WO1999049095A1 - Titanium-based amorphous alloy - Google Patents

Titanium-based amorphous alloy Download PDF

Info

Publication number
WO1999049095A1
WO1999049095A1 PCT/JP1999/001469 JP9901469W WO9949095A1 WO 1999049095 A1 WO1999049095 A1 WO 1999049095A1 JP 9901469 W JP9901469 W JP 9901469W WO 9949095 A1 WO9949095 A1 WO 9949095A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
alloy
amorphous
based amorphous
supercooled liquid
Prior art date
Application number
PCT/JP1999/001469
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Inoue
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to JP54808199A priority Critical patent/JP3933713B2/en
Publication of WO1999049095A1 publication Critical patent/WO1999049095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Definitions

  • the present invention relates to a Ti-based amorphous alloy having a wide supercooled liquid region and excellent tensile strength.
  • an amorphous metal material having various shapes such as a ribbon shape, a filament shape, and a granular material shape can be obtained by rapidly cooling a molten alloy.
  • Amorphous alloy ribbons can be easily manufactured by a single-roll method, twin-roll method, spinning in liquid spinning method, etc., which can provide a large cooling rate.
  • Numerous amorphous alloys have been obtained for Co, Pd, Cu, Zr and Ti alloys, revealing the unique properties of amorphous alloys such as high corrosion resistance and high strength. It has been. Above all, Ti-based amorphous alloys have much better corrosion resistance than other amorphous alloys and are less harmful to the human body. It is expected to be applied to fields such as medical materials and chemical materials.
  • amorphous alloys obtained by the above-described manufacturing method are limited to ribbons and thin wires, and it is difficult to process them into a final product shape using them. Was quite limited.
  • Ti-Ni-Cu-based and Ti-Ni-Cu- (Fe, Co, Zr, Hi) -based amorphous alloys have a supercooled liquid region above 30 ° C. 00 Amorphous alloy shape obtained because of its low amorphous forming ability, although having strength exceeding OMPa However, they were limited to ribbons, filaments, and powders, and could not be said to have dimensions that could be applied to general industrial materials.
  • the present inventors have developed an amorphous material that can achieve practical strength and dimensions that can be applied to industrial materials without impairing the temperature range of the supercooled liquid region.
  • a Ti-TM system having a specific composition [TM : a group consisting of FeCoNi and Cu
  • TM a group consisting of FeCoNi and Cu
  • ⁇ 1 ", ⁇ 1 Si S n and S b One or two or more elements selected from the group consisting of ⁇ 1 ", ⁇ 1 Si S n and S b
  • the present invention provides a compound represented by the formula: TiZra TMb Mc wherein TM is one or more elements selected from the group consisting of FeCoNi and Cu, and M is A l is one or more elements selected from the group consisting of S i S n and S b, ab and c each represent atomic%, 0 ⁇ a ⁇ 20 30 ⁇ b ⁇ 70, 0 ⁇ c ⁇ 10, 30 ⁇ a + b + c ⁇ 70] is provided.
  • TM is FeCoNiCuCu.
  • Ri chi is one or more elements selected Ri chi, the content of this element group 3 0 Nuclear 0/0 or 7 0 atomic% or less, preferably 35 atomic% or more 6 5 atomic% It is as follows. If the content of this element group is less than 30 at% and more than 70 at%, no amorphous phase is formed even by a single roll method with a high cooling rate. If the content of this element group is less than 35 c at % and more than 75 at%, a supercooled liquid region is not exhibited, and workability is deteriorated.
  • is one or more element group selected from Al, Si, Sn and Sb.
  • the single-roll method with a large cooling rate Although an amorphous phase is formed, the ability to form an amorphous phase is not improved, and an amorphous alloy block cannot be obtained by other methods such as mold construction. On the other hand, if it exceeds 10 atomic%, the supercooled liquid region 0 will not be exhibited.
  • Zr is not necessarily an essential element, the alloy of the present invention can improve the ability to form an amorphous phase by adding Zr.
  • the term “supercooled liquid region” in this specification is defined as the difference between the glass transition temperature and the crystallization temperature obtained by performing differential scanning calorimetry at a heating rate of 40 ° C. per minute.
  • the “converted vitrification temperature” is defined as a value obtained by dividing the glass transition temperature obtained by the above calorimetric analysis by the melting point of the total metal.
  • the “supercooled liquid region” is a numerical value indicating workability, and the “converted vitrification temperature” is a numerical value indicating the easiness of becoming amorphous.
  • the alloy of the present invention has a supercooled liquid region of 30 ° C or higher and a reduced vitrification temperature of 0.55 or higher.
  • the Ti-based amorphous alloy of the present invention is cooled and solidified from the molten state by various methods such as a single roll method, a twin roll method, a spinning method in a rotating liquid 0, an atomizing method, etc.
  • a body-shaped amorphous solid can be obtained.
  • the amorphous solid is inferior to other amorphous alloys in the ability to form an amorphous phase, an amorphous solid of the above-mentioned form can be obtained.
  • Gold bullion could not be made.
  • the alloy of the present invention has a remarkable improvement in the ability to form an amorphous phase from a conventional Ti-based amorphous alloy, preferably, the molten alloy is filled in a mold so that the cross section is circular.
  • a columnar amorphous alloy ingot having a diameter of 0.8 mm, that is, a cross-sectional area of 0.5 mm 2 can be obtained. Further, by changing the mold shape, an amorphous alloy lump having a cross-sectional area of 0.5 mm 2 or more of an arbitrary shape can be obtained.
  • the Ti-based amorphous alloy into a molten state and atomizing it, it is possible to obtain an amorphous single-phase powder having a particle size of 750 ⁇ or less.
  • Tg glass transition temperature
  • Example 1 An alloy composition shown in Table 1 material (Example 1 one 1 1, Comparative Examples 1 to 5) and the single-ended Lumpur method and mold ⁇ method to produce an alloy ingot sample in the ribbon-shaped and the diameter 1 mm c
  • the glass transition temperature (Tg), crystallization onset temperature (Tx), and melting point (Tm) of the ribbon-shaped sample were measured by differential scanning calorimetry. From these values, the supercooled liquid region (Tx-T 0 g) and the reduced vitrification temperature (Tg / Tm) were calculated.
  • the confirmation of the amorphization of the 1-mm-diameter alloy ingot produced by the die-casting method was performed by X-ray diffraction and optical microscope observation of the sample cross section.
  • volume fraction of the amorphous phase contained in the sample (V f-amo) was evaluated for its calorific value during crystallization using differential scanning calorimetry with that of a single-aperture foil strip that was completely amorphized. Further, a tensile test piece was prepared by machining, and the breaking strength ( ⁇ f) was evaluated by a tensile test.
  • the amorphous alloys of Examples 1 to 11 show a supercooled liquid region of 30 ° C or more, a reduced vitrification temperature of 0.55 or more, and a non- The crystalline alloy 3 ⁇ 4 also has a strength exceeding 180 OMPa.
  • the alloy of Comparative Example 1 does not contain the elements of Group M, the amorphous volume fraction is not only less than 90%, but also has a strength of only 163 OMPa.
  • Comparative Example 2 In alloys No. 3 and No. 3, since the elements in Group M exceed 10 atomic%, the supercooled liquid region has a force of less than 30 ° C and the volume fraction of the amorphous phase in the ribbon shape by the single roll method is low. Only about 65% can be obtained. In the alloy of Comparative Example 4, since the total content of the elements in the M group and the TM group exceeds 70 atomic%, the volume fraction of the amorphous phase contained in the alloy lump having a diameter of 1 mm is less than 60%. Since the alloy ingot is brittle and cannot be subjected to a tensile test, it has no mechanical properties that can withstand practical use.
  • the Ti-based amorphous alloy was melted at 1600 K and atomized with He gas at a gas pressure of 9.8 MPa to obtain an amorphous single-phase powder having a particle size of 75 / zm or less.
  • the alloy composition of this powder is Ti 45 Zr 5 Cu 25 Ni 2 . S n 5 (same as in Example 2).
  • Table 2 shows the results.
  • the extrusion ratio 1 was obtained by hot pressing a 20 mm ⁇ compact at 1 GPa. As can be seen from these results, extrusion ratios of 4 and 5 are preferred.
  • Industrial applicability The Ti-based amorphous alloy of the present invention exhibits a supercooled liquid region of 30 ° C. or more, a reduced vitrification temperature of 0.55 or more, and 180 MPa of amorphous alloy ingot having a diameter of 1 mm. It shows a strength exceeding. For these reasons, it can be used for various applications as a Ti-based amorphous alloy having excellent glass-forming ability, workability, and mechanical strength.

Abstract

A titanium-based amorphous alloy which has a composition represented by the formula Ti¿100-a-b-c?ZraTMbMc (wherein TM represents at least one element selected from the group consisting of Fe, Co, Ni, and Cu; M represents at least one element selected from the group consisting of Al, Si, Sn, and Sb; and a, b, and c respectively are numbers in at.% satisfying the relationships 0≤a≤20, 30≤b≤70, 0∫c≤10, and 30≤a+b+c≤70) and has a wide range where a supercooled liquid having an amorphous-phase content of 90 vol.% or higher is present. It has an excellent tensile strength.

Description

明 細 書 T i基非晶質合金 技術分野  Description Ti-based amorphous alloy Technical field
本発明は、 広い過冷却液体領域と優れた引張強さを有する T i基非晶質合金に 関するものである。 背景技術  The present invention relates to a Ti-based amorphous alloy having a wide supercooled liquid region and excellent tensile strength. Background art
溶融状態の合金を急冷することにより薄帯状、 フィラメント状、 粉粒体状等、 種々の形状を有する非晶質金属材料が得られることはよく知られている。 非晶質 合金薄帯は、 大きな冷却速度の得られる片ロール法、 双ロール法、 回転液中紡糸 法等の方法によって容易に製造できるので、 これまでにも、 F e系、 N i系、 C o系、 P d系、 C u系、 Z r系あるいは T i系合金について数多くの非晶質合金 が得られており、 高耐食性、 高強度等の非晶質合金特有の性質が明らかにされて いる。 なかでも、 T i系非晶質合金は、 他の非晶質合金に比べ格段に優れた耐食 性を有し、 人体への為害性も少ないため新しいタイプの非晶質合金として構造材 料、 医用材料、 化学材料等の分野への応用が期待されている。 し力 し、 前記した 製造方法によって得られる非晶質合金は、 薄帯や細線に限られており、 それらを 用いて最終製品形状へ加工することも困難なことから、 工業的にみてその用途が かなり限定されていた。  It is well known that an amorphous metal material having various shapes such as a ribbon shape, a filament shape, and a granular material shape can be obtained by rapidly cooling a molten alloy. Amorphous alloy ribbons can be easily manufactured by a single-roll method, twin-roll method, spinning in liquid spinning method, etc., which can provide a large cooling rate. Numerous amorphous alloys have been obtained for Co, Pd, Cu, Zr and Ti alloys, revealing the unique properties of amorphous alloys such as high corrosion resistance and high strength. It has been. Above all, Ti-based amorphous alloys have much better corrosion resistance than other amorphous alloys and are less harmful to the human body. It is expected to be applied to fields such as medical materials and chemical materials. However, amorphous alloys obtained by the above-described manufacturing method are limited to ribbons and thin wires, and it is difficult to process them into a final product shape using them. Was quite limited.
一方非晶質合金を加熱すると、 特定の合金系では結晶化する前に過冷却液体状 態に遷移し、 急激な粘性低下を示すことが知られている。 例えば、 Z r— A 1— N i一 Cu非晶質合金では、 毎分 40°Cの加熱速度で、 結晶化までに 1 20°C程 度の間、 過冷却液体領域として存在できることが報告されている (Ma t e r. T r a n s. J IM, Vo l . 32 (1 99 1) 1 005項参照) 。 このような 過冷却液体状態では、 合金の粘性が低下しているために閉塞鍛造等の方法により 任意形状の非晶質合金成形体を作製するすることが可能であり、 非晶質合金から なる歯車なども作製されている (日刊工業新聞 1 992年 1 1月 1 2日参照) 。 したがって広い過冷却液体領域を有する非晶質合金は、 優れた加工性を備えて いると言える。 このような過冷却液体領域を有する非晶質合金の中でも、 T i一 N i—Cu合金は、 50°C以上の過冷却液体領域の温度幅を有し、 耐食性に優れ るなど実用性の高い非晶質合金とされていた (第 1 1 0回日本金属学会講演概要 (1 992) 273項参照) 。 また、 これらの非晶質合金の加工性と機械的性質 の改善が行なわれ、 50°C以上の過冷却液体領域と 1 00 OMP aを超える強度 を兼ね備えた T i一 N i— Cu— (F e, Co、 Z r、 H f ) 系非晶質合金が開 発され、 公知となっている (特開平 6— 2641 99号公報および特開平 6— 2 64200号公報) 。 発明の開示 On the other hand, when an amorphous alloy is heated, the supercooled liquid It is known that the state changes to a viscous state and shows a sharp decrease in viscosity. For example, it has been reported that a Zr—A1-Ni1-Cu amorphous alloy can exist as a supercooled liquid region at a heating rate of 40 ° C per minute for about 120 ° C before crystallization. Trans. J IM, Vol. 32 (1991) 1005). In such a supercooled liquid state, since the viscosity of the alloy is reduced, it is possible to produce an amorphous alloy compact having an arbitrary shape by a method such as closed forging, and is made of an amorphous alloy. Gears are also manufactured (see Nikkan Kogyo Shimbun, January 12, 1999, January 12). Therefore, it can be said that an amorphous alloy having a wide supercooled liquid region has excellent workability. Among such amorphous alloys having a supercooled liquid region, Ti-Ni-Cu alloy has a temperature range of a supercooled liquid region of 50 ° C or more, and has excellent practicality such as excellent corrosion resistance. It was considered to be a highly amorphous alloy (see the 110th Abstract of the Annual Meeting of the Japan Institute of Metals (1992), paragraph 273). In addition, the workability and mechanical properties of these amorphous alloys have been improved, and the Ti-Ni-Cu- () has a supercooled liquid region of 50 ° C or higher and a strength exceeding 100 OMPa. Fe, Co, Zr, and Hf) -based amorphous alloys have been developed and are known (JP-A-6-264199 and JP-A-6-264200). Disclosure of the invention
(発明が解決しようとする課題)  (Problems to be solved by the invention)
前述した T i— N i—C u系、 Ti- N i— Cu— (F e、 C o、 Z r、 H i) 系非晶質合金は、 30°C以上の過冷却液体領域と 1 00 OMP aを超える強度を 兼ね備えてはいるものの、 非晶質形成能が小さいために得られる非晶質合金形状 が薄帯状、 フィラメント状、 粉粒体状に限られており、 一般的工業材料へ応用で きる寸法を有しているとは言えなかった。 The aforementioned Ti-Ni-Cu-based and Ti-Ni-Cu- (Fe, Co, Zr, Hi) -based amorphous alloys have a supercooled liquid region above 30 ° C. 00 Amorphous alloy shape obtained because of its low amorphous forming ability, although having strength exceeding OMPa However, they were limited to ribbons, filaments, and powders, and could not be said to have dimensions that could be applied to general industrial materials.
(課題を解決する手段)  (Means to solve the problem)
そこで本発明者らは、 上述の課題を解決するために、 過冷却液体領域の温度幅 を損なわず、 実用に耐え得る強度と工業材料への応用が可能になる寸法が実現で きる非晶質形成能を兼ね備えた T i系非晶質合金材料を提供することを目的とし て鋭意研究した結果、 特定の組成を有する T i一 TM系 [TM : F e C o N iおよび Cuよりなる群から選択される 1種または 2種以上の元素] に特定量の ∑ 1"、 ぉょぴ 1 S i S nおよび S bよりなる群から選択される 1種または 2種以上の元素を添加した合金を溶融し、 液体状態から急冷固化させることによ り、 実用に耐え得る強度と大きな非晶質形成能を兼ね備えた T i系非晶質合金が 得られることを見い出し、 本発明を完成するに至った。 In order to solve the above-described problems, the present inventors have developed an amorphous material that can achieve practical strength and dimensions that can be applied to industrial materials without impairing the temperature range of the supercooled liquid region. As a result of diligent research aimed at providing a Ti-based amorphous alloy material having both forming ability, a Ti-TM system having a specific composition [TM : a group consisting of FeCoNi and Cu One or two or more elements selected from the group consisting of 特定 1 ", ぴ 1 Si S n and S b By melting the alloy and rapidly solidifying it from the liquid state, it was found that a Ti-based amorphous alloy having both practical strength and large amorphous forming ability was obtained, and completed the present invention. Reached.
すなわち、 本発明は、 式: T i Z r a TMb Mc [式中、 TMは、 F e C o N iおよび Cuよりなる群から選択される 1種または 2種以上の元 素、 Mは、 A l S i S nおよび S bよりなる群から選択される 1種または 2 種以上の元素であり、 a bおよび cは、 それぞれ原子%を表し、 0≤ a≤20 30≤ b≤ 70, 0 < c≤ 10, 30≤ a + b + c≤ 70を満足する] で示され る組成を有する非晶質合金を提供するものである。 発明を実施するための最良の形態  That is, the present invention provides a compound represented by the formula: TiZra TMb Mc wherein TM is one or more elements selected from the group consisting of FeCoNi and Cu, and M is A l is one or more elements selected from the group consisting of S i S n and S b, ab and c each represent atomic%, 0≤a≤20 30≤b≤70, 0 < c≤10, 30≤a + b + c≤70] is provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の好ましい実施態様を説明する。  Hereinafter, preferred embodiments of the present invention will be described.
本発明の T i系非晶質合金において、 TMは、 F e C o N iぉょぴCuょ χ り選択される 1種または 2種以上の元素であり、 この元素群の含有量は、 3 0原 子0 /0以上 7 0原子%以下で、 好ましくは 3 5原子%以上 6 5原子%以下である。 この元素群の含有量が 3 0原子%未満および 7 0原子%超では、 冷却速度の大き な片ロール法によっても非晶質相は形成しない。 またこの元素群の含有量が 3 5 c 原子%未満 7 5原子%超では、 過冷却液体領域を示さないため、 加工性が劣化す る。 Μは、 A l、 S i、 S nおよび S bより選択される 1種または 2種以上の元 素群であり、 この元素群の含有量が 0原子%では、 冷却速度の大きな片ロール法 によって非晶質相は形成するものの、 非晶質形成能は改善されず、 金型铸造等の 他の方法で非晶質合金塊は得られない。 また、 1 0原子%超では過冷却液体領域 0 を示さなくなる。 Z rは必ずしも必須の元素ではないが、 本発明合金は、 Z rを 添加することにより非晶質形成能を向上させることができる。 In the Ti-based amorphous alloy according to the present invention, TM is FeCoNiCuCu. is one or more elements selected Ri chi, the content of this element group 3 0 Nuclear 0/0 or 7 0 atomic% or less, preferably 35 atomic% or more 6 5 atomic% It is as follows. If the content of this element group is less than 30 at% and more than 70 at%, no amorphous phase is formed even by a single roll method with a high cooling rate. If the content of this element group is less than 35 c at % and more than 75 at%, a supercooled liquid region is not exhibited, and workability is deteriorated. Μ is one or more element group selected from Al, Si, Sn and Sb. When the content of this element group is 0 atomic%, the single-roll method with a large cooling rate Although an amorphous phase is formed, the ability to form an amorphous phase is not improved, and an amorphous alloy block cannot be obtained by other methods such as mold construction. On the other hand, if it exceeds 10 atomic%, the supercooled liquid region 0 will not be exhibited. Although Zr is not necessarily an essential element, the alloy of the present invention can improve the ability to form an amorphous phase by adding Zr.
本明細書中の 「過冷却液体領域」 とは、 毎分 4 0 °Cの加熱速度で示差走査熱量 分析を行うことにより得られるガラス遷移温度と結晶化温度の差で定義されるも ので、 「換算ガラス化温度」 は、 上述の熱量分析で得られたガラス遷移温度を合 5 金の融点で除した数値で定義されるものである。 「過冷却液体領域」 は、 加工性 を示す数値、 「換算ガラス化温度」 は、 非晶質化し易さを表す数値である。 本発 明の合金は、 3 0 °C以上の過冷却液体領域と 0 . 5 5以上の換算ガラス化温度を 有する。  The term “supercooled liquid region” in this specification is defined as the difference between the glass transition temperature and the crystallization temperature obtained by performing differential scanning calorimetry at a heating rate of 40 ° C. per minute. The “converted vitrification temperature” is defined as a value obtained by dividing the glass transition temperature obtained by the above calorimetric analysis by the melting point of the total metal. The “supercooled liquid region” is a numerical value indicating workability, and the “converted vitrification temperature” is a numerical value indicating the easiness of becoming amorphous. The alloy of the present invention has a supercooled liquid region of 30 ° C or higher and a reduced vitrification temperature of 0.55 or higher.
本発明の T i系非晶質合金は、 溶融状態から片ロール法、 双ロール法、 回転液 0 中紡糸法、 アトマイズ法等の種々の方法で冷却固化させ、 薄帯状、 フィラメント 状、 粉粒体状の非晶質固体を得ることができる。 しかしながら、 他の非晶質合金 に比べ非晶質形成能に劣るため上記形態の非晶質固体は得られるものの非晶質合 ! 金塊は作製できなかった。 本発明の合金は、 従来の T i系非晶質合金から格段の 非晶質形成能の改善がなされているため、 好ましくは溶融合金を金型に充填する ことにより断面形状が円の場合、 直径 0. 8 mm即ち断面積が 0. 5 mm2 の円 柱状の非晶質合金塊を得ることができる。 さらに、 金型形状を変えることにより 任意の形状の断面積 0. 5 mm2 以上の非晶質合金塊を得ることもできる。 The Ti-based amorphous alloy of the present invention is cooled and solidified from the molten state by various methods such as a single roll method, a twin roll method, a spinning method in a rotating liquid 0, an atomizing method, etc. A body-shaped amorphous solid can be obtained. However, since the amorphous solid is inferior to other amorphous alloys in the ability to form an amorphous phase, an amorphous solid of the above-mentioned form can be obtained. ! Gold bullion could not be made. Since the alloy of the present invention has a remarkable improvement in the ability to form an amorphous phase from a conventional Ti-based amorphous alloy, preferably, the molten alloy is filled in a mold so that the cross section is circular. A columnar amorphous alloy ingot having a diameter of 0.8 mm, that is, a cross-sectional area of 0.5 mm 2 can be obtained. Further, by changing the mold shape, an amorphous alloy lump having a cross-sectional area of 0.5 mm 2 or more of an arbitrary shape can be obtained.
例えば、 代表的な金型铸造法においては、 合金を石英管中でアルゴン雰囲気中 で溶融した後、 溶融合金を噴出圧 0. 5〜2. 0 k gZc m2 で銅製の金型内に 充填凝固させることにより非晶質合金塊を得ることができる。 For example, typical in the mold铸造method, filling the alloy was melted in an argon atmosphere in a quartz tube, the molten alloy jet pressure 0. 5~2. 0 k gZc m 2 in copper mold By solidifying, an amorphous alloy lump can be obtained.
また、 T i基非晶質合金を溶融状態にし、 アトマイズすることにより粒径 75 0 μιη以下で非晶質単相の粉末を得ることができる。 この T i基非晶質合金粉末を ガラス遷移温度 (Tg) より 20〜 3 OK高い温度で押し出し成形することによ り T i基非晶質合金塊を得ることができる。 これより押し出し温度が高いと押し 出しは困難となる。  Further, by making the Ti-based amorphous alloy into a molten state and atomizing it, it is possible to obtain an amorphous single-phase powder having a particle size of 750 μιη or less. By extruding the Ti-based amorphous alloy powder at a temperature 20 to 3 OK higher than the glass transition temperature (Tg), a Ti-based amorphous alloy lump can be obtained. If the extrusion temperature is higher than this, extrusion becomes difficult.
(実施例 1〜 1 1、 比較例 1〜 4 )  (Examples 1 to 11, Comparative Examples 1 to 4)
5 以下、 本発明の実施例について説明する。 5 Examples of the present invention will be described below.
表 1に示す合金組成からなる材料 (実施例 1一 1 1、 比較例 1〜5) を、 片口 ール法および金型錶造法により薄帯状および直径 1 mmの合金塊試料を作製した c 薄帯状試料のガラス遷移温度 (Tg) 、 結晶化開始温度 (Tx) 、 融点 (Tm) を示差走查熱量分析により測定した。 これらの値より過冷却液体領域 (Tx—T 0 g) および換算ガラス化温度 (Tg/Tm) を算出した。 また、 金型铸造法によ り作製した直径 1 mmの合金塊の非晶質化の確認を X線回折法および試料断面の 光学顕微鏡観察により行った。 また、 試料中に含まれる非晶質相の体積分率 (V f 一 amo) は、 示差走査熱量分析を用いて結晶化の際の発熱量を完全非晶質化 した片口一ル箔帯との比較により評価した。 さらに、 引張試験片を機械加工によ り作製し、 引張試験により破断強度 (σ f ) を評価した。 An alloy composition shown in Table 1 material (Example 1 one 1 1, Comparative Examples 1 to 5) and the single-ended Lumpur method and mold錶造method to produce an alloy ingot sample in the ribbon-shaped and the diameter 1 mm c The glass transition temperature (Tg), crystallization onset temperature (Tx), and melting point (Tm) of the ribbon-shaped sample were measured by differential scanning calorimetry. From these values, the supercooled liquid region (Tx-T 0 g) and the reduced vitrification temperature (Tg / Tm) were calculated. In addition, the confirmation of the amorphization of the 1-mm-diameter alloy ingot produced by the die-casting method was performed by X-ray diffraction and optical microscope observation of the sample cross section. In addition, the volume fraction of the amorphous phase contained in the sample (V f-amo) was evaluated for its calorific value during crystallization using differential scanning calorimetry with that of a single-aperture foil strip that was completely amorphized. Further, a tensile test piece was prepared by machining, and the breaking strength (σ f) was evaluated by a tensile test.
表 1より明らかなように、 実施例 1〜 1 1の非晶質合金は、 30°C以上の過冷 却液体領域と 0. 55以上の換算ガラス化温度を示すとともに、 直径 1 mmの非 晶質合金 ¾においても 1 80 OMP aを超える強度を示す。  As is clear from Table 1, the amorphous alloys of Examples 1 to 11 show a supercooled liquid region of 30 ° C or more, a reduced vitrification temperature of 0.55 or more, and a non- The crystalline alloy ¾ also has a strength exceeding 180 OMPa.
(表 1) (table 1)
Figure imgf000008_0001
Figure imgf000008_0001
これら.こ対し、 比較例 1の合金は、 M群の元素を含有しないため、 非晶質の体 積分率が 90%に満たないばかりか 1 63 OMP aの強度でしかない。 比較例 2 および 3の合金では、 M群の元素が 10原子%を超えるため、 過冷却液体領域が 30°Cに満たないばかり力、 単ロール法での薄帯状においても非晶質相の体積分 率が 65%程度しか得られない。 比較例 4の合金は M群おょぴ TM群の元素の合 計含有量が 70原子%を超えるため、 直径 1 mmの合金塊に含まれる非晶質相の 体積分率が 60%に満たないばかり力、、 合金塊が脆く、 引張試験ができないため、 実用に耐え得る機械的性質を有していない。 On the other hand, since the alloy of Comparative Example 1 does not contain the elements of Group M, the amorphous volume fraction is not only less than 90%, but also has a strength of only 163 OMPa. Comparative Example 2 In alloys No. 3 and No. 3, since the elements in Group M exceed 10 atomic%, the supercooled liquid region has a force of less than 30 ° C and the volume fraction of the amorphous phase in the ribbon shape by the single roll method is low. Only about 65% can be obtained. In the alloy of Comparative Example 4, since the total content of the elements in the M group and the TM group exceeds 70 atomic%, the volume fraction of the amorphous phase contained in the alloy lump having a diameter of 1 mm is less than 60%. Since the alloy ingot is brittle and cannot be subjected to a tensile test, it has no mechanical properties that can withstand practical use.
(実施例 12)  (Example 12)
T i基非晶質合金を 1600Kの溶融状態にし、 ガス圧 9. 8 MP aの Heガ スにてァトマイズすることにより粒径 75 /zm以下で非晶質単相の粉末を得た。 この粉末の合金組成は、 T i 45Z r 5 Cu25N i 2。S n5 (実施例 2に同じ) で あった。 この粉末を、 外径 23mm、 内径 20 mmの銅製缶に封入し、 真空脱ガ スを行った後、 押し出し温度: Tg (= 705 K) + 20K= 725Κ、 押し出 し速度: 0. 5mmZsで、 表 2に示す各押し出し比で押し出し成形を行った。 結果を表 2に示す。 なお、 押し出し比 1は 20 mm φの圧粉体を 1 G P aでホッ トプレスしたものである。 この結果から分かるように、 押し出し比 4、 5が好ま しい。 The Ti-based amorphous alloy was melted at 1600 K and atomized with He gas at a gas pressure of 9.8 MPa to obtain an amorphous single-phase powder having a particle size of 75 / zm or less. The alloy composition of this powder is Ti 45 Zr 5 Cu 25 Ni 2 . S n 5 (same as in Example 2). This powder was sealed in a copper can with an outer diameter of 23 mm and an inner diameter of 20 mm, and after vacuum degassing, the extrusion temperature: Tg (= 705 K) + 20K = 725Κ, the extrusion speed: 0.5 mmZs Extrusion molding was performed at each extrusion ratio shown in Table 2. Table 2 shows the results. The extrusion ratio 1 was obtained by hot pressing a 20 mm φ compact at 1 GPa. As can be seen from these results, extrusion ratios of 4 and 5 are preferred.
(表 2) (Table 2)
押出し比 1 2 3 4 5 6 密度 99. 2 99. 4 99. 5 99. 7 99. 8 押出し不可Extrusion ratio 1 2 3 4 5 6 Density 99.2 99.4 99.5 99.7 99.8
V f — a m o 1 00 1 0 0 1 00 1 00 1 0 0 V f — a m o 1 00 1 0 0 1 00 1 00 1 0 0
σ f /MP a 480 1 3 2 0 1 8 00 1 880 1 9 00  σ f / MP a 480 1 3 2 0 1 8 00 1 880 1 9 00
(実施例 13) (Example 13)
押し出し温度: Tg 705K) + 30K= 735Kとした以外は、 実施例 12と同じ条件で押し出し成形を行った。 結果を表 3に示す。 この結果から分か るように、 押し出し比 4が好ましい。  Extrusion molding was performed under the same conditions as in Example 12, except that the extrusion temperature was set to Tg 705K) + 30K = 735K. Table 3 shows the results. As can be seen from this result, an extrusion ratio of 4 is preferable.
(表 3)  (Table 3)
Figure imgf000010_0001
Figure imgf000010_0001
(比較例 5 )  (Comparative Example 5)
押し出し温度: Tg (= 705K) +40K= 745Kとした以外は、 実施例 12、 13と同じ条件で押し出し成形を行った。 この場合は、 押し出しは不可能 であった。 産業上の利用の可能性 本発明の T i系非晶質合金は、 30°C以上の過冷却液体領域と 0. 55以上の 換算ガラス化温度を示すとともに、 直径 1 mmの非晶質合金塊においても 1 80 OMP aを超える強度を示す。 これらのことからガラス形成能、 加工性、 機械的 強度に優れた T i系非晶質合金として各種用途に利用することができる。 Extrusion molding: Extrusion molding was performed under the same conditions as in Examples 12 and 13, except that Tg (= 705K) + 40K = 745K. In this case, extrusion was not possible. Industrial applicability The Ti-based amorphous alloy of the present invention exhibits a supercooled liquid region of 30 ° C. or more, a reduced vitrification temperature of 0.55 or more, and 180 MPa of amorphous alloy ingot having a diameter of 1 mm. It shows a strength exceeding. For these reasons, it can be used for various applications as a Ti-based amorphous alloy having excellent glass-forming ability, workability, and mechanical strength.

Claims

請 求 の 範 囲 The scope of the claims
1. 式: T i loo-a-b-c Z r a TMb Mc [式中、 TMは、 F e、 Co, N iお よび Cuよりなる群から選択される 1種または 2種以上の元素、 Mは、 A l、 S 1. Formula: T i loo-abc Z ra TMb Mc [where TM is one or more elements selected from the group consisting of Fe, Co, Ni, and Cu, and M is A l, S
1. S nおよび S bよりなる群から選択される 1種または 2種以上の元素であり、 a、 bおよび cは、 それぞれ原子%を表し、 0≤a≤20、 30≤b≤ 70、 01. One or more elements selected from the group consisting of Sn and Sb, where a, b and c represent atomic%, respectively, 0≤a≤20, 30≤b≤70, 0
< c≤ l 0、 30≤ a + b + c≤ 70を満足する] で示される組成を有し、 非晶 質相を体積分率で 90%以上含む T i基非晶質合金。 <c≤l0, 30≤a + b + c≤70], and a Ti-based amorphous alloy containing 90% or more by volume fraction of an amorphous phase.
2. 30で以上の過冷却液体領域 [結晶化開始温度とガラス遷移温度の差で示さ れる] と 0. 55以上の換算ガラス化温度 [ガラス遷移温度ノ融点] を示す請求 の範囲第 1項記載の T i基非晶質合金。  2. The supercooled liquid region [indicated by the difference between the crystallization onset temperature and the glass transition temperature] of 30 or more and the reduced vitrification temperature [glass transition temperature / no melting point] of 0.55 or more. The described Ti-based amorphous alloy.
3. 0. 5 mm2 以上の断面積と 1 80 OMP a以上の引張強さを有する請求の 範囲第 1項または第 2項記載の T i基非晶質合金塊。 3. The Ti-based amorphous alloy ingot according to claim 1, having a cross-sectional area of 0.5 mm 2 or more and a tensile strength of 180 OMPa or more.
4. 合金汾末を押し出し成形することによつて製造された請求の範囲第 1項乃至 第 3項記載の T i基非晶質合金。  4. The Ti-based amorphous alloy according to any one of claims 1 to 3, wherein the Ti-based amorphous alloy is manufactured by extruding a Fen alloy.
PCT/JP1999/001469 1998-03-25 1999-03-24 Titanium-based amorphous alloy WO1999049095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54808199A JP3933713B2 (en) 1998-03-25 1999-03-24 Ti-based amorphous alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9829698 1998-03-25
JP10/98296 1998-03-25

Publications (1)

Publication Number Publication Date
WO1999049095A1 true WO1999049095A1 (en) 1999-09-30

Family

ID=14215968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001469 WO1999049095A1 (en) 1998-03-25 1999-03-24 Titanium-based amorphous alloy

Country Status (2)

Country Link
JP (1) JP3933713B2 (en)
WO (1) WO1999049095A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316783A (en) * 2000-05-09 2001-11-16 Toshiba Corp Bulky amorphous alloy and high strength member using the same
JP2001316784A (en) * 2000-05-09 2001-11-16 Toshiba Corp Bulky amorphous alloy, method for producing bulky amorphous alloy and high strength member
WO2003101697A2 (en) * 2002-05-30 2003-12-11 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. High-tensile, plastically deformable moulded body consisting of titanium alloys
CN101817087A (en) * 2010-04-22 2010-09-01 河北科技大学 Method for preparing ferrotitanium-based amorphous alloy powder
CN101892444A (en) * 2010-07-09 2010-11-24 燕山大学 Method for preparing Ti50-Fe25-Ni25 ternary amorphous alloy
CN101914698A (en) * 2010-07-09 2010-12-15 燕山大学 Preparation method of Ti-based Ti50-Fe22-Ni22-Sn6 amorphous alloy
CN110129690A (en) * 2018-01-19 2019-08-16 东莞市坚野材料科技有限公司 A kind of amorphous alloy bracket and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219035A (en) * 1989-10-13 1991-09-26 Honda Motor Co Ltd Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0754086A (en) * 1993-08-12 1995-02-28 Takeshi Masumoto Amorphous ti-cu alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219035A (en) * 1989-10-13 1991-09-26 Honda Motor Co Ltd Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0754086A (en) * 1993-08-12 1995-02-28 Takeshi Masumoto Amorphous ti-cu alloy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515596B2 (en) * 2000-05-09 2010-08-04 株式会社東芝 Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
JP2001316784A (en) * 2000-05-09 2001-11-16 Toshiba Corp Bulky amorphous alloy, method for producing bulky amorphous alloy and high strength member
JP4557368B2 (en) * 2000-05-09 2010-10-06 株式会社東芝 Bulk amorphous alloy and high strength member using the same
JP2001316783A (en) * 2000-05-09 2001-11-16 Toshiba Corp Bulky amorphous alloy and high strength member using the same
WO2003101697A3 (en) * 2002-05-30 2005-01-20 Leibniz Inst Fuer Festkoerper High-tensile, plastically deformable moulded body consisting of titanium alloys
CN100352967C (en) * 2002-05-30 2007-12-05 德累斯顿协会莱布尼茨固体材料研究所 High-tensile, plastically deformable moulded body consisting of titanium alloys
JP2005528524A (en) * 2002-05-30 2005-09-22 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ High-tensile, plastically deformable compact made of titanium alloy
WO2003101697A2 (en) * 2002-05-30 2003-12-11 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. High-tensile, plastically deformable moulded body consisting of titanium alloys
KR101074245B1 (en) 2002-05-30 2011-10-14 레이베니츠-인스티투트 푸어 페스트코르페르 운트 베르크스토프포르숭 드레스덴 에.파우 High-tensile, plastically deformable moulded body consisting of titanium alloys
CN101817087A (en) * 2010-04-22 2010-09-01 河北科技大学 Method for preparing ferrotitanium-based amorphous alloy powder
CN101892444A (en) * 2010-07-09 2010-11-24 燕山大学 Method for preparing Ti50-Fe25-Ni25 ternary amorphous alloy
CN101914698A (en) * 2010-07-09 2010-12-15 燕山大学 Preparation method of Ti-based Ti50-Fe22-Ni22-Sn6 amorphous alloy
CN110129690A (en) * 2018-01-19 2019-08-16 东莞市坚野材料科技有限公司 A kind of amorphous alloy bracket and preparation method thereof

Also Published As

Publication number Publication date
JP3933713B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
EP2396435B1 (en) Amorphous platinum-rich alloys
EP0018096B1 (en) Boron containing transistion metal alloys comprising a dispersion of an ultrafine crystalline metallic phase and method for making said alloys, method of making an article from a metallic glass body
KR100784914B1 (en) Two Phase Metallic Glass Alloys with Multi-Pass Deformation Property
Lee et al. Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders
JPH1171660A (en) High strength amorphous alloy and its production
JP4011316B2 (en) Cu-based amorphous alloy
JP3860445B2 (en) Cu-Be based amorphous alloy
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
WO1999049095A1 (en) Titanium-based amorphous alloy
JP4202002B2 (en) High yield stress Zr-based amorphous alloy
JP3761737B2 (en) High specific strength Ti-based amorphous alloy
Zhang et al. Bulk glassy alloys with low liquidus temperature in Pt-Cu-P system
JP3737056B2 (en) High strength Zr-based metallic glass
JP3880245B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
CN1188540C (en) Low-density blocky metal-glass
JP4742268B2 (en) High-strength Co-based metallic glass alloy with excellent workability
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability
JP3647281B2 (en) Ni-based amorphous alloy with wide supercooled liquid region
JP5321999B2 (en) Ni-based metallic glass alloy
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy
Zhang et al. Preparation and properties of Ni68. 6W17. 9B13. 5 metallic glass
KR100533334B1 (en) Ni-based Amorphous Alloy Compositions
WO2004106575A1 (en) Cu-based amorphous alloy composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase