WO1999048973A1 - Resin composition reinforced with polyamide fibers and process for producing the same - Google Patents

Resin composition reinforced with polyamide fibers and process for producing the same Download PDF

Info

Publication number
WO1999048973A1
WO1999048973A1 PCT/JP1998/001216 JP9801216W WO9948973A1 WO 1999048973 A1 WO1999048973 A1 WO 1999048973A1 JP 9801216 W JP9801216 W JP 9801216W WO 9948973 A1 WO9948973 A1 WO 9948973A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polyamide
component
layered silicate
Prior art date
Application number
PCT/JP1998/001216
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Yamamoto
Hideo Kurihara
Kimio Nakayama
Yukihiko Asano
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to PCT/JP1998/001216 priority Critical patent/WO1999048973A1/en
Publication of WO1999048973A1 publication Critical patent/WO1999048973A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a polyamide fiber reinforced resin composition and a method for producing the same. More specifically, the present invention provides a resin matrix containing a polyolefin resin and a rubbery polymer, in which a fibrous polyamide containing a layered silicate is dispersed and captured. The present invention relates to a polyamide fiber reinforced resin composition and a method for producing the same. Background art
  • Rubber-like polymers have been used as various rubber products because of their high recovery elastic modulus and low elastic modulus.
  • the demands have become increasingly higher, such as those with a higher recovery modulus but a slightly higher modulus, and those with a higher modulus and higher durability.
  • Even in the resin field, a material with high elastic modulus, light strength, and high impact resistance has been required.
  • a fiber reinforced composition in which fine polyamide fibers are dispersed in a polyolefin and a rubber-like polymer is disclosed in JP-A-7-238189. Since it is obtained in the form of pellets with an average fiber diameter of 1 / m or less, it is easy to handle and is suitably used as a reinforcing agent for resins and rubber-like polymers. However, in fields such as tires, rolls, and footwear, friction performance is also required. Disclosure of the invention
  • the present invention solves the above-mentioned problems of the prior art, and has excellent rigidity and strength.
  • Another object of the present invention is to provide a polyamide fiber reinforced resin composition having excellent friction performance and a method for producing the same.
  • the polyamide fiber reinforced resin composition of the present invention comprises the following components mixed with each other;
  • the method for producing the polyamide fiber reinforced resin composition of the present invention comprises the steps of (a) 100 parts by weight of a polyolefin resin, and (b) 100 to 400 parts by weight of a rubbery polymer having a glass transition temperature of 0 ° C. or less. And (d) the silane coupling agent is melt-kneaded to form a molten matrix, and the molten matrix is mixed with (c) the layered silicate-containing thermoplastic polyamide. 10 to 400 parts by weight are mixed at a temperature equal to or higher than the melting temperature of the thermoplastic polymer, and the molten mixture is extruded to a temperature lower than the melting point of the thermoplastic polymer (c). In the matrix comprising the mixture of the other components (a) and (b), the layered silicate-containing thermoplastic polyamide is dispersed in a fibrous form. Including this.
  • the silane coupling agent (d) is used based on a total of 100 parts by weight of the components (a), (b) and (c). However, it is preferable that the content is 0.1 to 5.5 parts by weight.
  • the polyamide fiber reinforced resin composition of the present invention and a method for producing the same
  • the layered silicate is blended at a ratio of 0.05 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic polymer.
  • the polyolefin resin preferably has a melting point in the range of 80 to 250 ° C, more preferably 50 ° C or more, and particularly preferably 50 to 50 ° C. Those having a vicat softening point of 200 ° C can also be used.
  • the polyolefin resin (a) include homopolymers and copolymers of olefins having 2 to 8 carbon atoms, for example, olefins having 2 to 8 carbon atoms and styrene, Copolymers with aromatic vinyl compounds such as chlorostyrene and monomethylstyrene; copolymers of C2 to C8 olefins with vinyl acetate; C2 to C8 olefins and acrylates Copolymers of acrylic acid or its esters, copolymers of C2 to C8 olefins and methacrylic acid or its esters, and C2 to C8 olefins and vinyl Copolymers with a lucirane compound are exemplified.
  • polyolefin resin used as the component examples include high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, and ethylene-propylene block.
  • Copolymer ethylene-propylene random copolymer, poly (4-methylpentene-11), polybutene-11, polyhexene-11, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer Copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid propylene copolymer, ethylene-acrylic acid Acid butyl copolymer, ethylene-acrylate 2-ethylhexyl acrylate copolymer, ethylene-hydroxyhexyl acrylate copolymer, ethylene-vinyl trimethoxy silane copolymer, ethylene-vinyl tri
  • polyolefin resin used as the component ( a ) there may be mentioned a polyolefin resin such as chlorinated polyethylene, brominated polyethylene, and chlorosulfonated polyolefin. Is mentioned.
  • polyolefin resins particularly preferred are high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and polypropylene (LPE).
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • PP polypropylene
  • PP ethylene-propylene block copolymer
  • ethylene-propylene random copolymer ethylene-propylene random copolymer
  • P4MP1 poly4-methylpentene 1
  • EVA ethylene-vinyl acetate copolymer
  • Alcohol-copolymers and among them, those having a Menoletov Mouth Index (MFI) force of 0.2 to 50 g / 10 minutes are the most preferable.
  • MFI Menoletov Mouth Index
  • the component (a) may be composed of one kind of polyolefin resin, or may be used in combination of
  • the glass transition temperature is 0 ° C or less, preferably —2
  • a rubbery polymer of 0 ° C or less is used.
  • Specific examples of the rubbery polymer for components include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene'butadiene rubber (SBR), and acrylonitrile.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene'butadiene rubber
  • NBR Nore butadiene rubber
  • NBR butyl rubber
  • chlorinated butyl rubber brominated butyl rubber, chlorobrene rubber (CR), acrylonitrile monocrop copolymer rubber, acrylonitrile copolymer rubber, acrylyl Tobutage Rubbers such as ethylene copolymer rubber, vinyl pyridine-butadiene copolymer rubber, vinyl pyridine-styrene copolymer rubber, etc.
  • EPR Ethylene propylene copolymer rubber
  • EPDM Ethylene butene copolymer rubber
  • Ethylene butene copolymer rubber Chlorinated polyethylene rubber
  • Polyolefin rubbers such as chlorosulfonated polyethylene rubber (CSM), acryl rubber, ethylene acryl rubber, polychlorinated trifluorinated rubber, and fluorinated rubber Rubbers having oxygen atoms in the main chain, such as rubbers having a polymethylene-type main chain, such as rubber, epichlorohydrin rubber, and ethyleneoxy-epichlorohydrin copolymer rubber.
  • Rubber in the main chain such as silicone rubber such as polyvinylmethylsiloxane rubber and polymethylethylsiloxane rubber, dinitro rubber, polyester urethane rubber, and polyether urethane rubber. Rubbers having nitrogen atoms and oxygen atoms in addition to carbon atoms are included. Epoxy-modified, silane-modified, or maleated rubbers of these rubbers may be used as component (b).
  • thermoplastic elastomer styrene-butadiene-styrene block copolymer, styrene-ethylene block styrene-styrene block copolymer, styrene-isoprene-styrene block copolymer Polymers, styrene-ethylene-propylene-styrene-block copolymers, polyolefin-based thermoplastic elastomers, chlorinated polyolefin-based thermoplastic elastomers, Thermoplastic elastomer, Polyester thermoplastic elastomer 1, 1, 2 —Polybutadiene thermoplastic elastomer, Transform 1,4,1-Polyisoprene thermoplastic Plastic elastomers, polyamide thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers and the like can be mentioned.
  • the layered silicate-containing thermoplastic polyamide constituting the component contains the layered silicate uniformly dispersed therein, and the thermoplastic polyamide is tough by extrusion and stretching or rolling. It is formed in a fibrous form.
  • the melting point of the thermoplastic polyamide is preferably in the range of 135 to 350 ° C, particularly preferably in the range of 160 to 265 ° C.
  • thermoplastic polyamide for the component examples include Nylon 6, Nylon 66, Nylon 6-Nylon 66 copolymer, and Nylon 610. , Nylon 61 2, Nylon 46, Nylon 11, Nylon 12, Nylon MXD 6, Polycondensate of xylylenediamine and adipic acid, xylylenediamine Polycondensate of xylylenediamine and sperinic acid, polycondensate of xylylenediamine and azearic acid, xylylenediamine Polycondensate of terephthalene diamine and terephthalic acid, polycondensate of hexamethylene diamine and terephthalic acid, polycondensate of octamethylenediamine and terephthalic acid, trimethyl Hexamethylenediamine and terephthalic acid polycondensate Polycondensate of decamethylenediamine and terephthalic acid, polycondensate
  • thermoplastic polyamides particularly preferred ones have a melting point higher than that of the constituent polyolefin resin by 30 ° C or more.
  • Nylon 6 (PA 6) 66 (PA66) Nylon 6—Nylon 66 copolymer
  • Nylon 61, Nylon 61, Nylon 46, Nylon 11 and Nylon 1 and 2 are particularly preferred.
  • These thermoplastic polyamides may be used alone or in combination of two or more. It is also preferable that these thermoplastic polyamides have a molecular weight in the range of 100,000 to 200,000.
  • the layered silicate uniformly dispersed and contained in the component is effective in imparting excellent mechanical properties and frictional properties to the polyamide resin composition.
  • the phyllosilicate particles preferably have a thickness of usually 0.6 to 2 nm and a length of 2 to 1,000 nm.
  • the component (c) of the present invention is characterized in that the layered silicate is uniformly dispersed in the thermoplastic polyamide while maintaining an average interlayer distance of 2 nm or more.
  • inter-brows distance refers to the distance between the plate-shaped centers of gravity of the silicate layer, and “uniformly dispersed” refers to 50% or more, preferably 70% or more of the layered silicate.
  • the layered silicate is a fine layer having a length of 2 to 100 nm and a thickness of 0.6 to 2 nm.
  • a layered silicate include a layered phyllosilicate mineral composed of layered particles of magnesium silicate or aluminum silicate.
  • Layered silicates include, specifically, smectite clay minerals such as montmorillonite, savonite, nontronite, hectrite, and stevensite, as well as bamiyucurite and harasite. Is included. These layered silicates may be natural products or synthetic ones.
  • the method of uniformly dispersing such layered silicate particles in a polyamide resin is not limited, but the method of the present invention is not limited.
  • the raw material of the silicate particles is a multi-layered clay mineral
  • it is brought into contact with a swelling agent to expand the layers in advance to make it easy to take in the monomers between the layers, and then to form the monomer for forming the polyamide.
  • a method of polymerizing this monomer Japanese Patent Publication No. 08-222946.
  • the interlayer is spread to 10 nm or more in advance, and this is melt-kneaded with a polyamide resin or a resin containing the same to be uniformly dispersed.
  • a method may be used.
  • the mixing ratio of the layered silicate is preferably 0.05 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the polyamide component. Department. If the compounding ratio of the layered silicate is less than 0.05 parts by weight, the rigidity and heat resistance of the obtained molded article will be small, and if it exceeds 30 parts by weight, the flow of the resin composition will increase. It is not preferable because sex is extremely reduced.
  • the silane coupling agent used as the component (d) is a binder that binds the components (a), (b) and (c) to each other.
  • this silane coupling agent include vinyl trimethoxysilane, vinyl triethoxy silane, vinyl tris ( ⁇ -methoxetoxy) silane, vinyl tri Acetylsilane, amethacryloxyprovir trimethoxysilane, / 5— (3,4-epoxycyclohexyl) ethyl trimethoxysilane, aglycidoxypropyltrimethoxy Silane, ⁇ -glycidoxypropylmethyldimethoxysilane, aglycidoxypropylmethylethylethoxysilane, ⁇ -glycidoxypropylpyrethyldimethoxysilan, ⁇ -glycidoxypropylpropylethylethoxysilane, ⁇ —; 5_ ( Aminoethyl) Am
  • the amount of the silane coupling agent is preferably 0.1 to 5.5 parts by weight based on 100 parts by weight of the total of the components (a), (b) and (c). Particularly preferred is 0.2 to 3.0 parts by weight.
  • the content of the silane coupling agent is less than 0.1 part by weight, the mutual bonding of the components (a), (b) and (c) becomes insufficient, so that a composition having high strength can be obtained. May not be possible.
  • it exceeds 5.5 parts by weight it becomes difficult for the polyamide in the component (c) to form a fine fiber structure, so that it is difficult to obtain a composition having excellent elastic modulus. There is power.
  • an organic peroxide can be used in combination with the silane coupling agent used as the component.
  • a radical is formed on the molecular chain of the component (a), component (b), and component (c), and this reacts with the silane coupling agent to form the component (a).
  • (B) component and (c) component resin are promoted to bond with each other. In this way, (a) component, (b) component and (c) component are mutually bonded at the interface.
