WO1999043985A1 - Fluidized bed gasification furnace - Google Patents

Fluidized bed gasification furnace Download PDF

Info

Publication number
WO1999043985A1
WO1999043985A1 PCT/JP1999/000946 JP9900946W WO9943985A1 WO 1999043985 A1 WO1999043985 A1 WO 1999043985A1 JP 9900946 W JP9900946 W JP 9900946W WO 9943985 A1 WO9943985 A1 WO 9943985A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized
fluidized bed
gasification furnace
bed
medium
Prior art date
Application number
PCT/JP1999/000946
Other languages
French (fr)
Japanese (ja)
Inventor
Norihisa Miyoshi
Seiichiro Toyoda
Daisaku Fukuoka
Takashi Imaizumi
Shinichirou Chiba
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP99906525A priority Critical patent/EP1058051B1/en
Priority to AU26419/99A priority patent/AU2641999A/en
Priority to DE69926217T priority patent/DE69926217T2/en
Publication of WO1999043985A1 publication Critical patent/WO1999043985A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Definitions

  • the present invention relates to a fluidized-bed gasifier, and more particularly to a fluidized-bed gasifier characterized by discharging a fluidized medium.
  • a fluidized bed is a fluidized bed fluidized by supplying gas from under a particle packed bed filled with several tens to several millimeters of fluidized medium particles such as silica sand and iron oxide.
  • a fluidized bed (layer) is formed.
  • a fluidized bed reactor is used to accelerate the chemical reaction by utilizing the fluidity, uniformity, heat capacity, and surface area of the fluidized bed (layer). It is intended to be performed stably and homogeneously, and has been used in catalytic cracking furnaces for petroleum refining, combustion furnaces and incinerators for solid fuels such as coal, and has many achievements. Background art
  • Fluidized bed gasifiers have excellent mixing characteristics and heat transfer characteristics due to the fluidized medium. Compared to a gas-bed reactor, there are advantages such as less restrictions on the size and properties of the fuel that can be charged, but fluidized media and fuel
  • the disadvantage is that the operating temperature must be lower than that of a pneumatic bed reactor in order to prevent the ash content inside from melting and adhering to each other at high temperatures and obstructing the flow.
  • the temperature range is about 900 ° C or less when using coal as fuel, and about 600 to 800 ° C when using waste as fuel, depending on the nature of the waste. If the waste contains Al-Li metal, it needs to be lower.
  • the fluidized-bed gasification reactor has the feature that there are few restrictions on the size of the fuel that can be input and the properties of the fuel.However, in the case of a fuel containing incombustible substances such as coal and waste, the If the particles are charged as they are, the incombustibles remaining in the reactor will also increase, and it will be necessary to discharge them from the reactor in some way. However, it is very difficult to withdraw a fluid medium at a high temperature of 500 ° C. to 600 ° C. from a fluidized bed even in a normal pressure reactor because of the high temperature. In gasifiers operated under pressure, it is almost impossible.
  • the present invention has been made in view of the above-mentioned conventional technology, and has a large amount of fuel that can be charged.
  • the purpose of the present invention is to provide a fluidized bed gasifier with excellent operability that can safely operate not only at normal pressure but also under high pressure, while taking advantage of the characteristics of fluidized bed reactors that have few restrictions on size and properties.
  • the present invention provides a fluidized-bed gasification furnace using a fluidized bed reactor, wherein a fluidized medium discharge shut is provided near a floor of the reactor, It is characterized by providing a gas blowing device below the gate.
  • a device for mechanically extracting the fluidized medium is provided in the vicinity of the lowermost portion of the fluidized medium discharge shutter, and a screw conveyer is used as the device.
  • the fluidized medium discharge Shiyu over preparative may that that have a balloon device for a gas to the bottom, these gas blowing device is a gas vapor or blowing out using a gas containing no co 2 or oxygen be able to.
  • the fluidized bed reactor used in the present invention is preferably divided into units according to functions, and can be easily adapted to fuels having different properties by changing the combination of the units.
  • FIG. 1A, 1B, and 1C are cross-sectional views showing the structure of a cylindrical fluidized-bed gasification furnace showing an example of the fluidized-bed gasification furnace of the present invention.
  • 1B is a sectional view taken along line AA of FIG. 1A
  • FIG. 1C is a sectional view taken along line BB of FIG. 1A.
  • FIG. 2A, 2B, and 2C are cross-sectional views showing the structure of a rectangular-type fluidized-bed gasifier showing another example of the fluidized-bed gasifier according to the present invention.
  • Fig. 2B is a cross-sectional view taken along the line A-A of Fig. 2A
  • Fig. 2C is Fig. 2
  • FIG. 2 is a sectional view taken along line B-B of A.
  • FIG. 3 is an overall configuration diagram showing an example of components around a gasifier according to the present invention.
  • FIG. 4 is an overall configuration diagram showing another example of components around the gasification furnace of the present invention.
  • FIG. 5 is an overall configuration diagram showing still another example of components around the gasification furnace of the present invention.
  • FIG. 6 is a longitudinal sectional view showing a modified example of the fluidized bed gasification furnace of the present invention.
  • FIG. 7 is a longitudinal sectional view showing a modified example of the fluidized bed gasification furnace of the present invention.
  • FIGS. 1A, 1B, and 1C are cross-sectional views showing the structure of a cylindrical fluidized-bed gasifier showing an example of the fluidized-bed gasifier of the present invention.
  • Fig. 1A is a longitudinal sectional view of a fluidized bed gasifier
  • Fig. 1B is a sectional view taken along line A-A of Fig. 1A
  • Fig. 1C is a sectional view taken along line B-B of Fig. 1A.
  • the fluidized bed gasifier using the cylindrical fluidized bed reactor shown in Fig. 1A to Fig. 1C is composed of a fluidized bed unit 1, a furnace bottom unit 2, a medium discharge unit 3, a freeboard unit 4, And a reflector unit 5.
  • the fluidized bed reactor comprises a fluidized bed unit 1, a furnace bottom unit 2, and a medium discharge unit 3. Each adjacent unit is connected by a flange.
  • a fluidizing gas dispersing device 6 having a conical upper surface, and a large number of fluidizing gas dispersing devices are provided on the upper surface of the fluidizing gas dispersing device 6.
  • a nozzle 7 is provided inside the fluidized bed unit 1, there is provided inside the fluidized bed unit 1, there is provided a fluidizing gas dispersing device 6 having a conical upper surface, and a large number of fluidizing gas dispersing devices are provided on the upper surface of the fluidizing gas dispersing device 6.
  • a nozzle 7 is provided inside the fluidized bed unit 1, there is provided inside the fluidized bed unit 1, there is provided
  • the fluidized bed unit 1 and the inside of the unit below the fluidized bed unit 1 are filled with a fluidized medium 11, and the fluidized medium above the fluidized gas dispersion device 6 is a fluidized gas dispersion nozzle. It is fluidized by the fluidizing gas blown out from 7 to form a fluidized bed 8. Further, inside the fluidizing gas dispersing device 6, an air header 9 is divided into at least two or more and is built in, and the velocity of the fluidizing gas blown out from the fluidizing gas dispersing nozzle 7 is controlled in the peripheral portion. By making the blowing speed different so that the fluid flow becomes relatively faster than the central part, the internal swirling flow 12 of the fluidized medium is formed in the fluidized bed.
  • the temperature of the fluidized medium above the fluidizing gas dispersing device 6 is maintained between 400 ° C. and 100 ° C., preferably between 500 ° C. and 800 ° C.
  • a gap 20 between the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1 is formed below the outlet 16, and this gap 20 is used as a discharge medium for the fluidized medium.
  • This gap 20 is divided into four shoots 20a to 20d by a support 10 that fixes the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1. .
  • a pipe for supplying a fluidizing gas from outside the fluidized bed unit 1 to the air header 9 may be provided inside the support 10.
  • each shoot 20a to 20d be in contact with the entire side surface of the fluidizing gas dispersing device 6 in order to prevent accumulation of incombustibles in the fluidized bed 8.
  • the upper end of the support 10 necessarily has a mountain shape, and the top of the mountain has an acute angle.
  • the support 10 needs to have a certain width, so that the shape of the support 10 expands downward. The shape must be reduced, and the circumferential width of each shoot 20a to 20d will be reduced. But
  • the lower side surface 6a of the fluidized gas dispersion device 6 is inclined toward the center line as it goes downward, so that the radius of each shot 20a to 20d is reduced.
