WO1999051149A1 - Structures and methods for creating cavities in interior body regions - Google Patents
Structures and methods for creating cavities in interior body regions Download PDFInfo
- Publication number
- WO1999051149A1 WO1999051149A1 PCT/US1999/007652 US9907652W WO9951149A1 WO 1999051149 A1 WO1999051149 A1 WO 1999051149A1 US 9907652 W US9907652 W US 9907652W WO 9951149 A1 WO9951149 A1 WO 9951149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone
- shaft
- cavity
- tool according
- tool
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/164—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans intramedullary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1671—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320016—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/32056—Surgical snare instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/441—Joints for the spine, e.g. vertebrae, spinal discs made of inflatable pockets or chambers filled with fluid, e.g. with hydrogel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4601—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1613—Component parts
- A61B17/1615—Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
- A61B17/1617—Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material with mobile or detachable parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1644—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8802—Equipment for handling bone cement or other fluid fillers
- A61B17/8805—Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/24—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00261—Discectomy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B2017/22014—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320004—Surgical cutting instruments abrasive
- A61B2017/320008—Scrapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B2017/320733—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a flexible cutting or scraping element, e.g. with a whip-like distal filament member
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/007—Auxiliary appliance with irrigation system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4611—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30581—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
- A61F2002/30583—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with hardenable fluid, e.g. curable in-situ
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30677—Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0085—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof hardenable in situ, e.g. epoxy resins
Definitions
- the invention relates to structures and procedures, which, in use, form cavities in interior body regions of humans and other animals for diagnostic or therapeutic purposes.
- Certain diagnostic or therapeutic procedures require the formation of a cavity in an interior body region.
- an expandable body is deployed to form a cavity in cancellous bone tissue, as part of a therapeutic procedure that fixes fractures or other abnormal bone conditions, both osteoporotic and non-osteoporotic in origin.
- the expandable body compresses the cancellous bone to form an interior cavity.
- the cavity receives a filling material, which provides renewed interior structural support for cortical bone.
- This procedure can be used to treat cortical bone, which due to osteoporosis, avascular necrosis, cancer, or trauma, is fractured or is prone to compression fracture or collapse. These conditions, if not successfully treated, can result in deformities, chronic complications, and an overall adverse impact upon the quality of life.
- U.S. Patents 4,969,888 and 5,108,404 are capable of forming cavities in bone and other interior body regions in safe and efficacious ways.
- the invention provides new tools for creating cavities in cancellous bone.
- the tools carry structures that cut cancellous bone to form the cavity.
- the structure comprises a filament, which can be formed as a loop or as an array creating a brush. Manipulation of the filament when inside bone cuts cancellous bone to create a cavity.
- the structure comprises a blade that cuts cancellous bone by either lateral movement, rotational movement, or both.
- the structure comprises a transmitter of energy that cuts cancellous bone to create the cavity.
- the invention also provides directions for using a selected tool according to a method comprising the steps of deploying the tool inside bone and manipulating the structure to cut cancellous bone and form the cavity.
- the method for use can also instruct filling the cavity with a material, such as, e.g., bone cement, allograft material, synthetic bone substitute, a medication, or a flowable material that sets to a hardened condition.
- Fig. 1 is a side view of a rotatable tool having a loop structure capable of forming a cavity in tissue, with the loop structure deployed beyond - 3 -
- Fig. 1A is an enlarged end view of the tool shown in Fig. 1;
- Fig. 2 is a side view of the tool shown in Fig. 1, with the loop structure retracted within the catheter tube;
- Fig. 3 is a side view of the tool shown in Fig. 1, with the loop structure deployed beyond the catheter tube to a greater extent than shown in Fig. 1;
- Fig. 4 is a side view of the tool shown in Fig. 1 inserted within a guide sheath for deployment in a targeted treatment area;
- Fig. 5 is a side view of another rotatable tool having a brush structure capable of forming a cavity in tissue, with the brush structure deployed beyond the associated drive tube;
- Fig. 5A is an enlarged end view of the tool shown in Fig. 5;
- Fig. 6 is a side view of the tool shown in
- Fig. 7 is a side view of the tool shown in Fig. 5, with the brush structure deployed beyond the catheter tube to a greater extent than shown in Fig.
- Fig. 8 is a side view of the tool shown in Fig. 7, with the brush structure deployed beyond the catheter tube to a greater extent than shown in Fig.
- Fig. 9 is a side view of an alternative tool having an array of bristles carried by a flexible shaft, which is capable of forming a cavity - 4 -
- Fig. 10 is a side view of the tool shown in Fig. 9 as it is being deployed inside a cannula;
- Fig. 11 is the tool shown in Fig. 9 when deployed in a soft tissue region bounded by hard tissue;
- Fig. 12 is a side view of a tool having a rotatable blade structure capable of forming a cavity in tissue
- Fig. 13 is a side view of an alternative curved blade structure that the tool shown in Fig. 12 can incorporate;
- Fig. 14 is a side view of an alternative ring blade structure that the tool shown in Fig. 12 can incorporate;
- Fig. 15 is a side view of the ring blade structure shown in Fig. 14 while being introduced through a cannula;
- Fig. 16 is a side view of a rotating tool capable of forming a cavity in tissue, with an associated lumen to introduce a rinsing liquid and aspirate debris;
- Fig. 17 is a perspective side view of a tool having a linear movement blade structure capable of forming a cavity in tissue, with the blade structure deployed beyond the associated catheter tube in an operative position for use;
- Fig. 18 is an end view of the tool shown in Fig. 17, with the blade structure shown in its operative position for use;
- Fig. 19 is an end view of the tool shown in Fig. 17, with the blade structure shown in its rest position within the catheter tube;
- Fig. 20 is a side view of the tool shown in Fig. 17, with the blade structure shown in its rest - 5 -
- Fig. 21 is a side view of the tool shown in
- Fig. 22 is a side view of a tool having a linear movement energy transmitter capable of forming a cavity in tissue, with the energy transmitter deployed beyond the associated catheter tube in an operative position for use;
- Fig. 23 is a top view of a human vertebra, with portions removed to reveal cancellous bone within the vertebral body, and with a guide sheath located for postero-lateral access;
- Fig. 24 is a side view of the vertebra shown in Fig. 23;
- Fig. 25 is a top view of the vertebra shown in Fig. 23, with the tool shown in Fig. 1 deployed to cut cancellous bone by rotating the loop structure, thereby forming a cavity;
- Fig. 26 is a top view of the vertebra shown in Fig. 23, with the tool shown in Fig. 5 deployed to cut cancellous bone by rotating the brush structure, thereby forming a cavity;
- Fig. 27 is a side view of the vertebra shown in Fig. 23, with the tool shown in Fig. 17 deployed to cut cancellous bone by moving the blade structure in a linear path, thereby forming a cavity;
- Fig. 28 is a side view of the vertebra shown in Fig. 23, with the tool shown in Fig. 22 deployed to cut cancellous bone using an energy transmitter, which is both rotatable and movable in - 6 -
- Fig. 29 is a side view of the vertebra shown in Fig. 23, after formation of a cavity by use of one of the tools shown in Figs. 25 to 28, and with a second tool deployed to introduce material into the cavity for therapeutic purposes;
- Fig. 30 is a plan view of a sterile kit to store a single use cavity forming tool of a type previously shown; and Fig. 31 is an exploded perspective view of the sterile kit shown in Fig. 30.
- the systems and methods embodying the invention can be adapted for use virtually in any interior body region, where the formation of a cavity within tissue is required for a therapeutic or diagnostic purpose.
- the preferred embodiments show the invention in association with systems and methods used to treat bones. This is because the systems and methods which embody the invention are well suited for use in this environment. It should be appreciated that the systems and methods which embody features of the invention can be used in other interior body regions, as well.
- I. Rotatable Cavity Forming Structures A. Rotatable Loop Structure Fig. 1 shows a rotatable tool 10 capable of - 7 -
- the tool 10 comprises a catheter tube 12 having a proximal and a distal end, respectively 14 and 16.
- the catheter tube 12 preferable includes a handle 18 to aid in gripping and maneuvering the tube 12.
- the handle 18 can be made of a foam material secured about the catheter tube 12.
- the catheter tube 12 carries a cavity forming structure 20 at its distal end 16.
- the structure 20 comprises a filament 22 of resilient inert material, which is bent back upon itself and preformed with resilient memory to form a loop.
- the material from which the filament 22 is made can be resilient, inert wire, like stainless steel.
- resilient injection molded inert plastic or shape memory material like nickel titanium (commercially available as NitinolTM material) , can also be used.
- the filament 22 can, in cross section, be round, rectilinear, or an other configuration.
- the filament 22 radiates from slots 24 in a base 26 carried by the distal end 16 of the catheter tube 12.
- the free ends 28 of the filament 22 extend through the catheter tube 12 and are connected to a slide controller 30 near the handle 18.
- the controller 30 can include indicia 32, through which the physician can estimate the dimensions of the loop structure 20.
- the catheter tube 12 is carried for axial and rotational movement within a guide sheath or cannula 34.
- the physician is able to freely slide the catheter tube 12 axially within the guide sheath 34 (arrow S in Fig. 4) .
- Fig. 4 shows, when fully confined by the guide sheath 34, the loop structure 20, if projecting a significant distance beyond the distal end 16, is collapsed by the surrounding sheath 34.
- the loop structure 20 springs open to assume its normal dimension. Thereafter, the physician can operate the controller 30 to alter the dimension of the loop structure 20 at will.
- the physician When free of the guide sheath 34, the physician is also able to rotate the deployed loop structure 20, by rotating the catheter tube 12 within the guide sheath 34 (arrow R in Fig. 4) . As will be described in greater detail alter, rotation of the loop structure 20 slices or cut through surrounding tissue mass.
- the materials for the catheter tube 12 are selected to facilitate advancement and rotation of the loop structure 20.
- the catheter tube 12 can be constructed, for example, using standard flexible, medical grade plastic materials, like vinyl, nylon, - 9 -
- the catheter tube 12 can also include more rigid materials to impart greater stiffness and thereby aid in its manipulation and torque transmission capabilities. More rigid materials that can be used for this purpose include stainless steel, nickel-titanium alloys (NitinolTM material) , and other metal alloys.
- the filament 22 preferably carries one or more radiological markers 36.
- the markers 36 are made from known radiopaque materials, like platinum, gold, calcium, tantalum, and other heavy metals. At least one marker 36 is placed at or near the distal extremity of the loop structure 20, while other markers can be placed at spaced apart locations on the loop structure 20.
- the distal end 16 of the catheter tube 12 can also carry markers. The markers 36 permit radiologic visualization of the loop structure 20 and catheter tube 12 within the targeted treatment area.
- Fig. 5 shows an alternative embodiment of a rotatable tool 38 capable of forming a cavity in a targeted treatment area.
- the tool 38 comprises a drive shaft 40, which is made from stiffer materials for good torsion transmission capabilities, e.g., stainless steel, nickel-titanium alloys (NitinolTM material), and other metal alloys.
- the distal end 42 of the drive shaft carries a cavity forming structure 44, which comprises an array of filaments forming bristles 46. - 10 -
- the bristles 46 extend from spaced-apart slots 48 in a base 50 carried by the distal end 42 of the drive shaft 40.
- the material from which the bristles 46 is made can be stainless steel, or injection molded inert plastic, or shape memory material, like nickel titanium.
- the bristles 46 can, in cross section, be round, rectilinear, or an other configuration.
- the proximal end 52 of the drive shaft 40 carries a fitting 54 that, in use, is coupled to an electric motor 56 for rotating the drive shaft 40, and, with it, the bristles 46 (arrows R in Figs. 7 and 8) .
- the bristles 46 When rotated by the motor 46, the bristles spread apart (as Fig. 7 shows) , under the influence of centrifugal force, forming a brush-like structure 44.
- the brush structure 44 when rotating, cuts surrounding tissue mass in the targeted treatment area.
- the free ends 58 of the bristles 46 extend through the drive shaft 40 and are commonly connected to a slide controller 60.
- sliding the controller 60 aft (arrow A in Fig. 6) shortens the distance the bristles 46 extend from the base 50.
- sliding the controller 60 forward (arrow F in Fig. 8) lengthens the extension distance of the bristles 46.
- the array of bristles 46 preferably includes one or more radiological markers 62, as previously described.
- the markers 62 allow radiologic visualization of the brush structure 44 while in use within the targeted treatment area.
- the controller 60 can also include indicia 64 by which - li ⁇
- the physician can visually estimate the bristle extension distance.
- the distal end 42 of the drive shaft 40 can also carry one or more markers 62.
- the drive shaft 40 of the tool 38 is, in use, carried for axial and rotational movement within the guide sheath or cannula 34, in the same manner shown for the tool 10 in Fig, 4.
- the physician is able to freely slide the drive shaft 40 axially within the guide sheath to deploy it in the targeted treatment area.
- the drive shaft 40 is free to rotate within the guide sheath 34 to form the brush structure 44.
- Fig. 9 shows an alternative embodiment of a rotatable tool 138 having an array of filaments forming bristles 140, which is capable of forming a cavity in a targeted treatment area.
- the tool 138 includes a flexible drive shaft 142, which is made, e.g., from twisted wire filaments, such stainless steel, nickel-titanium alloys (NitinolTM material) , and other metal alloys.
- the bristles 140 radially extend from the drive shaft 142, near its distal end.
- the bristles 140 can be made, e.g., from resilient stainless steel, or injection molded inert plastic, or shape memory material, like nickel titanium.
- the bristles 140 can, in cross section, be round, rectilinear, or an other configuration.
- the tool 138 is introduced into the targeted tissue region through a cannula 144.
- the resilient bristles 140 are compressed rearward to a low profile, enabling passage through the cannula.
- the resilient bristles 140 spring radially outward, ready for use.
- the proximal end of the drive shaft 142 carries a fitting 146 that, in use, is coupled to an electric motor 148.
- the motor 148 rotates the drive shaft 142 (arrow R in Fig. 11) , and, with it, the bristles 140.
- Fig. 11 shows, when deployed inside an interior body cavity with soft tissue S (e.g. , cancellous bone bounded by hard tissue H (e.g., cortical bone) , the physician can guide the tool 138 through the soft tissue S by allowing the rotating bristles 140 to ride against the adjoining hard tissue H.
- the flexible drive shaft 142 bends to follow the contour of the hard tissue H, while the rotating bristles 140 cut adjoining soft tissue S, forming a cavity C.
- the drive shaft 142 carries a pitched blade 151 at its distal end.
- the blade 151 rotates with the drive shaft 142.
- the blade 151 By engaging tissue, the blade 151 generates a forward-pulling force, which helps to advance the drive shaft 142 and bristles 140 through the soft tissue mass.
- the bristles 140, or the cannula 144, or both include one or more radiological markers 153, as previously described.
- the markers 153 allow radiologic visualization of the bristles 140 while rotating and advancing within the targeted treatment area.
- FIG. 12 shows an alternative embodiment of a rotatable tool 106 capable of forming a cavity in a targeted treatment area.
- the tool 106 like the tool 38, comprises a generally stiff drive shaft 108, made from, e.g., stainless steel, nickel- titanium alloys (NitinolTM material) , and other metal - 13 -
- the distal end of the drive shaft 108 carries a cavity forming structure 110, which comprises a cutting blade.
- the blade 110 can take various shapes.
- the blade 110 is generally L-shaped, having a main leg 112 and a short leg 116.
- the main leg 112 of the blade 110 is pitched radially forward of the drive shaft axis 114, at a small forward angle beyond perpendicular to the drive shaft.
- the main leg 112 may possess a generally straight configuration (as Fig. 12 shows) , or, alternatively, it may present a generally curved surface (as Fig. 13 shows) .
- the short leg 116 of the blade 110 is also pitched at a small forward angle from the main leg 112, somewhat greater than perpendicular.
- the blade 110 takes the shape of a continuous ring 126.
- the ring 126 is pitched slightly forward, e.g., at an angle slightly greater than perpendicular relative to the drive shaft axis 114.
- the material from which the blade 110 is made can be stainless steel, or injection molded inert plastic.
- the legs 112 and 116 of the blade 110 shown in Figs. 12 and 13, and the ring 126 shown in Fig. 14, can, in cross section, be round, rectilinear, or an other configuration.
- the blade 110 cuts a generally cylindrical path through surrounding tissue mass.
- the forward pitch of the blade 110 reduces torque and provides stability and control as the blade 110 advances, while rotating, through the tissue mass.
- Rotation of the blade 110 can be accomplished manually or at higher speed by use of a motor.
- the proximal end of the drive shaft 108 of the tool 106 carries a fitting 118.
- the fitting 118 is coupled to an electric motor 120 to rotate the drive shaft 108, and, with it, the blade 110.
- the drive shaft 108 of the tool 108 is deployed subcutaneously into the targeted tissue area through a guide sheath or cannula 124.
- the drive shaft 108 rotates within the guide sheath 34, thereby rotating the blade 110 to cut a cylindrical path P in the surrounding tissue mass TM.
- the blade 110 can be advanced and retracted, while rotating, in a reciprocal path (arrows F and A) , by applying pushing and pulling forces upon the drive shaft 108.
- the blade 110 can also be withdrawn into the cannula 124 to allow changing of the orientation of the cannula 124. In this way, successive cylindrical paths can be cut through the tissue mass, through rotating and reciprocating the blade 110, to thereby create a desired cavity shape.
- the blade 110 or the end of the cannula 124, or both can carry one or more radiological markers 122, as previously described.
- the markers 122 allow radiologic visualization of the blade 110 and its position relative to the cannula 34 while in use within the targeted treatment area.
- any of the tools 10, 38, 106, or 138 can include an interior lumen 128.
- the lumen 128 is coupled via a Y-valve 132 to a external source 130 of fluid and an external vacuum source 134. - 15 -
- a rinsing liquid 136 e.g., sterile saline
- the rinsing liquid 136 reduces friction and conducts heat away from the tissue during the cutting operation.
- the rinsing liquid 136 can be introduced continuously or intermittently while the tissue mass is being cut.
- the rinsing liquid 136 can also carry an anticoagulant or other anti- clotting agent.
- Figs. 17 to 21 show a linear movement tool 66 capable of forming a cavity in a targeted treatment area.
- the tool 66 comprises a catheter tube 68 having a handle 70 (see Fig. 20) on its proximal end 72 to facilitate gripping and maneuvering the tube 68.
- the catheter tube 68 carries a linear movement cavity forming structure 74 at its distal end 76.
- the structure 56 comprises a generally rigid blade 78, which projects at a side angle from the distal end 76 (see Figs. 17 and 21) .
- the blade 78 can be formed from stainless steel or cast or molded plastic.
- a stylet 80 is carried by an interior track
- the track 82 extends along the axis of the catheter tube 68.
- the stylet 80 is free to move in a linear aft path (arrow A in Fig. 20) and a linear - 16 -
- the far end of the stylet 80 is coupled to the blade 78.
- the near end of the stylet 80 carries a control knob 84.
- the physician rotates the blade 78 between an at rest position, shown in Figs. 19 and 20, and an operating position, shown in Figs. 17, 18, and 21.
- the physician can push or pull upon the control knob 84 to move the blade 78 in a linear path within the catheter tube (see Fig. 20).
- the physician By pushing on the control knob 84, the physician can move the blade 78 outside the catheter tube 68, where it can be rotated into the operating condition (see Fig. 21) .
- pushing and pulling on the control knob 84 moves the blade in linear strokes against surrounding tissue mass.
- the catheter tube 68 is also carried for sliding and rotation within the guide sheath or cannula 34, in the same manner shown in Fig. 4.
- the physician is able to freely slide the catheter tube 68 axially within the guide sheath 34 to deploy the tool 66 in the targeted treatment site.
- the physician can deploy the blade 78 in the operating condition outside the catheter tube 68 and slide the blade 78 along tissue in a linear path. Linear movement of the blade 78 along tissue cuts the tissue.
- the physician is also able to rotate both the catheter tube 68 within the guide sheath 34 and the blade 78 within the catheter tube 68 to adjust the orientation and travel path of the blade 78.
- the blade 78 can carry one or more - 17 -
- radiological markers 86 as previously described, to allow radiologic visualization of the blade 78 within the targeted treatment area.
- Indicia 88 on the stylet 80 can also allow the physician to visually approximate the extent of linear or rotational movement of the blade 78.
- the distal end 76 of the catheter tube 68 can also carry one or more markers 86.
- FIG.22 shows an alternative embodiment of a linear movement tool 90 capable of forming a cavity in a targeted treatment area.
- the tool 90 is physically constructed in the same way as the linear movement tool 66 just described, so common reference numerals are assigned.
- the far end of the stylet 80 carries, not a cutting blade 78, but instead a transmitter 92 capable of transmitting energy that cuts tissue (shown by lines 100 in Fig. 22) .
- a connector 94 couples the transmitter 92 to a source 96 of the energy, through a suitable energy controller 98.
- the type of energy 100 that the transmitter 92 propagates to remove tissue in the targeted treatment area can vary.
- the transmitter 92 can propagate ultrasonic energy at harmonic frequencies suitable for cutting the targeted tissue.
- the transmitter 92 can propagate laser energy at a suitable tissue cutting frequency.
- the near end of the stylet 80 includes a control knob 84.
- the physician is able to move the transmitter 92 in a linear path (arrows A and F in Fig. 22) between a retracted position, housed with - 18 -
- the catheter tube 68 (like the blade 78 shown in Fig. 20) , and a range of extended positions outside the catheter tube 68, as shown in Fig. 22).
- the catheter tube 68 of the tool 90 is, in use, carried for sliding and rotation within the guide sheath or cannula 34.
- the physician slides the catheter tube 68 axially within the guide sheath 34 for deployment of the tool 90 at the targeted treatment site.
- the physician operates the control knob 84 to linearly move and rotate the transmitter 92 to achieve a desired position in the targeted treatment area.
- the physician can also rotate the catheter tube 68 and thereby further adjust the location of the transmitter 92.
- the transmitter 92 or stylet 80 can carry one or more radiological markers 86, as previously described, to allow radiologic visualization of the position of the transmitter 92 within the targeted treatment area.
- Indicia 88 on the stylet 80 can also allow the physician to visually estimate the position of the transmitter 92.
- the distal end 76 of the catheter tube 68 can also carry one or more markers 86.
- Fig. 23 shows the vertebra 150 in coronal (top) view
- Fig. 24 shows the vertebra 150 in lateral (side) view. It should be appreciated, however, the tool is not limited in its application to vertebrae.
- the vertebra 150 includes a vertebral body 152, which extends on the anterior (i.e., front or chest) side of the vertebra 150.
- the vertebral body 152 includes an exterior formed from compact cortical bone 158.
- the cortical bone 158 encloses an interior volume of reticulated cancellous, or spongy, bone 160 (also called medullary bone or trabecular bone) .
- the vertebral body 152 is in the shape of an oval disk. As Figs. 23 and 24 show, access to the interior volume of the vertebral body 152 can be achieved, e.g., by drilling an access portal 162 through a side of the vertebral body 152, which is called a postero-lateral approach.
- the portal 162 for the postero-lateral approach enters at a posterior side of the body 152 and extends at angle forwardly toward the anterior of the body 152.
- the portal 162 can be performed either with a closed, minimally invasive procedure or with an open procedure.
- access into the interior volume can be accomplished by drilling an access portal through either pedicle 164 (identified in Fig. 23) . This is called a transpedicular approach. It is the physician who ultimately decides which access site is indicated.
- the guide sheath 34 (earlier shown in Fig. 4) is located in the access portal 162. Under radiologic or CT monitoring, a selected one of the tools 10, 38, 66, or 90 can be introduced through the guide sheath 34.
- the loop structure 20 is, if extended, collapsed by the guide sheath 34 (as shown in Fig. 4) , or otherwise retracted within the catheter tube 12 (as Fig. 2 shows) during passage through the guide sheath 34.
- the physician when the loop tool 10 is deployed outside the guide sheath 34 in the cancellous bone 160, the physician operates the controller 30 in the manner previously described to obtain a desired dimension for the loop structure 20, which can be gauged by radiologic monitoring using the on-board markers 36.
- the physician manually rotates the loop structure 20 through surrounding cancellous bone 160 (as indicated by arrows R in Fig. 25) .
- the rotating loop structure 20 cuts cancellous bone 160 and thereby forms a cavity C.
- a suction tube 102 also deployed through the guide sheath 34, removes cancellous bone cut by the loop structure 20.
- the catheter tube 12 can include an interior lumen 128 (as shown in Fig.
- the physician advances the bristles 46 a desired distance (as shown in Fig. 5) , aided by radiologic monitoring of the markers 62, or the indicia 32 previously described, or both.
- the physician connects the drive shaft 40 to the motor 56 to rotate the bristles 46, creating the brush structure 44.
- the rotating brush structure 44 cuts cancellous bone 160 and forms a cavity C.
- the suction tube 102 (or a lumen 128 in the drive shaft 40, as shown in Fig.
- the physician operates the stylet 80 forward (arrow F) and aft (arrow A) to move the blade 78 in a linear path through cancellous bone 160.
- the blade 78 scrapes loose and cuts cancellous bone 160 along its path, which the suction tube 102 removes.
- the selected tool 10, 38, 66, 90, 106, or 138 is withdrawn through the guide sheath 34.
- an other tool 104 can now be deployed through the guide sheath 34 into the formed cavity C.
- the second tool 104 can, for example, perform a diagnostic procedure.
- the second tool 104 can perform a therapeutic procedure, e.g., by dispensing a material 106 into the cavity C, such as, e.g., bone cement, allograft material, synthetic bone substitute, a medication, or a flowable material that sets to a hardened condition. Further details of the injection of such materials 106 into the cavity C for therapeutic purposes are found in U.S. Patents 4,969,888 and 5,108,404 and in copending United States Patent Application Serial No. 08/485,394, which are incorporated herein by - 23 -
- the size of the cavity C varies according to the therapeutic or diagnostic procedure performed.
- At least about 30% of the cancellous bone volume needs to be removed in cases where the bone disease causing fracture (or the risk of fracture) is the loss of cancellous bone mass (as in osteoporosis) .
- the preferred range is about 30% to 90% of the cancellous bone volume. Removal of less of the cancellous bone volume can leave too much of the diseased cancellous bone at the treated site. The diseased cancellous bone remains weak and can later collapse, causing fracture, despite treatment.
- the selected tool 10, 38, 66, 90, 106, or 138 can remove a smaller volume of total bone. This is because the diseased area requiring treatment is smaller.
- Another exception lies in the use of a selected tool 10, 36, 66, 90, 106, or 138 to improve insertion of solid materials in defined shapes, like hydroxyapatite and components in total joint replacement. In these cases, the amount of tissue that needs to be removed is defined by the size of the material being inserted.
- the cancellous bone may or may not be diseased or adversely affected. Healthy cancellous bone can be sacrificed by significant compaction to improve the delivery of a drug or growth factor which has an important therapeutic purpose.
- the size of the cavity is chosen by the desired amount of therapeutic substance sought to be delivered.
- the bone with the drug inside is supported while the drug works, and the bone heals through exterior casting or current interior or exterior fixation devices.
- IV. Single Use Sterile Kit A single use of any one of the tools 10,
- the tools may not meet established performance and sterilization specifications.
- each single use tool 10, 38, 66, 90, 106, or 138 is packaged in a sterile kit 500 (see Figs. 30 and 31) prior to deployment in bone.
- the kit 500 includes an interior tray 508.
- the tray 508 holds the particular cavity forming tool (generically designated 502) in a lay-flat, straightened condition during sterilization and storage prior to its first use.
- the tray 508 can be formed from die cut cardboard or thermoformed plastic material.
- the tray 508 includes one or more spaced apart tabs 510, which hold the tool 502 in the desired lay-flat, straightened condition.
- the kit 500 includes an inner wrap 512, which is peripherally sealed by heat or the like, to enclose the tray 508 from contact with the outside environment.
- One end of the inner wrap 512 includes a conventional peal-away seal 514 (see Fig. 31) , to provide quick access to the tray 508 upon instance of use, which preferably occurs in a sterile environment, such as within an operating room.
- the kit 500 also includes an outer wrap 516, which is also peripherally sealed by heat or the like, to enclosed the inner wrap 512.
- One end of the outer wrap 516 includes a conventional peal- away seal 518 (see Fig. 31) , to provide access to the inner wrap 512, which can be removed from the outer wrap 516 in anticipation of imminent use of the tool 502, without compromising sterility of the - 26 -
- Both inner and outer wraps 512 and 516 each includes a peripherally sealed top sheet 520 and bottom sheet 522.
- the top sheet 520 is made of transparent plastic film, like polyethylene or MYLARTM material, to allow visual identification of the contents of the kit 500.
- the bottom sheet 522 is made from a material that is permeable to EtO sterilization gas, e.g., TYVECTM plastic material (available from DuPont) .
- the sterile kit 500 also carries a label or insert 506, which includes the statement "For Single Patient Use Only” (or comparable language) to affirmatively caution against reuse of the contents of the kit 500.
- the label 506 also preferably affirmatively instructs against resterilization of the tool 502.
- the label 506 also preferably instructs the physician or user to dispose of the tool 502 and the entire contents of the kit 500 upon use in accordance with applicable biological waste procedures.
- the presence of the tool 502 packaged in the kit 500 verifies to the physician or user that the tool 502 is sterile and has not be subjected to prior use. The physician or user is thereby assured that the tool 502 meets established performance and sterility specifications, and will have the desired configuration when expanded for use.
- the kit 500 also preferably includes directions for use 524, which instruct the physician regarding the use of the tool 502 for creating a cavity in cancellous bone in the manners previously described.
- the directions 524 instruct the physician to deploy and manipulate the tool 502 - 27 -
- the directions 524 can also instruct the physician to fill the cavity with a material, e.g., bone cement, allograft material, synthetic bone substitute, a medication, or a flowable material that sets to a hardened condition.
- a material e.g., bone cement, allograft material, synthetic bone substitute, a medication, or a flowable material that sets to a hardened condition.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Dentistry (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Neurology (AREA)
- Mechanical Engineering (AREA)
- Physical Education & Sports Medicine (AREA)
- Surgical Instruments (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Laser Surgery Devices (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002327702A CA2327702C (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
DE69932610T DE69932610T3 (en) | 1998-04-06 | 1999-04-06 | STRUCTURES FOR THE PRODUCTION OF CAVES IN INNER BODY REGIONS |
PL99343370A PL343370A1 (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
IL13889199A IL138891A0 (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
AU34788/99A AU764518B2 (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
JP2000541925A JP4250743B2 (en) | 1998-04-06 | 1999-04-06 | Structure and method for creating a cavity in an internal body region |
NZ507330A NZ507330A (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
EP99916476A EP1073371B2 (en) | 1998-04-06 | 1999-04-06 | Structures for creating cavities in interior body regions |
IL138891A IL138891A (en) | 1998-04-06 | 2000-10-05 | Structures for creating cavities in interior body regions |
NO20005019A NO20005019L (en) | 1998-04-06 | 2000-10-05 | Structures and methods for the formation of cavities in inner body areas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/055,805 | 1998-04-06 | ||
US09/055,805 US6440138B1 (en) | 1998-04-06 | 1998-04-06 | Structures and methods for creating cavities in interior body regions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999051149A1 true WO1999051149A1 (en) | 1999-10-14 |
Family
ID=22000267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/007652 WO1999051149A1 (en) | 1998-04-06 | 1999-04-06 | Structures and methods for creating cavities in interior body regions |
Country Status (13)
Country | Link |
---|---|
US (7) | US6440138B1 (en) |
EP (1) | EP1073371B2 (en) |
JP (3) | JP4250743B2 (en) |
AT (1) | ATE334625T1 (en) |
AU (1) | AU764518B2 (en) |
CA (1) | CA2327702C (en) |
DE (1) | DE69932610T3 (en) |
ES (1) | ES2273485T5 (en) |
IL (2) | IL138891A0 (en) |
NO (1) | NO20005019L (en) |
NZ (1) | NZ507330A (en) |
PL (1) | PL343370A1 (en) |
WO (1) | WO1999051149A1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001067967A1 (en) * | 2000-03-10 | 2001-09-20 | Radius Medical Technologies, Inc. | Surgical snare apparatus |
WO2001097721A3 (en) * | 2000-06-20 | 2002-07-25 | Kyphon Inc | Systems and methods for treating vertebral bodies |
EP1257210A1 (en) * | 2000-02-16 | 2002-11-20 | Trans1 Inc. | Apparatus for forming shaped axial bores through spinal vertebrae |
EP1257213A1 (en) * | 2000-02-16 | 2002-11-20 | Trans1 Inc. | Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine |
WO2002100282A1 (en) * | 2000-05-02 | 2002-12-19 | Gross R Michael | Method and means for cementing a liner onto the face of the glenoid cavity of a scapula |
US6607544B1 (en) | 1994-01-26 | 2003-08-19 | Kyphon Inc. | Expandable preformed structures for deployment in interior body regions |
US6641587B2 (en) | 1998-08-14 | 2003-11-04 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
WO2002098300A3 (en) * | 2001-06-06 | 2003-12-18 | Oratec Interventions Inc | Intervertebral disc device employing looped probe |
US6719773B1 (en) | 1998-06-01 | 2004-04-13 | Kyphon Inc. | Expandable structures for deployment in interior body regions |
EP1448089A2 (en) * | 2001-11-01 | 2004-08-25 | Lawrence M Boyd | Devices and methods for the restoration of a spinal disc |
WO2005039651A2 (en) | 2003-10-23 | 2005-05-06 | Trans1 Inc. | Tools and tool kits for performing minimally invasive procedures on the spine |
FR2865382A1 (en) * | 2004-01-23 | 2005-07-29 | Sem Sa | Femoral rod for hip prosthesis, has grooves that extend longitudinally from its proximal end till vicinity of distal end, and tapping that is provided at level of lug for ablation of rod |
WO2006083988A1 (en) | 2005-02-02 | 2006-08-10 | Depuy Spine, Inc. | Ultrasonic cutting device |
US7153307B2 (en) | 1998-08-14 | 2006-12-26 | Kyphon Inc. | Systems and methods for placing materials into bone |
WO2007008667A2 (en) * | 2005-07-11 | 2007-01-18 | Kyphon, Inc. | Systems and methods for providing cavities in interior body regions |
EP1810623A1 (en) * | 2005-04-15 | 2007-07-25 | U.S. endoscopy Group, Inc. | Polypectomy device |
US7261720B2 (en) | 2002-01-11 | 2007-08-28 | Kyphon Inc. | Inflatable device for use in surgical protocol relating to fixation of bone |
WO2008111972A1 (en) * | 2007-03-12 | 2008-09-18 | Murphy Kieran P | Method and kit for intra osseous navigation and augmentation of bone |
WO2009042451A2 (en) * | 2007-09-26 | 2009-04-02 | Wilson-Cook Medical Inc. | Wire capture surgical device with fixable handle |
WO2010017377A1 (en) * | 2008-08-07 | 2010-02-11 | Stryker Corporation | Cement delivery device with integral cavity creator |
EP2162078A2 (en) * | 2007-03-06 | 2010-03-17 | Orthobond, Inc. | Preparation tools and methods of using the same |
US7794463B2 (en) | 2000-02-16 | 2010-09-14 | Trans1 Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
FR3000665A3 (en) * | 2013-01-04 | 2014-07-11 | Small Bone Innovations Internat | Package for drilling or cutting tool i.e. milling cutter for repairing fracture of bone, has receptacle including cavity for wedging plate such that tool does not come into contact with walls of receptacle when plate is fixed in receptacle |
US8906022B2 (en) | 2010-03-08 | 2014-12-09 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
US8961518B2 (en) | 2010-01-20 | 2015-02-24 | Conventus Orthopaedics, Inc. | Apparatus and methods for bone access and cavity preparation |
US9089347B2 (en) | 2006-07-07 | 2015-07-28 | Orthophoenix, Llc | Medical device with dual expansion mechanism |
US9517093B2 (en) | 2008-01-14 | 2016-12-13 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
US9730739B2 (en) | 2010-01-15 | 2017-08-15 | Conventus Orthopaedics, Inc. | Rotary-rigid orthopaedic rod |
US9814598B2 (en) | 2013-03-14 | 2017-11-14 | Quandary Medical, Llc | Spinal implants and implantation system |
US10022132B2 (en) | 2013-12-12 | 2018-07-17 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
US10441295B2 (en) | 2013-10-15 | 2019-10-15 | Stryker Corporation | Device for creating a void space in a living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle |
US10918426B2 (en) | 2017-07-04 | 2021-02-16 | Conventus Orthopaedics, Inc. | Apparatus and methods for treatment of a bone |
US11849986B2 (en) | 2019-04-24 | 2023-12-26 | Stryker Corporation | Systems and methods for off-axis augmentation of a vertebral body |
EP4210608A4 (en) * | 2020-09-12 | 2024-10-16 | The Us Secretary Department Of Health And Human Services | Tissue cutting systems and methods |
Families Citing this family (356)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726691B2 (en) * | 1998-08-14 | 2004-04-27 | Kyphon Inc. | Methods for treating fractured and/or diseased bone |
US6248110B1 (en) * | 1994-01-26 | 2001-06-19 | Kyphon, Inc. | Systems and methods for treating fractured or diseased bone using expandable bodies |
US6440138B1 (en) * | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
DE60206274T2 (en) * | 1998-10-26 | 2006-06-08 | Expanding Orthopedics Inc., Boston | SPREADABLE DEVICE FOR ORTHOPEDICS |
US6805697B1 (en) * | 1999-05-07 | 2004-10-19 | University Of Virginia Patent Foundation | Method and system for fusing a spinal region |
US7641657B2 (en) | 2003-06-10 | 2010-01-05 | Trans1, Inc. | Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae |
WO2001050973A1 (en) * | 1999-12-24 | 2001-07-19 | Lee Hee Young | Mandibular angle fracture operating method and its devices |
US7547324B2 (en) * | 2000-02-16 | 2009-06-16 | Trans1, Inc. | Spinal mobility preservation apparatus having an expandable membrane |
ES2308014T5 (en) | 2000-02-16 | 2012-03-16 | Trans1, Inc. | Apparatus for distraction and spinal fusion |
US20070260270A1 (en) * | 2000-02-16 | 2007-11-08 | Trans1 Inc. | Cutter for preparing intervertebral disc space |
US7727263B2 (en) | 2000-02-16 | 2010-06-01 | Trans1, Inc. | Articulating spinal implant |
US7632274B2 (en) * | 2000-02-16 | 2009-12-15 | Trans1 Inc. | Thin cutter blades with retaining film for preparing intervertebral disc spaces |
US8092480B2 (en) | 2000-04-07 | 2012-01-10 | Kyphon Sarl | Platform cannula for guiding the expansion of expandable bodies and method of use |
US7815649B2 (en) * | 2000-04-07 | 2010-10-19 | Kyphon SÀRL | Insertion devices and method of use |
SE520688C2 (en) * | 2000-04-11 | 2003-08-12 | Bone Support Ab | An injectable bone mineral replacement material |
SE517168C2 (en) * | 2000-07-17 | 2002-04-23 | Bone Support Ab | A composition for an injectable bone mineral replacement material |
US7114501B2 (en) * | 2000-08-14 | 2006-10-03 | Spine Wave, Inc. | Transverse cavity device and method |
US6679886B2 (en) | 2000-09-01 | 2004-01-20 | Synthes (Usa) | Tools and methods for creating cavities in bone |
KR100922027B1 (en) * | 2000-10-25 | 2009-10-19 | 키폰 에스에이알엘 | Systems and methods for reducing fractured bone using a fracture reduction cannula |
US6632235B2 (en) | 2001-04-19 | 2003-10-14 | Synthes (U.S.A.) | Inflatable device and method for reducing fractures in bone and in treating the spine |
US6814739B2 (en) * | 2001-05-18 | 2004-11-09 | U.S. Endoscopy Group, Inc. | Retrieval device |
US6746451B2 (en) * | 2001-06-01 | 2004-06-08 | Lance M. Middleton | Tissue cavitation device and method |
US6814734B2 (en) * | 2001-06-18 | 2004-11-09 | Sdgi Holdings, Inc, | Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion |
WO2003037165A2 (en) * | 2001-11-01 | 2003-05-08 | Boyd Lawrence M | System and method for the pretreatment of the endplates of an intervertebral disc |
DE10154163A1 (en) | 2001-11-03 | 2003-05-22 | Advanced Med Tech | Device for straightening and stabilizing the spine |
US6783533B2 (en) | 2001-11-21 | 2004-08-31 | Sythes Ag Chur | Attachable/detachable reaming head for surgical reamer |
SE522098C2 (en) * | 2001-12-20 | 2004-01-13 | Bone Support Ab | Artificial bone mineral substitute material useful as an X-ray contrast medium comprises ceramic and water soluble non-ionic X-ray contrast agent |
US7641667B2 (en) * | 2002-01-29 | 2010-01-05 | Smith & Nephew, Inc. | Tissue cutting instrument |
AU2003240512B2 (en) | 2002-06-04 | 2009-11-05 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for rapid aspiration and collection of body tissue from within an enclosed body space |
US7901407B2 (en) * | 2002-08-02 | 2011-03-08 | Boston Scientific Scimed, Inc. | Media delivery device for bone structures |
AU2002335737A1 (en) * | 2002-09-11 | 2004-04-30 | Nuvasive, Inc. | Systems and methods for removing body tissue |
US6907884B2 (en) | 2002-09-30 | 2005-06-21 | Depay Acromed, Inc. | Method of straddling an intraosseous nerve |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US8808284B2 (en) * | 2008-09-26 | 2014-08-19 | Relievant Medsystems, Inc. | Systems for navigating an instrument through bone |
US8613744B2 (en) | 2002-09-30 | 2013-12-24 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US7258690B2 (en) | 2003-03-28 | 2007-08-21 | Relievant Medsystems, Inc. | Windowed thermal ablation probe |
US8123698B2 (en) * | 2002-10-07 | 2012-02-28 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
AU2003230740B2 (en) * | 2002-11-08 | 2008-10-09 | Warsaw Orthopedic, Inc. | Transpedicular intervertebral disk access methods and devices |
AU2003295717B2 (en) * | 2002-11-21 | 2009-10-01 | Hai H. Trieu | Systems and techniques for interbody spinal stabilization with expandable devices |
WO2004047689A1 (en) * | 2002-11-21 | 2004-06-10 | Sdgi Holdings, Inc. | Systems and techniques for intravertebral spinal stablization with expandable devices |
KR200306716Y1 (en) * | 2002-11-29 | 2003-03-11 | (주)오티스바이오텍 | Apparatus operating backbone |
US7776042B2 (en) * | 2002-12-03 | 2010-08-17 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US7749228B2 (en) | 2002-12-27 | 2010-07-06 | The Cleveland Clinic Foundation | Articulatable apparatus for cutting bone |
BRPI0407142A (en) | 2003-02-14 | 2006-01-10 | Depuy Spine Inc | In situ intervertebral fusion device |
SE0300620D0 (en) * | 2003-03-05 | 2003-03-05 | Bone Support Ab | A new bone substitute composition |
TW587932B (en) * | 2003-05-21 | 2004-05-21 | Guan-Gu Lin | Removable animal tissue filling device |
TWI235055B (en) * | 2003-05-21 | 2005-07-01 | Guan-Gu Lin | Filling device capable of removing animal tissues |
AU2004245015A1 (en) * | 2003-05-30 | 2004-12-16 | Frank Nguyen | Methods and devices for transpedicular discectomy |
WO2004112661A1 (en) * | 2003-06-20 | 2004-12-29 | Myers Thomas H | Method and apparatus for strengthening the biomechanical properties of implants |
US20050043796A1 (en) * | 2003-07-01 | 2005-02-24 | Grant Richard L. | Spinal disc nucleus implant |
US20120289859A9 (en) * | 2003-08-27 | 2012-11-15 | Nicoson Zachary R | System and method for minimally invasive disease therapy |
US8172770B2 (en) * | 2005-09-28 | 2012-05-08 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US20050240193A1 (en) * | 2003-09-03 | 2005-10-27 | Kyphon Inc. | Devices for creating voids in interior body regions and related methods |
US8276091B2 (en) * | 2003-09-16 | 2012-09-25 | Ram Consulting | Haptic response system and method of use |
TW200511970A (en) * | 2003-09-29 | 2005-04-01 | Kwan-Ku Lin | A spine wrapping and filling apparatus |
SE0302983D0 (en) * | 2003-11-11 | 2003-11-11 | Bone Support Ab | Apparatus for providing spongy bone with bone replacement and / or bone strengthening material and associated method |
US7524103B2 (en) * | 2003-11-18 | 2009-04-28 | Boston Scientific Scimed, Inc. | Apparatus for mixing and dispensing a multi-component bone cement |
US7789912B2 (en) | 2004-01-08 | 2010-09-07 | Spine Wave, Inc. | Apparatus and method for injecting fluent material at a distracted tissue site |
WO2005070314A1 (en) | 2004-01-16 | 2005-08-04 | Expanding Orthopedics, Inc. | Bone fracture treatment devices |
US20050165487A1 (en) | 2004-01-28 | 2005-07-28 | Muhanna Nabil L. | Artificial intervertebral disc |
US7641664B2 (en) | 2004-02-12 | 2010-01-05 | Warsaw Orthopedic, Inc. | Surgical instrumentation and method for treatment of a spinal structure |
US7959634B2 (en) | 2004-03-29 | 2011-06-14 | Soteira Inc. | Orthopedic surgery access devices |
WO2005110259A1 (en) * | 2004-05-19 | 2005-11-24 | Sintea Biotech S.P.A. | Intravertebral widening device, injection device, and kit and method for kyphoplasty |
DE602005023605D1 (en) * | 2004-05-21 | 2010-10-28 | Myers Surgical Solutions Llc | FRACTURE FIXATION AND STITIZATION STABILIZATION SYSTEM |
US8142462B2 (en) | 2004-05-28 | 2012-03-27 | Cavitech, Llc | Instruments and methods for reducing and stabilizing bone fractures |
US8328810B2 (en) | 2004-06-17 | 2012-12-11 | Boston Scientific Scimed, Inc. | Slidable sheaths for tissue removal devices |
SE527528C2 (en) | 2004-06-22 | 2006-04-04 | Bone Support Ab | Apparatus for the preparation of curable pulp and use of the apparatus |
US7837733B2 (en) | 2004-06-29 | 2010-11-23 | Spine Wave, Inc. | Percutaneous methods for injecting a curable biomaterial into an intervertebral space |
US8038682B2 (en) * | 2004-08-17 | 2011-10-18 | Boston Scientific Scimed, Inc. | Apparatus and methods for delivering compounds into vertebrae for vertebroplasty |
US20080319445A9 (en) * | 2004-08-17 | 2008-12-25 | Scimed Life Systems, Inc. | Apparatus and methods for delivering compounds into vertebrae for vertebroplasty |
US7749230B2 (en) | 2004-09-02 | 2010-07-06 | Crosstrees Medical, Inc. | Device and method for distraction of the spinal disc space |
US20060100706A1 (en) * | 2004-11-10 | 2006-05-11 | Shadduck John H | Stent systems and methods for spine treatment |
US7682378B2 (en) * | 2004-11-10 | 2010-03-23 | Dfine, Inc. | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
US7799078B2 (en) * | 2004-11-12 | 2010-09-21 | Warsaw Orthopedic, Inc. | Implantable vertebral lift |
US8562607B2 (en) | 2004-11-19 | 2013-10-22 | Dfine, Inc. | Bone treatment systems and methods |
DE202004019105U1 (en) * | 2004-12-10 | 2005-02-24 | Stryker Trauma Gmbh | Device for clearing bone cavities |
PE20060861A1 (en) * | 2005-01-07 | 2006-10-25 | Celonova Biosciences Inc | IMPLANTABLE THREE-DIMENSIONAL BONE SUPPORT |
US20060184192A1 (en) * | 2005-02-11 | 2006-08-17 | Markworth Aaron D | Systems and methods for providing cavities in interior body regions |
KR101083889B1 (en) * | 2005-03-07 | 2011-11-15 | 헥터 오. 파체코 | System and methods for improved access to vertebral bodies for kyphoplasty, vertebroplasty, vertebral body biopsy or screw placement |
US20060235418A1 (en) * | 2005-04-13 | 2006-10-19 | Sdgi Holdings, Inc. | Method and device for preparing a surface for receiving an implant |
US20060264896A1 (en) * | 2005-05-09 | 2006-11-23 | Palmer Erika I | Minimally invasive apparatus and method for treatment of a tumor associated with a bone |
US9060820B2 (en) | 2005-05-18 | 2015-06-23 | Sonoma Orthopedic Products, Inc. | Segmented intramedullary fracture fixation devices and methods |
US8961516B2 (en) * | 2005-05-18 | 2015-02-24 | Sonoma Orthopedic Products, Inc. | Straight intramedullary fracture fixation devices and methods |
US20070005075A1 (en) * | 2005-06-17 | 2007-01-04 | Bogert Roy B | Telescoping plunger assembly |
US20070010844A1 (en) * | 2005-07-08 | 2007-01-11 | Gorman Gong | Radiopaque expandable body and methods |
US20070010845A1 (en) * | 2005-07-08 | 2007-01-11 | Gorman Gong | Directionally controlled expandable device and methods for use |
US20070149990A1 (en) * | 2005-07-11 | 2007-06-28 | Palmer Erika I | Apparatus and methods of tissue removal within a spine |
ATE541528T1 (en) * | 2005-07-11 | 2012-02-15 | Kyphon Sarl | SYSTEM FOR INTRODUCING BIOCOMPATIBLE FILLING MATERIALS INTO INTERNAL BODY REGIONS |
US20070006692A1 (en) * | 2005-07-11 | 2007-01-11 | Phan Christopher U | Torque limiting device |
US8105236B2 (en) * | 2005-07-11 | 2012-01-31 | Kyphon Sarl | Surgical access device, system, and methods of use |
CA2614012A1 (en) * | 2005-07-11 | 2007-01-18 | Kyphon Inc. | Curette system |
US20070010824A1 (en) * | 2005-07-11 | 2007-01-11 | Hugues Malandain | Products, systems and methods for delivering material to bone and other internal body parts |
US20070060935A1 (en) * | 2005-07-11 | 2007-03-15 | Schwardt Jeffrey D | Apparatus and methods of tissue removal within a spine |
US20070010848A1 (en) * | 2005-07-11 | 2007-01-11 | Andrea Leung | Systems and methods for providing cavities in interior body regions |
US8021365B2 (en) * | 2005-07-11 | 2011-09-20 | Kyphon Sarl | Surgical device having interchangeable components and methods of use |
US8016834B2 (en) * | 2005-08-03 | 2011-09-13 | Helmut Weber | Process and device for treating vertebral bodies |
EP2705809B1 (en) | 2005-08-16 | 2016-03-23 | Benvenue Medical, Inc. | Spinal tissue distraction devices |
US8591583B2 (en) | 2005-08-16 | 2013-11-26 | Benvenue Medical, Inc. | Devices for treating the spine |
US8366773B2 (en) | 2005-08-16 | 2013-02-05 | Benvenue Medical, Inc. | Apparatus and method for treating bone |
US20070055259A1 (en) * | 2005-08-17 | 2007-03-08 | Norton Britt K | Apparatus and methods for removal of intervertebral disc tissues |
FR2889813B1 (en) * | 2005-08-18 | 2008-06-06 | Assist Publ Hopitaux De Paris | INTRA-CEREBRAL PROBE AND DEVICE FOR TREATING NEUROLOGICAL OR PSYCHIATRIC DYSFUNCTIONS |
US9066769B2 (en) | 2005-08-22 | 2015-06-30 | Dfine, Inc. | Bone treatment systems and methods |
US20070067034A1 (en) * | 2005-08-31 | 2007-03-22 | Chirico Paul E | Implantable devices and methods for treating micro-architecture deterioration of bone tissue |
US8998923B2 (en) | 2005-08-31 | 2015-04-07 | Spinealign Medical, Inc. | Threaded bone filling material plunger |
US20070233148A1 (en) * | 2005-09-01 | 2007-10-04 | Csaba Truckai | Systems and methods for delivering bone fill material and controlling the temperature thereof |
US20070093899A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for treating bone |
WO2007059259A1 (en) * | 2005-11-15 | 2007-05-24 | Aoi Medical, Inc. | Inflatable device for restoring anatomy of fractured bone |
US8690884B2 (en) | 2005-11-18 | 2014-04-08 | Carefusion 2200, Inc. | Multistate-curvature device and method for delivering a curable material into bone |
US7713273B2 (en) * | 2005-11-18 | 2010-05-11 | Carefusion 2200, Inc. | Device, system and method for delivering a curable material into bone |
AU2006314075A1 (en) * | 2005-11-18 | 2007-05-24 | Apexum Ltd. | Ablating apparatus particularly useful for removal of dental periapical lesions |
USD669168S1 (en) | 2005-11-18 | 2012-10-16 | Carefusion 2200, Inc. | Vertebral augmentation needle |
US7799035B2 (en) * | 2005-11-18 | 2010-09-21 | Carefusion 2200, Inc. | Device, system and method for delivering a curable material into bone |
KR20080077134A (en) * | 2005-11-23 | 2008-08-21 | 크로스트리스 메디칼, 인코포레이티드 | Devices and methods for the treatment of bone fracture |
US7927361B2 (en) * | 2005-11-29 | 2011-04-19 | Medtronic Xomed, Inc. | Method and apparatus for removing material from an intervertebral disc space, such as in performing a nucleotomy |
US20070162062A1 (en) * | 2005-12-08 | 2007-07-12 | Norton Britt K | Reciprocating apparatus and methods for removal of intervertebral disc tissues |
US20070162132A1 (en) | 2005-12-23 | 2007-07-12 | Dominique Messerli | Flexible elongated chain implant and method of supporting body tissue with same |
US7901409B2 (en) * | 2006-01-20 | 2011-03-08 | Canaveral Villegas Living Trust | Intramedullar devices and methods to reduce and/or fix damaged bone |
US20070213641A1 (en) * | 2006-02-08 | 2007-09-13 | Sdgi Holdings, Inc. | Constrained balloon disc sizer |
US7520888B2 (en) | 2006-02-14 | 2009-04-21 | Warsaw Orthopedic, Inc. | Treatment of the vertebral column |
US20080033466A1 (en) * | 2006-02-28 | 2008-02-07 | Trans1 Inc. | Surgical cutter with exchangeable cutter blades |
US20070233258A1 (en) * | 2006-02-28 | 2007-10-04 | Zimmer Spine, Inc. | Vertebroplasty- device and method |
JP2009131290A (en) * | 2006-03-08 | 2009-06-18 | Yoshitsugu Terauchi | Dental instrument for removing broken piece using flexible guide plate |
US8480673B2 (en) * | 2006-06-01 | 2013-07-09 | Osteo Innovations Llc | Cavity creation device and methods of use |
US8814870B2 (en) | 2006-06-14 | 2014-08-26 | Misonix, Incorporated | Hook shaped ultrasonic cutting blade |
US8506636B2 (en) | 2006-09-08 | 2013-08-13 | Theken Spine, Llc | Offset radius lordosis |
US20080077241A1 (en) * | 2006-09-22 | 2008-03-27 | Linh Nguyen | Removable rasp/trial member insert, kit and method of use |
WO2008045212A2 (en) * | 2006-10-06 | 2008-04-17 | Kyphon Sarl | Products and methods for percutaneous material delivery |
US7963967B1 (en) | 2006-10-12 | 2011-06-21 | Woodse Enterprises, Inc. | Bone preparation tool |
US20080091207A1 (en) * | 2006-10-13 | 2008-04-17 | Csaba Truckai | Bone treatment systems and methods |
US8137352B2 (en) | 2006-10-16 | 2012-03-20 | Depuy Spine, Inc. | Expandable intervertebral tool system and method |
US20080114364A1 (en) * | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
AU2007323566A1 (en) | 2006-11-22 | 2008-05-29 | Sonoma Orthopedic Products, Inc. | Fracture fixation device, tools and methods |
WO2008067557A2 (en) | 2006-11-30 | 2008-06-05 | Urovalve, Inc. | System and method for implanting a catheter |
WO2008070863A2 (en) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Intervertebral implant |
US20080140080A1 (en) * | 2006-12-12 | 2008-06-12 | Bernhard Strehl | Instrument to make openings in bone in the form of a bone lid |
US8486082B2 (en) * | 2006-12-13 | 2013-07-16 | Replication Medical, Inc. | Apparatus for dimensioning circumference of cavity for introduction of a prosthetic implant |
EP2120734B1 (en) | 2006-12-15 | 2015-12-02 | Gmedelaware 2 LLC | Drills for vertebrostenting |
US9480485B2 (en) | 2006-12-15 | 2016-11-01 | Globus Medical, Inc. | Devices and methods for vertebrostenting |
US9192397B2 (en) | 2006-12-15 | 2015-11-24 | Gmedelaware 2 Llc | Devices and methods for fracture reduction |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US7972382B2 (en) * | 2006-12-26 | 2011-07-05 | Warsaw Orthopedic, Inc. | Minimally invasive spinal distraction devices and methods |
WO2008095052A2 (en) | 2007-01-30 | 2008-08-07 | Loma Vista Medical, Inc., | Biological navigation device |
US8828000B2 (en) * | 2007-02-13 | 2014-09-09 | The Board Of Regents Of The University Of Texas System | Apparatus to trace and cut a tendon or other laterally extended anatomical structure |
CA2678006C (en) | 2007-02-21 | 2014-10-14 | Benvenue Medical, Inc. | Devices for treating the spine |
US8206391B2 (en) * | 2007-03-07 | 2012-06-26 | Vertech, Inc. | Expandable blade device for stabilizing compression fractures |
US20090054898A1 (en) * | 2007-03-26 | 2009-02-26 | Joe Gleason | Articulating Shaper |
US20080243249A1 (en) * | 2007-03-30 | 2008-10-02 | Kohm Andrew C | Devices for multipoint emplacement in a body part and methods of use of such devices |
ES2438999T3 (en) * | 2007-04-03 | 2014-01-21 | Dfine, Inc. | Bone treatment systems |
JP2010527705A (en) * | 2007-05-21 | 2010-08-19 | エーオーアイ メディカル インコーポレイテッド | Bending type cavity forming device |
ES2348889T3 (en) | 2007-05-23 | 2010-12-16 | Stryker Trauma Gmbh | SCARNING DEVICE. |
US8591521B2 (en) | 2007-06-08 | 2013-11-26 | United States Endoscopy Group, Inc. | Retrieval device |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US8642664B2 (en) | 2007-08-06 | 2014-02-04 | Samir Mitragotri | Composition for solubilizing tissue and cells comprising N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and polyoxyethylene (10) cetyl ether |
US8609041B2 (en) | 2007-08-06 | 2013-12-17 | Samir Mitragotri | Apparatus for solubilizing tissue |
WO2009048681A2 (en) * | 2007-08-06 | 2009-04-16 | The Regents Of The University Of California | Methods of tissue-based diagnosis |
US9814422B2 (en) | 2007-08-06 | 2017-11-14 | The Regents Of The University Of California | Compositions for solubilizing cells and/or tissue |
US8389582B2 (en) | 2007-08-06 | 2013-03-05 | Samir Mitragotri | Composition for solubilizing tissue comprising 3-(decyl dimethyl ammonio) propane sulfonate and tetraethylene glycol dodecyl ether |
WO2009036466A1 (en) * | 2007-09-14 | 2009-03-19 | Crosstrees Medical, Inc. | Material control device for inserting material into a targeted anatomical region |
US8597301B2 (en) * | 2007-10-19 | 2013-12-03 | David Mitchell | Cannula with lateral access and directional exit port |
US9510885B2 (en) | 2007-11-16 | 2016-12-06 | Osseon Llc | Steerable and curvable cavity creation system |
US20090131867A1 (en) | 2007-11-16 | 2009-05-21 | Liu Y King | Steerable vertebroplasty system with cavity creation element |
US20090131886A1 (en) | 2007-11-16 | 2009-05-21 | Liu Y King | Steerable vertebroplasty system |
US20090131950A1 (en) * | 2007-11-16 | 2009-05-21 | Liu Y King | Vertebroplasty method with enhanced control |
US20090299282A1 (en) * | 2007-11-16 | 2009-12-03 | Osseon Therapeutics, Inc. | Steerable vertebroplasty system with a plurality of cavity creation elements |
JP5366966B2 (en) | 2007-11-16 | 2013-12-11 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Porous containment device and related method for stabilizing vertebral compression fractures |
US20090182427A1 (en) * | 2007-12-06 | 2009-07-16 | Osseon Therapeutics, Inc. | Vertebroplasty implant with enhanced interfacial shear strength |
US8282648B2 (en) * | 2007-12-19 | 2012-10-09 | Cook Medical Technologies Llc | Bone cement needle |
US20090177206A1 (en) * | 2008-01-08 | 2009-07-09 | Zimmer Spine, Inc. | Instruments, implants, and methods for fixation of vertebral compression fractures |
EP2237748B1 (en) | 2008-01-17 | 2012-09-05 | Synthes GmbH | An expandable intervertebral implant |
CA2713898C (en) * | 2008-01-31 | 2017-05-02 | Tyco Healthcare Group, Lp | Polyp removal device and method of use |
CA2720580A1 (en) | 2008-04-05 | 2009-10-08 | Synthes Usa, Llc | Expandable intervertebral implant |
US20090270862A1 (en) * | 2008-04-25 | 2009-10-29 | Greg Arcenio | Medical device with one-way rotary drive mechanism |
US20090270893A1 (en) * | 2008-04-25 | 2009-10-29 | Greg Arcenio | Medical device for tissue disruption with serrated expandable portion |
US20090270892A1 (en) * | 2008-04-25 | 2009-10-29 | Greg Arcenio | Steerable medical device for tissue disruption |
US9186488B2 (en) | 2008-06-02 | 2015-11-17 | Loma Vista Medical, Inc. | Method of making inflatable medical devices |
US8277506B2 (en) | 2008-06-24 | 2012-10-02 | Carefusion 2200, Inc. | Method and structure for stabilizing a vertebral body |
WO2010009287A2 (en) * | 2008-07-16 | 2010-01-21 | Spinealign Medical, Inc. | Morselizer |
WO2010011956A1 (en) * | 2008-07-25 | 2010-01-28 | Spine View, Inc. | Systems and methods for cable-based debriders |
GB0813818D0 (en) * | 2008-07-29 | 2008-09-03 | Depuy Int Ltd | An instrument for forming a cavity within a bone |
US20100030216A1 (en) * | 2008-07-30 | 2010-02-04 | Arcenio Gregory B | Discectomy tool having counter-rotating nucleus disruptors |
JP2012504027A (en) | 2008-09-26 | 2012-02-16 | ソノマ・オーソペディック・プロダクツ・インコーポレーテッド | Bone fixation device, tool and method |
JP5688022B2 (en) | 2008-09-26 | 2015-03-25 | リリーバント メドシステムズ、インコーポレイテッド | System and method for guiding an instrument through the interior of a bone |
US10028753B2 (en) | 2008-09-26 | 2018-07-24 | Relievant Medsystems, Inc. | Spine treatment kits |
JP5575777B2 (en) | 2008-09-30 | 2014-08-20 | ディファイン, インコーポレイテッド | System used to treat vertebral fractures |
US8758349B2 (en) | 2008-10-13 | 2014-06-24 | Dfine, Inc. | Systems for treating a vertebral body |
EP2381858B1 (en) * | 2008-12-01 | 2018-11-07 | Mazor Robotics Ltd. | Robot guided oblique spinal stabilization |
US20100160921A1 (en) * | 2008-12-19 | 2010-06-24 | Arthrocare Corporation | Cancellous bone displacement system and methods of use |
CA3028277A1 (en) * | 2009-02-13 | 2010-08-19 | The Regents Of The University Of California | System, method and device for tissue-based diagnosis |
US8221420B2 (en) | 2009-02-16 | 2012-07-17 | Aoi Medical, Inc. | Trauma nail accumulator |
US8535327B2 (en) | 2009-03-17 | 2013-09-17 | Benvenue Medical, Inc. | Delivery apparatus for use with implantable medical devices |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
WO2010118021A1 (en) * | 2009-04-09 | 2010-10-14 | Synthes Usa, Llc | Minimally invasive spine augmentation and stabilization system and method |
US8801739B2 (en) * | 2009-04-17 | 2014-08-12 | Spine View, Inc. | Devices and methods for arched roof cutters |
EP2429430A4 (en) * | 2009-04-27 | 2015-02-25 | Univ Keio | Medical wire |
US20100298832A1 (en) | 2009-05-20 | 2010-11-25 | Osseon Therapeutics, Inc. | Steerable curvable vertebroplasty drill |
US8911474B2 (en) | 2009-07-16 | 2014-12-16 | Howmedica Osteonics Corp. | Suture anchor implantation instrumentation system |
RU2012105452A (en) * | 2009-07-24 | 2013-08-27 | Смит Энд Нефью, Инк. | SURGICAL INSTRUMENTS FOR CUTTING CAVITAS IN THE INTRAMEDULAR CHANNELS |
EP2461752B1 (en) | 2009-08-07 | 2017-03-15 | Thayer Intellectual Property Inc. | Systems for treatment of compressed nerves |
US8652157B2 (en) | 2009-08-07 | 2014-02-18 | Thayer Intellectual Property, Inc. | Systems and methods for treatment of compressed nerves |
US8753364B2 (en) | 2009-08-07 | 2014-06-17 | Thayer Intellectual Property, Inc. | Systems and methods for treatment of compressed nerves |
AU2010212441B2 (en) | 2009-08-20 | 2013-08-01 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
US8894658B2 (en) | 2009-11-10 | 2014-11-25 | Carefusion 2200, Inc. | Apparatus and method for stylet-guided vertebral augmentation |
EP3381397B1 (en) | 2009-11-13 | 2020-01-08 | Intuitive Surgical Operations Inc. | Motor interface for parallel drive shafts within an independently rotating member |
BR112012011424B1 (en) | 2009-11-13 | 2020-10-20 | Intuitive Surgical Operations, Inc | surgical instrument |
US9259275B2 (en) | 2009-11-13 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Wrist articulation by linked tension members |
EP4059460A1 (en) | 2009-11-13 | 2022-09-21 | Intuitive Surgical Operations, Inc. | Surgical tool with a compact wrist |
AU2010321745B2 (en) | 2009-11-20 | 2015-05-21 | Knee Creations, Llc | Navigation and positioning instruments for joint repair |
JP2013511356A (en) | 2009-11-20 | 2013-04-04 | ニー・クリエイションズ・リミテッド・ライアビリティ・カンパニー | Device for variable angle approach to joints |
US8951261B2 (en) | 2009-11-20 | 2015-02-10 | Zimmer Knee Creations, Inc. | Subchondral treatment of joint pain |
JP2013511357A (en) | 2009-11-20 | 2013-04-04 | ニー・クリエイションズ・リミテッド・ライアビリティ・カンパニー | Coordinate mapping system for joint treatment |
US8608802B2 (en) | 2009-11-20 | 2013-12-17 | Zimmer Knee Creations, Inc. | Implantable devices for subchondral treatment of joint pain |
US8801800B2 (en) | 2009-11-20 | 2014-08-12 | Zimmer Knee Creations, Inc. | Bone-derived implantable devices and tool for subchondral treatment of joint pain |
US8821504B2 (en) | 2009-11-20 | 2014-09-02 | Zimmer Knee Creations, Inc. | Method for treating joint pain and associated instruments |
US9259257B2 (en) | 2009-11-20 | 2016-02-16 | Zimmer Knee Creations, Inc. | Instruments for targeting a joint defect |
US11090092B2 (en) | 2009-12-07 | 2021-08-17 | Globus Medical Inc. | Methods and apparatus for treating vertebral fractures |
US9526538B2 (en) | 2009-12-07 | 2016-12-27 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
US8734458B2 (en) * | 2009-12-07 | 2014-05-27 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
US9326799B2 (en) | 2009-12-07 | 2016-05-03 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
US9358058B2 (en) | 2012-11-05 | 2016-06-07 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US20110190776A1 (en) * | 2009-12-18 | 2011-08-04 | Palmaz Scientific, Inc. | Interosteal and intramedullary implants and method of implanting same |
US8348950B2 (en) | 2010-01-04 | 2013-01-08 | Zyga Technology, Inc. | Sacroiliac fusion system |
US8696672B2 (en) * | 2010-01-22 | 2014-04-15 | Baxano Surgical, Inc. | Abrading tool for preparing intervertebral disc spaces |
US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
US9220554B2 (en) | 2010-02-18 | 2015-12-29 | Globus Medical, Inc. | Methods and apparatus for treating vertebral fractures |
JP5598935B2 (en) * | 2010-02-26 | 2014-10-01 | 学校法人慶應義塾 | Catheter for photodynamic ablation of myocardial tissue by photochemical reaction |
US10058336B2 (en) | 2010-04-08 | 2018-08-28 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US20110251616A1 (en) * | 2010-04-12 | 2011-10-13 | K2M, Inc. | Expandable reamer and method of use |
EP2563233B1 (en) | 2010-04-29 | 2020-04-01 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9526507B2 (en) | 2010-04-29 | 2016-12-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9610117B2 (en) | 2010-04-29 | 2017-04-04 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US8900251B2 (en) | 2010-05-28 | 2014-12-02 | Zyga Technology, Inc | Radial deployment surgical tool |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
US9282979B2 (en) | 2010-06-24 | 2016-03-15 | DePuy Synthes Products, Inc. | Instruments and methods for non-parallel disc space preparation |
JP5850930B2 (en) | 2010-06-29 | 2016-02-03 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Isolated intervertebral implant |
TWI579007B (en) | 2010-07-02 | 2017-04-21 | 艾格諾福斯保健公司 | Use of bone regenerative material |
EP3552655B1 (en) | 2010-07-13 | 2020-12-23 | Loma Vista Medical, Inc. | Inflatable medical devices |
USD673683S1 (en) | 2010-09-15 | 2013-01-01 | Thayer Intellectual Property, Inc. | Medical device |
USD674489S1 (en) | 2010-09-15 | 2013-01-15 | Thayer Intellectual Property, Inc. | Handle for a medical device |
USD666725S1 (en) | 2010-09-15 | 2012-09-04 | Thayer Intellectual Property, Inc. | Handle for a medical device |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US8414606B2 (en) | 2010-10-22 | 2013-04-09 | Medtronic Xomed, Inc. | Method and apparatus for removing material from an intervertebral disc space and preparing end plates |
US10188436B2 (en) | 2010-11-09 | 2019-01-29 | Loma Vista Medical, Inc. | Inflatable medical devices |
ES2626256T3 (en) | 2010-11-22 | 2017-07-24 | Dfine, Inc. | System to use in the treatment of vertebral fractures |
US9445825B2 (en) | 2011-02-10 | 2016-09-20 | Wright Medical Technology, Inc. | Expandable surgical device |
US9795398B2 (en) | 2011-04-13 | 2017-10-24 | Howmedica Osteonics Corp. | Flexible ACL instrumentation, kit and method |
JP2014519369A (en) | 2011-05-05 | 2014-08-14 | ザイガ テクノロジー インコーポレイテッド | Sacroiliac fusion system |
US9358065B2 (en) * | 2011-06-23 | 2016-06-07 | Covidien Lp | Shaped electrode bipolar resection apparatus, system and methods of use |
US8900279B2 (en) | 2011-06-09 | 2014-12-02 | Zyga Technology, Inc. | Bone screw |
WO2012178018A2 (en) | 2011-06-24 | 2012-12-27 | Benvenue Medical, Inc. | Devices and methods for treating bone tissue |
US9119639B2 (en) | 2011-08-09 | 2015-09-01 | DePuy Synthes Products, Inc. | Articulated cavity creator |
US8801630B2 (en) * | 2011-09-30 | 2014-08-12 | Olympus Medical Systems Corp. | Method of taking out liquid present inside subject therefrom |
US20130116556A1 (en) * | 2011-11-05 | 2013-05-09 | Custom Medical Applications | Neural safety injection system and related methods |
US9445803B2 (en) | 2011-11-23 | 2016-09-20 | Howmedica Osteonics Corp. | Filamentary suture anchor |
JP2015503966A (en) | 2011-12-22 | 2015-02-05 | デピュイ・シンセス・プロダクツ・エルエルシーDePuy Synthes Products, LLC | Adjustable vertebral body balloon |
AU2012362524B2 (en) | 2011-12-30 | 2018-12-13 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
CN104470453A (en) | 2012-03-27 | 2015-03-25 | Dfine有限公司 | Methods and systems for use in controlling tissue ablation volume by temperature monitoring |
US8986307B2 (en) | 2012-07-10 | 2015-03-24 | X-Spine Systems, Inc. | Surgical instrument with pivotable implant holder |
US20140039552A1 (en) | 2012-08-03 | 2014-02-06 | Howmedica Osteonics Corp. | Soft tissue fixation devices and methods |
US10588691B2 (en) | 2012-09-12 | 2020-03-17 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
US9763692B2 (en) | 2012-09-14 | 2017-09-19 | The Spectranetics Corporation | Tissue slitting methods and systems |
WO2014071161A1 (en) | 2012-11-05 | 2014-05-08 | Relievant Medsystems, Inc. | System and methods for creating curved paths through bone and modulating nerves within the bone |
US9918766B2 (en) | 2012-12-12 | 2018-03-20 | Dfine, Inc. | Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement |
US9241729B2 (en) | 2012-12-14 | 2016-01-26 | DePuy Synthes Products, Inc. | Device to aid in the deployment of a shape memory instrument |
US9078740B2 (en) | 2013-01-21 | 2015-07-14 | Howmedica Osteonics Corp. | Instrumentation and method for positioning and securing a graft |
US9192420B2 (en) | 2013-01-24 | 2015-11-24 | Kyphon Sarl | Surgical system and methods of use |
US9439693B2 (en) | 2013-02-01 | 2016-09-13 | DePuy Synthes Products, Inc. | Steerable needle assembly for use in vertebral body augmentation |
PT2958603T (en) | 2013-02-20 | 2018-06-06 | Bone Support Ab | Improved setting of hardenable bone substitute |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9402620B2 (en) | 2013-03-04 | 2016-08-02 | Howmedica Osteonics Corp. | Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US9788826B2 (en) | 2013-03-11 | 2017-10-17 | Howmedica Osteonics Corp. | Filamentary fixation device and assembly and method of assembly, manufacture and use |
US9463013B2 (en) | 2013-03-13 | 2016-10-11 | Stryker Corporation | Adjustable continuous filament structure and method of manufacture and use |
US9456872B2 (en) | 2013-03-13 | 2016-10-04 | The Spectranetics Corporation | Laser ablation catheter |
US9283040B2 (en) | 2013-03-13 | 2016-03-15 | The Spectranetics Corporation | Device and method of ablative cutting with helical tip |
US9291663B2 (en) | 2013-03-13 | 2016-03-22 | The Spectranetics Corporation | Alarm for lead insulation abnormality |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US10835279B2 (en) | 2013-03-14 | 2020-11-17 | Spectranetics Llc | Distal end supported tissue slitting apparatus |
US9295479B2 (en) * | 2013-03-14 | 2016-03-29 | Spinal Stabilization Technologies, Llc | Surgical device |
US10085783B2 (en) | 2013-03-14 | 2018-10-02 | Izi Medical Products, Llc | Devices and methods for treating bone tissue |
US10842532B2 (en) | 2013-03-15 | 2020-11-24 | Spectranetics Llc | Medical device for removing an implanted object |
EP3341071B1 (en) | 2013-03-15 | 2020-01-29 | The Spectranetics Corporation | Medical device for removing an implanted object using laser cut hypotubes |
US9918737B2 (en) | 2013-03-15 | 2018-03-20 | The Spectranetics Corporation | Medical device for removing an implanted object |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
EP2967634B1 (en) | 2013-03-15 | 2019-06-05 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US10448999B2 (en) | 2013-03-15 | 2019-10-22 | The Spectranetics Corporation | Surgical instrument for removing an implanted object |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
WO2014176270A1 (en) | 2013-04-22 | 2014-10-30 | Pivot Medical, Inc. | Method and apparatus for attaching tissue to bone |
US20140330286A1 (en) * | 2013-04-25 | 2014-11-06 | Michael P. Wallace | Methods and Devices for Removing Obstructing Material From the Human Body |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US9572591B2 (en) | 2013-09-03 | 2017-02-21 | United States Endoscopy Group, Inc. | Endoscopic snare device |
US9539041B2 (en) | 2013-09-12 | 2017-01-10 | DePuy Synthes Products, Inc. | Minimally invasive biomaterial injection system |
US9649128B2 (en) * | 2013-12-02 | 2017-05-16 | Novon Solutions, LLC | Adjustable curette |
US10610211B2 (en) | 2013-12-12 | 2020-04-07 | Howmedica Osteonics Corp. | Filament engagement system and methods of use |
US9861375B2 (en) | 2014-01-09 | 2018-01-09 | Zyga Technology, Inc. | Undercutting system for use in conjunction with sacroiliac fusion |
US9770278B2 (en) | 2014-01-17 | 2017-09-26 | Arthrex, Inc. | Dual tip guide wire |
WO2015120165A1 (en) | 2014-02-05 | 2015-08-13 | Marino James F | Anchor devices and methods of use |
US12053203B2 (en) | 2014-03-03 | 2024-08-06 | Spectranetics, Llc | Multiple configuration surgical cutting device |
US10258404B2 (en) | 2014-04-24 | 2019-04-16 | Gyrus, ACMI, Inc. | Partially covered jaw electrodes |
US10405924B2 (en) | 2014-05-30 | 2019-09-10 | The Spectranetics Corporation | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
US10045803B2 (en) | 2014-07-03 | 2018-08-14 | Mayo Foundation For Medical Education And Research | Sacroiliac joint fusion screw and method |
US10813685B2 (en) | 2014-09-25 | 2020-10-27 | Covidien Lp | Single-handed operable surgical instrument including loop electrode with integrated pad electrode |
US9814499B2 (en) | 2014-09-30 | 2017-11-14 | Arthrex, Inc. | Intramedullary fracture fixation devices and methods |
US9986992B2 (en) | 2014-10-28 | 2018-06-05 | Stryker Corporation | Suture anchor and associated methods of use |
US10568616B2 (en) | 2014-12-17 | 2020-02-25 | Howmedica Osteonics Corp. | Instruments and methods of soft tissue fixation |
USD765243S1 (en) | 2015-02-20 | 2016-08-30 | The Spectranetics Corporation | Medical device handle |
USD770616S1 (en) | 2015-02-20 | 2016-11-01 | The Spectranetics Corporation | Medical device handle |
US10080571B2 (en) | 2015-03-06 | 2018-09-25 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
ES2763028T3 (en) | 2015-03-24 | 2020-05-26 | Stryker European Holdings I Llc | Bone marrow extraction device |
US10363143B2 (en) * | 2015-04-16 | 2019-07-30 | Seth L. Neubardt | Harvesting bone graft material for use in spinal and other bone fusion surgeries |
US9901392B2 (en) | 2015-05-11 | 2018-02-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
WO2017019865A1 (en) | 2015-07-30 | 2017-02-02 | Teleflex Medical Incorporated | Snap-on surgical clip cartridge |
AU2017216411B2 (en) | 2016-02-01 | 2019-05-16 | RegenMed Systems, Inc. | Cannula for tissue disruption |
US9833321B2 (en) | 2016-04-25 | 2017-12-05 | Imds Llc | Joint fusion instrumentation and methods |
US10413332B2 (en) | 2016-04-25 | 2019-09-17 | Imds Llc | Joint fusion implant and methods |
CN109688980B (en) | 2016-06-28 | 2022-06-10 | Eit 新兴移植技术股份有限公司 | Expandable and angularly adjustable intervertebral cage with articulation joint |
JP6995789B2 (en) | 2016-06-28 | 2022-01-17 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle adjustable intervertebral cage |
WO2018081279A1 (en) | 2016-10-27 | 2018-05-03 | Dfine, Inc. | Articulating osteotome with cement delivery channel |
EP3544669A4 (en) | 2016-11-22 | 2020-05-06 | Dfine, Inc. | Swivel hub |
WO2018098433A1 (en) | 2016-11-28 | 2018-05-31 | Dfine, Inc. | Tumor ablation devices and related methods |
US10470781B2 (en) | 2016-12-09 | 2019-11-12 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
WO2018129180A1 (en) | 2017-01-06 | 2018-07-12 | Dfine, Inc. | Osteotome with a distal portion for simultaneous advancement and articulation |
JP7466307B2 (en) | 2017-01-09 | 2024-04-12 | ユナイテッド ステイツ エンドスコピー グループ,インコーポレイテッド | Endoscopic Snare |
US10631881B2 (en) | 2017-03-09 | 2020-04-28 | Flower Orthopedics Corporation | Plating depth gauge and countersink instrument |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US10456145B2 (en) | 2017-05-16 | 2019-10-29 | Arthrex, Inc. | Expandable reamers |
KR102131399B1 (en) * | 2017-05-24 | 2020-07-08 | 고려대학교산학협력단 | Apparatus for repositioning a nasobiliary catheter from mouth to nostril |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
WO2019164634A1 (en) | 2018-01-26 | 2019-08-29 | Dsm Ip Assets, B.V. | Radially expanding debridement tools |
JP7300570B2 (en) * | 2018-02-13 | 2023-06-30 | 国立大学法人 長崎大学 | resection instrument |
USD902405S1 (en) | 2018-02-22 | 2020-11-17 | Stryker Corporation | Self-punching bone anchor inserter |
CN111818870B (en) * | 2018-03-13 | 2023-12-08 | 泰尔茂株式会社 | Removal device and removal system |
US11202674B2 (en) | 2018-04-03 | 2021-12-21 | Convergent Dental, Inc. | Laser system for surgical applications |
US11903636B2 (en) | 2018-09-27 | 2024-02-20 | Covidien Lp | Energy-based tissue specimen removal |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
WO2020097339A1 (en) | 2018-11-08 | 2020-05-14 | Dfine, Inc. | Tumor ablation device and related systems and methods |
US11298155B2 (en) | 2019-04-24 | 2022-04-12 | Covidien Lp | Cutting guard with radiofrequency dissection |
US11364071B2 (en) | 2019-04-24 | 2022-06-21 | Covidien Lp | Handheld dissector |
CN113784673A (en) * | 2019-05-01 | 2021-12-10 | 隐静脉医疗有限公司 | Integrated endoscopic vessel harvesting device with visual cues to identify orientation of cutting element |
US11197705B2 (en) * | 2019-07-24 | 2021-12-14 | Shao-Kang Hsueh | Bone cement injection device |
AU2020346827A1 (en) | 2019-09-12 | 2022-03-31 | Relievant Medsystems, Inc. | Systems and methods for tissue modulation |
US11986229B2 (en) | 2019-09-18 | 2024-05-21 | Merit Medical Systems, Inc. | Osteotome with inflatable portion and multiwire articulation |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11730533B2 (en) | 2020-06-12 | 2023-08-22 | Covidien Lp | Auxiliary electrosurgical return rivet for use with cutting guard |
US11147545B1 (en) | 2020-06-12 | 2021-10-19 | Covidien Lp | Cutting guard with ground connection |
US11793599B2 (en) * | 2020-08-04 | 2023-10-24 | Mazor Robotics Ltd. | Surgical cleaning tool, systems, and methods |
US12082876B1 (en) | 2020-09-28 | 2024-09-10 | Relievant Medsystems, Inc. | Introducer drill |
JP2024505335A (en) | 2020-12-22 | 2024-02-06 | リリーバント メドシステムズ、インコーポレイテッド | Prediction of spinal neuromodulation candidates |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4969888A (en) * | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US5891147A (en) * | 1996-06-25 | 1999-04-06 | Sdgi Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
Family Cites Families (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US582732A (en) * | 1897-05-18 | Logging apparatus | ||
US383639A (en) * | 1888-05-29 | Manure-distributer | ||
US817973A (en) * | 1904-06-06 | 1906-04-17 | Caspar Friedrich Hausmann | Uterine dilator. |
US1366877A (en) * | 1920-11-17 | 1921-01-25 | Joseph E Craig | Guide and gage for dental drills |
US2526662A (en) | 1946-12-10 | 1950-10-24 | Herbert E Hipps | Bone meal extractor |
US2610626A (en) | 1951-07-27 | 1952-09-16 | John D Edwards | Syringe |
US3045677A (en) | 1960-05-03 | 1962-07-24 | American Cystoscope Makers Inc | Inflatable balloon catheter |
US3181533A (en) | 1962-01-15 | 1965-05-04 | William C Heath | Surgical snare |
JPS4020152Y1 (en) * | 1964-04-03 | 1965-07-13 | ||
US3626949A (en) | 1969-01-23 | 1971-12-14 | Wallace B Shute | Cervical dilator |
US3640280A (en) * | 1969-11-26 | 1972-02-08 | Daniel R Slanker | Power-driven reciprocating bone surgery instrument |
US3945375A (en) * | 1972-04-04 | 1976-03-23 | Surgical Design Corporation | Rotatable surgical instrument |
US3848601A (en) * | 1972-06-14 | 1974-11-19 | G Ma | Method for interbody fusion of the spine |
US3800788A (en) * | 1972-07-12 | 1974-04-02 | N White | Antral catheter for reduction of fractures |
US3949479A (en) * | 1972-11-13 | 1976-04-13 | Oscar Malmin | Endodontic operating and sealing method and apparatus therefor |
US3828790A (en) | 1973-02-28 | 1974-08-13 | American Cystoscope Makers Inc | Surgical snare |
US4024639A (en) * | 1975-02-25 | 1977-05-24 | End-Dent, Inc. | Bone implants and method for inserting the same |
US4059115A (en) * | 1976-06-14 | 1977-11-22 | Georgy Stepanovich Jumashev | Surgical instrument for operation of anterior fenestrated spondylodessis in vertebral osteochondrosis |
US4083369A (en) * | 1976-07-02 | 1978-04-11 | Manfred Sinnreich | Surgical instruments |
US4203444A (en) * | 1977-11-07 | 1980-05-20 | Dyonics, Inc. | Surgical instrument suitable for closed surgery such as of the knee |
SU662082A1 (en) | 1977-12-09 | 1979-05-15 | Тартуский Ордена Трудового Красного Знамени Государственный Университет | Fixative for treating tubular bone fractures |
IL53703A (en) * | 1977-12-28 | 1979-10-31 | Aginsky Yacov | Intramedullary nails |
CH625119A5 (en) * | 1978-03-28 | 1981-09-15 | Sulzer Ag | |
US4323071A (en) * | 1978-04-24 | 1982-04-06 | Advanced Catheter Systems, Inc. | Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same |
US4299237A (en) | 1978-07-21 | 1981-11-10 | Foti Thomas M | Closed flow caloric test device |
US4341206A (en) | 1978-12-19 | 1982-07-27 | Synthes Ag | Device for producing a hole in a bone |
DE2914455A1 (en) | 1979-04-10 | 1980-10-23 | Maschf Augsburg Nuernberg Ag | DEVICE FOR PRODUCING A COLLECTION IN A BONE |
US4265231A (en) * | 1979-04-30 | 1981-05-05 | Scheller Jr Arnold D | Curved drill attachment for bone drilling uses |
US4274163A (en) * | 1979-07-16 | 1981-06-23 | The Regents Of The University Of California | Prosthetic fixation technique |
US4457710A (en) | 1979-08-03 | 1984-07-03 | Inventive Technology International | Dental instrument |
US4327736A (en) * | 1979-11-20 | 1982-05-04 | Kanji Inoue | Balloon catheter |
US4293962A (en) * | 1980-02-14 | 1981-10-13 | Zimmer Usa, Inc. | Bone plug inserting system |
US4369772A (en) * | 1980-04-28 | 1983-01-25 | University Of Florida | Method for strengthening a fractured bone |
US4357716A (en) * | 1980-07-09 | 1982-11-09 | Brown Byron L | Device and method for cementing a hip prosthesis in a femoral canal |
US4313434A (en) * | 1980-10-17 | 1982-02-02 | David Segal | Fracture fixation |
JPS6118885Y2 (en) * | 1980-10-23 | 1986-06-07 | ||
US4399814A (en) * | 1981-04-27 | 1983-08-23 | Massachusetts Institute Of Technology | Method and apparatus for pressure-coated bones |
US4488549A (en) * | 1981-08-25 | 1984-12-18 | University Of Exeter | Pressurization of cement in bones |
US4432358A (en) * | 1982-01-22 | 1984-02-21 | Fixel Irving E | Compression hip screw apparatus |
US4462394A (en) | 1982-05-03 | 1984-07-31 | Howmedica, Inc. | Intramedullary canal seal for cement pressurization |
SU1148610A1 (en) | 1983-04-12 | 1985-04-07 | Ивано-Франковский Государственный Медицинский Институт | Method of endoprosthetics of hip joint |
US4554914A (en) * | 1983-10-04 | 1985-11-26 | Kapp John P | Prosthetic vertebral body |
US4573448A (en) * | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US4601290A (en) * | 1983-10-11 | 1986-07-22 | Cabot Medical Corporation | Surgical instrument for cutting body tissue from a body area having a restricted space |
US5190546A (en) * | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4593685A (en) * | 1983-10-17 | 1986-06-10 | Pfizer Hospital Products Group Inc. | Bone cement applicator |
EP0165301B2 (en) * | 1983-12-08 | 1994-12-14 | Cedars-Sinai Medical Center | Excimer laser for medical treatment on organic tissue in biolocical systems at a pathological situs |
CA1227902A (en) * | 1984-04-02 | 1987-10-13 | Raymond G. Tronzo | Fenestrated hip screw and method of augmented internal fixation |
US4592749A (en) * | 1984-06-22 | 1986-06-03 | Gish Biomedical, Inc. | Catheter system |
GB8501907D0 (en) | 1985-01-25 | 1985-02-27 | Thackray C F Ltd | Surgical instruments |
US4622012A (en) | 1985-03-27 | 1986-11-11 | Smoler Lewis S | Dental post system |
US4644951A (en) * | 1985-09-16 | 1987-02-24 | Concept, Inc. | Vacuum sleeve for a surgical appliance |
JPS6266848A (en) * | 1985-09-20 | 1987-03-26 | 住友ベークライト株式会社 | Surgical operation appliance |
DE3536516A1 (en) | 1985-10-12 | 1987-04-16 | Christian Dr Med Milewski | Device for restoring the delimiting bone walls of body cavities, especially of the maxillary sinus |
US4888024A (en) * | 1985-11-08 | 1989-12-19 | Powlan Roy Y | Prosthetic device and method of fixation within the medullary cavity of bones |
US4646738A (en) * | 1985-12-05 | 1987-03-03 | Concept, Inc. | Rotary surgical tool |
US4650489A (en) * | 1986-01-30 | 1987-03-17 | Massachusetts Institute Of Technology | Prosthetic device for implantation in bone |
US4723545A (en) * | 1986-02-03 | 1988-02-09 | Graduate Hospital Foundation Research Corporation | Power assisted arthroscopic surgical device |
DE8623700U1 (en) | 1986-09-04 | 1986-11-13 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | Surgical instrument for compacting cancellous bone |
US4790312A (en) | 1987-01-20 | 1988-12-13 | Becton Dickinson Acutecare, Inc. | Surgical knife |
DE8800197U1 (en) | 1988-01-11 | 1988-06-23 | List, Heinz-Jürgen, 61231 Bad Nauheim | Surgical drilling tool |
US4944678A (en) | 1988-02-08 | 1990-07-31 | Bristol-Myers-Squibb Company | Process and apparatus for devitalization of a tooth |
US4909252A (en) * | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US6120437A (en) * | 1988-07-22 | 2000-09-19 | Inbae Yoon | Methods for creating spaces at obstructed sites endoscopically and methods therefor |
US5090957A (en) * | 1988-10-05 | 1992-02-25 | Abiomed, Inc. | Intraaortic balloon insertion |
US5156606A (en) * | 1988-10-11 | 1992-10-20 | Zimmer, Inc. | Method and apparatus for removing pre-placed prosthetic joints and preparing for their replacement |
US4995868A (en) * | 1988-10-12 | 1991-02-26 | Bard Limited | Catheter |
US5160321A (en) | 1988-11-23 | 1992-11-03 | Harvinder Sahota | Balloon catheters |
US5090958A (en) * | 1988-11-23 | 1992-02-25 | Harvinder Sahota | Balloon catheters |
US5147377A (en) | 1988-11-23 | 1992-09-15 | Harvinder Sahota | Balloon catheters |
US5019042A (en) * | 1988-11-23 | 1991-05-28 | Harvinder Sahota | Balloon catheters |
US4990148A (en) * | 1989-01-13 | 1991-02-05 | Codman & Shurtleff, Inc. | Thin footplate rongeur |
US4983183A (en) * | 1989-02-06 | 1991-01-08 | Horowitz Stephen M | Hip prosthesis and method for implanting the same |
US5027792A (en) * | 1989-03-17 | 1991-07-02 | Percutaneous Technologies, Inc. | Endoscopic revision hip surgery device |
DE3909843A1 (en) * | 1989-03-25 | 1990-09-27 | Strahlen Umweltforsch Gmbh | METHOD AND DEVICE FOR IRRADIATING CAVITIES |
US4987892A (en) * | 1989-04-04 | 1991-01-29 | Krag Martin H | Spinal fixation device |
US6200320B1 (en) * | 1989-04-24 | 2001-03-13 | Gary Karlin Michelson | Surgical rongeur |
CA2007210C (en) | 1989-05-10 | 1996-07-09 | Stephen D. Kuslich | Intervertebral reamer |
US5062845A (en) | 1989-05-10 | 1991-11-05 | Spine-Tech, Inc. | Method of making an intervertebral reamer |
DE3918720A1 (en) * | 1989-06-08 | 1990-12-20 | Wolf Gmbh Richard | RETROGRAD CUTTING HOOK PUNCH |
DE3922044A1 (en) | 1989-07-05 | 1991-02-07 | Richter Turtur Matthias Dr | Treatment of fractured vertebra - by instrument which avoids any force on intact adjacent to vertebrae |
US5632746A (en) * | 1989-08-16 | 1997-05-27 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US5749879A (en) * | 1989-08-16 | 1998-05-12 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US4986830A (en) * | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5059193A (en) * | 1989-11-20 | 1991-10-22 | Spine-Tech, Inc. | Expandable spinal implant and surgical method |
DE4001833A1 (en) | 1990-01-23 | 1991-08-01 | Juergen Dr Fischer | Bleeding-prevention instrument in bone cavity - has small-volume implant expanded by fluid after insertion |
US5152744A (en) | 1990-02-07 | 1992-10-06 | Smith & Nephew Dyonics | Surgical instrument |
US5345927A (en) * | 1990-03-02 | 1994-09-13 | Bonutti Peter M | Arthroscopic retractors |
US5197971A (en) * | 1990-03-02 | 1993-03-30 | Bonutti Peter M | Arthroscopic retractor and method of using the same |
US5290294A (en) * | 1990-04-17 | 1994-03-01 | Brian Cox | Method and apparatus for removal of a foreign body cavity |
DE69024805T2 (en) * | 1990-05-17 | 1996-05-23 | Sumitomo Bakelite Co | SURGICAL INSTRUMENT |
US5083923A (en) * | 1990-06-04 | 1992-01-28 | Mcspadden John T | Method of obturating an extirpated root canal |
US5035617A (en) | 1990-06-05 | 1991-07-30 | Mcspadden John T | Endodontic instrument |
US5269785A (en) * | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
US5180388A (en) * | 1990-06-28 | 1993-01-19 | American Cyanamid Company | Bone pinning system |
US5047035A (en) * | 1990-08-10 | 1991-09-10 | Mikhail Michael W E | System for performing hip prosthesis revision surgery |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5064428A (en) * | 1990-09-18 | 1991-11-12 | Cook Incorporated | Medical retrieval basket |
AU664358B2 (en) * | 1990-10-09 | 1995-11-16 | Medtronic, Inc. | Device or apparatus for manipulating matter |
EP0481760B1 (en) | 1990-10-19 | 1998-05-27 | Smith & Nephew, Inc. | Surgical device |
US5254091A (en) * | 1991-01-08 | 1993-10-19 | Applied Medical Resources Corporation | Low profile balloon catheter and method for making same |
US5390683A (en) * | 1991-02-22 | 1995-02-21 | Pisharodi; Madhavan | Spinal implantation methods utilizing a middle expandable implant |
US5269783A (en) * | 1991-05-13 | 1993-12-14 | United States Surgical Corporation | Device and method for repairing torn tissue |
US5484441A (en) * | 1991-06-17 | 1996-01-16 | Koros; Tibor | Rongeur surgical instrument |
US5242461A (en) * | 1991-07-22 | 1993-09-07 | Dow Corning Wright | Variable diameter rotating recanalization catheter and surgical method |
US5313962A (en) * | 1991-10-18 | 1994-05-24 | Obenchain Theodore G | Method of performing laparoscopic lumbar discectomy |
US5226888A (en) | 1991-10-25 | 1993-07-13 | Michelle Arney | Coiled, perfusion balloon catheter |
US5302129A (en) * | 1991-11-19 | 1994-04-12 | Heath Derek E | Endodontic procedure and instrument |
DE4140402A1 (en) | 1991-12-07 | 1993-06-09 | Dieter Prof. Dr.Med. 7700 Singen De Ruehland | Instrument for surgical intervention in stomach cavity - has sleeve tube for at least one axially movable rod with blade at operation end of instrument being controlled by rod |
US6190381B1 (en) * | 1995-06-07 | 2001-02-20 | Arthrocare Corporation | Methods for tissue resection, ablation and aspiration |
US5387215A (en) | 1992-02-12 | 1995-02-07 | Sierra Surgical Inc. | Surgical instrument for cutting hard tissue and method of use |
SE510358C2 (en) * | 1992-02-20 | 1999-05-17 | Goesta Ullmark | Device for use in transplanting bone tissue material into a bone cavity |
US5555883A (en) * | 1992-02-24 | 1996-09-17 | Avitall; Boaz | Loop electrode array mapping and ablation catheter for cardiac chambers |
US5295959A (en) * | 1992-03-13 | 1994-03-22 | Medtronic, Inc. | Autoperfusion dilatation catheter having a bonded channel |
US5637097A (en) * | 1992-04-15 | 1997-06-10 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion |
US5707362A (en) * | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5295995A (en) * | 1992-08-27 | 1994-03-22 | Kleiman Jay H | Perfusion dilatation catheter |
US5284443A (en) * | 1992-08-28 | 1994-02-08 | Coltene/Whaledent, Inc. | Method of forming dental restorations |
US5411514A (en) * | 1992-09-30 | 1995-05-02 | Linvatec Corporation | Bendable variable angle rotating shaver |
US5385570A (en) * | 1993-01-12 | 1995-01-31 | R. J. Surgical Instruments, Inc. | Surgical cutting instrument |
US5628747A (en) * | 1993-01-22 | 1997-05-13 | Wright Medical Technology, Inc. | Device for removing cancellous bone |
AU683243B2 (en) * | 1993-02-10 | 1997-11-06 | Zimmer Spine, Inc. | Spinal stabilization surgical tool set |
US5423823A (en) | 1993-02-18 | 1995-06-13 | Arthrex Inc. | Coring reamer |
WO1994018888A1 (en) | 1993-02-19 | 1994-09-01 | Boston Scientific Corporation | Surgical extractor |
US5439464A (en) * | 1993-03-09 | 1995-08-08 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
US5476495A (en) * | 1993-03-16 | 1995-12-19 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5352199A (en) | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
DE69433702T2 (en) * | 1993-06-10 | 2005-03-31 | Karlin Technology, Inc., Saugus | Two feedthrough protection device for surgery of the intervertebral space |
FR2706309B1 (en) * | 1993-06-17 | 1995-10-06 | Sofamor | Instrument for surgical treatment of an intervertebral disc by the anterior route. |
US5509919A (en) * | 1993-09-24 | 1996-04-23 | Young; Merry A. | Apparatus for guiding a reaming instrument |
US5480400A (en) * | 1993-10-01 | 1996-01-02 | Berger; J. Lee | Method and device for internal fixation of bone fractures |
US5423850A (en) * | 1993-10-01 | 1995-06-13 | Berger; J. Lee | Balloon compressor for internal fixation of bone fractures |
US5437665A (en) * | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
WO1995014433A1 (en) * | 1993-11-24 | 1995-06-01 | Orthopaedic Innovations, Inc. | Cannulated instrumentation for total joint arthroplasty and method of use |
US5499961A (en) * | 1993-12-17 | 1996-03-19 | Mattox; Ernest M. | Kneeling-prone-kneeling exercise device |
US5484411A (en) | 1994-01-14 | 1996-01-16 | Cordis Corporation | Spiral shaped perfusion balloon and method of use and manufacture |
ATE361028T1 (en) * | 1994-01-26 | 2007-05-15 | Kyphon Inc | IMPROVED INFLATABLE DEVICE FOR USE IN SURGICAL METHODS OF FIXATION OF BONE |
US6241734B1 (en) * | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
US6248110B1 (en) | 1994-01-26 | 2001-06-19 | Kyphon, Inc. | Systems and methods for treating fractured or diseased bone using expandable bodies |
US7044954B2 (en) * | 1994-01-26 | 2006-05-16 | Kyphon Inc. | Method for treating a vertebral body |
US6726691B2 (en) * | 1998-08-14 | 2004-04-27 | Kyphon Inc. | Methods for treating fractured and/or diseased bone |
US20030032963A1 (en) * | 2001-10-24 | 2003-02-13 | Kyphon Inc. | Devices and methods using an expandable body with internal restraint for compressing cancellous bone |
US6716216B1 (en) * | 1998-08-14 | 2004-04-06 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US5387193A (en) * | 1994-02-09 | 1995-02-07 | Baxter International Inc. | Balloon dilation catheter with hypotube |
US5527316A (en) * | 1994-02-23 | 1996-06-18 | Stone; Kevin T. | Surgical reamer |
US5489291A (en) * | 1994-02-23 | 1996-02-06 | Wiley; Roy C. | Apparatus for removing tissue during surgical procedures |
US5470313A (en) | 1994-02-24 | 1995-11-28 | Cardiovascular Dynamics, Inc. | Variable diameter balloon dilatation catheter |
US5397320A (en) * | 1994-03-03 | 1995-03-14 | Essig; Mitchell N. | Dissecting surgical device and associated method |
US5620458A (en) * | 1994-03-16 | 1997-04-15 | United States Surgical Corporation | Surgical instruments useful for endoscopic spinal procedures |
US5512037A (en) * | 1994-05-12 | 1996-04-30 | United States Surgical Corporation | Percutaneous surgical retractor |
FR2723836B1 (en) * | 1994-08-24 | 1996-12-20 | Rech Ligamentaire Scrl Soc Civ | RAPE FOR BORING, CLEANING AND DEBURRING BONE TUNNEL |
US5591170A (en) * | 1994-10-14 | 1997-01-07 | Genesis Orthopedics | Intramedullary bone cutting saw |
US5571098A (en) | 1994-11-01 | 1996-11-05 | The General Hospital Corporation | Laser surgical devices |
US5643305A (en) | 1994-11-18 | 1997-07-01 | Al-Tameem; Moshin | Device for excision of a fistula |
US5836957A (en) | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
US5611803A (en) * | 1994-12-22 | 1997-03-18 | Urohealth Systems, Inc. | Tissue segmentation device |
US5601561A (en) * | 1995-01-17 | 1997-02-11 | W. L. Gore & Associates, Inc. | Guided bone rasp |
US5665062A (en) * | 1995-01-23 | 1997-09-09 | Houser; Russell A. | Atherectomy catheter and RF cutting method |
US5814044A (en) * | 1995-02-10 | 1998-09-29 | Enable Medical Corporation | Apparatus and method for morselating and removing tissue from a patient |
US5624447A (en) * | 1995-03-20 | 1997-04-29 | Othy, Inc. | Surgical tool guide and entry hole positioner |
US5674235A (en) * | 1995-05-10 | 1997-10-07 | Ultralase Technologies International | Ultrasonic surgical cutting instrument |
US5658280A (en) * | 1995-05-22 | 1997-08-19 | Issa; Muta M. | Resectoscope electrode assembly with simultaneous cutting and coagulation |
US5827312A (en) * | 1995-06-09 | 1998-10-27 | Instratek Incorporated | Marked cannula |
US6015406A (en) * | 1996-01-09 | 2000-01-18 | Gyrus Medical Limited | Electrosurgical instrument |
US6228082B1 (en) * | 1995-11-22 | 2001-05-08 | Arthrocare Corporation | Systems and methods for electrosurgical treatment of vascular disorders |
US5695513A (en) * | 1996-03-01 | 1997-12-09 | Metagen, Llc | Flexible cutting tool and methods for its use |
CA2199462C (en) * | 1996-03-14 | 2006-01-03 | Charles J. Winslow | Method and instrumentation for implant insertion |
US5882345A (en) * | 1996-05-22 | 1999-03-16 | Yoon; Inbae | Expandable endoscopic portal |
US5925039A (en) * | 1996-06-12 | 1999-07-20 | Iti Medical Technologies, Inc. | Electrosurgical instrument with conductive ceramic or cermet and method of making same |
US5984932A (en) | 1996-11-27 | 1999-11-16 | Yoon; Inbae | Suturing instrument with one or more spreadable needle holders mounted for arcuate movement |
KR20000069469A (en) * | 1996-12-13 | 2000-11-25 | 브렌트 알. 콘티탄쯔 | Preparation, storage and administration of cements |
US6039761A (en) * | 1997-02-12 | 2000-03-21 | Li Medical Technologies, Inc. | Intervertebral spacer and tool and method for emplacement thereof |
US5984937A (en) * | 1997-03-31 | 1999-11-16 | Origin Medsystems, Inc. | Orbital dissection cannula and method |
US5957929A (en) * | 1997-05-02 | 1999-09-28 | Micro Therapeutics, Inc. | Expandable stent apparatus and method |
US5876399A (en) * | 1997-05-28 | 1999-03-02 | Irvine Biomedical, Inc. | Catheter system and methods thereof |
US5972015A (en) * | 1997-08-15 | 1999-10-26 | Kyphon Inc. | Expandable, asymetric structures for deployment in interior body regions |
US6048346A (en) * | 1997-08-13 | 2000-04-11 | Kyphon Inc. | Systems and methods for injecting flowable materials into bones |
US6468279B1 (en) * | 1998-01-27 | 2002-10-22 | Kyphon Inc. | Slip-fit handle for hand-held instruments that access interior body regions |
US5928239A (en) * | 1998-03-16 | 1999-07-27 | University Of Washington | Percutaneous surgical cavitation device and method |
US7572263B2 (en) * | 1998-04-01 | 2009-08-11 | Arthrocare Corporation | High pressure applicator |
US6440138B1 (en) * | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
TW436876B (en) * | 1998-05-29 | 2001-05-28 | Winbond Electronics Corp | Method and device for removing mobile ions in a wafer |
US6719773B1 (en) * | 1998-06-01 | 2004-04-13 | Kyphon Inc. | Expandable structures for deployment in interior body regions |
US6228022B1 (en) * | 1998-10-28 | 2001-05-08 | Sdgi Holdings, Inc. | Methods and instruments for spinal surgery |
US6530933B1 (en) * | 1998-12-31 | 2003-03-11 | Teresa T. Yeung | Methods and devices for fastening bulging or herniated intervertebral discs |
US6395007B1 (en) * | 1999-03-16 | 2002-05-28 | American Osteomedix, Inc. | Apparatus and method for fixation of osteoporotic bone |
US6214016B1 (en) * | 1999-04-29 | 2001-04-10 | Medtronic, Inc. | Medical instrument positioning device internal to a catheter or lead and method of use |
ES2222713T3 (en) * | 1999-06-16 | 2005-02-01 | Joimax Gmbh | DEVICE TO UNCOMPRESS HERNIAS OF INTERVERTEBRAL DISCS. |
US6224604B1 (en) * | 1999-07-30 | 2001-05-01 | Loubert Suddaby | Expandable orthopedic drill for vertebral interbody fusion techniques |
US6364565B1 (en) * | 2000-02-01 | 2002-04-02 | Caterpillar Inc. | Piston pin assembly |
US20020010471A1 (en) * | 2000-02-04 | 2002-01-24 | Wironen John F. | Methods for injecting materials into bone |
US6383188B2 (en) * | 2000-02-15 | 2002-05-07 | The Spineology Group Llc | Expandable reamer |
US8092480B2 (en) * | 2000-04-07 | 2012-01-10 | Kyphon Sarl | Platform cannula for guiding the expansion of expandable bodies and method of use |
US7144414B2 (en) * | 2000-06-27 | 2006-12-05 | Smith & Nephew, Inc. | Surgical procedures and instruments |
AU2001284857B2 (en) * | 2000-08-11 | 2005-09-29 | Warsaw Orthopedic, Inc. | Surgical instrumentation and method for treatment of the spine |
US7114501B2 (en) * | 2000-08-14 | 2006-10-03 | Spine Wave, Inc. | Transverse cavity device and method |
US6679886B2 (en) * | 2000-09-01 | 2004-01-20 | Synthes (Usa) | Tools and methods for creating cavities in bone |
EP1328304B1 (en) * | 2000-10-24 | 2005-02-09 | Osteotech, Inc. | Vertebral augmentation composition |
US7544196B2 (en) * | 2001-02-20 | 2009-06-09 | Orthovita, Inc. | System and kit for delivery of restorative materials |
US8002775B2 (en) * | 2001-10-24 | 2011-08-23 | Warsaw Orthopedic, Inc. | Methods and instruments for treating pseudoarthrosis |
US6730095B2 (en) * | 2002-06-26 | 2004-05-04 | Scimed Life Systems, Inc. | Retrograde plunger delivery system |
US7901407B2 (en) * | 2002-08-02 | 2011-03-08 | Boston Scientific Scimed, Inc. | Media delivery device for bone structures |
US7066942B2 (en) * | 2002-10-03 | 2006-06-27 | Wright Medical Technology, Inc. | Bendable needle for delivering bone graft material and method of use |
US6979352B2 (en) * | 2002-11-21 | 2005-12-27 | Depuy Acromed | Methods of performing embolism-free vertebroplasty and devices therefor |
US6875219B2 (en) * | 2003-02-14 | 2005-04-05 | Yves P. Arramon | Bone access system |
-
1998
- 1998-04-06 US US09/055,805 patent/US6440138B1/en not_active Expired - Lifetime
-
1999
- 1999-04-06 EP EP99916476A patent/EP1073371B2/en not_active Expired - Lifetime
- 1999-04-06 AU AU34788/99A patent/AU764518B2/en not_active Ceased
- 1999-04-06 JP JP2000541925A patent/JP4250743B2/en not_active Expired - Fee Related
- 1999-04-06 AT AT99916476T patent/ATE334625T1/en active
- 1999-04-06 ES ES99916476T patent/ES2273485T5/en not_active Expired - Lifetime
- 1999-04-06 IL IL13889199A patent/IL138891A0/en active IP Right Grant
- 1999-04-06 PL PL99343370A patent/PL343370A1/en not_active Application Discontinuation
- 1999-04-06 WO PCT/US1999/007652 patent/WO1999051149A1/en active IP Right Grant
- 1999-04-06 NZ NZ507330A patent/NZ507330A/en unknown
- 1999-04-06 DE DE69932610T patent/DE69932610T3/en not_active Expired - Lifetime
- 1999-04-06 CA CA002327702A patent/CA2327702C/en not_active Expired - Fee Related
-
2000
- 2000-10-05 IL IL138891A patent/IL138891A/en not_active IP Right Cessation
- 2000-10-05 NO NO20005019A patent/NO20005019L/en not_active Application Discontinuation
-
2002
- 2002-07-30 US US10/208,391 patent/US6863672B2/en not_active Expired - Lifetime
-
2004
- 2004-10-05 US US10/958,944 patent/US20050043737A1/en not_active Abandoned
-
2006
- 2006-09-27 US US11/527,798 patent/US20070055261A1/en not_active Abandoned
- 2006-09-29 JP JP2006267402A patent/JP2007021244A/en not_active Withdrawn
-
2007
- 2007-04-24 US US11/789,225 patent/US7909827B2/en not_active Expired - Fee Related
- 2007-04-24 US US11/789,226 patent/US20070198020A1/en not_active Abandoned
- 2007-10-30 US US11/978,825 patent/US7879038B2/en not_active Expired - Fee Related
-
2008
- 2008-08-14 JP JP2008209109A patent/JP2009018176A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4969888A (en) * | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US5108404A (en) * | 1989-02-09 | 1992-04-28 | Arie Scholten | Surgical protocol for fixation of bone using inflatable device |
US5891147A (en) * | 1996-06-25 | 1999-04-06 | Sdgi Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607544B1 (en) | 1994-01-26 | 2003-08-19 | Kyphon Inc. | Expandable preformed structures for deployment in interior body regions |
US6979341B2 (en) | 1994-01-26 | 2005-12-27 | Kyphon Inc. | Expandable preformed structures for deployment in interior body regions |
US7875035B2 (en) | 1998-06-01 | 2011-01-25 | Kyphon Sarl | Expandable structures for deployment in interior body regions |
US6719773B1 (en) | 1998-06-01 | 2004-04-13 | Kyphon Inc. | Expandable structures for deployment in interior body regions |
US7722624B2 (en) | 1998-06-01 | 2010-05-25 | Kyphon SÀRL | Expandable structures for deployment in interior body regions |
US6641587B2 (en) | 1998-08-14 | 2003-11-04 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US7708742B2 (en) | 1998-08-14 | 2010-05-04 | Kyphon Sarl | Methods for placing materials into bone |
US7252671B2 (en) | 1998-08-14 | 2007-08-07 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US7938835B2 (en) | 1998-08-14 | 2011-05-10 | Kyphon Sarl | Systems and methods for treating vertebral bodies |
US6716216B1 (en) | 1998-08-14 | 2004-04-06 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
US7153307B2 (en) | 1998-08-14 | 2006-12-26 | Kyphon Inc. | Systems and methods for placing materials into bone |
US7771431B2 (en) | 1998-08-14 | 2010-08-10 | Kyphon SÀRL | Systems and methods for placing materials into bone |
US8454663B2 (en) | 1998-08-14 | 2013-06-04 | Kyphon Sarl | Systems and methods for treating vertebral bodies |
EP1257213A1 (en) * | 2000-02-16 | 2002-11-20 | Trans1 Inc. | Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine |
EP1257210A1 (en) * | 2000-02-16 | 2002-11-20 | Trans1 Inc. | Apparatus for forming shaped axial bores through spinal vertebrae |
US7794463B2 (en) | 2000-02-16 | 2010-09-14 | Trans1 Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
EP1257213A4 (en) * | 2000-02-16 | 2008-07-23 | Trans1 Inc | Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine |
EP1257210A4 (en) * | 2000-02-16 | 2007-03-07 | Trans1 Inc | Apparatus for forming shaped axial bores through spinal vertebrae |
WO2001067967A1 (en) * | 2000-03-10 | 2001-09-20 | Radius Medical Technologies, Inc. | Surgical snare apparatus |
US6554842B2 (en) | 2000-03-10 | 2003-04-29 | Radius Medical Technologies, Inc. | Small diameter snare |
WO2002100282A1 (en) * | 2000-05-02 | 2002-12-19 | Gross R Michael | Method and means for cementing a liner onto the face of the glenoid cavity of a scapula |
US7244241B2 (en) | 2000-05-02 | 2007-07-17 | Gross R Michael | Method and means for cementing a liner onto the face of the glenoid cavity of a scapula |
CN100444808C (en) * | 2000-06-20 | 2008-12-24 | 科丰公司 | Systems and methods for treating vertebral bodies |
WO2001097721A3 (en) * | 2000-06-20 | 2002-07-25 | Kyphon Inc | Systems and methods for treating vertebral bodies |
EP2055275A1 (en) * | 2000-06-20 | 2009-05-06 | Kyphon SARL | Systems and methods for treating vertebral bodies |
JP2008259873A (en) * | 2000-06-20 | 2008-10-30 | Kyphon Inc | System and method for treating vertebral body |
WO2002098300A3 (en) * | 2001-06-06 | 2003-12-18 | Oratec Interventions Inc | Intervertebral disc device employing looped probe |
EP1448089A2 (en) * | 2001-11-01 | 2004-08-25 | Lawrence M Boyd | Devices and methods for the restoration of a spinal disc |
EP1448089A4 (en) * | 2001-11-01 | 2008-06-04 | Spine Wave Inc | Devices and methods for the restoration of a spinal disc |
US7261720B2 (en) | 2002-01-11 | 2007-08-28 | Kyphon Inc. | Inflatable device for use in surgical protocol relating to fixation of bone |
EP1691848A4 (en) * | 2003-10-23 | 2008-03-26 | Trans1 Inc | Tools and tool kits for performing minimally invasive procedures on the spine |
EP1691848A2 (en) * | 2003-10-23 | 2006-08-23 | Trans1 Inc. | Tools and tool kits for performing minimally invasive procedures on the spine |
WO2005039651A2 (en) | 2003-10-23 | 2005-05-06 | Trans1 Inc. | Tools and tool kits for performing minimally invasive procedures on the spine |
FR2865382A1 (en) * | 2004-01-23 | 2005-07-29 | Sem Sa | Femoral rod for hip prosthesis, has grooves that extend longitudinally from its proximal end till vicinity of distal end, and tapping that is provided at level of lug for ablation of rod |
EP1845862A4 (en) * | 2005-02-02 | 2010-02-03 | Depuy Spine Inc | Ultrasonic cutting device |
US8628534B2 (en) | 2005-02-02 | 2014-01-14 | DePuy Synthes Products, LLC | Ultrasonic cutting device |
WO2006083988A1 (en) | 2005-02-02 | 2006-08-10 | Depuy Spine, Inc. | Ultrasonic cutting device |
EP1845862A1 (en) * | 2005-02-02 | 2007-10-24 | DePuy Spine, Inc. | Ultrasonic cutting device |
US8070756B2 (en) | 2005-04-15 | 2011-12-06 | U.S. Endoscopy Group, Inc. | Polypectomy device and method of use |
EP1810623A1 (en) * | 2005-04-15 | 2007-07-25 | U.S. endoscopy Group, Inc. | Polypectomy device |
WO2007008667A2 (en) * | 2005-07-11 | 2007-01-18 | Kyphon, Inc. | Systems and methods for providing cavities in interior body regions |
WO2007008667A3 (en) * | 2005-07-11 | 2007-05-31 | Kyphon Inc | Systems and methods for providing cavities in interior body regions |
US9089347B2 (en) | 2006-07-07 | 2015-07-28 | Orthophoenix, Llc | Medical device with dual expansion mechanism |
EP2162078A4 (en) * | 2007-03-06 | 2011-04-06 | Orthobond Inc | Preparation tools and methods of using the same |
EP2162078A2 (en) * | 2007-03-06 | 2010-03-17 | Orthobond, Inc. | Preparation tools and methods of using the same |
WO2008111972A1 (en) * | 2007-03-12 | 2008-09-18 | Murphy Kieran P | Method and kit for intra osseous navigation and augmentation of bone |
WO2009042451A2 (en) * | 2007-09-26 | 2009-04-02 | Wilson-Cook Medical Inc. | Wire capture surgical device with fixable handle |
WO2009042451A3 (en) * | 2007-09-26 | 2009-07-02 | Wilson Cook Medical Inc | Wire capture surgical device with fixable handle |
US9788870B2 (en) | 2008-01-14 | 2017-10-17 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
US11399878B2 (en) | 2008-01-14 | 2022-08-02 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
US10603087B2 (en) | 2008-01-14 | 2020-03-31 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
US9517093B2 (en) | 2008-01-14 | 2016-12-13 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
WO2010017377A1 (en) * | 2008-08-07 | 2010-02-11 | Stryker Corporation | Cement delivery device with integral cavity creator |
US9730739B2 (en) | 2010-01-15 | 2017-08-15 | Conventus Orthopaedics, Inc. | Rotary-rigid orthopaedic rod |
US8961518B2 (en) | 2010-01-20 | 2015-02-24 | Conventus Orthopaedics, Inc. | Apparatus and methods for bone access and cavity preparation |
US9848889B2 (en) | 2010-01-20 | 2017-12-26 | Conventus Orthopaedics, Inc. | Apparatus and methods for bone access and cavity preparation |
US9993277B2 (en) | 2010-03-08 | 2018-06-12 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
US8906022B2 (en) | 2010-03-08 | 2014-12-09 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
FR3000665A3 (en) * | 2013-01-04 | 2014-07-11 | Small Bone Innovations Internat | Package for drilling or cutting tool i.e. milling cutter for repairing fracture of bone, has receptacle including cavity for wedging plate such that tool does not come into contact with walls of receptacle when plate is fixed in receptacle |
US9814598B2 (en) | 2013-03-14 | 2017-11-14 | Quandary Medical, Llc | Spinal implants and implantation system |
US9913728B2 (en) | 2013-03-14 | 2018-03-13 | Quandary Medical, Llc | Spinal implants and implantation system |
US10441295B2 (en) | 2013-10-15 | 2019-10-15 | Stryker Corporation | Device for creating a void space in a living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle |
US11259818B2 (en) | 2013-10-15 | 2022-03-01 | Stryker Corporation | Methods for creating a void within a bone |
US10076342B2 (en) | 2013-12-12 | 2018-09-18 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
US10022132B2 (en) | 2013-12-12 | 2018-07-17 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
US10918426B2 (en) | 2017-07-04 | 2021-02-16 | Conventus Orthopaedics, Inc. | Apparatus and methods for treatment of a bone |
US11849986B2 (en) | 2019-04-24 | 2023-12-26 | Stryker Corporation | Systems and methods for off-axis augmentation of a vertebral body |
EP4210608A4 (en) * | 2020-09-12 | 2024-10-16 | The Us Secretary Department Of Health And Human Services | Tissue cutting systems and methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6440138B1 (en) | Structures and methods for creating cavities in interior body regions | |
JP4138248B2 (en) | System and method for placing material in bone | |
US20070055201A1 (en) | Systems and methods for providing cavities in interior body regions | |
US20080243249A1 (en) | Devices for multipoint emplacement in a body part and methods of use of such devices | |
KR20070102746A (en) | Systems and methods for providing cavities in interior body regions | |
CA2583060C (en) | Structures and methods for creating cavities in interior body regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 34788/99 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 507330 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2327702 Country of ref document: CA Ref country code: CA Ref document number: 2327702 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 2000 541925 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 138891 Country of ref document: IL |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999916476 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999916476 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 34788/99 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999916476 Country of ref document: EP |