  • the half-life temperature for 1 minute is from the same temperature as the melting point of component (a) or the melting point of component (c), whichever is higher, to a temperature 30 ° C higher than this temperature. Those within the range are preferably used. More specifically, as an organic peroxide, the half-life temperature of one minute is about 110 to 250 ° C. Things are preferably used. The amount of organic peroxide used at this time is
  • organic peroxide used in the present invention examples include 1,1-di-t-butylperoxy-1,3,5, -trimethylcyclohexane, 1,1-di-t-butylperoxy.
  • thermoplastic polyamide are dispersed in the form of fine fibers.
  • the average fiber diameter of the polyamide fiber is preferably 1 zm or less, and the average fiber length is preferably 1,000 m or less.
  • the aspect ratio expressed by the ratio of the average fiber length to the average fiber diameter is preferably 20 or more, more preferably 20 or more and 1,000 or less.
  • Component (a), component (b) and component (c) are bonded to each other at their respective interfaces, and this bond is strengthened by the silane coupling agent forming component (d). Have been.
  • the proportions of component (a), component (b) and component (c) are 100 to 400 parts by weight of component (a), 100 to 400 parts by weight of component (b), and 100% by weight of component (c). ⁇ 400 parts by weight.
  • the component (b) is 20 to 250 parts by weight, and the component (c) is 20 to 300 parts by weight. More preferably, the component (b) is 50 to 200 parts by weight, and the component (c) is 50 to 300 parts by weight. If the amount of the component (b) is less than 100 parts by weight based on 100 parts by weight of the component (a), the resulting composition will have insufficient impact resistance, and will exceed 400 parts by weight. The resulting composition has insufficient creep resistance.
  • the resulting composition has insufficient creep resistance. If the amount exceeds 400 parts by weight, the proportion of polyamide fibers present as fine fibers in the composition becomes too large, and the dispersion of the fibers becomes poor. The appearance of the molded product obtained by this is poor.
  • a filler may be added to the resin composition of the present invention as long as the physical properties are not impaired.
  • the filler carbon fibers, glass fibers, metal fibers, glass beads, talc, kaolin, cres, mica, montmorillonite, basic magnesium carbonate, walazite, etc. can be used.
  • antioxidants, ultraviolet absorbers, softeners, flame retardants, softeners, lubricants, tackifiers, and the like can be appropriately added to the resin composition of the present invention.
  • thermoplastic polyamide for component (c) in which layered silicate particles are uniformly dispersed will be described.
  • This dispersion method is not particularly limited as long as the layered silicate can be uniformly dispersed.
  • the layered silicate is ionized with hydrochloric acid. Reacts with a swelling agent, for example, 12-aminododecanic acid, to expand the layers in advance, to facilitate the incorporation of monomers between the layers, and to form a polyamide for the component (c).
  • a swelling agent for example, 12-aminododecanic acid
  • the swelling agent examples include aminoic acid and nitric acid salt, and specific examples thereof are ⁇ -amino-decanoic acid, ⁇ -amino-dodecanoic acid, and diamin.
  • equimolar salts of dicarboxylic acids such as tetramethylammonium adipate, hexamethylene diammonium diagedate, and hexamethylene diammonium sebague toka and so on.
  • the method for producing a polyamide fiber reinforced resin composition includes the following steps (1) to (4).
  • a reactive matrix is prepared by melt-kneading the (a) component polyolefin resin and the (b) component rubbery polymer together with the (d) component silane coupling agent.
  • thermoplastic polyamide in the component (c) A step of stretching or rolling the extrudate while drafting at a temperature lower than the melting point of the thermoplastic polyamide in the component (c) and at which the thermoplasticity is exhibited.
  • the stretching or rolling temperature at this time may be equal to or higher than the melting point of the components (a) and (b).
  • Step (1) Melt and knead the polyolefin of component (a) and the rubbery polymer of component (b) with the silane coupling agent of component (d), and mix the components (a) and (b) with each other.
  • A) a step of preparing a reactive matrix between the component (d) and the component (d).
  • This melting is performed at a temperature higher than the melting point of the polyolefin of component (a), and preferably at a temperature higher by at least 10 ° C than this melting point. If kneaded at a temperature higher than the melting point by 10 ° C. or more, the (a) component and the (d) component silane coupling agent react to form a reactive matrix.
  • Melt kneading can be carried out by a device usually used for resin and rubber.
  • a kneading mixer, a kneader, a kneader extruder, an open roll, a single-screw kneader, a twin-screw kneader, and the like are used.
  • a twin-screw kneader it is most preferable to use a twin-screw kneader in that melt kneading can be performed in a short time and continuously.
  • Step (2) The above-mentioned reactive matrix is treated with a composite of the layered silicate of the component (c) and the thermoplastic polyamide at a temperature not lower than the melting point of the thermoplastic polyamide.
  • the component (c) is melt-kneaded at a temperature higher than the melting point of the polyamide of the component (c), particularly preferably at a temperature higher than the melting point by 10 ° C or more, and the component (c) is added to the matrix. Disperse to prepare a chemically modified composition.
  • the chemically modified composition is extruded from a spinneret or T-die. Both spinning and extrusion are preferably performed at a temperature higher than the melting point of the component (c), preferably at a temperature higher than the melting point by 10 ° C or more. If the extrusion is performed at a temperature lower than the melting point of the polyamide, the polyamide cannot be further finely divided in the matrix. For this reason, the polyamide fibers formed by drawing or rolling the composition may become coarse.
  • Step (4) a step of drawing or rolling the above extrudate while drafting at a temperature lower than the melting point of the polyamide in the component (c) but exhibiting thermoplasticity.
  • the stretching or rolling temperature at this time may be lower than the melting point of the components (a) and (b).
  • the melt-extruded string, thread, or tape obtained in step (3) is continuously cooled and stretched or rolled.
  • the stretching or rolling treatment is performed at a temperature lower than the melting point of the polyamide. This temperature is such that the mixture of components (a), (b) and (d) and component (c) exhibit thermoplasticity.
  • the stretching or rolling treatment is, for example, a method in which the kneaded composition is extruded from a spinneret and spun into a string or a thread, and this is stretched and wound while being drafted, or cut and collected as a pellet. It will be implemented in.
  • the draft ratio when the extrudate is stretched is preferably 1.5 to 100, more preferably 2 to 50, and most preferably 3 to 30.
  • the draft ratio means the ratio of the winding speed to the speed of the extrudate passing through the extrusion die.
  • Average fiber diameter and fiber shape The sample polymer fiber reinforced resin composition was dissolved in hot xylene to separate and collect the fiber, which was observed with a scanning electron microscope. The dispersibility was evaluated by checking whether the fibers were fine. For fibers with good dispersibility, the fiber diameters of 200 fibers were measured, and the average was determined as the average fiber diameter.
  • Sheets were prepared from the test resin composition at 180 ° C using a hot press, and the smoothness of the sheet surface was visually observed, evaluated and indicated as follows.
  • Tensile properties Tensile strength, tensile elongation at break and tensile modulus were measured at a temperature of 23 ° C and a tensile speed of 5 O mm Z according to ASTMD 638.
  • Dynamic friction According to JISK 7125, the gravitational friction coefficient between a 0.2 mm thick x 80 mm wide x 200 mm long sample and a transparent glass plate as the mating material The measurement was performed at 200 g and a pulling speed of 100 mm / min. The coefficient of gravitational friction is a measure of the difficulty of slipping on the surface of an article.
  • a 20 liter Hastelloy reactor equipped with a stirrer and temperature controller was used as a layered silicate, with an average width of 0.95 nm and a length of phyllosilicate.
  • About 10 O nm of montmorillonite 10 Og and 10 liters of distilled water were added to disperse montmorillonite particles in water.
  • 51.2 g of 12-aminododecanic acid and 24 milliliters of concentrated hydrochloric acid were added thereto, followed by stirring for 5 minutes. The particles were collected by filtration.
  • montmorillonite complex 12-amino dodecanoate ion and montmorillonite (hereinafter, montmorillonite complex) was prepared.
  • the content of layered silicate in the composite was about 80%.
  • 10 kg of ⁇ -caprolactam, 1 kg of distilled water and 180 g of the above monomorillonite complex were placed in the reactor, and nitrogen gas was introduced to replace the air. The mixture was stirred at 100 ° C. so that the reaction system became uniform.
  • the temperature was further increased to 260 ° C., and the mixture was stirred for 1 hour under a pressure of 15 kg Z cm 2 (pressurized with nitrogen). Thereafter, the reaction mixture was returned to normal pressure and reacted at 260 ° C. for 3 hours.
  • the reaction mixture was taken out from the lower nozzle of the reaction vessel in the form of a strand, cooled with water, cut, and mixed with a polyamid. (Average molecular weight: 15,000), montmorillonite and strength were obtained. This pellet was immersed in hot water at 90 ° C to remove unreacted monomers and oligomers. Was extracted and removed, followed by vacuum drying at 90 ° C for 48 hours.
  • the obtained layered silicate-containing polyamide (monmorillonite composite nylon 6) was ignited at 65 ° C, and the content of organic composite monmorillonite was determined from the residual weight of the burning. The measured value was 2.0%. Table 1 shows the results.
  • a layered silicate-containing polyamide was prepared in the same manner as in Reference Example 1.
  • the amount of the same monomorillonite complex used in Reference Example 1 was set to 270 g, 36008 or 720, and this was set to 1
  • Monomorillonite composite Nylon 6 was produced in the same manner as in Reference Example 1 using 0 kg of one-strength prolactam and 1 liter of water.
  • the content of monmorillonite in the mixed montrinite composite mouth 6 was 3.0%, 4.1% and 7.9%, respectively. Table 1 shows the results.
  • component (a) low-density polyethylene (available from Ube Industries, trade name: F522, melting point: 110 ° C, MFI 5 g / 10 minutes) as a component: 100 parts by weight, b) 100 parts by weight of natural rubber (SMR-L) as a component, and 1.0 parts by weight of 7-methacryloxyprovir trimethoxysilane as a silane coupling agent of component (d).
  • SMR-L natural rubber
  • 7-methacryloxyprovir trimethoxysilane 7-methacryloxyprovir trimethoxysilane
  • This matrix was mixed with 50 parts by weight of the monomoronilonite composite nylon 6 of Reference Example 1 as the component (c) in a twin-screw extruder heated to 250 ° C.
  • the mixture was kneaded, extruded in a strand shape through a nozzle attached to the tip of a twin-screw extruder, and stretched at a draft ratio of 20 in the air and at room temperature, and pelletized.
  • This pellet was pressed at 180 ° C. to form a sheet.
  • a dumbbell-shaped test piece was punched out of the sheet to measure desired physical properties. The results are shown in Table 2 .
  • the low-density polyethylene of component (a) and the natural rubber of component (b) are extracted and removed from the obtained sheet with hot xylen, and the ammonium nitrate composite nylon of component (c) is extracted.
  • the fine fiber composed of No. 6 was collected and observed with a scanning electron microscope. The average fiber diameter was 0.2 ⁇ m.
  • Example 2 a polyimide fiber reinforced resin composition sheet was produced in the same manner as in Example 1. However, the type of the monmorillonite composite nylon 6 of the component (c) and the draft ratio were as shown in Table 2. Table 2 shows the measurement results of the physical properties of the obtained sheet.
  • any one of (a) component LDPE, (b) component NR, and (c) component montmorillonite composite nylon 6 was used.
  • a sheet was prepared in the same manner as in Example 1 except that one component was not added. Table 4 shows the measurement results.
  • the polyamide fiber reinforced resin composition obtained by the present invention is preferably used in a matrix comprising a polyolefin and a rubber-like polymer, preferably having an average fiber diameter of 1 m or less.
  • natural polyamide fibers are dispersed, and layered silicate particles are uniformly dispersed in the polyamide fibers.
  • the structure is such that polyolefin, rubbery polymer and polyamide fiber are bonded to each other at their respective interfaces.
  • the polyamide fiber reinforced resin composition of the present invention can be easily dispersed in various resins and rubbers, and is excellent in strength, elastic modulus, and friction performance. It is useful as a suitable reinforcing material for floor materials and footwear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

