WO1999044314A1 - Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation - Google Patents

Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation Download PDF

Info

Publication number
WO1999044314A1
WO1999044314A1 PCT/EP1999/001319 EP9901319W WO9944314A1 WO 1999044314 A1 WO1999044314 A1 WO 1999044314A1 EP 9901319 W EP9901319 W EP 9901319W WO 9944314 A1 WO9944314 A1 WO 9944314A1
Authority
WO
WIPO (PCT)
Prior art keywords
burst
time
telecommunication
air interface
user data
Prior art date
Application number
PCT/EP1999/001319
Other languages
English (en)
French (fr)
Inventor
Erich Kamperschroer
Uwe Schwark
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU34090/99A priority Critical patent/AU3409099A/en
Priority to EP99915542A priority patent/EP1058976A1/de
Publication of WO1999044314A1 publication Critical patent/WO1999044314A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2618Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid code-time division multiple access [CDMA-TDMA]

Definitions

  • Telecommunication systems with wireless telecommunication between mobile and / or stationary transceivers are special message systems with a message transmission link between a message source and a message sink, in which for example base stations and mobile parts for message processing and transmission are used as transmitters and receivers and in which 1) the message processing and message transmission can take place in a preferred transmission direction (simplex mode) or in both transmission directions (duplex mode), 2) the message processing is preferably digital, 3) the message transmission over the long-distance transmission path is wireless based on various message transmission methods Multiple use of the message transmission link FDM ⁇ (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) and / or CDMA (Code Division Multiple Access) - eg . according to radio standards such as
  • FDM ⁇ Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • the type of transmission according to (1) ... (3) is usually characterized by continuous (analog) signals, while the type of transmission according to (4) usually produces discontinuous signals (e.g. pulses, digital signals).
  • FIGURES 1 to 6 show:
  • FIGURE 1 "three-level structure" of a WCDMA / FDD air interface in the "downlink",
  • FIGURE 2 "three-level structure" of a WCDMA / FDD air interface in the "uplink",
  • FIGURE 3 "three-level structure" of a TDCDMA / TDD air interface
  • FIGURE 4 radio scenario with multiple channel utilization after frequency, / time, / code multiplex
  • FIG. 5 shows the basic structure of a base station designed as a transceiver
  • FIGURE 6 shows the basic structure of a mobile station which is also designed as a transceiver. 4
  • UMTS 3rd generation of mobile telephony or IMT-2000
  • IMT-2000 two sub-scenarios, for example according to Funkschau 6/98: R. Sietmann "Wrestling for the UMTS interface", pages 76 to 81.
  • the licensed coordinated mobile radio is based on WCDMA technology (ideband code division multiple access) and, as with GSM, is operated in FDD mode (Frequency Division Duplex), while in a second sub-scenario the unlicensed uncoded Ordinated mobile communications are based on TD-CDMA technology (Time Division Code Division Multiple Access) and, as with DECT, is operated in TDD mode (Frequency Division Duplex).
  • WCDMA ideband code division multiple access
  • GSM Global System for Mobile communications
  • FDD mode Frequency Division Duplex
  • the unlicensed uncoded Ordinated mobile communications are based on TD-CDMA technology (Time Division Code Division Multiple Access) and, as with DECT, is operated in TDD mode (Frequency Division Duplex).
  • the air interface of the telecommunication system contains the upward and downward direction of the telecommunication in accordance with the publication ETSI STC SMG2 UMTS-Ll, Tdoc SMG2 UMTS-Ll 1 63/98 : "UTRA Physical Layer Description FDD Parts" Vers. 0.
  • the respective multi-time frame MZR contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has 16 time slots ZS1 ... ZS16.
  • the individual time slot ZS, ZS1 ... ZS16 (burst) has a pilot sequence PS with Npiiot bits for channel estimation with respect to the first physical channel DPCCH as a burst structure, a TPC sequence TPCS with N TPC bits for power control (Traffic Power Control) and a TFCI sequence TFCIS with N TFC ⁇ bits for specifying the transport format (Traffic Format Channel Indication) and with respect to the 5 second physical channel DPDCH a user data sequence NDS with N data bits.
  • WCDMA / FDD Systems from ETSI or ARIB - FIGURE 1 the first physical channel ["Dedicated Physical Control Channel (DPCCH)] and the second physical channel [" Dedicated Physical Data Channel (DPDCH)] are time-multiplexed, while in the "uplink "(Upward direction of telecommunications; radio connection from the mobile station to the base station) - FIGURE 2 - an I / Q multiplex takes place, in which the second physical channel DPDCH is transmitted in the I channel and the first physical channel DPCCH in the Q channel.
  • DPCCH Direct Physical Control Channel
  • DPDCH Dedicated Physical Data Channel
  • the air interface of the telecommunications system the document TSG RAN WG1 based in up and down direction of telecommunications according to (S1. 21): "3 rd Generation Partnership Project (3GPP) "Vers. 0. 0. 0. 1, 1999-01 again on the "three-level structure", consisting of the multi-time frame MZR, the time frame ZR and the time slots ZS, for all physical channels, which is shown in FIG. 3.
  • the respective multi-time frame MZR again contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has the 16 time slots ZS1 ... ZS16.
  • ZS16 (burst) either has a first timeslot structure (burst structure) ZSS1, in accordance with the ARIB proposal, in the sequence consisting of a first useful data sequence NDS1 with N data ai bits, the pilot -Sequence PS with N pi ⁇ 0 t bits for channel estimation, the TPC sequence TPCS with N TPC bits for power control, the TFCI sequence TFCIS with N TFC ⁇ bits for specifying the transport format, a second user data sequence NDS2 and a protection time zone SZZ (guard period) with N GUard bits, or according to the ETSI proposal, a second time slot structure (burst structure) ZSS2, in the order consisting of the first user data sequence NDS1, a first TFCI sequence 6 TFCIS1, a midamble sequence MIS for channel estimation, a second TFCI sequence TFCIS2, the second user data sequence NDS2 and the protection time zone SZZ.
  • a first timeslot structure (burst structure) ZSS
  • FIGURE 4 shows e.g. based on a GSM radio scenario with e.g. two radio cells and base stations arranged therein (base transceiver station), a first base station BTS1 (transceiver) a first radio cell FZ1 and a second base station BTS2 (transceiver) omnidirectionally "illuminating" a second radio cell FZ2, and starting from the FIGURES 1 and 2 show a radio scenario with multiple channel utilization according to frequency / time / code multiplex, in which the base stations BTS1, BTS2 have an air interface designed for the radio scenario and have a plurality of mobile stations MSI ...
  • MS5 located in the radio cells FZ1, FZ2 Transceiver
  • the base stations BTS1, BTS2 are connected in a known manner (cf. GSM telecommunications system) to a base station controller BSC (BaseStation Controller) which takes over the frequency management and switching functions as part of the control of the base stations.
  • the base station controller BSC in turn is via a mobile switching center MSC
  • the mobile switching center MSC Mobile Switching Center with the higher-level telecommunications network, e.g. the PSTN (Public Switched Telecommunication Network).
  • the mobile switching center MSC is the administrative center for the telecommunications system shown. It takes over the complete call management and, with associated registers (not shown), the authentication of the telecommunications subscribers and the location monitoring in the network.
  • FIG. 5 shows the basic structure of the base station BTS1, BTS2 designed as a transceiver
  • FIG. 6 shows the basic structure of the base station, also as a 7 / Receiving device trained mobile station MS1 ... MS5 shows.
  • the base station BTS1, BTS2 takes over the sending and receiving of radio messages from and to the mobile station MS1..MS5, while the mobile station MS1 ... MS5 takes over the sending and receiving of radio messages from and to the base station BTS1, BTS2.
  • the base station has a transmitting antenna SAN and a receiving antenna EAN
  • the mobile station MS1 ... MS5 has an antenna ANT that can be controlled by an antenna switchover AU and is common for transmitting and receiving.
  • the base station BTS1, BTS2 receives, for example, at least one radio message FN with a frequency / time / code component from at least one of the mobile stations MS1 ... MS5 via the receive antenna EAN, while the mobile station MS1 ... MS5 in the downward direction (reception path) receives, for example, at least one radio message FN with a frequency / time / code component from at least one base station BTS1, BTS2 via the common antenna ANT.
  • the radio message FN consists of a broadband spread carrier signal with information modulated onto data symbols.
  • the received carrier signal is filtered in a radio receiving device FEE (receiver) and mixed down to an intermediate frequency, which in turn is subsequently sampled and quantized.
  • FEE radio receiving device
  • the signal After an analog / digital conversion, the signal, which has been distorted on the radio path by multipath propagation, is fed to an equalizer EQL, which largely compensates for the distortions (Stw.: Synchronization).
  • a channel estimator KS to estimate the transmission properties of the transmission channel TRC on which the radio message FN has been transmitted.
  • the transmission properties of the channel are specified in the time domain by the channel impulse response. So that the channel impulse response can be estimated, the radio FN sends or assigns special (in the present case from the mobile station MS1 ... MS5 or the base station BTS1, BTS2) special training information sequence in the form of a so-called midi.
  • a subsequent data detector DD common to all received signals, the individual mobile station-specific signal components contained in the common signal are equalized and separated in a known manner. After equalization and separation, the previously existing data symbols are converted into binary data in a symbol-to-data converter SDW. The original bit stream is then obtained from the intermediate frequency in a demodulator DMOD before the individual time slots are assigned to the correct logical channels and thus also to the different mobile stations in a demultiplexer DMUX.
  • the bit sequence obtained is decoded channel by channel in a channel codec KC.
  • the bit information is assigned to the control and signaling time slot or a voice time slot and - in the case of the base station (FIGURE 5) - the control and signaling data and the voice data for transmission to the base station controller BSC together for signaling and voice coding / decoding (Voice codec) handover the responsible interface SS, while - in the case of the mobile station (FIGURE 6) - the control and signaling data of a control and signaling unit STSE responsible for complete signaling and control of the mobile station and the voice data one for voice input and - output speech codec SPC are passed.
  • the speech data are stored in a predetermined data stream (for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction).
  • a predetermined data stream for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction.
  • the base station BTS1, BTS2 sends, for example, at least one radio message FN with a frequency / time / code component to at least one of the mobile stations MS1 ... MS5 via the transmitting antenna SAN, while the mobile station MS1 ... MS5 in the upward direction (transmission path) via the common antenna ANT, for example, sends at least one radio message FN with a frequency / time / code component to at least one base station BTS1, BTS2.
  • the transmission path begins at the base station BTS1, BTS2 in
  • FIGURE 5 with the fact that in the channel codec KC control and signaling data as well as voice data received from the base station controller BSC via the interface SS are assigned to a control and signaling time slot or a voice time slot and these are coded channel by channel into a bit sequence.
  • the transmission path begins at the mobile station MS1 ... MS5 in FIGURE 6 with the fact that in the channel codec KC speech data received from the speech codec SPC and control and signaling data received from the control and signaling unit STSE a control and signaling time slot or are assigned to a speech time slot and these are coded channel-wise into a bit sequence.
  • the bit sequence obtained in the base station BTS1, BTS2 and in the mobile station MS1 ... MS5 is in each case converted into data symbols in a data-to-symbol converter DSW. Subsequently, the data symbols are each in a spreading device SPE with a subscriber-specific one
  • the burst generator BG consisting of a burst composer BZS and a multiplexer MUX
  • BG consisting of a burst composer BZS and a multiplexer MUX
  • FSE transmitter
  • radio scenario shown in FIGURE 4 for public applications also for private applications e.g. home area, SOHO area; small office / home
  • uncoordinated operation in the unpaired frequency range of the UMTS scenario - for so-called home telecommunication systems (residential te- lecommunication systems) - the air interface must be designed accordingly.
  • uncoordinated operation in contrast to coordinated operation - such as in GSM systems - there is no "management" (no system intelligence) which coordinates or controls the allocation of the physical resources and thus the operation with respect to the preferably asynchronous stationary transceivers in the telecommunication system.
  • DECT systems Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1... 9, October 1992 and the DECT publication of the DECT forum, February 1997, pages 1 bi s 16] with wireless telecommunications based on frequency and time division multiplexing between mobile and / or stationary transceivers.
  • DECT systems Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1... 9, October 1992 and the DECT publication of the DECT forum, February 1997, pages 1 bi s 16] with wireless telecommunications based on frequency and time division multiplexing between mobile and / or stationary transceivers.
  • the object underlying the invention is to provide an air interface for home telecommunications systems with wireless, based on code and time division multiplex telecommunications between mobile and / or stationary transceivers, in which the burst structure of the air interface to the conditions in the Home telecommunications system is adapted for uncoordinated operation in the paired (FDD mode) or unpaired (TDD mode) frequency band in such a way that statements about the quality of the respective burst and, for example, criteria for handing over a telecommunications connection, so-called handover criteria, are possible .
  • FDD mode paired
  • TDD mode unpaired
  • the idea on which the invention is based is to design an air interface for home telecommunication systems with wireless telecommunication based on code and time division multiplexing between mobile and / or stationary transceivers with a special burst structure, in particular in front of a first one User data block and after a second user data block each a data field for sliding burst collision detection (sliding collision detection), between the user data blocks a training information sequence, the so-called midamble, for channel estimation and / or a synchronization field and between the second user data block and the data field for sliding Burst collision detection on e.g. data field designed as a CRC field are arranged for error detection.
  • a data field for sliding burst collision detection sliding collision detection
  • FIGURE 7 shows a special burst structure for the air interface of a home telecommunication system 12 wireless, based on code and time division multiplex telecommunication between mobile and / or stationary transceivers.
  • FIGURE 7 shows a special burst structure for the air interface of a home telecommunication system with wireless, code multiplex-based telecommunication between mobile and / or stationary transceivers, in the order in which a first data field for sliding burst collision detection (sliding collision detection) is shown.
  • DFI SCD DFI SCD.
  • a first user data block NDB1 a training information sequence, the so-called midamble, for channel estimation TIS and / or a synchronization field SYF
  • a second user data block NDB2 a data field designed, for example, as a CRC field for error detection DF C RC.
  • a second data field for sliding burst collision detection DF2 SCD and a protection time zone SZZ are arranged.
  • the two data fields for the sliding burst collision detection DF1 SCD and DF2 SC D contain information which is generated by a transmitting device and which is known to a receiving device.
  • the comparison of the information received from the data fields DF1 SC D and DF2 S D with the information originally sent and known to the receiving device serves as a detection criterion for a sliding burst collision detection.
  • a burst collision detection is thus possible even before the actual user information in the two user data blocks NDB1 and NDB2 is damaged by the burst collision.

Abstract

Um die Burststruktur der Luftschnittstelle an die Bedingungen in dem Heim-Telekommunikationssystem für den unkoordinierten Betrieb im gepaarten (FDD-Modus) oder ungepaarten (TDD-Modus) Frequenzband derart anzupassen, daß Aussagen über die Qualität des jeweiligen Burst und z.B. Kriterien für das Weiterreichen einer Telekommunikationsverbindung, sogenannte Handover-Kriterien, möglich sind, enthält die Burststruktur in der angegebenen Reihenfolge ein erstes Datenfeld zur gleitenden Burst-Kollisionserkennung (DF1SCD), einen ersten Nutzdatenblock (NDB1), eine Trainingsinformationssequenz, die sogenannte Midamble, zur Kanalschätzung (TIS) und/oder ein Synchronisationsfeld (SYF), einen zweiten Nutzdatenblock (NDB2), ein z.B. als CRC-Feld ausgebildetes Datenfeld zur Fehlererkennung (DFCRC), ein zweites Datenfeld zur gleitenden Burst-Kollisionserkennung (DF2SCD) und eine Schutzzeitzone (SZZ).

Description

Beschreibung
LUFTSCHNITTSTELLE FÜR HEIM-TELEKOMMUNIKAΗONSSYSTEME MIT DRAHTLOSER, AUF CODE- UND ZEITMULTIPLEX BASIERENDER TELEKOMMUNIKATION
Telekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten sind spezielle Nachrichtensysteme mit einer Nachrichtenübertragungsstrecke zwischen einer Nachrichtenquelle und einer Nachrichtensenke, bei denen beispielsweise Basisstationen und Mobilteile zur Nachrichtenverarbeitung und -Übertragung als Sende- und Empfangsgeräte verwendet werden und bei denen 1) die Nachrichtenverarbeitung und Nachrichtenübertragung in einer bevorzugten Übertragungsrichtung (Simplex-Betrieb) oder in beiden Übertragungsrichtungen (Duplex-Betrieb) erfolgen kann, 2) die Nachrichtenverarbeitung vorzugsweise digital ist, 3) die Nachrichtenübertragung über die Fernübertragungs- strecke drahtlos auf der Basis von diversen Nachrichtenübertragungsverfahren zur Mehrfachausnutzung der Nachrichtenübertragungsstrecke FDMΑ (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) und/oder CDMA (Code Di- ision Multiple Access) - z.B. nach Funkstandards wie
DECT [Digital Enhanced (früher: European) Cordless Telecommu- nication; vgl. Nachrichtentechnik Elektronik 42 (1992) Jan . /Feb. Nr. 1 , Berlin, DE; U. Pilger "Struktur des DECT- Standards" , Sei ten 23 bis 29 in Verbindung mit der ETSI- Publikation ETS 3001 75-1 . . . 9 , Oktober 1992 und der DECT-
Publikation des DECT-Forυm, Februar 1997, Sei ten 1 bis 16] , GSM [Groupe Speciale Mobile oder Global System for Mobile Communication; vgl. Informatik Spektrum 14 (1991 ) Juni , Nr. 3, Berlin, DE; A. Mann : "Der GSM-Standard - Grundlage für di - gi tale europäische Mobil f unknetze" , Sei ten 137 bi s 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka "GSM-Funkschni ttstelle - Elemente und Funktionen" , 2 Seiten 17 bis 24] ,
UMTS [Universal Mobile Telecom unication System; vgl. (1): Nachrichtentechnik Elektronik, Berlin 45, 1995, Heft 1, Seiten 10 bis 14 und Heft 2, Seiten 24 bis 27; P.Jung, B. Steiner: "Konzept eines CDMA-Mobilfunksystems mit gemeinsamer Detektion für die dritte Mobil funkgeneration"; (2) : Nachrichtentechnik Elektronik, Berlin 41, 1991, Heft 6, Seiten 223 bis 227 und Seite 234; P.W. Baier, P.Jung, A. Klein: "CDMA - ein günstiges Vielfachzugriffsverfahren für frequenzselek- tive und Zeitvariante Mobil funkkanäle" ; (3) : IEICE Transacti- ons on Fundamentals of Electonics, Communications and Computer Sciences, Vol. E79-A, No. 12, December 1996, Seiten 1930 bis 1937; P.W. Baier, P.Jung: "CDMA Myths and Realities Revi- sited"; (4) : IEEE Personal Communications , February 1995, Seiten 38 bis 47; A.Urie, M. Streeton, C.Mourot: "An Advanced TDMA Mobile Access System for UMTS"; (5) : telekom praxis, 5/1995, Seiten 9 bis 14; P.W. Baier: "Spread-Spectrum-Technik und CDMA - eine ursprünglich militärische Technik erobert den zivilen Bereich"; (6) : IEEE Personal Communications , February 2555, Seiten 48 bis 53; P.G.Andermo, L.M. Ewerbring: "An CDMA- Based Radio Access Design for UMTS"; (7) : ITG Fachberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, Seiten 67 bis 75; Dr. T. Zimmermann, Siemens AG: "Anwendung von CDMA in der Mobilkommunikation" ; (8) : telcom report 16, (1993), Heft 1, Seiten 38 bis 41; Dr. T. Ketseoglou, Siemens AG und Dr. T. Zimmermann, Siemens AG: "Effizienter Teilnehmerzugriff für die 3. Generation der Mobilkommunikation - Vielfachzugriff sver fahren CDMA macht Luft schnitt stelle flexibler"; (9): Funkschau 6/98: R.Sietmann "Ringen um die UMTS- Schnittstelle" , Seiten 76 bis 81] WACS oder PACS, IS-54, IS- 95, PHS, PDC etc. [vgl. IEEE Communications Magazine, January 1995, Seiten 50 bis 57; D.D. Falconer et al:"Time Division Multiple Access Methods for Wireless Personal Communications"] erfolgt. 3 "Nachricht" ist ein übergeordneter Begriff, der sowohl für den Sinngehalt (Information) als auch für die physikalische Repräsentation (Signal) steht. Trotz des gleichen Sinngehaltes einer Nachricht - also gleicher Information - können un- terschiedliche Signalformen auftreten. So kann z.B. eine einen Gegenstand betreffende Nachricht
(1) in Form eines Bildes,
(2) als gesprochenes Wort,
(3) als geschriebenes Wort, (4) als verschlüsseltes Wort oder Bild übertragen werden.
Die Übertragungsart gemäß (1) ... (3) ist dabei normalerweise durch kontinuierliche (analoge) Signale charakterisiert, während bei der Übertragungsart gemäß (4) gewöhnlich diskontinu- ierliche Signale (z.B. Impulse, digitale Signale) entstehen.
Die nachfolgenden FIGUREN 1 bis 6 zeigen:
FIGUR 1 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Downlink",