  • the dimension in the direction is increased toward the bottom to prevent the horizontal cross-sectional area from decreasing.
  • Gas blowout nozzles 13 are provided vertically below each shoot 20a to 20d, and the inside of the shoot is purged with steam or an inert gas to diffuse tar and oxygen. To prevent fluid flow and to fluidize the fluid medium violently to eliminate clogging of the shoot.
  • a media discharge unit 3 is connected to the lower side of the furnace bottom unit 2, and the inner surface of the furnace bottom unit 2 in the gasification furnace is adapted to the size of the inlet of the medium discharge unit 3. Inclined and narrowed as a whole. If non-combustibles that could form a bridge due to such squeezing must be discharged, for example, incombustibles such as wire, the vertical wall of the straight plate can of course be used. Good or eccentric, vertical and inclined parts may be provided.
  • a medium discharge device 15 is provided below the medium discharge device unit 3.
  • a screw conveyor is used as the medium discharge device 15, but depending on the properties of incombustible materials, a discharge device that can discharge in the horizontal direction like a chain conveyor is used. May be. Further, in the present gasification furnace, the medium discharge device 15 is installed horizontally in the horizontal direction, but it can be tilted up and down.
  • a gas blowing nozzle 14 is provided below.
  • the number of nozzles 14 for blowing out this gas is one, but this nozzle extends over the entire diameter of the connection portion between the medium discharge unit unit 3 and the hopper unit 2 under the furnace. Since the purpose is to spread the gas, the number may be increased if necessary. Since the concentration of incombustibles can be expected due to the wind power sorting effect of the gas blown from the gas blowout nozzles 14, the amount of discharged fluid medium is reduced, and the amount of heat taken out is also reduced.
  • nozzle 1 4 blowout gas is blown gas 3 0 containing no steam or CO 2, or oxygen, which contains carbon particles in liquidity medium in shoe one DOO
  • the cooling effect can be further enhanced by the above-mentioned endothermic reaction.
  • the temperature of the steam to be blown must be at least not lower than the saturation temperature at the operating pressure of the gasifier. It is necessary to prevent dew condensation by keeping the temperature of the media discharge device etc. below the dew point by keeping it warm or performing heat tracing as necessary.
  • the gasifiers shown in Fig. 1A to Fig. 1C are united for each part in charge of each function, but of course, they may be manufactured integrally.
  • each part is large and sufficient maintenance space is available, and there is no need to divide and inspect each unit, so they can be manufactured integrally.
  • unit-split types such as those shown in Figs. 1A to 1C may be effective.
  • the unit split structure can be easily changed depending on the fuel properties. For example, for fuels that are difficult to gasify and require a long residence time in the fluidized bed, to increase the bed height, the diffuser unit 5 and the fluidized bed unit as shown in Fig. 6 are used. A straight pipe section 1a is added between the points (1) and (2). In addition, for fuels that require a long freeboard residence time due to low specific gravity and low in-layer residence ratio, a shape that bulges out slightly above the flange as shown in Fig. 7 is used. Use the freeboard unit 4 whose internal volume has been increased. In this way, as shown in FIGS. 6 and 7, by modifying only necessary parts, various fuels can be easily handled without modifying the entire fuel.
  • FIG. 2A, 2B, and 2C are cross-sectional views showing the structure of a rectangular fluidized-bed gasifier showing another example of the fluidized-bed gasifier according to the present invention.
  • 2A is a vertical cross-sectional view of the fluidized bed gasifier
  • FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A
  • FIG. 2C is a cross-sectional view taken along line BB of FIG. 2A.
  • FIGS. 1A to 1C the same reference numerals as those in FIGS. 1A to 1C denote members having the same functions, and the structures and operations thereof are also the same.
  • the outer wall of the fluidized bed unit 1 is formed in a rectangular shape.
  • the upper surface of the fluidizing gas dispersing device 6 on a rectangle arranged inside the fluidized bed unit 1 is formed in a mountain shape.
  • two symmetrical internal swirling flows 12 are formed between the central portion and the left and right peripheral portions.
  • a gap 20 between the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1 is formed below the outlet 16, and the gap 20 functions as a discharge shoot for the fluid medium.
  • this gap 20 is composed of two shoots 20a and 20b as shown in FIG. 2B. Below each shoot 20a.20b, three gas blowing nozzles 13 are provided, respectively.
  • FIG. 3 is an overall configuration diagram showing one example of components around a gasification furnace when the fluidized-bed gasification furnace according to the present invention is used under pressure.
  • a lock hopper 102 for pressure sealing is connected to the lower part of the gas discharge furnace unit at the lower part of the gasifier 101 having the structure shown in FIGS. 1A to 1C and FIGS. 2A to 2C.
  • a vibrating sieve 103 is provided downstream of the rock hohno 102.
  • the non-combustible material 6 1 and the fluid medium 60 are sieved by the vibrating sieve 103.
  • the non-combustible material 61 is discharged out of the system, and the fluid medium 60 is returned to the furnace.
  • the fluid medium 60 sieved by the vibrating sieve 103 is conveyed by the fluid medium conveyer 104, and passes through the fluid medium supply lock hopper 105 to supply the fluid medium conveyer 10. At 6 it is returned into the gasifier 101.
  • up to the lock hopper 102 is pressurized and dew condensation easily occurs. Therefore, it is desirable to take dew condensation prevention measures such as heat retention and steam tracing.
  • FIG. 4 is an overall configuration diagram showing another example of components around the gasification furnace when the fluidized-bed gasification furnace according to the present invention is used under pressure.
  • the fluid medium conveyed by the fluid medium conveyer 104 as in FIG. 3 is once received by the fluid medium hobber 107 and then discharged by the medium quantitative dispenser 108.
  • the medium quantitative dispenser 108 By adjusting the quantity and switching the switching shoot 109, not only the fluid medium supply lock hopper 105 but also the fuel supply lock hopper 110 and the fuel conveyor 50 together with the fuel 50 are supplied. It is also possible to supply into the furnace at 11.
  • FIG. 5 is an overall configuration diagram showing a device configuration around a gasification furnace when the present invention is used at normal pressure.
  • the mixture of the incombustible material and the fluid medium discharged from the gasification furnace 101 is conveyed by the conveyer 104 and sieved by the vibrating sieve 103 into the incombustible material 61 and the fluid medium 60.
  • the fluidized medium 60 is supplied to the gasifier 101 by the fluidized medium supply conveyer 106. If there are many non-combustible materials with a small particle size, such as forming a fluid medium in the fuel, the flow path is switched by the switching shot 109 and the excess fluid medium is supplied to the fluid medium hopper 107 side. And discharged to a fluid medium supply conveyor 106 by a fixed-rate dispenser 108 as needed, and put into the furnace.
  • One of the methods is to use a conveyor type of conveyor 104, which is filled with a fluid medium.
  • Force S which is a type of conveyor
  • This type of conveyor has the problem that the required power is large because the internal fluid medium must be constantly stirred.
  • Another method is to provide a sealing damper between the outlet of the fluidized medium discharge conveyor below the gasification furnace 101 and the transfer conveyor 104. This method requires a function to maintain the seal while discharging the fluid medium, and it is desirable to use a double damper method.However, even a single damper linked to the operation and stoppage of the fluid medium discharge conveyer is desirable. The effect can be expected.
  • the shoot purge function using steam or inert gas can prevent vaporized tar from entering the shot section, and prevent various problems caused by tar after cooling the fluid medium.
  • the medium discharge device since incombustibles and fluid medium to be discharged outside the furnace can be cooled by steam or inert gas, the medium discharge device does not need to use high-grade materials for heat and corrosion resistance, and can be inexpensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

A fluidized bed gasification furnace capable of quickly discharging unburnt matter contained in fuel along with a fluid medium; specifically, a fluidized bed gasification furnace using a fluidized bed reaction device, comprising a discharge port (16) for a fluid medium disposed in the vicinity of the surface of the fluidized bed and connected with fluid medium discharging chutes (20a to 20d) extending downward, and a gas blow-out device (13) disposed below the chutes.

Description

明 細 書 流動床ガス化炉 技術分野  Description Fluidized bed gasifier Technical field
本発明は、 流動床ガス化炉に係り、 特に、 流動媒体の排出に特徴を有 する流動床ガス化炉に関する。  The present invention relates to a fluidized-bed gasifier, and more particularly to a fluidized-bed gasifier characterized by discharging a fluidized medium.
流動床 (層) とは、 数十ミ ク ロ ンから数ミ リ程度の珪砂ゃ酸化鉄等の 流動媒体粒子を充填した粒子充填層の下からガスを供給して流動媒体を 流動化させ、 流動床 (層) を形成したもので、 流動床反応装置とはその 流動床 (層) の持つ流動性 · 均一性 ' 熱容量の大きさ · 表面積の大きさ 等を利用して化学反応を早く、 安定に、 かつ均質に行わせよう とするも ので、 石油精製の接触分解炉ゃ、 石炭等固体燃料の燃焼炉や焼却炉に応 用され、 多く の実績がある。 背景技術  A fluidized bed (bed) is a fluidized bed fluidized by supplying gas from under a particle packed bed filled with several tens to several millimeters of fluidized medium particles such as silica sand and iron oxide. A fluidized bed (layer) is formed. A fluidized bed reactor is used to accelerate the chemical reaction by utilizing the fluidity, uniformity, heat capacity, and surface area of the fluidized bed (layer). It is intended to be performed stably and homogeneously, and has been used in catalytic cracking furnaces for petroleum refining, combustion furnaces and incinerators for solid fuels such as coal, and has many achievements. Background art
流動床ガス化炉は、 流動媒体による混合特性や伝熱特性に優れるため. 気流層反応装置と比べると、 投入できる燃料の大きさや性状の制約が少 ないといった利点がある反面、 流動媒体や燃料中の灰分が、 高温で互い に溶融付着して流動を阻害するのを防止するために、 気流層反応装置よ り も運転温度を下げざるを得ないという欠点がある。 その温度域は、 石 炭を燃料とする場合で約 9 0 0 °C以下、 廃棄物を燃料とする場合は、 廃 棄物の性状にも依るが 6 0 0〜 8 0 0 °C程度、 廃棄物がアル力リ金属類 を含む場合は更に低くする必要がある。  Fluidized bed gasifiers have excellent mixing characteristics and heat transfer characteristics due to the fluidized medium. Compared to a gas-bed reactor, there are advantages such as less restrictions on the size and properties of the fuel that can be charged, but fluidized media and fuel The disadvantage is that the operating temperature must be lower than that of a pneumatic bed reactor in order to prevent the ash content inside from melting and adhering to each other at high temperatures and obstructing the flow. The temperature range is about 900 ° C or less when using coal as fuel, and about 600 to 800 ° C when using waste as fuel, depending on the nature of the waste. If the waste contains Al-Li metal, it needs to be lower.
廃棄物や石炭を比較的低温で熱分解 ■ ガス化した場合の問題点と タールの発生がある。 一般にタールは、 6 0 0 °C程度の温度域では気化 しているが、 2 0 0 °C以下まで温度が下がると液化して、 その粘着性に よ り粒子ハン ドリ ング上のさまざまな トラブルを引き起こす場合がある t また、 流動床ガス化炉の特徴と して、 炉内に大量のチヤ一が滞留して いるため、 層内から不燃物等を抜出す際に、 高温のチヤ一が空気に触れ て燃焼し、 高温化することによって、 ク リ ン力を生成する場合がある。 Pyrolysis of waste and coal at relatively low temperature ■ Problems and problems when gasifying There is tar generation. In general, tar evaporates in the temperature range of about 600 ° C, but it liquefies when the temperature drops to below 200 ° C, and its stickiness causes various problems in particle handling. t also can cause, characterized in fluidized-bed gasification furnace, a large amount of Chiya one in the furnace are retained, when withdrawing incombustible like from the layer, the hot Chiya one Combustion on contact with air and high temperatures can generate cleaning power.
このよ う に、 流動床ガス化反応装置は、 投入できる燃料の大きさや燃 料の性状の制約が少ないといった特長があるが、 石炭や廃棄物のよ うに 不燃物を含有した燃料の場合、 大きな粒径のまま投入すると、 反応装置 内に残留する不燃物も大きくなり、 何らかの方法で反応装置内から排出 する必要が生じる。 しかしながら、 5 0 0 °C〜 6 0 0 °Cといった高温の ままの流動媒体を流動層から抜出することは、 常圧の反応装置であって も、 高温ゆえに非常に困難であり、 ましてや加圧下で運転されるガス化 炉においては、 殆んど不可能である。 かり に流動媒体を流動層から抜き 出すことができたと しても、 高温の流動媒体の抜出しによる熱損失が大 きく、 熱の利用効率が低下してしま う という問題や、 抜出しの際、 流動 媒体に大量に混入しているチヤ一が、 空気に触れて燃焼し、 その結果、 思わぬトラブルを招く恐れがある。  As described above, the fluidized-bed gasification reactor has the feature that there are few restrictions on the size of the fuel that can be input and the properties of the fuel.However, in the case of a fuel containing incombustible substances such as coal and waste, the If the particles are charged as they are, the incombustibles remaining in the reactor will also increase, and it will be necessary to discharge them from the reactor in some way. However, it is very difficult to withdraw a fluid medium at a high temperature of 500 ° C. to 600 ° C. from a fluidized bed even in a normal pressure reactor because of the high temperature. In gasifiers operated under pressure, it is almost impossible. However, even if the fluidized medium could be extracted from the fluidized bed, the heat loss due to the extraction of the high-temperature fluidized medium would be large, reducing the heat utilization efficiency. A large amount of dust mixed in the medium may burn when it comes into contact with air, resulting in unexpected trouble.
かといつて流動媒体を冷却すると、 気化していたタールが液化し、 さ まざまな トラブルを引き起こす恐れがあることから、 不燃物抜出しをし なくても済むよ うに、 燃料を細かく破砕して投入せざるを得ず、 折角の 流動床反応装置の特長を生かすことができなかった。 発明の開示  When the fluid medium is cooled down, the vaporized tar liquefies and may cause various troubles.Therefore, the fuel is finely crushed and injected so that it is not necessary to remove the incombustibles. I had to do it, and I couldn't take full advantage of the special features of the fluidized bed reactor. Disclosure of the invention
本発明は、 上記従来技術に鑑みなされたもので、 投入できる燃料の大 きさや性状の制約が少ないという流動床反応装置の特長を生かしたまま、 常圧のみならず高圧下においても安全に操業できる、 運用性に優れた流 動床ガス化炉を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional technology, and has a large amount of fuel that can be charged. The purpose of the present invention is to provide a fluidized bed gasifier with excellent operability that can safely operate not only at normal pressure but also under high pressure, while taking advantage of the characteristics of fluidized bed reactors that have few restrictions on size and properties. And
上記目的を達成するために、 本発明では、 流動層反応装置を用いる流 動床ガス化炉であって、 該反応装置の床面近傍に流動媒体排出シユ ー ト を設け、 該流動媒体排出シユ ー トの下方にガス吹き出し装置を設けたこ とを特徴とする。  In order to achieve the above object, the present invention provides a fluidized-bed gasification furnace using a fluidized bed reactor, wherein a fluidized medium discharge shut is provided near a floor of the reactor, It is characterized by providing a gas blowing device below the gate.
前記流動床ガス化炉において、 流動媒体排出シユ ー トの最下部近傍に は、 機械的に流動媒体を抜出す装置を有し、 該装置と しては、 スク リ ュ 一コンペャを用いるのがよレ、。  In the fluidized-bed gasification furnace, a device for mechanically extracting the fluidized medium is provided in the vicinity of the lowermost portion of the fluidized medium discharge shutter, and a screw conveyer is used as the device. Yeah.
前記流動媒体排出シユ ー トは、 最下部にもガスの吹き出し装置を有す るのがよく、 これらのガス吹き出し装置は、 吹き出すガスと して蒸気又 は c o 2又は酸素を含まないガスを用いることができる。 The fluidized medium discharge Shiyu over preparative may that that have a balloon device for a gas to the bottom, these gas blowing device is a gas vapor or blowing out using a gas containing no co 2 or oxygen be able to.