100 parts by weight of a polyolefin resin (a) is melt-kneaded together with a mixture comprising 10 to 400 parts by weight of a rubbery polymer (b) having a glass transition temperature of 0 °C or lower, 10 to 400 parts by weight of a thermoplastic polyamide (c) containing a phyllosilicate, and a silane coupling agent (d). The product is extruded and then stretched or rolled at a temperature lower than the melting point of the ingredient (c) to disperse the same in the form of fibers. The resin composition reinforced with polyamide fibers thus obtained is excellent in strength, rigidity, and frictional performance.

Description

明 細 書 ポリ ア ミ ド繊維強化樹脂組成物及びその製造方法 技術分野  Description Polyamide fiber reinforced resin composition and method for producing the same
本発明は、 ポリ ア ミ ド繊維強化樹脂組成物及びその製造方法に関 する ものである。 更に詳しく述べるならば本発明は、 ポ リ オレフ ィ ン樹脂及びゴム状ポリ マーを含む樹脂マ ト リ ッ クス中に、 層状珪酸 塩を含む繊維状ポリ ア ミ ドが分散してこれを捕強しているポリ ア ミ ド繊維強化樹脂組成物及びその製造方法に関する ものである。 背景技術  The present invention relates to a polyamide fiber reinforced resin composition and a method for producing the same. More specifically, the present invention provides a resin matrix containing a polyolefin resin and a rubbery polymer, in which a fibrous polyamide containing a layered silicate is dispersed and captured. The present invention relates to a polyamide fiber reinforced resin composition and a method for producing the same. Background art
ゴム状ポ リ マーはその回復弾性率が高く 弾性率が低いこ とにより , 色々なゴム製品と して使用されてきた。 しかし, 回復弾性率が高 いながら弾性率はもう少し高いものや, 弾性率が高く しかも耐久性 がある ものなど, 要求はますます高く なつてきてきた。 樹脂分野で も弾性率が高く軽く 強度があり, そして更に耐衝撃性も高いものが 要求されるよう になってきた。  Rubber-like polymers have been used as various rubber products because of their high recovery elastic modulus and low elastic modulus. However, the demands have become increasingly higher, such as those with a higher recovery modulus but a slightly higher modulus, and those with a higher modulus and higher durability. Even in the resin field, a material with high elastic modulus, light strength, and high impact resistance has been required.
ポ リオレフ ィ ンとゴム状ポリマーに微細なポリ ア ミ ド繊維を分散 させた繊維強化組成物が特開平 7 — 2 3 8 1 8 9号公報に開示され ている。 平均繊維径が 1 / m以下に分散してペレツ ト状で得られる のでハン ドリ ングが容易で樹脂やゴム状ポ リ マ一の補強剤と して好 適に使用されている。 しかし, 更にタイヤ及びロール, 履物などの 分野では摩擦性能なども要求されている。 発明の開示  A fiber reinforced composition in which fine polyamide fibers are dispersed in a polyolefin and a rubber-like polymer is disclosed in JP-A-7-238189. Since it is obtained in the form of pellets with an average fiber diameter of 1 / m or less, it is easy to handle and is suitably used as a reinforcing agent for resins and rubber-like polymers. However, in fields such as tires, rolls, and footwear, friction performance is also required. Disclosure of the invention
本発明は従来技術の上記の問題点を解決し, 剛性や強度に優れ更 に摩擦性能に優れたポリ ァ ミ ド繊維強化樹脂組成物及びその製造方 法を提供することを目的とする ものである。 The present invention solves the above-mentioned problems of the prior art, and has excellent rigidity and strength. Another object of the present invention is to provide a polyamide fiber reinforced resin composition having excellent friction performance and a method for producing the same.
本発明のポ リ ア ミ ド繊維強化樹脂組成物は、 互いに混合された下 言己 分 ;  The polyamide fiber reinforced resin composition of the present invention comprises the following components mixed with each other;
( a ) ポ リオレフ イ ン樹脂 100重量部、  (a) 100 parts by weight of polyolefin resin,
( b ) 0 °C以下のガラス転移温度を有するゴム状ポ リ マー 10〜40 0 重量部、  (b) 10 to 400 parts by weight of a rubbery polymer having a glass transition temperature of 0 ° C or less,
( c ) 層状珪酸塩を含有する繊維状熱可塑性ポリ ア ミ ド 10〜400 重量部、 および  (c) 10 to 400 parts by weight of fibrous thermoplastic polyamide containing layered silicate, and
( d ) シラ ンカ ップリ ング剤  (d) Silane coupling agent
を含有する ものである。 It contains.
本発明のポリ ア ミ ド繊維強化樹脂組成物の製造方法は、 ( a ) ポ リオレフ イ ン樹脂 100重量部、 ( b ) 0 °C以下のガラス転移温度を 有するゴム状ポリマ一 100〜400 重量部、 及び ( d ) シラ ンカ ップ リ ング剤を溶融混練して溶融マ ト リ ッ クスを形成し、 この溶融マ ト リ ッ クスと、 ( c ) 層状珪酸塩含有熱可塑性ポリ ァ ミ ド 10〜400 重 量部とを、 前記熱可塑性ポ リ ア ミ ドの溶融温度以上の温度において 混合し、 この溶融混合物を押し出して、 前記熱可塑性ポ リ ア ミ ド ( c ) の融点より低い温度において延伸又は圧延し、 それによつて、 前記他の ( a ) 及び ( b ) 成分の混合物からなるマ ト リ ッ クス中に 、 前記層状珪酸塩含有熱可塑性ポリ ア ミ ドを繊維状に分散させるこ とを含む。  The method for producing the polyamide fiber reinforced resin composition of the present invention comprises the steps of (a) 100 parts by weight of a polyolefin resin, and (b) 100 to 400 parts by weight of a rubbery polymer having a glass transition temperature of 0 ° C. or less. And (d) the silane coupling agent is melt-kneaded to form a molten matrix, and the molten matrix is mixed with (c) the layered silicate-containing thermoplastic polyamide. 10 to 400 parts by weight are mixed at a temperature equal to or higher than the melting temperature of the thermoplastic polymer, and the molten mixture is extruded to a temperature lower than the melting point of the thermoplastic polymer (c). In the matrix comprising the mixture of the other components (a) and (b), the layered silicate-containing thermoplastic polyamide is dispersed in a fibrous form. Including this.
本発明のポリ ア ミ ド繊維強化樹脂組成物及びその製造方法におい て、 前記成分 ( a ) , ( b ) 及び ( c ) の合計 100重量部に対して 、 前記シラ ンカ ップリ ング剤 ( d ) が、 0. 1〜5. 5 重量部の割合で 配合されることが好ま しい。  In the polyamide fiber reinforced resin composition and the method for producing the same according to the present invention, the silane coupling agent (d) is used based on a total of 100 parts by weight of the components (a), (b) and (c). However, it is preferable that the content is 0.1 to 5.5 parts by weight.
また、 本発明のポリ ア ミ ド繊維強化樹脂組成物及びその製造方法 において、 前記層状珪酸塩は、 前記熱可塑性ポ リ ア ミ ド 1 00重量部 に対して、 0. 05〜 30重量部の割合で配合されるこ とが好ま しい。 発明を実施するための最良の形態 Also, the polyamide fiber reinforced resin composition of the present invention and a method for producing the same In the above, it is preferable that the layered silicate is blended at a ratio of 0.05 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic polymer. BEST MODE FOR CARRYING OUT THE INVENTION
下記に、 本発明のポ リ ア ミ ド繊維強化樹脂組成物とその製造方法 を具体的に説明する。  Hereinafter, the polyamide fiber reinforced resin composition of the present invention and a method for producing the same will be specifically described.
( a ) ポ リオレフ ィ ン樹脂は、 8 0 ~ 2 5 0 °Cの範囲の融点を有す る ものであるこ とが好ま しく 、 また, 5 0 °C以上, 特に好ま し く は 5 0〜 2 0 0 °Cのビカ ツ ト軟化点を有する ものも用いる こ とができ る。 ポ リ オレフ イ ン樹脂 ( a ) の好適な例と しては, 炭素数 2〜 8 のォ レフ ィ ンの単独重合体及び共重合体、 例えば、 炭素数 2〜 8 の ォレフィ ンとスチレン、 ク ロロスチレン、 及び 一メ チルスチレン などの芳香族ビニル化合物との共重合体, 炭素数 2〜 8 のォレフ ィ ンと酢酸ビニルとの共重合体, 炭素数 2〜 8のォレフ ィ ンとァク リ ル酸あるいはそのエステルとの共重合体, 炭素数 2〜 8 のォ レフ ィ ンとメ タ ク リ ル酸あるいはそのエステルとの共重合体, 及び炭素数 2〜 8のォレフ ィ ンと ビ二ルシラ ン化合物との共重合体等が挙げら れる。  (a) The polyolefin resin preferably has a melting point in the range of 80 to 250 ° C, more preferably 50 ° C or more, and particularly preferably 50 to 50 ° C. Those having a vicat softening point of 200 ° C can also be used. Preferable examples of the polyolefin resin (a) include homopolymers and copolymers of olefins having 2 to 8 carbon atoms, for example, olefins having 2 to 8 carbon atoms and styrene, Copolymers with aromatic vinyl compounds such as chlorostyrene and monomethylstyrene; copolymers of C2 to C8 olefins with vinyl acetate; C2 to C8 olefins and acrylates Copolymers of acrylic acid or its esters, copolymers of C2 to C8 olefins and methacrylic acid or its esters, and C2 to C8 olefins and vinyl Copolymers with a lucirane compound are exemplified.
( a ) 成分と して用いられるポ リオレフ ィ ン樹脂の具体例と して は, 高密度ポ リエチレン, 低密度ポリエチレン, 線状低密度ポ リエ チレン, ポ リ プロ ピレン, エチレン一プロ ピレンブロ ッ ク共重合体 , エチレン一プロ ピレンラ ンダム共重合体, ポリ 4 一メ チルペンテ ン一 1 , ポリ ブテ ン一 1 , ポリへキセン一 1 , エチレン一酢酸ビニ ル共重合体, エチレン—ビニルアルコール共重合体, エチレン—ァ ク リル酸共重合体, エチレン—アク リル酸メ チル共重合体, ェチレ ン—ァク リ ル酸ェチル共重合体, エチレンーァク リ ル酸プロ ピル共 重合体, エチレン—アク リル酸ブチル共重合体, エチレン—ァク リ ル酸 2 —ェチルへキシル共重合体, エチレン—ァク リ ル酸ヒ ドロキ シェチル共重合体, エチレンー ビニル ト リ メ トキシシラ ン共重合体 , エチレン一 ビニル ト リエ トキシシラ ン共重合体, エチレンービニ ルシラ ン共重合体, エチレン一スチレン共重合体, 及びプロ ピレン 一 スチ レ ン共重合体などが挙げられる。 ( a ) 成分と して用いられ るポリオレフ ィ ン樹脂の別の具体例と しては、 塩素化ポ リエチレン や臭素化ポ リ エチレン、 ク ロロスルホンィ匕ポ リエチレンなどのノヽロ ゲン化ポ リオレフ ィ ンが挙げられる。 (a) Specific examples of the polyolefin resin used as the component include high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, and ethylene-propylene block. Copolymer, ethylene-propylene random copolymer, poly (4-methylpentene-11), polybutene-11, polyhexene-11, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer Copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid propylene copolymer, ethylene-acrylic acid Acid butyl copolymer, ethylene-acrylate 2-ethylhexyl acrylate copolymer, ethylene-hydroxyhexyl acrylate copolymer, ethylene-vinyl trimethoxy silane copolymer, ethylene-vinyl triethoxy silane copolymer, ethylene-vinyl silane Copolymers, ethylene-styrene copolymers, and propylene-styrene copolymers. As another specific example of the polyolefin resin used as the component ( a ), there may be mentioned a polyolefin resin such as chlorinated polyethylene, brominated polyethylene, and chlorosulfonated polyolefin. Is mentioned.
上記ポ リ オレフ ィ ン樹脂の中でも特に好ま しいものと しては, 高 密度ポリ エチレン (H D P E ) , 低密度ポ リ エチレン ( L D P E ) , 線状低密度ポ リエチレン (L L D P E ) , ポ リ プロ ピレン ( P P ) , エチレン一プロ ピレンブロ ッ ク共重合体, エチレン一プロ ピレ ンラ ンダム共重合体, ポリ 4 —メ チルペンテン一 1 ( P 4 M P 1 ) , エチレン—酢酸ビニル共重合体 (E V A) , 及びエチレンービニ ルアルコール共重合体が挙げられ、 さ らにこれらの中でもメノレ トフ 口一イ ンデッ クス (M F I ) 力 0. 2〜 5 0 g / 1 0分の範囲のも のが最も好ま しいものと して挙げられる。 ( a ) 成分は、 1種類の ポ リオレフ ィ ン樹脂からなる ものであってもよ く 、 或は 2種以上の ポリオレフ ィ ン樹脂を組合わせて使用 してもよい。  Among the above-mentioned polyolefin resins, particularly preferred are high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and polypropylene (LPE). PP), ethylene-propylene block copolymer, ethylene-propylene random copolymer, poly4-methylpentene 1 (P4MP1), ethylene-vinyl acetate copolymer (EVA), and ethylene-vinyl acetate Alcohol-copolymers, and among them, those having a Menoletov Mouth Index (MFI) force of 0.2 to 50 g / 10 minutes are the most preferable. No. The component (a) may be composed of one kind of polyolefin resin, or may be used in combination of two or more kinds of polyolefin resins.
( b ) 成分と して、 ガラス転移温度は 0 °C以下、 好ま し く は— 2 As the component (b), the glass transition temperature is 0 ° C or less, preferably —2
0 °C以下のゴム状ポ リ マーが用いられる。 (b ) 成分用ゴム状ポリ マーの具体例と しては, 天然ゴム ( N R ) , イ ソプレンゴム ( I R ) , ブタ ジエンゴム ( B R ) , スチレン ' ブタ ジエンゴム ( S B R ) , ァク リ ロ二 ト リ ノレ . ブタジエンゴム ( N B R ) , ブチルゴム (A rubbery polymer of 0 ° C or less is used. (B) Specific examples of the rubbery polymer for components include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene'butadiene rubber (SBR), and acrylonitrile. Nore butadiene rubber (NBR), butyl rubber (