FIGUR 2 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Uplink",
FIGUR 3 "Drei-Ebenen-Struktur" einer TDCDMA/TDD-Luftschnitt- stelle,
FIGUR 4 Funkszenario mit Kanal-Mehrfachausnutzung nach dem Frequenz-, /Zeit-, /Codemultiplex,
FIGUR 5 den prinzipiellen Aufbau einer als Sende-/Empfangs- gerät ausgebildeten Basisstation,
FIGUR 6 den prinzipiellen Aufbau einer ebenfalls als Sende- /Empfangsgerät ausgebildeten Mobilstation. 4 Im UMTS-Szenario (3. Mobilfunkgeneration bzw. IMT-2000) gibt es z.B. gemäß der Druckschrift Funkschau 6/98 : R. Sietmann "Ringen um die UMTS-Schni ttstelle" , Sei ten 76 bis 81 zwei Teilszenarien. In einem ersten Teilszenario wird der lizen- sierte koordinierte Mobilfunk auf einer WCDMA-Technologie ( ideband Code Division Multiple Access) basieren und, wie bei GSM, im FDD-Modus (Frequency Division Duplex) betrieben, während in einem zweiten Teilszenario der unlizensierte unko- ordinierte Mobilfunk auf einer TD-CDMA-Technologie (Time Di- vision-Code Division Multiple Access) basieren und, wie bei DECT, im TDD-Modus (Frequency Division Duplex) betrieben wird.
Für den WCDMA/FDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems enthält die Luftschnittstelle des Telekommunika- tionsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift ETSI STC SMG2 UMTS-Ll , Tdoc SMG2 UMTS- Ll 1 63/98 : " UTRA Physical Layer Description FDD Parts" Vers . 0. 3, 1998-05-29 jeweils mehrere physikalische Kanäle, von de- nen ein erster physikalischer Kanal, der sogenannte Dedicated Physical Control CHannel DPCCH, und ein zweiter physikalischer Kanal, der sogenannte Dedicated Physical Data CHannel DPDCH, in bezug auf eine "Drei-Ebenen-Struktur" (three-layer- structure) , bestehend aus 720 ms lange (TMZR=720 ms) Multi- zeitrahmen (super frame) MZR, 10 ms lange (TFZR=10 ms) Zeitrahmen (radio frame) ZR und 0,625 ms lange (Tzs=0,625 ms) Zeitschlitzen (ti eslot) ZS , die in den FIGUREN 1 und 2 dargestellt sind. Der jeweilige Multizeitrahmen MZR enthält z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist bezüglich des ersten physikalischen Kanals DPCCH als Burststruktur eine Pilot-Sequenz PS mit Npiiot Bits zur Kanalschätzung, eine TPC-Sequenz TPCS mit NTPC-Bits zur Leistungsregelung (Traffic Power Control) und eine TFCI-Sequenz TFCIS mit NTFCι-Bits zur Transportformatangabe (Traffic Format Channel Indication) sowie bezüglich des 5 zweiten physikalischen Kanals DPDCH eine Nutzdatensequenz NDS mit NData-Bits auf.
Im "Downlink" (Abwärtsrichtung der Telekommunikation; Funk- Verbindung von der Basisstation zur Mobilstation) des
WCDMA/FDD Systems von ETSI bzw. ARIB - FIGUR 1 - werden der erste physikalische Kanal ["Dedicated Physical Control Channel (DPCCH) ] und der zweite physikalische Kanal ["Dedicated Physical Data Channel (DPDCH) ] zeitlich gemultiplext, während im "Uplink" (Aufwärtsrichtung der Telekommunikation; Funkverbindung von der Mobilstation zur Basisstation) - FIGUR 2 - ein I/Q-Multiplex stattfindet, bei dem der zweite physikalische Kanal DPDCH im I-Kanal und der erste physikalische Kanal DPCCH im Q-Kanal übertragen werden.
Für den TDCDMA/TDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems basiert die Luftschnittstelle des Telekommunikationsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift TSG RAN WG1 (S1 . 21 ) : "3rd Generation Partnership Project (3GPP) " Vers . 0. 0. 1 , 1999-01 wiederum auf die "Drei-Ebenen-Struktur", bestehend aus den Multizeitrahmen MZR, den Zeitrahmen ZR und den Zeitschlitzen ZS, für sämtliche physikalischen Kanäle, die in FIGUR 3 dargestellt ist. Der jeweilige Multizeitrahmen MZR enthält wiederum z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum die 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist entweder gemäß dem ARIB-Vor- schlag eine erste Zeitschlitzstruktur (Burststruktur) ZSS1, in der Reihenfolge bestehend aus einer ersten Nutzdatense- quenz NDS1 mit NDatai-Bits, der Pilot-Sequenz PS mit Npiι0t Bits zur Kanalschätzung, der TPC-Sequenz TPCS mit NTPC-Bits zur Leistungsregelung, der TFCI-Sequenz TFCIS mit NTFCι-Bits zur Transportformatangabe, einer zweiten Nutzdatensequenz NDS2 und einer Schutzzeitzone SZZ (guard period) mit NGUard-Bits, oder gemäß dem ETSI-Vorschlag eine zweite Zeitschlitzstruktur (Burststruktur) ZSS2, in der Reihenfolge bestehend aus der ersten Nutzdatensequenz NDS1, einer ersten TFCI-Sequenz 6 TFCIS1, einer Midamble-Sequenz MIS zur Kanalschätzung, einer zweiten TFCI-Sequenz TFCIS2, der zweiten Nutzdatensequenz NDS2 und der Schutzzeitzone SZZ auf.
FIGUR 4 zeigt z.B. auf der Basis eines GSM-Funkszenarios mit z.B. zwei Funkzellen und darin angeordneten Basisstationen (Base Transceiver Station) , wobei eine erste Basisstation BTS1 (Sender/Empfänger) eine erste Funkzelle FZ1 und eine zweite Basisstation BTS2 (Sende-/Empfangsgerät) eine zweite Funkzelle FZ2 omnidirektional "ausleuchtet", und ausgehend von den FIGUREN 1 und 2 ein Funkszenario mit Kanal-Mehrfachausnutzung nach dem Frequenz-/Zeit-/Codemultiplex, bei dem die Basisstationen BTS1, BTS2 über eine für das Funkszenario ausgelegte Luftschnittstelle mit mehreren in den Funkzellen FZ1, FZ2 befindlichen Mobilstationen MSI...MS5 (Sende-/Emp- fangsgerät) durch drahtlose uni- oder bidirektionale - Aufwärtsrichtung UL (Up Link) und/oder Abwärtsrichtung DL (Down Link) - Telekommunikation auf entsprechende Übertragungkanäle TRC (Transmission Channel) verbunden bzw. verbindbar sind. Die Basisstationen BTS1, BTS2 sind in bekannter Weise (vgl. GSM-Telekommunikationssystem) mit einer Basisstationssteuerung BSC (BaseStation Controller) verbunden, die im Rahmen der Steuerung der Basisstationen die Frequenzverwaltung und Vermittlungsfunktionen übernimmt. Die Basisstationssteuerung BSC ist ihrerseits über eine Mobil-Vermittlungsstelle MSC
