WO2013145725A1 - Apparatus for supplying fluid particles to fluidized-bed gasification furnace - Google Patents

Apparatus for supplying fluid particles to fluidized-bed gasification furnace Download PDF

Info

Publication number
WO2013145725A1
WO2013145725A1 PCT/JP2013/002060 JP2013002060W WO2013145725A1 WO 2013145725 A1 WO2013145725 A1 WO 2013145725A1 JP 2013002060 W JP2013002060 W JP 2013002060W WO 2013145725 A1 WO2013145725 A1 WO 2013145725A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized
particle
particles
fluid
opening
Prior art date
Application number
PCT/JP2013/002060
Other languages
French (fr)
Japanese (ja)
Inventor
博之 細田
卓也 河合
諒 早川
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Publication of WO2013145725A1 publication Critical patent/WO2013145725A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • F23C10/26Devices for removal of material from the bed combined with devices for partial reintroduction of material into the bed, e.g. after separation of agglomerated parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
    • F23C10/32Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed by controlling the rate of recirculation of particles separated from the flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration

Definitions

  • the present invention relates to a fluidized particle supply apparatus for supplying the fluidized particles into a fluidized bed gasification furnace that takes out combustible gas from the wastes by heating the wastes in a fluidized bed in which fluidized particles are fluidized. Is.
  • Patent Document 1 Conventionally, a gasification system disclosed in Patent Document 1 is known.
  • this gasification system as shown in FIG. 3, the fluidized particles discharged together with incombustibles from the fluidized bed gasifier 100 are returned to the fluidized bed gasifier 100. Thereby, the fluidized particles are circulated and used. Specifically, it is as follows.
  • the fluidized bed gasification furnace 100 has fluidized particles (eg, cinnabar sand) inside the furnace, and heats the waste in the fluidized bed 102 in which the fluidized particles are fluidized. Thereby, the fluidized bed gasification furnace 100 takes out combustible gas (pyrolysis gas) from waste. In the fluidized bed gasifier 100, the waste, incombustibles and the like after the combustible gas is taken out are discharged out of the fluidized bed gasifier 100 together with the fluidized particles. The fluidized particles discharged out of the furnace together with the incombustible material and the like are separated from the incombustible material and the like by the separation device 104. Thereafter, the fluidized particles are returned to the fluidized bed gasification furnace 100 by the fluidized particle circulation elevator 106 or the like, and constitute the fluidized bed 102 again.
  • fluidized particles eg, cinnabar sand
  • the fluidized bed gasification furnace 100 has a fluidized particle injection valve 108 at a site where the fluidized particles discharged together with incombustibles and the like are returned (input) into the fluidized bed gasification furnace 100 again. Is provided.
  • the fluidized bed gasification furnace 100 prevents the unnecessary air from flowing into the fluidized bed gasification furnace 100 by closing the fluidized particle input valve 108.
  • the fluidized particles are charged with the fluidized particle charging valve 108 open.
  • air from the outside flows into the fluidized bed gasification furnace 100 from the fluidized particle injection valve 108 in an open state together with fluidized particles.
  • An object of the present invention is to provide a fluidized bed gasifier capable of preventing external air from flowing into the furnace from the fluidized particle injection site when the fluidized particles are charged into the fluidized bed gasifier. It is to provide a fluidized particle supply device.
  • a fluidized particle supply device for supplying fluidized particles into a fluidized bed gasification furnace from a particle input unit provided in the fluidized bed gasification furnace, wherein the fluidized particles are A conveyor casing having an opening for receiving and having a cylindrical peripheral wall extending to the particle input portion at a position horizontally separated from the opening; and rotatably accommodated in the conveyor casing; A screw shaft capable of transporting the fluidized particles supplied from the opening into the conveyor casing through the rotation to the particle charging unit, and disposed above the opening, and can be filled with the fluidized particles therein.
  • a fluidized particle reservoir that feeds the filled fluidized particles from the opening into the conveyor casing so as to be stacked on the fluidized particles in the conveyor casing; Equipped with a. And the said conveyor casing inclines so that the said particle insertion part side may become an upper position rather than the said opening part side.
  • FIG. 1 is a block diagram of a gasification system according to the present embodiment.
  • FIG. 2 is a schematic configuration diagram of the fluidized particle supply device according to the present embodiment.
  • FIG. 3 is a block diagram of a conventional gasification and melting system.
  • the fluidized particle supply apparatus of the present embodiment supplies fluidized particles to, for example, a fluidized bed gasification furnace used in a gasification system that extracts combustible gas from waste.
  • a fluidized bed gasification furnace used in a gasification system that extracts combustible gas from waste.
  • the gasification system 10 will be described with reference to FIG. Thereafter, the fluidized particle supply apparatus will be described.
  • the gasification system 10 includes a fluidized bed type gasification furnace 11, a fluidized particle circulation unit 20, and a gas processing unit 30.
  • a fluidized bed gasification furnace (hereinafter, also simply referred to as “gasification furnace”) 11 heats waste by a fluidized bed 18 in which fluidized particles are fluidized, and combustible gas (pyrolysis gas) from the waste. ).
  • the gasification furnace 11 includes a furnace main body 12 having fluidized particles therein, a waste supply unit 13 for introducing waste into the furnace main body 12, fluidized particles in the furnace main body 12, and waste And an air supply unit 14 for supplying air for burning an object.
  • a discharge part 15 for discharging a mixture such as waste after the flowing particles, incombustibles, and combustible gas are taken out is provided in the lower part of the furnace body 12.
  • An exhaust part 16 for discharging the combustible gas generated from the waste is provided at the upper part of the furnace body 12.
  • a particle introduction portion 17 for introducing fluidized particles from above the fluidized bed 18 is provided at an intermediate portion in the height direction of the furnace body 12.
  • the fluidized particles are particles for forming the fluidized bed 18 inside the furnace body 12 and heating the waste. That is, the fluidized particles are heated by the combustion of a part of the waste and become high temperature, and the fluidized particles at the high temperature are mixed with the waste, thereby gasifying the waste and generating combustible gas. .
  • the fluidized particles of this embodiment are, for example, silica sand. More specifically, the fluidized particles are, for example, cinnabar No. 4 or cinnabar No. 5.
  • the cinnabar No. 4 is, for example, a particle having a particle size distribution and mainly containing particles having a particle diameter of 0.425 mm to 1.2 mm (mainly composed of silica).
  • the particle size of 0.425 mm to 0.60 mm is 8.0%
  • the particle size of 0.60 mm to 0.85 mm is 71.7%
  • the particle size is 0.85 mm.
  • Those with ⁇ 1.00 mm are 15.1% and those with 1.00 mm to 1.2 mm are 4.7%.
  • the cinnabar No. 5 is, for example, a particle (contaminated sand) mainly composed of silica having a particle size distribution mainly including a particle size of 0.30 mm to 0.8 mm.
  • the particle size of 0.30 mm to 0.425 mm is 18.6%
  • the particle size of 0.425 mm to 0.60 mm is 54.2%
  • the particle size is 0.60 mm. It is 19.7% for ⁇ 0.80 mm.
  • the fluidized particle circulation unit 20 includes an incombustible material discharge device 21, a fluidized particle circulation elevator 22, a fluidized particle storage tank 23, and a fluidized particle supply device 40.
  • the fluidized particle circulation unit 20 returns the fluidized particles discharged from the furnace body 12 to the furnace body 12 again.
  • the incombustible discharge device 21 separates fluid particles and noncombustibles from the mixture discharged from the discharge section 15 of the furnace body 12.
  • the fluid particle conveyor 24 conveys the fluid particles separated from the mixture by the incombustible discharge device 21 to the fluid particle circulation elevator 22.
  • the incombustible material conveyor 25 conveys the incombustible material or the like separated from the mixture by the incombustible material discharge device 21 to the incombustible material yard 26.
  • the fluidized particle circulation elevator 22 transports the fluidized particles separated by the incombustible discharge device 21 to a position above the particle charging unit 17 of the furnace body 12.
  • the fluid particle circulating elevator 22 switches the first damper 22a and the second damper 22b so that the fluid particles conveyed to the upper position are fluidized particle supply device 40, fluid particle storage tank 23, or incombustible material yard 26.
  • the fluid particle circulating elevator 22 normally supplies fluid particles to the fluid particle supply device 40.
  • the fluidized particle circulating elevator 22 is stopped or the conveying speed of the fluidized particle conveyor 24 is decreased.
  • the balance of the amount of fluid particles at the storage site is maintained.
  • the fluidized particles having a larger particle size due to the adhesion of incombustibles and ash increase, thereby deteriorating the fluidized state of the fluidized bed 18.
  • the fluidized particles having a particle size larger than a predetermined value are sieved in the incombustible discharge device 21 and supplied to the incombustible yard 26.
  • the fluidized particle storage tank 23 stores a predetermined amount of fluidized particles. And at the time of starting of the furnace main body 12, when the quantity of the fluid particle
  • the gas processing unit 30 includes a gas reforming furnace 31, a gas cooler 32, a bag filter 33, and an induction fan 34.
  • the gas processing unit 30 performs a reforming process on the pyrolysis gas (a gas containing a combustible gas) discharged from the gasification furnace 11.
  • the gas reforming furnace 31 reforms (cracks) the pyrolysis gas discharged from the gasification furnace 11 to decompose tar and the like contained in the pyrolysis gas. Thereby, the gas reforming furnace 31 is made into a property (combustible gas) that allows the pyrolysis gas to be reused as fuel gas or raw material gas.
  • the gas cooler 32 cools the combustible gas reformed in the gas reforming furnace 31.
  • the bag filter 33 removes dust, dust and the like from the combustible gas after cooling.
  • the induction fan 34 attracts the pyrolysis gas generated in the gasification furnace 11 to the gas processing unit 30. When the pyrolysis gas is attracted from the gasification furnace 11 (furnace main body 12) by the induction fan 34, the pressure in the gasification furnace 11 becomes atmospheric pressure or less.
  • the combustible gas reformed in the above gas processing unit 30 is supplied as fuel to a gas turbine, a gas engine, a gas boiler, or the like at the subsequent stage.
  • the fluidized particle supply device 40 includes a fluidized particle storage unit 42, a fluidized particle transport unit 44, and a control unit 46.
  • the fluid particle storage unit 42 stores the fluid particles supplied from the fluid particle circulation elevator 22 and supplies the stored fluid particles to the fluid particle transport unit 44.
  • the fluidized particle reservoir 42 is provided on the reservoir main body 421, the connection part 422 connecting the reservoir main body 421 and the fluidized particle transport unit 44, and the upper part of the reservoir main body 421, and flows into the reservoir main body 421.
  • a charging unit 423 capable of charging particles and a plurality (four in this embodiment) of level meters 424a, 424b, 424c, 424d attached to the storage unit main body 421 are provided.
  • the storage unit main body 421 has a hollow column shape extending vertically, and stores fluid particles inside the storage unit main body 421.
  • connection part 422 connects the lower end part of the storage part main body 421 and the screw conveyor 441. Thereby, the inside of the storage unit main body 421 communicates with the inside of the screw conveyor 441 in the fluid particle transport unit 44.
  • Each level meter 424a, 424b, 424c, 424d is in contact with the upper end position (the height position of the boundary surface between the stored flow particle and the space above it) of the flow particle stored in the storage unit main body 421. Detect without contact.
  • level meters 424a, 424b, 424c, and 424d for example, a capacitance type level meter, a paddle type level meter, a laser type level meter, or the like is used.
  • Each level meter 424a, 424b, 424c, 424d outputs a detection signal when it detects the upper end position.
  • four level meters (a first level meter 424a, a second level meter 424b, a third level meter 424c, and a fourth level meter 424d) are attached to the storage unit main body 421.
  • the four level meters 424a, 424b, 424c, 424d are arranged in a line at intervals in the vertical direction.
  • level meter 424a, 424b, 424c, 424d of this embodiment is provided in the horizontal plane direction (same height position), it is not limited to this arrangement. That is, a plurality of level meters may be provided in the horizontal plane direction (same height position). Thereby, the misdetection of the level meter due to the deviation of the flowing particles in the reservoir main body 421 can be prevented.
  • a plurality of level meters are provided at the same height position (in this embodiment, for example, the height positions of the level meters 424a and 424b) in the lower stage (lower part of the storage unit main body 421). According to such a configuration, erroneous detection of the level meter is effectively prevented.
  • the fluid particle transport unit 44 includes a screw conveyor 441 and a drive unit 442 that drives the screw conveyor 441.
  • the screw conveyor 441 includes a conveyor casing 443, a screw shaft 444 accommodated inside the conveyor casing 443, and a plurality of support portions 448.
  • the conveyor casing 443 includes a casing main body 445, an inspection port portion 446, and a fluid particle discharge portion 447.
  • the casing body 445 has a cylindrical peripheral wall. Both ends of the peripheral wall are closed.
  • the connection part 422 of the fluidized particle storage part 42 is connected to an opening 445 a provided at the upper end part of one end part (the left end part in FIG. 2) of the casing body 445.
  • the inside of the storage unit main body 421 and the inside of the casing main body 445 communicate with each other through the connection unit 422.
  • the inspection opening 446 is an opening provided at the upper end of the other end of the casing body 445 (the end opposite to the one end: the right end in FIG. 2).
  • a lid 446 a is attached to the inspection port portion 446. When the lid 446a is removed, the inside of the casing body 445 can be inspected from the inspection port portion 446.
  • the fluidized particle discharge unit 447 discharges the fluidized particles in the casing body 445 into the particle input unit 17 of the furnace body 12.
  • the fluidized particle discharger 447 connects the lower end of the other end of the casing body 445 and the particle charging part 17 of the furnace body 12.
  • the inside of the casing body 445 communicates with the inside of the furnace body 12.
  • the fluid particle discharge unit 447 is connected to the particle input unit 17 in an airtight state.
  • the inside of the fluid particle storage part 42 communicates with the inside of the casing main body 445 and the inside of the fluid particle discharge part 447 in an airtight state through the inside of the fluid particle discharge part 447.
  • the plurality of support portions 448 have the casing main body 445 arranged so that the end on the fluid particle discharge portion 447 side (particle input portion 17 side) is positioned above the end on the connection portion 422 side of the fluid particle storage portion 42. Support in an inclined position. Specifically, the plurality of support portions 448 support the casing body 445 such that the central axis of the casing body 445 is, for example, 15 ° with respect to the horizontal.
  • the angle of the central axis of the casing body 445 with respect to the horizontal is preferably 10 ° to 45 °. When the angle of the central axis is 10 ° to 45 °, there is no significant difference in the material sealing effect due to the compaction of the flowing particles in the casing body 445. On the other hand, when the angle of the central axis is less than 10 °, the material sealing effect due to the compaction of the fluidized particles in the casing body 445 is reduced, and air flows in the casing body 445.
  • the screw shaft 444 includes a shaft main body 444a extending in the same direction as the casing main body 445, and screw (spiral) blades 444b provided on the peripheral surface of the shaft main body 444a.
  • the screw shaft 444 is housed inside the casing body 445 so as to be rotatable around the central axis of the shaft body 444a.
  • the driving unit 442 is connected to a screw shaft 444 (shaft body 444a) housed in the casing body 445.
  • the drive unit 442 rotates the screw shaft 444 based on the instruction signal from the control unit 46.
  • the drive unit 442 rotates the screw shaft 444, the fluidized particles are conveyed inside the casing body 445 from the end on the fluidized particle storage unit 42 side toward the end on the fluidized particle discharge unit 447 side.
  • the control unit 46 is connected to each level meter 424a, 424b, 424c, 424d and the drive unit 442.
  • the control unit 46 outputs an instruction signal to the drive unit 442, the fluidized particle circulating elevator 22, the waste supply unit 13, and the like based on the detection signals from the level meters 424a, 424b, 424c, 424d. Specifically, it is as follows.
  • An amount of fluidized particles is stored in the fluidized particle storage unit 42 at the start of operation of the fluidized bed gasifier 11 so that the upper end position of the fluidized particles is between the second level meter 424b and the third level meter 424c. Has been. And the control part 46 drives the fluid particle supply apparatus 40 and the elevator 22 for fluid particle circulation.
  • the control unit 46 receives a detection signal from the second level meter 424b. Then, the control unit 46 outputs an instruction signal for stopping the driving unit 442 (that is, stopping the fluidized particle supply device 40) toward the driving unit 442. Thereby, the fall of the upper end position of the fluidized particle in the storage part main body 421 stops, and the material seal effect by the fluidized particle from the fluidized particle storage part 42 to the casing main body 445 is maintained.
  • the difference between the supply amount of the fluid particles from the fluid particle supply device 40 to the furnace body 12 and the supply amount of the fluid particles from the fluid particle circulation elevator 22 to the reservoir main body 421 is very large.
  • the control unit 46 receives the detection signal from the first level meter 424a, and then receives an instruction signal for stopping the waste supply unit 13. Output to the waste supply unit 13 to stop the supply of waste into the furnace body 12. Thereby, the production amount of the combustible gas in the furnace body 12 is reduced.
  • the control unit 46 receives a detection signal from the third level meter 424c. Then, the control unit 46 outputs an instruction signal for driving the drive unit 442 (that is, operating the fluidized particle supply device 40) to the drive unit 442.
  • the control unit 46 When the supply amount of the fluid particles from the fluid particle supply device 40 to the furnace body 12 is smaller than the fluid particle supply amount from the fluid particle circulation elevator 22 to the reservoir body 421, the upper end of the fluid particles in the reservoir body 421 The position gradually rises.
  • the control unit 46 outputs an instruction signal for stopping the fluidized particle circulating elevator 22 to the fluidized particle circulating elevator 22. As a result, the supply of fluid particles from the fluid particle circulation elevator 22 to the reservoir main body 421 is stopped.
  • the drive unit 442 continues to drive, the supply of fluidized particles into the furnace body 12 is maintained, and thereby the upper end position of the fluidized particles in the reservoir body 421 gradually decreases.
  • the control unit 46 receives the detection signal from the third level meter 424c and sends an instruction signal for driving the fluid particle circulation elevator 22 to the fluid particle circulation elevator. Output to 22
  • the control unit 46 may switch the first damper 22a in place of the on / off of the fluid particle circulating elevator 22. In this case, since the fluidized particle circulation elevator 22 continues to operate, the amount of fluidized particles supplied to the storage unit main body 421 can be controlled without stopping the extraction of the incombustible material from the furnace main body 12.
  • fluidized particles in the reservoir main body 421 and the casing main body 445 function as a material seal. Thereby, it is possible to prevent external air from flowing into the furnace main body 12 from the particle input unit 17 through the fluidized particle supply device 40 when the flowing particles are introduced into the furnace main body 12.
  • the reservoir main body 421 supplies the filled fluid particles so as to be stacked on the fluid particles in the casing body 445 through the opening 445a.
  • the inside of the casing body 445 around the opening 445a is filled with the fluidized particles, and is densely packed by the weight of the fluidized particles in the reservoir body 421 stacked on the upper side.
  • the flowing particles are also densely packed by the weight of the upper flowing particles at the bottom of the reservoir main body 421.
  • the fluidized particles act as a material seal, and the flow of air from the fluidized particle reservoir 42 to the particle inlet 17 through the casing body 445 is prevented.
  • the force directed toward the opening 445a acts on the fluidized particles due to the inclination of the casing body 445. .
  • the dense state of the fluidized particles at least around the opening 445a of the casing main body 445 is maintained, thereby maintaining the function of the fluidized particles as a material seal. Accordingly, it is possible to prevent external air from flowing from the particle input unit 17 into the furnace body 12 through the fluidized particle supply device 40 while supplying the flowing particles from the particle input unit 17 into the furnace main body 12.
  • the control unit 46 controls the screw conveyor 441 (drive unit 442). Stop. Thereby, before the flowing particles in the storage unit main body 421 and the casing main body 445 decrease and the flowing particles do not function as a material seal, the supply of the flowing particles into the furnace main body 12 can be automatically stopped. it can.
  • the fluid particle supply apparatus of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.
  • a plurality of level meters are provided in the fluidized particle reservoir 42, but only one may be used.
  • first level meter 424a is provided, before the fluidized particles function as a material seal due to the decrease of the fluidized particles in the reservoir main body 421 and the casing main body 445, The supply of fluidized particles can be automatically stopped.
  • the upper end position of the fluidized particles stored in the fluidized particle reservoir 42 is measured from the upper surface in the fluidized particle reservoir 42 by one level meter, and the drive unit 442 or the fluidized particle circulation elevator is measured based on the measurement result.
  • the upper end position may be kept constant by controlling the conveyance speed of 22.
  • the fluidized particles are supplied into the fluidized bed gasification furnace from the particle input unit provided in the fluidized bed gasification furnace.
  • a fluidized particle supply device comprising an opening for receiving the fluidized particles, and a conveyor casing provided with a cylindrical peripheral wall extending from the opening to the particle charging portion at a position separated in the horizontal direction;
  • a screw shaft that is rotatably accommodated inside the conveyor casing, and is capable of conveying the flowing particles supplied into the conveyor casing from the opening by the rotation to the particle charging unit, and is disposed above the opening.
  • the conveyor casing is configured so that the fluidized particles can be filled therein and the filled fluidized particles are stacked on the fluidized particles in the conveyor casing. And a flow particle storage unit for supplying from said openings. And the said conveyor casing inclines so that the said particle insertion part side may become an upper position rather than the said opening part side.
  • the fluid particles in the fluid particle reservoir and the conveyor casing function as a material seal.
  • the fluidized particle reservoir supplies the filled fluidized particles so as to be stacked on the fluidized particles in the conveyor casing through the opening.
  • the fluid particles around the opening are in a dense state due to the weight of the fluid particles in the fluid particle reservoir stacked on the upper side.
  • the fluid particles at the bottom of the fluid particle reservoir are also densely packed by the weight of the fluid particles on the upper side.
  • the fluidized particles act as a material seal, preventing the flow of air from the fluidized particle reservoir to the particle inlet through the conveyor casing.
  • the fluidized particle supply device includes a drive unit that rotationally drives the screw shaft, and a control unit that controls the drive unit.
  • the said fluid particle storage part has a level meter which can detect the upper end position of the fluid particle stored inside the said fluid particle storage part,
  • the said control part is the said fluid particle detected by the said level meter When the upper end position of the head becomes lower than a predetermined height position, the driving unit is stopped.
  • the level meter detects that the number of fluid particles stored in the fluid particle reservoir has decreased (the upper end position of the fluid particles has become lower than the predetermined height position), and the control unit can Stop the conveyor.
  • the supply of fluidized particles into the fluidized bed gasifier can be automatically stopped before the fluidized particles no longer function as a material seal due to the decrease in fluidized particles in the fluidized particle storage unit and the conveyor casing. it can.
  • the present invention provides a fluidized particle supply device for a fluidized bed gasifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

In the present invention, an apparatus for supplying fluid particles is provided with a conveyor casing, a screw shaft, and a fluid particle reservoir. The conveyor casing is provided with a cylindrical peripheral wall extending from an opening to a particle-charging part. The screw shaft is capable of transporting, inside the conveyor casing, fluid particles supplied via an opening by the rotation of the screw shaft. The fluid particle reservoir is arranged above the opening and supplies internally packed fluid particles into the conveyor casing through the opening so as to accumulate the packed fluid particles on the fluid particles inside the conveyor casing. The conveyor casing is slanted so as to be higher toward the particle-charging part than toward the opening.

Description

流動床式ガス化炉への流動粒子供給装置Fluidized particle feeder for fluidized bed gasifier
 本発明は、流動粒子を流動化させた流動層において廃棄物を加熱することによって当該廃棄物から可燃性ガスを取り出す流動床式ガス化炉内に、前記流動粒子を供給する流動粒子供給装置に関するものである。 The present invention relates to a fluidized particle supply apparatus for supplying the fluidized particles into a fluidized bed gasification furnace that takes out combustible gas from the wastes by heating the wastes in a fluidized bed in which fluidized particles are fluidized. Is.
 従来から、特許文献1に開示されるガス化システムが知られている。このガス化システムでは、図3に示すように、流動床式ガス化炉100から不燃物等と共に排出された流動粒子が流動床式ガス化炉100内に戻される。これにより、流動粒子が循環使用される。具体的には、以下の通りである。 Conventionally, a gasification system disclosed in Patent Document 1 is known. In this gasification system, as shown in FIG. 3, the fluidized particles discharged together with incombustibles from the fluidized bed gasifier 100 are returned to the fluidized bed gasifier 100. Thereby, the fluidized particles are circulated and used. Specifically, it is as follows.
 流動床式ガス化炉100は、炉内部に流動粒子(例えば硅砂等)を有し、この流動粒子を流動化させた流動層102において廃棄物を加熱する。これにより、流動床ガス化炉100は、廃棄物から可燃性ガス(熱分解ガス)を取り出す。この流動床式ガス化炉100では、可燃性ガスが取り出された後の廃棄物及び不燃物等が、流動粒子と共に流動床式ガス化炉100外に排出される。この不燃物等と共に炉外に排出された流動粒子は、分離装置104によって前記不燃物等から分離される。その後、流動粒子は、流動粒子循環用エレベータ106等によって流動床式ガス化炉100内に戻され、再度、流動層102を構成する。 The fluidized bed gasification furnace 100 has fluidized particles (eg, cinnabar sand) inside the furnace, and heats the waste in the fluidized bed 102 in which the fluidized particles are fluidized. Thereby, the fluidized bed gasification furnace 100 takes out combustible gas (pyrolysis gas) from waste. In the fluidized bed gasifier 100, the waste, incombustibles and the like after the combustible gas is taken out are discharged out of the fluidized bed gasifier 100 together with the fluidized particles. The fluidized particles discharged out of the furnace together with the incombustible material and the like are separated from the incombustible material and the like by the separation device 104. Thereafter, the fluidized particles are returned to the fluidized bed gasification furnace 100 by the fluidized particle circulation elevator 106 or the like, and constitute the fluidized bed 102 again.
 可燃性ガスが流動床式ガス化炉100内において生成されている。このため、外部からの不要な空気(燃焼制御のために流動床式ガス化炉100内に積極的に供給される空気以外の空気)が流動床式ガス化炉100内に流入するのを防ぐ必要がある。前記の流動床式ガス化炉100には、不燃物等と共に排出された流動粒子が、再度、流動床式ガス化炉100内に戻される(投入される)部位に、流動粒子投入弁108が設けられている。流動床式ガス化炉100は、この流動粒子投入弁108を閉じることによって、前記不要な空気が流動床式ガス化炉100内に流入するのを防いでいる。 Combustible gas is generated in the fluidized bed gasifier 100. For this reason, unnecessary external air (air other than air that is actively supplied into the fluidized bed gasifier 100 for combustion control) is prevented from flowing into the fluidized bed gasifier 100. There is a need. The fluidized bed gasification furnace 100 has a fluidized particle injection valve 108 at a site where the fluidized particles discharged together with incombustibles and the like are returned (input) into the fluidized bed gasification furnace 100 again. Is provided. The fluidized bed gasification furnace 100 prevents the unnecessary air from flowing into the fluidized bed gasification furnace 100 by closing the fluidized particle input valve 108.
 しかし、上記の流動床式ガス化炉100では、排出された流動粒子が流動床式ガス化炉100内に戻される際に、流動粒子投入弁108が開いた状態で流動粒子が投入されるため、外部からの空気が、開いた状態の流動粒子投入弁108から流動床式ガス化炉100内に流動粒子と共に流入する場合がある。また、開いた状態で空気が流入することを防止するために二重ダンパを利用することも考えられるが、シール性を十分に確保することが困難である。 However, in the fluidized bed gasification furnace 100, when the discharged fluidized particles are returned to the fluidized bed gasification furnace 100, the fluidized particles are charged with the fluidized particle charging valve 108 open. In some cases, air from the outside flows into the fluidized bed gasification furnace 100 from the fluidized particle injection valve 108 in an open state together with fluidized particles. In addition, it is conceivable to use a double damper in order to prevent air from flowing in in an open state, but it is difficult to ensure sufficient sealing performance.
特開2004-263886号公報JP 2004-263886 A
 本発明の目的は、流動床式ガス化炉内への流動粒子の投入時に、外部の空気が流動粒子の投入部位から炉内に流入するのを防ぐことができる流動床式ガス化炉への流動粒子供給装置を提供することである。 An object of the present invention is to provide a fluidized bed gasifier capable of preventing external air from flowing into the furnace from the fluidized particle injection site when the fluidized particles are charged into the fluidized bed gasifier. It is to provide a fluidized particle supply device.
 本発明の一つの面によれば、流動床式ガス化炉に設けられた粒子投入部から当該流動床式ガス化炉内に流動粒子を供給する流動粒子供給装置であって、前記流動粒子を受け入れるための開口部を有し、当該開口部から水平方向に離れた位置の前記粒子投入部まで延びる筒状の周壁を備えたコンベアケーシングと、前記コンベアケーシングの内部に回転可能に収容され、その回転によって前記開口部から当該コンベアケーシング内に供給された流動粒子を前記粒子投入部まで搬送可能なスクリュー軸と、前記開口部の上側に配置され、その内部に前記流動粒子が充填可能であると共にその充填された流動粒子を前記コンベアケーシング内の流動粒子上に積み上げるように当該コンベアケーシング内に前記開口部から供給する流動粒子貯留部と、を備える。そして、前記コンベアケーシングは、前記粒子投入部側が前記開口部側よりも上方位置となるように傾斜している。 According to one aspect of the present invention, there is provided a fluidized particle supply device for supplying fluidized particles into a fluidized bed gasification furnace from a particle input unit provided in the fluidized bed gasification furnace, wherein the fluidized particles are A conveyor casing having an opening for receiving and having a cylindrical peripheral wall extending to the particle input portion at a position horizontally separated from the opening; and rotatably accommodated in the conveyor casing; A screw shaft capable of transporting the fluidized particles supplied from the opening into the conveyor casing through the rotation to the particle charging unit, and disposed above the opening, and can be filled with the fluidized particles therein. A fluidized particle reservoir that feeds the filled fluidized particles from the opening into the conveyor casing so as to be stacked on the fluidized particles in the conveyor casing; Equipped with a. And the said conveyor casing inclines so that the said particle insertion part side may become an upper position rather than the said opening part side.
図1は、本実施形態に係るガス化システムのブロック図である。FIG. 1 is a block diagram of a gasification system according to the present embodiment. 図2は、本実施形態に係る流動粒子供給装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the fluidized particle supply device according to the present embodiment. 図3は、従来のガス化熔融システムのブロック図である。FIG. 3 is a block diagram of a conventional gasification and melting system.
 以下、本発明の一実施形態について、添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
 本実施形態の流動粒子供給装置は、例えば、廃棄物から可燃性ガスを取り出すガス化システムにおいて用いられる流動床式ガス化炉に対し、流動粒子を供給する。以下では、先ず、図1を参照しつつガス化システム10について説明する。その後、流動粒子供給装置について説明する。 The fluidized particle supply apparatus of the present embodiment supplies fluidized particles to, for example, a fluidized bed gasification furnace used in a gasification system that extracts combustible gas from waste. In the following, first, the gasification system 10 will be described with reference to FIG. Thereafter, the fluidized particle supply apparatus will be described.
 ガス化システム10は、流動床式ガス化炉11と、流動粒子循環部20と、ガス処理部30と、を備える。 The gasification system 10 includes a fluidized bed type gasification furnace 11, a fluidized particle circulation unit 20, and a gas processing unit 30.
 流動床式ガス化炉(以下、単に「ガス化炉」とも称する。)11は、流動粒子を流動化させた流動層18によって廃棄物を加熱し、当該廃棄物から可燃性ガス(熱分解ガス)を取り出す。このガス化炉11は、内部に流動粒子を有する炉本体12と、廃棄物を炉本体12の内部に投入する廃棄物供給部13と、炉本体12の内部において流動粒子を流動化させ且つ廃棄物を燃焼させるための空気を供給する空気供給部14と、を備える。流動粒子、不燃物、及び可燃性ガスが取り出された後の廃棄物等の混合物を排出する排出部15が炉本体12の下部に設けられている。廃棄物から生成した可燃性ガスを排出する排気部16が炉本体12の上部に設けられている。また、流動層18の上方から流動粒子を投入するための粒子投入部17が炉本体12の高さ方向における中間部に設けられている。 A fluidized bed gasification furnace (hereinafter, also simply referred to as “gasification furnace”) 11 heats waste by a fluidized bed 18 in which fluidized particles are fluidized, and combustible gas (pyrolysis gas) from the waste. ). The gasification furnace 11 includes a furnace main body 12 having fluidized particles therein, a waste supply unit 13 for introducing waste into the furnace main body 12, fluidized particles in the furnace main body 12, and waste And an air supply unit 14 for supplying air for burning an object. A discharge part 15 for discharging a mixture such as waste after the flowing particles, incombustibles, and combustible gas are taken out is provided in the lower part of the furnace body 12. An exhaust part 16 for discharging the combustible gas generated from the waste is provided at the upper part of the furnace body 12. In addition, a particle introduction portion 17 for introducing fluidized particles from above the fluidized bed 18 is provided at an intermediate portion in the height direction of the furnace body 12.
 尚、流動粒子は、炉本体12の内部において流動層18を構成し、且つ廃棄物を加熱するための粒子である。即ち、流動粒子が廃棄物の一部の燃焼によって加熱されて高温になり、この高温になった流動粒子が廃棄物と混合され、これにより、廃棄物がガス化されて可燃性ガスが発生する。本実施形態の流動粒子は、例えば珪砂である。より具体的には、流動粒子は、例えば、硅砂4号又は硅砂5号である。ここで、硅砂4号とは、例えば、粒度分布で、主に粒径0.425mm~1.2mmのものが多く含まれ、主にシリカから構成される粒子(硅砂)である。具体的には、例えば、粒径0.425mm~0.60mmのものが8.0%であり、粒径0.60mm~0.85mmのものが71.7%であり、粒径0.85mm~1.00mmのものが15.1%であり、1.00mm~1.2mmのものが4.7%である。また、硅砂5号とは、例えば、粒度分布で、主に粒径0.30mm~0.8mmのものが多く含まれ、主にシリカから構成される粒子(硅砂)である。具体的には、例えば、粒径0.30mm~0.425mmのものが18.6%であり、粒径0.425mm~0.60mmのものが54.2%であり、粒径0.60mm~0.80mmのものが19.7%である。 The fluidized particles are particles for forming the fluidized bed 18 inside the furnace body 12 and heating the waste. That is, the fluidized particles are heated by the combustion of a part of the waste and become high temperature, and the fluidized particles at the high temperature are mixed with the waste, thereby gasifying the waste and generating combustible gas. . The fluidized particles of this embodiment are, for example, silica sand. More specifically, the fluidized particles are, for example, cinnabar No. 4 or cinnabar No. 5. Here, the cinnabar No. 4 is, for example, a particle having a particle size distribution and mainly containing particles having a particle diameter of 0.425 mm to 1.2 mm (mainly composed of silica). Specifically, for example, the particle size of 0.425 mm to 0.60 mm is 8.0%, the particle size of 0.60 mm to 0.85 mm is 71.7%, and the particle size is 0.85 mm. Those with ˜1.00 mm are 15.1% and those with 1.00 mm to 1.2 mm are 4.7%. The cinnabar No. 5 is, for example, a particle (contaminated sand) mainly composed of silica having a particle size distribution mainly including a particle size of 0.30 mm to 0.8 mm. Specifically, for example, the particle size of 0.30 mm to 0.425 mm is 18.6%, the particle size of 0.425 mm to 0.60 mm is 54.2%, and the particle size is 0.60 mm. It is 19.7% for ˜0.80 mm.
 流動粒子循環部20は、不燃物排出装置21と、流動粒子循環用エレベータ22と、流動粒子貯留槽23と、流動粒子供給装置40と、を有する。流動粒子循環部20は、炉本体12内から排出された流動粒子を、再度、炉本体12内に戻す。 The fluidized particle circulation unit 20 includes an incombustible material discharge device 21, a fluidized particle circulation elevator 22, a fluidized particle storage tank 23, and a fluidized particle supply device 40. The fluidized particle circulation unit 20 returns the fluidized particles discharged from the furnace body 12 to the furnace body 12 again.
 不燃物排出装置21は、炉本体12の排出部15から排出された前記混合物から、流動粒子と、不燃物等とを分離する。流動粒子用コンベア24は、不燃物排出装置21が前記混合物から分離した流動粒子を流動粒子循環用エレベータ22に搬送する。不燃物用コンベア25は、不燃物排出装置21が前記混合物から分離した不燃物等を不燃物ヤード26に搬送する。 The incombustible discharge device 21 separates fluid particles and noncombustibles from the mixture discharged from the discharge section 15 of the furnace body 12. The fluid particle conveyor 24 conveys the fluid particles separated from the mixture by the incombustible discharge device 21 to the fluid particle circulation elevator 22. The incombustible material conveyor 25 conveys the incombustible material or the like separated from the mixture by the incombustible material discharge device 21 to the incombustible material yard 26.
 流動粒子循環用エレベータ22は、不燃物排出装置21が分離した流動粒子を、炉本体12の粒子投入部17よりも上方位置まで搬送する。流動粒子循環用エレベータ22は、第1ダンパー22a及び第2ダンパー22bを切り換えることによって、前記上方位置まで搬送した流動粒子を、流動粒子供給装置40、流動粒子貯留槽23、又は、不燃物ヤード26に供給する。具体的には、流動粒子循環用エレベータ22は、通常、流動粒子を流動粒子供給装置40に供給する。そして、流動粒子供給装置40における流動粒子の貯留部位に貯留された流動粒子が所定の量に達すると、流動粒子循環用エレベータ22を停止させ、若しくは、流動粒子用コンベア24の搬送速度を下げることで、前記貯留部位における流動粒子の量の均衡を保つ。 The fluidized particle circulation elevator 22 transports the fluidized particles separated by the incombustible discharge device 21 to a position above the particle charging unit 17 of the furnace body 12. The fluid particle circulating elevator 22 switches the first damper 22a and the second damper 22b so that the fluid particles conveyed to the upper position are fluidized particle supply device 40, fluid particle storage tank 23, or incombustible material yard 26. To supply. Specifically, the fluid particle circulating elevator 22 normally supplies fluid particles to the fluid particle supply device 40. Then, when the fluidized particles stored in the fluidized particle storage unit in the fluidized particle supply device 40 reach a predetermined amount, the fluidized particle circulating elevator 22 is stopped or the conveying speed of the fluidized particle conveyor 24 is decreased. Thus, the balance of the amount of fluid particles at the storage site is maintained.
 尚、流動粒子がガス化炉11において使用され続けると、不燃物及び灰の付着により粒径の大きくなった流動粒子が増加し、これにより、流動層18の流動状態が悪化する。このため、粒径が所定の値よりも大きくなった流動粒子は、不燃物排出装置21において篩い分けられ、不燃物ヤード26に供給される。 If the fluidized particles continue to be used in the gasification furnace 11, the fluidized particles having a larger particle size due to the adhesion of incombustibles and ash increase, thereby deteriorating the fluidized state of the fluidized bed 18. For this reason, the fluidized particles having a particle size larger than a predetermined value are sieved in the incombustible discharge device 21 and supplied to the incombustible yard 26.
 流動粒子貯留槽23は、所定の量の流動粒子を貯留している。そして、炉本体12の立ち上げ時、炉本体12と流動粒子循環部20との間で循環する流動粒子の量が大幅に減少したとき、又は、炉本体12内の流動粒子の量を増加させるときに、流動粒子貯留槽23は流動粒子を流動粒子循環用エレベータ22に供給する。 The fluidized particle storage tank 23 stores a predetermined amount of fluidized particles. And at the time of starting of the furnace main body 12, when the quantity of the fluid particle | grains circulated between the furnace main body 12 and the fluid particle | grain circulation part 20 reduces significantly, or the quantity of the fluid particle | grains in the furnace body 12 is increased. Sometimes, the fluidized particle reservoir 23 supplies fluidized particles to the fluidized particle circulation elevator 22.
 ガス処理部30は、ガス改質炉31と、ガス冷却機32と、バグフィルター33と、誘引ファン34と、を有する。ガス処理部30は、ガス化炉11から排出された熱分解ガス(可燃性ガスを含むガス)の改質処理を行う。 The gas processing unit 30 includes a gas reforming furnace 31, a gas cooler 32, a bag filter 33, and an induction fan 34. The gas processing unit 30 performs a reforming process on the pyrolysis gas (a gas containing a combustible gas) discharged from the gasification furnace 11.
 ガス改質炉31は、ガス化炉11から排出された熱分解ガスを改質(クラッキング)して熱分解ガスに含まれるタール等を分解する。これにより、ガス改質炉31は、前記熱分解ガスを燃料ガス又は原料ガスとして再利用できる性状(可燃性ガス)にする。ガス冷却機32は、ガス改質炉31において改質された可燃性ガスを冷却する。バグフィルター33は、冷却後の可燃性ガスから粉塵やばいじん等を除去する。誘引ファン34は、ガス化炉11において生成された熱分解ガスをガス処理部30に誘引する。熱分解ガスが誘引ファン34によってガス化炉11(炉本体12)内から誘引されると、ガス化炉11内の圧力が大気圧以下となる。 The gas reforming furnace 31 reforms (cracks) the pyrolysis gas discharged from the gasification furnace 11 to decompose tar and the like contained in the pyrolysis gas. Thereby, the gas reforming furnace 31 is made into a property (combustible gas) that allows the pyrolysis gas to be reused as fuel gas or raw material gas. The gas cooler 32 cools the combustible gas reformed in the gas reforming furnace 31. The bag filter 33 removes dust, dust and the like from the combustible gas after cooling. The induction fan 34 attracts the pyrolysis gas generated in the gasification furnace 11 to the gas processing unit 30. When the pyrolysis gas is attracted from the gasification furnace 11 (furnace main body 12) by the induction fan 34, the pressure in the gasification furnace 11 becomes atmospheric pressure or less.
 以上のガス処理部30において改質処理された可燃性ガスは、後段のガスタービン、ガスエンジン又はガスボイラ等に燃料として供給される。 The combustible gas reformed in the above gas processing unit 30 is supplied as fuel to a gas turbine, a gas engine, a gas boiler, or the like at the subsequent stage.
 次に、流動粒子供給装置40について図2も参照しつつ説明する。 Next, the fluidized particle supply device 40 will be described with reference to FIG.
 流動粒子供給装置40は、流動粒子貯留部42と、流動粒子搬送部44と、制御部46と、を備える。 The fluidized particle supply device 40 includes a fluidized particle storage unit 42, a fluidized particle transport unit 44, and a control unit 46.
 流動粒子貯留部42は、流動粒子循環用エレベータ22から供給された流動粒子を貯留すると共に、貯留した流動粒子を流動粒子搬送部44に供給する。この流動粒子貯留部42は、貯留部本体421と、貯留部本体421と流動粒子搬送部44とを接続する接続部422と、貯留部本体421の上部に設けられ、貯留部本体421内に流動粒子を投入可能な投入部423と、貯留部本体421に取り付けられる複数(本実施形態では4つ)のレベル計424a、424b、424c、424dと、を備える。 The fluid particle storage unit 42 stores the fluid particles supplied from the fluid particle circulation elevator 22 and supplies the stored fluid particles to the fluid particle transport unit 44. The fluidized particle reservoir 42 is provided on the reservoir main body 421, the connection part 422 connecting the reservoir main body 421 and the fluidized particle transport unit 44, and the upper part of the reservoir main body 421, and flows into the reservoir main body 421. A charging unit 423 capable of charging particles and a plurality (four in this embodiment) of level meters 424a, 424b, 424c, 424d attached to the storage unit main body 421 are provided.
 貯留部本体421は、上下に延びる中空の柱状であり、貯留部本体421の内部に流動粒子を貯留する。 The storage unit main body 421 has a hollow column shape extending vertically, and stores fluid particles inside the storage unit main body 421.
 接続部422は、貯留部本体421の下端部とスクリューコンベア441とを接続する。これにより、貯留部本体421の内部と流動粒子搬送部44におけるスクリューコンベア441の内部とが連通する。 The connection part 422 connects the lower end part of the storage part main body 421 and the screw conveyor 441. Thereby, the inside of the storage unit main body 421 communicates with the inside of the screw conveyor 441 in the fluid particle transport unit 44.
 各レベル計424a、424b、424c、424dは、貯留部本体421内に貯留された流動粒子の上端位置(貯留された流動粒子とその上方の空間との境界面の高さ位置)を、接触又は非接触で検出する。このようなレベル計424a、424b、424c、424dとして、例えば、静電容量式レベル計、パドル式レベル計、レーザー式レベル計等が用いられる。 Each level meter 424a, 424b, 424c, 424d is in contact with the upper end position (the height position of the boundary surface between the stored flow particle and the space above it) of the flow particle stored in the storage unit main body 421. Detect without contact. As such level meters 424a, 424b, 424c, and 424d, for example, a capacitance type level meter, a paddle type level meter, a laser type level meter, or the like is used.
 そして、各レベル計424a、424b、424c、424dは、前記上端位置を検出すると検出信号を出力する。本実施形態では、4つのレベル計(第1レベル計424a、第2レベル計424b、第3レベル計424c、及び第4レベル計424d)が貯留部本体421に取り付けられている。具体的に、4つのレベル計424a、424b、424c、424dは、上下方向に間隔を空けて一列に配置されている。 Each level meter 424a, 424b, 424c, 424d outputs a detection signal when it detects the upper end position. In the present embodiment, four level meters (a first level meter 424a, a second level meter 424b, a third level meter 424c, and a fourth level meter 424d) are attached to the storage unit main body 421. Specifically, the four level meters 424a, 424b, 424c, 424d are arranged in a line at intervals in the vertical direction.
 尚、本実施形態のレベル計424a、424b、424c、424dは、水平面方向(同一高さ位置)において、1つだけ設けられているが、この配置に限定されない。即ち、レベル計は、水平面方向(同一高さ位置)において、複数設けられてもよい。これにより、貯留部本体421内での流動粒子の偏りによるレベル計の誤検知を防ぐことができる。特に、下段(貯留部本体421の下部)には、同じ高さ位置(本実形態では、例えば、レベル計424a、424bの高さ位置)に複数のレベル計が設けられることが好ましい。かかる構成によれば、レベル計の誤検知が効果的に防止される。 In addition, although only one level meter 424a, 424b, 424c, 424d of this embodiment is provided in the horizontal plane direction (same height position), it is not limited to this arrangement. That is, a plurality of level meters may be provided in the horizontal plane direction (same height position). Thereby, the misdetection of the level meter due to the deviation of the flowing particles in the reservoir main body 421 can be prevented. In particular, it is preferable that a plurality of level meters are provided at the same height position (in this embodiment, for example, the height positions of the level meters 424a and 424b) in the lower stage (lower part of the storage unit main body 421). According to such a configuration, erroneous detection of the level meter is effectively prevented.
 流動粒子搬送部44は、スクリューコンベア441と、スクリューコンベア441を駆動する駆動部442と、を有する。 The fluid particle transport unit 44 includes a screw conveyor 441 and a drive unit 442 that drives the screw conveyor 441.
 スクリューコンベア441は、コンベアケーシング443と、コンベアケーシング443の内部に収容されるスクリュー軸444と、複数の支持部448と、を有する。 The screw conveyor 441 includes a conveyor casing 443, a screw shaft 444 accommodated inside the conveyor casing 443, and a plurality of support portions 448.
 コンベアケーシング443は、ケーシング本体445と、点検口部446と、流動粒子排出部447と、を有する。 The conveyor casing 443 includes a casing main body 445, an inspection port portion 446, and a fluid particle discharge portion 447.
 ケーシング本体445は円筒状の周壁を有する。前記周壁の両端は閉塞されている。流動粒子貯留部42の接続部422が、ケーシング本体445の一方の端部(図2における左側の端部)の上端部に設けられた開口部445aに接続されている。これにより、貯留部本体421の内部とケーシング本体445の内部とが接続部422を通じて連通する。 The casing body 445 has a cylindrical peripheral wall. Both ends of the peripheral wall are closed. The connection part 422 of the fluidized particle storage part 42 is connected to an opening 445 a provided at the upper end part of one end part (the left end part in FIG. 2) of the casing body 445. As a result, the inside of the storage unit main body 421 and the inside of the casing main body 445 communicate with each other through the connection unit 422.
 点検口部446は、ケーシング本体445の他方の端部(前記一方の端部と反対側の端部:図2における右側の端部)の上端部に設けられる開口部である。蓋446aが点検口部446に取り付けられている。蓋446aを取り外すと、点検口部446からケーシング本体445の内部を点検することができる。 The inspection opening 446 is an opening provided at the upper end of the other end of the casing body 445 (the end opposite to the one end: the right end in FIG. 2). A lid 446 a is attached to the inspection port portion 446. When the lid 446a is removed, the inside of the casing body 445 can be inspected from the inspection port portion 446.
 流動粒子排出部447は、ケーシング本体445内の流動粒子を炉本体12の粒子投入部17内に排出する。具体的に、流動粒子排出部447は、ケーシング本体445の前記他方の端部の下端部と炉本体12の粒子投入部17とを接続する。これにより、ケーシング本体445の内部と炉本体12の内部とが連通する。この流動粒子排出部447は、気密状態で粒子投入部17と接続される。これにより、流動粒子貯留部42の内部からケーシング本体445の内部と流動粒子排出部447の内部とを通じて粒子投入部17内までが気密状態で連通する。 The fluidized particle discharge unit 447 discharges the fluidized particles in the casing body 445 into the particle input unit 17 of the furnace body 12. Specifically, the fluidized particle discharger 447 connects the lower end of the other end of the casing body 445 and the particle charging part 17 of the furnace body 12. Thereby, the inside of the casing body 445 communicates with the inside of the furnace body 12. The fluid particle discharge unit 447 is connected to the particle input unit 17 in an airtight state. Thereby, the inside of the fluid particle storage part 42 communicates with the inside of the casing main body 445 and the inside of the fluid particle discharge part 447 in an airtight state through the inside of the fluid particle discharge part 447.
 複数の支持部448は、流動粒子排出部447側(粒子投入部17側)の端部が流動粒子貯留部42の接続部422側の端部よりも上方位置になるように、ケーシング本体445を傾斜した姿勢で支持する。具体的には、複数の支持部448は、ケーシング本体445の中心軸が水平に対して例えば15°となるようにケーシング本体445を支持する。尚、水平に対するケーシング本体445の中心軸の角度は、10°~45°が好ましい。前記中心軸の角度が10°~45°の場合、ケーシング本体445内における流動粒子の圧密によるマテリアルシール効果に大きな差異がない。一方、前記中心軸の角度が10°未満の場合は、ケーシング本体445内における流動粒子の圧密によるマテリアルシール効果が小さくなり、空気がケーシング本体445内を流れる。 The plurality of support portions 448 have the casing main body 445 arranged so that the end on the fluid particle discharge portion 447 side (particle input portion 17 side) is positioned above the end on the connection portion 422 side of the fluid particle storage portion 42. Support in an inclined position. Specifically, the plurality of support portions 448 support the casing body 445 such that the central axis of the casing body 445 is, for example, 15 ° with respect to the horizontal. The angle of the central axis of the casing body 445 with respect to the horizontal is preferably 10 ° to 45 °. When the angle of the central axis is 10 ° to 45 °, there is no significant difference in the material sealing effect due to the compaction of the flowing particles in the casing body 445. On the other hand, when the angle of the central axis is less than 10 °, the material sealing effect due to the compaction of the fluidized particles in the casing body 445 is reduced, and air flows in the casing body 445.
 スクリュー軸444は、ケーシング本体445と同じ方向に延びる軸本体444aと、軸本体444aの周面に設けられるスクリュー(螺旋状の)羽根444bとを有する。スクリュー軸444は、軸本体444aの中心軸周りに回転可能な状態でケーシング本体445の内部に収容される。 The screw shaft 444 includes a shaft main body 444a extending in the same direction as the casing main body 445, and screw (spiral) blades 444b provided on the peripheral surface of the shaft main body 444a. The screw shaft 444 is housed inside the casing body 445 so as to be rotatable around the central axis of the shaft body 444a.
 駆動部442は、ケーシング本体445内に収容されているスクリュー軸444(軸本体444a)に接続される。駆動部442は、制御部46からの指示信号に基づいてスクリュー軸444を回転駆動する。駆動部442がスクリュー軸444を回転させることによって、流動粒子がケーシング本体445の内部を流動粒子貯留部42側の端部から流動粒子排出部447側の端部に向けて搬送される。 The driving unit 442 is connected to a screw shaft 444 (shaft body 444a) housed in the casing body 445. The drive unit 442 rotates the screw shaft 444 based on the instruction signal from the control unit 46. When the drive unit 442 rotates the screw shaft 444, the fluidized particles are conveyed inside the casing body 445 from the end on the fluidized particle storage unit 42 side toward the end on the fluidized particle discharge unit 447 side.
 制御部46は、各レベル計424a、424b、424c、424dと駆動部442とに接続される。制御部46は、各レベル計424a、424b、424c、424dからの検出信号に基づいて駆動部442、流動粒子循環用エレベータ22、及び廃棄物供給部13等に指示信号を出力する。具体的には、以下の通りである。 The control unit 46 is connected to each level meter 424a, 424b, 424c, 424d and the drive unit 442. The control unit 46 outputs an instruction signal to the drive unit 442, the fluidized particle circulating elevator 22, the waste supply unit 13, and the like based on the detection signals from the level meters 424a, 424b, 424c, 424d. Specifically, it is as follows.
 流動床式ガス化炉11の運転開始時の流動粒子貯留部42内に、流動粒子の上端位置が第2レベル計424bと第3レベル計424cとの間になるような量の流動粒子が貯留されている。そして、制御部46は、流動粒子供給装置40と流動粒子循環用エレベータ22とを駆動させる。 An amount of fluidized particles is stored in the fluidized particle storage unit 42 at the start of operation of the fluidized bed gasifier 11 so that the upper end position of the fluidized particles is between the second level meter 424b and the third level meter 424c. Has been. And the control part 46 drives the fluid particle supply apparatus 40 and the elevator 22 for fluid particle circulation.
 流動粒子供給装置40から炉本体12への流動粒子の供給量が流動粒子循環用エレベータ22から貯留部本体421への流動粒子の供給量よりも多い場合、貯留部本体421内の流動粒子の上端位置が徐々に低下する。この上端位置が第2レベル計424bの位置に到達すると、制御部46は、第2レベル計424bからの検出信号を受信する。そして、制御部46は、駆動部442を停止させる(即ち、流動粒子供給装置40を停止させる)ための指示信号を駆動部442に向けて出力する。これにより、貯留部本体421内における流動粒子の上端位置の低下が止まり、流動粒子貯留部42からケーシング本体445までの流動粒子によるマテリアルシール効果が維持される。 When the supply amount of the fluid particles from the fluid particle supply device 40 to the furnace body 12 is larger than the fluid particle supply amount from the fluid particle circulation elevator 22 to the reservoir body 421, the upper end of the fluid particles in the reservoir body 421 The position gradually decreases. When the upper end position reaches the position of the second level meter 424b, the control unit 46 receives a detection signal from the second level meter 424b. Then, the control unit 46 outputs an instruction signal for stopping the driving unit 442 (that is, stopping the fluidized particle supply device 40) toward the driving unit 442. Thereby, the fall of the upper end position of the fluidized particle in the storage part main body 421 stops, and the material seal effect by the fluidized particle from the fluidized particle storage part 42 to the casing main body 445 is maintained.
 仮に、流動粒子供給装置40から炉本体12への流動粒子の供給量と流動粒子循環用エレベータ22から貯留部本体421への流動粒子の供給量との差が非常に大きく、これにより、貯留部本体421内の流動粒子の上端位置が第1レベル計424aまで低下した場合、制御部46は、第1レベル計424aからの検出信号を受信した後、廃棄物供給部13を停止させる指示信号を廃棄物供給部13に向けて出力し、炉本体12内への廃棄物の供給を停止させる。これにより、炉本体12内における可燃性ガスの生成量が減少する。このため、貯留部本体421内の流動粒子の量が少なくなって流動粒子によるマテリアルシール効果が低減したことにより、外部の空気が流動粒子供給装置40を通じて炉本体12内に流入しても、炉本体12内での可燃性ガスと前記空気との反応が抑制される。 Temporarily, the difference between the supply amount of the fluid particles from the fluid particle supply device 40 to the furnace body 12 and the supply amount of the fluid particles from the fluid particle circulation elevator 22 to the reservoir main body 421 is very large. When the upper end position of the flowing particles in the main body 421 is lowered to the first level meter 424a, the control unit 46 receives the detection signal from the first level meter 424a, and then receives an instruction signal for stopping the waste supply unit 13. Output to the waste supply unit 13 to stop the supply of waste into the furnace body 12. Thereby, the production amount of the combustible gas in the furnace body 12 is reduced. For this reason, even if external air flows into the furnace body 12 through the fluidized particle supply device 40 because the amount of fluidized particles in the reservoir main body 421 is reduced and the material sealing effect by the fluidized particles is reduced, the furnace The reaction between the combustible gas and the air in the main body 12 is suppressed.
 流動粒子の上端位置が第2レベル計424bより低いときには、流動粒子供給装置40が停止している。このため、流動粒子循環用エレベータ22が流動粒子を貯留部本体421に供給することにより、貯留部本体421内の流動粒子の上端位置が徐々に上昇する。前記上端位置が第3レベル計424cまで上昇すると、制御部46は、第3レベル計424cからの検出信号を受信する。そして、制御部46は、駆動部442を駆動させる(即ち、流動粒子供給装置40を稼動させる)ための指示信号を駆動部442に向けて出力する。 When the upper end position of the flowing particles is lower than the second level meter 424b, the flowing particle supply device 40 is stopped. For this reason, when the fluid particle circulation elevator 22 supplies the fluid particles to the reservoir main body 421, the upper end position of the fluid particles in the reservoir main body 421 gradually rises. When the upper end position rises to the third level meter 424c, the control unit 46 receives a detection signal from the third level meter 424c. Then, the control unit 46 outputs an instruction signal for driving the drive unit 442 (that is, operating the fluidized particle supply device 40) to the drive unit 442.
 流動粒子供給装置40から炉本体12への流動粒子の供給量が流動粒子循環用エレベータ22から貯留部本体421への流動粒子の供給量よりも少ない場合、貯留部本体421内の流動粒子の上端位置が徐々に上昇する。前記上端位置が第4レベル計424dまで上昇すると、制御部46は、流動粒子循環用エレベータ22を停止させる指示信号を流動粒子循環用エレベータ22に向けて出力する。これにより、流動粒子循環用エレベータ22から貯留部本体421への流動粒子の供給が停止する。一方、駆動部442が駆動を続けているため、炉本体12内への流動粒子の供給が維持され、これにより、貯留部本体421内の流動粒子の上端位置は徐々に低下する。前記上端位置が第3レベル計424cまで低下すると、制御部46は、第3レベル計424cからの検出信号を受信し、流動粒子循環用エレベータ22を駆動させるための指示信号を流動粒子循環用エレベータ22に向けて出力する。 When the supply amount of the fluid particles from the fluid particle supply device 40 to the furnace body 12 is smaller than the fluid particle supply amount from the fluid particle circulation elevator 22 to the reservoir body 421, the upper end of the fluid particles in the reservoir body 421 The position gradually rises. When the upper end position rises to the fourth level meter 424d, the control unit 46 outputs an instruction signal for stopping the fluidized particle circulating elevator 22 to the fluidized particle circulating elevator 22. As a result, the supply of fluid particles from the fluid particle circulation elevator 22 to the reservoir main body 421 is stopped. On the other hand, since the drive unit 442 continues to drive, the supply of fluidized particles into the furnace body 12 is maintained, and thereby the upper end position of the fluidized particles in the reservoir body 421 gradually decreases. When the upper end position is lowered to the third level meter 424c, the control unit 46 receives the detection signal from the third level meter 424c and sends an instruction signal for driving the fluid particle circulation elevator 22 to the fluid particle circulation elevator. Output to 22
 尚、制御部46は、流動粒子循環用エレベータ22のon/offに代えて、第1ダンパー22aの切り換えを行ってもよい。この場合、流動粒子循環用エレベータ22が運転し続けるため、炉本体12からの不燃物の引き抜きを停止することなく貯留部本体421への流動粒子の供給量を制御することができる。 The control unit 46 may switch the first damper 22a in place of the on / off of the fluid particle circulating elevator 22. In this case, since the fluidized particle circulation elevator 22 continues to operate, the amount of fluidized particles supplied to the storage unit main body 421 can be controlled without stopping the extraction of the incombustible material from the furnace main body 12.
 以上の流動粒子供給装置40によれば、貯留部本体421内及びケーシング本体445内の流動粒子がマテリアルシールとして機能する。これにより、炉本体12内への流動粒子の投入時に、外部の空気が当該流動粒子供給装置40を通じて粒子投入部17から炉本体12内に流入するのを防ぐことができる。具体的には、流動粒子が貯留部本体421内に充填されると、貯留部本体421が前記充填された流動粒子を、開口部445aを通じてケーシング本体445内の流動粒子上に積み上げるように供給する。これにより、少なくとも開口部445a周辺のケーシング本体445内が流動粒子に満たされ且つ上側に積み上げられた貯留部本体421内の流動粒子の重みによって密集した状態となる。また、貯留部本体421の底部においても、流動粒子が上側の流動粒子の重みによって密集した状態となる。その結果、流動粒子がマテリアルシールとして働き、流動粒子貯留部42からケーシング本体445内を通じて粒子投入部17へ向かう空気の流れが妨げられる。しかも、スクリュー軸444が回転して流動粒子がケーシング本体445内を粒子投入部17に向けて搬送されるときにも、ケーシング本体445の傾斜によって流動粒子に開口部445a側に向けた力が働く。このため、ケーシング本体445の少なくとも開口部445a周辺での流動粒子の密集状態が維持され、これにより、流動粒子のマテリアルシールとしての機能が維持される。これにより、粒子投入部17から炉本体12内に流動粒子を供給しつつ、外部の空気が流動粒子供給装置40を通じて粒子投入部17から炉本体12内に流入することを防ぐことができる。 According to the above fluidized particle supply apparatus 40, fluidized particles in the reservoir main body 421 and the casing main body 445 function as a material seal. Thereby, it is possible to prevent external air from flowing into the furnace main body 12 from the particle input unit 17 through the fluidized particle supply device 40 when the flowing particles are introduced into the furnace main body 12. Specifically, when the fluid particles are filled into the reservoir main body 421, the reservoir main body 421 supplies the filled fluid particles so as to be stacked on the fluid particles in the casing body 445 through the opening 445a. . As a result, at least the inside of the casing body 445 around the opening 445a is filled with the fluidized particles, and is densely packed by the weight of the fluidized particles in the reservoir body 421 stacked on the upper side. In addition, the flowing particles are also densely packed by the weight of the upper flowing particles at the bottom of the reservoir main body 421. As a result, the fluidized particles act as a material seal, and the flow of air from the fluidized particle reservoir 42 to the particle inlet 17 through the casing body 445 is prevented. In addition, even when the screw shaft 444 rotates and the fluidized particles are transported toward the particle charging unit 17 through the casing body 445, the force directed toward the opening 445a acts on the fluidized particles due to the inclination of the casing body 445. . For this reason, the dense state of the fluidized particles at least around the opening 445a of the casing main body 445 is maintained, thereby maintaining the function of the fluidized particles as a material seal. Accordingly, it is possible to prevent external air from flowing from the particle input unit 17 into the furnace body 12 through the fluidized particle supply device 40 while supplying the flowing particles from the particle input unit 17 into the furnace main body 12.
 また、本実施形態の流動粒子供給装置40では、貯留部本体421に貯留された流動粒子が少なくなったのを第2レベル計424bが検出すると、制御部46がスクリューコンベア441(駆動部442)を停止させる。これにより、貯留部本体421内及びケーシング本体445内の流動粒子が減少して流動粒子がマテリアルシールとして機能しなくなる前に、炉本体12内への流動粒子の供給を自動的に停止させることができる。 Further, in the fluidized particle supply device 40 of the present embodiment, when the second level meter 424b detects that the fluidized particles stored in the storage unit main body 421 has decreased, the control unit 46 controls the screw conveyor 441 (drive unit 442). Stop. Thereby, before the flowing particles in the storage unit main body 421 and the casing main body 445 decrease and the flowing particles do not function as a material seal, the supply of the flowing particles into the furnace main body 12 can be automatically stopped. it can.
 尚、本発明の流動粒子供給装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the fluid particle supply apparatus of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.
 上記実施形態では、複数のレベル計(第1~第4レベル計424a、424b、424c、424d)が流動粒子貯留部42に設けられているが、1つだけでもよい。この場合、第1レベル計424aが設けられていれば、貯留部本体421内及びケーシング本体445内の流動粒子の減少によって当該流動粒子がマテリアルシールとして機能しなくなる前に、炉本体12内への流動粒子の供給を自動的に停止させることができる。 In the above embodiment, a plurality of level meters (first to fourth level meters 424a, 424b, 424c, 424d) are provided in the fluidized particle reservoir 42, but only one may be used. In this case, if the first level meter 424a is provided, before the fluidized particles function as a material seal due to the decrease of the fluidized particles in the reservoir main body 421 and the casing main body 445, The supply of fluidized particles can be automatically stopped.
 また、流動粒子貯留部42内の上面から1つのレベル計によって流動粒子貯留部42内に貯留された流動粒子の上端位置を計測し、この計測結果に基づいて駆動部442若しくは流動粒子循環用エレベータ22の搬送速度を制御することにより、前記上端位置を一定に保ってもよい。 Further, the upper end position of the fluidized particles stored in the fluidized particle reservoir 42 is measured from the upper surface in the fluidized particle reservoir 42 by one level meter, and the drive unit 442 or the fluidized particle circulation elevator is measured based on the measurement result. The upper end position may be kept constant by controlling the conveyance speed of 22.
[実施の形態の概要]
 以上の実施形態をまとめると、以下の通りである。
[Outline of the embodiment]
The above embodiment is summarized as follows.
 即ち、上記の実施形態に係る流動床式ガス化炉への流動粒子供給装置では、流動床式ガス化炉に設けられた粒子投入部から当該流動床式ガス化炉内に流動粒子を供給する流動粒子供給装置であって、前記流動粒子を受け入れるための開口部を有し、当該開口部から水平方向に離れた位置の前記粒子投入部まで延びる筒状の周壁を備えたコンベアケーシングと、前記コンベアケーシングの内部に回転可能に収容され、その回転によって前記開口部から当該コンベアケーシング内に供給された流動粒子を前記粒子投入部まで搬送可能なスクリュー軸と、前記開口部の上側に配置され、その内部に前記流動粒子が充填可能であると共にその充填された流動粒子を前記コンベアケーシング内の流動粒子上に積み上げるように当該コンベアケーシング内に前記開口部から供給する流動粒子貯留部と、を備える。そして、前記コンベアケーシングは、前記粒子投入部側が前記開口部側よりも上方位置となるように傾斜している。 That is, in the fluidized particle supply apparatus to the fluidized bed gasification furnace according to the above embodiment, the fluidized particles are supplied into the fluidized bed gasification furnace from the particle input unit provided in the fluidized bed gasification furnace. A fluidized particle supply device, comprising an opening for receiving the fluidized particles, and a conveyor casing provided with a cylindrical peripheral wall extending from the opening to the particle charging portion at a position separated in the horizontal direction; A screw shaft that is rotatably accommodated inside the conveyor casing, and is capable of conveying the flowing particles supplied into the conveyor casing from the opening by the rotation to the particle charging unit, and is disposed above the opening. The conveyor casing is configured so that the fluidized particles can be filled therein and the filled fluidized particles are stacked on the fluidized particles in the conveyor casing. And a flow particle storage unit for supplying from said openings. And the said conveyor casing inclines so that the said particle insertion part side may become an upper position rather than the said opening part side.
 かかる構成によれば、流動粒子貯留部内及びコンベアケーシング内の流動粒子がマテリアルシールとして機能する。これにより、流動床式ガス化炉内への流動粒子の投入時に、外部の空気が当該流動粒子供給装置を通じて粒子投入部から流動床式ガス化炉内に流入するのを防ぐことができる。具体的には、以下の通りである。 According to such a configuration, the fluid particles in the fluid particle reservoir and the conveyor casing function as a material seal. Thereby, when the fluidized particles are charged into the fluidized bed gasifier, it is possible to prevent external air from flowing into the fluidized bed gasifier through the fluidized particle supply device. Specifically, it is as follows.
 流動粒子が流動粒子貯留部内に充填されると、流動粒子貯留部が前記充填された流動粒子を開口部を通じてコンベアケーシング内の流動粒子上に積み上げるように供給する。これにより、少なくとも開口部周辺のコンベアケーシング内が流動粒子に満たされる。また、前記開口部周辺の流動粒子は、上側に積み上げられた流動粒子貯留部内の流動粒子の重みによって密集した状態となる。さらに、流動粒子貯留部の底部の流動粒子も、上側の流動粒子の重みによって密集した状態となる。これらにより、流動粒子がマテリアルシールとして働き、流動粒子貯留部からコンベアケーシング内を通じて粒子投入部へ向かう空気の流れが妨げられる。しかも、流動粒子がスクリュー軸の回転によってコンベアケーシング内を粒子投入部に向けて搬送されるときにも、コンベアケーシングの傾斜によって、開口部側に向けた力が流動粒子に働く。このため、コンベアケーシングの少なくとも前記開口部周辺での流動粒子の密集状態が維持されて、前記流動粒子のマテリアルシールとしての機能が維持される。これにより、粒子投入部から流動床式ガス化炉内に流動粒子を供給しつつ、外部の空気が当該流動粒子供給装置を通じて粒子投入部から流動床式ガス化炉内に流入するのを防ぐことができる。 When the fluidized particles are filled in the fluidized particle reservoir, the fluidized particle reservoir supplies the filled fluidized particles so as to be stacked on the fluidized particles in the conveyor casing through the opening. Thereby, at least the inside of the conveyor casing around the opening is filled with the fluidized particles. Further, the fluid particles around the opening are in a dense state due to the weight of the fluid particles in the fluid particle reservoir stacked on the upper side. Furthermore, the fluid particles at the bottom of the fluid particle reservoir are also densely packed by the weight of the fluid particles on the upper side. As a result, the fluidized particles act as a material seal, preventing the flow of air from the fluidized particle reservoir to the particle inlet through the conveyor casing. Moreover, even when the fluid particles are transported through the conveyor shaft toward the particle input portion by the rotation of the screw shaft, the force directed toward the opening acts on the fluid particles due to the inclination of the conveyor casing. For this reason, the dense state of the fluid particles at least around the opening of the conveyor casing is maintained, and the function of the fluid particles as a material seal is maintained. As a result, while supplying fluidized particles into the fluidized bed gasification furnace from the particle charging unit, it is possible to prevent external air from flowing into the fluidized bed gasification furnace through the fluidized particle supply device. Can do.
 また、前記流動粒子供給装置は、前記スクリュー軸を回転駆動する駆動部と、前記駆動部を制御する制御部と、を備える。そして、前記流動粒子貯留部は、当該流動粒子貯留部の内部に貯留された流動粒子の上端位置を検出可能なレベル計を有し、前記制御部は、前記レベル計によって検出される前記流動粒子の上端位置が所定の高さ位置より低くなると前記駆動部を停止させる。 The fluidized particle supply device includes a drive unit that rotationally drives the screw shaft, and a control unit that controls the drive unit. And the said fluid particle storage part has a level meter which can detect the upper end position of the fluid particle stored inside the said fluid particle storage part, The said control part is the said fluid particle detected by the said level meter When the upper end position of the head becomes lower than a predetermined height position, the driving unit is stopped.
 かかる構成によれば、流動粒子貯留部に貯留された流動粒子が少なくなった(流動粒子の上端位置が所定の高さ位置よりも低くなった)ことをレベル計が検出し、制御部がスクリューコンベアを停止させる。これにより、流動粒子貯留部内及びコンベアケーシング内の流動粒子の減少によって当該流動粒子がマテリアルシールとして機能しなくなる前に流動床式ガス化炉内への流動粒子の供給を自動的に停止させることができる。 According to such a configuration, the level meter detects that the number of fluid particles stored in the fluid particle reservoir has decreased (the upper end position of the fluid particles has become lower than the predetermined height position), and the control unit can Stop the conveyor. As a result, the supply of fluidized particles into the fluidized bed gasifier can be automatically stopped before the fluidized particles no longer function as a material seal due to the decrease in fluidized particles in the fluidized particle storage unit and the conveyor casing. it can.
 本発明は、流動床式ガス化炉への流動粒子供給装置を提供する。 The present invention provides a fluidized particle supply device for a fluidized bed gasifier.

Claims (2)

  1.  流動床式ガス化炉に設けられた粒子投入部から当該流動床式ガス化炉内に流動粒子を供給する流動粒子供給装置であって、
     前記流動粒子を受け入れるための開口部を有し、当該開口部から水平方向に離れた位置の前記粒子投入部まで延びる筒状の周壁を備えたコンベアケーシングと、
     前記コンベアケーシングの内部に回転可能に収容され、その回転によって前記開口部から当該コンベアケーシング内に供給された流動粒子を前記粒子投入部まで搬送可能なスクリュー軸と、
     前記開口部の上側に配置され、その内部に前記流動粒子が充填可能であると共にその充填された流動粒子を前記コンベアケーシング内の流動粒子上に積み上げるように当該コンベアケーシング内に前記開口部から供給する流動粒子貯留部と、を備え、
     前記コンベアケーシングは、前記粒子投入部側が前記開口部側よりも上方位置となるように傾斜している流動粒子供給装置。
    A fluidized particle supply device for supplying fluidized particles into a fluidized bed gasification furnace from a particle input unit provided in the fluidized bed gasification furnace,
    A conveyor casing having an opening for receiving the fluidized particles and having a cylindrical peripheral wall extending from the opening to the particle input portion at a position away from the opening in the horizontal direction;
    A screw shaft that is rotatably accommodated in the conveyor casing, and is capable of conveying the fluidized particles supplied from the opening to the conveyor casing by the rotation;
    Located above the opening, the fluidized particles can be filled therein, and the filled fluidized particles are supplied from the opening into the conveyor casing so as to be stacked on the fluidized particles in the conveyor casing. A fluidized particle storage unit that
    The said conveyor casing is a fluid particle supply apparatus which inclines so that the said particle input part side may become an upper position rather than the said opening part side.
  2.  請求項1に記載の流動粒子供給装置であって、
     前記スクリュー軸を回転駆動する駆動部と、
     前記駆動部を制御する制御部と、を備え、
     前記流動粒子貯留部は、当該流動粒子貯留部の内部に貯留された流動粒子の上端位置を検出可能なレベル計を有し、
     前記制御部は、前記レベル計によって検出される前記流動粒子の上端位置が所定の高さ位置より低くなると前記駆動部を停止させる流動粒子供給装置。
    The fluidized particle supply device according to claim 1,
    A drive unit for rotationally driving the screw shaft;
    A control unit for controlling the drive unit,
    The fluidized particle reservoir has a level meter capable of detecting the upper end position of fluidized particles stored inside the fluidized particle reservoir.
    The said control part is a fluid particle supply apparatus which stops the said drive part, if the upper end position of the said fluid particle detected by the said level meter becomes lower than predetermined | prescribed height position.
PCT/JP2013/002060 2012-03-30 2013-03-26 Apparatus for supplying fluid particles to fluidized-bed gasification furnace WO2013145725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081807 2012-03-30
JP2012081807A JP5778069B2 (en) 2012-03-30 2012-03-30 Fluidized particle feeder for fluidized bed gasifier

Publications (1)

Publication Number Publication Date
WO2013145725A1 true WO2013145725A1 (en) 2013-10-03

Family

ID=49259024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002060 WO2013145725A1 (en) 2012-03-30 2013-03-26 Apparatus for supplying fluid particles to fluidized-bed gasification furnace

Country Status (2)

Country Link
JP (1) JP5778069B2 (en)
WO (1) WO2013145725A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233754B2 (en) * 1979-10-30 1990-07-30 Kogyo Gijutsuin NETSUBUNKAIHOHO
JPH04110509A (en) * 1990-08-29 1992-04-13 Babcock Hitachi Kk Pressurized fluidized-bed combustion apparatus
JPH09229331A (en) * 1996-02-20 1997-09-05 Sekisui Chem Co Ltd Fluidized bed type incinerator
WO1999043985A1 (en) * 1998-02-27 1999-09-02 Ebara Corporation Fluidized bed gasification furnace
JP2000319671A (en) * 1999-03-11 2000-11-21 Ebara Corp Operation control method of two-stage waste gasification system waste
JP2004162977A (en) * 2002-11-12 2004-06-10 Kubota Corp Circulated fluid bed furnace and its control method
JP2007528479A (en) * 2003-04-30 2007-10-11 株式会社荏原製作所 Combustible raw material supply device, combustible raw material gasifier, and combustible raw material gasification method
JP2011084664A (en) * 2009-10-16 2011-04-28 Ihi Corp Method and device for sensing defects in gasification equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913684B2 (en) * 2003-02-07 2007-05-09 株式会社荏原製作所 Waste gasification and melting system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233754B2 (en) * 1979-10-30 1990-07-30 Kogyo Gijutsuin NETSUBUNKAIHOHO
JPH04110509A (en) * 1990-08-29 1992-04-13 Babcock Hitachi Kk Pressurized fluidized-bed combustion apparatus
JPH09229331A (en) * 1996-02-20 1997-09-05 Sekisui Chem Co Ltd Fluidized bed type incinerator
WO1999043985A1 (en) * 1998-02-27 1999-09-02 Ebara Corporation Fluidized bed gasification furnace
JP2000319671A (en) * 1999-03-11 2000-11-21 Ebara Corp Operation control method of two-stage waste gasification system waste
JP2004162977A (en) * 2002-11-12 2004-06-10 Kubota Corp Circulated fluid bed furnace and its control method
JP2007528479A (en) * 2003-04-30 2007-10-11 株式会社荏原製作所 Combustible raw material supply device, combustible raw material gasifier, and combustible raw material gasification method
JP2011084664A (en) * 2009-10-16 2011-04-28 Ihi Corp Method and device for sensing defects in gasification equipment

Also Published As

Publication number Publication date
JP5778069B2 (en) 2015-09-16
JP2013210165A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
EP2631222B2 (en) Waste-processing apparatus
CN109751614B (en) Solid fuel supply device, method for operating same, and combustion facility
WO1999066264A1 (en) Operating method of fluidized-bed incinerator and the incinerator
US20160068770A1 (en) Apparatuses, systems, staging hoppers, and methods for controlling continuous feed of feedstock to a gasifier
BR112015017918B1 (en) GASIFICATOR AND RAW MATERIAL GASIFICATION METHOD
JP6255155B2 (en) Dust supply system and operation method thereof
JPS61122406A (en) Boiler plant and control method thereof
EP2765177B1 (en) Gasification system
EP2767576B1 (en) Gasification apparatus
WO2013145725A1 (en) Apparatus for supplying fluid particles to fluidized-bed gasification furnace
JP6327698B2 (en) Circulating fluidized bed gasification system
US10001277B2 (en) Method for conveying impurities in pressurized fluidized bed incinerator system
JP6258102B2 (en) Fluidized bed combustion facility and method of supplying fluidized medium to fluidized bed combustion furnace
JP7437679B2 (en) gasifier
JP2000227210A (en) Circulating fluidized bed furnace
KR101502081B1 (en) Gasifier apparatus for decreasing variation in furnace pressure
JP2003164749A (en) Apparatus and method for feeding material to be treated
JP6554985B2 (en) Operating method and operating apparatus for pressurized circulating fluidized furnace
JP2012088000A (en) Slag discharge system and method for operating the same
JP2004138378A (en) Noncombustible extraction system and fluidized bed furnace system
JP2014031929A (en) Fluid bed gasification device
CN212092538U (en) Pulverizer, and solid fuel pulverizer and boiler system provided with same
JP7191528B2 (en) POWDER FUEL SUPPLY DEVICE, GASIFIER FACTOR FACILITY AND COMBINED GASIFICATION COMBINED CYCLE EQUIPMENT AND METHOD OF CONTROLLING POWDER FUEL SUPPLY DEVICE
KR101777511B1 (en) A gasifier injector
KR101608307B1 (en) Fluidized bed gasifier device and fuel supply method for it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770251

Country of ref document: EP

Kind code of ref document: A1