1 I R ) , 塩素化ブチルゴム, 臭素化ブチルゴム, ク ロロブレンゴ ム (C R) , アク リ ロニ ト リル一ク ロ口プレン共重合体ゴム, ァク リ ロニ ト リノレーィ ソプレン共重合体ゴム, ァク リ レー トーブタジェ ン共重合体ゴム, ビニルピ リ ジ ン一ブタ ジエン共重合体ゴム, ビニ ルピ リ ジ ン一スチ レ ンーブタ ジェン共重合体ゴムなどのジェン系ゴ ム, エチ レ ン一プロ ピ レ ン共重合体ゴム ( E P R ) , エチ レ ン一プ ロ ピレ ン一 ジェン共重合体ゴム ( E P D M ) , エチ レ ンーブテ ン共 重合体ゴム, エチ レ ンーブテン— ジェン共重合体ゴム, 塩素化ポ リ エチ レ ンゴム, ク ロ ロスルホ ン化ポ リ エチ レ ンゴム ( C S M ) など のポ リ オ レフ イ ン系ゴム、 アク リ ルゴム, エチ レ ンア ク リ ルゴム, ポ リ塩化三フ ッ素化ゴム, フ ッ素化ゴムなどのポ リ メ チ レ ン型の主 鎖を有する ゴム, ェピク ロ ロ ヒ ドリ ンゴム, 及びエチ レ ンォキシ ド ーェピク ロルヒ ド リ ン共重合体ゴムなどのよ う に、 主鎖に酸素原子 を有する ゴム, ポ リ フ ヱニルメ チルシロキサンゴム, 及びポ リ メ チ ルェチルシロキサンゴムなどのシ リ コー ンゴム, 二 ト ロ ソ ゴム, ポ リ エステルウ レタ ンゴム, ポ リ エーテルウ レタ ンゴムなどのよ う に 主鎖中に炭素原子の他に窒素原子及び酸素原子を有するゴムなどが 挙げられる。 又, これらのゴムをエポキシ変性したもの, シラ ン変 性, 或いはマ レイ ン化したものを成分 ( b ) に用いてもよい。 1 IR), chlorinated butyl rubber, brominated butyl rubber, chlorobrene rubber (CR), acrylonitrile monocrop copolymer rubber, acrylonitrile copolymer rubber, acrylyl Tobutage Rubbers such as ethylene copolymer rubber, vinyl pyridine-butadiene copolymer rubber, vinyl pyridine-styrene copolymer rubber, etc. Rubber (EPR), Ethylene propylene copolymer rubber (EPDM), Ethylene butene copolymer rubber, Ethylene butene copolymer rubber, Chlorinated polyethylene rubber, Polyolefin rubbers such as chlorosulfonated polyethylene rubber (CSM), acryl rubber, ethylene acryl rubber, polychlorinated trifluorinated rubber, and fluorinated rubber Rubbers having oxygen atoms in the main chain, such as rubbers having a polymethylene-type main chain, such as rubber, epichlorohydrin rubber, and ethyleneoxy-epichlorohydrin copolymer rubber. Rubber In the main chain, such as silicone rubber such as polyvinylmethylsiloxane rubber and polymethylethylsiloxane rubber, dinitro rubber, polyester urethane rubber, and polyether urethane rubber. Rubbers having nitrogen atoms and oxygen atoms in addition to carbon atoms are included. Epoxy-modified, silane-modified, or maleated rubbers of these rubbers may be used as component (b).
( b ) 成分をなすゴム状ポ リ マーの別の具体例と しては、 熱可塑 性エラス トマ一がある。 例えばスチ レ ン一ブタ ジエン一 スチ レ ンブ ロ ッ ク コポ リ マー, スチ レ ン一エチ レ ンーブチ レン一スチ レ ンブロ ッ ク コポ リ マー, スチ レ ン一イ ソプレ ン一スチ レ ンブロ ッ ク コポ リ マー, スチ レ ン一エチ レ ン一プロ ピレ ン一スチ レンブロ ッ ク コポ リ マー, ポリ オレフ イ ン系熱可塑性エラス トマ一, 塩素化ポ リオレフ ィ ン系熱可塑性エラ ス トマ一, ゥ レタ ン系熱可塑性エラ ス トマ一, ポ リ エステル系熱可塑性エラス トマ一, 1 , 2 —ポ リ ブタ ジエン系 熱可塑性エラス トマ一, ト ラ ンス一 1 , 4 一ポ リ イ ソプレ ン系熱可 塑性エラス トマ一, ポ リ ア ミ ド系熱可塑性エラス トマ一, ポリ塩化 ビニル系熱可塑性エラ ス トマ一などを挙げる こ とができ る。 ( C ) 成分をなす層状珪酸塩含有熱可塑性ポ リ ア ミ ド中には層状 珪酸塩が均一に分散して含有され, 熱可塑性ポリ ア ミ ドは、 押出し 及び延伸又は圧延によつて強靱な繊維状に形成されている。 この熱 可塑性ポリ ア ミ ドの融点は、 1 3 5〜 3 5 0 °Cの範囲内, 特に 1 6 0 〜 2 6 5 °Cの範囲内の融点を有することが好ま しい。 (b) Another specific example of the rubbery polymer constituting the component is a thermoplastic elastomer. For example, styrene-butadiene-styrene block copolymer, styrene-ethylene block styrene-styrene block copolymer, styrene-isoprene-styrene block copolymer Polymers, styrene-ethylene-propylene-styrene-block copolymers, polyolefin-based thermoplastic elastomers, chlorinated polyolefin-based thermoplastic elastomers, Thermoplastic elastomer, Polyester thermoplastic elastomer 1, 1, 2 —Polybutadiene thermoplastic elastomer, Transform 1,4,1-Polyisoprene thermoplastic Plastic elastomers, polyamide thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers and the like can be mentioned. (C) The layered silicate-containing thermoplastic polyamide constituting the component contains the layered silicate uniformly dispersed therein, and the thermoplastic polyamide is tough by extrusion and stretching or rolling. It is formed in a fibrous form. The melting point of the thermoplastic polyamide is preferably in the range of 135 to 350 ° C, particularly preferably in the range of 160 to 265 ° C.
( c ) 成分用熱可塑性ポリ ア ミ ドの具体例と しては, ナイ ロ ン 6 , ナイ ロ ン 6 6 , ナイ ロ ン 6 —ナイ ロ ン 6 6共重合体, ナイ ロ ン 6 1 0 , ナイ ロ ン 6 1 2 , ナイ ロ ン 4 6 , ナイ ロ ン 1 1 , ナイ ロ ン 1 2, ナイ ロ ン M X D 6 , キシ リ レンジァ ミ ンとアジピン酸との重縮 合体, キシ リ レンジァ ミ ンと ピメ リ ン酸との重縮合体, キシ リ レン ジァ ミ ンとスペリ ン酸との重縮合体, キシリ レンジァ ミ ンとァゼラ ィ ン酸との重縮合体, キシ リ レンジア ミ ンとセバシン酸との重縮合 体, テ トラメチレンジァ ミ ンとテレフタル酸の重縮合体, へキサメ チレンジア ミ ンとテレフタル酸の重縮合体、 ォクタメ チレンジア ミ ンとテレフタル酸の重縮合体, ト リ メ チルへキサメ チレンジア ミ ン とテレフタル酸の重縮合体, デカメ チレンジア ミ ンとテレフタル酸 の重縮合体, ゥ ンデカメ チレンジァ ミ ンとテレフタル酸の重縮合体 , ドデカメ チレンジァ ミ ンとテレフタル酸の重縮合体, テ トラメ チ レンジア ミ ンとイ ソフタル酸の重縮合体, へキサメ チレンジア ミ ン とイ ソフタル酸の重縮合体, ォク タメ チレンジア ミ ンとイ ソフタル 酸の重縮合体, ト リ メ チルへキサメ チレンジァ ミ ンとィ ソフタル酸 の重縮合体, デカメ チレンジァ ミ ンとイ ソフタル酸の重縮合体, ゥ ンデカメ チレンジア ミ ンとイ ソフタル酸の重縮合体, 及び ドデカメ チレンジア ミ ンとイ ソフタル酸の重縮合体などが挙げられる。  (c) Specific examples of the thermoplastic polyamide for the component include Nylon 6, Nylon 66, Nylon 6-Nylon 66 copolymer, and Nylon 610. , Nylon 61 2, Nylon 46, Nylon 11, Nylon 12, Nylon MXD 6, Polycondensate of xylylenediamine and adipic acid, xylylenediamine Polycondensate of xylylenediamine and sperinic acid, polycondensate of xylylenediamine and azearic acid, xylylenediamine Polycondensate of terephthalene diamine and terephthalic acid, polycondensate of hexamethylene diamine and terephthalic acid, polycondensate of octamethylenediamine and terephthalic acid, trimethyl Hexamethylenediamine and terephthalic acid polycondensate Polycondensate of decamethylenediamine and terephthalic acid, polycondensate of dexamedecylenediamine and terephthalic acid, polycondensate of dodecamethylenediamine and terephthalic acid, polycondensation of tetramethylenediamine and isophthalic acid Isomers, polycondensates of hexamethylene diamine and isophthalic acid, polycondensates of octamethylenediamine and isophthalic acid, polycondensates of trimethyl hexamethylene diamine and isophthalic acid, decame Examples include polycondensates of tylenediamine and isophthalic acid, polycondensates of pendecamethylenediamine and isophthalic acid, and polycondensates of dodecamethylenediamine and isophthalic acid.
上記の熱可塑性ポリ ア ミ ドの内, 特に好ま しいものは、 ( a ) 成 分をなすポ リオレフ ィ ン樹脂より も 3 0 °C以上高い融点を有する も のである。 具体的に述べるならば、 ナイ ロ ン 6 ( P A 6 ) , ナイ 口 ン 6 6 ( P A 6 6 ) , ナイ ロ ン 6 —ナイ ロ ン 6 6共重合体, ナイ 口 ン 6 1 0 , ナイ ロ ン 6 1 2, ナイ ロ ン 4 6, ナイ ロ ン 1 1 , 及びナ ィ ロ ン 1 2 などが特に好ま しい。 これら熱可塑性ポ リ ア ミ ドは単一 種で使用されてもよ く, 2種以上を併用 してもよい。 またこれらの 熱可塑性ポ リ ア ミ ドは, 1 0 , 0 0 0〜 2 0 0, 0 0 0 の範囲の分 子量を有しているこ とが好ま しい。 Of the above thermoplastic polyamides, particularly preferred ones have a melting point higher than that of the constituent polyolefin resin by 30 ° C or more. To be specific, Nylon 6 (PA 6) 66 (PA66), Nylon 6—Nylon 66 copolymer, Nylon 61, Nylon 61, Nylon 46, Nylon 11 and Nylon 1 and 2 are particularly preferred. These thermoplastic polyamides may be used alone or in combination of two or more. It is also preferable that these thermoplastic polyamides have a molecular weight in the range of 100,000 to 200,000.
( c ) 成分中に均一に分散し含有される層状珪酸塩は, ポ リ ア ミ ド樹脂組成物に優れた機械特性及び摩擦性能を付与するこ とに有効 である。 この層状珪酸塩粒子はその性状は, 通常 0. 6 〜 2 n mの 厚さ と 2〜 1 , 0 0 0 n mの長さ とを有するこ とが好ま しい。 本発 明の成分 ( c ) 中において、 層状珪酸塩が熱可塑性ポリ ア ミ ド中に それぞれが 2 n m以上の平均層間距離を保持して均一に分散してい るこ とが特徴である。 ここで言う 「眉間距離」 とは、 珪酸塩層の平 板状の重心間距離を言い, 「均一に分散する」 とは層状珪酸塩の 5 0 %以上, 好ま しく は 7 0 %以上が、 凝集塊を形成するこ となく互 に平行に、 及び Z又はラ ンダムに, 平行とラ ンダムが混在した状態 で分散する状態を言う。 従って層状珪酸塩とは長さが 2 〜 1 , 0 0 O n m, 厚さ力く 0. 6 ~ 2 n mの微細層状からなる ものである。 こ のような層状珪酸塩と しては, 珪酸マグネシウムまたは珪酸アルミ 二ゥムの層状粒子から構成される層状フイ ロ珪酸鉱物を例示するこ とができる。 層状珪酸塩は、 具体的には、 モンモリ ロナイ ト, サボ ナイ ト, ノ ン トロナイ ト, ヘク トライ ト, スティ ブンサイ トなどの スメ クタイ 卜系粘土鉱物、 並びにバミ ユ ーキュライ ト, 及びハラサ イ トなどを包含する。 これら層状珪酸塩は天然物であってもよ く 、 或は合成されたものであってもよい。 これらのなかでもモンモリ 口 ナイ トを用いるこ とが好ま しい。 このような層状珪酸塩粒子をポ リ ア ミ ド樹脂中に均一に分散させる方法に制限がないが, 本発明の層 状珪酸塩粒子の原料が多層状粘土鉱物である場合には、 これを膨潤 化剤と接触させて予め層間を拡げて層間にモノ マ一を取り込み易く した後にポ リ ア ミ ド形成用モノ マーと混合し、 このモノ マーを重合 する方法 (特公平 0 8 — 2 2 9 4 6号) を用いてもよい。 また, 膨 潤化剤と して高分子化合物を用いて予め層間を 1 0 n m以上に拡げ て, これをポ リ ア ミ ド樹脂も しく は, これを含む樹脂と溶融混練し て均一分散させる方法を用いてもよい。 層状珪酸塩の配合割合は、 ポリ ア ミ ド成分 1 0 0重量部に対して 0 . 0 5〜 3 0重量部である こ とが好ま し く , 更に好ま しく は 0 . 1 〜 1 0重量部である。 層状 珪酸塩の配合割合が 0 . 0 5重量部未満である と得られる成形体の 剛性, 及び耐熱性の向上が小さ く なり, またそれが 3 0重量部を超 えると樹脂組成物の流動性が極端に低下するので好ま し く ない。 (c) The layered silicate uniformly dispersed and contained in the component is effective in imparting excellent mechanical properties and frictional properties to the polyamide resin composition. The phyllosilicate particles preferably have a thickness of usually 0.6 to 2 nm and a length of 2 to 1,000 nm. The component (c) of the present invention is characterized in that the layered silicate is uniformly dispersed in the thermoplastic polyamide while maintaining an average interlayer distance of 2 nm or more. The term “inter-brows distance” as used herein refers to the distance between the plate-shaped centers of gravity of the silicate layer, and “uniformly dispersed” refers to 50% or more, preferably 70% or more of the layered silicate. A state in which both parallel and random are dispersed parallel to each other and to Z or random without forming aggregates. Therefore, the layered silicate is a fine layer having a length of 2 to 100 nm and a thickness of 0.6 to 2 nm. Examples of such a layered silicate include a layered phyllosilicate mineral composed of layered particles of magnesium silicate or aluminum silicate. Layered silicates include, specifically, smectite clay minerals such as montmorillonite, savonite, nontronite, hectrite, and stevensite, as well as bamiyucurite and harasite. Is included. These layered silicates may be natural products or synthetic ones. Of these, it is preferable to use the Montmori mouth. The method of uniformly dispersing such layered silicate particles in a polyamide resin is not limited, but the method of the present invention is not limited. When the raw material of the silicate particles is a multi-layered clay mineral, it is brought into contact with a swelling agent to expand the layers in advance to make it easy to take in the monomers between the layers, and then to form the monomer for forming the polyamide. And a method of polymerizing this monomer (Japanese Patent Publication No. 08-222946). In addition, using a polymer compound as a swelling agent, the interlayer is spread to 10 nm or more in advance, and this is melt-kneaded with a polyamide resin or a resin containing the same to be uniformly dispersed. A method may be used. The mixing ratio of the layered silicate is preferably 0.05 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the polyamide component. Department. If the compounding ratio of the layered silicate is less than 0.05 parts by weight, the rigidity and heat resistance of the obtained molded article will be small, and if it exceeds 30 parts by weight, the flow of the resin composition will increase. It is not preferable because sex is extremely reduced.
( d ) 成分と して用いられるシラ ンカ ツプリ ング剤は ( a ) 成分 , ( b ) 成分及び ( c ) 成分を相互に結合させる結合剤である。 こ のシラ ンカ ッ プ リ ング剤の具体例と しては、 ビニル ト リ メ トキシ シ ラ ン, ビニル ト リ エ トキシシラ ン, ビニル ト リ ス ( ^ — メ トキシェ トキシ) シラ ン, ビニル ト リ ァセチルシラ ン, ァ ー メ タ ク リ ロキシ プロ ビル ト リ メ トキシシラ ン, /5— ( 3, 4 一エポキシ シク ロへキ シル) ェチル ト リ メ トキシシラ ン, ァ 一 グリ シ ドキシプロ ピル ト リ メ トキシ シラ ン, ァ 一 グリ シ ドキシプロ ピルメ チルジメ トキシシラ ン, ァ ー グ リ シ ドキシプロ ピルメ チルジェ トキシシラ ン, γ — グ リ シ ドキシプロ ピルェチルジメ トキシシラ ン, ァ 一 グ リ シ ドキシプロ ピルェチルジェ トキシシラ ン, Ν— ; 5 _ (ア ミ ノ エチル) ア ミ ノ プ 口 ビル ト リ メ トキシシラ ン, Ν— 3 — (ア ミ ノ エチル) ァ ミ ノ プロ ピル ト リ エ トキシ シラ ン, Ν— /?— (ア ミ ノ エチル) ァ ミ ノ プロ ピ ルメ チルジメ トキシ シラ ン, N— S — (ア ミ ノ エチル) ァ ミ ノ プロ ピルェチルジメ トキシシラ ン, N— /3 — (ア ミ ノ エチル) ア ミ ノ ブ 口 ピルェチルジェ トキシ シラ ン, ァ 一ア ミ ノ プロ ビル ト リ エ ト キシ シラ ン, N—フ ヱニル一 ァ ーァ ミ ノ プロ ビル ト リ メ トキシ シラ ン, 7 - 〔N _ ( ;S—メ タ ク リ ロキシェチル) 一 N, N— ジメ チルア ン モニゥム (ク ロライ ド) 〕 プロ ピルメ トキシ シラ ン, 及びスチ リ ル ジア ミ ノ シラ ンなどが挙げられる。 これらの中でも、 アルコキシ基 などから水素原子を奪って脱離し易い基及び Z又は極性基と ビニル 基とを有する ものが特に好ま し く用いられる。 The silane coupling agent used as the component (d) is a binder that binds the components (a), (b) and (c) to each other. Specific examples of this silane coupling agent include vinyl trimethoxysilane, vinyl triethoxy silane, vinyl tris (^ -methoxetoxy) silane, vinyl tri Acetylsilane, amethacryloxyprovir trimethoxysilane, / 5— (3,4-epoxycyclohexyl) ethyl trimethoxysilane, aglycidoxypropyltrimethoxy Silane, α-glycidoxypropylmethyldimethoxysilane, aglycidoxypropylmethylethylethoxysilane, γ-glycidoxypropylpyrethyldimethoxysilan, α-glycidoxypropylpropylethylethoxysilane, Ν—; 5_ ( Aminoethyl) Aminop mouth Bitrimethoxysilane, ン — 3 — (Aminoethyl Tyl) aminopropyltriethoxysilane, Ν — /? — (Aminoethyl) aminopropyl tyldimethoxysilane, N—S— (aminoethyl) aminopro Pyrethyldimethoxysilane, N— / 3 — (Aminoethyl) Aminove Mouth pilletyl jetoxirane, a-aminoprovir triethoxysilane, N-vinylaminopropyl trimethoxysilane, 7- [N _ (; S-meth (Tacryloxyshethyl) -N, N-dimethylammonium (chloride)] propylmethoxy silane, and styrene diamino silane. Among these, a group which easily desorbs a hydrogen atom from an alkoxy group or the like, and a group having Z or a polar group and a vinyl group are particularly preferably used.