(Mobile Switching Center) mit dem übergeordneten Telekommuni- kationsnetz, z.B. dem PSTN (Public Switched Telecommunication Network) , verbunden. Die Mobil-Vermittlungsstelle MSC ist die Verwaltungszentrale für das dargestellte Telekommunikations- syste . Sie übernimmt die komplette Anrufverwaltung und mit angegliederten Registern (nicht dargestellt) die Authentisie- rung der Telekommunikationsteilnehmer sowie die Ortsüberwachung im Netzwerk.
FIGUR 5 zeigt den prinzipiellen Aufbau der als Sende-/Emp- fangsgerät ausgebildeten Basisstation BTS1, BTS2, während FIGUR 6 den prinzipiellen Aufbau der ebenfalls als Sende- 7 /Empfangsgerät ausgebildeten Mobilstation MS1...MS5 zeigt. Die Basisstation BTS1, BTS2 übernimmt das Senden und Empfangen von Funknachrichten von und zur Mobilstation MS1..MS5, während die Mobilstation MS1...MS5 das Senden und Empfangen von Funknachrichten von und zur Basisstation BTS1, BTS2 übernimmt. Hierzu weist die Basisstation eine Sendeantenne SAN und eine Empfangsantenne EAN auf, während die Mobilstation MS1...MS5 eine durch eine Antennenumschaltung AU steuerbare für das Senden und Empfangen gemeinsame Antenne ANT aufweist. In der Aufwärtsrichtung (Empfangspfad) empfängt die Basisstation BTS1, BTS2 über die Empfangsantenne EAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Komponente von mindestens einer der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Ab- wärtsrichtung (Empfangspfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code-Komponente von mindestens einer Basisstation BTS1, BTS2 empfängt. Die Funknachricht FN besteht dabei aus einem breitbandig gespreizten Trägersignal mit einer aufmodulierten aus Datensymbolen zusammengesetzten Information.
In einer Funkempfangseinrichtung FEE (Empfänger) wird das empfangene Trägersignal gefiltert und auf eine Zwischenfre- quenz heruntergemischt, die ihrerseits im weiteren abgetastet und quantisiert wird. Nach einer Analog/Digital-Wandlung wird das Signal, das auf dem Funkweg durch Mehrwegeausbreitung verzerrt worden ist, einem Equalizer EQL zugeführt, der die Verzerrungen zu einem großen Teil ausgleicht (Stw. : Synchro- nisation) .
Anschließend wird in einem Kanalschätzer KS versucht die Übertragungseigenschaften des Übertragungskanals TRC auf dem die Funknachricht FN übertragen worden ist, zu schätzen. Die Übertragungseigenschaften des Kanals sind dabei im Zeitbereich durch die Kanalimpulsantwort angegeben. Damit die Kanalimpulsantwort geschätzt werden kann, wird der Funknach- rieht FN sendeseitig (im vorliegenden Fall von der Mobilstation MS1...MS5 bzw. der Basisstation BTS1, BTS2) eine spezielle, als Trainingsinformationssequenz ausgebildete Zusatzinformation in Form einer sogenannten Mida bel zugewiesen bzw. zugeordnet.
In einem daran anschließenden für alle empfangenen Signale gemeinsamen Datendetektor DD werden die in dem gemeinsamen Signal enthaltenen einzelnen mobilstationsspezifischen Signalanteile in bekannter Weise entzerrt und separiert. Nach der Entzerrung und Separierung werden in einem Symbol-zuDaten-Wandler SDW die bisher vorliegenden Datensymbole in binäre Daten umgewandelt. Danach wird in einem Demodulator DMOD aus der Zwischenfrequenz der ursprüngliche Bitstrom gewonnen, bevor in einem Demultiplexer DMUX die einzelnen Zeitschlitze den richtigen logischen Kanälen und damit auch den unterschiedlichen Mobilstationen zugeordnet werden.
In einem Kanal-Codec KC wird die erhaltene Bitsequenz kanal- weise decodiert. Je nach Kanal werden die Bitinformationen dem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen und - im Fall der Basisstation (FIGUR 5) - die Kontroll- und Signalisierungsdaten und die Sprachdaten zur Übertragung an die Basisstationssteuerung BSC gemeinsam einer für die Signalisierung und Sprachcodierung/- decodierung (Sprach-Codec) zuständigen Schnittstelle SS übergeben, während - im Fall der Mobilstation (FIGUR 6) - die Kontroll- und Signalisierungsdaten einer für die komplette Signalisierung und Steuerung der Mobilstation zuständigen Steuer- und Signalisiereinheit STSE und die Sprachdaten einem für die Spracheingabe und -ausgäbe ausgelegten Sprach-Codec SPC übergeben werden.
In dem Sprach-Codec der Schnittstelle SS in der Basisstation BTS1, BTS2 werden die Sprachdaten in einem vorgegebenen Datenstrom (z.B. 64kbit/s-Strom in Netzrichtung bzw. 13kbit/s- Strom aus Netzrichtung) . In einer Steuereinheit STE wird die komplette Steuerung der Basisstation BTS1, BTS2 durchgeführt.
In der Abwärtsrichtung (Sendepfad) sendet die Basisstation BTS1, BTS2 über die Sendeantenne SAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code- Komponente an mindestens eine der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Aufwärtsrichtung (Sendepfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Komponente an mindestens einer Basisstation BTS1, BTS2 sendet .
Der Sendepfad beginnt bei der Basisstation BTS1, BTS2 in
FIGUR 5 damit, daß in dem Kanal-Codec KC von der Basisstationssteuerung BSC über die Schnittstelle SS erhaltene Kontroll- und Signalisierungsdaten sowie Sprachdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeit- schlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.
