stationary sedimentation treatment D2 is returned to the inlet side of the first additional separation step SA, and the supernatant SNS3 generated in the stationary sedimentation treatment D3 enters the second additional separation step SB. Recirculated to the side.
さて、 第 3分離工程 S3では、 第 1分離上部区分 SPU1、 第 2分離上部区分 SPU2お よび各追加分離上部区分 SPUAと SPUBが合流して固液分離により固体区分の第 3分 離上部区分 SPU3および液体区分の第 3分離下部区分 SPL3に分離される。 前述の図 1に示した実施形態の場合と同様に第 3分離上部区分 SPU3は飼料または肥料など に有効利用される副生品 BPとして系外へ導出され、 第 3分離下部区分 SPL3は第 1 磨碎工程 G1のための用水として系内で循環利用される。  By the way, in the third separation step S3, the first separation upper section SPU1, the second separation upper section SPU2, and the additional separation upper sections SPUA and SPUB merge to form the third separation upper section SPU3 of the solid section by solid-liquid separation. And a third separation lower section SPL3 of the liquid section. As in the embodiment shown in FIG. 1 described above, the third separated upper section SPU3 is led out of the system as a by-product BP that is effectively used as feed or fertilizer, and the third separated lower section SPL3 is Grinding process It is recycled in the system as water for G1.
一方、 第 2分離下部区分 SPL2は、 複数段階の追加分離工程 SA及び SBと静置沈降 処理 D1,D2,D3を経由して、 この最後の静置沈降処理 D3から比較的低濃度の澱粉お よび糖を含む上部区分 DCU3と比較的高濃度の澱粉及び糖を含む下部区分 DCL3に分 離されて出てくる。 この上部区分 DCU3は第 3分離下部区分 SPL3と共に第 1磨砕工程 Glのための用水 として系内で循環利用され、 一方下部区分 DCL3は澱粉及び糖を高濃度で含有して おり、 従ってこれから直接澱粉を取得する場合は濾過または遠心分離などによる 固液分離工程 SEへ送られ、 澱粉ケーキまたは固形澱粉 STが取得される。 On the other hand, the second separation lower section SPL2 passes through a plurality of additional separation processes SA and SB and the stationary sedimentation treatment D1, D2, D3, and passes through the final stationary sedimentation treatment D3. And separated into upper section DCU3 containing sugar and sugar and lower section DCL3 containing relatively high concentrations of starch and sugar. This upper section DCU3 is circulated in the system together with the third separation lower section SPL3 as water for the first milling process Gl, while the lower section DCL3 contains high concentrations of starch and sugar, and therefore will be directly When starch is obtained, it is sent to a solid-liquid separation step SE by filtration or centrifugation to obtain a starch cake or solid starch ST.
また、 発酵用糖質原料として糖液を取得するためには、 第 2分離下部区分 SPL2 は加水分解工程 HYへ送られる。 加水分解工程 では澱粉の液化および糖化反応処 理が酵素により実行され、 分解生成流は濾過又は遠心分離による第 4分離工程 S4 に送られる。  In addition, in order to obtain a sugar solution as a sugar raw material for fermentation, the second separated lower section SPL2 is sent to the hydrolysis step HY. In the hydrolysis step, liquefaction and saccharification of starch are performed by an enzyme, and the decomposition product stream is sent to a fourth separation step S4 by filtration or centrifugation.
第 4分離工程 S4では、 上記分解生成流は大部分が固形質分で糖質を殆ど含まな い第 4分離上部区分 SPU4および良質の糖液としての第 4分離下部区分 SPL4に分離 される。 第 4分離上部区分 SPU4は前述第 3分離上部区分 SPU3と共に副生品 BPとし て系外へ導出され, 飼料あるいは肥料として有効利用される。 目的生産物である 発酵用糖質原料 FMは第 4分離下部区分 SPL4から取得され、 図示の例では第 4分離 下部区分 SPL4を必要に応じて濃縮工程 CCによって濃縮した糖液 FMとして取得して いる。  In the fourth separation step S4, the decomposition product stream is separated into a fourth separation upper section SPU4, which is mostly solid matter and contains almost no saccharide, and a fourth separation lower section SPL4 as a high-quality sugar solution. The fourth separated upper section SPU4 is led out of the system together with the third separated upper section SPU3 as a by-product BP and is effectively used as feed or fertilizer. The target product, the fermentation carbohydrate raw material FM, is obtained from the fourth separation lower section SPL4.In the example shown, the fourth separation lower section SPL4 is obtained as the sugar liquid FM concentrated in the concentration step CC as necessary. I have.
以下に本発明に従って実施された好適な実施例を述べる。 実施例 1  Hereinafter, preferred embodiments implemented according to the present invention will be described. Example 1
図 1に示した一連のプロセス流れに従って、 ィンドネシァ国ゥマス一ジャャ産 のキヤッサバの生芋から、 発酵用糖質原料として有用な糖液を以下に述べるよう に半連続的処理にて製造した。 la) 洗浄工程 (WS )  According to the series of process flows shown in Fig. 1, a sugar solution useful as a sugar raw material for fermentation was produced from raw potatoes of cassava produced by Mas-Ija, Indonesia, as described below, in a semi-continuous process. la) Cleaning process (WS)
畑から収穫直後のキヤッサバの生芋 (マ二オック根) を秤量し、 その約 1050kg を、 洗浄槽の洗浄籠に投入して連続的に洗浄した。 洗浄籠は壁面に多数の孔を有 し、 洗浄水中で回転する鉄板製円筒型のものである。 表 1に、 洗浄後のキヤッサバ生芋中の澱粉、 還元糖 (D-糖と表示する) 蛋白、 脂質、 粗繊維、 灰分および水分の各成分含量を示す。 各成分の分析法は、 -般的 に採用されている澱粉関連製品の分析法に従った。 Fresh cassava potatoes (manioc roots) were weighed immediately after harvest from the field, and about 1050 kg of the potatoes were poured into the washing basket of the washing tank and washed continuously. The washing basket has a large number of holes in the wall and is a cylindrical iron plate that rotates in the washing water. Table 1 shows the contents of starch, reducing sugar (denoted as D-sugar), protein, lipid, crude fiber, ash and moisture in the green cassava after washing. The analysis method for each component was the same as that for commonly used starch-related products.
表 1  table 1
原料キヤッサバ生芋の成分分析値  Component analysis value of raw cassava raw potato
Figure imgf000019_0001
Figure imgf000019_0001
ここで、 洗浄水 WWには、 当初は水道水を使用したが、 洗浄水の供給均衡が採れ た時点から、 洗浄槽から回収される水を浄化装置 PRで浄化して洗浄槽に循環供給 し、 再使用した。 即ち、 洗浄槽で生芋を洗浄した後の水は循環系内に配置された 円錐状底部の沈降タンクに導かれ、 次いで格子間隔が 10腿および 5腿の 2段階構 成の金属製格子型ストレーナ一に通され、 そこで洗浄水に含まれている泥土、 生 芋の表面から剥離した芋皮などの固形物 SSが分離され、 これによつて浄化された 水 WWが再び洗浄槽に供給された。  Here, tap water was initially used for the washing water WW, but after the supply of washing water was balanced, the water recovered from the washing tank was purified by the purification device PR and circulated and supplied to the washing tank. , Reused. That is, the water after washing the potatoes in the washing tank is led to a conical bottom settling tank arranged in the circulation system, and then a two-stage metal grid type with a grid spacing of 10 and 5 thighs The sludge is passed through a strainer, where the mud contained in the washing water and solid matter SS such as potato skin peeled off from the surface of the raw potatoes are separated, whereby purified water WW is supplied again to the washing tank. Was.
なお、 生芋 1050kgの洗浄処理に際して、 浄化して再循環した洗浄水 は最後ま で清澄さを維持し、 有色の濁りは認められなかった。 また、 沈降タンクおよびス トレーナーから回収した固形物 SSは、 屋外に 12時間放置してドレイン水を除き、 さらに 12時間に亘つて拡散状態で風乾した後に約 10kgの量であった。 また、 この 固形物の大部分は生芋に付着していた土砂、 泥土であり、 生芋の表面から剥離し た芋皮は少量であった。 lb) 第 1磨砕工程 (Gl ) During the washing treatment of 1050 kg of raw potatoes, the purified and recirculated washing water maintained clarity to the end, and no colored turbidity was observed. The solids SS recovered from the sedimentation tank and the strainer were left outside for 12 hours to remove drain water, and then air-dried in a diffused state for another 12 hours, weighing about 10 kg. In addition, most of the solid matter was earth and sand and mud that had adhered to the raw potato, and a small amount of potato skin peeled from the surface of the raw potato. lb) First grinding step (Gl)
洗浄処理後の生芋を再秤量し、 その 1000kgを磨碎処理に付した。 この磨碎処理 では、 最初、 大型のスライサーで生芋を切片状に裁断し、 次いでこの裁断された 生芋切片を、 磨碎用水の供給下に、 回転石臼型の磨碎装置で磨砕した。 この磨碎 により、 生芋の組織は完全に崩壊されたペースト状の生芋パルプが得られ、 この 生芋パルプは磨砕装置の出口に設置してある格子間隔 5雇のストレーナーを通過 可能であった。 磨碎処理時に供給した用水は全量で 1800kg、 その内の 710kgは新 規に供給された水道水、 残余の 1090k は後述の第 3分離工程 S3から環流される第 3分離下部区分 SPL3である。 また磨碎処理中、 生芋切片に対し重量で約 1.5〜2.0 倍の磨砕用水が連続的に供給される様に調整した。 磨碎処理後に得られた生芋パ ルプの量は 2800kgであった。 lc) 第 1分離工程 (SI )  The potatoes after the washing treatment were weighed again, and 1000 kg thereof was subjected to a grinding treatment. In this grinding process, the raw potatoes were first cut into slices using a large slicer, and then the cut raw potato slices were ground using a rotary mill-type grinding device under the supply of grinding water. . By this grinding, the tissue of the raw potato is obtained as a completely collapsed paste-like raw potato pulp, which can pass through a strainer with a grid spacing of 5 hires installed at the outlet of the grinding device. there were. The total amount of service water supplied during the grinding process is 1800 kg, of which 710 kg is tap water newly supplied, and the remaining 1090 k is the third lower separation section SPL3 circulated from the third separation step S3 described later. During the milling treatment, the water for grinding was adjusted to be continuously supplied at a weight of about 1.5 to 2.0 times the raw potato slices. The amount of raw potato pulp obtained after the grinding treatment was 2800 kg. lc) 1st separation step (SI)
第 1磨碎工程 Glで磨砕して得た生芋パルプを、 連続的に第 1分離工程 S1に付し た。 この分離処理には湿式篩分装置を使用し、 使用した篩の格子間隔は 4mmであ つた。  First grinding step Raw potato pulp obtained by grinding in Gl was continuously subjected to a first separation step S1. A wet sieving device was used for this separation, and the grid spacing of the used sieves was 4 mm.
表 2に、 第 1分離工程 S1で取得した篩上物、 即ち芋皮繊維等を多く含む第 1分 離上部区分 SPU1と、 篩を通過したスラリー、 即ち第 1分離下部区分 SPL1とについ て、 それそれの各種成分の得量 (kg)、 分配率、 区分得量 (kg)、 澱粉濃度 ) およ び全固形分率 (%)を示す。 表 2 Table 2 shows the sieved material obtained in the first separation step S1, that is, the first separated upper section SPU1 containing a large amount of potato bark fiber and the like, and the slurry that passed through the sieve, that is, the first separated lower section SPL1, The yield (kg), distribution rate, classification yield (kg), starch concentration) and total solid content (%) of each component are shown. Table 2
第 1分離工程 SI後の各成分得量 (kg)と分配率構成  1st separation process Component yield (kg) after SI and distribution ratio composition
Figure imgf000021_0001
Figure imgf000021_0001
得量は澱粉原料 1000k を処理した場合の数値  The yield is a value obtained by processing 1000k of starch raw material.
Id) 第 2分離工程(S2)  Id) Second separation step (S2)
第 1分離工程 S1で篩を通して得られたスラリ一状の第 1分離下部区分 SPL1を、 連続的に第 2分離工程 S2に付した。 分離には加圧浮上分離装置を使用した。 該加 圧浮上分離装置は分離槽およびその周囲を囲む溢流槽を備え、 分離槽内の底部に は多数の孔を有するノズルが配置されている。 分離槽内にスラリー状の第 1分離 下部区分 SPL1を送り込み、 分離槽の底部のノズルに加圧空気を供給した。 これに より、 第 1分離下部区分 SPL1からは、 多数のノズル孔から噴出する気泡に随伴し て比較的軽質の第 2分離上部区分 SPU2が浮上し、 この浮上した第 2分離上部区分 SPU2は分離槽の上縁を乗り越えて溢流槽内に溢流した。 加圧空気の送入を中断す ると分離槽の底部には比較的重質の第 2分離下部区分 SPL2が分離沈降した。 尚、 溢流槽内に取得された第 2分離上部区分 SPU2は芋皮繊維等を多く含み、 全体とし て灰白色の繊維状物であった。 また、 分離槽内に残った第 2分離下部区分 SPL2は 湿潤状態にある白色ないし淡黄褐色の澱粉スラリーであった。 表 3に、 第 2分離工程 S2で取得された第 2分離上部区分 SPU2および第 2分離下 部区分 SPL2について、 それぞれの各種成分の得量 (kg)、 分配率、 区分得量 (kg)、 澱粉濃度 (%) および全固形分率 (%)を示す。 The slurry-like first separation lower section SPL1 obtained through the sieve in the first separation step S1 was continuously subjected to the second separation step S2. A pressure flotation device was used for separation. The pressurized flotation separator includes a separation tank and an overflow tank surrounding the separation tank, and a nozzle having a number of holes is arranged at the bottom in the separation tank. The slurry-like first separation lower section SPL1 was fed into the separation tank, and pressurized air was supplied to the nozzle at the bottom of the separation tank. As a result, from the first separation lower section SPL1, a relatively light second separation upper section SPU2 floats along with bubbles ejected from a number of nozzle holes, and the floating second separation upper section SPU2 is separated. It spilled over the upper edge of the tank into the overflow tank. When the supply of pressurized air was interrupted, a relatively heavy second lower separation section SPL2 separated and settled at the bottom of the separation tank. The second separation upper section SPU2 obtained in the overflow tank contained a large amount of potato bark fiber and the like, and was a gray-white fibrous material as a whole. In addition, the second separation lower section SPL2 remaining in the separation tank was a white or light yellow-brown starch slurry in a wet state. Table 3 shows the yield (kg), distribution rate, classification yield (kg), and distribution of each component for the second separation upper section SPU2 and the second separation lower section SPL2 obtained in the second separation step S2. The starch concentration (%) and the total solid content (%) are shown.
表 3  Table 3
第 2分離工程 S2後の各成分得量 (kg)と分配率構成  2nd separation process Each component yield (kg) after S2 and distribution ratio composition
Figure imgf000022_0001
Figure imgf000022_0001
得量は澱粉原料 1000kgを処理した場合の数値  The yield is the value when 1,000 kg of starch material is treated
le) 第 2磨碎工程 ( G2 )  le) Second grinding process (G2)
第 1分離工程 S1で取得した篩上物、 即ち第 1分離上部区分 SPU1は芋皮繊維等を 多く含み、 従ってこの第 1分離上部区分 SPU1を、 再度、 回転石曰型の磨砕装置で その芋皮繊維の組織が完全に崩壊して微細パルプ状を呈するまで磨砕した。 得ら れた結果物は磨碎装置の出口に設置してある格子間隔 3 mmのストレーナ一を通過 するに十分な程度に微細化された。  The sieved material obtained in the first separation step S1, that is, the first separation upper section SPU1 contains a large amount of potato bark fiber and the like.Therefore, the first separation upper section SPU1 is again subjected to the grinding using a rotary stone type grinding machine. Grinding was performed until the tissue of the potato fiber was completely disintegrated to give a fine pulp. The obtained product was refined enough to pass through a strainer with a lattice spacing of 3 mm installed at the outlet of the grinding device.
If ) 第 3分離工程(S3 ) If) Third separation step (S3)
第 2磨碎工程 G2で微細化された.第 1分離上部区分 SPU1および前述の第 2分離上 部区分 SPU2を一緒にして第 3分離工程 3Sに付した。 この第 3分離工程 S3でも、 前 記と同様の構成の加圧浮遊分離装置を使用した。 但し、 第 3分離工程 S3では、 第 2分離工程 S2の場合よりも、 より高圧の加圧空気を、 より小径の多数のノズル孔 水脂粗灰蛋 The second grinding step G2 was refined. The first separation upper section SPU1 and the aforementioned second separation upper section SPU2 were combined and subjected to a third separation step 3S. Even in the third separation step S3, A pressurized flotation apparatus having the same configuration as described above was used. However, in the third separation step S3, the pressurized air having a higher pressure is supplied to a larger number of nozzle holes having a smaller diameter than in the case of the second separation step S2.
から噴出させ、 より小さな気泡を多数発生させた。 気泡の浮上に随伴して比較的 軽質の第 3分離上部維分分質白区分 SPU3が浮上し、 次々と分離槽の上縁を乗り越えて溢流槽 内に溢流した。 一方、 分離槽内には比較的重質の第 3分離下部区分 SPL3が留まり、 この下部区分は加圧空気の送入を中断すると分離槽の底部に沈降分離した。 尚、 第 3分離上部区分 SPU3の大部分は 4芋皮に由来する微細化した繊維分であり、 また And generated many smaller bubbles. The relatively light third separation upper sediment white section SPU3, which was relatively light, floated along with the rise of the bubbles, and steadily climbed over the upper edge of the separation tank and overflowed into the overflow tank. On the other hand, a relatively heavy third separation lower section SPL3 remained in the separation tank, and this lower section settled and separated at the bottom of the separation tank when the supply of pressurized air was interrupted. The majority of the SPU3 in the third separation upper section is fine fiber derived from 4 potato skins.
3  Three
第 3分離下部区分 SPL3は澱粉を含むやや白濁した分散液であつた。 Third Separation Lower Section SPL3 was a slightly cloudy dispersion containing starch.
表 4に、 第 3分離工程 S3で取得された第 3分離上部区分 SPU3と第 3分離下部区 分 SPL3について、 それそれの各種成分の得量 (kg)、 分配率、 区分全得量 (kg)、 澱 粉濃度 )および全固形分率 (% )を示す。  Table 4 shows the yields (kg), distribution ratios, and total yields (kg) of each component of the third separation upper section SPU3 and the third separation lower section SPL3 obtained in the third separation step S3. ), Starch concentration) and total solid content (%).
表 4  Table 4
8  8
第 3分離工程 S3後の各成分得量 ( kg )と分配率構 1 成  Composition of each component (kg) and distribution ratio after the third separation step S3 1
上部区分 SPU3 下部区分 SPL3  Upper section SPU3 Lower section SPL3
成 分  Component
得量 (kg) 分配率 得量 (kg) 分配率  Yield (kg) distribution rate Yield (kg) distribution rate
m. 粉 20.0 0. 17 97.9 0.83 D- 1.2 0. 1 10.6 0.9  m.powder 20.0 0.17 97.9 0.83 D- 1.2 0.1.1 10.6 0.9
6.7 0.5 6.7 0.5  6.7 0.5 6.7 0.5
2.7 0.5 2.7 0.5  2.7 0.5 2.7 0.5
10.6 0.8 2.6 0.2  10.6 0.8 2.6 0.2
5.3 0.9 0.6 0. 1  5.3 0.9 0.6 0.1
419 1090  419 1090
区分得量 466 kg 1211 kg  Classification amount 466 kg 1211 kg
澱粉濃度  Starch concentration
全固形分 10.0 % 11. 1 %  Total solids 10.0% 11.1%
得量は澱粉原料 1000kgを処理した場合の数値  The yield is the value when 1,000 kg of starch material is treated
lg) 加水分解工程 (HY)  lg) Hydrolysis step (HY)
第 2分離工程 S2で得られた第 2分離下部区分 SPL2は、 原料から分離された澱粉 を多量、 高濃度に含有するスラリー状の区分である。 この第 2分離下部区分 SPL2 は、 耐熱性ひ—アミラーゼ液化酵素 (商品名クライスターゼ T-5、 力価 5500u/g) の添加とともに、 攪拌下にて 93°C~97°Cに蒸気加熱して液化した。 その後、 液温 を 60°Cまで低下せしめ、 グルコアミラ一ゼ糖化酵素 (商品名グルクザィム NL 4.2、 力価 4200u/g)を同じく澱粉に対する重量比で 0.07%(3u)相当量で添加した。 The second separation lower section SPL2 obtained in the second separation step S2 is the starch separated from the raw material. Is a slurry-like category containing a large amount and high concentration of The second separation lower section SPL2 was heated to 93 ° C to 97 ° C with stirring and with the addition of heat-resistant heat-amylase liquefying enzyme (Kristase T-5, trade name: 5500u / g). Liquefied. Thereafter, the temperature of the solution was lowered to 60 ° C, and glucoamylase saccharifying enzyme (trade name: Gluczym NL 4.2, titer: 4200u / g) was added in an amount equivalent to 0.07% (3u) in terms of the weight ratio to starch.
糖化酵素の添加後、 酵素反応系の温度を 55°C〜60°Cの範囲内に維持し、 軽度の 攪拌を継続した。 約 48時間経過した後、 澱粉の粒は完全に溶解,消失した。 次い で、 反応系中の糖分濃度が所定の値に達したことを確認し、 澱粉の液化反応およ び糖化反応の完了した糖化液を得た。 lh) 第 4分離工程(S4)  After addition of the saccharifying enzyme, the temperature of the enzyme reaction system was maintained within the range of 55 ° C to 60 ° C, and light stirring was continued. After about 48 hours, the starch granules completely dissolved and disappeared. Next, it was confirmed that the sugar concentration in the reaction system had reached a predetermined value, and a starch liquefaction reaction and a saccharified solution in which the saccharification reaction had been completed were obtained. lh) 4th separation process (S4)
加水分解工程 HYで得られた糖化液をポリプロビレン混紡製の濾布を使用して濾 過し、 濾布上に残留した濾過ケーキとしての第 4分離上区分 SPU4と、 濾布を通過 した濾液としての第 4分離下区分 SPL4とを分離取得した。 第 4分離上区分 SPU4は 微細な繊維状物および褐色の蛋白様物を含み、 また第 4分離下区分 SPL4は淡黄色 の糖液である。  Hydrolysis step The saccharified solution obtained in HY is filtered using a filter cloth made of polypropylene mixed spinning, and the 4th upper separation SPU4 as a filter cake remaining on the filter cloth and the filtrate passed through the filter cloth And SPL4. The fourth upper division SPU4 contains fine fibrous substances and brown proteinaceous substances, and the fourth lower division SPL4 is a pale yellow sugar solution.
表 5に、 第 4分離工程 S4で取得された微細繊維等を多く含む第 4分離上部区分 SPU4及び目的生産物である糖液 (発酵用糖質原料) の第 4分離下部区分 SPL4につ いて、 それそれの各種成分の得量 (kg)、 分配率、 区分全得量 (kg)、 グルコース濃 度 ( 5 および全固形分率 (¾)を示す。 表 5 Table 5 shows the fourth separation upper section SPU4 containing a large amount of fine fibers and the like obtained in the fourth separation step S4 and the fourth separation lower section SPL4 of the target product sugar solution (sugar raw material for fermentation). The yield (kg), distribution rate, total yield (kg), and glucose concentration (5 and total solid content (¾)) of each component are shown. Table 5
第 4分離工程 S4後の各成分得量 (kg)と分配率構成  4th separation process Each component yield (kg) after S4 and distribution ratio composition
Figure imgf000025_0001
Figure imgf000025_0001
得量は澱粉原料 1000kgを処理した場合の数値  The yield is the value when 1,000 kg of starch material is treated
l i ) 濃縮工程 (CC)  l i) Concentration process (CC)
第 4分離下部区分 SPL4を約 60%容まで弱減圧下にて濃縮した。 この濃縮された 糖液 FMは、 グルタミン酸生産発酵など各種アミノ酸生産発酵、 あるいはヌクレオ シド ·ヌクレオチド等の核酸関連物質生産発酵向けの発酵用糖質原料として供し 得る。 尚、 糖液 FMは、 用途としての個々の発酵目的に適した糖濃度範囲に濃縮ま たは希釈して供される場合もある。 例えば、 発酵用糖質原料として発酵に使用さ れる迄に相当の時間が予想される場合、 あるいは発酵工場が糖液製造場所から相 当の遠隔地にある場合には、 糖液 FMは濃縮して保存または輸送した方がよい。 lj) 第 3分離下部区分の環流 =磨砕用水への再利用  The fourth separation lower section SPL4 was concentrated to about 60% volume under a weak reduced pressure. This concentrated sugar solution FM can be used as a fermentation sugar raw material for fermentation of various amino acids such as glutamic acid-producing fermentation or fermentation of nucleic acid-related substances such as nucleosides and nucleotides. In some cases, the sugar solution FM may be supplied after being concentrated or diluted to a sugar concentration range suitable for each fermentation purpose. For example, if a considerable amount of time is expected before fermentation is used as a sugar raw material for fermentation, or if the fermentation plant is located at a considerable distance from the sugar solution production site, the sugar solution FM is concentrated. Should be stored or transported. lj) Recirculation of the lower third section = reuse in grinding water
少量の澱粉等の混在により、 やや白濁している第 3分離下部区分 SPL3は、 第 3 分離工程 S3から第 1磨碎工程 G1に環流され、 稼働中の回転石臼型磨碎装置に用水 として供給された。 lk) 副生物 BPの導出/有効利用 The third separation lower section SPL3, which is slightly turbid due to the presence of a small amount of starch etc., is recirculated from the third separation step S3 to the first grinding step G1 and supplied as water to the rotating millstone-type grinding equipment in operation Was done. lk) Derivation / effective use of by-product BP
第 3分離上部区分 SPU3及び第 4分離上部区分 SPU4は、 それそれ先行する磨砕処 理により微細化された芋皮繊維等を多量に含み、 表 4および表 5に示した通り、 未回収の澱粉、 D-糖、 蛋白等を含んでいる。 表 6に、 これら両分離上部区分 SPU3 及び SPU4を合体した混合物 BPについて、 その成分別の得量および構成比を示す。  The third separation upper section SPU3 and the fourth separation upper section SPU4 contain a large amount of potato bark fiber and the like refined by the preceding grinding treatment, and as shown in Tables 4 and 5, unrecovered Contains starch, D-sugar, protein, etc. Table 6 shows the yield and composition ratio of each component of the mixture BP obtained by combining these two separated upper sections SPU3 and SPU4.
表 6  Table 6
副生品 BPの成分得量 (kg)と構成比 (¾)  Component yield of by-product BP (kg) and composition ratio (¾)
Figure imgf000026_0001
Figure imgf000026_0001
表 6から容易に推定される様に、 この混合物は家畜の飼料、 特にゥシ、 ヒヅジ 等の反芻獣用の飼料または飼料添加物として有効に利用可能である。 また、 ブ夕 等の単胃動物用飼料添加物としても有用である。 尚、 第 3分離上部区分 SPU3およ び第 4分離上部区分 SPU4は、 個別の場合でも、 あるいは混合した場合でも、 湿潤 状態で取得される。 飼料として利用する際には、 取得された儘の湿潤状態で利用 する他に、 適度の脱水処理や乾燥処理を施した後、 必要により貯蔵、 熟成して利 用することも可能である。  As can be easily inferred from Table 6, this mixture can be effectively used as feed for livestock, especially feed or feed additives for ruminants such as red oaks and sheep. It is also useful as a feed additive for monogastric animals such as bush. In addition, the third separation upper section SPU3 and the fourth separation upper section SPU4 are obtained in a wet state whether individually or mixed. When used as feed, it can be used in the wet state as obtained, or it can be used after being subjected to appropriate dehydration and drying treatments and then stored and matured as necessary.
加えて、 第 3分離上部区分 SPU3および第 4分離上部区分 SPU4は、 家畜飼料とし て利用する他に、 個々の区分毎に、 あるいは混合して、 栽培植物の肥料またはそ の原料としても有用に利用できる。 表 6に示した通り、 これらは相当濃度の灰分 を含有することから、 特にキヤッサバ畑に施用する肥料として有用である。 以上の第 1磨砕工程 G1および第 2磨砕工程 G2ならびに第 1分離工程 S1ないし第 4分離工程 S4の一連の工程を経過する本実施例の方法における総合的な成分別収 率を表 7に示す。 尚、 表 7には、 目的生産物である糖液 FMのみならず、 飼料等に 利用される副生品 BPについても成分別収率を表示してある。 In addition, in addition to being used as livestock feed, the 3rd upper separation section SPU3 and 4th upper separation section SPU4 are also useful as fertilizers for cultivated plants or as raw materials for individual divisions or as a mixture. Available. As shown in Table 6, they contain a significant concentration of ash and are therefore particularly useful as fertilizers applied to cassava fields. Table 7 shows the overall yield of each component in the method of this example, which goes through a series of the first grinding step G1 and the second grinding step G2 and the first separation step S1 to the fourth separation step S4. Shown in Table 7 shows the yield of each component not only for the sugar product FM, which is the target product, but also for the by-product BP used in feeds and the like.
表 7  Table 7
糖液 FMと副生品 BPの成分別収率 (%)  Sugar solution FM and byproduct BP yield by component (%)
Figure imgf000027_0001
Figure imgf000027_0001
以上のようにして取得された糖液 FMを発酵用糖質原料に使用してグル夕ミン酸 発酵を実施したところ、 実生産規模において、 従来使用されてきた他の澱粉質原 料に由来する発酵用糖質原料、 例えば甘蔗糖蜜に由来する糖液を使用した場合と 同等以上の対糖収率および培地中グル夕ミン酸蓄積濃度を維持して好適にグル夕 ミン酸を製造できることが確認された。 実施例 2  Glucose-minic acid fermentation was carried out using the sugar solution FM obtained as described above as a carbohydrate raw material for fermentation, and it was derived from other starchy raw materials that were conventionally used at the actual production scale. It has been confirmed that glucuramic acid can be produced preferably while maintaining a sugar yield and a glucumic acid accumulation concentration in the medium that are equal to or higher than those obtained when using a sugar raw material for fermentation, for example, a sugar solution derived from cane molasses. Was done. Example 2
図 2に示した一連のプロセス流れに従って、 マレーシア国産のサゴヤシの木髄 (Sago Pith, 以下、 サゴビスと称す)から、 発酵用糖質原料として有用な糖液を 以下に述べるように半連続的処理にて製造した。  According to the series of process flows shown in Fig. 2, semi-continuous treatment of sugar liquid useful as a raw material for fermentation carbohydrates from the sago palm of Malaysia's domestic sago (Sago Pith, hereinafter referred to as Sagobis) as described below. It was manufactured by.
2a) ビスの前処理 2a) Screw pretreatment
伐採直後のサゴヤシ樹幹からサゴビスを剥離し、 サゴビスの澱粉含有部分を分 取し、 混入している樹皮、 木片等を除去した。 分取したサゴビスに含有される澱 粉、 繊維及び水分の構成比 (¾)並びに 1000kg当たりの構成重量 (kg)を表 8に示す。 The sagobis was peeled off from the sago palm trunk immediately after logging, the starch-containing portion of the sagobis was separated, and the contaminated bark and wood chips were removed. Starch contained in fractionated Sagobis Table 8 shows the composition ratio (¾) of flour, fiber and moisture and the composition weight (kg) per 1000 kg.
表 8  Table 8
原料サゴビスの成分構成  Ingredient composition of raw material Sagobis
Figure imgf000028_0001
Figure imgf000028_0001
2b) 第 1磨砕工程 (Gl )  2b) First grinding process (Gl)
再秤量したサゴビス 1000kgを、 磨砕用水の供給下に、 回転石曰型の磨砕装置に より組織が完全に崩壊するまで磨砕した。 磨碎用水については、 磨碎開始時に水 道水 2806kg (対ビス 2.8倍) を供給し、 その後、 後述のように系内から第 3分離 下部区分 SPL3および静置沈降上澄液 DCU3として回収される用水 2548kgを磨砕装置 に環流して再利用した。 尚、 これらの再利用水には、 その全量中に澱粉 62kg、 磨 碎されて微細状態になっている繊維 8kgが含有されていた。  1000 kg of the re-weighed Sagobis was ground using a grinding device of a rotary stone type under grinding water supply until the tissue was completely disintegrated. As for the grinding water, 2806 kg of tap water (2.8 times the screw) was supplied at the start of the grinding, and then collected from the system as the third separation lower section SPL3 and the stationary sedimentation supernatant DCU3 as described later. 2548 kg of water was recycled to the attritor and reused. The recycled water contained 62 kg of starch and 8 kg of finely ground fibers in the total amount.
磨砕後のサゴビスはパルプ状となっており、 そこに含有される主な成分の構成 比ならびに重量は表 9に示す通りであった。  The milled sagobis was in the form of pulp, and the composition and weight of the main components contained in it were as shown in Table 9.
表 9  Table 9
第 1磨碎工程 G1後のサゴビスの成分組成  1st grinding process Composition of Sagobis after G1
Figure imgf000028_0002
Figure imgf000028_0002
2c ) 第 1分離工程(SI )  2c) First separation process (SI)
前記サゴビスパルプを湿式篩により篩分け分離し、 外皮などの粗大繊維を含む 第 1分離上部区分 SPU1および澱粉を含む第 1分離下部区分 SPL1を取得した。 尚、 使用した湿式篩の有効篩分スリット間隔は 0. 12匪であった。 The sagobis pulp was sieved and separated by a wet sieve to obtain a first separated upper section SPU1 containing coarse fibers such as hulls and a first separated lower section SPL1 containing starch. still, The effective sieve slit interval of the used wet sieve was 0.12.
第 1分離工程 S1で得られた上下両分離区分 SPU1および SPL1に含有される澱粉、 繊維および水分の構成比ならびに重量を表 1 0に示す。  Table 10 shows the composition ratios and weights of starch, fiber, and water contained in the upper and lower separation sections SPU1 and SPL1 obtained in the first separation step S1.
表 1 0  Table 10
第 1分離工程 S1後の各区分の成分別構成  Composition by component of each section after the first separation step S1
Figure imgf000029_0001
Figure imgf000029_0001
2d) 第 2磨砕工程 ( G2 )  2d) Second grinding process (G2)
第 1分離下部区分 SPL1を、 磨砕摺合せ面が前記第 1磨砕工程 G1で使用した磨碎 装置よりも一層細密に調整された回転石曰型の磨砕装置により再度磨砕し、 なお 繊維構造中に包含されていた澱粉粒子を繊維構造から遊離させた。  The first separation lower section SPL1 is ground again by a rotary stone type grinding device in which the grinding surface is more finely adjusted than the grinding device used in the first grinding process G1, The starch particles contained in the fiber structure were released from the fiber structure.
2e ) 第 2分離工程(S2 ) 2e) Second separation step (S2)
第 2磨碎工程 G2で更に磨砕された微細な第 1分離下部区分 SPL1を加圧浮上分離 法により分離し、 主に繊維分を含む軽質の第 2分離上部区分 SPU2および主に澱粉 を含む第 2分離下部区分 SPL2を分離取得した。 この第 2分離下部区分 SPL2は更に 静置沈降処理 D1に付し、 そこで生じる上澄液 SNS1を、 第 2分離工程 S2における加 圧浮上分離処理に環流して再利用した。 この場合、 第 2分離工程 S2に環流した用 水量は 10620kg (第 2磨碎工程 G2からの導入液量の 3倍) であった。  Second grinding step The fine first separation lower section SPL1 further ground in G2 is separated by pressure flotation, and mainly contains the light second separation upper section SPU2 containing fibers and mainly starch 2nd Separation Lower Division SPL2 was separately acquired. This second separation lower section SPL2 was further subjected to stationary sedimentation treatment D1, and the supernatant SNS1 generated there was recirculated and reused in the pressurized flotation separation treatment in the second separation step S2. In this case, the amount of water circulated to the second separation step S2 was 10620 kg (three times the amount of liquid introduced from the second grinding step G2).
第 2分離工程 S2で得られた上下両分離区分 SPU2および SPL2の含有成分の構成比 ならびに重量を表 1 1に示す。 表 1 1 Table 11 shows the component ratios and weights of the components contained in the upper and lower separation sections SPU2 and SPL2 obtained in the second separation step S2. Table 11
第 2分離工程 S2後の各区分の成分組成  Component composition of each section after the second separation step S2
Figure imgf000030_0001
Figure imgf000030_0001
2f ) 第 1追加分離工程(SA)  2f) 1st additional separation process (SA)
第 2分離下部区分 SPL2を静置沈降処理 D1に通して得た沈降物含有液を加圧浮上 分離法により再度分離処理にかけ、 繊維を含む第 1追加分離上部区分 SPUAおよび 澱粉を含む第 1追加分離下部区分 SPLAを取得した。 尚、 静置沈降処理 D1から導入 された沈降物含有液の量は 2996kg、 その内の水分は 2713kgであり、 また第 1追加 分離工程 SAの加圧浮上分離処理用の用水には、 後続の静置沈降処理 D2から生じる 上澄液 SNS2を環流して再利用した。 第 1追加分離工程 SAに環流した用水量は 8987 kg (第 2分離工程 S2から導入した沈降物含有液量の 3倍) であった。  The second separation lower section SPL2 is allowed to stand still and sedimentation treatment The sediment-containing liquid obtained through D1 is subjected to separation processing again by the pressure flotation method, and the first additional separation section containing fibers The first addition including SPUA and starch Separated lower section SPLA was obtained. The amount of the sediment-containing liquid introduced from the stationary sedimentation treatment D1 was 2996 kg, the water content was 2713 kg, and the water for pressurized flotation treatment in the first additional separation process SA was The supernatant SNS2 generated from the stationary sedimentation treatment D2 was refluxed and reused. The amount of water circulated to the first additional separation step SA was 8987 kg (three times the amount of the sediment-containing liquid introduced from the second separation step S2).
第 1追加分離工程 SA後の上下両分離区分 SPUAおよび SPLAの含有成分の構成比な らびに重量を表 1 2に示す。  First additional separation step Table 12 shows the composition ratio and weight of the components contained in SPUA and SPLA.
表 1 2  Table 1 2
第 3分離工程 S3後の各区分の成分別構成  Third separation process Composition by component in each section after S3
上部区分 SPUA 下部区分 SPLA  Upper section SPUA Lower section SPLA
構成比 ) 重量 (kg) 構成比 (50 重量 (kg)  Composition ratio) Weight (kg) Composition ratio (50 Weight (kg)
粉 5. 1 24 1. 9 215  Powder 5.1 24 1. 9 215
繊 維 4. 9 23 0.2 21 水 分 90.0 423 98. 0 11277 Fiber 4.9 23 0.2 21 Water 90.0 423 98.0 11277
A =4- □ S I 100. 0 470 100. 0 11512 2g) 第 2追加分離工程(SB ) A = 4- □ SI 100. 0 470 100. 0 11512 2g) Second additional separation process (SB)
第 1追加分離下部区分 SPLAを静置沈降処理 D2に通して得た沈降物含有液を加圧 浮上分離法により更に分離処理にかけ、 繊維を含む第 2追加分離上部区分 SPUBお よび澱粉を含む第 2追加分離下部区分 SPLBを取得した。 尚、 前段の静置沈降処理 D2から導入した沈降物含有液の量は 2525kg、 その内の水分は 2289kgであり、 また 第 2追加分離工程 SBの加圧浮上分離処理用の用水には、 後段の静置沈降処理 D3で 生じる上澄液 SNS3を環流して再利用した。 第 2追加分離工程 SB内に環流した用水 量は 7576kg (第 1追加分離工程 SAから導入した沈降物含有液量の 3倍) であった c この第 2追加分離下部区分 SPLBには、 以後の工程で支障が生じない程度に、 繊 維分はほぼ完全に除去されていた。 First additional separation lower section SPLA is allowed to stand still, and the sediment-containing liquid obtained by passing through D2 is subjected to further separation treatment by pressurized flotation, and the second additional separation upper section containing fibers SPUB and starch containing starch 2 Additional separation lower section SPLB was acquired. The amount of the sediment-containing liquid introduced from the stationary settling treatment D2 in the former stage was 2525 kg, the water content was 2289 kg, and the water for pressurized flotation treatment in the second additional separation process SB was added to the latter stage. The supernatant SNS3 generated in the stationary sedimentation treatment D3 was refluxed and reused. The second additional separation step refluxing was water amount in the SB is 7576Kg c was (first additional separation 3 times the process has been introduced from the SA sediment-containing liquid volume) the second additional isolation lower section SPLB, subsequent The fiber was almost completely removed to the extent that the process did not interfere.
第 2追加分離工程 SB後の上下両分離区分 SPUBおよび SPLBの含有成分の 成比な らびに重量を表 1 3に示す。  Second additional separation step Table 13 shows the composition ratio and weight of the SPUB and SPLB components in both upper and lower separation sections after SB.
表 1 3  Table 13
第 4分離工程 S4後の各区分の成分別構成  4th separation process Composition of each section after S4
Figure imgf000031_0001
Figure imgf000031_0001
第 2追加分離下部区分 SPLBは更に静置沈降処理 D3に通して沈降分離上部区分 DC U3 (殆ど全てが水分) と沈降分離下部区分 DCL3 (澱粉スラリー) とに分離した。 第 2追加分離区分の全量は 2213kg、 その内の水分は 2008kgであった。 また、 沈降 分離下部区分 (澱粉スラリー) DCL3中の澱粉は、 出発原料であるサゴビス中の澱 粉の 71.4 %であった。  Second additional separation lower section SPLB was further passed through a stationary sedimentation treatment D3 to be separated into a settling separation upper section DCU3 (almost all of water) and a settling separation lower section DCL3 (starch slurry). The total volume of the second additional separation section was 2,213 kg, of which the water content was 2008 kg. The starch in the sedimentation-separation lower section (starch slurry) DCL3 was 71.4% of the starch in the starting material Sagobis.
静置沈降処理 D3で分離された上下両分離区分 DCU3および DCL3の含有成分の構成 比ならびに重量を表 1 4に示す。 Stationary sedimentation treatment Both upper and lower separation sections separated by D3 Composition of components contained in DCU3 and DCL3 The ratio and weight are shown in Table 14.
表 1 4  Table 14
沈降分離後の各区分 DCU3および DCL3の成分組成  Each section after sedimentation Separate component composition of DCU3 and DCL3
Figure imgf000032_0001
Figure imgf000032_0001
2h) 加水分解工程 (HY)  2h) Hydrolysis step (HY)
静置沈降処理 D3で分離取得された下部区分 DCL3は、 耐熱性ひ—アミラーゼ液化 酵素 (商品名クライスターゼ T-5、 力価 5500u/g) の添加とともに、 攪袢下にて 93 °C〜97°Cに蒸気加熱して液化した。 その後、 液温を 60°Cまで低下せしめ、 グルコ アミラーゼ糖化酵素 (商品名ダルクザィム NL 4.2、 力価 4200u/g)を同じく澱粉に 対する重量比で 0.07¾(3u)相当量で添加した。  The lower section DCL3, which was separated and obtained by standing sedimentation treatment D3, was heated to 93 ° C under stirring with the addition of heat-resistant heat-amylase liquefying enzyme (trade name: Krystase T-5, titer: 5500 u / g). It was liquefied by steam heating to 97 ° C. Thereafter, the temperature of the solution was lowered to 60 ° C, and glucoamylase saccharifying enzyme (trade name: Dalkzym NL 4.2, titer: 4200u / g) was added in an amount equivalent to 0.07% (3u) in terms of the weight ratio to starch.
糖化酵素の添加後、 酵素反応系の温度を 55°C〜60°Cの範囲内に維持し、 軽度の 攪拌を継続した。 約 48時間経過した後、 澱粉の粒は完全に溶解 ·消失した。 次い で、 反応系中の糖分濃度が所定の値に達したことを確認し、 澱粉の液化反応およ び糖化反応の完了した糖化液を得た。  After addition of the saccharifying enzyme, the temperature of the enzyme reaction system was maintained within the range of 55 ° C to 60 ° C, and light stirring was continued. After about 48 hours, the starch granules were completely dissolved and disappeared. Next, it was confirmed that the sugar concentration in the reaction system had reached a predetermined value, and a starch liquefaction reaction and a saccharified solution in which the saccharification reaction had been completed were obtained.
2i ) 第 4分離工程(S4) 2i) Fourth separation step (S4)
加水分解工程 HYで得られた糖化液を、 熱時にナイロン混紡製の濾布を使用して 濾過し、 濾布上に残留した主に繊維からなる第 4分離上区分 SPU4と、 濾布を通過 した濾液としての第 4分離下区分 SPL4とを分離取得した。 第 4分離上区分 SPU4は 微細な繊維状物および褐色の蛋白,様物を含み、 また第 4分離下区分 SPL4は淡黄色 の糖液である。 表 1 5に、 第 4分離工程 S4で取得された第 4分離上部区分 SPU4及び目的生産物 である糖液 (発酵用糖質原料) の第 4分離下部区分 SPL4について、 それそれの各 種成分の得量 (kg)、 分配率、 区分全得量 (kg)、 グルコース濃度 )および全固形分 率 (%)を示す。 尚、 第 4分離下部区分 SPL4に残存する繊維は、 出発原料であるサゴ ビス中の繊維のわずか 0.2 %以下であった。 Hydrolysis step The saccharified solution obtained in HY is filtered while hot using a nylon-blend filter cloth, passed through the fourth separation upper section SPU4 consisting mainly of fibers remaining on the filter cloth, and the filter cloth And the fourth filtrate SPL4 as the separated filtrate was obtained separately. The fourth upper division SPU4 contains fine fibrous substances and brown proteins, and the like, and the fourth lower division SPL4 is a pale yellow sugar solution. Table 15 shows the components of the 4th separation upper section SPU4 obtained in the 4th separation step S4 and the 4th separation lower section SPL4 of the sugar product (sugar raw material for fermentation) that is the target product. (Kg), distribution rate, total yield (kg), glucose concentration) and total solids content (%) of the product. The fibers remaining in the fourth separation lower section SPL4 were only 0.2% or less of the fibers in the starting material Sagobis.
表 1 5  Table 15
第 4分離ェ S4後の各区分の成分組成  Component composition of each category after S4
Figure imgf000033_0001
Figure imgf000033_0001
2j ) 濃縮工程 (CC)  2j) Concentration process (CC)
第 4分離下部区分 SPL4を約 60%容まで弱減圧下にて濃縮し、 目的生産物である 発酵用糖質原料としての糖液 FMを取得した。  The 4th separation lower section SPL4 was concentrated to about 60% volume under weak reduced pressure to obtain the target product, a sugar solution FM as a sugar material for fermentation.
2k) 各分離上部区分の処理 2k) Processing of each separated upper section
第 1分離上部区分 SPU1、 第 2分離上部区分 SPU2、 第 1追加分離上部区分 SPUAお よび第 2追加分離上部区分 SPUBを混合して混合物 MXを形成し、 この混合物 MXを第 3分離工程 S3へ導入した。 この混合物 MXの含有成分の構成比ならびに重量を表 1 6に示す。 表 1 6 The first separation upper section SPU1, the second separation upper section SPU2, the first additional separation upper section SPUA and the second additional separation upper section SPUB are mixed to form a mixture MX, and the mixture MX is subjected to the third separation step S3. Introduced. Table 16 shows the composition ratio and the weight of the components contained in the mixture MX. Table 16
混合物 MXの成分組成  Composition of mixture MX
Figure imgf000034_0001
Figure imgf000034_0001
21 ) 第 3分離工程 ( S3 )  21) 3rd separation process (S3)
混合物 MXを湿式回転篩により篩分し、 第 3分離上部区分 SPU3および第 3分離下 部区分 SPL3を取得した。 尚、 湿式回転篩の有効篩分間隔は 0.089腿である。  The mixture MX was sieved with a wet rotary sieve to obtain a third separation upper section SPU3 and a third separation lower section SPL3. The effective sieving interval of the wet rotary sieve is 0.089.
第 3分離工程後の上下両分離区分 SPU3および SPL3の含有成分の構成比ならびに 重量を表 1 7に示す。  Table 17 shows the composition ratios and weights of the components contained in the upper and lower separation sections SPU3 and SPL3 after the third separation step.
表 1 7  Table 17
第 3分離工程 S3後の各区分の成分組成  Component composition of each category after 3rd separation step S3
Figure imgf000034_0002
Figure imgf000034_0002
2m) 副製品(BP )の取得  2m) Acquisition of by-product (BP)
第 3分離上部区分 SPU3および第 4分離上部区分 SPU4を混合して系外に導出し、 副生品 BPを取得した。 この副生品 BPは細砕された繊維を主成分とし、 澱粉および 糖分 (グルコース) を含有しており、 湿潤状態の儘、 あるいは乾燥後に、 飼料、 特に反芻動物用飼料、 あるいは肥料、 特に熱帯作物用肥料として有効に利用され る。 副生品 BP (第 3分離上部区分 SPU3および第 4分離上部区分 SPU4の混合物) の含 有成分の構成比ならびに重量を表 1 8に示す。 尚、 この副生品に含まれていた澱 粉は、 出発原料であるサゴビスの澱粉の 5.7%であり、 また含有繊維は、 同じく原 料サゴビスの繊維の 91.0 %であり、 原料サゴビス中の大部分の繊維がこの副生品 に移行していることが認められた。 The third separation upper section SPU3 and the fourth separation upper section SPU4 were mixed and led out of the system to obtain by-product BP. This by-product BP is mainly composed of finely divided fibers, contains starch and sugar (glucose), and is wet, or after drying, feed, especially ruminant feed, or fertilizer, especially tropical. It is effectively used as a fertilizer for crops. Table 18 shows the component ratios and weights of the by-products BP (mixture of SPU3 in the third separation upper section and SPU4 in the fourth separation upper section). The starch contained in this by-product was 5.7% of the starting material Sagobis starch, and the fiber content was 91.0% of the raw material Sagobis fiber. It was observed that some of the fibers had migrated to this by-product.
表 1 8  Table 18
副生品 BPの成分組成  Composition of by-product BP
Figure imgf000035_0001
Figure imgf000035_0001
2n) 系内環流水の磨砕用水への再利用  2n) Reuse of internal reflux water for grinding water
少量の澱粉等の混在により、 やや白濁している第 3分離下部区分 SPL3は、 第 3 分離工程 S3から第 1磨碎工程 G1に璟流され、 稼働中の回転石曰型磨碎装置に用水 として供給された。 また、 これに加えて、 最終静置沈降処理 D3から得られる沈降 分離上部区分 DCU3も第 1磨碎工程 G1に環流され、 磨砕用水として再利用された。 この最終静置沈降処理上部区分 DCU3は殆どが水分であり、 その量は 1530kgであつ た。 また第 3分離下部区分 SPL3は、 澱粉 62kg、 繊維 8kg、 水分 2548kgからなつてい た。 尚、 出発原料のサゴビス中に存在した澱粉および繊維は、 それそれ 22. 9 およ び 8.8% の比率で磨砕用水に混入して環流されたことになる。  The third separation lower section SPL3, which is slightly turbid due to the presence of a small amount of starch etc., flows from the third separation step S3 to the first grinding step G1, where it is used by the operating rotary stone for the type grinding equipment. Supplied as In addition, the sedimentation separation upper section DCU3 obtained from the final standing sedimentation treatment D3 was also returned to the first grinding step G1 and reused as grinding water. DCU3, the upper part of the final sedimentation sedimentation treatment, was mostly water, and its amount was 1530 kg. SPL3, the third lower section, consisted of 62 kg of starch, 8 kg of fiber, and 2548 kg of water. The starch and fiber present in the starting material sagobis were mixed into the grinding water at a ratio of 22.9 and 8.8%, respectively, and were refluxed.
以上のようにして取得された糖液 FMは、 実生産規模のグル夕ミン酸発酵におい て、 甘蔗糖蜜を使用した従来法による場合と比べて、 何ら遜色のない対糖収率お よび培地中グル夕ミン酸蓄積濃度を維持してグル夕ミン酸を製造できる原料であ ることが確認された。  The sugar solution FM obtained as described above is comparable to the conventional method using cane molasses in sugar production FM in fermentation on a commercial scale, and yields in sugar medium comparable to those obtained by the conventional method. It was confirmed that it was a raw material capable of producing glumic acid while maintaining the concentration of glucumic acid.

Claims

請求の範囲 The scope of the claims
1 . 澱粉質原料から発酵用糖質原料を製造する方法であって、  1. A method for producing a saccharide raw material for fermentation from a starchy raw material,
(a) 澱粉質原料を磨砕する第 1磨碎工程、  (a) a first grinding step of grinding starchy raw materials,
(b) 第 1磨碎工程で磨砕された後の澱粉質原料を相対的に軽質の第 1分離上部 区分と重質の第 1分離下部区分とに分離する第 1分離工程、  (b) a first separation step of separating the starchy material ground in the first grinding step into a relatively light first separation upper section and a heavy first separation lower section;
(c) 第 1分離上部区分を磨砕する第 2磨砕工程、  (c) a second grinding step for grinding the first separated upper section,
(d) 第 1分離下部区分を相対的に軽質の第 2分離上部区分と重質の第 2分離下 部区分とに分離する第 2分離工程、 および  (d) a second separation step of separating the first separated lower section into a relatively lighter second separated upper section and a heavy second separated lower section; and
(e) 第 2磨砕工程で磨碎された後の第 1分離上部区分を前記第 2分離上部区分 と共に相対的に軽質の第 3分離上部区分と重質の第 3分離下部区分とに分離する 第 3分離工程、  (e) The first separated upper section after being ground in the second grinding step is separated into a relatively light third separated upper section and a heavy third separated lower section together with the second separated upper section. The third separation process,
を備え、 前記第 3分離上部区分は系外へ導出し、 前記第 3分離下部区分は前記第 1磨砕工程の入側へ回送し、 前記第 2分離下部区分から発酵用糖質原料を取得す ることを特徴とする発酵用糖質原料の製造方法。 The third separation upper section is led out of the system, the third separation lower section is forwarded to the inlet side of the first grinding step, and the saccharide raw material for fermentation is obtained from the second separation lower section A method for producing a saccharide raw material for fermentation, comprising:
2 . 前記澱粉質原料は、 サゴヤシ、 コメ、 コムギ、 トウモロコシからなる群か ら選ばれた少なくとも一つに由来する原料であることを特徴とする請求項 1に記 載の方法。  2. The method according to claim 1, wherein the starchy raw material is a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn.
3 . 前記第 2分離下部区分からその固形区分を分取する工程を更に備えたこと を特徴とする請求項 1に記載の方法。  3. The method of claim 1, further comprising the step of fractionating the solid section from the second separation lower section.
4 . 前記第 1磨碎工程に先立ち澱粉質原料を水洗する洗浄工程を更に備え、 該 洗浄工程では洗浄用水が循環され、 該洗浄用水は循環過程中に含有固形物を分離 除去するための浄化処理に付されることを特徴とする請求項 1に記載の方法。  4. The method further comprises a washing step of washing the starchy material with water prior to the first grinding step, wherein washing water is circulated in the washing step, and the washing water is purified to separate and remove contained solid matter during the circulation process. The method according to claim 1, wherein the method is subjected to processing.
5 . 前記澱粉質原料は、 キヤッサバ、 ジャガイモ、 サツマィモからなる群から 選ばれた少なくとも一つに由来する原料であることを特徴とする請求項 4に記載 の方法。  5. The method according to claim 4, wherein the starchy raw material is a raw material derived from at least one selected from the group consisting of cassava, potato, and sweet potato.
6 . 前記第 2分離工程を加圧浮遊分離法に従って実行することを特徴とする請 求項 1に記載の方法。 6. The method according to claim 1, wherein the second separation step is performed according to a pressurized floating separation method. The method of claim 1.
7 . 前記第 3分離工程を加圧浮遊分離法に従って実行することを特徴とする請 求項 1に記載の方法。  7. The method according to claim 1, wherein the third separation step is performed according to a pressurized floating separation method.
8 . 前記第 2分離下部区分を液化および糖化する加水分解工程と、 加水分解ェ 程からの生成物を相対的に軽質の第 4分離上部区分と重質の第 4分離下部区分と の分離する第 4分離工程とを更に備え、 前記第 4分離上部区分は系外へ導出する と共に、 前記第 4分離下部区分から糖液として発酵用糖質原料を取得することを 特徴とする請求項 1に記載の方法。  8. A hydrolysis step of liquefying and saccharifying the second separation lower section, and separating a product from the hydrolysis step into a relatively light fourth separation upper section and a heavy fourth separation lower section. The method according to claim 1, further comprising a fourth separation step, wherein the fourth separation upper section is led out of the system, and a saccharide raw material for fermentation is obtained as a sugar liquid from the fourth separation lower section. The described method.
9 . 前記第 4分離工程を加圧浮遊分離法に従って実行することを特徴とする請 求項 8に記載の方法。  9. The method according to claim 8, wherein the fourth separation step is performed according to a pressurized flotation separation method.
10. 澱粉質原料から発酵用糖質原料を製造する方法であって、  10. A method of producing a saccharide raw material for fermentation from a starchy raw material,
(a) 澱粉質原料を磨砕する第 1磨砕工程、  (a) a first grinding step of grinding starchy raw materials,
(b) 第 1磨砕工程で磨砕された後の澱粉質原料を相対的に軽質の第 1分離上部 区分と重質の第 1分離下部区分とに分離する第 1分離工程、  (b) a first separation step of separating the starchy material that has been ground in the first grinding step into a relatively light first separation upper section and a heavy first separation lower section;
(c ) 第 1分離下部区分を磨砕する第 2磨碎工程、  (c) a second grinding step for grinding the first separated lower section,
( 第 2磨碎工程で磨砕された後の第 1分離下部区分を相対的に軽質の第 2分 離上部区分と重質の第 2分離下部区分とに分離する第 2分離工程、 および  (A second separation step of separating the first separated lower section that has been ground in the second grinding step into a relatively light second separated upper section and a heavy second separated lower section, and
( e) 第 1分離上部区分を前記第 2分離上部区分と共に相対的に軽質の第 3分離 上部区分と重質の第 3分離下部区分とに分離する第 3分離工程、  (e) a third separation step of separating the first separated upper section together with the second separated upper section into a relatively light third separated upper section and a heavy third separated lower section.
を備え、 前記第 3分離上部区分は系外へ導出し、 前記第 3分離下部区分は前記第 1磨砕工程の入側へ回送し、 前記第 2分離下部区分から発酵用糖質原料を取得す ることを特徴とする発酵用糖質原料の製造方法。 The third separation upper section is led out of the system, the third separation lower section is forwarded to the inlet side of the first grinding step, and the saccharide raw material for fermentation is obtained from the second separation lower section A method for producing a saccharide raw material for fermentation, comprising:
11. 前記澱粉質原料は、 サゴヤシ、 コメ、 コムギ、 トウモロコシからなる群か ら選ばれた少なくとも一つに由来する原料であることを特徴とする請求項 10に記 載の方法。  11. The method according to claim 10, wherein the starchy raw material is a raw material derived from at least one selected from the group consisting of sago palm, rice, wheat, and corn.
12. 前記第 2分離下部区分からその固形区分を分取する工程を更に備えたこと を特徴とする請求項 10に記載の方法。 12. The method further comprises a step of separating the solid section from the second separation lower section. The method according to claim 10, wherein:
13. 前記第 2分離工程を加圧浮遊分離法に従って実行することを特徴とする請 求項 10に記載の方法。  13. The method according to claim 10, wherein the second separation step is performed according to a pressurized flotation separation method.
14. 前記第 2分離下部区分を静置沈降する工程を更に含み、 該工程で静置沈降 後の上澄液は前記第 2分離工程へ分離用水として回送すると共に、 静置沈降され た第 2分離区分から発酵用糖質原料を取得することを特徴とする請求項 10に記載 の方法。  14. The method further comprises the step of allowing the second separated lower section to settle and settle. The supernatant liquid after settling and settling in the second separation step is returned to the second separation step as water for separation, and the second settled and settled second The method according to claim 10, wherein the raw material for fermentation is obtained from the separation section.
15. 前記第 3分離工程を固液分離法に従って実行することを特徴とする請求項 10に記載の方法。  15. The method according to claim 10, wherein the third separation step is performed according to a solid-liquid separation method.
16. 前記第 2分離下部区分を液化および糖化する加水分解工程と、 加水分解ェ 程からの生成物を相対的に軽質の第 4分離上部区分と重質の第 4分離下部区分と の分離する第 4分離工程とを更に備え、 前記第 4分離上部区分は前記第 3分離上 部区分と共に系外へ導出してその繊維区分を副生品として取得すると共に、 前記 第 4分離下部区分から糖液として発酵用糖質原料を取得することを特徴とする請 求項 10に記載の方法。  16. A hydrolysis step of liquefying and saccharifying the second separation lower section, and separating a product from the hydrolysis step into a relatively light fourth separation upper section and a heavy fourth separation lower section. A fourth separation step, wherein the fourth separation upper section is led out of the system together with the third separation upper section to obtain the fiber section as a by-product, and the fourth separation upper section is provided with a sugar from the fourth separation lower section. 11. The method according to claim 10, wherein a sugar raw material for fermentation is obtained as a liquid.
17. 前記第 4分離工程を濾過または遠心分離法に従って実行することを特徴と する請求項 16に記載の方法。  17. The method according to claim 16, wherein the fourth separation step is performed according to a filtration or centrifugation method.
18. 前記第 2分離下部区分を相対的に軽質の追加分離上部区分と重質の追加分 離下部区分とに分離する 1段以上の追加分離工程を更に備え、 追加分離上部区分 は前記第 3分離工程へ導入し、 追加分離下部区分から発酵用糖質原料を取得する ことを特徴とする請求項 10に記載の方法。  18. The apparatus further comprises one or more additional separation steps for separating the second separation lower section into a relatively light additional separation upper section and a heavy additional separation lower section. 11. The method according to claim 10, wherein the method is introduced into a separation step, and a saccharide raw material for fermentation is obtained from the additional separation lower section.
19. 前記追加分離下部区分からその固形区分を分取する工程を更に備えたこと を特徴とする請求項 18に記載の方法。  19. The method of claim 18, further comprising the step of fractionating the solid fraction from the additional separation lower fraction.
20. 前記追加分離工程を加圧浮遊分離法に従って実行することを特徴とする請 求項 18に記載の方法。  20. The method according to claim 18, wherein said additional separation step is performed according to a pressurized flotation separation method.
21. 前記追加分離下部区分を液化および糖化する加水分解工程と、 加水分解ェ 程からの生成物を相対的に軽質の第 4分離上部区分と重質の第 4分離下部区分と の分離する第 4分離工程とを更に備え、 前記第 4分離上部区分は系外へ導出する と共に、 前記第 4分離下部区分から糖液として発酵用糖質原料を取得することを 特徴とする請求項 18に記載の方法。 21. a hydrolysis step for liquefying and saccharifying said additional separation lower section; Further comprising a fourth separation step of separating the product from the process into a relatively light fourth separation upper section and a heavy fourth separation lower section, wherein the fourth separation upper section is led out of the system. 19. The method according to claim 18, wherein a fermentation saccharide raw material is obtained as a saccharide liquid from the fourth separation lower section.
PCT/JP1998/001554 1998-04-03 1998-04-03 Process for producing sugar materials for fermentation WO1999051782A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI9809714-8A BR9809714B1 (en) 1998-04-03 1998-04-03 process for producing a raw sugar material for fermentation.
CN98806718A CN1099466C (en) 1998-04-03 1998-04-03 Process for producing sugar materials for fermentation
PCT/JP1998/001554 WO1999051782A1 (en) 1998-04-03 1998-04-03 Process for producing sugar materials for fermentation
MYPI99001279A MY129273A (en) 1998-04-03 1999-04-02 Method for producing raw sugar material for fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001554 WO1999051782A1 (en) 1998-04-03 1998-04-03 Process for producing sugar materials for fermentation

Publications (1)

Publication Number Publication Date
WO1999051782A1 true WO1999051782A1 (en) 1999-10-14

Family

ID=14207976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001554 WO1999051782A1 (en) 1998-04-03 1998-04-03 Process for producing sugar materials for fermentation

Country Status (4)

Country Link
CN (1) CN1099466C (en)
BR (1) BR9809714B1 (en)
MY (1) MY129273A (en)
WO (1) WO1999051782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309751A (en) * 2000-05-02 2001-11-06 Ajinomoto Co Inc Additive for feed
WO2008090707A1 (en) * 2007-01-25 2008-07-31 Japan International Research Center For Agricultural Sciences Method for production of ethanol or lactic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152888A (en) * 1981-03-14 1982-09-21 Mitsui Eng & Shipbuild Co Ltd Alcoholic fermentation of raw potato by enzymatic process
JPS57186494A (en) * 1981-05-07 1982-11-16 Suntory Ltd Fermentation of alcohol
JPH06502547A (en) * 1991-07-03 1994-03-24 ビオディヌ ブルゴーニュ Process for continuous production of partially hydrolyzed starch, products obtained by this process and its applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152888A (en) * 1981-03-14 1982-09-21 Mitsui Eng & Shipbuild Co Ltd Alcoholic fermentation of raw potato by enzymatic process
JPS57186494A (en) * 1981-05-07 1982-11-16 Suntory Ltd Fermentation of alcohol
JPH06502547A (en) * 1991-07-03 1994-03-24 ビオディヌ ブルゴーニュ Process for continuous production of partially hydrolyzed starch, products obtained by this process and its applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309751A (en) * 2000-05-02 2001-11-06 Ajinomoto Co Inc Additive for feed
WO2008090707A1 (en) * 2007-01-25 2008-07-31 Japan International Research Center For Agricultural Sciences Method for production of ethanol or lactic acid

Also Published As

Publication number Publication date
BR9809714A (en) 2000-07-11
CN1099466C (en) 2003-01-22
MY129273A (en) 2007-03-30
BR9809714B1 (en) 2011-01-11
CN1261921A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
US8344107B2 (en) Method and system for corn fractionation
US7481890B2 (en) Corn oil and dextrose extraction apparatus and method
KR101336117B1 (en) Method and system for processing of aquatic species
US4361651A (en) Process for making fermentable sugars and high-protein products
US8344108B2 (en) Method and system for corn fractionation
CA2882173C (en) A method of and system for producing oil and valuable byproducts from grains in dry milling systems with a back-end dewater milling unit
Bergthaller et al. Potato starch technology
US20100159547A1 (en) Method for separating oil from an oil containing material, method for the production of ethanol, and ethanol production facility
US20140273140A1 (en) Simultaneous Food And Fuel Corn Refining
CN107108543A (en) Extraction and the method for conversion hemicellulose sugar
Curto et al. Flavonoids recovery and SCP production from orange peel
US11623966B2 (en) System and method for improving the corn wet mill and dry mill process
BE1018899A3 (en) PROCESS FOR THE VALORISATION OF DISTILLATION BY-PRODUCTS FROM THE PRODUCTION OF BIOETHANOL FROM A CEREAL RAW MATERIAL, IN PARTICULAR FROM BLE.
CA2651179C (en) Improved ethanol process using pre-fermentation solids removal
WO1999051782A1 (en) Process for producing sugar materials for fermentation
EP3763222A1 (en) Method for obtaining a concentrated protein rich phase from residues of bioethanol production
DE112020006997T5 (en) PROTEIN PRODUCT FROM DRESSER AND PROCESS FOR PRODUCTION THEREOF
Meuser et al. Comparison of starch extraction from tapioca chips, pellets and roots
CN112675944A (en) Production method of nutritious bran
DE112021000385T5 (en) PROCESS FOR EXTRACTING STARCH FROM AGRICULTURAL PRODUCTS
US4247638A (en) Recovery of starch from amylaceous roots as an aqueous slurry
BE882769A (en) IMPROVEMENTS RELATING TO A PROCESS FOR PRODUCING A PURIFIED PLANT PROTEIN PRODUCT AND PRODUCTS OBTAINED
CN101781665A (en) Industrialized method for directly producing gluconate by corn flour
CN1079112A (en) The use of potato method for processing and device and device
RU2041945C1 (en) Method for production of fodder yeast of distillery grains

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200000001

Country of ref document: VN

Ref document number: 98806718.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID JP VN