WO1999050407A1 - Anticorps monoclonal contre une sous-unite catalytique de telomerase humaine - Google Patents

Anticorps monoclonal contre une sous-unite catalytique de telomerase humaine Download PDF

Info

Publication number
WO1999050407A1
WO1999050407A1 PCT/JP1999/001557 JP9901557W WO9950407A1 WO 1999050407 A1 WO1999050407 A1 WO 1999050407A1 JP 9901557 W JP9901557 W JP 9901557W WO 9950407 A1 WO9950407 A1 WO 9950407A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
chain
region
amino acid
acid sequence
Prior art date
Application number
PCT/JP1999/001557
Other languages
English (en)
French (fr)
Inventor
Nobuo Hanai
Motoo Yamasaki
Kenji Shibata
Akiko Furuya
Osamu Mikuni
Hideharu Anazawa
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to US09/424,226 priority Critical patent/US6639057B1/en
Priority to AU29585/99A priority patent/AU754278B2/en
Priority to CA002291798A priority patent/CA2291798A1/en
Priority to EP99910727A priority patent/EP0990701A4/en
Publication of WO1999050407A1 publication Critical patent/WO1999050407A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/624Disulfide-stabilized antibody (dsFv)

Definitions

  • the present invention relates to a monoclonal antibody that specifically reacts with a human telomerase catalytic subunit (hereinafter, referred to as hTERT). Furthermore, the present invention relates to a method for diagnosing various diseases associated with telomerase such as cancer using the monoclonal antibody.
  • hTERT human telomerase catalytic subunit
  • telomeres The chromosome ends of eukaryotic cells such as animal cells are called telomeres, and have a higher-order structure consisting of a characteristic DNA repeat sequence and a protein that binds to it.
  • the telomere structure is thought to play an important role in chromosome stabilization, and it has been found that chromosome deletion and fusion between chromosome ends are frequently observed in cells with shortened telomeres.
  • the 5'-end RNA primer at the extreme end cannot be replaced with DNA, so each replication will shorten the chromosome by just one primer.
  • continued culturing and passage of human somatic cells shortens telomeres and causes the death of the cells due to the chromosomal instability described above.
  • the length of a telomere is closely related to aging and immortalization of a cell, as one factor that determines the finite division ability of the cell.
  • telomeres do not shorten even after repeated growth. This is because in these organisms, an RNA-dependent DNA polymerase, called telomerase, which elongates the single strand of the telomer repeat sequence, works to maintain a constant telomere length that shortens with division.
  • TRAP method Telomeric Repeat Amplification Protocol
  • telomere activity was examined in various human tissues using the above-mentioned TRAP method, and as a result, telomerase activity was not detected in almost all normal tissues except germ cells and some bone marrow cells. It was evident that this was detected (Shay, JW, et al., Eur. J. Cancer, 33, 787, 1997). This result indicates that obtaining a mechanism that escapes telomerase-mediated telomere shortening is important for the establishment of human cancer. Because telomerase is expressed specifically in cancer cells and is involved in its infinite proliferative ability, drugs that inhibit its function are expected to be highly selective anticancer agents.
  • Telomerase is a putative complex consisting of multiple factors.HTR [Human Telomerase RNA], a type II RNA molecule that elongates a single strand of force telomere DNA, and the polymerase reaction HTERT [human telomerase 'reverse' transcriptase (Human Telomerase Reverse Transcriptase JJ)
  • HTR Human Telomerase RNA
  • HTERT human telomerase 'reverse' transcriptase (Human Telomerase Reverse Transcriptase JJ)
  • the genetic subcloning of its two components was performed (Feng, J. et al "Science, 269, 1236, 1995; Nakamura, T.. Et al., Science, 277, 955, 1997.
  • the relationship between the expression of these factors and telomerase activity was analyzed, and telomerase detected specifically in human cancer tissues.
  • telomerase activity correlates with the expression of the hTERT protein, that is, the expression of telomerase activity in cancer is regulated by the hTERT protein (Nakamura, T.. Et al., Science, 277, 955, 1997; Nakay ama, J., et al., Nature Genetics, 18, 65, 1998)
  • the introduction of the hTERT gene into normal human cells having a mitotic lifespan increases the lifespan. It has been revealed that it functions as a molecule that regulates aging and immortalization (Bodnar, AG, et al "Science, 279, 349, 1998). It is expected to provide important knowledge in developing drugs for various diseases associated with aging, not limited to cancer.
  • Antibodies with high antigen specificity and high affinity are extremely important in protein function analysis as a means of examining the function and expression of specific proteins in cells and tissues.
  • a polyclonal antibody made using egrets is known, and human cancer cells are used. It has been reported that telomerase activity can be detected in a sample obtained by immunoprecipitating an extract of vesicles (HeLa S3) (Harrington, et al., Genes & Dev. 11, 3109, 1997).
  • HeLa S3 extract of vesicles
  • the hTERT protein is a protein whose expression level is extremely low, the reported polyclonal antibody cannot detect the hTERT protein expressed in human cancer cells (HeLa S3) by Western blotting. Disclosure of the invention
  • the present invention provides a monoclonal antibody capable of specifically and efficiently recognizing the hTERT protein, which is a catalytic subunit of telomerase, and a human-type chimeric antibody, a CDR-grafted antibody, a single-chain antibody, and a disulfide-stabilized antibody containing the same.
  • the present invention provides a method for detecting and quantifying hTERT protein using E. coli.
  • the present invention provides a method for diagnosing various diseases involving telomerase, such as cancer, using these antibodies, and a diagnostic and therapeutic agent.
  • the present invention relates to the following (1) to (37).
  • An object of the present invention is to provide an excellent monoclonal antibody having high reactivity for detecting hTERT protein in cells.
  • the antibody of the present invention may be any monoclonal antibody that recognizes human telomerase 'Reverse' transcriptase (Human Telomerase Reverse Transcriptase; hereinafter, referred to as hTERT) which is a catalytic subunit of telomerase. Les ,.
  • hTERT Human Telomerase Reverse Transcriptase
  • Examples of the monoclonal antibody include an antibody produced by a hybridoma and a recombinant antibody produced by a transformant transformed with an expression vector containing an antibody gene.
  • hTERT protein which is a catalytic subunit of telomerase, or a peptide chemically synthesized based on the amino acid sequence of hTERT protein [Science, 277, 955 (1997)] is prepared as an antigen.
  • Specific antibody-producing cells are induced, and then fused with myeloma cells to prepare a hybridoma and the ability to culture the hybridoma or the hybridoma.
  • the hybridoma is selected from KM2311 (FERM BP-6306), KM2582 (FERM BP-6666), K2590 (FERM BP-6683), KM259KFERM BP-6684) and KM2604 (FERM BP-6664). 5) The hybridoma described.
  • the recombinant antibody of the present invention is obtained by modifying the above-described monoclonal antibody of the present invention using a gene recombination technique.
  • Recombinant antibodies include antibodies produced by gene recombination, such as humanized antibodies and antibody fragments.
  • humanized antibodies those having characteristics of a monoclonal antibody, having low antigenicity and prolonged half-life in blood are preferable as therapeutic agents.
  • the humanized antibody in the present invention includes a human-type chimeric antibody and a human-type CDR (Complementary Determining Region) antibody grafted with CDR.
  • the antibody fragment of the present invention is a Fab (Fragment of antigen Wnding), Fab, F (ab,) 2 , single chain Fv (hereinafter, referred to as scFv) and disulfide stabilized Fv (hereinafter, referred to as dsFv) .
  • the human chimeric antibody is composed of an antibody variable region heavy chain (hereinafter, referred to as VH) and a variable region light chain (hereinafter, referred to as VL) and a constant region heavy chain (hereinafter, referred to as CH) of a human antibody of a non-human animal. And a constant region light chain of a human antibody (hereinafter, referred to as CL).
  • VH antibody variable region heavy chain
  • VL variable region light chain
  • CH constant region heavy chain
  • CL constant region light chain of a human antibody
  • the human chimeric antibody of the present invention obtains cDNAs encoding VH and VL from a hybridoma producing a monoclonal antibody specifically reacting with human hTERT, and has genes encoding human antibody CH and human antibody CL.
  • the cDNA is inserted into an expression vector for animal cells to construct a human chimeric antibody expression vector, and the vector is introduced into animal cells to express and produce the human chimeric antibody of the present invention. be able to.
  • the structure of the C region of the human chimeric antibody of the present invention may be any one belonging to any of the immunoglobulin (Ig) classes, but may be any of the IgG type, and further, IgGl, IgG2, IgG3, and IgG4 belonging to the IgG type.
  • the C region of the immunoglobulin is preferable.
  • the human CDR-grafted antibody refers to an antibody in which the CDRs of VH and VL of a human antibody are each substituted with the CDR sequence of an antibody of a non-human animal.
  • the humanized CDR-grafted antibody of the present invention is obtained by substituting the VH and VL CDR sequences of any human antibody with the VH and VL CDR sequences of a non-human animal antibody specifically reacting with human hTERT.
  • CDNA encoding the region was constructed, and the cDNA was inserted into an expression vector for animal cells having genes encoding human antibody CH and human antibody C, respectively, to construct a human CDR-grafted antibody expression vector. It can be produced by introducing a vector into an animal cell and expressing it.
  • the structure of the C region of the human CDR-grafted antibody of the present invention may be any one belonging to any of the immunoglobulin (Ig) classes, but may be any of the IgG type, and further, IgGl, IgG2, IgG3, and IgG4 belonging to the IgG type.
  • the C region of immunoglobulin is preferred.
  • Fab is obtained by cross-linking two heavy chains in the hinge region of IgG, and degrading the upper peptide part of the two disulfide bonds with the enzyme papain. This is a fragment composed of the entire L chain and having an antigen binding activity with a molecular weight of about 50,000.
  • the Fab of the present invention can be obtained by treating an antibody specifically reacting with human hTERT with papain.
  • a Fab can be produced by inserting a DNA encoding the Fab fragment of the antibody into an expression vector for animal cells and introducing the vector into animal cells to express the vector.
  • Fab ′ is a fragment having a molecular weight of about 50,000 and having an antigen-binding activity in which the disulfide bond between the hinges of F (ab,) 2 is cleaved.
  • the Fab of the present invention can be obtained by treating an antibody specifically reacting with human hTERT with a reducing agent dithiothreitol.
  • F (ab,). was obtained by digesting the lower part of two disulfide bonds in the hinge region of IgG with the enzyme trypsin. This is a fragment having a molecular weight of about 100,000 and having an antigen-binding activity, composed of two Fab regions joined at a hinge portion.
  • the F (ab,) 2 of the present invention can be obtained by trypsinizing an antibody that specifically reacts with human hTERT.
  • DNA encoding the F (ab ') 2 fragment of the antibody is inserted into an expression vector for animal cells, and the vector is expressed by introducing the vector into animal cells to produce F (ab') 2 . be able to.
  • a single-chain antibody comprising the H chain V region and L chain V region of the monoclonal antibody described in (1) above.
  • a single-chain antibody is obtained by linking one VH and one VL with an appropriate peptide linker (hereinafter, referred to as L). 2 shows a peptide.
  • L an appropriate peptide linker
  • VH and VL contained in the scFv of the present invention either the monoclonal antibody of the present invention or the human CDR-grafted antibody can be used.
  • the scFv of the present invention is obtained by obtaining cDNAs encoding VH and VL from a hybridoma or a transformant producing an antibody that specifically reacts with human hTERT, constructing a single-chain antibody expression vector, and inserting the cDNA. Then, the expression vector can be expressed and produced by introducing the expression vector into Escherichia coli, yeast, or animal cells.
  • the amino acid sequence of the H chain V region and L chain V region of the single chain antibody is the same as the amino acid sequence of the H chain V region and L chain V region of the monoclonal antibody that recognizes the human telomerase catalytic subunit.
  • the amino acid sequence of the complementarity determining region of the H chain V region and L chain V region of the single chain antibody is the same as that of the H chain V region and L chain V region of the monoclonal antibody that recognizes the human telomerase catalytic subunit.
  • a disulfide-stabilized antibody comprising the H chain V region and L chain V region of the monoclonal antibody described in (1).
  • the disulfide-stabilized antibody refers to a polypeptide in which one amino acid residue in each of VH and VL has been substituted with a cysteine residue, and which has been bound via a disulfide bond.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. [Protein 'Engineering (7, 697 (1994);]).
  • VH or VL contained in the disulfide-stabilized antibody of the present invention can use the difference or deviation of a monoclonal antibody or a human CDR-grafted antibody;
  • the disulfide-stabilized antibody of the present invention is obtained by obtaining cDNAs encoding VH and VL from a hybridoma or a transformant producing an antibody that specifically reacts with human hTERT, and inserting the cDNA into an appropriate expression vector. Alternatively, it can be produced by introducing the expression vector into Escherichia coli, yeast, or animal cells for expression.
  • the amino acid sequence of the H chain V region and L chain V region of the disulfide stabilized antibody is the same as the amino acid sequence of the H chain V region and the V chain region of the monoclonal antibody recognizing the catalytic subunit of human telomerase.
  • a fusion antibody refers to the above antibody obtained by chemically or genetically binding a radioisotope, a protein, a low-molecular-weight drug, or the like.
  • the fusion antibody of the present invention can be produced by chemically binding an antibody that specifically reacts with human hTERT to a radioisotope, a protein, a low-molecular-weight drug, or the like.
  • a cDNA encoding the protein is ligated to a cDNA encoding the antibody, the cDNA is inserted into an appropriate expression vector, and the expression vector is inserted into E. coli, yeast, or animal cells. It can be produced by expressing.
  • the immunologically quantifying method is a fluorescent antibody method, an immunoenzyme antibody method (ELISA), a radiolabeled immunological antibody method (RIA), a sandwich ELISA method, or the like. Immunity described Method of biological quantification.
  • telomerase catalytic subunit using the antibody according to any one of the above (1) to (3), (10), (11), (13), (14), (16) to (26) A method for immunologically quantifying a microorganism, animal cell, or insect cell that expresses intracellularly or extracellularly.
  • the immunologically quantifying method is a fluorescent antibody method, an immunoenzyme antibody method (ELISA), a radioactive substance labeling immunological antibody method (RIA), a sandwich ELISA method, or the like.
  • ELISA immunoenzyme antibody method
  • RIA radioactive substance labeling immunological antibody method
  • sandwich ELISA method or the like.
  • the antigen may be a cell expressing hTERT, a catalytic subunit of telomerase, or a fraction thereof, or a hTERT protein, which is a catalytic subunit of telomerase having a different amino acid length, or Fc of the protein and antibody. And fusion proteins with the same.
  • telomeres expressing hTERT, a catalytic subunit of telomerase, in the cell include Namalwa Itoda [J. Biol. Chem., 269, 14730 (1994)], CH ⁇ cells (ATCC No. CC-61), etc. And so on.
  • the cell can be used as an antigen as it is, or the hTERT fraction, which is a catalytic subunit of telomerase, fractionated from the cell using a normal enzyme separation and purification method described later can be used as an antigen.
  • the catalytic subunit of telomerase was HTERT-encoding DNA is obtained, and the hTERT protein, a catalytic subunit of telomerase, the hTERT protein, a catalytic subunit of telomerase having a different amino acid length, or a fusion protein of the protein and the Fc portion of an antibody Can be expressed as an antigen.
  • the method is described below.
  • telomere a catalytic subunit of telomerase, cDNA described in the literature [Science, 277, 955 (1997)] or hTERT, a catalytic subunit of telomerase described above, was used. From the cells expressed in the cells, standard methods (Molecular Cloning 2nd edition, Cold Spring Harbor Lab. Press New York (1989); hereinafter, abbreviated as Molecular Cloning 2nd edition, cloning 2nd edition) and current A cDNA library is prepared according to 'Protocols in Molecular Biology. I, Safnormento 1-38 (Current Protocols in Molecular Biology Supplement 1-38; hereinafter abbreviated as Current Protocols).
  • RNA is extracted, and cDNA is synthesized from the RNA.
  • the obtained cDNA is integrated into a closing vector and introduced into a host cell to prepare a cDNA library.
  • DNA encoding hTERT By selecting a transformant containing the cDNA of interest from the library, DNA encoding hTERT can be obtained.
  • Methods for preparing total RNA from cells expressing hTERT, a catalytic subunit of telomerase, in cells include the guanidine / cesium chloride method and the guanidine thiocynate method [Methods in Enzymol, 154, 3 (1987)]. And so on.
  • a method for preparing mRNA with respect to total RNA force a column method or a batch method using oligo dT cellulose or the like can be mentioned.
  • mRNA can be prepared using a kit such as a first 'Track''rnRNA' isolation 'kit (manufactured by Invitrogen) or a quick' prep '' mRNA 'PyriFication.
  • Kit manufactured by Pharmacia. Methods for synthesizing the RNA-force cDNA obtained above include the Okamaberg method [Mol. Cell. Biol., 2, 161 (1982)] and the Gubler-Hoffman method [Gene, 25, 263 (1983)].
  • Can be CDNA can also be obtained using kits such as Superscript ⁇ Plasmid ⁇ System ⁇ cDNA 'Synthesis ⁇ Plasmid ⁇ Cloning (Gibco BRL) and Zap-cDNA'Synthesis' kit (Stratagene). It can also be synthesized.
  • the cloning vector for incorporating the cDNA may be any of a phage vector, a plasmid vector, and the like, as long as it is capable of autonomous replication in a host cell and can stably maintain the cDNA.
  • ZAP Express [Stratagene, Strategies, 5, 58 (1992)]
  • pBluescript II SK (+) [Nucleic Acids Research, 17, 9494 (1989)]
  • TriplEx (Clontech) TriplEx (Clontech), ⁇ EXCell (Pharmacia), pT7T3 18U (Pharmacia), pcD2 [Mol.
  • any microorganism belonging to Escherichia coli can be used. Specifically, Escherichia coli XLI-Blue MRF '[Stratagene, Strategies, 5, 81 (1992)], Escherichia coli C600 [Genetics, 39, 440 (1954)], Escherichia coli YI088 [Science, 222, 778 (1983)], Escherichia coli YIO90 [Science, 222, 778 (1983)], Escherichia coli NM522 [J. Mol. Biol., 166, 1 (1983)], Escherichia coli K802 [J. Mol.
  • a cDNA library is prepared by incorporating the cDNA into the cloning vector described above and introducing the cloning vector into a host cell.
  • the cloning vector is introduced into a host cell by an election port method or a calcium chloride method.
  • the cloning vector is a phage, it is introduced into a host cell by an in vitro packaging method or the like.
  • telomere a transformant containing DNA encoding hTERT, which is a catalytic subunit of telomerase, is described in, for example, telomerase described in the literature [Science, 277, 955 (1997)].
  • a probe is prepared based on the base sequence of the DNA encoding hTERT, which is the catalytic subunit of, and the probe is labeled with a fluorescent substance, radiation, an enzyme, or the like, and plaque hybridization, colony hybridization, and the like. By performing chilling, Southern hybridization, or the like, a transformant that hybridizes can be selected.
  • telomere A recombinant vector in which the full-length cDNA encoding hTERT, which is the catalytic subunit of telomerase obtained above, or a partial fragment thereof [Science, 277, 955 (1997)] was inserted downstream of the promoter of an appropriate vector, was constructed.
  • HTERT-expressing cells which are the catalytic subunit of telomerase obtained by introducing it into host cells, are cultured in an appropriate medium to produce the telomerase catalytic subunit in the cells or in the culture supernatant.
  • the full length or partial fragment of hTERT can be produced as a fusion protein.
  • the host may be any host such as bacteria, yeast, animal cells, and insect cells, as long as it can express the target gene.
  • bacteria include bacteria of the genus Escherichia such as Escherichia coli, Bacillus subtilis and the genus of Bacillus.
  • yeast include Saccharomyces cerevisiae, Schizosaccharomyces pombe, and the like.
  • animal cells include Namalva cells, which are human cells, COS cells, which are monkey cells, CH 'cells, which are Chinese'no cells, and Muster's cells.
  • insect cells include Sf9, Sf21 (Pharmingen), High Five (Invitrogen) and the like.
  • any vector into which the DNA can be incorporated and which can be expressed in a host cell can be used.
  • the expression vector When a bacterium, for example, Escherichia coli, is used as a host, the expression vector includes a promoter, a ribosome binding system, the DNA of the present invention, a transcription termination sequence, and, in some cases, a control sequence of a promoter.
  • a promoter for example, commercially available pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen) and the like are exemplified.
  • a method for introducing a recombinant vector into bacteria a method for introducing DNA into bacteria, for example, a method using calcium ions [Pro Natl. Acad. Sci., USA, 69, 2110 (1972)], a protoplast method (Japanese Patent Application Laid-Open No. 63-248394), and a method of misalignment.
  • yeast When yeast is used as a host, an expression vector, for example, YE P 13 (ATCC37115), Y Ep24 (ATCC37051), YCp50 (ATCC37419) or the like is used.
  • a method for introducing a recombinant vector into yeast for example, a method for introducing DNA into yeast may be used.
  • the elect opening method [Methods. Enzymol., 194, 182 (1990)]
  • the spheroplast method [Proc. Natl. Acad. ScL, USA, 84, 1929 (1978)]
  • the lithium acetate method [J. BacterioL] , 153, 163 (1983)].
  • examples of the expression vector include pAGE107 [JP-A-3-22979; Cytotechnology, 33, (1990)] and pAGE103 [J. Biochem. 101, 1307 (1987)]. It is.
  • any promoter that can be expressed in animal cells or any promoter can be used.
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples of a method for introducing a recombinant vector into animal cells include methods for introducing DNA into animal cells, for example, the elect-portion method [Cytotechnology, 3, 133 (1990)], the calcium phosphate method (Japanese Patent Laid-Open No. 227075), and the Lipofux method [Pro Natl. Acad. Sci "USA, 84. 7413 (1987)].
  • insect cells When insect cells are used as a host, for example, the current protocol (supplements 1-34), baculovirus 'expression' vectors, a 'laboratory' manual (Baculovirus expression vectors, A laboratory manual), etc.
  • the described method can be used to express proteins. That is, the recombinant gene transfer vector and baculovirus described below are co-transfected into insect cells to obtain a recombinant virus in the culture supernatant of insect cells. Obtain the expressing insect cells.
  • pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like can be used.
  • Autographa californica nuclear polyhedrosis virus which is a virus that infects insects of the night moth family, such as Autographa californica nuclear polyhedrosis virus, is used.
  • a recombinant virus In order to prepare a recombinant virus, the above-described recombinant gene transfer vector into insect cells and the above-mentioned vector are used.
  • a method for co-introducing a culovirus for example, a calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), a riboaction method [Pro Natl. Acad. Sci "USA, 84, 7413 (1987)] and the like are used.
  • protein production is achieved by infecting the aforementioned insect virus such as Sf9, Sf21 or High Five with the recombinant virus. [Bio / Technology, 6, 47 (1988)].
  • the proteins to be fused include ⁇ -galactosidase, protein ⁇ , IgG binding region of protein ⁇ , chloramphenicol 'acetyltransferase, poly (Arg), poly (Glu), protein G, maltos-binding protein, daltathione S- Transferase, polyhistidine chain (His-tag), S-peptide, DNA-binding protein domain, Tac antigen, thioredoxin, green 'fluorescent' protein, and any antibody epitope [Akio Yamakawa Experimental Medicine, 13, 469-474 (1995)].
  • the transformant obtained as described above is cultured in a medium, and the full-length or partial fragment of hTERT is directly or partially produced and accumulated as a fusion protein in the culture, and the telomerase catalytic subunit is collected from the culture.
  • the full length or partial fragment of hTERT can be produced as it is or as a fusion protein.
  • the method for culturing the transformant of the present invention in a medium is performed according to a usual method used for culturing a host.
  • a culture medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the microorganism, so that the transformant can be cultured efficiently.
  • a medium either a natural medium or a synthetic medium may be used (Molecular 'Cloning 2nd edition).
  • the cultivation is usually performed at 15 to 40 ° C for 16 to 96 hours under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the pH is maintained at 3.0-9.0.
  • the pH is adjusted using an inorganic or organic acid, alkali solution, urea, calcium carbonate, ammonia, or the like. Necessary during culture Accordingly, antibiotics such as ampicillin and tetracycline may be added to the medium.
  • a medium for culturing a transformant obtained using animal cells as a host commonly used RPMI1640 medium, Eagle's MEM medium, or a medium obtained by adding fetal bovine serum or the like to such a medium is used. Cultures, 5% C0 2 presence usually performed 3-7 days at 35 to 37 ° C, the culture if necessary, kanamycin, may be added to the medium antibiotics such as penicillin.
  • TNM-FH medium As a medium for culturing a transformant obtained by using an insect cell as a host, generally used TNM-FH medium [manufactured by Pharmingen], Sf900IISFM [manufactured by Life Technologies], ExCell400, ExCell405 [both manufactured by JRH Biosciences] are used.
  • the culture is performed at 25 to 30 ° C for 1 to 4 days, and an antibiotic such as gentamicin may be added to the medium as needed during the culture.
  • the full-length fragment of hTERT when culture can be performed in a medium without serum added to the culture medium of animal cells and insect cells, the full-length fragment of hTERT, the catalytic subunit of telomerase, can be used as is or as a fusion protein. It is preferable to use a serum-free medium because purification of the medium is facilitated.
  • hTERT which is the catalytic subunit of telomerase
  • the cells are centrifuged after completion of the culture, suspended in an aqueous buffer, and subjected to ultrasound.
  • the cells are disrupted by a method such as the French press method, and the protein is recovered in the supernatant obtained by centrifugation.
  • the insoluble substance when an insoluble substance is formed in the cells, the insoluble substance is solubilized with a protein denaturing agent, and then the amino acid is removed.
  • the protein can be diluted or dialyzed into a solution containing no denaturant or a protein diluent at a concentration that does not denature the protein to form a three-dimensional structure of the protein.
  • hTERT a catalytic subunit of telomerase
  • the expressed protein can be recovered in the culture supernatant. Isolation and purification include solvent extraction, fractional precipitation with organic solvents, salting out, dialysis, centrifugation, ultrafiltration, ion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography, reverse Separation operations such as phase chromatography, crystallization, and electrophoresis Works can be done alone or in combination.
  • a protein partial sequence of 5 to 30 residues is selected.
  • a partial sequence present on the protein surface in a three-dimensional structure as an antigen peptide.
  • Examples of a method for predicting a partial sequence existing on the protein surface in a three-dimensional structure include commercially available protein sequence analysis software such as Genetyx Mac.
  • Genetyx Mac commercially available protein sequence analysis software
  • low hydrophilic parts are often present inside the protein due to their steric structure, and high hydrophilic parts are often present on the protein surface.
  • the N-terminal and C-terminal of a protein are often present on the protein surface.
  • the partial peptide thus selected is not always an antigen for establishing an intended antibody.
  • a cysteine is added to the terminal of the partial peptide in order to crosslink with a carrier protein described later.
  • the N-terminal of the peptide is acetylated and the C-terminal is amidated as necessary.
  • the partial peptide can be synthesized by a general solution-phase peptide synthesis method, a solid-phase peptide synthesis method, a method of appropriately combining them, or a method analogous thereto [The peptide, analysis, synthesis, biology, Volume 1 (The Peptides, Analysis, Synthesis, Biology, vol. 1), edited by Erhard Gross and Johannes Meinhofer, Academic Press, 1979, Volume 2 1980, Vol. 3, 1981; Fundamentals and experiments of peptide synthesis, Nobuo Izumiya et al., Maruzen, 1985; Development of Continuing Pharmaceuticals, Vol. 14, Peptide synthesis, supervised by Haruaki Yajima, Hirokawa Shoten, 1991; International ⁇ Journal ⁇ Pub ⁇ Peptide 'and Protein' Research (International Journal of Peptide Protein Research), 35, 161 (1990)].
  • partial peptides can be synthesized using an automatic peptide synthesizer.
  • Peptide synthesis using a peptide synthesizer was performed using a peptide synthesizer manufactured by Shimadzu Corporation, a peptide synthesizer manufactured by Applied Biosystems, Inc., USA (hereinafter abbreviated as ABI), a peptide synthesizer manufactured by Applied Biosystems, Inc. Advanced ChemTech Inc., USA, hereinafter abbreviated as ACT) Net-Fmoc-amino acid or Nct-Boc-a with appropriately protected side chains on a commercially available peptide synthesizer such as a peptide synthesizer. It can be carried out according to the respective synthesis programs using amino acids and the like.
  • the protected amino acids and carrier resin used as raw materials are ABI, Shimadzu, Kokusan Chemical Co., Ltd., Nonoku Biochem (Nova Biochem), Watanabe Chemical Co., Ltd., ACT, or Peptide Research Institute Co., Ltd.).
  • Protected amino acids, protected organic acids, and protected organic amines, which are the starting materials for compounds 1 to 3 described below, can be synthesized according to or according to the reported synthesis method [Therapy, Analysis, Synthesis, and Synthesis]. Biology, Volume 1 (The Peptides, Analysis, Synthesis, Biology, vol.
  • the protein obtained above is immunized as an antigen.
  • the antigen may be administered subcutaneously, intravenously, or intraperitoneally to the animal, but may be administered by binding a carrier protein with high antigenicity, or in some cases, the antigen may be administered with an appropriate adjuvant Les, prefer to do.
  • Carrier proteins include keyhole limpet hemosinin, keyhole limpet hemosinin, bovine serum albumin, bovine thyroglobulin, etc.Adjuvants include Complete Freund's Adjuvant, aluminum hydroxide gel and pertussis Bacterial vaccines and the like.
  • Examples of the immunized animal include non-human mammals such as rabbits, goats, mice, rats, and hamsters.
  • the administration of the antigen is performed 3 to 10 times every 1 to 2 weeks after the first administration.
  • the dose of the antigen is preferably 50 to 100 / g per animal.
  • Blood is collected from the fundus venous plexus or tail vein of the immunized animal 3 to 7 days after each administration, and the reactivity of the serum with the antigen is determined by enzyme immunoassay [enzyme immunoassay (ELISA): Medical Shoin. Published (1976)]. Then, a non-human mammal whose serum shows a sufficient antibody titer is used as a source of serum or antibody-producing cells.
  • a monoclonal antibody is prepared by fusing the antibody-producing cells with myeloma cells derived from a non-human mammal to produce a hybridoma, and administering the hybridoma to an animal to administer the hybridoma to ascites carcinoma. It can be prepared by separating and purifying the culture solution or ascites.
  • Antibody-producing cells are collected from antigen-administered non-human mammalian spleen cells, lymph nodes, peripheral blood, and the like.
  • a cell-aggregating medium such as polyethylene glycol 1000 (PEG-1000) is added, and the cells are fused and suspended in a medium.
  • PEG-1000 polyethylene glycol 1000
  • MEM medium or PBS 1.83 g of disodium phosphate, 0.21 g of monopotassium phosphate, 7.65 g of salt, 1 liter of distilled water, pH 7.2
  • HAT medium ⁇ normal medium [glutamine (1.5 mM), 2-mercaptoethanol (RPMI-1640 medium), so that only the desired fused cells can be obtained.
  • the antigen protein or cells expressing the antigen protein are coated on a 96-well plate, and the hybridoma culture supernatant or the purified antibody obtained by the above method is reacted as the primary antibody.
  • the plate After the first antibody reaction, the plate is washed and the second antibody is added.
  • the second antibody is an antibody obtained by labeling an antibody capable of recognizing the immunoglobulin of the first antibody with biotin, an enzyme, a chemiluminescent substance, a radiation compound, or the like. Specifically, if a mouse is used for producing the hybridoma, an antibody capable of recognizing mouse immunoglobulin is used as the second antibody.
  • the hybridoma is selected as a hybridoma that produces a monoclonal antibody that specifically reacts with the antigen.
  • hybridoma strain of the present invention examples include the hybridoma strains KM2311, K2582, KM2604, KM2590, and KM2591.
  • each of the hybridoma strains KM2311 was provided to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (1-1-3 Higashi, Tsukuba-shi, Ibaraki, Japan) as FERM BP-6306, respectively.
  • the hybridoma strains KM2590 and KM2591 were designated as FERM BP-6663 and FERM BP-6664 by the Institute of Biotechnology and Industrial Technology, respectively, on February 26, 1999, as of February 26, 1999.
  • FERM BP-6683 and FERM BP-6684 are examples of the hybridoma strain of the present invention.
  • Monoclonal antibodies were cultured in a culture solution obtained by culturing hybridoma cells or treated with pristane [0.5 ml of 2,6,10,14-tetramethylpentadecane (Pristane) was intraperitoneally administered and bred for 2 weeks] 8
  • a monoclonal antibody-producing hybridoma cell is intraperitoneally administered to a mouse or a nude mouse of 10 to 10 weeks of age, and is separated and purified from ascites that has become ascites cancer.
  • Methods for separating and purifying monoclonal antibodies include centrifugation, 40-50% saturated ammonium sulfate, Method, such as salting-out with a solvent, force prillic acid precipitation, chromatography using a DEAE-Sepharose column, anion exchange column, protein A (or G) column, gel filtration column, etc., alone or in combination. . According to this method, an IgG or IgM fraction can be collected to obtain a purified monoclonal antibody.
  • the subclass of the purified monoclonal antibody can be determined using a monoclonal antibody typing kit or the like.
  • the protein amount can be calculated by the Lowry method or from the absorbance at 280 nm.
  • the subclass of the antibody by isotype within a class in mice, I g Gl, IgG2a, IgG2b , IgG3, in humans, IgGl, IgG2, IgG3, IgG4 and the like.
  • Mouse IgGl, IgG2a and hen HgGl types have complement-dependent cytotoxicity (hereinafter referred to as CDC activity) and antibody-dependent cytotoxicity (hereinafter referred to as ADCC activity) and are useful for therapeutic applications. .
  • CDC activity complement-dependent cytotoxicity
  • ADCC activity antibody-dependent cytotoxicity
  • the humanized antibody expression vector is an expression vector for animal cells into which genes encoding the C regions CH and CL of the human antibody are incorporated. It was constructed by inserting each of the genes encoding CL.
  • the C region of the human antibody for example, a C region of any human antibody such as Cy1 or C ⁇ 4 for a human antibody H chain, and C ⁇ for a human antibody L chain can be used.
  • the gene encoding the C region of the human antibody chromosomal DNA or cDNA consisting of exons and introns can also be used. Any expression vector for animal cells can be used as long as it can incorporate and express the gene encoding the human antibody C region.
  • Promoters and enhancers include SV40 early promoter and enhancer [J. Biochem., 101, 1307 (1987)], Moroni murine leukemia virus LTR promoter and enhancer [Biochem. Biophys. Res. Cons., 149]. , 960 (1987)], and a promoter of immunoglobulin heavy chain [Cell, 41, 479 (1985)] and Enhancer [Cell, 33, 717 (1983)].
  • the humanized antibody expression vector has the ability to use either the type in which the antibody H and L chains are present on separate vectors or the type in which the antibody is present on the same vector (tandem type).
  • tandem type For expression of tandem humanized antibodies in terms of ease of construction of antibody expression vectors, ease of introduction into animal cells, and balance of expression of antibody H chain and side chain in animal cells. Vectors are preferred [J. Immunol. Methods, 167, 271 (1994)].
  • a cDNA encoding an antibody of a non-human animal, for example, VH and VL of a mouse anti-human hTERT monoclonal antibody, is obtained as follows.
  • Cells producing anti-human hTERT monoclonal antibody for example, to extract the m RNA from mouse human hTERT antibody producing hybridoma or the like to synthesize cDNA.
  • the synthesized cDNA is inserted into a vector such as phage or plasmid to prepare a cDNA library.
  • a recombinant phage or a plasmid containing VH-encoding cDNA and a VL are encoded using a non-human animal antibody, for example, the C region or V region of a mouse antibody as a probe.
  • the recombinant phage or the recombinant plasmid having the cDNA to be isolated is isolated.
  • the entire nucleotide sequence of VH and VL of the target antibody on the recombinant phage or recombinant plasmid is determined, and the entire amino acid sequence of VH and VL is deduced from the nucleotide sequence.
  • a cDNA encoding VH and VL of a non-human animal antibody was inserted upstream of the genes encoding CH and CL of the human antibody in the humanized antibody expression vector constructed in 2 (1) above.
  • a chimeric antibody expression vector can be constructed.
  • a restriction for cloning cDNAs encoding VH and VL of non-human animal antibodies upstream of the genes encoding CH and CL of the human antibody in the chimeric antibody expression vector An enzyme recognition sequence is provided, and this clonindasa
  • a human chimeric antibody expression vector can be produced by inserting a cDNA encoding the V region of an antibody of a non-human animal into a site via a synthetic DNA described below.
  • Synthetic DNA is composed of the nucleotide sequence at the 3 'end of the V region of an antibody of a non-human animal and the nucleotide sequence at the 5' end of the C region of a human antibody. Manufacture using a DNA synthesizer.
  • VH and VL which form the antigen-binding site of the antibody, consist of four framework regions (hereinafter referred to as FR regions) that are relatively conserved in sequence and three sequence-rich complementary sequences that link them. It also has sex determination domain (CDR) power.
  • CDR sex determination domain
  • CDNAs encoding VH and VL of a human CDR-grafted antibody can be obtained as follows.
  • the FR amino acid sequence of the V region of the human antibody for transplanting the CDR of the V region of the antibody of the target non-human animal is selected for each of VH and VL.
  • the amino acid sequence of FR in the V region of a human antibody any amino acid sequence of FR in the V region of a human antibody can be used.
  • the amino acid sequence of FR in the V region of the human antibody registered in the Protein Data Bank and the common amino acid sequence of each subgroup of the FR in the V region of the human antibody are described in IK Sequences, Proteins.
  • B. Immunological interest can be raised.
  • To create a human CDR-grafted antibody with sufficient activity it is highly homologous and preferably to the amino acid sequence of the V region of the target non-human animal antibody. Should have a homology of 65% or more.
  • DNA sequence encoding the amino acid sequence of FR in the V region of the selected human antibody and the amino acid sequence of the CDR in the V region of the desired non-human animal antibody DNA sequences encoding the amino acid sequences of VH and VL are designed by linking the DNA sequences encoding
  • DNA sequence designed to construct the CDR-grafted antibody variable region gene several synthetic DNAs are designed for each chain so as to cover the entire DNA sequence, and the polymerase 'chain' reaction is used with them. (Polymerase Chain Reaction; hereinafter, referred to as PCR).
  • the amplified fragment is subcloned into an appropriate vector, its nucleotide sequence is determined, and a plasmid containing cDNA encoding the amino acid sequence of the V region of each chain of the target human CDR-grafted antibody is obtained.
  • the entire sequence of both sense and antisense is synthesized using synthetic DNA consisting of about 100 bases, and then annealed and ligated to encode the amino acid sequence of the V region of each chain of the target human CDR-grafted antibody. Can be constructed.
  • a human CDR-grafted antibody has the activity of the original non-human antibody by simply grafting only the CDR of the V region of the target non-human animal antibody between the FRs of the V region of the human antibody. It is known that the activity is reduced as compared with the activity of [Bio / Technology, 9, 266 (1991)]. Therefore, in the amino acid sequence of FR in the V region of the human antibody, amino acid residues that directly interact with the antigen, amino acid residues that interact with amino acid residues of the CDR, Amino acid residues that have the potential to contribute to the maintenance of the structure are modified to those found in antibodies of non-human animals to increase the activity. .
  • the modification of the FR amino acid sequence of the V region of the selected human antibody can be achieved by performing the PCR described in 2 (5) above using various mutagenic primers. After subcloning the amplified fragment after PCR into an appropriate vector, its base sequence is determined, and a vector containing the cDNA into which the desired mutation has been introduced (hereinafter, referred to as an amino acid sequence-modified vector) is obtained.
  • a mutation-introducing primer consisting of 20 to 35 bases should be used. It can be performed by the PCR mutagenesis method used. Specifically, a sense mutation primer and an antisense mutation primer each containing 20 to 35 bases containing a DNA sequence encoding a modified amino acid residue are synthesized, and a cDNA encoding the amino acid sequence of the V region to be modified is prepared. Perform a two-step PCR using the plasmid containing After subcloning the final amplified fragment into an appropriate vector, its nucleotide sequence is determined, and an amino acid sequence-modified vector containing the cDNA into which the desired mutation has been introduced is obtained.
  • a human CDR-grafted antibody expression vector can be constructed. For example, at the time of PCR for constructing a cDNA encoding the amino acid sequence of VH and VL of a human CDR-grafted antibody, a recognition sequence for an appropriate restriction enzyme is introduced into the 5'-end and 3'-end of the synthetic DNA. Thus, they can be inserted upstream of the gene encoding the C region of the desired human antibody so that they can be expressed in an appropriate form.
  • the human chimeric antibody expression vector described in 2 (3) above and the human CDR-grafted antibody expression vector described in 2 (7) above or modifications thereof were used.
  • the vector can be introduced into COS-7 cells (ATCC CRL1651) to perform transient expression of the humanized antibody [Methods in Nucleic Acids Res., CRC Press, p.283, 1991] and measure its activity. .
  • Methods for introducing an expression vector into COS-7 cells include the DEAE-dextran method [Methods in Nucleic Acids Res., CRC Press, p.283, 1991], and the lipofection method [Proc. Natl. Acad. Sci] 84 , 7413 (1987)].
  • the activity of the humanized antibody in the culture supernatant can be measured by the enzyme immunoassay (ELISA) described in 1 (4) above.
  • ELISA enzyme immunoassay
  • a transformant that stably produces a humanized antibody by introducing the human chimeric antibody expression vector of 2 (3) and the human CDR-grafted antibody expression vector of 2 (7) into appropriate host cells.
  • a method for introducing an expression vector into a host cell include an electoporation method [Japanese Unexamined Patent Publication (Kokai) No. 2-257891, Cytotechnology, 3, 133 (1990)] and the like.
  • any host cell that can express the humanized antibody can be used.
  • mouse SP2 / 0-Agl4 cells ATCC CRL1581
  • mouse P3X63-Ag8.653 Itoda spore ATCC CRL1580
  • DHFR gene CHO cells deficient in the dihydrofolate reductase gene
  • YB2 / 3HLP2.G11.16Ag.20 cells ATCC CRL1662, hereinafter referred to as YB2 / 0 cells
  • a transformant capable of stably producing a humanized antibody is selected on an RPMI1640 medium containing G418 and FCS according to the method disclosed in Japanese Patent Application Laid-Open No. 2-257891.
  • a humanized antibody By culturing the obtained transformant in a medium, a humanized antibody can be produced and accumulated in the culture solution.
  • the activity of the humanized antibody in the culture solution is measured by the method described in 1 (4) above.
  • the transformed strain can increase the amount of humanized antibody produced by using a DHFR gene amplification system or the like according to the method disclosed in Japanese Patent Application Laid-Open No. 2-2577891.
  • the humanized antibody can be purified from the culture supernatant of the transformant using a protein A column (Antibodies Chapter 8).
  • other purification methods used for ordinary proteins can be used.
  • purification can be performed by a combination of gel filtration, ion exchange chromatography and ultrafiltration.
  • the molecular weight of the purified humanized antibody H-chain, L-chain or the entire antibody molecule can be determined by polyacrylamide gel electrophoresis (SDS-PAGE) [Nature, 227, 680 (1970)] ⁇ ⁇ Estanblotting method ( Antibodies (Chapter 12).
  • the reactivity of the purified humanized antibody and the binding activity of the humanized antibody to hTERT can be measured by the method described in 1 (4) above.
  • An antibody fragment is purified by treating the above-mentioned antibody with an enzyme.
  • enzymes papain, Trypsin can be given.
  • a DNA encoding the Fab, Fab, or F (ab,) 2 fragment of the anti-human hTERT antibody is inserted into an expression vector for animal cells, and the vector is expressed by introducing the vector into animal cells.
  • Fab, ⁇ can produce F (ab,) 2 .
  • the generated antibody fragment can be purified by performing a combination of gel filtration, ion exchange, affinity chromatography, ultrafiltration, and the like.
  • Purified Fab and Fab ⁇ F (ab,) 2 molecular weights can be determined by polyacrylamide gel electrophoresis (SDS-PAGE) [Nature, 227, 680 (1970)] or Western blotting (Antibodies Chapter 12). Measure with etc.
  • the reactivity of purified Fab, Fab, F (ab,) 2 and the binding activity of Fab, Fab, F (ab ') 2 to hTERT are measured by the method described in 1 (4) above. can do.
  • the antibody of non-human animal according to 2 (2), 2 (5) and 2 (6), wherein cDNA encoding VH and VL of a human CDR-grafted antibody is used as a single-chain antibody expression vector.
  • cDNA encoding VH and VL of a human CDR-grafted antibody is used as a single-chain antibody expression vector.
  • an expression vector for a single-chain antibody of a non-human animal antibody or a single-chain antibody of a human CDR-grafted antibody As the single-chain antibody expression vector used here, any vector can be used as long as it can integrate and express a non-human animal antibody or a human CDR-grafted antibody VH and cDNA encoding VH. You can do it.
  • pAGE107 [Cytotechnology, 3, 133 (1990)]
  • pAGE103 [J. Biochem., 101, 1307 (1987)]
  • pHSG274 [Gene, 27, 223 (1984)]
  • pKCR Proc. Natl. Acad. Sci. USA, 78, 1527 (1981)]
  • pSGl ⁇ d2-4 [Cytotechnology, 4, 173 (1990)] and the like.
  • an expression vector in such a case is suitable for each host. You need to choose one.
  • a single-chain antibody can be secreted extracellularly, transported to the periplasmic region, or retained inside the cell.
  • VH-L-VL or VL-L-VH (L is a peptide linker) in the selected expression vector By inserting the cDNA encoding the single-chain antibody into a suitable promoter and signal peptide downstream, a single-chain antibody expression vector into which the cDNA encoding the desired single-chain antibody has been inserted can be constructed. it can.
  • the cDNA encoding the single-chain antibody must be ligated to the cDNA encoding VH and the cDNA encoding VL using synthetic DNA encoding a peptide linker having an appropriate restriction enzyme recognition sequence at both ends.
  • the disulfide-stabilized antibody corresponds to one amino acid residue at the appropriate position in the cDNA encoding the VH and VL of the non-human animal antibody or the cDNA encoding the VH and VL of the human CDR-grafted antibody. It can be prepared by modifying a DNA sequence to a DNA sequence corresponding to a cysteine residue, expressing and purifying it, and then forming a disulfide bond. Amino acid residues can be modified into cysteine residues by the mutagenesis method using PCR described in 2 (5) above.
  • a disulfide-stabilized antibody H chain expression vector and a disulfide-stabilized antibody L chain expression vector can be constructed.
  • the disulfide-stabilized antibody expression vector used herein any vector can be used as long as it can incorporate and express cDNAs encoding modified VH and modified VL.
  • pAGE107 [Cytotechnology, 3, 133 (1990)]
  • pAGE103 [J. Biochem., 101, 1307 (1987)]
  • pHSG274 [Gene, 27, 223 (1984)]
  • pKCR Proc. Natl. Acad. Sci.
  • a host for expressing a disulfide-stabilized antibody chain expression vector and a disulfide-stabilized antibody H chain expression vector to form a disulfide-stabilized antibody an appropriate host is selected from Escherichia coli, yeast, animal cells, and the like.
  • the expression vector can be selected. In this case, it is necessary to select an expression vector appropriate for each host.
  • the cDNA encoding the appropriate signal peptide is introduced into an expression vector to It can secrete the FID-stabilizing antibody out of the cell, transport it to the periplasmic region, or keep it inside the cell.
  • the antibody fragment expression vector, single-chain antibody expression vector, disulfide-stabilized antibody H-chain expression vector or disulfide-stabilized antibody L-chain expression vector constructed in the above 3 (1) to (3) is electorally-porated. Kaihira 2-2577891, Cytotechnology, 3, 133 (1990)], etc., to introduce the target antibody fragment, single-chain antibody, disulfide-stabilized antibody H chain or disulfide-stabilized antibody into host cells. A transformant that produces an L chain can be obtained. After the introduction of the expression vector, the expression of the antibody fragment, single-chain antibody, disulfide-stabilized antibody H chain or disulfide-stabilized antibody L chain contained in the culture supernatant or the like is determined by the method described in 1 (4) or the like. You can check.
  • a single-chain antibody, a disulfide-stabilized antibody H chain or a disulfide-stabilized antibody L chain can be achieved by a combination of known techniques. For example, if antibody fragments, single-chain antibodies, disulfide-stabilized antibody H chains or disulfide-stabilized antibody L chains are secreted into the medium, they can be concentrated by ultrafiltration, followed by various types of chromatography or gel filtration. Can be achieved. In addition, if the cells are transported to the periplasmic region of the host cell, the cells can be subjected to osmotic shock, concentrated by ultrafiltration, and then achieved by performing various types of chromatography or gel filtration. Can be.
  • Antibody fragments single-chain antibodies, disulfide-stabilized antibody H chains or disulfide-stabilized antibody L chains, which are insoluble and exist as granules (inclusion 'body), are used to lyse cells and isolate granules. This can be achieved by repeatedly performing centrifugation and washing of, for example, solubilizing with guanidine-hydrochloric acid, and then performing various chromatography or gel filtration.
  • the purified single-chain antibody can be measured by the method described in 1 (4) or the like.
  • the purified disulfide-stabilized antibody H chain and disulfide-stabilized antibody L chain are mixed with each other, and the mixture is then introduced into an active structure [refolding operation, Molecular Immunology, 32, 249 (1995)].
  • active structure Molecular Immunology, 32, 249 (1995)
  • antigen affinity chromatography or ion exchange Active disulfide stabilized antibodies can be purified by chromatography or gel filtration.
  • the activity of the disulfide-stabilized antibody can be measured by the method described in 1 (4) or the like.
  • a fusion antibody in which a radioisotope, a protein, a low-molecular drug or the like is chemically or genetically bound to the antibody or the antibody fragment used in the present invention can also be used as a derivative of the antibody.
  • a fusion antibody in which an antibody is chemically bound to a toxin protein can be prepared according to the method described in the literature [Anticancer Research, 11, 2003 (1991); Nature Medicine, 350 (1996)].
  • a fusion antibody obtained by genetically binding an antibody to a protein such as a toxin or a cytokinin is described in Proceding of National Academy of Science USA, 93, 974 (1996); Proceeding of National Academy of Science USA, 93, 7826 (1996)].
  • a fusion antibody in which an antibody and a low molecular weight anticancer agent are chemically bound can be prepared according to the method described in the literature [Science, 261, 212 (1993)].
  • a fusion antibody in which an antibody is chemically bound to a radioisotope can be prepared according to the method described in the literature [Antibody Immunoconjugates and Radiopharmaceuticals, 3.60 (1990); Anticancer Research, 11. 2003 (1991)].
  • anti-hTERT antibody the antibody fragment or a fusion antibody thereof with another molecule binds to human hTERT and destroys cells expressing hTERT on the cell surface through the effector activity of antibodies such as ADCC and CDC.
  • Treatment of lung, colon, breast and other cancers, inflammatory diseases and allergic diseases It is considered useful for medical treatment.
  • the drug containing the antibody of the present invention can be administered alone as a therapeutic agent, it is usually mixed with one or more pharmacologically acceptable carriers to obtain a pharmaceutical preparation. It is desirable to provide it as a pharmaceutical preparation manufactured by any method well known in the art.
  • the route of administration can be oral, where it is desirable to use the most effective one for treatment, or parenteral, such as buccal, respiratory, rectal, subcutaneous, intramuscular and intravenous.
  • parenteral such as buccal, respiratory, rectal, subcutaneous, intramuscular and intravenous.
  • intravenous administration can be preferably used.
  • Administration forms include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Formulations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include water, sugars such as sucrose, sorbitol, fructose, daricols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil, soybean oil, p-hydroxy It can be produced using preservatives such as benzoic acid esters and flavors such as strawberry flavor and peppermint as additives.
  • Capsules, tablets, powders, granules, etc. include excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate, talc, and poly (vinyl alcohol) It can be produced using additives such as a binder such as hydroxypropylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin.
  • Formulations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier or the like comprising a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids.
  • Sprays are prepared by using the compound itself or a carrier or the like which does not irritate the oral and respiratory mucosa of the recipient and disperses the compound as fine particles to facilitate absorption.
  • the carrier include lactose and glycerin. Properties of the compound and carrier used Thus, preparations such as aerosols and dry powders are possible. Also, in these parenteral preparations, the components exemplified as additives in the oral preparation can be added.
  • the dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc.
  • the antibody against human hTERT shown in the present invention reacts at a high rate with cells derived from patients such as lung cancer, colorectal cancer, and breast cancer, inflammatory diseases, and allergic diseases. Can be used for therapeutic drugs.
  • the method of examining the antitumor effect of the antibody used in the present invention on various tumor cells includes an in vitro experiment, a method for measuring complement-dependent cytotoxicity (CDC activity), and an antibody-dependent cytotoxicity (CDC activity). ADCC activity), and in vivo experiments include antitumor experiments using tumor systems in experimental animals such as mice.
  • CDC activity, ADCC activity, and antitumor experiments can be performed according to the methods described in the literature [Cancer Immunology Immunotherapy, 36, 373, 1993., Cancer Research, 54, 1511 (1994)] and the like.
  • the present invention provides, using the monoclonal antibody of the present invention, hTERT which is a catalytic subunit of telomerase, and a microorganism, animal cell or insect cell which expresses hTERT which is a catalytic subunit of telomerase in a cell or extracellularly. It relates to a method for immunological detection and quantification.
  • immunologically, hTERT, a catalytic subunit of telomerase, and a microorganism, animal cell, or insect cell that expresses hTERT, a catalytic subunit of telomerase, inside or outside a cell can be immunologically analyzed.
  • Methods for detection and quantification include immunohistochemical staining (ABC), such as immunofluorescence, immunoenzymatic antibody (ELISA), radiolabeled immunoassay (RIA), immunohistochemistry, and immunocytochemistry. , CSA method, etc.), Western blotting method, dot plotting method, immunoprecipitation method, enzyme immunoassay described above, sandwich ELISA method [Monoclonal antibody experiment manual (Kodansha Scientific, 1987), Chemistry Experiment Course 5 Immunobiochemical Research Method (Tokyo Kagaku Dojin, 1986)].
  • the fluorescent antibody method is a reaction of the monoclonal antibody of the present invention with microorganisms, animal cells, or insect cells that express hTERT, a catalytic subunit of telomerase, or hTERT, a catalytic subunit of telomerase, inside or outside a cell. Furthermore, after reacting an anti-mouse IgG antibody or a binding fragment labeled with a fluorescent substance such as fluorescin'isothiosyanate (FITC), the fluorescent dye is measured with a flow cytometer.
  • FITC fluorescin'isothiosyanate
  • the immunoenzymatic antibody method refers to hTERT, a catalytic subunit of telomerase, or a microorganism, animal cell, or insect cell that expresses hTERT, a catalytic subunit of telomerase, inside or outside a cell.
  • ELISA immunoenzymatic antibody method
  • Radiolabeled immunoassay refers to hTERT, the catalytic subunit of telomerase, and microorganisms, animal cells, or insect cells that express hTERT, the catalytic subunit of telomerase, inside or outside the cell.
  • This is a method of reacting with the monoclonal antibody of the present invention, and further reacting with a radiolabeled anti-mouse IgG antibody or a binding fragment, and then measuring with a scintillation counter or the like.
  • Immune cell staining and immunohistochemical staining refer to hTERT, a catalytic subunit of telomerase, and microorganisms, animal cells, or insect cells that express hTERT, a catalytic subunit of telomerase, inside or outside a cell.
  • This is a method in which the monoclonal antibody of the present invention is reacted, and further reacted with a fluorescent substance such as FITC, an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin, and then observed using a microscope. .
  • the western blotting method is a method of extracting cell extracts of hTERT, a catalytic subunit of telomerase, hTERT, a catalytic subunit of telomerase, into cells or extracellularly, microbial cells, animal cells, or insect cells. After fractionation by acrylamide gel electrophoresis [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988], the gel was blotted on a PVDF membrane or a nitrocellulose membrane, and the membrane was reacted with the monoclonal antibody of the present invention.
  • anti-mouse IgG antibodies labeled with fluorescent substances such as FITC and enzyme labels such as peroxidase and biotin. Or after reacting the binding fragment.
  • the dot-blotting method is a method in which a cell extract of a microorganism, animal cell, or insect cell that expresses hTERT, a catalytic subunit of telomerase, and hTERT, a catalytic subunit of telomerase, inside or outside a cell is deposited on a nitrocellulose membrane. After blocking, the membrane is reacted with the monoclonal antibody of the present invention, and further reacted with a fluorescent substance such as FITC, an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin, and then checked. .
  • a fluorescent substance such as FITC, an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin
  • the immunoprecipitation method refers to a cell extract of a microorganism, animal cell, or insect cell that expresses hTERT, a catalytic subunit of telomerase, or hTERT, a catalytic subunit of telomerase, in a cell or extracellularly.
  • a carrier having a specific binding ability to immunoglobulin such as protein G-sepharose is added to precipitate the antigen-antibody complex.
  • the sandwich ELISA method is a monoclonal antibody of the present invention.
  • one monoclonal antibody is previously adsorbed to a plate, and the other monoclonal antibody is a fluorescent substance such as FITC or peroxidase. And label with biotin and other enzymes.
  • the antibody adsorption plate was labeled with hTERT, a catalytic subunit of telomerase, and a cell extract of a microorganism, animal cell, or insect cell that expressed hTERT, a catalytic subunit of telomerase, inside or outside the cell. This is a method in which a monoclonal antibody is reacted and a reaction according to the labeling substance is performed.
  • hTERT which is a catalytic subunit of telomerase
  • various human tumor cells or cells collected from patients such as biopsies and cell extracts prepared from the cells. Examples of such methods include immunological detection or quantification.
  • Diseases involving telomerase include cancer and the like.
  • the monoclonal antibody of the present invention can be used as a diagnostic for those diseases.
  • the anti-hTERT monoclonal antibody of the present invention is a catalytic subunit of telomerase. It can be used to purify hTERT.
  • affinity chromatography using the antibody of the present invention is performed.
  • An anti-hTERT monoclonal antibody is used on a carrier having specific binding ability to immunoglobulin such as protein G-Sepharose, or using various coupling gels that directly bind immunoglobulin via amino groups. To immobilize it on a carrier to prepare an antibody column.
  • cell extracts of animal cells or insect cells expressing hTERT or cell extracts prepared from various human tumor culture cells or cells collected from patients by biopsy or the like can be used.
  • elution is performed with a buffer under conditions that dissociate the antigen-antibody reaction (high pH, low pH, high salt concentration, surfactant, denaturing agent, etc.) to obtain purified hTERT.
  • elution requires the use of conditions and conditions that do not inactivate the enzyme activity of hTERT.
  • FIG. 1 is a graph showing the results obtained by examining the reactivity of the monoclonal antibody of the present invention obtained using Compound 2 as an antigen with respect to Compounds 1 and 2 by enzyme immunoassay.
  • FIG. 2 is a graph showing the results obtained by examining the reactivity of the monoclonal antibody of the present invention obtained using Compound 1 as an antigen with Compounds 1 and 3 by enzyme immunoassay.
  • FIG. 3 is a graph showing the results obtained by examining the reactivity of the monoclonal antibody of the present invention obtained using Compound 3 as an antigen with respect to Compounds 2 and 3 by enzyme immunoassay.
  • FIG. 4 is a photograph showing the result of detecting hTERT protein present in cells by ⁇ stan blotting using the monoclonal antibody of the present invention.
  • FIG. 5 is a photograph showing the result of detecting hTERT protein present in cells by dot blotting using the monoclonal antibody of the present invention.
  • FIG. 6 is a chart showing measurement results of detection of hTERT protein present in cells by immunocellular staining using the monoclonal antibody of the present invention.
  • FIG. 7 is a graph showing the results obtained by examining the reactivity of GST-hTERT.F3i-specific white shark (reacting # 2582, # 2590, # 2591, and # 2604 with enzyme immunoassay).
  • FIG. 8 is a photograph showing the result of detecting hTERT protein present in cells by easter blotting using the monoclonal antibody of the present invention.
  • FIG. 9 is a chart showing the results of measurement of hTERT protein present in cells detected by immunocellular staining using the monoclonal antibody of the present invention.
  • FIG. 10 is a graph showing the results of detecting hTERT protein present in cells by a sandwich ELISA system using the monoclonal antibody of the present invention.
  • the hTERT protein sequence was analyzed using Genetyx Mac, and from the N-terminal of the human telomerase catalytic subunit,!-17 Partial peptide (compound 2, SEQ ID NO: 1), N-terminal of the human telomerase catalytic subunit 642-661 partial peptide (I-conjugate 1, SEQ ID NO: 2), and N-terminal of the human telomerase catalytic subunit
  • the partial peptide at positions 1177 to 1192 (compound 3, SEQ ID NO: 3) was selected.
  • Glx L-glutamic acid or L-glutamine
  • Trt Trityl
  • Fmoc-Ser (t-Bu) -OH N _9-fluorenylmethyloxycarbonyl-Ot-butyl-L-serine
  • Fmoc-Lys (Boc) -OH ⁇ -9 -fluorenylmethylo Xycarbonyl - ⁇ ⁇ -t -butynolexy force rubonyl- L-lysine
  • Fmoc-Asp (0-t-Bu) -OH Na-9_fluorenylmethyloxycarbonyl-L-aspartic acid- ⁇ -1-butynoleestenole
  • Fmoc-Arg (Pmc) -OH N -9 -Fluorenylmethyloxycarbonyl- Ng_2,2,5,7,8-pentamethynolechroman-6-Snorlehoninole L-Azoreginine
  • Fmoc-Cys (Trt) -OH Na-9-fluorenylmethyloxycarbonyl-S-trityl-L-cysteine
  • the following abbreviations represent the corresponding reaction solvents, reaction reagents and the like described below.
  • Compound 1 (SEQ ID NO: 2) (Ac-Ala-Arg-Thr-Phe-Arg-Arg-Glu-Lys-Arg-Ala-Glu-Arg-Leu-Thr- Ser-Arg-Vatro Lys-Ala-Cys -OH)
  • step (a) a condensation reaction is carried out using Fmoc-Lys (Boc)- ⁇ H, a washing step in (b), and then a deprotection step in (c) and (d), H-Lys (Boc) -Ala-Cys (Trt) was synthesized on the support.
  • step (a) Fmoc-VatoOH, Fmoc-Arg (Pmc) -OH, Fmoc-Ser (t-Bu) -OH, Fmoc-Thr (t-Bu) - ⁇ H, Fmoc- Leu—OH, Fmoc—Arg (Pmc) —OH, Fmoc—Glu (Ot—Bu) - ⁇ H, Fmoc-Ala-OH, Fmoc-Arg (Pmc) —OH, Fmoc—Lys (Boc) —OH, Fmoc — Glu (Ot—Bu) -OH, Fmoc—Arg (Pmc) -OH, Fmoc—Arg (Pmc) - ⁇ H, Fmoc-Phe—OH, Fmoc_Thr (t-Bu) _OH, Fmoc-Arg (Pmc)- After repeating (a) to (d) using OH and Fmoc-
  • Fmoc-Ser (t-Bu) -OH Fmoc was used in the same manner as for Compound 1, using 30 mg of a carrier resin (chlorotrityl resin, manufactured by AnaSpec) bound with H-Cys (Trt), 14.1 ⁇ mol.
  • a carrier resin chlorotrityl resin, manufactured by AnaSpec
  • the hTERT partial peptide obtained in Example 1 (1) was used as an immunogen by preparing a conjugate with KLH (Calbiochem) by the following method in order to enhance immunogenicity. That is, KLH was dissolved in PBS to adjust to lOmgZml, 1/10 volume of 25mgZml MBS (Nacalai Tesque) was added dropwise, and the mixture was stirred and reacted for 30 minutes. Dissolve 2.5 mg of KLH-MB obtained by removing free MBS on a gel filtration column such as a Sephadex G-25 column equilibrated with PBS in 0.1 M sodium phosphate buffer (PH 7.0). The resulting mixture was mixed with 1 mg of the peptide thus obtained, and reacted at room temperature for 3 hours with stirring. After the reaction, the mixture was dialyzed against PBS-0.5 M NaCl.
  • Example 1 100 ng of the peptide-KLH conjugate prepared in Example 1 (2) was administered to 5-week-old female mice (Baltic) together with 2 mg of aluminum gel and 1 ⁇ 10 9 cells of pertussis vaccine (manufactured by Chiba Prefectural Serum Institute). After a week, 100 g of the conjugate was administered once a week for a total of four times. Blood was collected from the fundus venous plexus, and its serum antibody titer was examined by the enzyme immunoassay shown below. The spleen was excised 3 days after the last immunization from the mouse showing a sufficient antibody titer.
  • the spleen is shredded in a MEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with tweezers, centrifuged (1200 rpm, 5 minutes), the supernatant is discarded, and tris-ammonium chloride buffer (pH 7.65) is added.
  • MEM medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • tweezers centrifuged (1200 rpm, 5 minutes)
  • the supernatant is discarded, and tris-ammonium chloride buffer (pH 7.65) is added.
  • the cells were treated for ⁇ 2 minutes to remove red blood cells, washed three times with MEM medium, and used for cell fusion.
  • Example 1 (1) As an antigen for Atsushi, the hTERT partial peptide obtained in Example 1 (1) was used for thyroglobulin (hereinafter, referred to as thyroglobulin). Abbreviated as THY. ) was used. The preparation method was as described in Example 1 (2). SMCC (Sigma) was used instead of MBS as a crosslinking agent. The conjugate of 10 ⁇ gZml prepared as described above was dispensed into a 96-well plate for EIA (Grainer) at 50 1 / well, and allowed to stand at 4 ° C for adsorption. After washing, 1% BSA-PBS was mashed in a ⁇ hole and allowed to react at room temperature for 1 hour to block the remaining active groups.
  • EIA Gariner
  • wash the ABTS substrate solution [2.2-Azinobis (3-E) [Tylbenzothiazole-6-sulfonic acid] ammonium] was used for color development, and the absorbance at OD 415 nm was measured using a plate reader (NJ2001; Nippon Intermed).
  • the 8-azaguanine-resistant mouse myeloma cell line P3-U1 was cultured in a normal medium to secure 2 ⁇ 10 7 or more cells at the time of cell fusion and used as a parent strain for cell fusion.
  • Example 1 The mouse spleen cells obtained in (3) and the myeloma cells obtained in (5) were mixed at a ratio of 10: 1, centrifuged (1, 200 rpm, 5 minutes), and then the supernatant After discarding the precipitated cells, disperse the precipitated cell group well, and stir without agitation at 37 ° C at 37 ° C for 2 g of polyethylene glycol 1,000 (PEG-1, 000), 2 ml of MEM medium and 0.7 ml of dimethyl sulfoxide.
  • a mixture of 0.2 to 1 ml of Zl08 mouse spleen cells was added, and 1 to 2 ml of MEM medium was added several times every 1 to 2 minutes, and then the MEM medium was added so that the total volume became 50 ml. After centrifugation (900 rpm, 5 minutes), the supernatant was discarded, the cells were loosened gently, and the cells were suspended in 100 ml of HAT medium gently by aspirating and aspirating with a female pipette.
  • the suspension was dispensed by 100 ⁇ ⁇ holes in the plate for a 96-well culture, in a 5% C0 2 incubator primary, 10 at 37 ° C: 14 days C_ ⁇ were cultured under 25%.
  • the culture supernatant was examined by the enzyme immunoassay described in Example 1 (4), a well was selected that reacted with the hTERT partial peptide and did not react with the control peptide, and was further replaced with HT medium and normal medium. Repeat cloning and use anti-hTERT monoclonal An antibody-producing hybridoma was established.
  • the IgM fraction was collected by passing through the column at a flow rate of 15 ml / hour and used as a purified monoclonal antibody.
  • the monoclonal antibody was IgG, it was purified by the force prillic acid precipitation method (antibody) to obtain a purified monoclonal antibody.
  • the antibody subclass was determined by enzyme immunoassay using a subcluster typing kit (Table 1).
  • Example 1 The reactivity of the anti-hTERT monoclonal antibody selected in (6) with the hTERT partial peptide was examined by the enzyme immunoassay shown in (4).
  • the anti-hTERT monoclonal antibodies obtained by using Compound 2 (SEQ ID NO: 1) specifically reacted with Compound 2, and as shown in FIG.
  • the anti-hTERT monoclonal antibodies obtained using (SEQ ID NO: 2) specifically reacted with Compound 1, and were obtained using Compound 3 (SEQ ID NO: 3) as the antigen as shown in Figure 3.
  • the monoclonal antibodies (KM2296 to KM2312) reacted specifically with compound 3.
  • Example 1 (6) Using the anti-hTERT monoclonal antibody selected in Example 1 (6), the detection of the hTERT protein in the cells by ⁇ stanbul blotting was examined.
  • Cells were human kidney transformant 293 (ATCC CRL-1537), human cervical cancer cell line HeLaS3 (ATCC CCL-2.2), human colon cancer cell line CoLo205 cells (ATCC CRL-225), human lung normal Itoda Five types of cell line MRC5 (ATCC CCL-171) and normal human lung cell line WI-38 cells (ATCC CCL-75) were used. These cells were suspended using a mixture of trypsin and EDTA (Sanko Junyaku), and washed with PBS.
  • Cell lysis buffer 50 mM Tris-HCl pH7.2, 1% TritonX, 150 mM NaCl, 2 mM MgCl 2 , 2 mM CaCl 2 , 0.1% NaN 3 , 50 mM iodoacetamide, 50 mM N-ethylmaleimide, lmg / ml leupepcin, O.lmM dithiothreitol
  • 50 mM Tris-HCl pH7.2, 1% TritonX 150 mM NaCl, 2 mM MgCl 2 , 2 mM CaCl 2 , 0.1% NaN 3 , 50 mM iodoacetamide, 50 mM N-ethylmaleimide, lmg / ml leupepcin, O.lmM dithiothreitol
  • Lane 1 shows the results of 293 cell lysate
  • Lane 2 shows the results of HeLaS3 cell lysate
  • Lane 3 shows the results of CoLo205 cell lysate
  • Lane 4 shows the results of MRC5 cell lysate
  • Lane 5 shows the results of WI-38 cell lysate.
  • KM2311 anti-hTERT monoclonal antibody obtained from compound 3
  • a band was detected. No specific band was observed in the lysates of MRC5 cells and WI-38 cells, which are human normal cell lines.
  • KM511 [Agrk; Biol. Chem., 53 (4), 1095 (1989)] that does not react with hTERT, none of the antibodies specifically reacted with the band around 130 KDa.
  • KM2311 can detect hTERT protein in cells by western blotting and can be applied to diagnosis of various diseases involving telomerase such as cancer.
  • the detection of hTERT protein in cells by dot blotting using an anti-hTERT monoclonal antibody was examined.
  • the anti-hTERT monoclonal antibody the culture supernatant of KM2311 in which the hTERT protein was detected in Example 1 (7) was used.
  • Example 1 Human kidney transformant 293 cell lysate prepared in (7) 2.5 ⁇ 10 5 cells Z5 ⁇ l was diluted 2 ⁇ , 4 ⁇ , 8 ⁇ , 16 ⁇ , 32 ⁇ with cell lysis buffer After dilution by a factor of 64, dots were formed on the nitrocellulose membrane at 5 ⁇ l / spot. After drying and blocking with BSA-PBS, the KM2311 culture supernatant was reacted with the stock solution at room temperature for 2 hours. After washing well with PBS-Tween, a peroxidase-labeled anti-mouse immunoglobulin antibody was reacted as a second antibody for 1 hour at room temperature.
  • FIG. 5 shows the results.
  • spots of KM511 in the upper row and KM2311 in the lower row were spotted from the left, a stock solution of human kidney transformant 293 cell lysate, 2x, 4x, 8x, 16x, 32x, and 64x, respectively.
  • 3 shows the results of the reaction with the nitrocellulose membrane.
  • KM2311 was able to detect hTERT protein in cells by dot blotting, and was shown to be applicable to the diagnosis of various diseases involving telomerase such as cancer.
  • Example 1 (6) Using the anti-hTERT monoclonal antibody selected in Example 1 (6), the detection of hTERT protein in cells by immunocytostaining was examined.
  • Cells were human kidney transformant 293 (ATCC CRL-1537), human cervical cancer cell line HeLaS3 (ATCC CCL-2.2), human colon cancer cell line CoLo205 cells (ATCC CRL-225), human lung normal Itoda A total of five cell lines, MRC5 (ATCC CCL-171) and a normal human lung cell line WI-38 cell (ATCC CCL-75), were used. These cells were suspended using a mixture of trypsin and EDTA, washed with PBS, and then treated with 100% methanol (ice-cooled) at 4 ° C for 10 minutes to increase antibody permeability of the cell membrane. After washing with PBS, the cells were blocked with 10 gZml human immunoglobulin (Kappel) at room temperature for 30 minutes.
  • Kappel human immunoglobulin
  • Fig. 6 is a chart of the cell analyzer, showing 293 cells (left column), HeLaS3 cells (middle column), CoLo205 Itoda J3 package, MRC5 Itoda Tsuki package, WI-38 Itoda Tsuki package, KM2311, The results show that calories from KM511 and BSA are shown.
  • the shift of the peak in FIG. 6 indicates that KM2311 reacts with S293 cells, HeLaS3 cells, and CoLo205 cells.
  • the reactivity of KM2311 with normal MRC5 cells and WI38 cells was not observed. No monoclonal antibodies other than KM2311 showed specific reactivity to cancer cell lines.
  • KM2311 was able to detect the hTERT protein in cells by immunocytostaining, indicating that it can be applied to diagnosis of various diseases involving telomerase such as cancer.
  • Example 2 Preparation of anti-hTERT monoclonal antibody (2)
  • SEQ ID NO: 6 consists of a nucleotide sequence in which a nucleotide sequence recognized by BamHI is linked to the 5 'end of a nucleotide sequence corresponding to amino acid residues 439 to 555.
  • SEQ ID NO: 5 consists of a nucleotide sequence obtained by binding a nucleotide sequence recognized by EcoRI to the 5 'end of a complementary strand of a nucleotide sequence corresponding to amino acid residues 825 to 831. Amplification was performed by PCR using these synthetic DNA primers. The reaction conditions were as follows: 1 minute at 94 ° C, 25 cycles of 20 ° C at 94 ° C, 30 seconds at 55 ° C, 2 minutes at 72 ° C, 10 minutes at 72 ° C, 4 ° Moved to C. As the heat-resistant DNA polymerase, Takara Shuzo's LA Taq DNA polymerase was used.
  • a band corresponding to the molecular weight of the GST-hTERT fragment was cut out from the gel, and extracted with 0.1% SDS-PBS at 4 ° C- ⁇ . The extract was filtered through a glass filter, and a filtrate containing a fragment of GST-hTERT was used as an antigen.
  • the E. coli expression GST-hTERT fragment was purified by the resulting SDS-PAGE as described above at 50 ⁇ gZ animals, for the first time only aluminum gel 2mg and pertussis vaccine 1 X 10 9 cells with 5-week-old female mice in total 3 Dose was administered once. Thereafter, hybrids were prepared according to the methods described in Examples 1 (3) to (7). However, an Escherichia coli-expressed GST-hTERT fragment purified by SDS-PAGE was used as an antigen for the assay in the enzyme immunoassay.
  • a GST-hTERT fragment (specifically, KM2582, KM2590, KM2591, and KM2604 reacting with each other.
  • the antibody subclass was determined by binding ELISA shown in (4) to be K2582, KM2590, and KM2591 as IgG2b
  • GDS-hTERT.F3 expressed by SDS-PAGE purified Escherichia coli was used as an antigen for Atssey.
  • GST was used as a control antigen.
  • GST was prepared in the same manner as in Example 2 (1) to (3) described above. Thereafter, the measurement was performed by the enzyme immunoassay described in Example 1 (4).
  • Fig. 7 shows the results.
  • KM2582, KM2590, KM2591, and KM2604 also showed specific reactivity to GDS-hTERT.F3 expressed by SDS-PAGE purified S. aureus.
  • Example 2 Using the anti-hTERT monoclonal antibody selected in Example 2 (3), detection of hTERT protein in cells by Western blotting was examined.
  • the cells used were human kidney transformant 293 (ATCC CRL1537) and normal human lung cells WI-38 (ATCC CC L75), and the second antibody was labeled with peroxidase that specifically reacts with rat immunoglobulin.
  • Anti-rat immunoglobulin (manufactured by Dako) was used.
  • ff was obtained by the method described in Example 1 (9).
  • lane 1 shows the results of the 293 cell lysate
  • lane 2 shows the results of the WI38 cell lysate.
  • KM2582 and KM2604 detected a band near 130 KDa corresponding to the molecular weight of hTERT in the 293 Itodatsuki husum solution. No specific reactive band was observed in the WI-38 cell lysate, which is a normal cell.
  • monoclonal antibodies KM844 against DU 189 was also not react at all to any of the cells.
  • Example 2 Using the anti-hTERT monoclonal antibody selected in Example 2 (3), the detection of hTERT protein in cells by immunocytostaining was examined.
  • Cells used were human kidney transformant 293 (ATCC CRL-1537) and normal human lung cells WI-38 (ATCC CCL-75), and FITC-labeled second antibody specifically binds to rat immunoglobulin.
  • Anti-rat immunoglobulin manufactured by Wako Pure Chemical Industries, Ltd. was used. The method was performed according to the method described in Example 1 (11).
  • an hTERT protein-expressing insect cell nucleus extract and an insect cell nucleus extract expressing only a vector were prepared by the following methods.
  • the hTERT gene described in Example 2 (1) was inserted into the EcoRI site of PVL1392 (Pharmingen) to prepare a transfer vector pVL-hTERT. This was introduced into Sf21 cells together with BaculoGold (Pharmingen), cultured at 27 ° C. for 4 days, and a viral vector expressing hTERT was obtained from the culture supernatant.
  • a virus vector obtained by introducing both PVL1392 and BaculoGold into Sf21 cells, into which the hTERT gene was not inserted was used.
  • Sf21 cells were infected with the above-described viral vector at 3 plaque forming units per cell. After culturing at 27 ° C for 3 days, the cells are collected and cultured at a concentration of 5 ⁇ 10 6 cells / ml in 1 ⁇ CHAPS buffer (10 mM Tris / HCl (pH7.5), ImM MgCl z , ImM EGTA, 5 mM ⁇ - Mercaptoethanol, 0.5% (w / v) CHAPS, 10% glycerol). After allowing to stand on ice for 30 minutes, the nuclear fraction was collected as a precipitate by centrifugation at 4 ° C and 12,000 ⁇ ⁇ ⁇ for 20 minutes.
  • the precipitate equal volume of KC1 lysis buffer (50mM Tris / HCl (pH7.5) , 420mM KC1, 5m gCl 2, O.lmM EDTA, 6mM dithiothreitol I torr, 0.5% (w / v) CHAPS, 20% (Glycerol, 10% sucrose). This was subjected to ultrasonic treatment to obtain an extract of a nuclear fraction containing a human telomerase catalytic subunit.
  • the anti-hTERT monoclonal antibody KM 2311 obtained in Examples 1 (1) to (7) was labeled with biotin by the following method.
  • the KM2311 purified antibody was diluted to 1 mgZml with PBS, and 14 volumes of 0.5 M carbonate buffer (PH9.2) was added to the antibody solution.
  • NHS_Lc_Biotin dissolved in lmgZml with dimethylformamide; Pierce
  • the mixture was dialyzed overnight with PBS and used as biotin-labeled KM2311.
  • anti-rat immunoglobulin antibody Zumi mouse serum absorbed; Caltag Inc. 4 ⁇ 1111, dispensed in 50 ⁇ ⁇ / Ueru min, 4 ° C De ⁇ standing And adsorbed.
  • 1% BSA-PBS was added in a microliter and allowed to react at room temperature for 1 hour to block the remaining active groups.
  • the 1% BSA-PBS in the well was discarded, and the KM2590 and KM2591 hybridoma culture supernatant was added as a stock solution and reacted at 4 ° C.
  • the hTERT protein-expressing insect cell nucleus extract and the insect cell nucleus extract expressing only the vector are diluted 7-point from the stock solution in a 5-fold dilution series, dispensed in the wells, and reacted at 4 ° C. I let it.
  • the above-mentioned biotin-labeled KM2311 diluted with BSA containing 1% normal rat serum in 1 ⁇ g Zml- ⁇ S
  • was added in 50 ⁇ l wells was added in 50 ⁇ l wells, and reacted at room temperature for 2 hours.
  • peroxidase-labeled avidin manufactured by Vector
  • peroxidase-labeled avidin manufactured by Vector
  • the ABTS substrate solution [2.2-azinobis (3-ethylbenzothia) Sol-6-sulfonic acid) ammonium] and the absorbance at D415 nm was measured with a plate reader (E-max; Wako Pure Chemical Industries, Ltd.).
  • the present method enables quantification of hTERT by using a known concentration of hTERT protein as a standard sample, and is effective as a diagnostic method for diseases involving telomerase such as cancer.
  • Anti-rat immunoglobulin (Caltag) was dispensed in 100 ⁇ l aliquots into a 96-well EIA plate, left at 4 ° C to coat the plate, and then BSA-PBS was dispensed in a 200 ⁇ l / l aliquot. The plate was allowed to stand at room temperature for 1 hour to block (block) protein residues remaining on the plate. Thereafter, the wells of BSA-PBS were discarded, and the culture supernatant of each hybrid of control antibody # 844, # 2590 or KM2591 was dispensed in a stock solution at 100 ⁇ l / well, and reacted at room temperature for 2 hours.
  • the cell extract prepared as above was dispensed at 100 ⁇ ⁇ / well, and reacted at 4 ° C overnight.
  • SDS-PAGE sample buffer 1 (X5 concentration) was added at 20 ⁇ l, the plate was shaken for 2 hours at room temperature, and the entire amount was transferred to a tube.
  • the collected sample was diluted 5-fold with PBS, subjected to SDS-PAGE and western blotting by a conventional method, and subjected to antibody staining using the anti-hTERT monoclonal antibody KM2311 obtained in Example 1.
  • an anti-hTERT monoclonal antibody that specifically reacts with hTERT and specifically detects the hTERT protein by Western blotting, immunocellular staining, and dot blotting.
  • Anti-hTERT monoclonal antibodies that can specifically detect the hTERT protein by these methods and diagnostic kits using them can provide highly sensitive and reliable detection of various diseases involving telomerase such as cancer. enable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

明細書
ヒトテロメラーゼ触媒サブユニットに対するモノクローナル抗体
技術分野
本発明は、ヒトテロメラーゼ触媒サブユニット(以下、 hTERTという)に特異的に反応するモノク ローナル抗体に関する。さらに、本発明は、このモノクローナル抗体を用いた、癌などのテロメ ラーゼが関与する各種疾病の診断方法'診断薬'治療薬に関する。
本出願は、 日本国への特許出願(特願平 10— 98486)に基づくものであり、当該日本出願 の記載内容は本明細書の一部として取り込まれるものとする。 背景技術
動物細胞などの真核細胞の染色体末端はテロメァと呼ばれ、特徴的な DNA反復配列とそれ に結合する蛋白質からなる高次構造をとつている。テロメァ構造は染色体の安定化に重要な 役割を有すると考えられており、テロメァが短くなつた細胞では、染色体の欠失や染色体末端 同士の融合が高頻度で観察されることがわかっている。直鎖状 DNAの複製に際しては、一番 端の 5'末端の RNAプライマーは DNAで置き換えることができないため、複製のつどプライマ一 分だけは染色体が短縮することになる。実際、ヒト体細胞を培養し継代を続けるとテロメァが短 縮し、先に述べた染色体の不安定性により細胞は死に至る。このようにテロメァの長さは、細胞 が有する有限分裂能を規定する一つの因子として、細胞の老化や不死化などと密接に関連し ていることが知られている。
一方、単細胞の原生動物や酵母では増殖を繰り返してもテロメァは短縮しない。これら生物 ではテロメラーゼと呼ばれる、テロメァ繰り返し配列の一本鎖を伸長させる RNA依存性 DNAポリ メラーゼが働き、分裂に伴い短縮するテロメァの長さを一定に維持しているからである。従来、 テロメラーゼ酵素活性の測定は感度が低く困難であった力 テロメラーゼの反応産物を PCRで 増幅する方法(Telomeric Repeat Amplification Protocol; TRAP法)が開発され(Kim, N. W., et al., Science, 266, 2011,1995)、ヒトを含む高等動物の各種細胞、組織でのテロメラーゼ活性の 測定が可能となった。
ヒト癌由来の細胞は正常細胞と異なりイン'ビトロで無限増殖が可能であり、細胞分裂を繰り 返してもテロメァは短縮しなレ、。前述の TRAP法を用いて、様々なヒト組織においてテロメラー ゼ活性が調べられた結果、生殖細胞や一部の骨髄細胞を除くほぼすベての正常組織では検 出されないテロメラーゼ活性力 癌組織において特異的に検出されることが明ら力となった (Shay, J.W., et al., Eur. J. Cancer, 33, 787, 1997)。この結果は、テロメラーゼを介したテロメァ 短縮を免れる機構の獲得がヒトの癌の成立に重要であることを示している。テロメラーゼは、癌 細胞特異的に発現しその無限増殖能に関わっていることから、その機能を阻害する薬剤は選 択性の高い抗癌剤になると期待されてレ、る。
テロメラーゼは複数の因子からなる複合体と推定されている力 テロメァ DNAの一本鎖を延 長する際の踌型となる RNA分子、 hTR [ヒトテロメラーゼ RNA (Human Telomerase RNA) ]と、ポ リメラーゼ反応を触媒する酵素サブユニット、 hTERT [ヒトテロメラーゼ'リバース 'トランスクリプタ ーゼ (Human Telomerase Reverse TranscriptaseJ Jの 2つの構成因子につレヽてその遺伝子力ク ローニングされた(Feng, J. et al" Science, 269, 1236, 1995; Nakamura, T. . et al., Science, 277, 955, 1997)。これら因子の発現とテロメラーゼ活性との関係が解析され、ヒト癌組織特異的 に検出されるテロメラ一ゼ活性が hTERT蛋白質の発現と相関していること、すなわち癌におけ るテロメラ一ゼ活性の発現は hTERT蛋白質により規定されていることが報告されている (Nakamura, T. . et al., Science, 277, 955, 1997; Nakayama, J., et al., Nature Genetics, 18, 65, 1998)。また、分裂寿命をもつヒト正常細胞に hTERT遺伝子を導入することによりその寿命が延 びることが示され、 hTERTが細胞の老化 ·不死化を調節する分子として機能していることが明ら かにされている (Bodnar, A.G., et al" Science, 279, 349, 1998)。このように hTERT蛋白質の機 能解析は、癌に限らず老化に伴う様々な疾病に対する薬剤を開発する上で重要な知見を提 供すると期待される。
細胞や組織内における特定の蛋白質の機能や発現を調べる手段として、抗原特異性が高く ァフィ二ティの高い抗体は蛋白質の機能解析においてきわめて重要である。 hTERT蛋白質に 対する抗体としては、ゥサギを利用して作られたポリクローナル抗体が知られており、ヒト癌細 胞(HeLa S3)の抽出液を免疫沈降しそのサンプル中にテロメラーゼ活性が検出できることが報 告されている (Harrington,し, et al., Genes & Dev. 11 , 3109, 1997)。しかしながら、 hTERT蛋白 質が発現量の極めて低い蛋白質であるため、報告されたポリクローナル抗体ではヒト癌細胞 (HeLa S3)内で発現している hTERT蛋白質をウェスタンブロッテイング法により検出することは できない。 発明の開示
本発明は、テロメラーゼの触媒サブユニットである hTERT蛋白質を特異的かつ効率的に認識 できるモノクローナル抗体およびこれを含むヒト型キメラ抗体、 CDR移植抗体、一本鎖抗体、ジ スルフイド安定化抗体と、これらを用いた hTERT蛋白質の検出および定量方法を提供する。さ らに本発明は、これらの抗体を用いた、癌などのテロメラーゼが関与する各種疾病の診断方法、 診断薬および治療薬を提供する。
本発明は、以下の(1)〜(37)に関する。
(1)ヒトテロメラーゼ触媒サブユニットを認識するモノクローナル抗体。
本発明の目的は、細胞内の hTERT蛋白質を検出するための反応性の高い優れたモノクロ一 ナル抗体を提供することにある。
本発明の抗体は、テロメラーゼの触媒サブユニットであるヒトテロメラーゼ 'リバ一ス'トランスク リプタ一ゼ(Human Telomerase Reverse Transcriptase;以下、 hTERTと記載する。)を認識する モノクローナル抗体であればいかなるものでもよレ、。
モノクローナル抗体としては、ハイプリドーマにより産生される抗体、および抗体遺伝子を含 む発現ベクターで形質転換した形質転換体により生産される遺伝子組換え抗体をあげること ができる。
すなわち、テロメラーゼの触媒サブユニットである hTERT蛋白質、あるいは hTERT蛋白質の アミノ酸配列 [Science, 277, 955(1997)]に基づいて化学合成したペプチドなどを抗原として調 製し、抗原を免疫した動物より抗原特異性をもつ抗体産生細胞を誘導し、さらに、それと骨髄 腫細胞とを融合させてハイプリドーマを調製し、該ハイブリドーマを培養する力 \あるいは該ハ イブリドーマ細胞を動物に投与して該動物を腹水癌化させ、該培養液または腹水を分離、精 製することにより抗テロメラ一ゼの触媒サブユニットである hTERTモノクローナル抗体を取得す ること力でさる。
(2)ヒトテロメラーゼ触媒サブユニットの、配列番号 1、 2、 3および 6のいずれかに記載されたァ ミノ酸配列を有する部分ペプチドを動物に免疫することにより得られる、上記(1)のモノクロ一 ナル抗体。
(3)モノクローナル抗体が、ヒトテロメラーゼ触媒サブユニットの、配列番号 1、 2、 3および 6の いずれかに記載されたアミノ酸配列に特異的に反応するモノクローナル抗体である、上記(1) に記載のモノクローナル抗体。
(4)モノクローナル抗体が、モノクローナル抗体 KM2311、 KM2582、 KM2590, KM2591および KM2604から選ばれる、上記(1)〜(3)のレ、ずれかに記載のモノクローナル抗体。
(5)上記(1)〜(3)のいずれかに記載のモノクローナル抗体を生産する/、イブリドーマ。
(6)ハイプリドーマが KM2311(FERM BP- 6306)、 KM2582(FERM BP- 6663)、 K 2590(FERM BP - 6683)、 KM259KFERM BP- 6684)および KM2604(FERM BP- 6664)から選ばれる、上記(5) 記載のハイプリドーマ。
(7)モノクローナル抗体が、遺伝子組換え抗体である、上記(1)〜(3)のいずれかに記載され たモノクローナル抗体。
(8)遺伝子組換え抗体が、ヒト化抗体、抗体断片から選ばれるモノクローナル抗体である、上 記(7)に記載されたモノクローナル抗体。
本発明の遺伝子組換え抗体は、上記本発明のモノクローナル抗体を遺伝子組換え技術を 用いて改変したものである。遺伝子組換え抗体としては、ヒト化抗体および抗体断片など、遺 伝子組換えにより製造される抗体を包含する。遺伝子組換え抗体において、モノクローナル抗 体の特徴を有し、抗原性が低ぐ血中半減期が延長されたものは、治療薬として好ましい。 本発明におけるヒト化抗体とは、ヒト型キメラ抗体およびヒト型 CDR ( Complementary Determining Region湘補性決定領域 以下、 CDRと記す) 移植抗体を包含する。
本発明の抗体断片は、ヒト hTERTに特異的に反応する抗体断片である Fab (Fragment of antigen Wndingの略)、 Fab,、 F(ab,)2、一本鎖抗体 (single chain Fv; 以下、 scFvと称す) および ジスルフイド安定化抗体 (disulfide stabilized Fv; 以下、 dsFvと称す)を包含する。
(9)ヒト化抗体がヒト型キメラ抗体である上記(8)に記載されたモノクローナル抗体。
ヒト型キメラ抗体は、ヒト以外の動物の抗体可変領域重鎖(以下、 VHと称す)および可変領域 軽鎖(以下、 VLと称す)とヒト抗体の定常領域重鎖(以下、 CHと称す)およびヒト抗体の定常領 域軽鎖(以下、 CLと称す)とからなる抗体を意味する。
本発明のヒト型キメラ抗体は、ヒト hTERTに特異的に反応するモノクローナル抗体を生産する ハイプリドーマより、 VHおよび VLをコードする cDNAを取得し、ヒト抗体 CHおよびヒト抗体 CLを コードする遺伝子を有する動物細胞用発現ベクターに、該 cDNAをそれぞれ挿入してヒト型キ メラ抗体発現べクタ一を構築し、該ベクターに動物細胞へ導入することにより、本発明のヒト型 キメラ抗体を発現させ製造することができる。
本発明のヒト型キメラ抗体の C領域の構造としては、いずれのィムノグロブリン (Ig)クラスに属 するものでもよレ、が、 IgG型、さらには IgG型に属する IgGl、 IgG2、 IgG3、 IgG4等のィムノグロブリ ンの C領域が好ましい。
(10)上記(1)に記載されたモノクローナル抗体の抗体重鎖 (H鎖)可変領域 (V領域)および抗 体軽鎖 (L鎖) V領域と、ヒト抗体の H鎖定常領域 (C領域)および L鎖 C領域とからなるヒト型キメラ 仉体。
(11) H鎖 V領域および L鎖 V領域のアミノ酸配列力 モノクローナル抗体 KM2311、 KM2582、 KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域および L鎖 V 領域のアミノ酸配列と同じアミノ酸配列を有する、上記(10)記載のヒト型キメラ抗体。
(12)ヒト化抗体が CDR (相補性決定領域)移植抗体である上記(8)に記載されたモノクローナ ル抗体。
ヒト型 CDR移植抗体は、ヒト抗体の VHおよび VLの CDRをヒト以外の動物の抗体の CDR配列 でそれぞれ置換した抗体を意味する。
本発明のヒト型 CDR移植抗体は、ヒト hTERTに特異的に反応する、ヒト以外の動物の抗体の VHおよび VLの CDR 配列で任意のヒト抗体の VHおよび VLの CDR配列をそれぞれ置換した V 領域をコードする cDNAを構築し、ヒト抗体の CHおよびヒト抗体の Cしをコードする遺伝子を有 する動物細胞用発現ベクターに cDNAをそれぞれ挿入してヒト型 CDR移植抗体発現ベクター を構築し、該ベクターを動物細胞へ導入し、発現させることにより製造することができる。
本発明のヒト型 CDR移植抗体の C領域の構造としては、いずれのィムノグロブリン (Ig)クラスに 属するものでもよレ、が、 IgG型、さらには IgG型に属する IgGl、 IgG2、 IgG3、 IgG4等のィムノグロ ブリンの C領域が好ましい。
(13)上記(1)に記載されたモノクローナル抗体の H鎖および L鎖の V領域相補性決定領域と、 ヒト抗体の H鎖および L鎖の C領域および V領域フレームワーク領域とからなる CDR移植抗体。
(14) H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列力 モノクローナル抗体 M2311, KM2582, KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、上記 (13)に記載された CDR移植抗体。
(15)抗体断片が、 Fab、 Fab,、 F(ab,)2、一本鎖抗体およびジスルフイド安定化 Fvからなる群より 選ばれる抗体である上記 (8)に記載されたモノクローナル抗体。
Fabは、 IgGのヒンジ領域で 2本の H鎖を架橋してレ、る 2つのジスルフイド結合の上部のぺプチ ド部分を酵素パパインで分解して得られた、 H鎖の N末端側約半分と L鎖全体で構成された、 分子量約 5万の抗原結合活性を有するフラグメントである。
本発明の Fabは、ヒト hTERTに特異的に反応する抗体をパパイン処理して得ることができる。 または、該抗体の Fab断片をコードする DNAを動物細胞用発現ベクターに揷入し、該ベクター を動物細胞へ導入することにより発現させ、 Fabを製造することができる。
Fab'は、上記 F(ab,)2のヒンジ間のジスルフイド結合を切断した分子量約 5万の抗原結合活性 を有するフラグメントである。
本発明の Fab,は、ヒト hTERTに特異的に反応する抗体を還元剤ジチオスレィトール処理して 得ること力 Sできる。または、該抗体の Fab'断片をコードする DNAを動物細胞用発現べクタ一に 挿入し、該ベクタ一を動物細胞へ導入することにより発現させ、 Fab'を製造することができる。
F(ab,)。は、 IgGのヒンジ領域の 2個のジスルフイド結合の下部を酵素トリプシンで分解して得ら れた、 2つの Fab領域がヒンジ部分で結合して構成された、分子量約 10万の抗原結合活性を 有するフラグメントである。
本発明の F(ab,)2は、ヒト hTERTに特異的に反応する抗体をトリプシン処理して得ることができ る。または、該抗体の F(ab')2断片をコードする DNAを動物細胞用発現ベクターに挿入し、該べ クタ一を動物細胞へ導入することにより発現させ、 F(ab')2を製造することができる。
(16)上記(1)に記載されたモノクローナル抗体の H鎖 V領域および L鎖 V領域を含む一本鎖抗 体。
一本鎖抗体(scFv)は、一本の VHと一本の VLとを適当なペプチドリンカ一(以下、 Lと称す) を用いて連結した、 VH— L— VLないしは VL— L— VHポリペプチドを示す。本発明の scFvに 含まれる VHおよび VLは、本発明のモノクローナル抗体あるいはヒト型 CDR移植抗体のいずれ をも用いることができる。
本発明の scFvは、ヒト hTERTに特異的に反応する抗体を生産するハイプリドーマまたは形質 転換体より VHおよび VLをコードする cDNAを取得し、一本鎖抗体発現ベクターを構築したのち 該 cDNAを挿入し、該発現ベクターを大腸菌、酵母、あるいは動物細胞へ該発現ベクターを導 入することにより発現させ製造することができる。
(17)一本鎖抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列が、ヒトテロメラーゼ触媒サブュ ニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列と同じアミノ 酸配列を有する、上記(16)に記載された一本鎖抗体。
(18)—本鎖抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列力 モノクローナル抗体 KM2311、 KM2582、 KM2590, KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域およ び L鎖 V領域のアミノ酸配列と同じアミノ酸配列を有する、上記(17)に記載された一本鎖抗体。
(19)一本鎖抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列が、ヒトテロメ ラ一ゼ触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V領域の相補 性決定領域のアミノ酸配列と同じアミノ酸配列を有する、上記(16)に記載された一本鎖抗体。
(20)一本鎖抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列力 モノクローナル抗体 KM2311、 KM2582、 KM2590, KM2591および KM2604から選ばれるモノクロ一ナル抗体の H鎖 V領域およ び L鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、上記(19)に記載 された一本鎖抗体。
(21)上記(1)に記載されたモノクローナル抗体の H鎖 V領域および L鎖 V領域を含むジスルフ イド安定化抗体。
ジスルフイド安定化抗体(dsFv)は、 VHおよび VL中のそれぞれ 1アミノ酸残基をシスティン残 基に置換したポリペプチドをジスルフイド結合を介して結合させたものをいう。システィン残基 に置換するアミノ酸残基は Reiterらにより示された方法 [プロテイン 'エンジニアリング(Protein Engineering) , 7, 697 (1994) ;]に従って、抗体の立体構造予測に基づいて選択することができ る。本発明のジスルフイド安定化抗体に含まれる VHあるいは VLはモノクローナル抗体あるい はヒト型 CDR移植抗体のレ、ずれをも用レ、ること; ^できる。
本発明のジスルフイド安定化抗体は、ヒト hTERTに特異的に反応する抗体を生産するハイブ リドーマまたは形質転換体より VHおよび VLをコードする cDNAを取得し、該 cDNAを適当な発 現ベクターに挿入し、該発現ベクターを大腸菌、酵母、あるいは動物細胞へ導入し発現させる ことにより製造することができる。
(22)ジスルフイド安定化抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列が、ヒトテロメラ一ゼ 触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域およびし鎖 V領域のアミノ酸配列 と同じアミノ酸配列を有する、上記 (21)に記載されたジスルフイド安定化抗体。
(23)ジスルフイド安定化抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列力 S、モノクローナル 抗体 KM2311、 KM2582、 KM2590, KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列と同じアミノ酸配列を有する、上記(22)に記載され たジスルフイド安定化抗体。
(24)ジスルフイド安定化抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列 力 ヒトテロメラーゼ触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V 領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、上記 (21)に記載されたジ スルフイド安定化抗体。
(25)ジスルフイド安定化抗体の H鎖および L鎖の V領域の相補性決定領域のアミノ酸配列力 モノクローナル抗体 KM2311、 KM2582、 KM2590、 KM2591および KM2604から選ばれるモノク ローナル抗体の H鎖 V領域およびし鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸 配列を有する、上記 (24)に記載されたジスルフイド安定化抗体。
(26)上記(:!)〜(3)、 (10)、 (11)、 (13)、 (14)、 (16)〜(25)のいずれかに記載された抗体 が、放射性同位元素、蛋白質または低分子の薬剤と化学的または遺伝子工学的に結合させ た抗体であることを特徴とする抗体。
融合抗体は、上述の抗体に放射性同位元素、蛋白質、低分子の薬剤などを化学的あるいは 遺伝子工学的に結合させたものをいう。
本発明の融合抗体は、ヒト hTERTに特異的に反応する抗体を放射性同位元素、蛋白質ある いは低分子の薬剤などと化学的に結合させることにより製造することができる。また、蛋白質と の融合抗体については、抗体をコードする cDNAに蛋白質をコードする cDNAを連結させ、該 cDNAを適当な発現べクタ一に挿入し、該発現ベクターを大腸菌、酵母、あるいは動物細胞に 発現させることにより製造することができる。
(27)上記(1)〜(3)、 (10)、 (11)、 (13)、 (14)、(16)〜(26)のいずれかに記載の抗体を用 レ、てヒトテロメラーゼ触媒サブユニットを免疫学的に検出する方法。
(28)免疫学的に検出する方法が、ゥ スタンプロッテイング、免疫,組織染色法、免疫細胞染色、 ドットプロッティングであることを特徴する、上記(27)記載の免疫学的に検出する方法。
(29)上記(1)〜(3)、 (10)、 (11)、 (13)、 (14)、 (16)〜(26)のいずれかに記載の抗体を用 いてヒトテロメラーゼ触媒サブユニットを細胞内あるいは細胞外に発現した微生物、動物細胞 あるいは昆虫細胞を免疫学的に検出する方法。
(30)免疫学的に検出する方法が、ウェスタンプロッティング、免疫組織染色法、免疫細胞染色、 ドットプロッティングであることを特徴する、上記(29)記載の免疫学的に検出する方法。
(31)上記(1)〜(3)、 (10)、 (11)、 (13)、 (14)、 (16)〜(26)のいずれかに記載の抗体を用 いてヒトテロメラーゼ触媒サブユニットを免疫学的に定量する方法。
(32)免疫学的に定量する方法が、蛍光抗体法、免疫酵素抗体法 (ELISA)、放射性物質標識 免疫抗体法(RIA)、サンドイッチ ELISA法などであることを特徴とする、上記(31 )記載の免疫 学的に定量する方法。
(33)上記(1)〜(3)、 (10)、(11)、 (13)、 (14)、 (16)〜(26)のいずれかに記載の抗体を用 いてヒトテロメラーゼ触媒サブユニットを細胞内あるいは細胞外に発現した微生物、動物細胞 あるいは昆虫細胞を免疫学的に定量する方法。
(34)免疫学的に定量する方法が、蛍光抗体法、免疫酵素抗体法 (ELISA)、放射性物質標識 免疫抗体法(RIA)、サンドイッチ ELISA法などであることを特徴とする、上記(33)記載の免疫 学的に定量する方法。
(35)上記(1)〜(3)、(10)、 (11)、 (13)、(14)、 (16)〜(26)のいずれかに記載の抗体を用 いる、テロメラーゼが関与する疾患の診断方法。
(36)上記(1)〜(3)、 (10)、 (11)、(13)、(14)、(16)〜(26)のいずれかに記載の抗体を用 いる、テロメラーゼが関与する疾患の診断薬。
(37)上記(1)〜(3)、 (10)、(11)、(13)、 (14)、 (16)〜(26)のいずれかに記載の抗体を用 いる、テロメラーゼが関与する疾患の治療薬。
以下に、本発明をさらに詳細に説明する。
1.抗ヒトテロメラーゼ触媒サブユニット (hTERT)モノクローナル抗体の作製方法
(1)抗原の調製
抗原としては、テロメラーゼの触媒サブユニットである hTERTを細胞内に発現した細胞あるい はその画分、またはアミノ酸の長さの異なるテロメラーゼの触媒サブユニットである hTERT蛋白 質あるいは該蛋白質と抗体の Fc部分との融合蛋白質などがあげられる。
テロメラーゼの触媒サブユニットである hTERTを細胞内に発現した細胞としては、 Namalwa糸田 胞 [J. Biol. Chem., 269, 14730 (1994)]、 CH〇細胞 (ATCC No.CCし - 61)等などをあげることが できる。
該細胞をそのまま抗原とすることもできるが、後述する通常の酵素の分離、精製法を用いて 該細胞から分画したテロメラーゼの触媒サブユニットである hTERT画分を抗原とすることもでき る。
さらに、上述の細胞から、遺伝子工学的手法を用いて、テロメラーゼの触媒サブユニットであ る hTERTをコードする DNAを取得し、テロメラーゼの触媒サブユニットである hTERT蛋白質、ァ ミノ酸の長さの異なるテロメラーゼの触媒サブユニットである hTERT蛋白質、あるいは該蛋白質 と抗体の Fc部分との融合蛋白質などを発現させて抗原とすることもできる。以下にその方法を 述べる。
テロメラ一ゼの触媒サブユニットである hTERTをコードする DNAを取得するために、文献 [Science, 277, 955(1997)]に記載された cDNA、あるいは上述したテロメラーゼの触媒サブュニ ットである hTERTを細胞内に発現した細胞より、常法 [モレキュラー 'クローニング 第 2版 (Molecular Cloning 2nd edition, Cold Spring Harbor Lab. Press New York(1989); 以 、モレキ ユラ一.クローニング 第 2版と略す)やカレント'プロトコールズ.イン'モレキュラー.バイオロジ 一、サフノレメント 1〜38 (Current Protocols in Molecular Biology Supplement 1— 38 ;以 、カレ ント.プロトコールズと略す) ]により cDNAライブラリーを作製する。
すなわち、 RNAを抽出し、該 RNAより cDNAを合成する。得られた cDNAをクロー-ングベクタ 一に組み込み宿主細胞に導入することにより cDNAライブラリーを作製する。
該ライブラリーより目的とする cDNAを含有する形質転換体を選択することにより hTERTをコー ドする DNAを取得することができる。
テロメラーゼの触媒サブユニットである hTERTを細胞内に発現した細胞から全 RNAを調製す る方法としては、グァニジン/セシウムクロライド法やグァニジンチオシァネート法 [Methods in Enzymol, 154, 3(1987)]などがあげられる。また、全 RNA力も mRNAを調製する方法としては、 オリゴ dTセルロースなどを用いたカラム法またはバッチ法などがあげられる。また、ファースト'ト ラック 'rnRNA'アイソレーション 'キット(インビトロジェン社製)、クイック'プレップ ' mRNA 'ピユリ フィケーシヨン.キット(フアルマシア社製)などのキットを用いて mRNAを調製することもできる。 上述で得られた RNA力 cDNAを合成する方法としては、ォカャマバーグ法 [Mol. Cell. Biol., 2, 161(1982)]ゃグブラーホフマン法 [Gene, 25, 263(1983)]等があげられる。また、スーパース クリプト ·プラスミド ·システム ·フォ一' cDNA'シンセシス ·アンド ·プラスミド ·クローニング(ギブコ BRL社製)、ザップ- cDNA'シンセシス'キット(ストラタジーン社製)などのキットを用いて cDNA を合成することもできる。 cDNAを組み込むためのクローユングベクターとしては、宿主細胞内で自律複製可能で該 cDNAを安定保持できるものであれば、ファージベクター、プラスミドベクターなどいずれでもよ い。具体的には、 ZAP Express [ストラタジーン社製、 Strategies, 5, 58(1992)]、 pBluescript II SK ( + ) [Nucleic Acids Research, 17, 9494(1989)]、 λ zap Π(ストラタジーン社製)、 え gtl0、 λ gtl l [DNA Cloning, A Practical Approach, 1, 49(1985)]、 又 TriplEx (クローンテック社製)、 λ EXCell (フアルマシア社製)、 pT7T3 18U (フアルマシア社製)、 pcD2 [ Mol. Cell. Biol, 3, 280(1983)]、 pUC18 [Gene, 33, 103(1985)]、 pAMo [J. Biol. Chem., 268, 22782(1993), 別名 PAMoPRC3Sc (特開平 05- 336963)]等をあげることができる。
宿主微生物としては,大腸菌に属する微生物であればいずれでも用いることができる。具体 的には、 Escherichia coli XLI- Blue MRF' [ストラタジーン社製, Strategies, 5, 81(1992) ]、 Escherichia coli C600 [ Genetics, 39, 440(1954) ]、 Escherichia coli YI088 [ Science, 222, 778(1983)]、 Escherichia coli YIO90 [Science, 222, 778(1983)]、 Escherichia coli NM522 [J. Mol. Biol., 166, 1(1983)]、 Escherichia coli K802 [J. Mol. Biol., 16, 118(1966)]、 Escherichia coli JM105 [Gene, 38, 275(1985)] , Escherichia coli SOLR™ Strain [ストラタジーン社より市販]およ び Escherichia coli LE392(モレキュラー 'クローニンク、' 第 2版)等が用いられる。
cDNAを上述のクローニングベクターに組み込み、該クローニングベクターを宿主細胞に導 入することにより cDNAライブラリーを作製する。
該クローニングベクターがプラスミドの場合には、エレクト口ポレーシヨン法あるいはカルシゥ ムクロライド法などにより宿主細胞に導入する。該クローニングベクターがファージの場合には、 インビトロパッケージング法などにより宿主細胞に導入する。
上述で取得された cDNAライブラリーから、テロメラーゼの触媒サブユニットである hTERTをコ ードする DNAを含む形質転換株については、例えば文献 [Science, 277, 955(1997)]に掲載さ れたテロメラーゼの触媒サブユニットである hTERTをコードする DNAの塩基配列を基にプロ一 ブを作製して、蛍光物質、放射線、酵素などで該プローブをラベル化し、プラークハイブリダィ ゼーシヨン、コロニーハイブリダィゼーシヨン、サザンハイブリダィゼーシヨンなどを行うことにより、 ハイブリダィズする形質転換株を選択することができる。 上述で取得されたテロメラーゼの触媒サブユニットである hTERTをコードする全長あるいはそ の部分断片 cDNA[Science, 277, 955(1997)]を適当なベクターのプロモーター下流に挿入した 組み換え体ベクターを造成し、それを宿主細胞に導入することにより得られたテロメラーゼの 触媒サブユニットである hTERT発現細胞を、適当な培地中で培養することにより細胞内あるい は培養上清中にテロメラーゼの触媒サブユニットである hTERTの全長あるいは部分断片をそ のままあるレ、は融合蛋白質として生産すること力 Sできる。
宿主としては、細菌、酵母、動物細胞、昆虫細胞など、 目的とする遺伝子を発現 できるものであれば、いずれでもよレ、。細菌としては、ェシエリヒア 'コリ (Escherichia coli)、バチ ルス.ズブチリス(Bacillus subtilis)等のェシエリヒア属、バチルス属等の細菌が例示される。酵 母としては、サッカロミセス'セレピシェ(Saccharomyces cerevisiae)、シゾサッカロミセス'ポンべ (Schizosaccharomyces pombe)等が例示される。動物細胞としては、ヒトの細胞であるナマルバ 細胞、サルの細胞である COS細胞、チャイニーズ'ノ、ムスターの細胞である CH〇細胞等が例 示される。昆虫細胞としては、 Sf9、 Sf21 (ファーミンジェン社製)、 High Five (インビトロジェン 社製)等が例示される。
本発明の DNAを導入するベクターとしては、該 DNAを組み込むことができ、宿主細胞で発 現できるものであればいかなるベクターでも用いることができる。
細菌、例えばェシエリヒア 'コリ(Escherichia coli)を宿主として用いる場合の発現べクタ一とし ては、プロモーター、リボゾーム結合配歹 lj、本発明の DNA、転写終結配列、場合によってはプ 口モーターの制御配列より構成されているのが好ましレ、が、例えば、市販の pGEX (フアルマシ ァ社製)、 pET システム(ノバジェン社製)などが例示される。
細菌への組換えべクタ一の導入方法としては、細菌に DNAを導入する方法であれば、例え ば、カルシウムイオンを用レ、る方法 [Pro Natl. Acad. Sci., USA, 69, 2110(1972)]、プロトプラス ト法(特開昭 63-248394)等、レ、ずれの方法も用レ、られる。
酵母を宿主として用いる場合には、発現ベクターとして、例えば、 YEP13 (ATCC37115)、 Y Ep24 (ATCC37051)、 YCp50 (ATCC37419)等が用いられる。
酵母への組換えべクタ一の導入方法としては、酵母に DNAを導入する方法であれば、例え ば、エレクト口ポレーシヨン法 [Methods. Enzymol., 194, 182(1990)]、スフエロプラスト法 [Proc. Natl. Acad. ScL, USA, 84, 1929(1978) ]、酢酸リチウム法 [J. BacterioL, 153, 163(1983)]等、レヽ ずれの方法も用いられる。
動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、 pAGE107 [特開平 3- 22979 ; Cytotechnology, 33, (1990)], pAGE103 [J. Biochem. 101, 1307(1987) ] 等が用いら れる。
プロモーターとしては、動物細胞中で発現できるものであればレ、かなるものを用いてもょレ、が、 例えば、サイトメガロウィルス(CMV)の IE(immediate early) 遺伝子のプロモーター、 SV40ある いはメタ口チォネインのプロモーター等があげられる。また、ヒト CMVの IE遺伝子のェンハンサ 一をプロモーターとともに用いてもよレ、。
動物細胞への組換えベクターの導入方法としては、動物細胞に DNAを導入する方法であ れば、例えば、エレクト口ポレーシヨン法 [Cytotechnology, 3, 133(1990)]、リン酸カルシウム法 (特開平 2 - 227075)、リポフエクシヨン法 [Pro Natl. Acad. Sci" USA, 84. 7413 (1987)]等、いず れの方法も用いられる。
昆虫細胞を宿主として用いる場合には、例えばカレント'プロトコールズ (サプルメント 1〜34)、 バキュロウィルス'イクスプレツシヨン'ベクタ一ズ、ァ'ラボラトリー'マニュアル(Baculovirus expression vectors, A laboratory manual)等に記載された方法によって、タンパク質を発現する こと力 Sできる。すなわち、以下に述べる組換え遺伝子導入ベクターおよびバキュロウィルスを昆 虫細胞に共導入して昆虫細胞培養上清中に組換えウィルスを得たのち、さらに組換えウィル スを昆虫細胞に感染させ、タンパク質発現昆虫細胞を取得する。
遺伝子導入ベクターとしては、例えば、 pVL1392、 pVL1393、 pBlueBacIII (ともにインビトロジ ェン社製)等が用レ、られる。
バキュロウィルスとしては、例えば、夜盗蛾科昆虫に感染するウィルスであるアウトグラファ '力 リフオノレニ力 *ヌクレノ一 ·ホリへトロシス'ウイノレス (Autographa californica nuclear polyhedrosis virus) などが用いられる。
組換えウィルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バ キュロウィルスの共導入方法としては、例えば、リン酸カルシウム法(特開平 2-227075)、リボフ ェクシヨン法 [Pro Natl. Acad. Sci" USA, 84, 7413 (1987)]等が用いられる。
また、ファーミンジェン社製バキュ口ゴールドスターターキットなどを用いて組み換えバキュ口 ウィルスを作製したのち、前述した Sf9、 Sf 21あるいは High Five等の昆虫細胞に該組み換え ウィルスを感染させることにより蛋白質を生産させることもできる [ Bio/Technology, 6, 47(1988)]。
遺伝子の発現方法としては、直接発現以外に、分泌生産、融合蛋白質発現等が開発されて おり、いずれの方法も用いることができる。例えば、モレキュラー 'クローニング 第 2版に記載さ れてレ、る方法に準じて行うことができる。
融合させる蛋白質としては、 β一ガラクトシダーゼ、プロテイン Α、プロテイン Αの IgG結合領域、 クロラムフエ二コール'ァセチルトランスフェラーゼ、ポリ(Arg)、ポリ(Glu)、プロテイン G、マルト —ス結合蛋白質、ダルタチオン S—トランスフェラーゼ、ポリヒスチジン鎖(His- tag)、 Sペプチド、 DNA結合蛋白質ドメイン、 Tac抗原、チォレドキシン、グリーン 'フルォレツセント'プロテイン、 および任意の抗体のェピト一プなどがあげられる [山川彰夫 実験医学, 13, 469-474(1995)]。 以上のようにして得られる形質転換体を培地に培養し、培養物中に hTERTの全長あるいは 部分断片をそのままあるいは融合蛋白質を生成蓄積させ、該培養物から採取することにより、 テロメラーゼの触媒サブユニットである hTERTの全長あるいは部分断片をそのままあるいは融 合蛋白質として製造することができる。
本発明の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従 つて行われる。
大腸菌あるいは酵母等の微生物を宿主として得られた形質転換体を培養する培地としては、 微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に 行える培地であれば天然培地、合成培地のいずれを用いてもよい (モレキュラー 'クローニング 第 2版)。培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下、 15〜40°Cで 16〜96時間行う。培養期間中、 pHは 3. 0〜9. 0に保持する。 pHの調整は、無機または有 機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。培養中は必要に 応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよレ、。
動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されている RPMI1640培地、 Eagleの MEM培地またはこれら培地に牛胎児血清等を添加した培地等 が用いられる。培養は、通常 5%C02存在下、 35〜37°Cで 3〜7日間行い、培養中は必要に 応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されている TNM - FH培地 [ファーミンジェン(Pharmingen)社製]、 Sf900IISFM [ライフテクノロジーズ(Life Technologies )社製]、 ExCell400、 ExCell405 [いずれも JRHバイオサイエンシーズ(JRH Biosciences)社製]等が用いられる。培養は、 25〜30°Cで 1〜4日間行い、培養中は必要に応 じて、ゲンタマイシン等の抗生物質を培地に添加してもよレ、。
上記において、動物細胞および昆虫細胞の培地に血清を添加していない培地で培養が可 能な場合には、テロメラーゼの触媒サブユニットである hTERTの全長あるレ、は部分断片をその ままあるいは融合蛋白質の精製が容易になるため、血清無添加の培地を用いることが好まし レ、。
テロメラーゼの触媒サブユニットである hTERTの全長あるいは部分断片をそのままあるいは 融合蛋白質として宿主細胞内に蓄積された場合には、培養終了後、細胞を遠心分離し、水系 緩衝液にけん濁後、超音波法、フレンチプレス法などにより細胞を破碎し、その遠心分離上清 に該蛋白質を回収する。
さらに、細胞内に不溶体を形成した場合には、不溶体をタンパク質変性剤で可溶化後、タン ノ、。ク質変性剤を含まないあるいはタンパク質変性剤の濃度がタンパク質が変性しない程度に 希薄な溶液に希釈、或いは透析し、タンパク質の立体構造を形成させることができる。
テロメラーゼの触媒サブユニットである hTERTの全長あるいは部分断片をそのままあるいは 融合蛋白質として細胞外に分泌された場合には、培養上清中に発現蛋白質を回収することが できる。単離精製については、溶媒抽出、有機溶媒による分別沈殿、塩析、透析、遠心分離、 限外ろ過、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィ 一、ァフィ二ティ一クロマトグラフィー、逆相クロマトグラフィー、結晶化、電気泳動などの分離操 作を単独あるいは組み合わせて行うことができる。
あるいは、部分配列を有するポリペプチドは、 5〜30残基の蛋白質部分配列が選択される。 天然の構 造を有する該蛋白質を認識する抗体を取得するために、立体構造上で蛋白質表 面に存在する部分配列を抗原ペプチドとして選択する必要がある。立体構造上で蛋白質表面 に存在する部分配列の予測方法としては、 Genetyx Macなど市販の蛋白 質配列解析ソフトな どがあげられる。一般的に親水性の低い部分は立体構造上蛋白質の内部に存在する場合が 多ぐ親水性の高い部分は蛋白質表面に存在する場合が多レ、。また、蛋白質の N末端、 C末 端は蛋白質表面に存在する場合が多い。しかしながら、このように選択した部分ペプチドが目 的通りの抗体を確立する抗原となるとは限らなレ、。
部分ペプチドには、後述するキャリア蛋白質と架橋させるために、システィンを末端に付加す る。蛋白質の内部配列を選択した場合には、必要に応じペプチドの N末端はァセチル化、 C末 端はアミド化する。
部分ペプチドは、一般的な液相ペプチド合成法、固相ペプチド合成法、およびそれらを適宜 組み合わせる方法、またはそれらに準じる方法によって合成することができる [ザ ·ぺプタイズ、 アナリシス、シンセシス、バイオロジー、第 1卷(The Peptides, Analysis, Synthesis, Biology, vol. 1)、エアハルト.グロス(Erhard Gross)およびヨハン'マインホッファー(Johannes Meinhofer)編、 アカデミック 'プレス(Academic Press)、 1979 年、第 2卷 1980年、第 3卷 1981年;ペプチド合 成の基礎と実験、泉屋信夫ら、丸善、 1985年;続医薬品の開発、第 14巻、ペプチド合成、矢島 治明監修、廣川書店、 1991年;インターナショナル ·ジャーナル ·ォブ ·ぺプタイド 'アンド ·プロ ティン'リサーチ(International Journal of Peptide Protein Research), 35卷、 161頁(1990年)参 照]。
また、自動ペプチド合成機を用いて部分ペプチドを合成することもできる。ペプチド合成機に よるペプチドの合成は、島津製作所製ペプチド合成機、ァプライド'バイオシステム社製 (Applied Biosystems, Inc., USA、以後 ABI社と略称する)ペプチド合成機、アドバンスト'ケム テック社製 (Advanced ChemTech Inc., USA,以後 ACT社と略称する)ペプチド合成機等の市 販のペプチド合成機上で、適当に側鎖を保護した N et - Fmoc-アミノ酸あるいは N ct -Boc -ァ ミノ酸等を用レ、、それぞれの合成プログラムに従って実施することができる。
ここで、原料となる保護アミノ酸および担体樹脂は、 ABI 社、島津製作所、国産化学 (株)、ノ ノく'バイオケム社(Nova Biochem)、渡辺化学(株)、 ACT社、またはペプチド研究所(株)等か ら入手することができる。また、後述の化合物 1〜3の原料となる保護アミノ酸、保護有機酸、保 護有機アミンは報告されている合成法に従って、あるいはそれに準じて合成することができる [ザ.ぺプタイズ、アナリシス、シンセシス、バイオロジー、第 1卷(The Peptides, Analysis, Synthesis, Biology, vol. 1)、エアハルト'グロス(Erhard Gross)およ びヨハン'マインホッファー (Johannes Meinhofer)編、アカデミック 'プレス(Academic Press)、 1979年、第 2卷 1980年、第 3 卷 1981年;ペプチド合成の基礎と実験、泉屋信夫ら、丸善、 1985年;続医薬品の開発、第 14 巻、ペプチド合成、矢島治明監修、廣川書店、 1991年;インターナショナル'ジャーナル'ォブ- ぺプタイド 'アンド'プロテイン 'リサーチ(International Journal of Peptide Protein Research), 35 卷、 161頁(1990年)参照]。
(2)動物の免疫と抗体産生細胞の調製
上記で得られた該蛋白質を抗原として免疫する。免疫する方法としては、動物の皮下、静脈 内または腹腔内に抗原をそのまま投与してもよいが、抗原性の高いキャリアタンパク質を結合 させて投与したり、あるレヽは適当なアジュバントとともに抗原を投与することが好ましレ、。
キャリアタンパク質としては、スカシガイへモシァニン、キーホールリンペットへモシァニン、牛 血清アルブミン、牛チログロブリン等があげられ、アジュバンドとしては、フロインドの完全アジュ バント (Complete Freund's Adjuvant),水酸化アルミニウムゲルと百日咳菌ワクチン等があげら れる。
免疫動物としては、ゥサギ、ャギ、マウス、ラット、ハムスターなどの非ヒト哺乳動物があげられ る。
抗原の投与は、 1回目の投与の後、 1〜2週間毎に 3〜: 10回行う。抗原の投与量は動物 1匹 当たり 50〜: 100 / gが好ましい。各投与後、 3〜7日目に免疫動物の眼底静脈叢あるいは尾静 脈より採血し、該血清の抗原との反応性について、酵素免疫測定法 [酵素免疫測定法 (ELISA 法):医学書院刊(1976年) ]などで確認する。 そして、該血清が十分な抗体価を示した非ヒト哺乳動物を、血清または抗体産生細胞の供給 源とする。
モノクローナル抗体は、該抗体産生細胞と非ヒト哺乳動物由来の骨髄腫細胞とを融合させて ハイプリドーマを作製し、該ハイブリドーマを培養する力 \動物に投与して該細胞を腹水癌化さ せ、該培養液または腹水を分離、精製することにより調製することができる。
抗体産生細胞は、抗原投与された非ヒト哺乳動物脾細胞、リンパ節、末梢血などから採取す る。
(3)骨髄腫細胞の調製
骨髄腫細胞としては、マウスから得られた株化細胞である、 8-ァザグァニン耐性マウス (BALBん由来)骨髄腫細胞株 P3-X63Ag8-Ul(P3-Ul) [Eur. J. Immunol., 6, 511(1976)]、 SP2/0-Agl4(SP-2) [ Nature, 276, 269(1978) ]、 P3—X63- Ag8653(653) [ J. Immunol., 123, 1548(1979)] , P3-X63-Ag8(X63) [Nature, 256, 495(1975)]など、イン'ビトロ(in vitro)で増殖可 能な骨髄腫細胞であればいかなるものでもよレ、。これらの細胞株の培養および継代について は公知の方法 [アンチボディズ一ァ 'ラボラトリ一'マニュアル (Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 8, 1988) ;以下、「アンチボディズ」と記す]に従レ、、細 胞融合時までに 2 X 107個以上の細胞数を確保する。
(4)細胞融合とモノクローナル抗体の選択
上記で得られた抗体産生細胞と骨髄腫細胞とを洗浄したのち、ポリエチレングライコ一ルー 1000(PEG-1000)などの細胞凝集性媒体を加え、細胞を融合させ、培地中に懸濁させる。細胞 の洗浄には MEM培地または PBS (リン酸ニナトリウム 1.83g 、リン酸一カリウム 0.21g、食塩 7.65g 、蒸留水 1 リットル、 pH7.2)などを用いる。また、融合細胞を懸濁させる培地としては、 目 的の融合細胞のみを選択的に得られるように、 HAT培地 {正常培地 [RPMI- 1640培地にグルタ ミン (1.5mM) 、 2 -メルカプトエタノール(5 X 10— 5M)、ジェンタマイシン (10 g/ml)および牛胎児 血清 (FCS) (CSL社製、 10%)を加えた培地]にヒポキサンチン(10— 4M)、チミジン(1.5 X 10"5 )お よびアミノプテリン(4 X 1(Γ7Μ)を加えた培地 }を用いる。
培養後、培養上清の一部をとり、酵素免疫測定法により、抗原蛋白質に反応し、非抗原蛋白 質に反応しないサンプルを選択する。ついで、限界希釈法によりクローユングを行レ、、酵素免 疫測定法により安定して高い抗体価の認められたものをモノクローナル抗体産生ハイプリドー マ株として選択する。
酵素免疫測定法
抗原蛋白質あるいは抗原蛋白質を発現した細胞などを 96ゥエルプレートにコートし、ハイプリ ドーマ培養上清もしくは上述の方法で得られる精製抗体を第一抗体として反応させる。
第一抗体反応後、プレートを洗浄して第二抗体を添加する。
第二抗体とは、第一抗体のィムノグロブリンを認識できる抗体を、ビォチン、酵素、化学発光 物質あるいは放射線化合物等で標識した抗体である。具体的にはハイブリドーマ作製の際に マウスを用いたのであれば、第二抗体としては、マウスィムノグロブリンを認識できる抗体を用 いる。
反応後、第二抗体を標識した物質に応じた反応を行ない、抗原に特異的に反応するモノク ローナル抗体を生産するハイプリドーマとして選択する。
本発明ハイプリドーマ株の具体例としては、ハイプリドーマ株 KM2311、 K 2582, KM2604, KM2590、 KM2591が挙げられる。ハイプリドーマ株 KM2311は、平成 10年 3月 23日付で、それ ぞれ工業技術院生命工学工業技術研究所(日本国茨城県つくば市東 1丁目 1番 3号)に、 FERM BP- 6306として、ハイブリドーマ株 KM2582、 KM2604は、平成 11年 2月 26日付で、それぞ れ工業技術院生命工学工業技術研究所に、 FERM BP- 6663、 FERM BP- 6664として、ハイブリ ドーマ株 KM2590、 KM2591は、平成 11年 3月 19日付で、それぞれ工業技術院生命工学工業 技術研究所に、 FERM BP- 6683、 FERM BP- 6684として寄託されている。
(5)モノクローナル抗体の調製
モノクローナル抗体は、ハイプリドーマ細胞を培養して得られる培養液、またはプリスタン処 理 [2,6, 10, 14-テトラメチルペンタデカン (Pristane)0.5mlを腹腔内投与し、 2週間飼育する]した 8 〜10週令のマウスまたはヌードマウスに、モノクローナル抗体産生ハイブリドーマ細胞を腹腔 内投与して腹水癌化させた腹水から、分離、精製することにより調製できる。
モノクローナル抗体を分離、精製する方法としては、遠心分離、 40〜50%飽和硫酸アンモニゥ ムによる塩析、力プリル酸沈殿法、 DEAE-セファロースカラム、陰イオン交換カラム、プロテイン A (または G)カラムあるいはゲル濾過カラム等を用いるクロマトグラフィー等を、単独または組み 合わせて行う方法があげられる。この方法により、 IgGあるいは IgM画分を回収し、精製モノクロ ーナル抗体を取得することができる。
精製モノクローナル抗体のサブクラスの決定は、モノクロ一ナル抗体タイピングキットなどを用 いて行うことができる。蛋白質量は、ローリー法あるいは 280nmでの吸光度より算出することが できる。
抗体のサブクラスとは、クラス内のアイソタイプのことで、マウスでは、 IgGl、 IgG2a、 IgG2b、 IgG3、ヒトでは、 IgGl、 IgG2、 IgG3、 IgG4があげられる。
マウス IgGl、 IgG2aおよびヒ HgGlタイプは、補体依存性細胞傷害活性(以下、 CDC活性)お よび抗体依存性細胞傷害活性(以下、 ADCC活性)を有し、治療への応用上、有用である。
2.組換え抗体の作製方法 (I)—抗ヒト hTERTヒト化抗体の作製方法
( 1 )ヒト化抗体発現用ベクターの構築
ヒト以外の動物の抗体からヒト化抗体を作製するために必要なヒト化抗体発現用ベクターを 構築する。ヒト化抗体発現用べクタ一とは、ヒト抗体の C領域である CHおよび CLをコードする遺 伝子が組み込まれた動物細胞用発現ベクターであり、動物細胞用発現ベクターにヒト抗体の CHおよび CLをコードする遺伝子をそれぞれ挿入することにより構築されたものである。
ヒト抗体の C領域としては、例えば、ヒト抗体 H 鎖では C y 1や C γ 4、ヒト抗体 L鎖では C κ等 の任意のヒト抗体の C領域を用いることができる。ヒト抗体の C領域をコードする遺伝子としては ェキソンとイントロンより成る染色体 DNAまたは cDNAを用いることもできる。動物細胞用発現べ クタ一としては、ヒト抗体 C領域をコードする遺伝子を組込み発現できるものであればいかなる ものでち用レ、ること力できる。
例えば、 pAGE107 [ Cytotechnology, 3, 133 (1990)]、 pAGE103 [J. Biochera. , 101 , 1307 (1987)]、 pHSG274 [Gene, 27, 223 (1984)]、 pKCR[Proc. Natl. Acad. Sci" 78, 1527 (1981)]、 pSGl |3 d2-4 [Cytotechnology, 4, 173 (1990)]等があげられる。動物細胞用発現ベクターに用 いるプロモーターとェンハンサ一としては、 SV40の初期プロモーターとェンハンサー [J.Biochem., 101,1307(1987)]、モロニ一マウス白血病ウィルスの LTR プロモーターとェンハン サー [Biochem. Biophys. Res. Comun., 149, 960(1987) ]、および免疫グロブリン H鎖のプロモ 一ター [Cell, 41, 479 (1985)]とェンハンサー [Cell, 33, 717 (1983)]等があげられる。
ヒト化抗体発現用べクタ一は、抗体 H鎖、 L鎖が別々のベクター上に存在するタイプあるいは 同一のベクター上に存在するタイプ(タンデム型)のどちらでも用いることができる力 S、ヒト化抗 体発現ベクターの構築のしゃすさ、動物細胞への導入のし易さ、動物細胞内での抗体 H 鎖 およびし鎖の発現量のバランスがとれる等の点でタンデム型のヒト化抗体発現用ベクターの方 が好ましい [J. Immunol. Methods, 167, 271(1994)]。
(2)ヒト以外の動物の抗体の VHおよび VLをコードする cDNAの取得
ヒト以外の動物の抗体、例えば、マウス抗ヒト hTERTモノクローナル抗体の VHおよび VLをコ ードする cDNAは以下のようにして取得する。
抗ヒト hTERTモノクローナル抗体を産生する細胞、例えば、マウスヒト hTERT抗体産生ハイブ リドーマ等より mRNAを抽出し、 cDNAを合成する。合成した cDNAを、ファージあるいはプラスミ ドなどのベクターに挿入し、 cDNAライブラリーを作製する。該ライブラリ一より、ヒト以外の動物 の抗体、例えば、マウス抗体の C領域部分あるいは V領域部分をプローブとして用い、 VHをコ ードする cDNAを有する組換えファージあるいは組換えプラスミド、および VLをコードする cDNA を有する組換えファージあるいは組換えプラスミドをそれぞれ単離する。組換えファージあるい は組換えプラスミド上の目的とする抗体の VHおよび VLの全塩基配列を決定し、塩基配列より VHおよひ の全アミノ酸配列を推定する。
(3)ヒト型キメラ抗体発現ベクターの構築
前記 2 (1)で構築したヒト化抗体発現用ベクターのヒト抗体の CHおよび CLをコードする遺伝 子の上流に、ヒト以外の動物の抗体の VHおよび VLをコードする cDNAを挿入し、ヒト型キメラ抗 体発現べクタ一を構築することができる。例えば、キメラ抗体発現用べクタ一のヒト抗体の CH および CLをコ一ドする遺伝子の上流にあら力じめヒト以外の動物の抗体の VHおよび VLをコー ドする cDNAをクローニングするための制限酵素の認識配列を設けておき、このクローニンダサ イトにヒト以外の動物の抗体の V領域をコードする cDNAを下記に述べる合成 DNAを介して挿 入することにより、ヒト型キメラ抗体発現ベクターを製造することができる。合成 DNAは、ヒト以外 の動物の抗体の V領域の 3'末端側の塩基配列とヒト抗体の C領域の 5'末端側の塩基配列とか らなるものであり、両端に適当な制限酵素部位を有するように DNA合成機を用いて製造する。
(4)ヒト以外の動物の抗体の CDR配列の同定
抗体の抗原結合部位を形成する VH及び VLは、配列の比較的保存された 4個のフレームヮ —ク領域 (以下、 FR領域と称す)とそれらを連結する配列の変化に富んだ 3個の相補性決定領 域(CDR)力も成っている [シーケンシズ' ォブ' プロテインズ. ォブ' ィムノロジカル. インタ レスト (Sequences of Proteins of Immunological Interest), US Dept. Health and Human Services, (1991) ;以下、シーケンシズ' ォブ' プロテインズ' ォブ' ィムノロジカル' インタレストと記す]。 そして各 CDRアミノ酸配列(CDR配歹 IJ)は、既知の抗体の V領域のアミノ酸配列(シーケンシズ. ォブ 'プロテインズ.ォブ.ィムノロジカル.インタレスト)と比較することにより同定することができ る。
(5)ヒト型 CDR移植抗体の V領域をコードする cDNAの構築
ヒト型 CDR移植抗体の VHおよび VLをコードする cDNAは以下のようにして取得することがで きる。
まず、 目的のヒト以外の動物の抗体の V領域の CDRを移植するためのヒト抗体の V領域の FR のアミノ酸配列を VH、 VLそれぞれについて選択する。ヒト抗体の V領域の FRのアミノ酸配列と しては、ヒト抗体由来の V領域の FRのアミノ酸配列であればいかなるものでも用いることができ る。
例えば、 Protein Data Bank に登録されているヒト抗体の V領域の FRのアミノ酸配歹 IJ、ヒト抗 体の V領域の FRの各サブグループの共通アミノ酸配歹 IKシーケンシズ ·ォブ.プロテインズ.ォ ブ. ィムノロジカル.インタレスト)があげられる力 S、充分な活性を有するヒト型 CDR移植抗体を 創製するためには、 目的のヒト以外の動物の抗体の V領域のアミノ酸配列と高い相同性、好ま しくは 65%以上の相同性を有することが望ましい。次に、選択したヒト抗体の V領域の FRのアミ ノ酸配列をコードする DNA配列と目的のヒト以外の動物の抗体の V領域の CDRのアミノ酸配列 をコードする DNA配列を連結させて、 VH、 VLそれぞれのアミノ酸配列をコードする DNA配列を 設計する。 CDR移植抗体可変領域遺伝子を構築するために設計した DNA配列を得るために は、全 DNA配列をカバーするように各鎖について数本の合成 DNAを設計し、それらを用いて ポリメラーゼ 'チェイン 'リアクション(Polymerase Chain Reaction ;以下、 PCRと記す)を行う。
PCRでの反応効率および合成可能な DNAの長さから各鎖について、好ましくは、 6本の合成 DNAを設計する。反応後、増幅断片を適当なベクターにサブクローニングし、その塩基配列を 決定し、 目的のヒト型 CDR移植抗体の各鎖の V領域のアミノ酸配列をコードする cDNAを含む プラスミドを取得する。また、約 100塩基よりなる合成 DNAを用いてセンス、アンチセンスともに 全配列を合成し、それらをアニーリング、連結することで、 目的のヒト型 CDR移植抗体の各鎖の V領域のアミノ酸配列をコードする cDNAを構築することもできる。
(6)ヒト型 CDR移植抗体の V領域のアミノ酸配列の改変
ヒト型 CDR移植抗体は目的のヒト以外の動物の抗体の V領域の CDRのみをヒト抗体の V領域 の FR間に、単純に移植しただけでは、その活性はもとのヒト以外の動物の抗体の活性に比べ て低下してしまうことが知られている [Bio/Technology, 9, 266 (1991) ]。そこでヒト抗体の V領域 の FRのアミノ酸配列のうち、直接抗原との結合に関与しているアミノ酸残基、 CDRのアミノ酸残 基と相互作用をしてレ、るアミノ酸残基、あるいは抗体の立体構造の維持に関与してレ、る等の可 能性を有するアミノ酸残基をもとのヒト以外の動物の抗体に見出されるアミノ酸残基に改変し、 活性を上昇させることが行われている。そして、それらのアミノ酸残基を効率よく同定するため、 X線結晶解析あるいはコンピューターモデリング等を用いた抗体の立体構造の構築および解 析を行っている。しかし、レ、かなる抗体にも適応可能なヒト型 CDR移植抗体の製造法は未だ確 立されておらず、現状では個々の抗体によって種々の試行錯誤が必要である。
選択したヒト抗体の V領域の FRのアミノ酸配列の改変は各種の変異導入プライマーを用いて 前記 2 (5)に記載の PCRを行うことにより達成できる。 PCR後の増幅断片を適当なベクターにサ ブクローニング後、その塩基配列を決定し、 目的の変異が導入された cDNAを含むベクター (以下、アミノ酸配列改変ベクターと称す)を取得する。
また、狭い領域のアミノ酸配列の改変であれば、 20〜35塩基からなる変異導入プライマーを 用いた PCR変異導入法により行うことができる。具体的には、改変後のアミノ酸残基をコードす る DNA配列を含む 20〜35塩基力 なるセンス変異プライマー及びアンチセンス変異プライマ 一を合成し、改変すべき V領域のアミノ酸配列をコードする cDNAを含むプラスミドを铸型として 2段階の PCRを行う。最終増幅断片を適当なベクターにサブクローニング後、その塩基配列を 決定し、 目的の変異が導入された cDNAを含むアミノ酸配列改変ベクターを取得する。
(7) ヒト型 CDR移植抗体発現ベクターの構築
前記 2 (1)のヒト化抗体発現用べクタ一のヒト抗体の CH及び CLをコードする遺伝子の上流に、 前記 2 (5)および 2 (6)で取得したヒト型 CDR移植抗体の VH及ひ をコードする cDNAを挿入し、 ヒト型 CDR移植抗体発現ベクターを構築することができる。例えば、ヒト型 CDR移植抗体の VH 及び VLのアミノ酸配列をコードする cDNAを構築するための PCRの際に 5'末端および 3'末端の 合成 DNAの末端に適当な制限酵素の認識配列を導入することで、所望のヒト抗体の C領域を コードする遺伝子の上流にそれらが適切な形で発現するように挿入することができる。
(8)ヒト化抗体の一過性 (トランジェント)発現および活性評価
多種類のヒト化抗体の活性を効率的に評価するために、前記 2 (3)のヒト型キメラ抗体発現べ クタ一、および前記 2 (7)のヒト型 CDR移植抗体発現ベクターあるいはそれらの改変ベクター を COS- 7細胞(ATCC CRL1651 )に導入してヒト化抗体の一過性発現 [Methods in Nucleic Acids Res., CRC Press, p.283, 1991]を行い、その活性を測定することができる。
COS- 7細胞への発現べクタ一の導入法としては、 DEAE-デキストラン法 [Methods in Nucleic Acids Res., CRC Press, p.283, 1991]、リポフエクシヨン法 [Proc. Natl. Acad. Sci" 84, 7413 (1987) ]等があげられる。
ベクターの導入後、培養上清中のヒト化抗体の活性は前記 1 (4)に記載の酵素免疫測定法 (ELISA法)等により測定することができる。
(9)ヒト化抗体の安定 (ステーブル)発現および活性評価
前記 2 (3)のヒト型キメラ抗体発現ベクターおよび前記 2 (7)のヒト型 CDR移植抗体発現べクタ 一を適当な宿主細胞に導入することによりヒト化抗体を安定に生産する形質転換株を得ること ができる。 宿主細胞への発現ベクターの導入法としては、エレクト口ポレーシヨン法 [特開平 2-257891、 Cytotechnology, 3, 133 (1990) ]等があげられる。
ヒト化抗体発現ベクターを導入する宿主細胞としては、ヒト化抗体を発現させることができる宿 主細胞であれば、いかなる細胞でも用いることができる。例えば、マウス SP2/0- Agl4細胞 (ATCC CRL1581)、マウス P3X63-Ag8.653 糸田胞(ATCC CRL1580)、ジヒドロ葉酸還元酵素遺 伝子(以下、 DHFR遺伝子と称す)が欠損した CHO細胞 [Proc. Natl. Acad. Sci., 77, 4216 (1980) ]、ラット YB2/3HLP2.G11.16Ag.20細胞(ATCC CRL1662、以下、 YB2/0細胞と称す) 等があげられる。
ベクタ一の導入後、ヒト化抗体を安定に生産する形質転換株は、特開平 2 - 257891に開示さ れている方法に従い、 G418および FCS を含む RPMI1640培地により選択する。得られた形質 転換株を培地中で培養することで培養液中にヒト化抗体を生産蓄積させることができる。培養 液中のヒト化抗体の活性は前記 1 (4)に記載の方法などにより測定する。また、形質転換株は、 特開平 2- 257891に開示されている方法に従レ、、 DHFR遺伝子増幅系等を利用してヒト化抗体 の生産量を上昇させることができる。
ヒト化抗体は、形質転換株の培養上清よりプロテイン Aカラムを用いて精製することができる (アンチボディズ 第 8章)。また、その他に、通常の蛋白質で用いられる精製方法を使用する こと力 Sできる。例えば、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾過等を組合せて 行い、精製することができる。精製したヒト化抗体の H鎖、 L鎖あるいは抗体分子全体の分子量 は、ポリアクリルアミドゲル電気泳動(SDS- PAGE) [ネイチヤー(Nature) , 227, 680 (1970) ]ゃゥ エスタンブロッテイング法(アンチボディズ 第 12章)等で測定する。
精製したヒト化抗体の反応性、また、ヒト化抗体の hTERTに対する結合活性の測定は前記 1 (4)に記載の方法などにより測定することができる。
3.組換え抗体の作製方法 (II)
(1)抗体断片 Fab、 Fab'、 F(ab,)2の作製方法
上述した抗体を酵素で処理することにより、抗体断片を精製させる。酵素としては、パパイン、 トリプシンなどをあげることができる。
または、該抗ヒト hTERT抗体の Fab、 Fab,あるいは F(ab,)2断片をコードする DNAを動物細胞用 発現べクタ一に挿入し、該ベクターを動物細胞へ導入することにより発現させ、 Fab、 Fab,ある レ、は F(ab,)2を製造することができる。
生成される抗体断片は、ゲル濾過、イオン交換、ァフィ二ティークロマトグラフィーおよび限外 濾過等を組み合わせて行い、精製すること力できる。精製した Fab、 Fab\ F(ab,)2分子量は、ポ リアクリルアミドゲル電気泳動(SDS- PAGE) [Nature, 227, 680 (1970) ]やウェスタンブロッテイン グ法 (アンチボディズ 第 12章)等で測定する。
精製した Fab、 Fab,、 F(ab,)2の反応性、また、 Fab、 Fab,、 F(ab')2の hTERTに対する結合活性 の測定は前記 1 (4)に記載の方法などにより測定することができる。
(2)抗ヒト hTERT—本鎖抗体の作製方法
前記 2 (2)、 2 (5)および 2 (6)に記載のヒト以外の動物の抗体あるレ、はヒト型 CDR移植抗体の VHおよび VLをコードする cDNAを一本鎖抗体発現用ベクターに挿入することによりヒト以外の 動物の抗体の一本鎖抗体あるいはヒト型 CDR移植抗体の一本鎖抗体の発現ベクターを構築 すること力 Sできる。ここで用いる一本鎖抗体発現用ベクターとしてはヒト以外の動物の抗体ある いはヒト型 CDR移植抗体の VHおよひ をコードする cDNAを組込み発現できるものであれば、 レ、かなるものでも用レ、ることができる。
例えば、 pAGE107 [Cytotechnology, 3, 133 (1990)]、 pAGE103 [J. Biochem., 101, 1307 (1987)]、 pHSG274 [Gene, 27, 223(1984)]、 pKCR[Proc. Natl. Acad. Sci. U.S.A., 78, 1527 (1981)] , pSGl β d2-4[Cytotechnology, 4, 173 (1990)]等があげられる。一本鎖抗体を発現さ せるための宿主としては、大腸菌、酵母、動物細胞等の中から適切なものを選択することがで きる力 その場合の発現用ベクターとしては、それぞれの宿主に適切なものを選択する必要が ある。また、適切なシグナルペプチドをコードする cDNAを発現用ベクターに挿入することで一 本鎖抗体を細胞外に分泌させ、ペリプラズマ領域に輸送させ、あるいは細胞内に留まらせるこ とができる。
選択された発現用ベクターに、 VH— L— VLあるいは VL— L— VH (Lはペプチドリンカ一)か らなる一本鎖抗体をコードする cDNAを適切なプロモーター、シグナルペプチドの下流に挿入 することにより、 目的の一本鎖抗体をコードする cDNAが挿入された一本鎖抗体発現ベクター を構築することができる。
一本鎖抗体をコードする cDNAは、 VHをコードする cDNAと VLをコードする cDNAとを、両端に 適当な制限酵素の認識配列を有するペプチドリンカ一をコードする合成 DNAを用いて連結す ることにより得ること力 Sできる。リンカ一^ iプチドは、その付加が VH、 VLの抗原への結合に対し て妨害しないように最適化することが重要で、例えば Pantolianoらにより示されたもの [Biochemistry, 30, 10117(1991)]あるいはそれを改変したものを用いることができる。
(3)抗ヒト hTERTジスルフイド安定化抗体の作製方法
ジスルフイド安定化抗体は、ヒト以外の動物の抗体の VHおよび VLをコードする cDNAあるい はヒト型 CDR移植抗体の VHおよび VLをコードする cDNAのそれぞれの適切な位置の 1アミノ酸 残基に相当する DNA配列をシスティン残基に相当する DNA配列に改変し、発現および精製し たのち、ジスルフイド結合を形成させることで作製することができる。アミノ酸残基のシスティン 残基への改変は前記 2 (5)の PCRを用いた変異導入法により行うことができる。
得られた改変 VHおよび改変 VLをコードする cDNAを適切な発現用ベクターに挿入すること によりジスルフイド安定化抗体 H鎖発現ベクターおよびジスルフイド安定化抗体 L鎖発現べクタ —を構築することができる。ここで用いるジスルフイド安定化抗体発現用ベクターとしては改変 VHおよび改変 VLをコードする cDNAを組込み発現できるものであれば、いかなるものでも用い ることができる。例えば、 pAGE107[Cytotechnology, 3, 133 (1990)]、 pAGE103 [J. Biochem., 101, 1307 (1987)]、 pHSG274 [Gene, 27, 223(1984)]、 pKCR[Proc. Natl. Acad. Sci., 78, 1527(1981)] , pSGl β d2-4[Cytotechnology, 4, 173 (1990)]等があげられる。ジスルフイド安定 化抗体を形成させるためにジスルフイド安定化抗体し鎖発現ベクターおよびジスルフイド安定 化抗体 H鎖発現ベクターを発現させるための宿主としては、大腸菌、酵母、動物細胞等の中か ら適切なものを選択することができるが、その場合の発現用ベクターとしては、それぞれの宿主 に適切なものを選択する必要がある。
また、適切なシグナルペプチドをコードする cDNAを発現用ベクターに揷入することでジスル フイド安定化抗体を細胞外に分泌させ、ペリプラズマ領域に輸送させ、あるいは細胞内に留ま らせること力 sできる。
(4)各種抗体の発現および活性評価
前記 3 (1)〜(3)で構築された抗体断片発現ベクター、一本鎖抗体発現ベクター、ジスルフィ ド安定化抗体 H鎖発現ベクターあるいはジスルフイド安定化抗体 L 鎖発現ベクターをエレクト 口ポレーシヨン法 [特開平 2- 257891、 Cytotechnology, 3, 133 (1990) ]等の方法により宿主糸田 胞へ導入することにより、 目的の抗体断片、一本鎖抗体、ジスルフイド安定化抗体 H鎖あるい はジスルフイド安定化抗体 L鎖を生産する形質転換株を取得することができる。発現ベクター の導入後、培養上清等に含まれる抗体断片、一本鎖抗体、ジスルフイド安定化抗体 H鎖あるい はジスルフイド安定化抗体 L鎖の発現は前記 1 (4)に記載の方法等により確認することができ る。
一本鎖抗体、ジスルフイド安定化抗体 H鎖あるいはジスルフイド安定化抗体 L鎖の回収およ び精製は公知の技術を組み合わせることにより達成することができる。例えば、抗体断片、一 本鎖抗体、ジスルフイド安定化抗体 H鎖あるいはジスルフイド安定化抗体 L鎖が培地中に分泌 されるならば、限外濾過により濃縮することができ、次いで各種クロマトグラフィーあるいはゲル 濾過を実行することにより達成することができる。また、宿主細胞のペリプラズマ領域へと輸送 されるならば、その細胞に浸透圧ショックを与え、限外濾過により濃縮することができ、次いで 各種クロマトグラフィーあるいはゲル濾過を実行することにより達成することができる。不溶性で あり、かつ顆粒 (インクルージョン'ボディー)として存在している抗体断片、一本鎖抗体、ジス ルフイド安定化抗体 H鎖あるいはジスルフイド安定化抗体 L鎖は、細胞の溶解、顆粒を単離す るための遠心分離と洗浄の繰り返し、例えばグァニジン-塩酸による可溶化後、各種クロマトグ ラフィーあるいはゲル濾過を実行することにより達成することができる。
精製された一本鎖抗体は、前記 1 (4)に記載の方法等により測定することができる。
精製されたジスルフイド安定化抗体 H鎖とジスルフイド安定化抗体 L鎖は、各々を混合したの ち、活性を有する構造へと導く操作 [refolding操作、 Molecular Immunology, 32, 249 (1995)]に よりジスルフイド結合を形成させた後、抗原ァフィ二ティークロマトグラフィーもしくはイオン交換 クロマトグラフィーまたはゲルろ過により活性を有するジスルフイド安定化抗体を精製することが できる。ジスルフイド安定化抗体の活性は前記 1 (4)に記載の方法等により測定することができ る。
4.融合抗体の作製方法
本発明で使用される抗体あるいは該抗体断片に、放射性同位元素、蛋白質、低分子の薬剤 などを、化学的あるいは遺伝子工学的に結合させた融合抗体も抗体の誘導体として使用する こと力でさる。
抗体と毒素蛋白質とを化学的に結合させた融合抗体は、文献 [Anticancer Research, 11, 2003(1991); Nature Medicine, , 350(1996)]記載の方法に従って作製することができる。 抗体と、毒素あるいはサイト力イン等の蛋白質とを遺伝子工学的に結合させた融合抗体は、 文 j¾ [Proceeding of National Academy of Science USA, 93, 974(1996); Proceeding of National Academy of Science USA, 93, 7826(1996)]記載の方法に従って作製することができる。
抗体と低分子抗癌剤を化学的に結合させた融合抗体は、文献 [Science, 261, 212(1993)]記 載の方法に従って作製することができる。
抗体と放射性同位元素を化学的に結合させた融合抗体は、 文献 [ Antibody Immunoconjugates and Radiopharmaceuticals, 3. 60(1990); Anticancer Research, 11. 2003(1991)]記載の方法に従って作製することができる。
これらの誘導体は、抗体分子の特異性に従って放射性同位元素、蛋白質 (サイト力イン、トキ シン、酵素など)、低分子の薬剤などを標的組織周辺に集積させることで、より効果的で副作 用の少ない診断あるいは治療を可能にすることが期待される。
5.抗体の使用方法 (I)
上述した抗 hTERT抗体、該抗体断片あるいはそれらと他分子との融合抗体は、ヒト hTERTと 結合し、 ADCC、 CDC等の抗体のエフェクター活性を介して hTERTを細胞表面に発現してい る細胞を破壊するため、肺癌、大腸癌、乳癌などの癌、炎症性疾患、アレルギー性疾患の治 療等に有用であると考えられる。
本発明の抗体を含有する医薬は、治療薬として単独で投与することも可能ではあるが、通常 は薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野 においてよく知られる任意の方法により製造した医薬製剤として提供するのが望ましい。
投与経路は、治療に際して最も効果的なものを使用するのが望ましぐ経口投与、または口 腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与をあげることができ、抗体 製剤の場合、望ましくは静脈内投与をあげることができる。
投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、 軟膏、テープ剤等があげられる。
経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤等が あげられる。
乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の糖類、ポリ エチレングリコール、プロピレングリコール等のダリコール類、ごま油、ォリーブ油、大豆油等の 油類、 p—ヒドロキシ安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等 のフレーバー類等を添加剤として用いて製造できる。
カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マンニトール等の賦形剤、 デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤、ポ リビュルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤、脂肪酸エステル等 の界面活性剤、グリセリン等の可塑剤等を添加剤として用いて製造できる。
非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。
注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製され る。
座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用レ、て調製される。
また、噴霧剤は該化合物そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、か っ該化合物を微細な粒子として分散させ吸収を容易にさせる担体等を用レ、て調製される。 担体として具体的には乳糖、グリセリン等が例示される。該化合物および用いる担体の性質 により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても 経口剤で添加剤として例示した成分を添加することもできる。
投与量または投与回数は、 目的とする治療効果、投与方法、治療期間、年齢、体重等により 異なるが、通常成人 1日当たり10
Figure imgf000034_0001
本発明で示したヒト hTERTに対する抗体は、肺癌、大腸癌、乳癌などの癌、炎症性疾患、ァ レルギ一性疾患患者由来の細胞に高率に反応することから、これらの疾病の診断薬あるいは 治療薬に用いることができる。
また、本発明で使用される抗体の各種腫瘍細胞に対する抗腫瘍効果を検討する方法は、ィ ンビトロ実験としては、補体依存性細胞障害活性(CDC活性)測定法、抗体依存性細胞障害 活性 (ADCC活性)測定法等があげられ、インビボ実験としては、マウス等の実験動物での腫 瘍系を用レ、た抗腫瘍実験等があげられる。
CDC活性、 ADCC活性、抗腫瘍実験は、文献 [Cancer Immunology Immunotherapy, 36, 373, 1993., Cancer Research, 54, 1511 (1994)]等記載の方法に従って行うことができる。
6.抗体の使用方法 (II)
また、本発明は、本発明のモノクローナル抗体を用いて、テロメラーゼの触媒サブユニットで ある hTERT、テロメラーゼの触媒サブユニットである hTERTを細胞内あるいは細胞外に発現し た微生物、動物細胞あるいは昆虫細胞を免疫学的に検出および定量する方法に関する。 本発明のモノクローナル抗体を用いて、テロメラーゼの触媒サブユニットである hTERT、テロ メラーゼの触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細 胞あるいは昆虫細胞を、免疫学的に検出および定量する方法としては、蛍光抗体法、免疫酵 素抗体法 (ELISA)、放射性物質標識免疫抗体法(RIA)、免疫組織染色法、免疫細胞染色法 などの免疫組織化学染色法 (ABC法、 CSA法等)、ウェスタンブロッテイング法、ドットプロッティ ング法、免疫沈降法、上記に記した酵素免疫測定法、サンドイッチ ELISA法 [単クローン抗体 実験マニュアル (講談社サイエンティフィック、 1987年)、続生化学実験講座 5 免疫生化学研 究法 (東京化学同人、 1986年) ]などがあげられる。 蛍光抗体法とは、テロメラーゼの触媒サブユニットである hTERT、テロメラーゼの触媒サブュ ニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞 に、本発明のモノクローナル抗体を反応させ、さらにフルォレシン'イソチオシァネート(FITC) などの蛍光物質でラベルした抗マウス IgG抗体あるいは結合断片を反応させた後、蛍光色素を フローサイトメーターで測定する方法である。
免疫酵素抗体法(ELISA)とは、テロメラーゼの触媒サブユニットである hTERT、テロメラーゼ の触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞ある いは昆虫細胞に、本発明のモノクローナル抗体を反応させ、さらにペルォキシダ一ゼ、ビォチ ンなどの酵素標識などを施した抗マウス IgG抗体あるいは結合断片を反応させた後、発色色素 を吸光光度計で測定する方法である。
放射性物質標識免疫抗体法 (RIA)とは、テロメラーゼの触媒サブユニットである hTERT、テロ メラーゼの触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細 胞あるいは昆虫細胞に、本発明のモノクローナル抗体を反応させ、さらに放射線標識を施した 抗マウス IgG抗体あるいは結合断片を反応させた後、シンチレ一シヨンカウンターなどで測定す る方法である。
免疫細胞染色法、免疫組織染色法とは、テロメラーゼの触媒サブユニットである hTERT、テロ メラーゼの触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細 胞あるいは昆虫細胞に、本発明のモノクローナル抗体を反応させ、さらに FITCなどの蛍光物 質、ペルォキシダーゼ、ビォチンなどの酵素標識を施した抗マウス IgG抗体あるいは結合断片 を反応させた後、顕微鏡を用レ、て観察する方法である。
ウェスタンブロッテイング法とは、テロメラーゼの触媒サブユニットである hTERT、テロメラーゼ の触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞ある いは昆虫細胞の細胞抽出液を SDS -ポリアクリルアミドゲル電気泳動 [Antibodies- A Laboratory Manual, Cold Spring Harbor Laboratory, 1988]で分画した後、該ゲルを PVDF膜あるいはニトロ セルロース膜にブロッテイングし、該膜に本発明のモノクローナル抗体を反応させ、さらに FITC などの蛍光物質、ペルォキシダーゼ、ピオチンなどの酵素標識を施した抗マウス IgG抗体ある いは結合断片を反応させた後、確認する。
ドットブロッテイング法とは、テロメラーゼの触媒サブユニットである hTERT、テロメラーゼの触 媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞あるいは 昆虫細胞の細胞抽出液をニトロセルロース膜にブロッテイングし、該膜に本発明のモノクロ一 ナル抗体を反応させ、さらに FITCなどの蛍光物質、ペルォキシダーゼ、ピオチンなどの酵素 標識を施した抗マウス IgG抗体あるいは結合断片を反応させた後、確認する。
免疫沈降法とは、テロメラーゼの触媒サブユニットである hTERT、テロメラーゼの触媒サブュ ニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞あるいは昆虫細胞 の細胞抽出液を本発明のモノクローナル抗体と反応させた後、プロテイン G—セファロース等 のィムノグロブリンに特異的な結合能を有する担体を加えて抗原抗体複合体を沈降させるもの である。
サンドイッチ ELISA法とは、本発明のモノクローナル抗体で、抗原認識部位の異なる 2種類の モノクローナル抗体のうち、あらかじめ一方のモノクローナル抗体はプレートに吸着させ、もう 一方のモノクローナル抗体は FITCなどの蛍光物質、ペルォキシダーゼ、ピオチンなどの酵素 で標識しておく。抗体吸着プレートに、テロメラーゼの触媒サブユニットである hTERT、テロメラ ーゼの触媒サブユニットである hTERTを細胞内あるいは細胞外に発現した微生物、動物細胞 あるいは昆虫細胞の細胞抽出液を反応後、標識したモノクローナル抗体を反応させ、標識物 質に応じた反応を行う方法である。
テロメラーゼが関与する疾病の診断方法としては、各種ヒト腫瘍培養細胞またはバイオプシ 一等で患者より採取した細胞および該細胞より調製した細胞抽出液を用いて、テロメラーゼの 触媒サブユニットである hTERTを、上述のように免疫学的に検出または定量する方法があげら れる。テロメラーゼが関与する疾病としては、癌などがあげられる。
本発明のモノクローナル抗体は、それらの疾病の診断薬として用いることができる。
7.抗体の使用方法 (III)
また、本発明の抗 hTERTモノクローナル抗体は、テロメラーゼの触媒サブユニットである hTERTを精製するために使用することができる。
具体的には、本発明の抗体を用いたァフィユティークロマトグラフィを行う。抗 hTERTモノクロ ーナル抗体を、プロテイン G—セファロース等のィムノグロブリンに特異的な結合能を有する担 体を用いて、あるいはアミノ基を介してィムノグロブリンを直接結合する種々のカップリングゲル を用いて担体に固定化し、抗体カラムを作製する。
サンプルとしては hTERTを発現した動物細胞あるいは昆虫細胞の細胞抽出液、あるいは各 種ヒト腫瘍培養細胞またはバイオプシー等により患者より採取した細胞から調整した細胞抽出 液を用いることができる。
抗体カラムに上記 hTERTサンプルを通塔後、カラム容量の 10倍の 0. 5Mの NaC!を含むリン 酸バッファー(pH7. 2)にて洗浄する。その後、抗原抗体反応を解離させる条件(高 pH、低 pH、 高塩濃度、界面活性剤、変性剤等)のバッファ一にて溶出し、精製 hTERTを得る。なお、溶出 は hTERTの酵素活性を失活させなレ、条件を用レ、る必要がある。 図面の簡単な説明
図 1は、化合物 2を抗原として用いて得られた本発明のモノクローナル抗体の化合物 1、 2に 対する反応性を、酵素免疫測定法で調べた結果を示すグラフである。
図 2は、化合物 1を抗原として用いて得られた本発明のモノクローナル抗体の化合物 1、 3に 対する反応性を、酵素免疫測定法で調べた結果を示すグラフである。
図 3は、化合物 3を抗原として用いて得られた本発明のモノクローナル抗体の化合物 2、 3に 対する反応性を、酵素免疫測定法で調べた結果を示すグラフである。
図 4は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いたゥエスタ ンブロッテイングにより検出した結果を示す写真である。
図 5は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いたドットブロ ッティングにより検出した結果を示す写真である。
図 6は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いた免疫細 胞染色により検出した測定結果を示すチャートである。 図 7ίま、 GST— hTERT.F3iこ特異白勺 (こ反応する ΚΜ2582、 ΚΜ2590、 ΚΜ2591、 ΚΜ2604の 反応性を、酵素免疫測定法で調べた結果を示すグラフである。
図 8は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いたゥエスタ ンブロッテイングにより検出した結果を示す写真である。
図 9は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いた免疫細 胞染色により検出した測定結果を示すチャートである。
図 10は、細胞中に存在する hTERT蛋白質を、本発明のモノクローナル抗体を用いたサンドィ ツチ ELISA系により検出した結果を示すグラフである。 発明を実施するための最良の形態
以下に実施例を用いて、本発明を具体的に説明するが、本発明がこれらの実施例に限定さ れるものでなレ、ことはレ、うまでもなレ、。
実施例 1 抗 hTERTモノクローナル抗体の作製(1)
(1)抗原の調製
hTERT蛋白配列を Genetyx Macを用いて解析し、親水性の高い部分、 N末端、 C末端のなか から抗原として適当と考えられる部分配列として、ヒトテロメラーゼ触媒サブユニットの N末から ;!〜 17番目の部分ペプチド(化合物 2、配列番号 1)、ヒトテロメラーゼ触媒サブユニットの N末 力 642〜661番目の部分ペプチド(ィ匕合物 1、配列番号 2)、およびヒトテロメラーゼ触媒サブ ユニットの N末から 1177〜1192番目の部分ペプチド(化合物 3、配列番号 3)を選択した。 略号
本発明において使用したアミノ酸およびその保護基に関する略号は、生化学命名に関する IUPAC- IUB委員会(IUPAC- IUB Joint Commission on Biochemical Nomenclature)の勧告 [ョ 一口ピアン'ジャーナル.ォブ'バイオケミストリー(European Journal of Biochemistry) , 138 卷, 9 頁(1984 年)]に従った。
以下の略号は、特に断わらない限り対応する下記のアミノ酸を表す。 Ala: L-ァラニン
Arg: L-ァノレギニン
Asn: L-ァスパラギン
Asp: L-ァスパラギン酸
Asx: L-ァスパラギン酸または L-ァスパラギン
Cys: L-システィン
Glu: L-グノレタミン酸
Glx: L-グルタミン酸または L-グルタミン
Gly: グリシン
lie: L-イソロイシン
Leu: L-ロイシン
Lys: L -リジン
Met: L-メチォニン
Phe: L -フエ二ルァラニン
Pro: L -プロリン
Ser: L-セリン
Thr: L-スレオニン
Vai:し-バリン
以下の略号は、対応する下記のアミノ酸の保護基および側鎖保護アミノ酸を表す。
A ァセチノレ
Fmoc: 9-フルォレニルメチルォキシカルボニル
t-Bu: t-ブチノレ
Trt: トリチル
Pmc: 2,2,5,7,8-ペンタメチルクロマン- 6-スルホニル
Boc: t-ブチルォキシカルボニル
Fmoc-Thr(t-Bu)-OH: N -9-フルォレニルメチルォキシカルボニル-〇- 1-ブチル し—スレオニ ン
Fmoc-Ser(t-Bu)-OH: N _9-フルォレニルメチルォキシカルボニル- O-t-ブチル -L-セリン Fmoc- Lys(Boc)- OH: Ν α -9 -フルォレニルメチルォキシカルボニル -Ν ε -t -ブチノレ ォキシ力 ルボニル- L-リジン
Fmoc- Asn(Trt) - OH: N -9-フルォレニルメチルォキシカルボニル -N y -トリチノレ- L-ァスノヽ0ラ ギン
Fmoc-Asp(0-t-Bu)-OH: N a -9_フルォレニルメチルォキシカルボニル -L-ァスパラギン酸- β - 1 -ブチノレエステノレ
Fmoc-Glu(0-t-Bu)-OH: N a _ 9—フルォレニルメチルォキシカルボニル -L-グルタミン酸- γ -t-ブチルエステル
Fmoc-Arg(Pmc)-OH: N -9 -フルォレニルメチルォキシカルボニル- Ng_2, 2,5,7,8 -ペンタメチ ノレクロマン— 6—スノレホニノレ— L—ァゾレギニン
Fmoc- Cys(Trt)- OH: N a -9-フルォレニルメチルォキシカルボニル- S-トリチル- L-システィン 以下の略号は、対応する下記の反応溶媒、反応試薬等を表す。
HBTU: 2- ( 1H-ベンゾトリアゾール -1-ィル) -1 , 1 ,3,3-テトラメチルゥロニゥム'へキサフルォロホ スフエー卜
HOBt: N-ヒドロキシベンゾトリアゾール
D F: Ν,Ν-ジメチノレホノレムアミド
DCM: ジクロロメタン
TFA: トリフルォロ酢酸
DIEA: ジイソプロピルェチルァミン
①化合物 1 (配列番号 2 ) ( Ac-Ala-Arg-Thr-Phe-Arg-Arg-Glu-Lys-Arg-Ala-Glu-Arg- Leu-Thr- Ser- Arg- Va卜 Lys- Ala- Cys- OH)の合成
H - Cys(Trt)、 14.1 z mol が結合した担体樹脂(クロロトリチル樹脂、 AnaSpec社製) 30mgを自 動合成機(島津製作所)の反応容器に入れ、 1mlの DCM/DMF (1 : 1)を加えて 10分間攪拌し溶 液を排出し、さらに lmlの DMFを加えて 1分間攪拌し溶液を排出した後、島津製作所の合成プ ログラムに従レ、次の操作を行った。
(a) Fmoc-Ala-OH (141 μ mol)、 HBTU(141 μ mol)、 HOBtl水和物 (141 μ mol)および DIEA (282 μ πιοΐ)を DMF(734 1)中で 3分間攪拌し、得られた溶液を樹脂に加え て混合物を 30分間攪 拌し、溶液を排出した。
(b) 担体樹脂を 734 の DMFで 1分間洗浄し、これを 5回繰り返した。こうして、 Fmoc-Ala- Cys(Trt)が担体上に合成された。
次に以下の Fmoc基脱保護工程を行った。
(c) 30%ピぺリジン- DMF溶液 734 1を加えて混合物を 4分間攪拌し、該溶液を排出し、この操 作をもう 1回繰り返した。
(d) 担体樹脂を 500 の DMFで 1分間洗浄し、該溶液を排出し、この操作を 5回繰り返した。 こうして、 Fmoc基を除去した H- Ala-Cys(Trt)の結合した担体樹脂を得た。
次に、(a)の工程で Fmoc- Lys(Boc)-〇Hを用いて縮合反応を行レ、、(b)の洗浄工程、次いで (c)、 (d)の脱保護工程を経て、 H-Lys(Boc)-Ala-Cys(Trt) が担体上に合成された。以下、工程 (a)に おいて、 Fmoc - Vaト OH、 Fmoc - Arg(Pmc)- OH、 Fmoc— Ser(t— Bu)— OH、 Fmoc- Thr(t- Bu)-〇H、 Fmoc— Leu— OH、 Fmoc— Arg(Pmc)— OH、 Fmoc— Glu(Ot— Bu) -〇H、 Fmoc-Ala-OH、 Fmoc - Arg(Pmc)— OH、 Fmoc— Lys(Boc)— OH、 Fmoc— Glu(Ot— Bu)- OH、 Fmoc— Arg(Pmc)- OH、 Fmoc— Arg(Pmc)-〇H、 Fmoc- Phe— OH、 Fmoc_Thr(t-Bu)_OH、 Fmoc-Arg(Pmc)- OH、 Fmoc-Ala-OH を順次用いて、(a)〜(d)を繰り返した後、メタノーノレ、ブチルエーテルで順次洗浄し、減圧下 12 時間乾燥して、側鎖保護ペプチドの結合した担体樹脂を得た。これに、 TFA (82.5%)、チォ ァニソール(5%)、水(5%)、ェチルメチルスルフイド(3%)、 1,2-エタンジチオール(2.5%)および チオフエノ一ル (2%)からなる混合溶液 lmlを加えて室温で 8時間放置し、側鎖保護基を除去す るとともに樹脂よりペプチドを切り出した。樹脂を濾別後、得られた溶液にエーテル約 10mlを加 え、生成した沈澱を遠心分離およびデカンテーシヨンにより回収し、粗ペプチドとして 36.2mgを 取得した。この粗生成物を 2M酢酸に溶解後、逆相カラム(資生堂製、 CAPCELL PAK C18 30mmI.D. X 25mm) を用いた HPLCで精製した。 0.1%TFA水溶液に、 TFA0.1%を含む 90%ァセ トニトリル水溶液を加えていく直線濃度勾配法で溶出し、 220mnで検出し、化合物 2を含む画 分を得た。この画分を凍結乾燥して、化合物 1を 2.3mg得た。
質量分析 [FABMS] ; m/z = 2477.4 ( +H)+
アミノ酸分析; Glx 2.0 (2) , Ser 1.2 (1) , Arg 5.4 (6) , Thr 2.0 (2) , Ala 3.2 (3) , Val 1.0 (1) , Leu 1.3 (1) , Lys 2.0 (2) , Phe 0.8 (1) , Cys 1.5 (1)
②化合物 2 (配列番号 1 ) (H- Met- Pro- Arg- Ala- Pro-Arg- Ser- Arg- Ala- Va卜 Arg-Ser- Leu- Leu- Arg- Ser- Cys- OH)の合成
H - Cys(Trt)、 14.1 μ molが結合した担体樹脂(クロロトリチル樹脂、 AnaSpec 社製) 30mgを出 発物質とし、化合物 1と同様にして、 Fmoc- Ser(t- Bu) - OH、 Fmoc- Arg(Pmc)- OH、 Fmoc - Leu- OH、 Fmoc-Leu— OH、 Fmoc— Ser(t - Bu)— OH、 Fmoc— Arg(Pmc)—〇H、 Fmoc - Vaト OH、 Fmoc - Ala- OH、 Fmoc-Arg(Pmc)-OH, Fmoc- Ser(t- Bu)- OH、 Fmoc- Arg(Pmc)- OH、 Fmoc - Pro - OH、 Fmoc- Ala- OH、 Fmoc- Arg(Pmc)-OH、 Fmoc- Pro- OH、 Fmoc- Met- OHを順次縮合した後に、 洗浄、乾燥を経て、側鎖保護ペプチドの結合した担体樹脂を得た。化合物 1と同様にして側鎖 保護基の切断ならびに樹脂からの切り出しを行レ、、粗ペプチド 31. lmgを取得し、逆相カラムを 用いた HPLCで精製し、化合物 2を 4.8mg得た。
質量分析 [FABMS] ; m/z = 1956.7 ( +H) +
アミノ酸分析; Ser 3.0 (3), Arg 4.7 (5) , Ala 2.0 (2), Pro 2.0 (2), Val 1.0 (1) , Leu 2.3 (2), Met 1.0 (1), Cys 1.4 (1)
③化合物 3 (配列番号 3 ) ( H- Cys- Ala- Ala- Asn- Pro- Ala- Leu- Pro- Ser- Asp-Phe- Lys - Thr- He- Leu- Asp- OH)の合成
Fmoc-Asp(Ot-Bu), 14.1 mol が結合した担体樹脂(Wang レジン、 NovaBiochem製) 30mg を出発物質とし、化合物 1の工程 (c)、(d)を行った後、化合物 1と同様にして、 Fmoc- Leu- OH、 Fmoc— He— OH、 Fmoc-Thr(t— Buノー〇H、 Fmoc— Lys(Boc)— OH 、 Fmoc— Phe— OH、 Fmoc— Asp(Ot— Bu)- OH、 Fmoc- Ser(t- Bu)- OH、 Fmoc- Pro_OH、 Fmoc- Leu- OH、 Fmoc- Ala- OH、 Fmoc- Pro - OHヽ Fmoc- Asn(Trt)- OH、 Fmoc - Ala- OH、 Fmoc- Ala- OH、 Fmoc- Cys(Trt) - OHを順次縮合し た後に、洗浄、乾燥を経て、側鎖保護ペプチドの結合した担体樹脂を得た。化合物 1と同様に して側鎖保護基の切断ならびに樹脂からの切り出しを行い、粗ペプチド、 27.6mgを取得し、逆 相カラムを用いた HPLCで精製し、化合物 3を 10.3mg得た。
質量分析 [FABMS] ; m/z = 1675.6 ( +H) +
アミノ酸分析; Glx 3.0 (3) , Ser 1.1 (1) , Ala 3.0 (3) , Pro 2.1 (2), Leu 2.0 (2) , Lys 1.0 (1) , He 0.9 (1) , Phe 1.0 (1), Cys 1.0 (1)
(2)免疫原の調製
実施例 1 (1)で得られた hTERT部分ペプチドは、免疫原性を高める目的で以下の方法で KL H (カルビオケム社)とのコンジュゲートを作製し、免疫原とした。すなわち、 KLHを PBSに溶 解して lOmgZmlに調整し、 1/10容量の 25mgZml MBS (ナカライテスク社)を滴下して 30 分間撹拌反応させた。あらかじめ PBSで平衡化したセフアデックス G— 25カラムなどのゲルろ 過カラムでフリーの MBSを除いて得られた KLH— MB2. 5mgを 0. 1Mりん酸ナトリウムバッフ ァー(PH7. 0)に溶解したペプチド lmgと混合し、室温で 3時間、攪拌反応させた。反応後、 P BS -0. 5M NaClで透析した。
(3)動物の免疫と抗体産生細胞の調製
実施例 1 (2)で調製したペプチド- KLHコンジュゲート 100 n gをアルミニウムゲル 2mgおよび 百日咳ワクチン (千葉県血清研究所製) 1 X 109細胞とともに 5週令雌マウス(Baltic)に投与し、 2週間後より 100 gのコンジュゲートを 1週間に 1回、計 4回投与した。眼底静脈叢より採血し、 その血清抗体価を以下に示す酵素免疫測定法で調べ、十分な抗体価を示したマウスから最 終免疫 3日後に脾臓を摘出した。
脾臓を MEM培地(日水製薬社製)中で細断し、ピンセットでほぐし、遠心分離(1200rpm、 5分間)した後、上清を捨て、トリス一塩化アンモニゥム緩衝液(pH7. 65)で 1〜2分間処理し 赤血球を除去し、 MEM培地で 3回洗浄し、細胞融合に用いた。
(4)酵素免疫測定法
アツセィ用の抗原には実施例 1 (1)で得られた hTERT部分べプチドをサイログロブリン(以下、 THYと略す。)とコンジュゲートしたものを用いた。作製方法は実施例 1 (2)に記した通りである 、架橋剤には MBSの代わりに SMCC (シグマ社)を用いた。 96穴の EIA用プレート(グライ ナ一社)に、上述のように調製した 10 ^ gZmlのコンジュゲートを 50 1/穴で分注し、 4度で ー晚放置して吸着させた。洗浄後、 1 %BSA— PBSを ΙΟΟ μ ΐΖ穴でカ卩え、室温 1時間反応さ せて残っている活性基をブロックした。 1 %BSA— PBSを捨て、被免疫マウス抗血清、抗 hTERTモノクローナル抗体の培養上清も しくは精製モノクローナル抗体を 50 W 1Z穴で分注 し 2時間反応させた。 tween— PBSで洗浄後、ペルォキシダーゼ標識ゥサギ抗マウスィムノグ ロブリン (ダコ社)を 50 μ 1/穴で加えて室温、 1時間反応させ、 tween— PBSで洗浄後 ABTS 基質液 [2.2-アジノビス(3-ェチルベンゾチアゾール -6 -スルホン酸)アンモニゥム]を用レ、て発 色させ OD415nmの吸光度をプレートリーダー(NJ2001 ;日本インターメッド社)にて測定し た。
(5)マウス骨髄腫細胞の調製
8—ァザグァニン耐性マウス骨髄腫細胞株 P3— U1を正常培地で培養し、細胞融合時に 2 X 107以上の細胞を確保し、細胞融合に親株として供した。
(6)ハイプリドーマの作製
実施例 1 (3)で得られたマウス脾細胞と(5)で得られた骨髄腫細胞とを 10: 1になるよう混合し、 遠心分離(1 , 200rpm、 5分間)した後、上清を捨て、沈澱した細胞群をよくほぐした後、攪拌 しな力 Sら、 37°Cで、ポリエチレングライコール一 1 , 000 (PEG— 1 , 000) 2g、 MEM培地 2ml およびジメチルスルホキシド 0. 7mlの混液 0. 2〜lmlZl08マウス脾細胞を加え、 1〜2分間 毎に MEM培地 l〜2mlを数回加えた後、 MEM培地を加えて全量が 50mlになるようにした。 遠心分離(900rpm、 5分間)後、上清を捨て、ゆるやかに細胞をほぐした後、メスピペットによ る吸込み、吸出しでゆるやかに細胞を HAT培地 100ml中に懸濁した。
この懸濁液を 96穴培養用プレートに 100 μ ΐ 穴ずつ分注し、 5%C02インキュベータ一中、 37°Cで 10〜: 14日間 C〇25%下で培養した。この培養上清を実施例 1 (4)に記載した酵素免 疫測定法で調べ、 hTERT部分ペプチドに反応してコントロールペプチドに反応しない穴を選 び、さらに HT培地と正常培地に換え、 2回クローニングを繰り返して、抗 hTERTモノクローナル 抗体産生ハイブリドーマを確立した。 化合物 2 (配列番号 1)を用いて 2個のモノクローナル抗体 KM2294、 KM2295,化合物 1 (配 列番号 2)を用いて 8個のモノクローナル抗体 KM2277、 KM2278、 KM2279、 KM2280、 KM 2281、 KM2282、 KM2283、 KM2284、化合物 3 (配列番号 3)を抗原に用いて 17個のモノクロ —ナル抗体 KM2296、 KM2297、 KM2298、 KM2299、 KM2300、 KM2301、 KM2302、 KM 2303、 KM2304N KM2305、 KM2306、 KM2307、 KM2308、 KM2309、 KM2310、 KM2311、 KM2312がそれぞれ選択された。
(7)モノクローナル抗体の精製
プリスタン処理した 8週令ヌード雌マウス(Balb/c)に実施例 1 (6)で得られたハイブリド一マ株 を 5〜20 X 106細 /匹それぞれ腹腔内注射した。 10〜21日後に、ハイブリドーマは腹水癌 化した。腹水のたまったマウスから、腹水を採取(l〜8mlZ匹)し、遠心分離(3, 000rpm、 5 分間)して固形分を除去した。モノクローナル抗体が IgMのときは、 50%硫酸アンモニゥムに て塩析し、塩化ナトリウム 0. 5Mを添加した PBSで透析後、セル口ファイン GSL2000 (生化学 工業社製)(ベットボリューム 750ml)のカラムに流速 15ml/時で通塔し IgM画分を集め、精 製モノクローナル抗体とした。モノクローナル抗体が IgGのときは、力プリル酸沈殿法(アンチボ ディズ)により精製し、精製モノクローナル抗体とした。
抗体のサブクラスはサブクラスタイピングキットを用いて酵素免疫測定法により行ない決定し た (表 1)。
Figure imgf000046_0001
(8) hTERT部分ペプチドとの反応性 (酵素免疫測定法)
実施例 1 (6)で選択された抗 hTERTモノクローナル抗体の hTERT部分ペプチドとの反応性を (4)に示した酵素免疫測定法にて調べた。
図 1に示すように、化合物 2 (配列番号 1)を用レ、て得られた抗 hTERTモノクローナル抗体 (K M2294、 KM2295)は化合物 2に特異的に反応し、図 2に示すように化合物 1 (配列番号 2) を用いて得られた抗 hTERTモノクローナル抗体(KM2277〜KM2284)は化合物 1に特異的 に反応し、図 3に示すように化合物 3 (配列番号 3)を抗原に用いて得られたモノクローナル抗 体 (KM2296〜KM2312)は化合物 3に特異的に反応した。
(9)ウェスタンブロッテイング
実施例 1 (6)で選択された抗 hTERTモノクローナル抗体を用レ、、細胞中の hTERT蛋白質のゥ エスタンブロッテイングによる検出を検討した。
細胞は、ヒト腎臓形質転換株 293 (ATCC CRL-1537)、ヒト子宫頸部癌細胞株 HeLaS3 (ATCC CCL- 2. 2)、ヒト大腸癌細胞株 CoLo205細胞(ATCC CRL- 225)ヒト肺正常糸田 胞株 MRC5 (ATCC CCL- 171)およびヒト肺正常細胞株 WI- 38細胞(ATCC CCL-75) の 5種類を用いた。これらの細胞をトリプシン、 EDTA混液(三光純薬)を用いて浮遊化し、 PBS で洗浄した。細胞溶解用緩衝液 (50mM Tris-HCl pH7.2, 1% TritonX, 150mM NaCl, 2mM MgCl2, 2mM CaCl2, 0.1% NaN3, 50mM iodoacetamide, 50m N— ethylmaleimide, lmg/ml leupepcin, O.lmM dithiothreitol)を 5 X 107細胞に lml添加し、 4°C、 2時間放置後、遠心分離し た。得られた上清を 105細胞分/レーンで SDS-ポリアクリルアミ ド電気泳動(アンチボディズ) にて分画後、 PVDF膜にブロッテイングする。 BSA— PBSでブロッキング後、抗 hTERTモノクロ ーナル抗体の培養上清を室温で 2時間反応させた。 PBS— Tweenでよく洗浄した後、第二抗 体としてペルォキシダーゼ標識抗マウスィムノグロブリン抗体 [ダコ(DAKO)社製]を室温で 1 時間反応させた。 PBS—Tweenでよく洗浄した後、検出は ECL—ディテクシヨンキット(アマシ ャム社)を用いて行レ、、 X線フィルム上に感光させた。その結果を図 4に示す。図 4において、レ ーン 1は 293細胞溶解液、レーン 2は HeLaS3細胞溶解液、レーン 3は CoLo205細胞溶解液、 レーン 4は MRC5細胞溶解液、レーン 5は WI-38細胞溶解液の結果を示す。 図 4に示すように、 KM2311 (化合物 3より得られた抗 hTERTモノクローナル抗体)により、ヒト 腫瘍細胞株である 293細胞、 HeLaS3細胞および CoLo205細胞溶解液中に hTERTの分子 量に相当する 130KDa付近のバンドが検出された。またヒト正常細胞株である MRC5細胞お よび WI- 38細胞溶解液中には、特異的なバンドは認められな力つた。 hTERTに反応しないモ ノクローナル抗体 KM511[Agrk;. Biol. Chem., 53(4), 1095(1989)]については、 130KDa付近 のバンドに特異的に反応するものはな力 た。
以上の結果より、 KM2311は細胞中の hTERT蛋白質をウェスタンブロッテイングにより検出 することができ、癌などテロメラーゼが関与する各種疾病の診断に応用可能であることが示さ れた。 抗 hTERTモノクローナル抗体を用いた、細胞中の hTERT蛋白質のドットブロッテイングによる 検出を検討した。抗 hTERTモノクローナル抗体としては、実施例 1 (7)で hTERT蛋白質が検出 された KM2311の培養上清を用いた。
実施例 1 (7)で調整したヒト腎臓形質転換株 293細胞溶解液 2. 5 X 105細胞 Z5 μ 1を、細胞 溶解用緩衝液で 2倍、 4倍、 8倍、 16倍、 32倍、 64倍に希釈後、それぞれ 5 μ 1/スポットでニト ロセルロース膜にドットした。乾燥後、 BSA— PBSでブロッキングした後、 KM2311培養上清を 原液で、室温、 2時間反応させた。 PBS— Tweenでよく洗浄した後、第二抗体としてペルォキ シダーゼ標識抗マウスィムノグロブリン抗体を室温で 1時間反応させた。 PBS— Tweenでよく 洗浄した後、検出は ECL— detection kit (アマシャム社)を用いて行レ、、 X線フィルム上に感光 させた。その結果を図 5に示す。図 5において、上段は KM511、下段は KM2311について、 各々左からヒト腎臓形質転換株 293細胞溶解液の原液、 2倍、 4倍、 8倍、 16倍、 32倍、 64倍 の希釈液をスポットしたニトロセルロース膜との反応結果を示す。
図 5に示すように、 KM2311は細胞中の hTERT蛋白質をドットブロッティ ングにより検出す ること力 Sでき、癌などテロメラーゼが関与する各種疾病の診断に応用可能であることが示され た。 (11)免疫細胞染色
実施例 1 (6)で選択された抗 hTERTモノクローナル抗体を用レ、、細胞中の hTERT蛋白質の 免疫細胞染色による検出を検討した。
細胞は、ヒト腎臓形質転換株 293 (ATCC CRL-1537)、 ヒト子宫頸部癌細胞株 HeLaS3 (ATCC CCL- 2. 2)、ヒト大腸癌細胞株 CoLo205細胞(ATCC CRL- 225)ヒト肺正常糸田 胞株 MRC5 (ATCC CCL - 171)およびヒト肺正常細胞株 WI-38細胞(ATCC CCL- 75) の計 5株を用いた。これらの細胞をトリプシン、 EDTA混液を用いて浮遊化し、 PBSで洗浄し た後、細胞膜の抗体透過性を上げるため、 100%メタノール(氷冷)にて 4°Cで 10分間処理し た。 PBSで洗浄後、 10 gZml ヒトイムノグロブリン(カッペル社)にて室温で 30分間ブロッキ ングした。 1 X 105個ノチューブで分注した後、遠沈して上清をぬき、抗 hTERTモノクローナノレ 抗体の培養上清を加えて 室温で 30分間反応させた。 PBSで洗浄後、 FITC標識抗マウスィム ノグロブリン抗体 (マウスィムノグロブリンに特異的なもの;和光純薬)を 100 μ ΐ/チューブで分 注し、 4°C、 30分間遮光反応させた。よく PBSで洗浄した後、セルアナライザー(コ一ルター社; EPICS XLsystem II)にて角军析した。
図 6は、そのセルアナライザーのチャートであり、 293細胞(左列)、 HeLaS3細胞(中央列)、 CoLo205糸田 J3包、 MRC5糸田月包、 WI—38糸田月包にっレヽて、各々 KM2311、 KM511、 BSAをカロえ た結果を示している。
図 6中のピークのシフトは、 KM2311力 S293細胞、 HeLaS3細胞、 CoLo205細胞に反応す ることを示す。また KM2311は正常細胞である MRC5細胞、 WI38細胞との反応性は認めら れな力つた。 KM2311以外のモノクロ一ナル抗体では、癌細胞株に特異的な反応性を示すも のはなかった。
したがって、 KM2311は細胞中の hTERT蛋白質を免疫細胞染色により検出することができ、 癌などテロメラーゼが関与する各種疾病の診断に応用可能であることが示された。 実施例 2 抗 hTERTモノクローナル抗体の作製(2)
(1)ヒトテロメラーゼ触媒サブユニットの大腸菌における発現プラスミドの作製 ヒトテロメラーゼ触媒サブユニット (hTERT)部分断片と、ダルタチオン一 S—トランスフェラーゼ (以下、 GTSと略記する)融合蛋白質の、大腸菌における発現プラスミドは以下のようにして作 製した。
まず、全長 1 , 132アミノ酸残基からなる hTERTの 549-831残基目(配列番号 6) [Science, 277, 955(1997)]に相当する遺伝子部分をそれぞれ铸型とした合成 DNAプライマーを作製した。配 列番号 4は、アミノ酸残基 439〜555番目に相当する塩基配列の 5 '末端に BamHIが認識する 塩基配列を結合した塩基配列よりなる。配列番号 5は、アミノ酸残基 825〜831番目に相当す る塩基配列の相補鎖の 5 '末端に EcoRIが認識する塩基配列を結合した塩基配列よりなる。こ れらの合成 DNAプライマーを用いて、 PCRにより増幅した。反応条件は 94°Cで 1分間置いた後、 94°Cで 20秒間、 55°Cで 30秒間、 72°Cで 2分間を 25サイクル繰り返し、 72°Cで 10分間置いた後、 4°Cに移行した。耐熱性 DNAポリメラーゼは、宝酒造社の LA Taq DNA polymerase を用いた。 取得された PCR産物を制限酵素 BamHIおよび EcoRIにより切断したのち、該サンプルをァガロ ースゲルで電気泳動し、ゲルより DNAバンドを切り出して該 DNAを抽出 '精製した。該精製断 片を、 GTSをコードする DNAが組み込まれた pGEX- 2TK (フアルマシア社製)の BamHI- EcoRI 部位に挿入し、該プラスミドを phTERTと命名した。
(2)組み換えヒトテロメラーゼ触媒サブユニット融合蛋白質の調製
実施例 2 ( 1 )で述べた、発現プラスミド phTERTを導入した大腸菌株 DH5 aを LB培地 450mlで 終夜培養したのち、全量を 18Lの LB培地(O. lmg/mlのアンピシリンを含む)中に植え、 37°Cで 振とう培養を行った。 OD600値が 0.2に達した時、イソプロピル一 β—D—チォガラタトシドを終 濃度 2mMになるように添加し、さらに 3時間、 37°Cで振とう培養を行った。該培養液を 4°C、 8,000rpmで 1時間、遠心分離を行って集菌し、該菌体を PBS 100mlに懸濁し、超音波処理を行 つた。これを 4°C、 8,000rpmで 1時間遠心分離した後、沈殿画分を PBS/l%Tween20 100mlに懸 濁した。上述の遠心分離、懸濁の操作を 5回繰り返した後、最終的な沈殿画分を封入体画分と し、以下に記述する抗体作製の際の抗原として用いた。
( 3)大腸菌発現ヒトテロメラ一ゼ触媒サブユニット融合蛋白質を用いたモノクローナル抗体の 作製 上記のように作製した GST- hTERT断片の画分を SDS— PAGEで精製した。封入体画分に SDSの最終濃度が 0. 5%となるように SDS— PBSを添カロし、 100°Cで 5分間加熱後、可溶化 した。 2mm厚のポリアクリルアミドゲルを用いた電気泳動(SDS— PAGE)で封入体画分を分 画した。該ゲルを 1%クマシ一プリリアントブルー水溶液で染色後、水で脱色した。該ゲルから GST- hTERT断片の分子量に相当するバンド部分を切り出し、 4°C—晚、 0. 1 %SDS— PBS で抽出した。該抽出液をガラスフィルターでろ過し、 GST-hTERTの断片を含むろ液を抗原とし て用いた。
上記のように得られた SDS— PAGEで精製した大腸菌発現 GST-hTERT断片を 50 ^ gZ匹 にて、初回のみアルミニウムゲル 2mgおよび百日咳ワクチン 1 X 109細胞とともに 5週齢雌マウ スに計 3回投与した。以降実施例 1 (3)〜(7)に記載の方法に準じてハイブリド一マを作製した。 但し、酵素免疫測定法でのアツセィ用の抗原には SDS— PAGEで精製した大腸菌発現 GST - hTERT断片を用いた。
その結果、 GST— hTERT断片 (こ特異白勺 tこ反応する KM2582、 KM2590、 KM2591、 KM260 4を得た。抗体のサブクラスは(4)に示すバインディング ELISAにより、 K 2582, KM2590お よび KM2591は IgG2bクラス、 KM2604は IgG2aクラスと決定された。
(4)バインディング ELISA
アツセィ用の抗原には SDS— PAGE精製大腸菌発現 GST-hTERT.F3を用いた。コントロー ル抗原としては、 GSTを用いた。 GSTの調製は、上述した実施例 2 ( 1)〜(3)と同様の方法を 用いた。以降、実施例 1 (4)に記載の酵素免疫測定法により行なった。結果を図 7に示す。 K M2582、 KM2590, KM2591、 KM2604は、レヽずれも SDS— PAGE精製大月昜菌発現 GST- hTERT.F3に特異的な反応性を示した。
(5)ウェスタンブロッテイング
実施例 2 (3)で選択された抗 hTERTモノクローナル抗体を用いて、細胞中の hTERT蛋白質 のウェスタンブロッテイングによる検出を検討した。
細胞はヒト腎臓形質転換株 293 (ATCCCRL1537)とヒト肺正常細胞 WI— 38 (ATCC CC L75)を用い、第二抗体にはラットイムノグロブリンに特異的に反応するペルォキシダーゼ標識 抗ラットイムノグロブリン (ダコ社製)を用いた。方法については、実施例 1 (9)に記載の方法に より ffなった。
結果を図 8に示した。図 8において、レーン 1は 293細胞溶解液、レーン 2は WI38細胞溶解液 の結果を示す。
図 8に示すように、 KM2582および KM2604により 293糸田月包溶角罕液中の hTERTの分子量に 相当する 130KDa付近のバンドが検出された。正常細胞である WI— 38細胞溶解液中には特 異的に反応するバンドは認められな力つた。コントロール抗体として用いた、 IgGタイプで、 DU 189に対するモノクローナル抗体 KM844はいずれの細胞にも全く反応しなかった。
(6)免疫細胞染色
実施例 2 (3)で選択された抗 hTERTモノクローナル抗体を用いて、細胞中の hTERT蛋白質 の免疫細胞染色による検出を検討した。
細胞は、ヒト腎臓形質転換株 293 (ATCC CRL - 1537)とヒト肺正常細胞 WI— 38 (ATCC CCL-75)を用レ、、第二抗体にはラットイムノグロブリンに特異的に結合する FITC標識抗ラット ィムノグロブリン (和光純薬社製)を用いた。方法ついては実施例 1 (11)記載の方法により行な つた。
結果を図 9に示した。図 9に示すように、 KM2582および KM2604は 293細胞に反応し、正常 細胞である WI— 38細胞には反応しなかった。コントロール抗体として用いた、 DU189に対す るモノクローナル抗体 KM844はいずれの細胞にも全く反応しな力つた。
(7) hTERT蛋白質の定量系の構築
hTERT蛋白質の定量系を構築するために、以下の実験を行った。
まず、測定サンプルである、 hTERT蛋白質発現昆虫細胞核抽出液およびベクターのみを発 現させた昆虫細胞核抽出液を以下の方法で作製した。実施例 2 (1)で述べた hTERT遺伝子を PVL1392 (Pharmingen社)の EcoRI部位に挿入し、トランスファ一ベクター pVL- hTERTを作製し た。これを BaculoGold (Pharmingen社)と共に Sf21細胞に導入し、 27°Cで 4日間培養後、培養上 清より hTERTを発現するウィルスベクターを得た。負対照実験として、 hTERT遺伝子を挿入し ない、 PVL1392と BaculoGoldを共に Sf21細胞に導入して得たウィルスベクターを用いた。 Sf21細胞に対し、上述のウィルスベクターを 1細胞あたり 3プラーク形成単位感染した。 27°Cで 3日間培養後、細胞を回収し、 1mlあたり 5 X 106細胞数の濃度で 1 X CHAPSバッファー(10mM Tris/HCl (pH7.5), ImM MgClz, ImM EGTA, 5mM β—メルカプトエタノール、 0.5% (w/v) CHAPS, 10%グリセロール)に懸濁した。氷上で 30分間静置した後、 4°C、 12,000ι·ριηで 20分間遠心分離 することにより、核画分を沈殿として回収した。
該沈殿物を同体積の KC1溶解バッファー(50mM Tris/HCl (pH7.5), 420mM KC1, 5m gCl2, O.lmM EDTA, 6mMジチオスレィトール、 0.5% (w/v) CHAPS, 20%グリセロール、 10%蔗糖)に懸 濁した。これを超音波処理することにより、ヒトテロメラーゼ触媒サブユニットを含む、核画分の 抽出液を得た。
次に、実施例 1 ( 1 )〜( 7 )で得られた抗 hTERTモノクローナル抗体 KM 2311を以下の方法 によりピオチン標識した。 KM2311精製抗体を PBSで lmgZmlに希釈し、該抗体溶液に 1 4容量の 0. 5M炭酸バッファー(PH9. 2)を加えた。さらに炭酸バッファーと同量の NHS_Lc_ Biotin ( lmgZmlにジメチルホルムアミドにて溶解;ピアス社製)を該抗体溶液に攪拌下滴下し た。 3時間、室温で攪拌反応を行なった後、 PBSで一晩透析したものをピオチン標識 KM231 1として用いた。
96ゥエルの EIA用プレート(グライナ一社)に、抗ラットイムノグロブリン抗体(マウス血清吸収 ずみ;カルタグ社製)を4 § 1111、 50 μ ΐ/ゥエルで分注し、 4°Cでー晚放置して吸着させた。 洗浄後、 1 %BSA— PBSを ΙΟΟ μ ΐΖゥエルで加え、室温 1時間反応させて残っている活性基 をブロックした。ゥエル中の 1%BSA— PBSを捨て、 KM2590および KM2591のノヽイブリドー マ培養上清を原液で加え 4°Cでー晚反応させた。ゥエルを PBSで洗浄後、 hTERT蛋白質発現 昆虫細胞核抽出液およびベクターのみを発現させた昆虫細胞核抽出液を原液から 5倍希釈 系列で 7点希釈し、 ゥエルで分注し 4°Cでー晚反応させた。ゥエルを tween_PBSで 洗浄後、上述したビォチン標識 KM2311 (1 μ gZmlに 1%正常ラット血清を含む BSA— ΡΒ Sにて希釈)を 50 μ ΐノウエルで加えて室温、 2時間反応させ、 tween— PBSで洗浄後、さらに ペルォキシダ一ゼ標識アビジン (ベクター社製)を 50 μ 1/ゥエルで加えて室温で 1時間反応さ せた。ゥエルを tween— PBSで洗浄後、 ABTS基質液 [2.2-アジノビス(3-ェチルベンゾチア ゾール -6-スルホン酸)アンモニゥム]を用いて発色させ〇D415nmの吸光度をプレートリーダ 一 (E— max ;和光純薬)にて測定した。
その結果、図 10に示すように、 KM2590あるいは KM2591とピオチン化 KM2311を用いた サンドイッチ ELISA系により hTERT蛋白質を濃度依存的に特異的に検出することが可能であ つた。したがって本方法は、濃度既知の hTERT蛋白質を標準サンプルとして用いることにより、 hTERTの定量が可能であり、癌などテロメラーゼが関与する疾患の診断方法として有効であ る。
(8)免疫沈
実施例 2 (7)で調製した、 hTERT蛋白質発現昆虫細胞核抽出液およびベクターのみを発現 させた昆虫細胞核抽出液を用いて、免疫沈降を検討した。
96ゥエル EIAプレートに抗ラットイムノグロブリン (カルタグ社)を 100 μ ΐΖゥエルずつ分注し、 4°Cでー晚放置してプレートにコートした後、 BSA—PBSを 200 μ 1/ゥエル分注し、室温 1時 間放置してプレート上に残った蛋白質との結合残基をブロック(ブロッキング)した。その後、ゥ エルの BSA— PBSを捨てコントロール抗体 ΚΜ844、ΚΜ2590または KM2591の各ハイブリド 一マ培養上清を原液で 100 μ ΐΖゥエルずつ分注し、室温で 2時間反応させた。 PBSでよく洗 浄した後、上記のように調製した細胞抽出液を 100 μ ΐ/ゥエルで分注し、 4°Cで一晩反応させ た。ゥエル中を PBS— tweenでよく洗浄した後、 SDS— PAGE用サンプルバッファ一( X 5濃 度)を 20 μ ΐΖゥエルで加え、室温 2時間プレートを振とうした後全量をチューブに移した。回収 したサンプルを PBSにて 5倍希釈して、常法により、 SDS— PAGE、続いてウェスタンブロッテ イングを行ない、実施例 1で得られた抗 hTERTモノクローナル抗体 KM2311を用いて抗体染 色を行なった。
結果を表 2に示した。表 2に示すように KM2591によってのみ、 KM2311で検出される分子 量 130KDaの蛋白質が沈降されることがわかった。また、抗原にコントロール昆虫細胞核抽出 液を用レ、た場合には、沈降蛋白質は検出されな力つた。 表 2
抗原 hTERT昆虫細胞発現核抽出液 コントロール昆虫細胞核抽出液 抗体 KM844 K 2590 KM2591 KM844 KM2590 KM2591 結果 +
産業上の利用可能性
本発明によれば、 hTERTに特異的に反応し、ウェスタンブロッテイング、免疫 細胞染色、ドッ トブロッテイングにより hTERT蛋白質を特異的に検出する抗 hTERTモノクローナル抗体が提供 される。
これらの方法で、 hTERT蛋白質を特異的に検出し得る抗 hTERTモノクローナル抗体およびこ れを用いた診断用キットは、癌などテロメラーゼが関与する各種疾病の診断において、高感度 で信頼性の高い検出を可能にする。

Claims

請求の範囲
1.ヒトテロメラーゼ触媒サブユニットを認識するモノクローナル抗体。
2.ヒトテロメラーゼ触媒サブユニットの、配列番号 1、 2、 3および 6のいずれかに記載されたァ ミノ酸配列を有する部分ペプチドを動物に免疫することにより得られる、請求の範囲 1記載のモ ノクローナル抗体。
3.モノクローナル抗体が、ヒトテロメラーゼ触媒サブユニットの、配列番号 1、 2、 3および 6のい ずれかに記載されたアミノ酸配列に特異的に反応するモノクローナル抗体である、請求の範 囲 1に記載のモノクローナル抗体。
4. モノクローナル抗体が、モノクローナル抗体 KM2311、 KM2582, KM2590, KM2591および KM2604から選ばれる、請求の範囲 1〜3のいずれ力 1項に記載のモノクローナル抗体。
5.請求の範囲 1〜3のいずれ力、 1項に記載のモノクローナル抗体を生産するハイブリドーマ。
6.ハイブリドーマが KM2311(FERM BP - 6306)、 K 2582(FERM BP_6663)、 KM2590(FERM BP- 6683)、 KM259KFER BP-6684)および KM2604(FERM BP-6664)から選ばれる、請求の範 囲 5に記載のハイプリドーマ。
7. モノクローナル抗体が、遺伝子組換え抗体である、請求の範囲:!〜 3のいずれか 1項に記 載されたモノクローナル抗体。
8. 遺伝子組換え抗体が、ヒト化抗体、抗体断片から選ばれるモノクローナル抗体である、請求 の範囲 7に記載されたモノクローナル抗体。
9. ヒトイ匕抗体がヒト型キメラ抗体である請求の範囲 8に記載されたモノクローナル抗体。
10.請求の範囲 1に記載されたモノクローナル抗体の抗体重鎖 (H鎖)可変領域 (V領域)および 抗体軽鎖 (し鎖) V領域と、ヒト抗体の H鎖定常領域 (C領域)および L鎖 C領域とからなるヒト型キメ ラ抗体。
11. H鎖 V領域および L鎖 V領域のアミノ酸配列が、モノクローナル抗体 KM2311、 KM2582, K 2590, KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域および L鎖 V 領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 10記載のヒト型キメラ抗体。
12.ヒト化抗体が CDR (相補性決定領域)移植抗体である請求の範囲 8に記載されたモノクロ一 ナル抗体。
13. 請求の範囲 1に記載されたモノクローナル抗体の H鎖および L鎖の V領域相補性決定領域 と、ヒト抗体の H鎖および L鎖の C領域および V領域フレームワーク領域とからなる CDR移植抗 体。
14. H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列力 モノクローナル抗体 KM2311, KM2582、 KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、請求の 範囲 13に記載された CDR移植抗体。
15. 抗体断片が、 Fab、 Fab,、 F(ab,)2、一本鎖抗体およびジスルフイド安定化 Fvからなる群より 選ばれる抗体である請求の範囲 8に記載されたモノクローナル抗体。
16. 請求の範囲 1に記載されたモノクローナル抗体の H鎖 V領域および L鎖 V領域を含む一本 鎖抗体。
17. 一本鎖抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列が、ヒトテロメラーゼ触媒サブュ ニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列と同じアミノ 酸配列を有する、請求の範囲 16に記載された一本鎖抗体。
18.一本鎖抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列が、モノクローナル抗体 KM2311、 K 2582, KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域およ び L鎖 V領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 17に記載された一本鎖 抗体。
19. 一本鎖抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列が、ヒトテロメ ラーゼ触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V領域の相補 性決定領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 16に記載された一本鎖抗 体。
20.一本鎖抗体の H鎖 V領域おょぴ L鎖 V領域のアミノ酸配列が、モノクローナル抗体 KM2311、 KM2582、 KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H鎖 V領域およ び L鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 19に 記載された一本鎖抗体。
21. 請求の範囲 1に記載されたモノクローナル抗体の H鎖 V領域および L鎖 V領域を含むジス ルフイド安定化抗体。
22. ジスルフイド安定化抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列力 ヒトテロメラ一ゼ 触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列 と同じアミノ酸配列を有する、請求の範囲 21に記載されたジスルフィド安定化抗体。
23.ジスルフイド安定化抗体の H鎖 V領域および L鎖 V領域のアミノ酸配列が、モノクローナル抗 体 KM2311、 KM2582, KM2590、 KM2591および KM2604から選ばれるモノクローナル抗体の H 鎖 V領域および L鎖 V領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 22に記載さ れたジスルフイド安定化抗体。
24. ジスルフイド安定化抗体の H鎖 V領域およびし鎖 V領域の相補性決定領域のアミノ酸配列 力 ヒトテロメラーゼ触媒サブユニットを認識するモノクローナル抗体の H鎖 V領域および L鎖 V 領域の相補性決定領域のアミノ酸配列と同じアミノ酸配列を有する、請求の範囲 21に記載され たジスルフイド安定化抗体。
25. ジスルフイド安定化抗体の H鎖および L鎖の V領域の相補性決定領域のアミノ酸配列が、 モノクローナル抗体 KM2311、 K 2582, KM2590、 KM2591および KM2604から選ばれるモノク ローナル抗体の H鎖 V領域および L鎖 V領域の相補性決定領域のアミノ酸配列と同じアミノ酸 配列を有する、請求の範囲 24に記載されたジスルフイド安定化抗体。
26. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜25のいずれ力、 1項に記載された抗体力 放 射性同位元素、蛋白質または低分子の薬剤と化学的または遺伝子工学的に結合させた抗体 であることを特徴とする抗体。
27. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれか 1項に記載の抗体を用いてヒト テロメラーゼ触媒サブユニットを免疫学的に検出する方法。
28. 免疫学的に検出する方法が、ウェスタンブロッテイング、免疫組織染色法、免疫細胞染 色、ドットブロッテイングであることを特徴する、請求の範囲 27記載の免疫学的に検出する方 法。
29. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれ力、 1項に記載の抗体を用いてヒト テロメラ一ゼ触媒サブユニットを細胞内あるいは細胞外に発現した微生物、動物細胞あるいは 昆虫細胞を免疫学的に検出する方法。
30. 免疫学的に検出する方法が、ウェスタンブロッテイング、免疫組織染色法、免疫細胞染 色、ドットブロッテイングであることを特徴する、請求の範囲 29記載の免疫学的に検出する方 法。
31. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれ力、 1項に記載の抗体を用いてヒト テロメラーゼ触媒サブユニットを免疫学的に定量する方法。
32. 免疫学的に定量する方法が、蛍光抗体法、免疫酵素抗体法 (ELISA)、放射性物質標識 免疫抗体法(RIA)、サンドイッチ ELISA法などであることを特徴とする、請求の範囲 31記載の 免疫学的に定量する方法。
33. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれ力 1項に記載の抗体を用いてヒト テロメラーゼ触媒サブユニットを細胞內あるいは細胞外に発現した微生物、動物細胞あるいは 昆虫細胞を免疫学的に定量する方法。
34. 免疫学的に定量する方法が、蛍光抗体法、免疫酵素抗体法 (ELISA)、放射性物質標識 免疫抗体法(RIA)、サンドイッチ ELISA法などであることを特徴とする、請求の範囲 33記載の 免疫学的に定量する方法。
35. 請求の範囲 1〜3、 10、 11、 13、 14、 16〜26のいずれ力 4項に記載の抗体を用いる、 テロメラーゼが関与する疾患の診断方法。
36. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれ力、 1項に記載の抗体を用いる、 テロメラーゼが関与する疾患の診断薬。
37. 請求の範囲:!〜 3、 10、 11、 13、 14、 16〜26のいずれ力 1項に記載の抗体を用いる、 テロメラーゼが関与する疾患の治療薬。
PCT/JP1999/001557 1998-03-26 1999-03-26 Anticorps monoclonal contre une sous-unite catalytique de telomerase humaine WO1999050407A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/424,226 US6639057B1 (en) 1998-03-26 1999-03-26 Monoclonal antibody against human telomerase catalytic subunit
AU29585/99A AU754278B2 (en) 1998-03-26 1999-03-26 Monoclonal antibody against human telomerase catalytic subunit
CA002291798A CA2291798A1 (en) 1998-03-26 1999-03-26 Monoclonal antibody against human telomerase catalytic subunit
EP99910727A EP0990701A4 (en) 1998-03-26 1999-03-26 MONOCLONAL ANTIBODIES AGAINST A CATALYTIC SUBUNIT OF HUMAN TELOMERASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9848698 1998-03-26
JP10/98486 1998-03-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/424,226 A-371-Of-International US6639057B1 (en) 1998-03-26 1999-03-26 Monoclonal antibody against human telomerase catalytic subunit
US10/623,515 Division US20040219667A1 (en) 1998-03-26 2003-07-22 Monoclonal antibody for human telomerase catalytic subunit

Publications (1)

Publication Number Publication Date
WO1999050407A1 true WO1999050407A1 (fr) 1999-10-07

Family

ID=14220992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001557 WO1999050407A1 (fr) 1998-03-26 1999-03-26 Anticorps monoclonal contre une sous-unite catalytique de telomerase humaine

Country Status (5)

Country Link
US (2) US6639057B1 (ja)
EP (1) EP0990701A4 (ja)
AU (1) AU754278B2 (ja)
CA (1) CA2291798A1 (ja)
WO (1) WO1999050407A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038011A1 (fr) * 2002-10-23 2004-05-06 Sinocells Bio Technologies Co., Ltd Cellules souches neuronales humaines transduites par le gene htert, methode de production et d'identification de ces dernieres
US7078491B1 (en) 2000-09-21 2006-07-18 Amgen Inc. Selective binding agents of telomerase
JP2008537109A (ja) * 2005-04-01 2008-09-11 メドベット サイエンス ピーティーワイ. リミティッド 診断法および治療法ならびにそれに有用な薬剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057227A1 (fr) * 2000-02-02 2001-08-09 Seishi Murakami Procede de production de transcriptase inverse de telomere
EP1158055A1 (fr) * 2000-05-26 2001-11-28 Xu Qi University of Teaxs Laboratoire de Leucémie Chen Méthode pour le diagnostic de cancers
DK1392714T3 (da) * 2001-03-12 2006-01-09 Intercept Pharmaceuticals Inc Steroider som agonister for FXR
DE10306084A1 (de) * 2002-12-06 2004-06-24 Technische Universität Dresden Gegen hTERT gerichtete Erkennungsmoleküle und die Verwendung dieser
US20080131442A1 (en) * 2006-06-26 2008-06-05 Science Applications International Corporation IgY antibodies to human telomerase reverse transcriptase
WO2014010971A1 (ko) * 2012-07-11 2014-01-16 주식회사 카엘젬백스 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317891A (en) * 1996-10-01 1998-04-08 Geron Corp hTRT, the reverse transcriptase subunit of human telomerase
WO1998037181A2 (en) * 1997-02-20 1998-08-27 Whitehead Institute For Biomedical Research Telomerase catalytic subunit gene and encoded protein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958680A (en) 1994-07-07 1999-09-28 Geron Corporation Mammalian telomerase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317891A (en) * 1996-10-01 1998-04-08 Geron Corp hTRT, the reverse transcriptase subunit of human telomerase
WO1998037181A2 (en) * 1997-02-20 1998-08-27 Whitehead Institute For Biomedical Research Telomerase catalytic subunit gene and encoded protein

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEYERSON M., ET AL.: "HEST2, THE PUTATIVE HUMAN TELOMERASE CATALYTIC SUBUNIT GENE, IS UP-REGULATED IN TUMOR CELLS AND DURING IMMORTALIZATION.", CELL, CELL PRESS, US, vol. 90., 22 August 1997 (1997-08-22), US, pages 785 - 795., XP002919250, ISSN: 0092-8674, DOI: 10.1016/S0092-8674(00)80538-3 *
NAKAMURA T. M., ET AL.: "TELOMERASE CATALYTIC SUBUNIT HOMOLOGS FROM FISSION YEAST AND HUMAN.", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 277., 15 August 1997 (1997-08-15), US, pages 955 - 959., XP002919249, ISSN: 0036-8075, DOI: 10.1126/science.277.5328.955 *
See also references of EP0990701A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078491B1 (en) 2000-09-21 2006-07-18 Amgen Inc. Selective binding agents of telomerase
WO2004038011A1 (fr) * 2002-10-23 2004-05-06 Sinocells Bio Technologies Co., Ltd Cellules souches neuronales humaines transduites par le gene htert, methode de production et d'identification de ces dernieres
JP2008537109A (ja) * 2005-04-01 2008-09-11 メドベット サイエンス ピーティーワイ. リミティッド 診断法および治療法ならびにそれに有用な薬剤

Also Published As

Publication number Publication date
EP0990701A4 (en) 2001-12-12
EP0990701A1 (en) 2000-04-05
US6639057B1 (en) 2003-10-28
US20040219667A1 (en) 2004-11-04
AU2958599A (en) 1999-10-18
CA2291798A1 (en) 1999-10-07
AU754278B2 (en) 2002-11-07

Similar Documents

Publication Publication Date Title
RU2765306C2 (ru) Антитело против в7-н3, его антигенсвязывающий фрагмент и их медицинское применение
CN113544156B (zh) 抗Claudin18.2抗体及其应用
WO2000035956A1 (fr) Anticorps monoclonal anti-vegf humain
JP2010523096A (ja) 抗EpCAM抗体およびその使用
WO2016173558A1 (zh) 抗诺如病毒gii.4型鼠源单克隆抗体的制备和应用
AU750296B2 (en) Antibodies against SEMP1, methods for their production and uses thereof
UA108064C2 (uk) Вектор експресії, що містить молекулу нуклеїнової кислоти, яка кодує ізольований тимусний стромальний лімфопоетичний білок (tslp) або його антигенний фрагмент
WO1999059636A1 (fr) Inhibiteurs de l'activite du facteur de croissance endothelial vasculaire (vegf)
US6962984B2 (en) IgA nephropathy-related DNA
WO1999050407A1 (fr) Anticorps monoclonal contre une sous-unite catalytique de telomerase humaine
WO1999040118A1 (fr) Anticorps diriges contre le recepteur kdr humain du vegf
CN113912715B (zh) 一种抗α-突触核蛋白抗体及其相关产品和应用
WO1999060025A1 (fr) Anticorps recombines de gene
JP2001046066A (ja) 新規な相補性決定領域を有するヒトvegf受容体kdrに対する抗体
JPWO2005105144A1 (ja) 潜在型TGF−βの活性化抑制剤
EP1167387A1 (en) Antibodies against SEMP1, methods for their production and uses thereof
CN114790239B (zh) 一种抗冠状病毒n蛋白的抗体及其应用
CA2329683C (en) Iga nephropathy-related dna
CN118406148A (zh) 针对madcam的抗体
RU2822550C2 (ru) Антитело против клаудина 18.2 и его применение
US20040175825A1 (en) Monoclonal antibody binding to mt4-mmp catalytic domain
WO2007066698A1 (ja) 抗perp遺伝子組換え抗体
WO1999048926A1 (en) ANTIBODY AGAINST HUMAN α1,3-FUCOSE TRANSFERASE Fuc-TVII
TW202313681A (zh) Mageb2結合構建體
CN117285628A (zh) 抗vista抗体及其应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR CA CN CZ HU ID IL IN JP KR MX NO NZ PL RO SG SI SK UA US VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2291798

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999910727

Country of ref document: EP

Ref document number: 09424226

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 29585/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999910727

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 29585/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999910727

Country of ref document: EP