Der Sendepfad beginnt bei der Mobilstation MS1...MS5 in FIGUR 6 damit, daß in dem Kanal-Codec KC von dem Sprach-Codec SPC erhaltene Sprachdaten und von der Steuer- und Signalsiereinheit STSE erhaltene Kontroll- und Signalisierungsdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.
Die in der Basisstation BTS1, BTS2 und in der Mobilstation MS1...MS5 gewonnene Bitsequenz wird jeweils in einem Daten- zu-Symbol-Wandler DSW in Datensymbole umgewandelt. Im Anschluß daran werden jeweils die Datensymbole in einer Sprei- zeinrichtung SPE mit einem jeweils teilnehmerindividuellen
Code gespreizt. In dem Burstgenerator BG, bestehend aus einem Burstzusammensetzer BZS und einem Multiplexer MUX, wird da- 10 nach in dem Burstzusammensetzer BZS jeweils den gespreizten Datensymbolen eine Trainingsinformationssequenz in Form einer Mitambel zur Kanalschätzung hinzugefügt und im Multiplexer MUX die auf diese Weise erhaltene Burstinformation auf den jeweils richtigen Zeitschlitz gesetzt. Abschließend wird der erhaltene Burst jeweils in einem Modulator MOD hochfrequent moduliert sowie digital/analog umgewandelt, bevor das auf diese Weise erhaltene Signal als Funknachricht FN über eine Funksendeeinrichtung FSE (Sender) an der Sendeantenne SAN bzw. der gemeinsamen Antenne ANT abgestrahlt wird.
Damit das in FIGUR 4 dargestellte Funkszenario für öffentliche Anwendungen auch für private Anwendungen (z.B. Heim- Bereich, SOHO-Bereich; Small Office/Home) im unkoordinierten Betrieb, im ungepaarten Frequenzbereich des UMTS-Szenarios - für sogenannte Heim-Telekommunikationsysteme (residential te- lecommunication Systems) - geeignet ist, muß die Luftschnittstelle entsprechend ausgelegt werden. Im unkoordinierten Betrieb ist im Unterschied zum koordinierten Betrieb - wie z.B. bei GSM-Systemen - kein „Management" (keine Systemintelligenz) vorhanden, das bzw. die die Allokierung der physikalischen Ressourcen und damit den Betrieb bezüglich der vorzugsweise asynchronen stationären Sende-/Empfangsgeräte in dem Telekommunikationssystem koordiniert bzw. steuert.
Bekannte Heim-Telekommunikationssysteme für den unkoordinierten Betrieb sind z.B. DECT-Systeme [Digital Enhanced (früher: European) Cordless Telecommunication; vgl. Nachrichtentechnik Elektronik 42 (1992) Jan . /Feb. Nr. 1 , Berlin, DE; U. Pilger „Struktur des DECT- Standards " , Seiten 23 bis 29 in Verbindung mit der ETSI-Publikation ETS 3001 75-1 . . . 9 , Oktober 1992 und der DECT-Publikation des DECT-Forum, Februar 1997, Sei ten 1 bi s 16] mit drahtloser, auf Frequenz- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder statio- nären Sende-/Empfangsgeräten. 11 Die der Erfindung zugrundeliegende Aufgabe besteht darin, eine Luftschnittstelle für Heim-Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten anzugeben, bei der die Burststruktur der Luftschnittstelle an die Bedingungen in dem Heim-Telekommunikationssystem für den unkoordinierten Betrieb im gepaarten (FDD-Modus) oder ungepaarten (TDD-Modus) Frequenzband derart angepaßt ist, daß Aussagen über die Qualität des jeweiligen Burst und z.B. Kriterien für das Weiterreichen einer Telekommunikationsverbindung, sogenannte Handover-Kriterien, möglich sind.
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst.
Die der Erfindung zugrundeliegende Idee besteht darin, eine Luftschnittstelle für Heim-Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekom- munikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten mit einer speziellen Burststruktur auszubilden, bei der insbesondere vor einem ersten Nutzdatenblock und nach einem zweiten Nutzdatenblock jeweils ein Datenfeld zur gleitenden Burst-Kollisionserkennung (sliding collision detec- tion) , zwischen den Nutzdatenblöcken eine Trainingsinformationssequenz,- die sogenannte Midamble, zur Kanalschätzung und/oder ein Synchronisationsfeld sowie zwischen dem zweiten Nutzdatenblock und dem Datenfeld zur gleitenden Burst-Kollisionserkennung ein z.B. als CRC-Feld ausgebildetes Datenfeld zur Fehlererkennung angeordnet sind.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Ein Ausführungsbeispiel der Erfindung wird anhand der FIGUR 7 erläutert. Diese zeigt eine spezielle Burststruktur für die Luftschnittstelle eines Heim-Telekommunikationssystems mit 12 drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten.
FIGUR 7 eine spezielle Burststruktur für die Luftschnittstelle eines Heim-Telekommunikationssystems mit drahtloser, auf Codemultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, bei der in der angegebenen Reihenfolge ein erstes Datenfeld zur gleitenden Burst-Kollisionserkennung (sliding collision detection)
DFISCD. ein erster Nutzdatenblock NDB1, eine Trainingsinformationssequenz, die sogenannte Midamble, zur Kanalschätzung TIS und/oder ein Synchronisationsfeld SYF, ein zweiter Nutzdatenblock NDB2, ein z.B. als CRC-Feld ausgebildetes Datenfeld zur Fehlererkennung DFCRC. ein zweites Datenfeld zur gleitenden Burst-Kollisionserkennung DF2SCD und eine Schutzzeitzone SZZ angeordnet sind.
Die beiden Datenfelder zur gleitenden Burst-Kollisionserken- nung DF1SCD und DF2SCD enthalten Informationen, die von einem Sendegerät generiert werden und die einem Empfangsgerät bekannt sind. In dem Empfangsgerät dient der Vergleich der empfangenen Information der Datenfelder DF1SCD und DF2S D mit der ursprünglich gesendeten, dem Empfangsgerät bekannten Informa- tion als Erkennungskriterium für eine gleitende Burst-Kollisionserkennung. Eine Burst-Kollisionserkennung ist somit bereits möglich bevor die eigentliche Nutzinformation in den beiden Nutzdatenblöcken NDB1 und NDB2 durch die Burst-Kolli- sion beschädigt wird.

Claims

13 Patentansprüche
1. Luftschnittstelle für Heim-Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekom- munikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten mit folgenden Merkmalen:
(a) für das Telekommunikationssystem vorgegebene Trägerfrequenzen sind jeweils in einer Anzahl von Zeitschlitzen (ZS1...ZS16) mit jeweils einer vorgegebenen Zeitschlitz- dauer (Tzs) derart unterteilt, daß das Telekommunikationssystem im TDD-Modus oder FDD-Modus betreibbar ist, wobei die Zeitschlitze (ZS1...ZS16) pro Trägerfrequenz jeweils einen Zeitmultiplexrahmen (ZR) bilden,
(b) in den Zeitschlitzen (ZS1...ZS16) bzw. den Frequenzbe- reichen des Telekommunikationssystems sind höchstens eine vorgegebene Anzahl von bidirektionalen Telekommunikationsverbindungen in Auf- und Abwärtsrichtung zwischen Telekommunikationsteilnehmern der mobilen Sende-/Emp- fangsgeräten (MS1...MS5) und/oder stationären Sende- /Empfangsgeräten (BTS1, BTS2) des Telekommunikationssystems gleichzeitig herstellbar, wobei dabei übertragene Teilnehmersignale zur Separierbarkeit mit den Teilnehmern individuell zugeordneten Pseudo-Zufallssignalen, den sogenannten Codes, verknüpft sind, (c) die Zeitschlitze (ZS1...ZS16) enthalten jeweils als „Burst" (cl) zwei Nutzdatenblöcke - einen ersten Nutzdatenblock
(NDB1) und einen zweiten Nutzdatenblock (NDB2), (c2) eine als "midamble" ausgebildete Trainingsinformations- sequenz (TIS) und/oder ein Synchronisationsfeld, die bzw. das zwischen den Nutzdatenblöcken (NDB1, NDB2) angeordnet ist, (c3) zwei Datenfelder zur gleitenden „Burst"-Kollisionserken- nung (DFSCD) . ein vor dem ersten Nutzdatenblock (NDB1) angeordnetes erstes Datenfeld (DF1SCD) und ein nach dem zweiten Nutzdatenblock (NDB) zweites Datenfeld (DF2SCD) . 14 (c4) ein Datenfeld zur Fehlererkennung (DFCRC) , das zwischen den beiden Datenfeldern zur gleitenden „Burst-Kollisionserkennung (DFSCD. DFISCD, DF2SD) angeordnet ist, (c5) eine Schutzzeitzone (SZZ) am Ende des „Burst", (d) der „Burst" enthält Datenelemente, die als Chips ausgebildet mit den Codes mit einem vorgegebenen Spreizfaktor gespreizt sind.
2. Luftschnittstelle nach Anspruch 1, dadurch gekenn- zeichnet, daß das Datenfeld zur Fehlererkennung (DFCRC) zwischen dem zweiten Nutzdatenblock (NDB2) und dem zweiten Datenfeld zur gleitenden „Burst"-Kollisionserkennung (DF2SCD) angeordnet ist.
3. Luftschnittstelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Datenfeld zur Fehlererkennung (DFCRC) ein CRC-Feld ist.
PCT/EP1999/001319 1998-02-27 1999-03-01 Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation WO1999044314A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU34090/99A AU3409099A (en) 1998-02-27 1999-03-01 Common air interface for home telecommunications systems with wireless telecommunication based on code and time-multiplex
EP99915542A EP1058976A1 (de) 1998-02-27 1999-03-01 Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP98103520.7 1998-02-27
EP98103520 1998-02-27

Publications (1)

Publication Number Publication Date
WO1999044314A1 true WO1999044314A1 (de) 1999-09-02

Family

ID=8231500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001319 WO1999044314A1 (de) 1998-02-27 1999-03-01 Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation

Country Status (4)

Country Link
EP (1) EP1058976A1 (de)
CN (1) CN1298580A (de)
AU (1) AU3409099A (de)
WO (1) WO1999044314A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032018A2 (en) * 2000-10-10 2002-04-18 Interdigital Technology Corporation Time slot structure and automatic gain control method for a wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594111B1 (ko) * 2004-03-12 2006-06-30 삼성전자주식회사 주파수 밴드별 다중 코딩을 사용하는 광대역 무선 접속시스템에서 데이터 전송 방법 및 시스템
CN100362776C (zh) * 2004-09-24 2008-01-16 华为技术有限公司 对接口链路进行重新同步的方法
CN1972455B (zh) * 2006-11-30 2012-02-22 中兴通讯股份有限公司 一种移动多媒体广播系统的容错方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788247A1 (de) * 1996-01-31 1997-08-06 Nokia Mobile Phones Ltd. Radioempfänger und Betriebsverfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788247A1 (de) * 1996-01-31 1997-08-06 Nokia Mobile Phones Ltd. Radioempfänger und Betriebsverfahren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KLEIN A ET AL: "FRAMES multiple access mode 1-wideband TDMA with and without spreading", WAVES OF THE YEAR 2000+ PIMRC. THE IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS. TECHNICAL PROGRAM, vol. 1, 1 January 1997 (1997-01-01), pages 37 - 41, XP002094062 *
NIKULA E ET AL: "HIGH BIT RATE SERVICES FOR UMTS USING WIDEBAND TDMA CARRIERS", INTERNATIONAL CONFERENCE ON UNIVERSAL PERSONAL COMMUNICATIONS, 29 September 1996 (1996-09-29), pages 562 - 566, XP002071479 *
PILGER U: "STRUKTUR DES DECT-STANDARDS", NACHRICHTENTECHNIK ELEKTRONIK, vol. 42, no. 1, 1 January 1992 (1992-01-01), pages 23 - 29, XP000279214, ISSN: 0323-4657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032018A2 (en) * 2000-10-10 2002-04-18 Interdigital Technology Corporation Time slot structure and automatic gain control method for a wireless communication system
WO2002032018A3 (en) * 2000-10-10 2002-08-29 Interdigital Tech Corp Time slot structure and automatic gain control method for a wireless communication system

Also Published As

Publication number Publication date
AU3409099A (en) 1999-09-15
CN1298580A (zh) 2001-06-06
EP1058976A1 (de) 2000-12-13

Similar Documents

Publication Publication Date Title
EP1422860B1 (de) Luftschnittstelle für Telekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende/Empfangsgeräten
EP1058977B1 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1038359A2 (de) Übertragungskanalschätzung in telekommunikationssystemen mit drahtloser telekommunikation
EP1059012A1 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten
EP1059011A1 (de) Weiterreichen in einem auf code- und zeitmultiplex basierenden telekommunikationssystem
EP1058975B1 (de) Tdd-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
DE19747370C1 (de) Telekommunikationssystem zur drahtlosen Telekommunikation mit einer CDMA-, FDMA- und TDMA-Vielfachzugriffskomponente
EP1058976A1 (de) Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1133834B1 (de) Verfahren zum steuern von speicherzugriffen bei "rake"-empfängern mit "early-late tracking" in telekommunikationssystemen
EP1072108A2 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1125370B1 (de) Rake-empfänger in mobilfunksystemen der dritten generation
DE19849552A1 (de) Verfahren zum Regeln der Sendeleistung von mobilen Sende-/Empfangsgeräten in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation
DE19807960B4 (de) Telekommunikationssystem zur drahtlosen Mobiltelekommunikation im TDD-Modus, insbesondere ein im ungepaarten Frequenzband arbeitendes Universal-Mobil-Telekommunikationssystem (UMTS)
DE19849533A1 (de) Verfahren zum Steuern der Übertragung von Datenpaketen in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation
WO2000025530A2 (de) Verfahren und anordnung zum schätzen von übertragungskanälen in mobilfunksystemen der dritten generation
DE19849559A1 (de) Verfahren zum Herstellen der Zeitsynchronität zusätzlich zur Taktsynchronität auf der Empfängerseite in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksysteme der dritten Generation
DE19849544A1 (de) Synchroner Rake-Empfänger für Tlekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation
DE19849557A1 (de) Verfahren zur hardwarebasierten Durchführung des Fingertracking eines Rake-Empfängers in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805564.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU ID IL IN JP KR MX NO PL RU SK TR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999915542

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09623141

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999915542

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999915542

Country of ref document: EP