シラ ンカ ツプリ ング剤の配合量は ( a ) 成分, ( b ) 成分及び ( c ) 成分の合計 1 0 0重量部に対して 0. 1 〜 5. 5重量部である ことが好ま し く, 特に好ま し く は 0. 2〜 3. 0重量部である。 シ ラ ンカ ップリ ング剤の含有量が 0. 1重量部未満では、 ( a ) 成分 , ( b ) 成分及び ( c ) 成分の相互結合が不十分になり、 このため 強度の高い組成物が得られないこ とがある。 またそれが 5. 5重量 部を超えると、 ( c ) 成分中のポリ ア ミ ドが微細な繊維構造を形成 することが困難になるので弾性率に優れた組成物を得るこ とが困難 になるこ と力 ある。  The amount of the silane coupling agent is preferably 0.1 to 5.5 parts by weight based on 100 parts by weight of the total of the components (a), (b) and (c). Particularly preferred is 0.2 to 3.0 parts by weight. When the content of the silane coupling agent is less than 0.1 part by weight, the mutual bonding of the components (a), (b) and (c) becomes insufficient, so that a composition having high strength can be obtained. May not be possible. On the other hand, if it exceeds 5.5 parts by weight, it becomes difficult for the polyamide in the component (c) to form a fine fiber structure, so that it is difficult to obtain a composition having excellent elastic modulus. There is power.
( d ) 成分と して用いられるシラ ンカ ップリ ング剤とと もに、 有 機過酸化物を併用する ことができる。 有機過酸化物を併用すること により ( a ) 成分、 ( b ) 成分、 及び ( c ) 成分樹脂の分子鎖上に ラ ジカルが形成され、 これがシラ ンカ ップリ ング剤と反応して ( a ) 成分, ( b ) 成分及び ( c ) 成分樹脂の相互の結合が促進され、 このよ う にすると ( a ) 成分, (b ) 成分及び ( c ) 成分がその界 面において相互に結合することになる。 有機過酸化物と しては、 1 分間の半減期温度が, ( a ) 成分の融点或いは ( c ) 成分の融点の いずれか高い方と同一温度からこの温度より 3 0 °C程高い温度迄の 範囲内にある ものが好ま しく用いられる。 具体的に述べるならば有 機過酸化物と して、 1分間の半減期温度が 1 1 0〜 2 5 0 °C程度の ものが好ま し く 用いられる。 このときの有機過酸化物の使用量は,(d) An organic peroxide can be used in combination with the silane coupling agent used as the component. When the organic peroxide is used in combination, a radical is formed on the molecular chain of the component (a), component (b), and component (c), and this reacts with the silane coupling agent to form the component (a). , (B) component and (c) component resin are promoted to bond with each other. In this way, (a) component, (b) component and (c) component are mutually bonded at the interface. . As the organic peroxide, the half-life temperature for 1 minute is from the same temperature as the melting point of component (a) or the melting point of component (c), whichever is higher, to a temperature 30 ° C higher than this temperature. Those within the range are preferably used. More specifically, as an organic peroxide, the half-life temperature of one minute is about 110 to 250 ° C. Things are preferably used. The amount of organic peroxide used at this time is
( a ) 成分 1 0 0重量部に対して, 0. 0 1 〜 1 . 0重量部の範囲 にあることが好ま しい。 (a) It is preferably in the range of 0.01 to 1.0 part by weight based on 100 parts by weight of the component.
本発明に用いられる有機過酸化物の具体例と しては, 1 , 1 ージ — t 一ブチルパーォキシ一 3, 3 , 5 — 卜 リ メチルシク ロへキサン , 1 , 1 —ジ一 t —ブチルパーォキシシク ロへキサン, 2, 2 —ジ 一 t —ブチルバ一ォキシブタ ン, n —ブチルー 4 , 4 ー ジー t —ブ チルバ一ォキ シノ《レ リ ネイ ト, 2 , 2 —ビス ( 4, 4 — ジ一 t —ブ チルバ一ォキシンク ロへキサン) プロパン, 2, 2, 4 一 ト リ メ チ ルペンチルーパーォキシネオデカネー ト, a— り ミ ノレーパーォキシ ネオデカネ一 卜, t —ブチルーパーォキシネオへキサネー 卜、 t 一 ブチルパーォキシピバレ一 ト, t ーブチルバ一ォキシァセテ一 ト, t —ブチルパーォキシラウ レー ト, t —ブブチルパーォキシベンゾ エー ト, t ーブチルバ一ォキシイ ソフタルレー トなどが挙げられる 本発明の樹脂組成物において、 ( c ) 成分の層状珪酸塩含有熱可 塑性ポリ ア ミ ドの過半量が微細な繊維状をなして主と して ( a ) 成 分と ( b ) 成分とからなるマ ト リ ッ クス中に均一に分散している。 具体的には熱可塑性ポ リ ア ミ ドの 7 0重量%以上, 好ま し く は 8 0 重量%以上、 特に好ま しく は 9 0重量%以上が、 微細な繊維状をな して分散している。 ポリ ア ミ ド繊維の平均繊維径は 1 z m以下であ るこ とが好ま し く 、 その平均繊維長さは 1 , 0 0 0 m以下である こ とが好ま しい。 平均繊維長さ と平均繊維径の比で表されるァスぺ ク ト比は 2 0以上であるこ とが好ま し く 、 2 0以上、 1 , 0 0 0以 下であるこ とがより好ま しい。 そして, ( a ) 成分, ( b ) 成分及 び ( c ) 成分は、 それぞれの界面においてで相互に結合しており、 この結合は、 成分 ( d ) をなすシラ ンカ ップリ ング剤により強化さ れている。 Specific examples of the organic peroxide used in the present invention include 1,1-di-t-butylperoxy-1,3,5, -trimethylcyclohexane, 1,1-di-t-butylperoxy. Oxycyclohexane, 2, 2-di-t-butyl-butoxy-butane, n-butyl- 4,4--g-t-butyl-l-oxy-sino << relinate, 2, 2-bis (4, 4—Di-t-butylbutyloxane) propane, 2,2,4-trimethylpentyl-peroxyneodecanate, a—Li-minoleoxyneodeneate, t—butyl-peroxide Xineohexanate, t-butyl peroxypivalate, t-butyl peroxy acetate, t-butyl peroxylaurate, t-butyl peroxybenzoate, t-butyl peroxybenzoate G In the resin composition of the present invention, the majority of the layered silicate-containing thermoplastic polyamide of the component (c) forms a fine fibrous form and is mainly composed of the components (a) and ( b) It is uniformly dispersed in the matrix composed of the components. More specifically, 70% by weight or more, preferably 80% by weight or more, and particularly preferably 90% by weight or more of the thermoplastic polyamide are dispersed in the form of fine fibers. I have. The average fiber diameter of the polyamide fiber is preferably 1 zm or less, and the average fiber length is preferably 1,000 m or less. The aspect ratio expressed by the ratio of the average fiber length to the average fiber diameter is preferably 20 or more, more preferably 20 or more and 1,000 or less. . Component (a), component (b) and component (c) are bonded to each other at their respective interfaces, and this bond is strengthened by the silane coupling agent forming component (d). Have been.
( a ) 成分, ( b ) 成分及び ( c ) 成分の割合は ( a ) 成分 1 0 0重量部に対して ( b ) 成分が 1 0 〜 4 0 0重量部, ( c ) 成分が 1 0 〜 4 0 0重量部である。 好ま しく は ( b ) 成分が 2 0 〜 2 5 0 重量部, ( c ) 成分が 2 0 〜 3 0 0重量部である。 さ らに好ま し く は ( b ) 成分が 5 0〜 2 0 0重量部, ( c ) 成分が 5 0 〜 3 0 0 重 量部である。 ( a ) 成分 1 0 0重量部に対して ( b ) 成分が 1 0重 量部未満では、 得られる組成物の耐衝撃性が不十分になり、 またそ れが 4 0 0重量部を超えると得られる組成物の耐ク リ 一プ性が不十 分になる。 また, ( a ) 成分 1 0 0重量部に対して ( c ) 成分の配 合量が 1 0重量部未満では、 得られる組成物の耐ク リ ープ性が不十 分になり、 またそれが 4 0 0重量部を超えると組成物中に微細な繊 維と して存在するポリ ア ミ ド繊維の割合が多く なりすぎ、 このため 繊維の分散が不良となり、 このような組成物を成形して得られる成 形品の外観が不良になる。  The proportions of component (a), component (b) and component (c) are 100 to 400 parts by weight of component (a), 100 to 400 parts by weight of component (b), and 100% by weight of component (c). ~ 400 parts by weight. Preferably, the component (b) is 20 to 250 parts by weight, and the component (c) is 20 to 300 parts by weight. More preferably, the component (b) is 50 to 200 parts by weight, and the component (c) is 50 to 300 parts by weight. If the amount of the component (b) is less than 100 parts by weight based on 100 parts by weight of the component (a), the resulting composition will have insufficient impact resistance, and will exceed 400 parts by weight. The resulting composition has insufficient creep resistance. If the amount of the component (c) is less than 100 parts by weight relative to 100 parts by weight of the component (a), the resulting composition has insufficient creep resistance. If the amount exceeds 400 parts by weight, the proportion of polyamide fibers present as fine fibers in the composition becomes too large, and the dispersion of the fibers becomes poor. The appearance of the molded product obtained by this is poor.
本発明の樹脂組成物には、 その物性を損なわない範囲内で、 充塡 剤を加えてもよい。 充塡剤と しては炭素繊維, ガラス繊維, 金属繊 維, ガラスビーズ, タルク, カオリ ン, ク レー, 雲母, モンモ リ ロ ナイ ト, 塩基性炭酸マグネシウム, ワラスナイ トなどを用いるこ と ができる。 その他, 酸化防止剤, 紫外線吸収剤, 軟化剤, 難燃剤, 柔軟剤, 滑剤, タ ツキフ アイヤーなどを本発明の樹脂組成物中に適 宜添加する こ とができる。  A filler may be added to the resin composition of the present invention as long as the physical properties are not impaired. As the filler, carbon fibers, glass fibers, metal fibers, glass beads, talc, kaolin, cres, mica, montmorillonite, basic magnesium carbonate, walazite, etc. can be used. . In addition, antioxidants, ultraviolet absorbers, softeners, flame retardants, softeners, lubricants, tackifiers, and the like can be appropriately added to the resin composition of the present invention.
次に本発明のポ リ ア ミ ド繊維強化樹脂組成物の製造方法について 説明する。 先ず層状珪酸塩粒子が均一に分散した ( c ) 成分用熱可 塑性ポ リ ア ミ ドの製法について説明する。 この分散方法には、 層状 珪酸塩が均一に分散し得る限り特に制限はない。 例えば層状珪酸塩 の原料が多層状粘土鉱物である場合には層状珪酸塩を塩酸でイオン 化し、 これに膨潤剤, 例えば 1 2 —ア ミ ノ ドデカ ン酸と反応させて 予め層間を拡げ、 層間にモノマーを取り込み易く し、 これに ( c ) 成分用ポ リ ア ミ ドを形成するモノ マーを混合し、 このモノ マ一を重 合する方法 (特公平 8 — 2 2 9 4 6号公報) により、 層状珪酸塩と ポ リ ア ミ ドとを混合して、 層状珪酸塩が均一に分散し含有されてい る熱可塑性ポ リ ア ミ ドを製造するこ とができる。 Next, a method for producing the polyamide fiber reinforced resin composition of the present invention will be described. First, the method for producing a thermoplastic polyamide for component (c) in which layered silicate particles are uniformly dispersed will be described. This dispersion method is not particularly limited as long as the layered silicate can be uniformly dispersed. For example, when the raw material of the layered silicate is a multilayer clay mineral, the layered silicate is ionized with hydrochloric acid. Reacts with a swelling agent, for example, 12-aminododecanic acid, to expand the layers in advance, to facilitate the incorporation of monomers between the layers, and to form a polyamide for the component (c). By mixing the monomers and polymerizing this monomer (Japanese Patent Publication No. 8-229496), the layered silicate and the polyamide are mixed to make the layered silicate uniform. It is possible to manufacture thermoplastic polyamide dispersed and contained.
膨潤剤と してはァ ミ ノ酸及びナイ 口 ン塩があり、 その具体例と し ては、 ω —ア ミ ノ ウ ンデカ ン酸、 ω —ァ ミ ノ ドデカ ン酸、 及びジァ ミ ンと ジカルボン酸の等モルからなる塩、 例えばテ ト ラ メ チ レ ンジ アムモニユ ウムア ジペイ ト、 へキサメ チ レ ン ジアムモニユ ウム ジァ ジヘイ ト、 へキサメ チ レ ンジアムモニユ ウムセバゲイ トカ、らなるナ ィ ロ ン塩などがある。  Examples of the swelling agent include aminoic acid and nitric acid salt, and specific examples thereof are ω-amino-decanoic acid, ω-amino-dodecanoic acid, and diamin. And equimolar salts of dicarboxylic acids, such as tetramethylammonium adipate, hexamethylene diammonium diagedate, and hexamethylene diammonium sebague toka and so on.
ポリ ア ミ ド繊維強化樹脂組成物の製造方法は、 下記の工程 ( 1 ) 〜 ( 4 ) を含むものである。  The method for producing a polyamide fiber reinforced resin composition includes the following steps (1) to (4).
( 1 ) ( a ) 成分のポリオレフィ ン樹脂及び ( b ) 成分のゴム状 ポリ マーを、 ( d ) 成分のシラ ンカ ップリ ング剤とと もに溶融混練 して反応性マ 卜 リ ッ クスを調製する工程、  (1) A reactive matrix is prepared by melt-kneading the (a) component polyolefin resin and the (b) component rubbery polymer together with the (d) component silane coupling agent. Process,
( 2 ) 上記反応性溶融マ ト リ ッ クスと、 ( c ) 成分の層状珪酸塩 と熱可塑性ポ リ ア ミ ドとの複合体とを、 前記ポ リ ア ミ ドの融点以上 の温度で溶融混練して化学変性した組成物を製造する工程、  (2) The reactive molten matrix and the composite of the layered silicate of the component (c) and the thermoplastic polyamide are melted at a temperature equal to or higher than the melting point of the polyamide. Kneading to produce a chemically modified composition,
( 3 ) 上記溶融化学変性組成物を ( c ) 成分のポリ ア ミ ドの融点 より高い温度 (好ま し く は 1 0 °C以上高い) でダイスから押出する 工程、  (3) extruding the molten chemically modified composition from a die at a temperature higher than the melting point of the polyamide of component (c) (preferably higher than 10 ° C);
( 4 ) 上記押出物を ( c ) 成分中の熱可塑性ポリ ア ミ ドの融点よ り低く、 しかも熱可塑性を発現する温度で ドラ フ トをかけつつ延伸 または圧延する工程。 このときの延伸又は圧延温度は ( a ) 及び ( b ) 成分の融点以上であってもよい。 本発明の製造方法の各工程を更にに具体的に説明する。 (4) A step of stretching or rolling the extrudate while drafting at a temperature lower than the melting point of the thermoplastic polyamide in the component (c) and at which the thermoplasticity is exhibited. The stretching or rolling temperature at this time may be equal to or higher than the melting point of the components (a) and (b). Each step of the production method of the present invention will be described more specifically.
工程 ( 1 ) ; ( a ) 成分のポ リオレフ イ ン及び ( b ) 成分のゴム状 ポ リ マ一を ( d ) 成分のシラ ンカ ップリ ング剤と溶融混練して、 ( a ) 成分と ( b ) 成分と ( d ) 成分との反応性マ ト リ ッ クスを調製 する工程。 Step (1): Melt and knead the polyolefin of component (a) and the rubbery polymer of component (b) with the silane coupling agent of component (d), and mix the components (a) and (b) with each other. A) a step of preparing a reactive matrix between the component (d) and the component (d).
この溶融は ( a ) 成分のポリオレフ イ ンの融点以上であり, 好ま しく はこの融点より 1 0 °C以上高い温度で行われる。 融点より 1 0 °C以上高い温度で混練すると ( a ) 成分と ( d ) 成分のシラ ンカ ツ プリ ング剤が反応して反応性マ ト リ ッ クスが形成される。  This melting is performed at a temperature higher than the melting point of the polyolefin of component (a), and preferably at a temperature higher by at least 10 ° C than this melting point. If kneaded at a temperature higher than the melting point by 10 ° C. or more, the (a) component and the (d) component silane coupling agent react to form a reactive matrix.
溶融混練は、 樹脂やゴムに対して通常に使用されている装置によ り行う こ とができる。 このような装置と しては, ノく ンバリ 一型ミ キ サー, ニーダー, ニーダーエキス トル一ダ一, オープンロール, 一 軸混練機, 二軸混練機などが用いられる。 これらの装置の中では短 時間で且つ連続的に溶融混練を実施し得るという点において二軸混 練機を用いることが最も好ま しい。  Melt kneading can be carried out by a device usually used for resin and rubber. As such a device, a kneading mixer, a kneader, a kneader extruder, an open roll, a single-screw kneader, a twin-screw kneader, and the like are used. Among these apparatuses, it is most preferable to use a twin-screw kneader in that melt kneading can be performed in a short time and continuously.
工程 ( 2 ) ; 上記反応性マ ト リ ッ クスを、 ( c ) 成分の層状珪酸 塩と熱可塑性ポ リ ア ミ ドとの複合体を、 前記熱可塑性ポ リ ア ミ ドの 融点以上の温度で溶融混練して化学変性した組成物を製造する工程 この溶融は ( c ) 成分のポリ ア ミ ドの融点以上の温度で行われる 。 すなわち、 ポリ ア ミ ドの融点より高い温度において各成分を相互 に化学変性する。 溶融温度がポリ ア ミ ドの融点より低いと混練がで きないし、 また分散させること もできない。 従って、 ( c ) 成分の ポリ ア ミ ドの融点以上の温度, 特に好ま し く は前記融点より も 1 0 °C以上高い温度で溶融混練して ( c ) 成分をマ ト リ ッ クス中に分散 させ化学変性組成物を調製する。  Step (2): The above-mentioned reactive matrix is treated with a composite of the layered silicate of the component (c) and the thermoplastic polyamide at a temperature not lower than the melting point of the thermoplastic polyamide. A step of producing a chemically modified composition by melt-kneading in step (b). This melting is performed at a temperature equal to or higher than the melting point of the polyamide (c). That is, the components are mutually chemically denatured at a temperature higher than the melting point of the polyamide. If the melting temperature is lower than the melting point of the polyamide, kneading cannot be performed, and dispersing cannot be performed. Accordingly, the component (c) is melt-kneaded at a temperature higher than the melting point of the polyamide of the component (c), particularly preferably at a temperature higher than the melting point by 10 ° C or more, and the component (c) is added to the matrix. Disperse to prepare a chemically modified composition.
工程 ( 3 ) ; 上記溶融化学変性組成物を ( c ) 成分のポ リ ア ミ ド の融点より高い温度 ( 1 o °c以上高い) でダイスから押出する工程 この押出工程では化学変性組成物を紡糸口金又は Tダイから押出 す。 紡糸, 押出のいづれも ( c ) 成分のポ リ ア ミ ドの融点以上の温 度, 好ま し く は前記融点より 1 0 °c以上高い温度で行う こ とが好ま しい。 この押出しをポ リ ア ミ ドの融点より低い温度で行う と、 ポリ ァ ミ ドを上記マ ト リ ッ クス中においてさ らに微粒子化する こ とがで きない。 このため、 この組成物の延伸又は圧延により形成されるポ リ ア ミ ド繊維が粗大になることがある。 Step (3): applying the above-mentioned molten chemically modified composition to the polyamide of the component (c) Extruding from a die at a temperature higher than the melting point (1 o ° c or more) In this extrusion process, the chemically modified composition is extruded from a spinneret or T-die. Both spinning and extrusion are preferably performed at a temperature higher than the melting point of the component (c), preferably at a temperature higher than the melting point by 10 ° C or more. If the extrusion is performed at a temperature lower than the melting point of the polyamide, the polyamide cannot be further finely divided in the matrix. For this reason, the polyamide fibers formed by drawing or rolling the composition may become coarse.
工程 ( 4 ) ; 上記押出物を ( c ) 成分中のポリ ア ミ ドの融点より 低く 、 しかし熱可塑性を発現する温度で ドラフ トをかけつつ延伸ま たは圧延する工程。 このときの延伸又は圧延温度は、 ( a ) 及び ( b ) 成分の融点以下であってもよい。  Step (4): a step of drawing or rolling the above extrudate while drafting at a temperature lower than the melting point of the polyamide in the component (c) but exhibiting thermoplasticity. The stretching or rolling temperature at this time may be lower than the melting point of the components (a) and (b).
工程 ( 3 ) により得られた溶融押出 しされた紐状、 糸状、 又はテ —プ状物を連続的に冷却し、 延伸又は圧延処理する。 延伸又は圧延 処理は、 ポ リ ア ミ ドの融点より低い温度で行われる。 この温度は、 成分 ( a ) , ( b ) 及び ( d ) の混合物及び成分 ( c ) が熱可塑性 を発現する温度で行われる。 延伸又は圧延処理するこ とにより, よ り強固なポ リ ア ミ ド繊維が形成されるので繊維強化組成物と しての 性能がより向上する。 延伸又は圧延処理は、 例えば混練組成物を紡 糸口金から押し出して紐状又は糸状に紡糸し, これを ドラフ トをか けつつ延伸し巻き取るか, 切断してペレッ ト と して回収する方法で 実施される。 押出物を延伸する際の ドラフ ト比は好ま し く は 1 . 5 〜 1 0 0, 更に好ま し く は 2 〜 5 0, 最も好ま し く は 3 ~ 3 0 であ る。 ドラフ ト比とは押出口金を通過する押出物の速度に対する巻取 速度の比を意味する。 このようにしてポ リ ア ミ ド繊維強化樹脂組成 物が得られる。 上記のよう に工程を ( 1 ) , ( 2 ) , ( 2 ) 及び ( 4 ) に分離し て説明したが, ( a ) 成分, ( b ) 成分, ( c ) 成分及び ( d ) 成 分及び有機過酸化物などを供給できる供給口 ; 第 1 供給口, 第 2供 給口, 第 3 供給口, 第 4供給口及び第 5供給口などを有すると共に 各供給口に応じた混練帯 ; 第 1 混練帯, 第 2混練帯, 第 3混練帯, , 第 4混練帯及び第 5混練帯などを有する二軸押出機などを用いる 連続プロセスにより実施することも可能である。 そうすることによ り経済的で安定した製造方法になる。 実施例 The melt-extruded string, thread, or tape obtained in step (3) is continuously cooled and stretched or rolled. The stretching or rolling treatment is performed at a temperature lower than the melting point of the polyamide. This temperature is such that the mixture of components (a), (b) and (d) and component (c) exhibit thermoplasticity. By drawing or rolling, stronger polyamide fibers are formed, so that the performance as a fiber reinforced composition is further improved. The stretching or rolling treatment is, for example, a method in which the kneaded composition is extruded from a spinneret and spun into a string or a thread, and this is stretched and wound while being drafted, or cut and collected as a pellet. It will be implemented in. The draft ratio when the extrudate is stretched is preferably 1.5 to 100, more preferably 2 to 50, and most preferably 3 to 30. The draft ratio means the ratio of the winding speed to the speed of the extrudate passing through the extrusion die. Thus, a polyimide fiber reinforced resin composition is obtained. As described above, the process has been described separately for (1), (2), (2) and (4), but the components (a), (b), (c) and (d) A supply port capable of supplying an organic peroxide or the like; a kneading zone having a first supply port, a second supply port, a third supply port, a fourth supply port, a fifth supply port, and the like, and a supply port corresponding to each supply port; It is also possible to carry out by a continuous process using a twin-screw extruder having a 1 kneading zone, a 2nd kneading zone, a 3rd kneading zone, a 4th kneading zone and a 5th kneading zone. This results in an economical and stable manufacturing method. Example
本発明を下記実施例及び比較例を示してさ らに具体的に説明する が, これらは本発明の範囲を限定する ものではない。 実施例及び比 較例において, ポリ ア ミ ド繊維強化樹脂組成物の物性を下記方法に より測定した。  The present invention will be described more specifically with reference to the following Examples and Comparative Examples, but these do not limit the scope of the present invention. In Examples and Comparative Examples, the physical properties of the polyamide fiber reinforced resin composition were measured by the following methods.
平均繊維径及び繊維の形状 : 供試ポ リ ァ ミ ド繊維強化樹脂組成物 を熱キシ レ ンに溶解して繊維部分を分離捕集し、 これを走査型電子 顕微鏡で観察して、 それが微細な繊維かどうか確認して分散性を評 価した。 分散性が良好な繊維については 2 0 0本の繊維の繊維径を 測定し, その平均を求めて平均繊維径と した。  Average fiber diameter and fiber shape: The sample polymer fiber reinforced resin composition was dissolved in hot xylene to separate and collect the fiber, which was observed with a scanning electron microscope. The dispersibility was evaluated by checking whether the fibers were fine. For fibers with good dispersibility, the fiber diameters of 200 fibers were measured, and the average was determined as the average fiber diameter.
表面外観 : 供試樹脂組成物から 1 8 0 °Cでホッ トプレスを用いて シー トを作製し, シー ト面の平滑性を目視で観察し、 下記のように 評価し表示した。  Surface appearance: Sheets were prepared from the test resin composition at 180 ° C using a hot press, and the smoothness of the sheet surface was visually observed, evaluated and indicated as follows.
◎ 全く 平滑で優れている。  ◎ Very smooth and excellent.
〇 殆ど平滑で良い。  〇 Almost smooth.
X 荒れ又は粘着性があり成形に不適である。  X Rough or sticky, unsuitable for molding.
引張特性 ; A S T M D 6 3 8 に従って、 温度 2 3 °C、 引張速度 5 O m m Z分で引張強さ, 引張破壊伸び及び引張弾性率を測定した 動摩擦係 ; J I S K 7 1 2 5 に従って、 厚さ 0. 2 mm X幅 8 O mm x長さ 2 0 0 mmの試料と、 相手材と して透明ガラス板と の間の重力摩擦係数を、 荷重 2 0 0 g , 引張速度 1 0 0 mm/分に おいて測定した。 重力摩擦係数は物品表面の滑りにく さを示す尺度 であって、 この値が大きい程滑りにく い。 Tensile properties: Tensile strength, tensile elongation at break and tensile modulus were measured at a temperature of 23 ° C and a tensile speed of 5 O mm Z according to ASTMD 638. Dynamic friction: According to JISK 7125, the gravitational friction coefficient between a 0.2 mm thick x 80 mm wide x 200 mm long sample and a transparent glass plate as the mating material The measurement was performed at 200 g and a pulling speed of 100 mm / min. The coefficient of gravitational friction is a measure of the difficulty of slipping on the surface of an article.
参考例 1 Reference example 1
大気圧下で、 撹拌機及び温度調節器を装備した容量 2 0 リ ッ トル のハステロィ製反応器中に、 層状珪酸塩と して、 一単位の幅が平均 0. 9 5 n m、 長さが約 1 0 O n mのモンモ リ ロナイ ト 1 0 O g と 蒸留水 1 0 リ ッ トルとを入れ、 モンリ トナイ ト粒子を水中に分散さ せた。 この分散液を 3 5 °Cに保持しながら、 これに 5 1 . 2 gの 1 2 —ア ミ ノ ドデカ ン酸と 2 4 ミ リ リ ッ トルの濃塩酸を加えて 5分間 撹拌した後、 粒子を濾過捕集した。 更にこの粒子を、 濾液が中性に なるまで水洗した後これを濾過捕集し、 8 0 °Cにおいて 4 8 時間真 空乾燥した。 この操作により 1 2 —ァ ミ ノ ドデカ ン酸イオンとモン モリ ロナイ 卜の複合体 (以下, モンモリ ロナイ 卜の複合体) を調製 した。 複合体中の層状珪酸塩含有量は約 8 0 %であった。 次に 1 0 k gの ε —力プロラ クタム, 1 k gの蒸留水及び 1 8 0 gの上記モ ンモ リ ロナイ ト複合体を前記反応器中に入れ、 窒素ガスを導入して 空気を置換して、 1 0 0 °Cで反応系が均一になるように撹拌した。 更に温度を 2 6 0 °Cに上げて 1 5 k g Z c m 2 の加圧 (窒素加圧) 下で 1 時間撹拌した。 その後常圧にもどして 2 6 0 °Cで 3 時間反応 させて, 反応容器の下部ノ ズルから反応混合物をス トラ ン ド状に取 出し、 水冷し、 カ ッティ ングして、 ポ リ ア ミ ド (平均分子量 1 5, 0 0 0 ) とモンモ リ ロナイ ト と力、らなるペレッ トを得た。 このペレ ッ トを 9 0 °Cの熱水中に浸漬して未反応のモノマー及びオ リ ゴマー を抽出 · 除去し、 9 0 °Cにおいて 4 8 時間真空乾燥した。 得られた 層状珪酸塩含有ポ リ ア ミ ド (モ ンモ リ ロナイ ト複合ナイ ロ ン 6 ) を 6 5 0 °Cに強熱し、 その灼熱残差重量から有機複合モ ンモ リ ロナイ ト含有量を測定したところ、 2. 0 %であった。 この結果を表 1 に 示す。 At atmospheric pressure, a 20 liter Hastelloy reactor equipped with a stirrer and temperature controller was used as a layered silicate, with an average width of 0.95 nm and a length of phyllosilicate. About 10 O nm of montmorillonite 10 Og and 10 liters of distilled water were added to disperse montmorillonite particles in water. While maintaining the dispersion at 35 ° C., 51.2 g of 12-aminododecanic acid and 24 milliliters of concentrated hydrochloric acid were added thereto, followed by stirring for 5 minutes. The particles were collected by filtration. Further, the particles were washed with water until the filtrate became neutral, and then collected by filtration and vacuum-dried at 80 ° C for 48 hours. By this procedure, a complex of 12-amino dodecanoate ion and montmorillonite (hereinafter, montmorillonite complex) was prepared. The content of layered silicate in the composite was about 80%. Next, 10 kg of ε-caprolactam, 1 kg of distilled water and 180 g of the above monomorillonite complex were placed in the reactor, and nitrogen gas was introduced to replace the air. The mixture was stirred at 100 ° C. so that the reaction system became uniform. The temperature was further increased to 260 ° C., and the mixture was stirred for 1 hour under a pressure of 15 kg Z cm 2 (pressurized with nitrogen). Thereafter, the reaction mixture was returned to normal pressure and reacted at 260 ° C. for 3 hours. The reaction mixture was taken out from the lower nozzle of the reaction vessel in the form of a strand, cooled with water, cut, and mixed with a polyamid. (Average molecular weight: 15,000), montmorillonite and strength were obtained. This pellet was immersed in hot water at 90 ° C to remove unreacted monomers and oligomers. Was extracted and removed, followed by vacuum drying at 90 ° C for 48 hours. The obtained layered silicate-containing polyamide (monmorillonite composite nylon 6) was ignited at 65 ° C, and the content of organic composite monmorillonite was determined from the residual weight of the burning. The measured value was 2.0%. Table 1 shows the results.
参考例 2〜 4 Reference Examples 2 to 4
参考例 2 〜 4 の各々 において、 参考例 1 と同様に して層状珪酸塩 含有ポ リ ア ミ ドを調製した。 但し、 参考例 1 に使用 したものと同一 のモ ンモ リ ロナイ 卜複合体の使用量を、 表 1 に示した通り、 2 7 0 g , 3 6 0 8又は 7 2 0 と し、 これを 1 0 k gの £ 一力プロラ ク タム及び水 1 リ ッ トルを使用 して参考例 1 と同様にしてモ ンモ リ ロ ナイ ト複合ナイ ロ ン 6 を製造した。 このモン リ トナイ 卜複合ナイ 口 ン 6 中のモ ンモ リ ロナイ ト含有量はそれぞれ 3. 0 %, 4. 1 %及 び 7. 9 %であった。 この結果を表 1 に示す。  In each of Reference Examples 2 to 4, a layered silicate-containing polyamide was prepared in the same manner as in Reference Example 1. However, as shown in Table 1, the amount of the same monomorillonite complex used in Reference Example 1 was set to 270 g, 36008 or 720, and this was set to 1 Monomorillonite composite Nylon 6 was produced in the same manner as in Reference Example 1 using 0 kg of one-strength prolactam and 1 liter of water. The content of monmorillonite in the mixed montrinite composite mouth 6 was 3.0%, 4.1% and 7.9%, respectively. Table 1 shows the results.
表 1 table 1
Figure imgf000019_0001
実施例 1
Figure imgf000019_0001
Example 1
( a ) 成分と して低密度ポ リ エチ レ ン (宇部興産社製, 商標 : F 5 2 2 , 融点 1 1 0 °C, M F I = 5 g / 1 0分) 1 0 0 重量部, ( b ) 成分と して天然ゴム ( S MR— L ) 1 0 0重量部, 及び ( d ) 成分のシラ ンカ ップリ ング剤と して 7 —メ タク リ ロキシプロ ビル ト リ メ トキシシラ ン 1 . 0重量部を、 バンバリ 一型ミ キサーにより、 ( a ) 成分の融点以上の温度 ( 1 5 0 °C) において溶融混練し、 シ ラ ン変性されたマ ト リ ッ クスを調製し、 これを 1 7 0 °Cでダンプし てペレッ トィヒした。 このマ ト リ ッ クスと、 ( c ) 成分と して、 5 0 重量部の参考例 1 のモ ンモリ ロナイ ト複合ナイ ロ ン 6 とを、 2 5 0 °Cに加熱した二軸押出機で混練し、 二軸押出機の先端に取り付けた ノ ズルを通してス トラ ン ド状に押出し、 大気中、 室温において、 ド ラ フ ト比 2 0 で延伸しつつペレ ツ トイ匕した。 このペレ ツ トを 1 8 0 °Cでプレス してシ一 ト状に成形した。 このシ一 卜からダンベル状の 試験片を打ち出して目的の物性を測定した。 その結果を表 2 に示す 。 また, 得られたシー トから ( a ) 成分の低密度ポ リエチレン及び ( b ) 成分の天然ゴムを熱キシレ ンで抽出 · 除去して、 ( c ) 成分 のモ ンモ リ ロナイ ト複合ナイ ロ ン 6 からなる微細な繊維を捕集し、 これを走査型電子顕微鏡で観察したところ、 その平均繊維径は 0 . 2 〃 mであった。 (a) low-density polyethylene (available from Ube Industries, trade name: F522, melting point: 110 ° C, MFI = 5 g / 10 minutes) as a component: 100 parts by weight, b) 100 parts by weight of natural rubber (SMR-L) as a component, and 1.0 parts by weight of 7-methacryloxyprovir trimethoxysilane as a silane coupling agent of component (d). Of the component (a) at a temperature (150 ° C) or higher than the melting point of the component (a), A run-modified matrix was prepared, which was dumped at 170 ° C and pelleted. This matrix was mixed with 50 parts by weight of the monomoronilonite composite nylon 6 of Reference Example 1 as the component (c) in a twin-screw extruder heated to 250 ° C. The mixture was kneaded, extruded in a strand shape through a nozzle attached to the tip of a twin-screw extruder, and stretched at a draft ratio of 20 in the air and at room temperature, and pelletized. This pellet was pressed at 180 ° C. to form a sheet. A dumbbell-shaped test piece was punched out of the sheet to measure desired physical properties. The results are shown in Table 2 . The low-density polyethylene of component (a) and the natural rubber of component (b) are extracted and removed from the obtained sheet with hot xylen, and the ammonium nitrate composite nylon of component (c) is extracted. The fine fiber composed of No. 6 was collected and observed with a scanning electron microscope. The average fiber diameter was 0.2 μm.
実施例 2〜 6 Examples 2 to 6
実施例 2 〜 6 の各々 において、 実施例 1 と同様にしてポ リ ア ミ ド 繊維強化樹脂組成物シー トを作製した。 但し、 ( c ) 成分のモ ンモ リ ロナイ ト複合ナイ 口 ン 6 の種類、 及び ドラ フ ト比を表 2 に記載の 通りにした。 得られたシー 卜の物性測定結果を表 2 に示す。 In each of Examples 2 to 6, a polyimide fiber reinforced resin composition sheet was produced in the same manner as in Example 1. However, the type of the monmorillonite composite nylon 6 of the component (c) and the draft ratio were as shown in Table 2. Table 2 shows the measurement results of the physical properties of the obtained sheet.
表 2 Table 2
Figure imgf000021_0001
Figure imgf000021_0001
〔註〕 ( a ) ポ リ オレフ ィ ン樹月!匕 ( b ) : ゴム状ポ リ マー  [Note] (a) Polyolefin resin Tsukitsuki! Dashi (b): rubbery polymer
( c ) モ ンモ リ ロナイ ト複合 P A 6  (c) Monmoronite composite PA 6
( d ) シラ ンカ ッ プリ ング剤  (d) Silane cupping agent
実施例 7 〜 1 2 Examples 7 to 12
実施例 ? 〜 1 2 の各々において、 実施例 1 と同様にしてポ リ ァ ミ ド繊維強化組成物シー トを作製した。 但し、 表 3 に記載のよう に ( a ) 成分と して、 P P 〔グラ ン ドポリ マー社製, 商標 : J 1 0 5 W , 融点 1 6 5 〜 1 7 0 ° M F I = 9 gZ l O分〕 , H D P E (丸 善ポリ マー社製, 商標 : ケミ レ ッ ツ, 融点 1 2 5 〜 1 3 5 °C , M F 1 = 5 g X 1 0分) , 及び Z又は E V A (宇部興産社製, 商標 : VExample ? In each of Examples 1 to 12, a polyimide fiber reinforced composition sheet was produced in the same manner as in Example 1. However, as shown in Table 3, as the component (a), PP (manufactured by Grand Polymer Co., Ltd., trademark: J105W, melting point 165-170 ° MFI = 9 gZlO ], HDPE (manufactured by Maruzen Polymer Co., Ltd., trademark: Chemretz, melting point: 125 to 135 ° C, MF 1 = 5 g X 10 minutes), and Z or EVA (Ube Industries, Ltd., trademark: V
2 2 0 , 融点 1 0 7 °C, M F I = 5 g / 1 0分) を用い, ( b ) 成 分のゴム状ポ リマ一と して、 前記天然ゴム (N R) , E P DM (日 本合成ゴム社製, 商標 : E P— 2 2, ム一二一粘度 = 4 2 ) 又は N B R (日本合成ゴム社製, 商標 : N 2 3 0 S L, ム一二一粘度 = 4 2 , アク リ ロニ ト リ ル含有量 3 5 %) を用い、 過酸化物と して 4,(B) The natural rubber (NR) and EPDM (Japan) were used as the rubbery polymer of the component (b) with a melting point of 107 ° C and MFI = 5 g / 10 min. Made by Synthetic Rubber Co., Ltd., Trade name: EP-22, Mu-viscosity = 42) or NBR (manufactured by Nippon Synthetic Rubber Co., Ltd., Trademark: N230SL, Mu-viscosity = 42, Akryloni (Trile content: 35%) and peroxides of 4,
4 ー ジー t —ブチルバ一ォキシブチルバ リ レー ト, モ ンモ リ 口ナイ ト複合ナイ ロ ン 6 と して参考例 1 に記載のものを用い、 ドラ フ ト比 を表 3 に記載のように設定した。 得られたシー トの物性を測定し、 その結果を表 3 に示す。 4-Gee t-butyl butoxy butyl valerate, a monomole-containing night compound composite nylon 6 described in Reference Example 1 was used, and the draft ratio was set as shown in Table 3. . The physical properties of the obtained sheet were measured, and the results are shown in Table 3.
表 3 Table 3
Figure imgf000023_0001
Figure imgf000023_0001
〔註〕 ( a ) : ポ リ オレフ ィ ン樹脂, ( b ) ゴム状ポ リ マ  [Note] (a): Polyolefin resin, (b) Rubbery polymer
( c ) : モ ンモ リ 口ナイ ト複合 P A 6  (c): Night mouth composite compound PA 6
( d ) : シラ ン力 ッ プリ ング剤  (d): Silane force printing agent
比較例 1 Comparative Example 1
( d ) 成分と してシラ ンカ ツプリ ング剤を使用 しない以外は実施 例 1 と同様にして低密度ポ リエチレンと天然ゴムとでマ ト リ ッ クス を製造し、 これを参考例 1 に記載のモ ンモ リ 口ナイ ト複合ナイ ロ ン 6 と混練して押し出した。 ス トラ ン ドは吐出変動を起こ し、 ドラ フ トを調整することにより、 かろう じて巻き取りペレツ ト化すること ができた。 ペレツ 卜から、 実施例 1 と同様にして得られたシー ト中 の熱キシ レ ン不溶分はフ ィ ルム状 (厚さ 1 0〜 3 0 a m) または球 状であった。 このペレッ トから実施例 1 と同様にしてシー トを作製 しその物性を測定した。 その結果を表 4 に示す。 (d) Matrix of low-density polyethylene and natural rubber in the same manner as in Example 1 except that a silane coupling agent is not used as a component. This was kneaded and extruded with the monomole mouth composite nylon 6 described in Reference Example 1. The strand fluctuated the discharge, and by adjusting the draft, it could barely be turned into a winding pellet. From the pellets, the heat xylene insolubles in the sheet obtained in the same manner as in Example 1 were in the form of a film (thickness of 10 to 30 am) or spherical. A sheet was prepared from this pellet in the same manner as in Example 1, and the physical properties were measured. The results are shown in Table 4.
比較例 2〜 4 Comparative Examples 2 to 4
比較例 2 〜 4 の各々 において、 表 4 に示されているよう に、 ( a ) 成分の L D P E, ( b ) 成分の N R、 及び ( c ) 成分のモンモ リ ロナイ ト複合ナイ ロ ン 6 のいづれか一成分を加えなかったことを除 き、 他は実施例 1 と同様にしてシー トを作製した。 物性測定の結果 を表 4 に示す。  In each of Comparative Examples 2 to 4, as shown in Table 4, any one of (a) component LDPE, (b) component NR, and (c) component montmorillonite composite nylon 6 was used. A sheet was prepared in the same manner as in Example 1 except that one component was not added. Table 4 shows the measurement results.
比較例 5 〜 6 Comparative Examples 5 and 6
比較例 5 〜 6 の各々 において、 実施例 1 と同様にして樹脂組成物 を調製した。 但し、 ( c ) 成分のモンモ リ ロナイ ト複合ナイ 口 ン 6 の代り にナイ ロ ン 6 (宇部興産社製, 商標 : 1 0 2 2 B, 融点 2 1 5 〜 2 2 0 °C) を表 4 に記載の量で用いた。 物性測定の結果を表 4 に不" ¾ o In each of Comparative Examples 5 and 6, a resin composition was prepared in the same manner as in Example 1. However, Nylon 6 (manufactured by Ube Industries, trade name: 1022B, melting point: 2115 to 220 ° C) is shown in place of the montmorillonite composite nylon 6 of the component (c). The amounts described in 4 were used. The results of physical properties are not shown in Table 4. "
表 4 Table 4
Figure imgf000025_0001
Figure imgf000025_0001
〔註〕 ( a ) ポ リ オレフ イ ン樹脂 ( b ) : ゴム状ポ リ マー ( c ) モンモリ ロナイ ト複合 P A 6  [Note] (a) Polyolefin resin (b): rubbery polymer (c) Montmorillonite composite PA 6
( d ) シラ ンカ ップリ ング剤 産業上の利用可能性  (d) Silane coupling agent Industrial applicability
本発明で得られるポ リ ア ミ ド繊維強化樹脂組成物は、 ポ リオレフ イ ンと ゴム状ポ リ マーからなるマ ト リ ッ クス中に好ま し く は平均繊 維径が 1 m以下の微細ななポリ ア ミ ド繊維が分散し, しかもこの ポリア ミ ド繊維中に層状珪酸塩粒子が均一に分散しており、 さ らに ポ リ オレフ イ ン, ゴム状ポ リ マー及びポ リ ア ミ ド繊維がそれぞれの 界面で互に結合した構造である。 このため、 本発明のポ リ ア ミ ド繊 維強化樹脂組成物は、 各種樹脂及びゴム中に分散が容易であり, 強 度、 弾性率, 及び摩擦性能に優れているので自動車タイヤ、 ロール , 床材料, 履物などの好適な補強材料と して有用なものである。 The polyamide fiber reinforced resin composition obtained by the present invention is preferably used in a matrix comprising a polyolefin and a rubber-like polymer, preferably having an average fiber diameter of 1 m or less. In addition, natural polyamide fibers are dispersed, and layered silicate particles are uniformly dispersed in the polyamide fibers. The structure is such that polyolefin, rubbery polymer and polyamide fiber are bonded to each other at their respective interfaces. For this reason, the polyamide fiber reinforced resin composition of the present invention can be easily dispersed in various resins and rubbers, and is excellent in strength, elastic modulus, and friction performance. It is useful as a suitable reinforcing material for floor materials and footwear.

Claims

請 求 の 範 囲 The scope of the claims
1. 互いに混合された下記成分 : 1. The following components mixed with each other:
( a ) ポ リオレフ イ ン樹脂 100重量部、  (a) 100 parts by weight of polyolefin resin,
( b ) 0 °C以下のガラス転移温度を有するゴム状ポ リ マ ー 10〜40 0 重量部、  (b) 10 to 400 parts by weight of a rubbery polymer having a glass transition temperature of 0 ° C or less,
( c ) 層状珪酸塩を含有する繊維状熱可塑性ポ リ ア ミ ド 10〜400 重量部、 および  (c) 10 to 400 parts by weight of a fibrous thermoplastic polyamide containing a layered silicate, and
( d ) シラ ンカ ッ プ リ ング剤  (d) Silane coupling agent
を含有するポリ ア ミ ド繊維強化樹脂組成物。 A polyamide fiber reinforced resin composition containing:
2. 前記 ( a ) , ( b ) 及び ( c ) 成分の合計 100重量部に対し て、 前記 ( d ) 成分が、 0.1〜5.5 重量部の割合で配合されている 、 請求の範囲第 1 項に記載のポリ ア ミ ド繊維強化樹脂組成物。  2. The component according to claim 1, wherein the component (d) is blended in a ratio of 0.1 to 5.5 parts by weight with respect to a total of 100 parts by weight of the components (a), (b) and (c). The polyamide fiber reinforced resin composition according to the above.
3. 前記層状珪酸塩含有熱可塑性ポ リ ァ ミ ド繊維が 1 m以下の 平均繊維径を有する、 請求の範囲第 1 項に記載のポリ ア ミ ド繊維強 化樹脂組成物。  3. The polyamide fiber reinforced resin composition according to claim 1, wherein the layered silicate-containing thermoplastic polyimide fiber has an average fiber diameter of 1 m or less.
4. 前記層状珪酸塩含有熱可塑性ポ リ ア ミ ド繊維において、 前記 熱可塑性ポ リ ア ミ ド 100重量部に対して前記層状珪酸塩が 0.05〜30 重量部の割合で配合されている、 請求の範囲第 1 項に記載のポ リ ア ミ ド繊維強化樹脂組成物。  4. In the layered silicate-containing thermoplastic polyimide fiber, the layered silicate is blended in a ratio of 0.05 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic polyamide. 2. The polyamide fiber reinforced resin composition according to item 1.
5. ( a ) ポリオレフ イ ン樹脂 100重量部、 ( b ) 0 °C以下のガ ラ ス転移温度を有するゴム状ポリ マー 100〜400 重量部、 及び ( d ) シラ ンカ ップリ ング剤を溶融混練して溶融マ ト リ ッ ク スを形成し 、 この溶融マ ト リ ッ ク スと、 ( c ) 層状珪酸塩含有熱可塑性ポ リ ア ミ ド 10〜400 重量部とを、 前記熱可塑性ポリ ア ミ ドの溶融温度以上 の温度において混合し、 この溶融混合物を押し出して、 前記熱可塑 性ポリ ア ミ ド ( c ) の融点より低い温度において延伸又は圧延し、 それによって、 前記 ( a ) 及び ( b ) 成分からなるマ ト リ ッ クス中 に、 前記層状珪酸塩含有熱可塑性ポリ ア ミ ドを繊維状に分散させる ことを含むポ リ ア ミ ド繊維強化樹脂組成物の製造方法。 5. Melt and knead (a) 100 parts by weight of polyolefin resin, (b) 100 to 400 parts by weight of rubbery polymer having a glass transition temperature of 0 ° C. or less, and (d) silane coupling agent To form a molten matrix, and the molten matrix and (c) 10 to 400 parts by weight of the layered silicate-containing thermoplastic polymer are mixed with the thermoplastic polymer. Mixing at a temperature equal to or higher than the melting temperature of the mid, extruding the molten mixture, and stretching or rolling at a temperature lower than the melting point of the thermoplastic polyamide (c); Thereby, a polyamide fiber reinforced resin including dispersing the layered silicate-containing thermoplastic polyamide in a fibrous form in the matrix comprising the components (a) and (b). A method for producing the composition.
6. 前記成分 ( a ) , ( b ) 及び ( c ) の合計 100重量部に対し て、 前記シラ ンカ ップリ ング剤 ( d ) 、 0. 1〜5. 5 重量部の割合 で配合される、 請求の範囲第 5項に記載のポ リ ア ミ ド繊維強化樹脂 組成物の製造方法。  6. The silane coupling agent (d) is blended in a ratio of 0.1 to 5.5 parts by weight with respect to a total of 100 parts by weight of the components (a), (b) and (c). 6. A method for producing the polyimide fiber reinforced resin composition according to claim 5.
7. 前記層状珪酸塩含有熱可塑性ポリ ア ミ ドが、 前記延伸又は圧 延工程において、 平均繊維径が 1 m以下の繊維状に分散される、 請求の範囲第 5項に記載のポ リ ア ミ ド繊維強化樹脂組成物の製造方 法。  7. The poly according to claim 5, wherein the layered silicate-containing thermoplastic polyamide is dispersed in the drawing or rolling step into a fiber having an average fiber diameter of 1 m or less. A method for producing a mid-fiber reinforced resin composition.
8. 前記層状珪酸塩含有熱可塑性ポリ ア ミ ドにおいて、 前記熱可 塑性ポ リ ア ミ ド 100重量部に対し、 前記層状珪酸塩が、 0. 05〜30重 量部の割合で配合されている、 請求の範囲第 5項に記載のポリ ア ミ ド繊維強化樹脂組成物の製造方法。  8. In the layered silicate-containing thermoplastic polyamide, the layered silicate is blended in a ratio of 0.05 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic polyamide. 6. The method for producing a polyamide fiber reinforced resin composition according to claim 5, wherein:
PCT/JP1998/001216 1998-03-20 1998-03-20 Resin composition reinforced with polyamide fibers and process for producing the same WO1999048973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001216 WO1999048973A1 (en) 1998-03-20 1998-03-20 Resin composition reinforced with polyamide fibers and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001216 WO1999048973A1 (en) 1998-03-20 1998-03-20 Resin composition reinforced with polyamide fibers and process for producing the same

Publications (1)

Publication Number Publication Date
WO1999048973A1 true WO1999048973A1 (en) 1999-09-30

Family

ID=14207859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001216 WO1999048973A1 (en) 1998-03-20 1998-03-20 Resin composition reinforced with polyamide fibers and process for producing the same

Country Status (1)

Country Link
WO (1) WO1999048973A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416013A1 (en) * 2002-10-29 2004-05-06 Yazaki Corporation Insulating member using abrasion-resistant resin composition
EP1557443A1 (en) * 2002-10-29 2005-07-27 Yazaki Corporation Resin composition for coating electric wire and electric wire using the same
JP2008523199A (en) * 2004-12-07 2008-07-03 エルジー・ケム・リミテッド Blocking pipe
JP2012102298A (en) * 2010-11-12 2012-05-31 Tosoh Corp Ethylene-vinyl acetate copolymer resin composition, interlayer for laminated glass comprising the composition, and laminated glass using the same
WO2016125873A1 (en) * 2015-02-04 2016-08-11 株式会社ブリヂストン Tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274957A (en) * 1985-09-30 1987-04-06 Toyota Central Res & Dev Lab Inc Composite material and production thereof
JPH07278360A (en) * 1994-04-08 1995-10-24 Ube Ind Ltd Fiber-reinforced elastomer and its production
JPH0812881A (en) * 1993-09-30 1996-01-16 Mitsubishi Chem Corp Polyamide resin composition and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274957A (en) * 1985-09-30 1987-04-06 Toyota Central Res & Dev Lab Inc Composite material and production thereof
JPH0812881A (en) * 1993-09-30 1996-01-16 Mitsubishi Chem Corp Polyamide resin composition and its production
JPH07278360A (en) * 1994-04-08 1995-10-24 Ube Ind Ltd Fiber-reinforced elastomer and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416013A1 (en) * 2002-10-29 2004-05-06 Yazaki Corporation Insulating member using abrasion-resistant resin composition
EP1557443A1 (en) * 2002-10-29 2005-07-27 Yazaki Corporation Resin composition for coating electric wire and electric wire using the same
US7041726B2 (en) 2002-10-29 2006-05-09 Yazaki Corporation Insulating member using abrasion-resistant resin composition
EP1557443A4 (en) * 2002-10-29 2010-09-22 Yazaki Corp Resin composition for coating electric wire and electric wire using the same
JP2008523199A (en) * 2004-12-07 2008-07-03 エルジー・ケム・リミテッド Blocking pipe
JP2012102298A (en) * 2010-11-12 2012-05-31 Tosoh Corp Ethylene-vinyl acetate copolymer resin composition, interlayer for laminated glass comprising the composition, and laminated glass using the same
WO2016125873A1 (en) * 2015-02-04 2016-08-11 株式会社ブリヂストン Tire
JP6049946B1 (en) * 2015-02-04 2016-12-21 株式会社ブリヂストン tire
CN107207803A (en) * 2015-02-04 2017-09-26 株式会社普利司通 Tire
US10442922B2 (en) 2015-02-04 2019-10-15 Bridgestone Corporation Tire
CN107207803B (en) * 2015-02-04 2020-07-17 株式会社普利司通 Tyre for vehicle wheels

Similar Documents

Publication Publication Date Title
DE602004012132T2 (en) MICROSCOPY COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF
CN101821335B (en) Efficient mixing process for producing thermoplastic elastomer composition
CN101678713B (en) Processable filled, curable halogenated isoolefin elastomers
JP3379208B2 (en) Fiber reinforced elastic body and method for producing the same
US20140018469A1 (en) Composite material containing carbon nanotubes and particles having a core-shell structure
JP3661736B2 (en) Method for producing polyolefin-polyamide resin composition
JP5288245B2 (en) Stretched thermoplastic resin composition with excellent gas barrier properties
WO1999048973A1 (en) Resin composition reinforced with polyamide fibers and process for producing the same
JP2000007842A (en) Polyamide-fiber reinforced polyolefin resin composition and its production
JP5183046B2 (en) Fiber reinforced elastic body
JPH05492A (en) Polyamide laminated biaxially drawn film
US7041726B2 (en) Insulating member using abrasion-resistant resin composition
KR100730421B1 (en) Polyolefin resin composition and method of producing the same
JPH11209516A (en) Polyamide fiber-reinforced rubber composition and production thereof
JP3326957B2 (en) Fiber reinforced thermoplastic composition and method for producing the same
JPH0987434A (en) Rubber composition for transmission belt
JP3453760B2 (en) Polyamide fiber reinforced elastic composition and method for producing the same
JP3120711B2 (en) Method for producing fiber-reinforced thermoplastic resin composition
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
JPH11181162A (en) High-melt-tension polyolefin composition and preparation thereof
JP3154390B2 (en) Method for producing fiber-reinforced elastic composition
JP3624488B2 (en) Rubber composition for hose
JPH11279286A (en) Polyamide fiber-reinforced resin composition and its production
JPH11147967A (en) Formable polyamide-fiber-reinforced polyolefin composition and its preparation
JPH11166064A (en) Polyamide fiber-reinforced polyolefin-based non-crosslinking foamed material composition and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA