明細書 空気流通式寝具及び空気流通式衣服 技術分野 Description Air-flow bedding and air-flow clothing
本発明は、 高温で寝苦しい夜などに快適な睡眠を確保するための空気流通式寝 具及び高温の環境下でも快適に過ごすことができる空気流通式衣服に関連する。 背景技術 TECHNICAL FIELD The present invention relates to an air-flowing bedding for ensuring comfortable sleep at night when a high-temperature bed is difficult and an air-flowing garment that can be comfortably used even in a high-temperature environment. Background art
夏の暑い夜に、 暑さを解消する手段として最も広く用いられているのはエアー コンディショナーである。 これは、 部屋の空気を直接冷やすものであるため、 暑 さを解消するという点においては、 非常に有効である。 Air conditioners are the most widely used means of relieving the heat on hot summer evenings. This is very effective in reducing heat because it directly cools the air in the room.
しかしながら、 エアーコンディショナーは高価な装置であり、 世帯普及率は高 くなってきたが、 一つの世帯の各部屋まで広く普及するまでには至っていない。 また、 エア一コンディショナーは大量の電力を消費するため、 エアーコンディ ショナ一が普及することによって社会全体の電力消費も増え、 発電の大きな割合 を化石燃料に頼つている現状では、 エアーコンディショナ一が普及することに よって、 それぞれの部屋は涼しくなつても、 大きな視点で考えると、 地球全体の 温暖化につながるという問題がある。 また、 エア一コンディショナーは、 部屋の 空気そのものを冷却するので、 冷えすぎによって健康を損なうといった問題も考 えら ίΐ·る。 However, although air conditioners are expensive equipment and the household penetration rate has increased, it has not yet spread widely to each room of one household. Also, since air conditioners consume large amounts of power, the spread of air conditioners increases the power consumption of society as a whole, and at present, air conditioners rely on fossil fuels for a large proportion of power generation. Even if each room becomes cooler due to its widespread use, there is a problem that, from a large perspective, it can lead to global warming. In addition, since air conditioners cool the room air itself, there is a problem that health may be impaired due to excessive cooling.
そこで、 暑い夏の夜でも、 消費電力が少なく、 かつ、 簡易に快適な睡眠を確保 できるような寝具の利用が広がれば、 かかる問題のいくぶんかの解決につながる。 また、 睡眠中に限らず、 暑い季節の日中においても、 エアーコンディショナー以 外の方法で、 消費電力が少なく、 かつ、 快適に過ごすことのできる冷却手段の利 用が広がれば、 上記の問題のいくぶんかの解決につながる。 Thus, the widespread use of bedding, which consumes less power and allows easy and comfortable sleep, even on hot summer nights, may help to alleviate some of these problems. In addition, not only during sleep but also during the hot season, if the use of cooling means that consumes less power and can be spent comfortably by means other than the air conditioner becomes widespread, the above-mentioned problems will be solved. This leads to some solution.
本発明は、 上記事情に基づいてなされたものであり、 暑い季節の日中や睡眠時 間中に、 消費電力が少なく、 かつ、 構造も簡易な空気流通式寝具および空気流通 式衣服を提供することを目的とする。
発明の開示 The present invention has been made in view of the above circumstances, and provides an air-flowing bedding and an air-flowing garment that consume less power and have a simple structure during a hot season during the day or during sleep. The purpose is to: Disclosure of the invention
第一の発明である空気流通式寝具は、 睡眠中に体に接する状態で使用する、 内 部に空気の流通路を有する寝具部と、 前記寝具部の前記流通路に空気を供給する 空気供給部とを有し、 前記空気供給部から供給された空気が、 前記寝具部内の前 記流通路に流入してから排出されるまでのあいだに人体から放射される熱を吸収 することを特徴とする。 The air-flowing bedding according to the first invention is used in a state of being in contact with a body during sleep, a bedding portion having an air flow passage therein, and supplying air to the flow passage of the bedding portion. Wherein the air supplied from the air supply unit absorbs heat radiated from the human body during a period from flowing into the flow passage in the bedding unit to being discharged. I do.
第二の発明である空気流通式寝具は、 上布、 下布、 および上布と下布の間に適 当な間隔で配置されて前記上布と下布の間に空気の流通路を形成する複数のス ぺーサからなる掛け布団部と、 前記掛け布団部の前記流通路に空気を供給する空 気供給部とを有することを特徴とする。 The air-flowing bedding according to the second invention is provided with an upper cloth, a lower cloth, and an air flow path between the upper cloth and the lower cloth, which are arranged at appropriate intervals between the upper cloth and the lower cloth. A comforter comprising a plurality of spacers, and an air supply unit for supplying air to the flow passage of the comforter.
第三の発明である空気流通式寝具は、 枕として又は枕の上に載置して用いる枕 部と、 前記枕部に空気を供給する空気供給部とを有し、 前記枕部には、 複数の溝 が設けられた下板と、 この下板の上に前記溝を覆うように被せられた上布が設け られ、 前記上布で覆われた前記溝を空気の流通路として、 前記空気供給部から供 給される空気を流通させることを特徴とする。 The air-flow bedding according to the third invention has a pillow portion used as a pillow or placed on a pillow, and an air supply portion that supplies air to the pillow portion. A lower plate provided with a plurality of grooves; and an upper cloth provided on the lower plate so as to cover the grooves, wherein the grooves covered with the upper cloth are used as air flow paths, and The air supplied from the supply unit is circulated.
第四の発明である空気流通式寝具は、 敷布団として、 又は敷布団の上に載置し て用いる敷布団部と、 前記敷布団部に空気を供給する空気供給部とを有し、 前記 敷布団部は、 人が上に寝る上布と、 人が寝たときに前記上布を介して前記人の体 重を支えるスぺ一サが一定間隔で設けられたマットと、 前記上布と前記スぺ一サ によって形成される空気の流通路からなり、 前記空気供給部から供給される空気 を、 前記敷布団部の前記流通路に流通させることを特徴とする。 An air-flow bedding according to a fourth aspect of the present invention has a mattress portion used as a mattress or placed on a mattress, and an air supply unit for supplying air to the mattress portion. An upper cloth on which a person sleeps, a mat provided with spacers for supporting the body weight of the person via the upper cloth when the person sleeps, and a mat provided with a constant interval; The air flow path formed by the air supply section is characterized in that the air supplied from the air supply section flows through the flow path of the mattress section.
第五の発明である温風式寝具は、 敷布団として、 又は敷布団の上に載置して用 レ、る敷布団部と、 前記敷布団部に温風を供給する温風供給部とを有し、 前記敷布 団部は、 人が上に寝る上布と、 人が寝たときに前記上布を介して前記人の体重を 支えるスぺーサが一定間隔で設けられたマツトと、 前記上布と前記スぺ一サに よって形成される前記温風の流通路からなり、 前記温風供給部から供給される温 風を、 前記敷布団部の流通路に流通させることを特徴とする。 A warm air bedding according to a fifth aspect of the present invention has a mattress or a mattress placed on or on a mattress, and a hot air supply unit for supplying warm air to the mattress, The mattress section includes: an upper cloth on which a person sleeps; a mat provided with spacers for supporting the weight of the person via the upper cloth when the person sleeps; It is characterized by comprising a flow passage of the hot air formed by the spacer and flowing hot air supplied from the hot air supply section through the flow passage of the mattress section.
第六の発明である空気流通式寝具は、 上に寝る人の荷重を支える複数の荷重支
持部が形成されたマット手段と、 寝る人と前記マット手段との間に設けられ、 前 記マット手段の上部を被って、 隣合う前記荷重支持部とともに空気が流通する流 路を形成するシート部材と、 前記マット手段と一体的に、 かつ前記マット手段の 外側に広く延在するよう設けられ、 前記外側に広く延在する部分を既存の寝具の 下にたくし込むことにより前記マツト手段を前記既存の寝具の上部に固定する固 定手段と、 空気を送出する送風手段と、 前記送風手段から送出された空気を前記 流路に導く空気誘導手段とを有し、 前記流路を流通したあとの空気を外部に排出 するようにしたことを特徴とする。 The air-flow type bedding according to the sixth invention comprises a plurality of load supports for supporting a load of a person lying thereon. A sheet provided between the sleeper and the mat means, the sheet means being provided between the sleeper and the mat means, and forming a flow path through which the air flows together with the adjacent load supporting part, the mat means being provided between the sleeper and the mat means; A member, provided integrally with the mat means, and extending widely outside the mat means, wherein the matte means is formed by knocking a part extending widely outside under existing bedding. Fixing means for fixing to the upper part of the existing bedding, air blowing means for sending out air, and air guiding means for guiding the air sent from the air blowing means to the flow path, after flowing through the flow path The air is discharged to the outside.
第七の発明である空気流通式衣服は、 第一及ぴ第二の布、 及びこれらの布の間 に適当な間隔で配置され前記第一及び第二の布の間に空気の流通路を形成する複 数のスぺーサからなる衣服部と、 空気を吸入し、 吸入した空気を前記衣服部の前 記流通路に送出する空気吸入手段とを有することを特徴とする。 図面の簡単な説明 An air circulating garment according to a seventh aspect of the present invention comprises a first and a second cloth, and an air flow path between the first and the second cloths, which is disposed at an appropriate interval between the first and the second cloths. It is characterized by having a garment section comprising a plurality of spacers to be formed, and air suction means for sucking air and sending out the sucked air to the above-mentioned flow passage of the garment section. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第一実施形態の空冷式布団 1の全体的な構成を示した平面図 である。 FIG. 1 is a plan view showing an overall configuration of an air-cooled futon 1 according to the first embodiment of the present invention.
図 2は、 布団部 1 0を示した図であり、 (a ) は平面図、 (b ) は (a ) の x - X 矢視断面図、 (c ) は、 (b ) の一部を拡大した図である。 FIG. 2 is a view showing the futon part 10, wherein (a) is a plan view, (b) is a cross-sectional view of (a) taken along the line X-X, and (c) is a part of (b). It is the figure which expanded.
図 3は、 本実施形態の空冷式布団 1の冷却作用の原理を説明するための図であ る。 FIG. 3 is a diagram for explaining the principle of the cooling action of the air-cooled futon 1 of the present embodiment.
図 4は、 第二実施形態の空冷式枕 4 0の全体的な構成を示す斜視図である。 図 5は、 枕部の概略断面図である。 FIG. 4 is a perspective view showing the overall configuration of the air-cooled pillow 40 of the second embodiment. FIG. 5 is a schematic sectional view of the pillow portion.
図 6は、 予備実験 1の概略を示した図である。 FIG. 6 is a diagram schematically showing the preliminary experiment 1.
図 7は、 予備実験 1の結果を示した図である。 FIG. 7 is a diagram showing the results of Preliminary Experiment 1.
図 8は、 予備実験 2の概略を示した図である。 FIG. 8 is a diagram schematically showing the preliminary experiment 2.
図 9は、 予備実験 2の結果を示した図である。 FIG. 9 is a diagram showing the results of Preliminary Experiment 2.
図 1 0は、 予備実験 3の概略を示した図である。 FIG. 10 is a diagram schematically showing the preliminary experiment 3.
図 1 1は、 予備実験 3の結果を示した図である。 FIG. 11 is a diagram showing the results of Preliminary Experiment 3.
図 1 2は、 予備実験 4で用いる実際に市販されているプロペラファンの風量一
静圧特性を示した図である。 Figure 12 shows the actual airflow of propeller fan used in Preliminary Experiment 4. FIG. 4 is a diagram showing static pressure characteristics.
図 1 3は、 予備実験 5の概略を示した図である。 FIG. 13 is a diagram schematically showing the preliminary experiment 5.
図 1 4は、 第三実施形態の空冷式枕を示した図である。 FIG. 14 is a diagram showing an air-cooled pillow of the third embodiment.
図 1 5は、 第三実施形態の空冷式枕に空気を流さなかった場合に頭部と枕部の 間の温度がどのように変化するかを調べた実験結果を示したグラフである。 図 1 6は、 第三実施形態の空冷式枕に空気を流したときに、 一定時間後に到達 する温度を観測した結果を示したグラフである。 FIG. 15 is a graph showing an experimental result of examining how the temperature between the head and the pillow changes when air is not flown through the air-cooled pillow of the third embodiment. FIG. 16 is a graph showing the result of observing the temperature reached after a certain time when air is flowed through the air-cooled pillow of the third embodiment.
図 1 7は、 第三実施形態の変形例を示した図である。 FIG. 17 is a diagram showing a modification of the third embodiment.
図 1 8は、 第四実施形態の空冷式布団の布団部分を示した図である。 FIG. 18 is a diagram showing a futon portion of the air-cooled futon of the fourth embodiment.
図 1 9は、 スぺ一サの概略斜視図である。 FIG. 19 is a schematic perspective view of the spacer.
図 2 0は、 スぺ一サを配置するための治具を示した概略平面図である。 FIG. 20 is a schematic plan view showing a jig for arranging the spacer.
図 2 1は、 空気流通式寝具を掛け布団として、 他の布団と併用する使用態様を 示した概略断面図である。 FIG. 21 is a schematic cross-sectional view showing a use mode in which an air-flow bedding is used as a comforter and another futon is used in combination.
図 2 2は、 第五実施形態の空気流通式寝具を示す図である。 FIG. 22 is a diagram showing the air-flow type bedding of the fifth embodiment.
図 2 3は、 第六実施形態の温風式寝具の概略平面図である。 FIG. 23 is a schematic plan view of the warm-air bedding of the sixth embodiment.
図 2 4は、 第七実施形態の空気流通式寝具の本体部分を広げた状態を示す平面 図である。 FIG. 24 is a plan view showing a state where the main body of the air-flowing bedding of the seventh embodiment is expanded.
図 2 5は、 図 2 4に示した空気流通式寝具をべッドのマツトレスの部分に装着 した状態を示す横断面図である。 FIG. 25 is a cross-sectional view showing a state in which the air-flow bedding shown in FIG. 24 is attached to a mattress portion of a bed.
図 2 6は、 エアーマットのエアークッション部分の拡大斜視図である。 FIG. 26 is an enlarged perspective view of the air cushion portion of the air mat.
図 2 7は、 第八実施形態の空気流通式衣服の正面図及び背面図である。 FIG. 27 is a front view and a rear view of the air circulating garment of the eighth embodiment.
図 2 8は、 図 2 7に示す空気流通式衣服を人が着用した状態を示す図である。 図 2 9は、 図 2 8に示す空気流通式衣服のファン部分の拡大断面図である。 図 3 0は、 第八実施形態の衣服部に用いた空気流通素材の平面図及び断面図で ある。 FIG. 28 is a diagram illustrating a state in which a person wears the air-flow-type garment illustrated in FIG. 27. FIG. 29 is an enlarged cross-sectional view of the fan portion of the airflow-type garment shown in FIG. FIG. 30 is a plan view and a cross-sectional view of an air circulating material used for a clothing portion according to the eighth embodiment.
図 3 1は、 人が快適と感じるときの体の表面近傍の温度を調べた実験の結果を 表にして示した図である。 発明を実施するための最良の形態
以下に図面を参照して、 本願にかかる発明を実施するための最良の形態につい て説明する。 Figure 31 is a table showing the results of an experiment in which the temperature near the body surface when a person felt comfortable was examined. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the invention according to the present application will be described with reference to the drawings.
[第一実施形態] [First embodiment]
図 1は、 本発明の第一実施形態の空冷式布団 1の全体的な構成を示した平面図 である。 図 1に示すように、 空冷式布団 1は、 布団部 1 0と、 ファン 8と、 これ らをつなぐホース 9を含んで構成される。 布団部 1 0は、 通常の掛け布団と同じ ように、 人が寝るときに上に掛けるという態様で用いられる。 ファン 8は、 原則 として室温と同じ室内の空気をホース 9を介して布団部 1 0に送る。 FIG. 1 is a plan view showing an overall configuration of an air-cooled futon 1 according to the first embodiment of the present invention. As shown in FIG. 1, the air-cooled futon 1 includes a futon part 10, a fan 8, and a hose 9 connecting these. The futon part 10 is used in a manner that, like a normal comforter, the person hangs on the bed when a person sleeps. The fan 8 sends air inside the room, which is the same as the room temperature, to the futon 10 through the hose 9 in principle.
図 2は、 布団部 1 0を示した図であり、 (a) は平面図、 (b) は (a) の χ — χ' 矢視断面図、 (c) は、 (b) の一部を拡大した図である。 図 2 (b) に 示すように、 布団部 1 0は、 上布 1 1、 下布 1 2、 およびこれらの間の空冷シー ト 1 3からなる三層構造とされている。 上布 1 1と下布 1 2は、 通気性のよい一 般的な布地から作られている。 但し、 夏用に用いるときは、 布団部 1 0を掛けて 寝たときに暑くなりすぎないよう十分に薄手のものとし、 かつ肌に触れたときに 心地よいものを選択することが望ましレ、。 2A and 2B are diagrams showing the futon part 10, wherein FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along the line χ— の ′ of FIG. FIG. As shown in FIG. 2 (b), the futon part 10 has a three-layer structure including an upper cloth 11, a lower cloth 12, and an air-cooled sheet 13 therebetween. The upper cloth 11 and the lower cloth 12 are made of general cloth having good air permeability. However, when used for summer, it is desirable to select a material that is sufficiently thin so that it does not become too hot when you sleep with the futon section 10 and that you feel comfortable when you touch the skin. .
空冷シート 1 3は、 上下二枚のフィルム 1 7 a, 1 7 bと、 これらの間に所定 の間隔で多数設けられた円柱状のエアー柱 1 8からなる。 なお、 図 2 (a) では、 x- x 近傍だけにエアー柱 1 8,を示したが、 実際は、 空冷シート 1 3の全体に エアー柱 1 8が設けられている。 フィルム 1 7 a, 1 7 b及びエアー柱 1 8は、 ポリエチレンや塩ィヒビニルなどから作られており、 エアー柱 1 8の内部には空気 が封入してある。 図 2 (c) に示すように、 この空冷シート 1 3の構造は、 ちょ うど割れ物や精密器械製品などを運搬するときなどに、 外部からの衝撃をやわら げる緩衝材として用いられるェアークッションと類似したものとなっている。 こ れにより、 図 2 (b) の上下方向にある程度の圧力が加わっても、 エアー柱 1 8 が有する弾力†¾によって、 上下のフィルム 1 7 aと 1 7 bが接触しないようにす ることができる。 但し、 後述の理由により、 エアー柱 1 8の配置密度は、 一般的 なエア一クッションに比べてかなり小さい。 空冷シート 1 3を構成する上下二枚 のフィルムの厚みは、 例えば 0. 0 3mm程度とする。 The air-cooling sheet 13 is composed of upper and lower two films 17a and 17b, and a large number of column-shaped air columns 18 provided at predetermined intervals therebetween. In FIG. 2A, the air columns 18 are shown only in the vicinity of x-x. However, in actuality, the air columns 18 are provided on the entire air-cooling sheet 13. The films 17a and 17b and the air column 18 are made of polyethylene, vinyl chloride, or the like, and the air column 18 is filled with air. As shown in Fig. 2 (c), the structure of this air-cooled sheet 13 is a cushion that is used as a cushioning material to cushion external shocks when transporting broken objects or precision instrument products. It is similar to. This prevents the upper and lower films 17a and 17b from contacting each other due to the elasticity が of the air column 18 even if a certain amount of pressure is applied in the vertical direction in FIG. 2 (b). Can be. However, the arrangement density of the air columns 18 is considerably smaller than that of a general air cushion for the reasons described below. The thickness of the upper and lower two films constituting the air-cooling sheet 13 is, for example, about 0.03 mm.
空冷シート 1 3には、 適当な間隔で多数の通気穴 1 6が設けられている。 空冷
シート 1 3の素材は空気を通さないが、 かかる通気穴 1 6により、 人が布団部 1 0を上に掛けて寝ているときの通気性が確保される。 前述のように空冷シート 1 3の上下二枚のフィルム 1 7 a, 1 7 bおよびエアー柱 1 8の間の空間は流通路 1 5となる。 前述のように、 エアー柱 1 8の配置密度は、 緩種 ί材として用いられ るエアークッションに比べてかなり小さくなつているが、 これは十分な冷却効果 を確保するためと、 ファン 8に加わる負荷を軽減するためである。 通気穴 1 6の 周囲は、 空冷シート 1 3と同じ素材で、 上下のフィルム 1 7 a, 1 7 bが閉じら れ、 あるいは上下二枚のフィルム 1 7 a, 1 7 bが融着されており、 この部分か ら流通路 1 5内を流通する空気が漏れ出すことはない。 なお、 図 2には示されて いないが、 空冷シート 1 3の適当な場所には排気穴が設けられており、 ファン 8 から送られてきた空気は、 最終的にこの排気穴から外部へ排出される。 The air cooling sheet 13 is provided with a large number of ventilation holes 16 at appropriate intervals. Air cooling Although the material of the sheet 13 does not allow air to pass through, the ventilation hole 16 ensures air permeability when a person is sleeping with the futon 10 lying on top. As described above, the space between the upper and lower two films 17 a and 17 b of the air-cooling sheet 13 and the air column 18 is a flow passage 15. As described above, the density of the air columns 18 is considerably smaller than that of the air cushion used as a mild material, but this is added to the fan 8 to ensure a sufficient cooling effect. This is to reduce the load. The area around the ventilation hole 16 is made of the same material as the air cooling sheet 13, and the upper and lower films 17 a and 17 b are closed, or the upper and lower films 17 a and 17 b are fused. Therefore, the air flowing through the flow passage 15 does not leak from this portion. Although not shown in FIG. 2, an exhaust hole is provided in an appropriate place of the air cooling sheet 13, and the air sent from the fan 8 is finally discharged to the outside from the exhaust hole. Is done.
上布 1 1と下布 1 2は元々長方形の布地で、 これらの縁が互いに縫い合わされ て袋状とされており、 その一部はファスナーで開閉可能になっている。 このファ スナ一の部分から、 必要に応じて内部の空冷シート 1 3を容易に着脱もしくは交 換できる。 空気をどのような経路で流通させるかは、 通気穴 1 6を設ける位置や 空冷シート 1 3を構成する上下二枚のフィルムをどこで融着するかによって任意 に調整することができるが、 通常は、 ファン 8からホース 9を通って布団部 1 0 に送られてきた空気が流通路 1 5の中を万遍なく流通したあとに排出されるよう にする。 なお、 この他に、 布団部 1 0の中に、 別にホース状の流通路を設け、 こ の中に空気を流すようにしてもよレ、。 The upper cloth 11 and the lower cloth 12 are originally rectangular cloths, and their edges are sewn to each other to form a bag, and a part thereof can be opened and closed with a fastener. The air cooling sheet 13 inside can be easily attached / detached or replaced from this fastener part as needed. The route through which the air is circulated can be arbitrarily adjusted depending on the position where the ventilation hole 16 is provided and where the upper and lower films constituting the air cooling sheet 13 are fused. Then, the air sent from the fan 8 to the futon section 10 through the hose 9 is discharged after being uniformly distributed in the flow passage 15. Alternatively, a separate hose-shaped flow passage may be provided in the futon portion 10 to allow air to flow therethrough.
図 3は、 本実施形態の空冷式布団 1の冷却作用の原理を説明するための図であ る。 (a ) は、 もともとの室温が 3 0 °C (真夏の寝苦しい夜の室内の温度は、 ほ ぼこの程度である) の部屋に人が居るときに、 その周囲における温度がどのよう な分布になっているかを等温曲線 (破線) で概略的に示した図である。 恒温動物 である人 Aの体温は、 ほぼ一定であり、 この温度を 3 6 °Cとすると、 部屋の空気 に大きな対流がないと仮定した場合には、 部屋の各部の温度は、 (a ) に示すよ うに人 Aの付近が最も高く、 人との距離が離れるにしたがって徐々に低下しなが ら 3 0 °Cに近づく。 これに対し、 (b ) は、 元々の室温が 2 0 の部屋に人が居 るときの温度分布を等温曲線で概略的に示した図である。
図 3の (a ) と (b ) を比べると分かるように、 (b ) の場合は (a ) に比べ て、 等温曲線同士の間隔が密である。 言い換えると、 (b ) の場合は、 (a ) の 場合に比べて温度勾配が大きい。 この温度勾配の大小は、 放出される熱の量を左 右し、 その結果、 人の温度の感じ方に大きな影響を与える。 すなわち、 人は、 温 度勾配が大きいほど暑さ、 寒さを強く感じる。 そこで、 本実施形態では、 部屋全 体の温度を下げるのではなく、 人のごく近傍における温度勾配を強制的に大きく し、 これによつて、 人に涼しさを感じさせ、 快適な睡眠の確保を図る。 FIG. 3 is a diagram for explaining the principle of the cooling action of the air-cooled futon 1 of the present embodiment. (A) shows the distribution of the ambient temperature when a person is in a room with an original room temperature of 30 ° C (the room temperature in a midsummer sleepy night is almost the same). FIG. 4 is a diagram schematically showing whether or not the temperature is set by an isothermal curve (broken line). The body temperature of person A, a constant-temperature animal, is almost constant, and assuming that this temperature is 36 ° C, assuming that there is no large convection in the room air, the temperature of each part of the room is (a) As shown in Fig. 4, the area near person A is the highest, and approaches 30 ° C while gradually decreasing as the distance from the person increases. On the other hand, (b) is a diagram schematically showing, by an isothermal curve, a temperature distribution when a person is present in the room whose original room temperature is 20. As can be seen by comparing (a) and (b) in FIG. 3, the interval between the isothermal curves in (b) is closer than in (a). In other words, in the case of (b), the temperature gradient is larger than in the case of (a). The magnitude of this temperature gradient affects the amount of heat released, which in turn has a significant effect on how people perceive temperature. In other words, people feel more hot and cold as the temperature gradient is larger. Therefore, in this embodiment, instead of lowering the temperature of the entire room, the temperature gradient in the immediate vicinity of the person is forcibly increased, whereby the person can feel cool and secure a comfortable sleep. Plan.
図 3 ( c ) は、 室温が 3 0 °Cの部屋に居る人 Aの周囲のごく近傍に一定温度 3 0 C空気層を設けた場合の温度分布を示している。 この場合は、 室温は (a ) と 同じく 30 Cであるが、 人 Aの体表のごく近傍に 3 0 °Cの等温曲線が位置するため、 人 Aと 3 0 °Cの空気層との間だけを見ると、 その温度勾配は、 図 3 ( b ) の場 合に類似している。 このように、 人 Aの体表のごく近傍に 3 0 °Cの等音曲線を配 置することができれば、 人 Aは、 図 3 ( b ) と同じような涼しさを感じること ができる。 FIG. 3 (c) shows the temperature distribution when a constant temperature 30 C air layer is provided in the vicinity of person A in a room with a room temperature of 30 ° C. In this case, the room temperature is 30 C as in (a), but since the isothermal curve at 30 ° C is located very close to the body surface of Person A, the room temperature between Person A and the air layer at 30 ° C is high. Looking only at the interval, the temperature gradient is similar to that in Fig. 3 (b). Thus, if the iso-sound curve at 30 ° C can be arranged very close to the body surface of person A, person A can feel the same coolness as in Fig. 3 (b).
本実施形態では、 この点に着目し、 部屋の空気全体の温度を下げるのではなく、 人の体のごく近傍、 すなわち体に接する寝具又は衣服に室温とほぼ同じ温度の空 気層を配置することによって体表付近の温度勾配を強制的に大きくし、 これによ り自然な涼しさを感じられるようにする。 しかもこの空気は部屋の空気そのもの であるため、 特別な冷却装置を必要としない。 In this embodiment, focusing on this point, instead of lowering the temperature of the entire air in the room, an air layer having a temperature substantially equal to the room temperature is arranged in the vicinity of the human body, that is, in bedding or clothes in contact with the body. This forcibly increases the temperature gradient near the body surface, so that a natural coolness can be felt. Moreover, since this air is the room air itself, no special cooling device is required.
[第二実施形態] [Second embodiment]
図 4は、 第二実施形態の空冷式枕 4 0の全体的な構成を示す斜視図である。 図 FIG. 4 is a perspective view showing the overall configuration of the air-cooled pillow 40 of the second embodiment. Figure
4に示すように、 本実施形態の空気枕は、 枕部 4 1と、 ファン 4 2と、 これらを 繋ぐホース 4 3を含んで構成されている。 As shown in FIG. 4, the air pillow according to the present embodiment includes a pillow portion 41, a fan 42, and a hose 43 connecting these.
本実施形態の空冷式枕 4 0の枕部 4 1は、 図 5に示すように、 第一実施形態と 同じく上布 4 3と下布 4 4の間に空冷シート 4 5が設けられた三層構造とされて いる。 空冷シート 4 5についても、 第一実施形態の空冷シート 1 3と同様に、 上 下のフイノレム 4 5 a, 4 5 b及びエアー柱 4 8からなり、 エアー柱 4 8の内部に は空気が封入されている。 上下のフィルム 4 5 a, 4 5 b及びエアー柱 4 8の間 の空間には空気の流通路 4 6が形成されている。 枕の場合は掛け布団と異なり、
上に人の頭を載せるため大きな荷重がかかるので、 エア一柱 48には、 人の頭が 載ってもつぶれない程度の弾力性と強度が付与しておく。 As shown in FIG. 5, the pillow portion 41 of the air-cooled pillow 40 of the present embodiment has an air-cooled sheet 45 provided between the upper cloth 43 and the lower cloth 44, as in the first embodiment. It has a layered structure. Similarly to the air-cooling sheet 13 of the first embodiment, the air-cooling sheet 45 is composed of upper and lower finolems 45 a and 45 b and an air column 48, and air is sealed inside the air column 48. Have been. An air flow passage 46 is formed in the space between the upper and lower films 45 a and 45 b and the air column 48. Unlike quilts for pillows, Since a large load is applied to put a person's head on it, the air column 48 should be given elasticity and strength so that it will not be crushed even if a person's head is placed.