また、 本発明に用いる流動層反応装置は、 機能別に各ュニッ トに分割 され、 各ュニッ トの組み合わせを変えることによつて性状の異なる燃料 に容易に対応できるよ うに構成するのがよい。 図面の簡単な説明  Further, the fluidized bed reactor used in the present invention is preferably divided into units according to functions, and can be easily adapted to fuels having different properties by changing the combination of the units. BRIEF DESCRIPTION OF THE FIGURES
図 1 A, 図 1 B, 図 1 Cは、 本発明の流動床ガス化炉の一例を示す円 筒形流動床ガス化炉の構造を示す断面図であり、 図 1 Aは流動床ガス化 炉の縦断面図、 図 1 Bは図 1 Aの A— A線断面図、 図 1 Cは図 1 Aの B _ B線断面図である。  1A, 1B, and 1C are cross-sectional views showing the structure of a cylindrical fluidized-bed gasification furnace showing an example of the fluidized-bed gasification furnace of the present invention. 1B is a sectional view taken along line AA of FIG. 1A, and FIG. 1C is a sectional view taken along line BB of FIG. 1A.
図 2 A , 図 2 B , 図 2 Cは、 本発明による流動床ガス化炉の他の例を 示す矩形型流動床ガス化炉の構造を示す断面図であり、 図 2 Aは流動床 ガス化炉の縦断面図、 図 2 Bは図 2 Aの A— A線断面図、 図 2 Cは図 2 Aの B— B線断面図である。 2A, 2B, and 2C are cross-sectional views showing the structure of a rectangular-type fluidized-bed gasifier showing another example of the fluidized-bed gasifier according to the present invention. Fig. 2B is a cross-sectional view taken along the line A-A of Fig. 2A, and Fig. 2C is Fig. 2 FIG. 2 is a sectional view taken along line B-B of A.
図 3は本発明のガス化炉周りの構成機器の一例を示す全体構成図であ る。  FIG. 3 is an overall configuration diagram showing an example of components around a gasifier according to the present invention.
図 4は本発明のガス化炉周りの構成機器の他の例を示す全体構成図で ある。  FIG. 4 is an overall configuration diagram showing another example of components around the gasification furnace of the present invention.
図 5は本発明のガス化炉周りの構成機器の更に他の例を示す全体構成 図である。  FIG. 5 is an overall configuration diagram showing still another example of components around the gasification furnace of the present invention.
図 6は本発明の流動床ガス化炉の変形例を示す縦断面図である。  FIG. 6 is a longitudinal sectional view showing a modified example of the fluidized bed gasification furnace of the present invention.
図 7は本発明の流動床ガス化炉の変形例を示す縦断面図である。 発明を実施するための最良の形態  FIG. 7 is a longitudinal sectional view showing a modified example of the fluidized bed gasification furnace of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図面を用いて詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
図 1 A , 図 1 B, 図 1 Cは、 本発明の流動床ガス化炉の一例を示す円 筒形流動床ガス化炉の構造を示す断面図である。 図 1 Aは流動床ガス化 炉の縦断面図、 図 1 Bは図 1 Aの A— A線断面図、 図 1 Cは図 1 Aの B — B線断面図である。  FIGS. 1A, 1B, and 1C are cross-sectional views showing the structure of a cylindrical fluidized-bed gasifier showing an example of the fluidized-bed gasifier of the present invention. Fig. 1A is a longitudinal sectional view of a fluidized bed gasifier, Fig. 1B is a sectional view taken along line A-A of Fig. 1A, and Fig. 1C is a sectional view taken along line B-B of Fig. 1A.
図 1 A〜図 1 Cに示す円筒形の流動層反応装置を用いる流動床ガス化 炉は、 流動床ュニッ ト 1、 炉下ホツバュニッ ト 2、 媒体排出装置ュニッ ト 3、 フリーボードユニッ ト 4、 及びディフ レクタユニッ ト 5から構成 されている。 本発明においては、 流動層反応装置は、 流動床ユニッ ト 1 と、 炉下ホツバユニッ ト 2 と、 媒体排出装置ュニッ ト 3 とから構成され ている。 隣接する各ユニッ トはフランジで接続されている。 流動床ュニ ッ ト 1 の内部には、 上面が円錐形をした流動化ガス分散装置 6が設けら れており、 この流動化ガス分散装置 6の上面には、 多数の流動化ガス分 散ノズル 7が設けられている。 流動床ュニッ ト 1および流動床ュニッ ト 1 よ り下方のュニッ ト内部に は、 流動媒体 1 1が充填されており、 流動化ガス分散装置 6の上方の流 動媒体は、 流動化ガス分散ノズル 7から吹き出された流動化ガスによつ て流動化され、 流動床 8を形成している。 また、 流動化ガス分散装置 6 の内部には、 空気ヘッダ 9が少なく とも 2つ以上に分割されて内蔵され ており、 流動化ガス分散ノズル 7から吹き出される流動化ガス速度を、 周辺部の方が中央部に比べて相対的に速く なるよ うに、 吹き出し速度に 違いを持たせることによって、 流動床内に流動媒体の内部旋回流 1 2を 形成せしめている。 流動化ガス分散装置 6の上の流動媒体の温度は 4 0 0°C〜 1 0 0 0°C、 好ま しく は 5 0 0 °C〜 8 0 0 °Cに維持される。 The fluidized bed gasifier using the cylindrical fluidized bed reactor shown in Fig. 1A to Fig. 1C is composed of a fluidized bed unit 1, a furnace bottom unit 2, a medium discharge unit 3, a freeboard unit 4, And a reflector unit 5. In the present invention, the fluidized bed reactor comprises a fluidized bed unit 1, a furnace bottom unit 2, and a medium discharge unit 3. Each adjacent unit is connected by a flange. Inside the fluidized bed unit 1, there is provided a fluidizing gas dispersing device 6 having a conical upper surface, and a large number of fluidizing gas dispersing devices are provided on the upper surface of the fluidizing gas dispersing device 6. A nozzle 7 is provided. The fluidized bed unit 1 and the inside of the unit below the fluidized bed unit 1 are filled with a fluidized medium 11, and the fluidized medium above the fluidized gas dispersion device 6 is a fluidized gas dispersion nozzle. It is fluidized by the fluidizing gas blown out from 7 to form a fluidized bed 8. Further, inside the fluidizing gas dispersing device 6, an air header 9 is divided into at least two or more and is built in, and the velocity of the fluidizing gas blown out from the fluidizing gas dispersing nozzle 7 is controlled in the peripheral portion. By making the blowing speed different so that the fluid flow becomes relatively faster than the central part, the internal swirling flow 12 of the fluidized medium is formed in the fluidized bed. The temperature of the fluidized medium above the fluidizing gas dispersing device 6 is maintained between 400 ° C. and 100 ° C., preferably between 500 ° C. and 800 ° C.
流動床ュニッ ト 1の内部、 流動化ガス分散装置 6の周辺上方には外側 へ向けた流動媒体の排出口 1 6が設けられている。 この排出口 1 6の下 方には流動化ガス分散装置 6 と流動床ュニッ ト 1の内壁の間隙 2 0が形 成されており、 この間隙 2 0は流動媒体の排出シュ一 ト と して機能する が、 この間隙 2 0は流動化ガス分散装置 6 と流動床ュニッ ト 1の内壁と を固定する支持体 1 0により、 4つのシュー ト 2 0 a〜 2 0 dに分割さ れている。 支持体 1 0の内部には、 流動床ユニッ ト 1の外部から前記空 気へッダ 9に流動化用のガスを供給する配管を設けても良い。  Inside the fluidized bed unit 1, above the periphery of the fluidizing gas dispersion device 6, there is provided an outlet 16 for the fluidized medium directed outward. A gap 20 between the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1 is formed below the outlet 16, and this gap 20 is used as a discharge medium for the fluidized medium. This gap 20 is divided into four shoots 20a to 20d by a support 10 that fixes the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1. . A pipe for supplying a fluidizing gas from outside the fluidized bed unit 1 to the air header 9 may be provided inside the support 10.
各シュー ト 2 0 a〜 2 0 dは、 流動床 8内への不燃物の堆積を防止す るために、 流動化ガス分散装置 6の側面全域に接するよ うにするのが望 ましい。 その場合必然的に支持体 1 0の上端は山形の形状を有し、 山形 の頂部は鋭角をなしている。 支持体 1 0の内部に配管を内蔵しよ う とす る場合は、 支持体 1 0にはある程度の幅を持たせる必要があるため、 支 持体 1 0の形状は下方に向かって末広がり の形状となる必要があり、 各 シュー ト 2 0 a〜 2 0 dの円周方向の幅を狭めることになる。 しかしな がら、 各シユ ー ト 2 0 a 〜 2 0 dにおいては、 内部で不燃物等による閉 塞が生じるのを避けるため、 下方に向かうに従って水平断面積が次第に 狭く なることは、 避けなければならない。 従って、 本ガス化炉では、 流 動化ガス分散装置 6の下部側面 6 a を下方に向かうに従って中心線側に 傾斜させるよ うにすることによって、 各シュ一 ト 2 0 a 〜 2 0 dの半径 方向の寸法を、 下方に向かうに従って大きく し、 水平断面積が減少する のを防止する工夫をしている。 It is preferable that each shoot 20a to 20d be in contact with the entire side surface of the fluidizing gas dispersing device 6 in order to prevent accumulation of incombustibles in the fluidized bed 8. In that case, the upper end of the support 10 necessarily has a mountain shape, and the top of the mountain has an acute angle. When the piping is to be built in the support 10, the support 10 needs to have a certain width, so that the shape of the support 10 expands downward. The shape must be reduced, and the circumferential width of each shoot 20a to 20d will be reduced. But However, in each of the shots 20a to 20d, it is necessary to prevent the horizontal cross-sectional area from gradually becoming narrower in the downward direction in order to avoid blockage due to incombustibles inside. Therefore, in the present gasification furnace, the lower side surface 6a of the fluidized gas dispersion device 6 is inclined toward the center line as it goes downward, so that the radius of each shot 20a to 20d is reduced. The dimension in the direction is increased toward the bottom to prevent the horizontal cross-sectional area from decreasing.
各シュー ト 2 0 a 〜 2 0 dの鉛直下方には、 各々ガス吹き出しノズル 1 3が設けられており、 シユ ー ト内を水蒸気や不活性ガスでパージして, タールや酸素が拡散してく るのを防止したり、 流動媒体を激しく流動化 させてシュー トの閉塞を解消したりできるよ うになつている。  Gas blowout nozzles 13 are provided vertically below each shoot 20a to 20d, and the inside of the shoot is purged with steam or an inert gas to diffuse tar and oxygen. To prevent fluid flow and to fluidize the fluid medium violently to eliminate clogging of the shoot.
炉下ホツバユニッ ト 2 の下側には媒体排出装置ュニッ ト 3が接続され ており、 本ガス化炉における炉下ホッパユニッ ト 2の内面は、 媒体排出 装置ュニッ ト 3の入り 口のサイズに合わせて傾斜し、 全体と して絞られ ている。 この様に絞ることによってブリ ッジを形成する危険性のある不 燃物、 例えば針金のよ うな不燃物を排出しなければならないよ うな場合 は、 もちろんス ト レー トの垂直壁と しても良いし、 偏芯させて、 垂直な 部分と傾斜した部分を設けても良い。  A media discharge unit 3 is connected to the lower side of the furnace bottom unit 2, and the inner surface of the furnace bottom unit 2 in the gasification furnace is adapted to the size of the inlet of the medium discharge unit 3. Inclined and narrowed as a whole. If non-combustibles that could form a bridge due to such squeezing must be discharged, for example, incombustibles such as wire, the vertical wall of the straight plate can of course be used. Good or eccentric, vertical and inclined parts may be provided.
媒体排出装置ュニッ ト 3の下部には、 媒体排出装置 1 5が設置されて いる。 本ガス化炉においては、 媒体排出装置 1 5 と してスク リ ューコン べャを採用しているが、 不燃物の性状によつてはチェーンコンペャのよ うに横方向に排出できる排出装置を採用してもよい。 また、 本ガス化炉 において媒体排出装置 1 5は水平方向横向きに設置されているが、 上下 に傾斜させることもできる。  A medium discharge device 15 is provided below the medium discharge device unit 3. In this gasifier, a screw conveyor is used as the medium discharge device 15, but depending on the properties of incombustible materials, a discharge device that can discharge in the horizontal direction like a chain conveyor is used. May be. Further, in the present gasification furnace, the medium discharge device 15 is installed horizontally in the horizontal direction, but it can be tilted up and down.
さ らに、 媒体排出装置ュニッ ト 3の最下部で、 媒体排出装置 1 5 より 下方にはガスの吹き出しノズル 1 4が設けられている。 本ガス化炉の場 合、 このガスの吹き出しノズル 1 4は 1個であるが、 このノズルは、 媒 体排出装置ュニッ ト 3 と炉下ホッパュニッ ト 2 との接続部の口径の全面 にわたつてガスをゆきわたらせることが目的であるため、 必要に応じて 数を増やしても良い。 ガスの吹き出しノズル 1 4から吹き出すガスの風 力選別効果によ り不燃物の濃縮が期待できるので、 排出される流動媒体 の量も減り、 更に持ち出し熱量も減る。 In addition, at the bottom of the media ejection unit 3, A gas blowing nozzle 14 is provided below. In the case of the present gasification furnace, the number of nozzles 14 for blowing out this gas is one, but this nozzle extends over the entire diameter of the connection portion between the medium discharge unit unit 3 and the hopper unit 2 under the furnace. Since the purpose is to spread the gas, the number may be increased if necessary. Since the concentration of incombustibles can be expected due to the wind power sorting effect of the gas blown from the gas blowout nozzles 14, the amount of discharged fluid medium is reduced, and the amount of heat taken out is also reduced.
ガスの吹き出しノズル 1 4からは水蒸気又は C O 2又は酸素を含まない ガス 3 0を吹き出すが、 水蒸気と C 0 2を吹き込む場合はシュ一 ト内の流 動媒体中にカーボン粒子が含まれる場合は、 上記の吸熱反応によって更 に冷却効果を高めることができる。 If the nozzle 1 4 blowout gas is blown gas 3 0 containing no steam or CO 2, or oxygen, which contains carbon particles in liquidity medium in shoe one DOO When blowing steam and C 0 2 is The cooling effect can be further enhanced by the above-mentioned endothermic reaction.
C + H 2 0→C O + H 2 C + H 20 → CO + H 2
C + C 0 2→ 2 C O C + C 0 2 → 2 CO
もちろん同様の効果はガス吹き出しノズル 1 3から水蒸気又は C 0 2を 吹き込むことでも得ることができる。 Of course the same effect can be obtained even by blowing the steam or C 0 2 from the nozzle 1 3 gas blowing.
ノズル 1 3及びノズル 1 4から水蒸気を吹き込む場合、 吹き込む水蒸 気の温度は、 少なく ともガス化炉の運転圧力における飽和温度以下にな らないよ うにする必要がある。 媒体排出装置等も、 内部の温度が露点以 下に下がらないよう、 必要に応じて保温、 又はヒー ト ト レース等を行な つて、 結露を防止する必要がある。  When steam is blown from the nozzles 13 and 14, the temperature of the steam to be blown must be at least not lower than the saturation temperature at the operating pressure of the gasifier. It is necessary to prevent dew condensation by keeping the temperature of the media discharge device etc. below the dew point by keeping it warm or performing heat tracing as necessary.
図 1 A〜図 1 Cに示したガス化炉は、 各機能を担当する部分毎にュニ ッ ト化しているが、 もちろん全体を一体化して製作しても良い。 特に、 大型炉の場合は、 各部分が大きく メ ンテナンススペースも十分に取れ、 各ュニッ トを分割して点検するといった必要性がないので、 一体化して 製作しても良い。 伹し、 加圧下で使用する際は、 容積が小さく なり、 内 部点検等も困難になってく るので、 図 1 A〜図 1 Cのよ うなュニッ ト分 割型が有効となる場合がある。 The gasifiers shown in Fig. 1A to Fig. 1C are united for each part in charge of each function, but of course, they may be manufactured integrally. In particular, in the case of large furnaces, each part is large and sufficient maintenance space is available, and there is no need to divide and inspect each unit, so they can be manufactured integrally. However, when used under pressure, the volume will be Since part inspections are becoming more difficult, unit-split types such as those shown in Figs. 1A to 1C may be effective.
また、 ユニッ ト分割構造とする利点と して、 燃料性状によって容易に 構造を変更できる点が挙げられる。 例えば、 ガス化しにく く、 流動層内 での滞留時間を長く とる必要のある燃料に対しては、 層高を高くするた めに、 図 6に示すよ うにディフ レクタュニッ ト 5 と流動床ュニッ ト 1 の 間に直管部 1 a を追加して対応する。 また、 比重が小さ く、 層内滞留率 が低いためにフリーボ一 ド滞留時間を多く必要とする燃料に対しては、 図 7に示すよ うにフランジ部のやや上方から外方に膨らんだ形状とする ことにより内容積を大き く したフリーボードュニッ ト 4を用いる。 この ように、 種々の燃料に対して、 図 6及び図 7に示すよ うに、 必要な部分 のみを改造することによ り、 全体を改造することなく、 容易に対応する ことができる。  Another advantage of the unit split structure is that the structure can be easily changed depending on the fuel properties. For example, for fuels that are difficult to gasify and require a long residence time in the fluidized bed, to increase the bed height, the diffuser unit 5 and the fluidized bed unit as shown in Fig. 6 are used. A straight pipe section 1a is added between the points (1) and (2). In addition, for fuels that require a long freeboard residence time due to low specific gravity and low in-layer residence ratio, a shape that bulges out slightly above the flange as shown in Fig. 7 is used. Use the freeboard unit 4 whose internal volume has been increased. In this way, as shown in FIGS. 6 and 7, by modifying only necessary parts, various fuels can be easily handled without modifying the entire fuel.
図 2 A, 図 2 B, 図 2 Cは、 本発明による流動床ガス化炉の他の例を 示す矩形型流動床ガス化炉の構造を示す断面図である。 図 2 Aは流動床 ガス化炉の縦断面図、 図 2 Bは図 2 Aの A— A線断面図、 図 2 Cは図 2 Aの B— B線断面図である。  2A, 2B, and 2C are cross-sectional views showing the structure of a rectangular fluidized-bed gasifier showing another example of the fluidized-bed gasifier according to the present invention. 2A is a vertical cross-sectional view of the fluidized bed gasifier, FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A, and FIG. 2C is a cross-sectional view taken along line BB of FIG. 2A.
図 2 A〜図 2 Cにおいて、 図 1 A〜図 1 Cと同一の符号は同一の機能 の部材を示し、 その構造 · 作用等も同じである。  2A to 2C, the same reference numerals as those in FIGS. 1A to 1C denote members having the same functions, and the structures and operations thereof are also the same.
図 2 A〜図 2 Cに示す流動床ガス化炉においては、 流動床ュニッ ト 1 の外壁は矩形状に形成されている。 そして、 流動床ユニッ ト 1の内部に 配置された矩形上の流動化ガス分散装置 6は上面が山形に形成されてい る。 本実施例においては、 中央部と左右周辺部との間で、 左右対称な 2 つの内部旋回流 1 2が形成される。 流動床ユニッ ト 1 の内部、 流動化ガ ス分散装置 6の周辺上方には外側へ向けた流動媒体の排出口 1 6が設け られている。 この排出口 1 6の下方には流動化ガス分散装置 6 と流動床 ュニッ ト 1の内壁の間隙 2 0が形成されており、 この間隙 2 0は流動媒 体の排出シュー トと して機能するが、 この間隙 2 0は、 図 2 Bに示すよ うに 2つのシュー ト 2 0 a 、 2 0 b力 らなっている。 各シュー ト 2 0 a . 2 0 bの鉛直下方には、 それぞれ 3個のガス吹き出しノズル 1 3が設け られている。 In the fluidized bed gasifier shown in FIGS. 2A to 2C, the outer wall of the fluidized bed unit 1 is formed in a rectangular shape. The upper surface of the fluidizing gas dispersing device 6 on a rectangle arranged inside the fluidized bed unit 1 is formed in a mountain shape. In the present embodiment, two symmetrical internal swirling flows 12 are formed between the central portion and the left and right peripheral portions. Inside the fluidized bed unit 1 and above the periphery of the fluidized gas dispersing device 6, there is provided an outlet 16 for the fluidized medium facing outward. Have been. A gap 20 between the fluidizing gas dispersion device 6 and the inner wall of the fluidized bed unit 1 is formed below the outlet 16, and the gap 20 functions as a discharge shoot for the fluid medium. However, this gap 20 is composed of two shoots 20a and 20b as shown in FIG. 2B. Below each shoot 20a.20b, three gas blowing nozzles 13 are provided, respectively.
本実施例のその他の構成は、 図 1 A〜図 1 Cに示す例と同様である。 また本実施例の作用効果は図 1 A〜図 1 Cに示す例と同様である。  Other configurations of this embodiment are the same as those shown in FIGS. 1A to 1C. The operation and effect of this embodiment are the same as those of the embodiment shown in FIGS. 1A to 1C.
図 3は、 本発明による流動床ガス化炉を加圧下で使用する場合の、 ガ ス化炉周りの構成機器の 1例を示した全体構成図である。 図 1 A〜図 1 C及び図 2 A〜図 2 Cに示す構造を有するガス化炉 1 0 1 の下部の媒体 排出装置ュニッ トの下流には、 圧力シール用のロ ックホッパ 1 0 2が接 続されており、 このロ ックホッノ 1 0 2の下流には振動篩 1 0 3が設け られている。 振動篩 1 0 3により不燃物 6 1 と流動媒体 6 0を篩い分け. 不燃物 6 1は系外へ排出し、 流動媒体 6 0は再び炉内に戻される。 振動 篩 1 0 3によ り篩い分けられた流動媒体 6 0は、 流動媒体搬送コンペャ 1 0 4によって搬送され、 流動媒体供給用ロックホッパ 1 0 5を経由し て流動媒体供給コンべャ 1 0 6にてガス化炉 1 0 1内に戻される。 この ような機器構成で使用する場合、 ロ ックホッパ 1 0 2までは加圧され、 結露し易いので、 保温 · スチーム トレースといった結露防止対策を施す のが望ま しい。  FIG. 3 is an overall configuration diagram showing one example of components around a gasification furnace when the fluidized-bed gasification furnace according to the present invention is used under pressure. A lock hopper 102 for pressure sealing is connected to the lower part of the gas discharge furnace unit at the lower part of the gasifier 101 having the structure shown in FIGS. 1A to 1C and FIGS. 2A to 2C. A vibrating sieve 103 is provided downstream of the rock hohno 102. The non-combustible material 6 1 and the fluid medium 60 are sieved by the vibrating sieve 103. The non-combustible material 61 is discharged out of the system, and the fluid medium 60 is returned to the furnace. The fluid medium 60 sieved by the vibrating sieve 103 is conveyed by the fluid medium conveyer 104, and passes through the fluid medium supply lock hopper 105 to supply the fluid medium conveyer 10. At 6 it is returned into the gasifier 101. When used in such a device configuration, up to the lock hopper 102 is pressurized and dew condensation easily occurs. Therefore, it is desirable to take dew condensation prevention measures such as heat retention and steam tracing.
図 4は、 本発明による流動床ガス化炉を加圧下で使用する場合の、 ガ ス化炉周りの構成機器の他の例を示した全体構成図である。 図 3 と同様 に流動媒体搬送コンペャ 1 0 4によって搬送された流動媒体は、 一旦流 動媒体ホツバ 1 0 7に受け入れられ、 媒体定量払出機 1 0 8によって流 量を調整され、 切り替えシュー ト 1 0 9を切り替えることによって、 流 動媒体供給用ロックホッパ 1 0 5だけでなく、 燃料供給用ロ ックホッパ 1 1 0側から燃料 5 0 と ともに供給コンべャ 1 1 1 にて炉内に供給する こと も可能になる。 FIG. 4 is an overall configuration diagram showing another example of components around the gasification furnace when the fluidized-bed gasification furnace according to the present invention is used under pressure. The fluid medium conveyed by the fluid medium conveyer 104 as in FIG. 3 is once received by the fluid medium hobber 107 and then discharged by the medium quantitative dispenser 108. By adjusting the quantity and switching the switching shoot 109, not only the fluid medium supply lock hopper 105 but also the fuel supply lock hopper 110 and the fuel conveyor 50 together with the fuel 50 are supplied. It is also possible to supply into the furnace at 11.
図 5は、 本発明を常圧で使用する場合の、 ガス化炉周りの機器構成を 示した全体構成図である。 ガス化炉 1 0 1から排出された不燃物と流動 媒体の混合物は、 コンペャ 1 0 4にて搬送され、 振動篩 1 0 3にて不燃 物 6 1 と流動媒体 6 0に篩い分けられる。 その後、 流動媒体 6 0は流動 媒体供給コンペャ 1 0 6にてガス化炉 1 0 1 に供給される。 燃料中に流 動媒体を形成するよ うな、 小粒径の不燃物が多い場合には、 切り替えシ ユー ト 1 0 9にて流路を切り替え、 余剰の流動媒体を流動媒体ホッパ 1 0 7側に貯留し、 必要に応じて定量払出機 1 0 8にて流動媒体供給コン べャ 1 0 6に払い出し、 炉内に投入する。  FIG. 5 is an overall configuration diagram showing a device configuration around a gasification furnace when the present invention is used at normal pressure. The mixture of the incombustible material and the fluid medium discharged from the gasification furnace 101 is conveyed by the conveyer 104 and sieved by the vibrating sieve 103 into the incombustible material 61 and the fluid medium 60. Thereafter, the fluidized medium 60 is supplied to the gasifier 101 by the fluidized medium supply conveyer 106. If there are many non-combustible materials with a small particle size, such as forming a fluid medium in the fuel, the flow path is switched by the switching shot 109 and the excess fluid medium is supplied to the fluid medium hopper 107 side. And discharged to a fluid medium supply conveyor 106 by a fixed-rate dispenser 108 as needed, and put into the furnace.
図 5に示すシステムのよ うに流動媒体抜出し部にシール機構をもたな い場合、 特に注意しなければならないのは、 ガス化炉 1 0 1 の最下部か ら投入した蒸気が流動床部ではなく、 搬送コンべャ 1 0 4側に流れる可 能性があることである。 このよ うな流れが生じると、 蒸気が搬送コンペ ャ内で凝縮し、 流動媒体が湿気を帯びハン ドリ ング性が悪化したり、 流 動媒体中に含まれる石灰石や石膏の微粉が固着する原因になったりする だけでなく、 蒸気が流動床部に向かって流れないことにより、 本来果た すべきパージ機能が失われ、 流動媒体抜出しシユート部におけるタール やチヤ一による トラブルを引き起こす恐れがある。  In the case where there is no sealing mechanism at the fluidized medium outlet as in the system shown in Fig. 5, it is particularly important to pay attention to the fact that the steam input from the bottom of the gasifier Therefore, there is a possibility of flowing to the conveyor 104 side. When such a flow occurs, steam condenses in the conveyor, causing the flowing medium to become moist and impairing the handlability, and causing the limestone and gypsum fines contained in the flowing medium to adhere. In addition to this, the steam does not flow toward the fluidized bed, and the purging function that should be performed is lost, which may cause troubles such as tar and char in the fluid medium discharge section.
従って、 ガス化炉 1 0 1 の最下部から投入した蒸気が、 確実に流動床 に向かって流れるよ うな工夫を施す必要がある。 その一つの方法と して は、 搬送コンペャ 1 0 4のコンペャ形式を、 流動媒体が内部に充満する タイプのコンペャにすることである力 S、 このタイプのコンペャは常に内 部の流動媒体をかき混ぜなければならないために、 所要動力が大き く な るといった問題がある。 も う 1つの方法と しては、 ガス化炉 1 0 1 の下 部の流動媒体排出コンべャの出口 と搬送コンべャ 1 0 4の間にシール用 ダンパを設けることである。 この方式は流動媒体の排出をしつつ、 シ一 ルを維持する機能が必要であり、 ダブルダンバ方式とするのが望ま しい が、 流動媒体排出コンペャの運転、 停止と連動させたシングルダンバで もある程度の効果は期待できる。 Therefore, it is necessary to take measures to ensure that the steam introduced from the bottom of the gasifier 101 flows toward the fluidized bed. One of the methods is to use a conveyor type of conveyor 104, which is filled with a fluid medium. Force S, which is a type of conveyor, this type of conveyor has the problem that the required power is large because the internal fluid medium must be constantly stirred. Another method is to provide a sealing damper between the outlet of the fluidized medium discharge conveyor below the gasification furnace 101 and the transfer conveyor 104. This method requires a function to maintain the seal while discharging the fluid medium, and it is desirable to use a double damper method.However, even a single damper linked to the operation and stoppage of the fluid medium discharge conveyer is desirable. The effect can be expected.
本発明によれば、 次のよ うな効果を奏することができる。  According to the present invention, the following effects can be obtained.
( 1 ) 不燃物の抜出し方向が流動床炉からみて、 放射状外向き、 又は外 向きであるため、 不燃物が絡まったり、 ブリ ッジングすることがなく、 不燃物の排出が容易である。  (1) The direction of withdrawal of incombustibles is radially outward or outward when viewed from the fluidized-bed furnace, so that incombustibles are not entangled or bridged, and discharge of incombustibles is easy.
( 2 ) 各シュ一 ト下部に設けたノズルから水蒸気又は C O 2又は酸素を含 まないガスを吹き込み、 流動媒体を激しく流動化させることによって不 燃物を煽ることができ、 これにより シユ ート部での閉塞トラブルを解消 することができる。 (2) Steam or gas containing no CO 2 or oxygen is blown from a nozzle provided at the lower part of each shot, and the fluid medium is vigorously fluidized, so that incombustibles can be fueled. This can eliminate blockage troubles in parts.
( 3 ) 各シュー ト下部、 及び媒体排出装置ユニッ トの最下部に設けたノ ズルから、 蒸気又は不活性ガス (C O 2又は酸素を含まないガスからな る) を吹き込むことによって、 不燃物及び流動媒体の顕熱を蒸気との直 接熱交換によって回収し、 炉内に還元することができる。 (3) By injecting steam or inert gas (consisting of CO 2 or gas containing no oxygen) from the nozzles provided at the bottom of each shoot and at the bottom of the media discharge unit, incombustible substances and The sensible heat of the fluidized medium can be recovered by direct heat exchange with the steam and reduced in the furnace.
( 4 ) 同時に蒸気又は不活性ガスによるシュー トパージ機能により、 気 化したタールのシユー ト部への進入を防止でき、 流動媒体冷却後のター ルによる諸トラブルを防止できる。  (4) Simultaneously, the shoot purge function using steam or inert gas can prevent vaporized tar from entering the shot section, and prevent various problems caused by tar after cooling the fluid medium.
( 5 ) また、 燃料性状と してチヤ一が蓄積し易く、 層内に大量のチヤ一 を含有するよ うな場合でも、 蒸気又は不活性ガスによる効果でシユ ー ト 部分には酸素の進入がないので、 シュー ト内でのチヤ一燃焼によるク リ ンカ トラブルを防止できる。 (5) In addition, even if fuel tends to accumulate as a fuel and a large amount of fuel is contained in the formation, the effect of steam or inert gas may cause a short-circuit. Since there is no ingress of oxygen into the part, it is possible to prevent a cleaning problem due to char combustion in the shoot.
( 6 ) また、 同時にシュー トより下方への生成ガスの進入を防止できる ので、 仮に塩化水素のよ うに、 結露すると激しい腐食性を持つガスが発 生するよ うな燃料をガス化する場合でも、 腐食の心配が無い。  (6) At the same time, because the generated gas can be prevented from entering below the shoot, even if the fuel is gasified, such as hydrogen chloride, which produces a highly corrosive gas when dew forms, such as hydrogen chloride. No need to worry about corrosion.
( 7 ) 更に、 炉外に排出すべき不燃物及び流動媒体を蒸気又は不活性ガ スで冷却できるので、 媒体排出装置に耐熱、 耐食用の高級材料を使う必 要がなく、 安価にできる。  (7) Furthermore, since incombustibles and fluid medium to be discharged outside the furnace can be cooled by steam or inert gas, the medium discharge device does not need to use high-grade materials for heat and corrosion resistance, and can be inexpensive.
( 8 ) また、 加圧下で使用する場合でも、 媒体排出装置下流の圧力シー ル部の温度を下げられるので、 口 ックホッパ等の単純な機器での圧力シ ールが可能になる。  (8) Further, even when using under pressure, the temperature of the pressure seal portion downstream of the medium discharge device can be lowered, so that pressure seal with a simple device such as a mouth hopper can be performed.
( 9 ) 万が一、 ク リ ン力 トラブル等により大粒径の塊が発生しても、 媒 体排出装置による強制排出機能によ り、 大粒径の塊が破壊され適当な大 きさに破砕されるので、 流動媒体排出系に閉塞 トラブルを生じない。 産業上の利用の可能性  (9) Even if a large-sized lump is generated due to cleaning power trouble, etc., the large-sized lump is destroyed and crushed to an appropriate size by the forced discharge function of the medium discharge device. As a result, clogging trouble does not occur in the fluid medium discharge system. Industrial applicability
本発明は、 流動床を用いて、 廃棄物や石炭等の燃料からガスを生成す る装置に好適に利用される。  INDUSTRIAL APPLICATION This invention is used suitably for the apparatus which produces | generates gas from fuels, such as waste and coal, using a fluidized bed.

Claims

請求の範囲 The scope of the claims
1 . 流動層反応装置を用いる流動床ガス化炉であって、 流動床の床面近 傍に流動媒体の排出口を有し、 該排出口は下方に向かう流動媒 ί本排出シ ユ ー トに接続されると共に、 該シユ ー トの下方にガス吹き出し装置を有 するこ とを特徴とする流動床ガス化炉。 1. A fluidized-bed gasification furnace using a fluidized-bed reactor, which has an outlet for a fluidized medium near a floor of a fluidized bed, and the outlet is a downwardly-discharged fluidized-medium shut-off unit. A fluidized-bed gasification furnace, characterized in that the gasification furnace is connected to a gas blower and has a gas blowing device below the shot.
2 . 前記流動媒体排出シュー トの最下部近傍には、 機械的に流動媒体を 抜出す装置を有することを特徴とする請求項 1 に記載の流動床ガス化炉( 2. The fluidized bed gasifier (2 ) according to claim 1, further comprising a device for mechanically extracting the fluidized medium near the lowermost portion of the fluidized medium discharge shoot.
3 . 前記流動媒体排出シュー トは、 最下部にガス吹き出し装置を有する ことを特徴とする請求項 1又は 2に記載の流動床ガス化炉。 3. The fluidized-bed gasification furnace according to claim 1, wherein the fluidized medium discharge shoot has a gas blowing device at a lowermost portion.
4 . 前記ガス吹き出し装置は、 吹き出すガスと して水蒸気又は二酸化炭 素又は酸素を含まないガスを用いることを特徴とする請求項 1又は 2又 は 3に記載の流動床ガス化炉。 4. The fluidized bed gasification furnace according to claim 1, wherein the gas blowing device uses a gas containing no steam, carbon dioxide or oxygen as the gas to be blown.
5 . 前記流動媒体抜出装置は、 スク リ ューコンペャを用いることを特徴 とする請求項 2又は 3又は 4に記載の流動床ガス化炉。 5. The fluidized-bed gasifier according to claim 2, 3, or 4, wherein the fluid medium extracting device uses a screw conveyor.
6 . 前記流動層反応装置は、 機能別に各ュニッ トに分割され、 各ュニッ トの組み合わせを変えることによって性状の異なる燃料に容易に対応で きるように構成されることを特徴とする請求項 1 〜 5のいずれか 1項に 記載の流動床ガス化炉。 6. The fluidized bed reactor is divided into units according to functions, and is configured to easily cope with fuels having different properties by changing the combination of the units. The fluidized bed gasifier according to any one of claims 1 to 5.
PCT/JP1999/000946 1998-02-27 1999-02-26 Fluidized bed gasification furnace WO1999043985A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99906525A EP1058051B1 (en) 1998-02-27 1999-02-26 Fluidized bed gasification furnace
AU26419/99A AU2641999A (en) 1998-02-27 1999-02-26 Fluidized bed gasification furnace
DE69926217T DE69926217T2 (en) 1998-02-27 1999-02-26 FLUIDIZED BED GASIFICATION FURNACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/61886 1998-02-27
JP6188698 1998-02-27

Publications (1)

Publication Number Publication Date
WO1999043985A1 true WO1999043985A1 (en) 1999-09-02

Family

ID=13184087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000946 WO1999043985A1 (en) 1998-02-27 1999-02-26 Fluidized bed gasification furnace

Country Status (5)

Country Link
EP (1) EP1058051B1 (en)
CN (1) CN1239841C (en)
AU (1) AU2641999A (en)
DE (1) DE69926217T2 (en)
WO (1) WO1999043985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145725A1 (en) * 2012-03-30 2013-10-03 株式会社神鋼環境ソリューション Apparatus for supplying fluid particles to fluidized-bed gasification furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385923B1 (en) * 2001-04-19 2006-05-31 Ebara Corporation Gasification apparatus and method of operating the same
JP2004212032A (en) * 2002-11-15 2004-07-29 Ebara Corp Fluidized bed gasification furnace
JP5694690B2 (en) * 2010-06-22 2015-04-01 株式会社神鋼環境ソリューション Fluidized bed furnace and waste treatment method
CN102051247A (en) * 2010-12-11 2011-05-11 水煤浆气化及煤化工国家工程研究中心 Assistant for improving viscosity-temperature characteristics of coal
CN109185869B (en) * 2018-09-05 2019-12-20 江西黄龙油脂有限公司 Fluidized boiler with layered combustion chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843318A (en) * 1981-09-09 1983-03-14 Ebara Corp Discharging device for fluidized bed incinerator
JPS59197715A (en) * 1983-04-25 1984-11-09 Babcock Hitachi Kk Fluidized-bed incinerator with foreign matter discharge port being sealed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397657A (en) * 1965-11-01 1968-08-20 Tada Mitsuru Apparatus for continuously burning wastes
CA1285375C (en) * 1986-01-21 1991-07-02 Takahiro Ohshita Thermal reactor
JPS6370008A (en) * 1986-09-10 1988-03-30 Babcock Hitachi Kk Growing fluid medium discharge system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843318A (en) * 1981-09-09 1983-03-14 Ebara Corp Discharging device for fluidized bed incinerator
JPS59197715A (en) * 1983-04-25 1984-11-09 Babcock Hitachi Kk Fluidized-bed incinerator with foreign matter discharge port being sealed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1058051A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145725A1 (en) * 2012-03-30 2013-10-03 株式会社神鋼環境ソリューション Apparatus for supplying fluid particles to fluidized-bed gasification furnace

Also Published As

Publication number Publication date
AU2641999A (en) 1999-09-15
DE69926217D1 (en) 2005-08-25
CN1295661A (en) 2001-05-16
EP1058051A4 (en) 2001-09-19
CN1239841C (en) 2006-02-01
EP1058051A1 (en) 2000-12-06
EP1058051B1 (en) 2005-07-20
DE69926217T2 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
FI85909B (en) ANORDNING FOER FOERGASNING ELLER FOERBRAENNING AV FAST KOLHALTIGT MATERIAL.
KR100325282B1 (en) Fuel and sorbent feed for circulating fluidized bed steam generator
KR950009002B1 (en) Process and device for the gasification of materials and or for reforming a gas, plus a high-temperature heat-exchanger for carrying out the process
KR102203125B1 (en) Second stage gasifier in staged gasification
US20130312328A1 (en) Method and apparatus for particle recycling in multiphase chemical reactors
CN101977675B (en) Method and device for metered removal of a fine-grained to coarse-grained solid material or solid material mixture from a storage container
JP3118630B2 (en) Coal gasifier
RU2607662C2 (en) Method and device for gasification of solid combustible materials under pressure in stationary layer
JP4660874B2 (en) Operation control method for waste two-stage gasification system
WO1999043985A1 (en) Fluidized bed gasification furnace
JP2004212032A (en) Fluidized bed gasification furnace
JP4342133B2 (en) Processed product supply apparatus and method
JP2006322004A (en) Two-step gasification system of waste material
JP3342083B2 (en) Spouted bed coal gasifier
JP2540284B2 (en) Coal gasifier
JP2000319670A (en) Two-stage waste gasification system
JPH0581637B2 (en)
JPS60143822A (en) Conveyor for solid grain
JPH0626612A (en) Method for burning liquid fuel in circulation type fluidized bed
UA47498C2 (en) A method of re-circulation of fine-grained solids discharged from a reaction vessel with a carrier-gas and a device to realize it
FI84655B (en) Method and device for gasification or combustion of a solid carbon-containing material
JPH0778223B2 (en) Gasification furnace
JPH02282602A (en) Fluidized bed device
JPH11286688A (en) Coal thermal decomposition
JPH11116972A (en) Foreign matter separator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99804459.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1999906525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09623049

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999906525

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1999906525

Country of ref document: EP