ここで、 本実施形態の空冷式枕 40にどの程度の空気を流すことが必要となる かを、 一般的な水枕と比較しながら概算する。 まず、 前提として、 室温を 25 、 水枕の容量を 2リットル (2000 c c) 、 水枕に入れる水の温度を 15 とし、 この水枕の使用を開始して 3時間で 30°Cになった場合を想定する。 更に、 水枕 内の水の温度が上昇する要因の 70%が人の頭からの熱によるものと仮定する。 Here, how much air is required to flow through the air-cooled pillow 40 of the present embodiment is roughly estimated in comparison with a general water pillow. First, assuming that the room temperature is 25, the capacity of the water pillow is 2 liters (2000 cc), the temperature of the water to be put in the water pillow is 15, and it is assumed that the temperature of the water pillow reaches 30 ° C in three hours. I do. It is further assumed that 70% of the rise in the temperature of the water in the water pillow is due to heat from the human head.
2000 c cの水が 1 5 から 30°Cに上昇すると、 その間に吸収する熱量は 約 30Kc a 1である。 このうちの 70%が人の頭部からの熱量だとすると、 人 の頭部からは約 2 1 K c a 1の熱が吸収されたことになり、 1時間当たりでは、 平均して約 7Kc a 1の熱量が吸収されたことになる。 When 2000 cc of water rises from 15 to 30 ° C, the amount of heat absorbed during that time is about 30 Kc a 1. If 70% of this heat is from the human head, this means that about 21 Kca 1 of heat was absorbed from the human head, and on average, about 7 Kc a 1 per hour This means that the heat has been absorbed.
次に、 この水枕と同等の吸熱作用を本実施形態の空冷式枕 40で実現するもの と仮定する。 まず、 枕に供給される空気の温度は室温と同じ 25°Cであり、 この 空気が、 頭部からの熱を吸収して 28 になるようにする。 空気 1リットルの温 度を 1 °C上昇させるのに必要な熱量は約 0. 3 c a 1であり、 空気 1リツトルの 温度を 3^上昇させるのに必要な熱量は約 1 c a 1である。 したがって、 1時間 に 7Kc a 1の熱量を吸収するために必要な空気の量は約 7キロリットノレとなり、 これを 1秒当たりに換算すると、 毎秒約 2リットルの空気を流すことが必要とな る。 Next, it is assumed that an endothermic effect equivalent to that of the water pillow is realized by the air-cooled pillow 40 of the present embodiment. First, the temperature of the air supplied to the pillow is 25 ° C, the same as room temperature, and this air absorbs the heat from the head so that it becomes 28. The amount of heat required to raise the temperature of one liter of air by 1 ° C is about 0.3 c a 1, and the amount of heat required to raise the temperature of one liter of air by 3 ^ is about 1 c a 1. Therefore, the amount of air required to absorb 7 Kc a 1 of heat per hour is about 7 kilolitre, which translates into about 2 liters of air per second.
ここで、 本実施形態の流通路 46の断面が、 図 5に示すように幅 25 Omm、 高さ 5 mmとすると、 この断面積は 12. 5 cm2 となる (エアー柱 48の部 分は除いて考える) 。 これから必要な空気の流速は、 Here, assuming that the cross section of the flow passage 46 of this embodiment has a width of 25 Omm and a height of 5 mm as shown in FIG. 5, this cross sectional area is 12.5 cm 2 (the air column 48 is Exclude it). The required air velocity from now on
2000 (cm3 /s e c) ÷ 12. 5 (cm2 ) = 160 ( c m/ s e c) となる。 すなわち、 流通路 45内に流す空気の流速は、 秒速 1. 6m程度である。 したがって、 ファン 42として、 この程度の送風能力を持ったものを用意する必 要があるが、 この程度の性能のファンは容易に入手可能であり、 また、 このよう なファンであれば振動も少なく、 十分な静粛さを確保できる。 2000 (cm 3 / sec) ÷ 12.5 (cm 2 ) = 160 (cm / sec). That is, the flow velocity of the air flowing into the flow passage 45 is about 1.6 m per second. Therefore, it is necessary to prepare a fan having such a blowing capacity as the fan 42. However, a fan having such a performance is easily available, and such a fan has less vibration. However, sufficient quietness can be secured.
ところで、 水枕の場合は、 水の温度が上昇していくと、 頭部を冷却する能力は 徐々に低下する。 また、 水の温度が体温近くまで上昇したら中の水を取り替える、
などの手間がかかる。 これに対して、 本実施形態の空冷式枕の場合は、 常に室温 の空気を流しているので冷却能力は一定に維持され、 また、 水枕のように水を取 り替えるという手間はかからない。 したがって、 健常者が寝苦しい夜を快適に過 ごすためという用途以外に、 例えば、 病院などで頭部を冷やす必要のある患者に 適用すれば、 介護者の負担が大幅に軽減される。 By the way, in the case of a water pillow, the ability to cool the head gradually decreases as the temperature of the water rises. Also, when the water temperature rises to near body temperature, replace the water inside, It takes time and effort. On the other hand, in the case of the air-cooled pillow of the present embodiment, since the air at room temperature is always flowed, the cooling capacity is kept constant, and there is no need to replace water like a water pillow. Therefore, when applied to patients who need to cool their heads in hospitals, etc., besides the use of healthy people to comfortably sleep at night, the burden on caregivers is greatly reduced.
更に、 本実施形態の空冷式枕については、 流通路を構成する上側のフィルム 4 δ aの所々に空気の吹き出し口を設け、 ここから放出された空気の流れが直接人 の頭部に当たるようにすることもできる。 このようにすると、 吹き出し口から吹 き出るより乾燥した空気によって頭部の周囲の空気が置換され、 これにより汗が 蒸発しやすくなり、 その蒸発時に要する気化熱が頭部の熱を吸収するので、 冷却 効果がより高まる。 このように放出した空気が頭部に当たる空冷式枕にすると、 単なる流通路だけの空冷式枕と同等の冷却能力を確保するのに必要な空気の量は 少なくなり、 低コストのファンで済むという利点がある。 Further, in the air-cooled pillow of the present embodiment, air outlets are provided at various places of the upper film 4δa constituting the flow passage so that the air flow released from the air flow pillow directly hits the human head. You can also. In this way, the air around the head is replaced by air that is drier from the outlet, which makes it easier for the sweat to evaporate, and the heat of vaporization required during the evaporation absorbs the heat of the head. The cooling effect is more enhanced. If an air-cooled pillow that hits the head with the released air in this way reduces the amount of air required to secure the same cooling capacity as an air-cooled pillow with only a simple passage, it can be done with a low-cost fan There are advantages.
なお、 上記では、 ファンやホースを布団部や枕部とは別体に設けたが、 ホース を省略し、 ファンを布団部や枕部と一体的に設けるようにしてもよい。 In the above description, the fan and the hose are provided separately from the futon and the pillow. However, the hose may be omitted and the fan may be provided integrally with the futon and the pillow.
次に、 後述の各空気流通式寝具を開発する過程において行ったいくつかの予備 的な実験について、 その内容、 結果及び考察について説明する。 Next, the contents, results, and discussion of some preliminary experiments performed in the process of developing each air-flow bedding described below are described.
[予備実験 1 ] [Preliminary experiment 1]
予備実験 1では、 通常の水枕がどのような冷却特†iを有しているかを確かめる ために、 市販の水枕 (株式会社ダンロップホームプロダクツ製) を用いて実験を 行った。 この実験では、 図 6に示すように、 室温 2 2 °Cの部屋で、 水枕 1 1 0に 1 5 °Cの水 1 8 0 0 c cを入れ、 実際に被験者が枕に頭 (Aで示す) を載せて、 水枕 1 1 0と頭部 Aの間に温度センサ 1 1 1を置き、 頭部 Aと水枕 1 1 0の間の 温度がどのように変化するかを観測した。 In Preliminary Experiment 1, an experiment was performed using a commercially available water pillow (manufactured by Dunlop Home Products Co., Ltd.) in order to confirm what kind of cooling characteristics i a normal water pillow has. In this experiment, as shown in Fig. 6, in a room at room temperature of 22 ° C, water pillow 110 was filled with 180 cc of water at 15 ° C, and the subject actually put his head on the pillow (indicated by A). ) Was placed, and a temperature sensor 111 was placed between the water pillow 110 and the head A, and how the temperature between the head A and the water pillow 110 changed was observed.
図 7は、 この観測結果を示したグラフであり、 縦軸は温度 (°C) 、 横軸は時間 (分) である。 また、 横軸の下には、 各観測時点での温度の実測値を示してある。 図 7から分かるように、 温度は、 実験開始後約 1 5分で最低になったあとは徐々 に上昇し、 最終的には室温を超え、 実験開始から 4時間後には約 3 1 °Cに達して いる。 頭部と水枕の間の温度がこの程度まで高くなると、 水枕としてはほとんど
機能しなくなり、 中の水を取り替えることが必要となる。 Figure 7 is a graph showing this observation result, where the vertical axis is temperature (° C) and the horizontal axis is time (minutes). The measured values of the temperature at each observation point are shown below the horizontal axis. As can be seen from Fig. 7, the temperature gradually decreased after reaching a minimum at about 15 minutes after the start of the experiment, eventually rose to room temperature, and reached about 31 ° C four hours after the start of the experiment. Has reached. When the temperature between the head and the water pillow rises to this level, almost no water pillow It will no longer work and the water inside will need to be replaced.
ところで、 一般的な水枕の場合には、 中に氷を入れるなどするため、 最初は非 常に冷たく感じる。 氷を入れることによって、 ちょうどよい温度が持続する時間 は多少長くなる。 しかし、 逆に、 例えば 25°C位になると、 まだ実際には冷却効 果があるにもかかわらず、 当初の温度が非常に冷たかったために、 使用者は冷た さを感じにくくなる傾向がある。 したがって、 真夏の暑い夜に安眠用として用い ている場合などには、 頻繁に中の水を取り替えることが必要となり、 この点が水 枕の欠点の一つと考えられる。 By the way, in the case of a common water pillow, it feels very cold at first because ice is put inside. With ice, the time that the right temperature lasts is slightly longer. However, conversely, for example, when the temperature reaches about 25 ° C, the user tends to be less likely to feel the cold because the initial temperature was very cold, even though the cooling effect is still actually provided. Therefore, it is necessary to frequently change the water used when sleeping on hot summer nights, which is considered to be one of the drawbacks of water pillows.
[予備実験 2] [Preliminary experiment 2]
次に、 2枚のアルミ板の間隔を変えて、 この間に一定量の空気を流すために必 要な圧力差を求める予備実験を行った。 Next, a preliminary experiment was performed to change the distance between the two aluminum plates and to determine the pressure difference required to flow a certain amount of air between them.
先ず、 図 8 (a) に示すように、 長さ 500min、 幅 250 mmの 2枚のァノレ ミ板 120, 1 21を平行に重ねて配置する。 図の左右の側面は開放し、 前後の 側面は空気が漏れないように別の板 122, 123によって閉じてある。 2枚の アルミ板 120, 1 21は、 平行な状態で間隔 dを変えることができる。 図 8の 左側の入口からファンで空気を送り、 右側の出口から空気を排出する。 そして、 送風する空気の量が常に毎秒 1リットルの割合で一定となるようにファンを運転 する。 このとき、 dを変えながら、 左側の圧力が右側に比べてどの程度高くなる かを、 微差圧計を用いて測定した。 実際には、 図 8 (b) に示すように、 ファン 1 24と左側の入口とを流通路 1 25でつなぎ、 この流通路 1 25の中に微差圧 計 126を入れて測定した。 First, as shown in Fig. 8 (a), two anoremy plates 120 and 121 having a length of 500 min and a width of 250 mm are placed in parallel and stacked. The left and right sides of the figure are open, and the front and rear sides are closed by separate plates 122 and 123 to prevent air leakage. The distance d between the two aluminum plates 120 and 121 can be changed in parallel. The fan sends air from the left inlet and exhausts air from the right outlet in Fig. 8. The fan is operated so that the amount of air to be blown is always constant at a rate of 1 liter per second. At this time, while changing d, how much the pressure on the left side was higher than that on the right side was measured using a micro differential pressure gauge. Actually, as shown in FIG. 8 (b), the fan 124 and the inlet on the left side were connected by a flow passage 125, and a small differential pressure gauge 126 was inserted into the flow passage 125 for measurement.
図 9は、 この結果をプロットしたグラフである。 図 9において、 横軸は 2枚の アルミ板 1 20, 12 1の間隔(1 [mm] であり、 縦軸は [mmH2 O] を単 位とした入口側と出口側の圧力差である。 ここで用いた圧力の単位 [mmH2 O] は、 1 a tm (気圧) との間に、 1 mmH2 〇= 9. 6 72 X 10"5 a t m (気圧) という関係がある。 Figure 9 is a graph plotting this result. 9, the horizontal axis is the two aluminum plates 1 20, 12 1 interval (1 [mm], the vertical axis is the pressure difference between the inlet side and the outlet side with a single-position of [mmH 2 O] The unit of pressure [mmH 2 O] used here has a relationship with 1 a tm (atmospheric pressure) of 1 mmH 2 〇 = 9.672 X 10 " 5 atm (atmospheric pressure).
送風量は一定であるから、 2枚のアルミ板 120, 121の間隔 dが小さい程、 空気の流速は大きくなる。 流通する空気が内壁との摩擦によって受ける抵抗力は、 速度が大きい程大きくなる。 したがって、 dが小さいほど圧力差は大きくなり、
間隔 dが大きくなるほど圧力差は小さくなる。 一般に、 圧力差は流速の二乗に比 例すると言われているが、 図 9のグラフを見ると、 概ねそのことが確かめられる。 但し、 間隔 dが小さくなるほど、 壁面における空気の摩擦の効果が大きくなるの で、 実際にはこの関係からははずれ、 圧力差はより大きくなる傾向がある。 図 9 から、 dを 5 m mとすると、 入口と出口の圧力差は、 約 0 . 4 m m H2 〇にな ることが分かる。 Since the air volume is constant, the smaller the distance d between the two aluminum plates 120 and 121, the higher the air flow velocity. The greater the velocity, the greater the resistance of the flowing air to friction with the inner wall. Therefore, the pressure difference increases as d decreases, The pressure difference decreases as the distance d increases. Generally, it is said that the pressure difference is proportional to the square of the flow velocity, but the graph in Fig. 9 generally confirms this. However, since the effect of the friction of the air on the wall surface increases as the distance d decreases, this relationship actually deviates from this relationship and the pressure difference tends to increase. From FIG. 9, it can be seen that when d is 5 mm, the pressure difference between the inlet and the outlet is about 0.4 mm H 2 〇.
[予備実験 3 ] [Preliminary experiment 3]
次に、 熱源があるところに空気を流したときの、 その空気による熱源からの除 熱効果を調べる実験を行った。 なお、 実際の空冷式枕では、 熱源となるのは室温 より温度の高い人間の頭部であるが、 熱交換作用については、 熱源を室温より低 いものを用いても同等に考えることができるので、 ここでは、 実験し易い水 (室 温よりも低い) を熱源として用い、 出口で空気がどの程度冷やされるかを測定す ることによって、 間接的に除熱効果を調べる。 Next, we conducted an experiment to examine the effect of removing air from a heat source when the air was flowed to a place where the heat source was present. In actual air-cooled pillows, the heat source is the human head, which is higher in temperature than room temperature.However, the heat exchange effect can be considered equally using a heat source lower than room temperature. Therefore, here, we use water that is easy to experiment (lower than room temperature) as a heat source, and measure the degree of cooling of the air at the outlet to indirectly examine the heat removal effect.
図 1 0は、 この除熱効果を調べるための実験装置の構成を示した図であり、 ( a ) は断面図、 (b ) は平面図である。 ここでは、 アルミ容器 1 3 0に水と氷 を入れ、 これを熱源としている。 このアルミ容器 1 3 0とその下のプラスチック 板 1 3 1を間隔 dだけ離して配置し (dは可変) 、 アルミ容器 1 3 0とプラス チック板 1 3 1の間に毎秒 1リットルの割合で空気を流した。 なお、 アルミ容器 1 3 0、 プラスチック板 1 3 1の寸法は、 いずれも予備実験 2と同じく、 横 5 0 0 m m、 縦 2 5 0 m mである。 室温 2 0 °Cのもとで、 空気の入口である左側に温 度計 1 3 3を、 空気の出口である右側に温度計 1 3 4を置いて温度を測定し、 両 者の温度差を求めた。 FIGS. 10A and 10B are diagrams showing the configuration of an experimental device for examining the heat removal effect, wherein FIG. 10A is a cross-sectional view and FIG. 10B is a plan view. Here, water and ice are put in an aluminum container 130, and this is used as a heat source. This aluminum container 130 and the plastic plate 131 under it are spaced apart by a distance d (d is variable), and between the aluminum container 130 and the plastic plate 13 1 at a rate of 1 liter per second. The air was shed. The dimensions of the aluminum container 130 and the plastic plate 131 were 500 mm in width and 250 mm in height, as in Preliminary Experiment 2. At room temperature of 20 ° C, place a thermometer 133 on the left side of the air inlet and a thermometer 134 on the right side of the air outlet to measure the temperature. I asked.
図 1 1は、 図 1 0の装置で行った実験の結果を示したグラフであり、 横軸はァ ルミ容器 1 3 0とプラスチック板 1 3 1の間隔 d [m m ] 、 縦軸は入口の温度と 出口の温度の温度差 [°C] である。 当初は、 dが小さいほど温度差が大きいと予 想したが、 実際には図 1 1に示すように、 dが大きい方の温度差が幾分大きくな る傾向があった。 但し、 この温度差の変化は極く僅かであり、 実験した dの範囲 内では、 8 ^から 9 °Cの間でほぼ一定と考えることができる程度である。 FIG. 11 is a graph showing the results of an experiment performed with the apparatus shown in FIG. 10. The horizontal axis represents the distance d [mm] between the aluminum container 130 and the plastic plate 131, and the vertical axis represents the entrance. The temperature difference between the temperature at the outlet and the temperature at the outlet [° C]. Initially, it was expected that the smaller the d, the greater the temperature difference, but in practice, as shown in Figure 11, the larger the d, the greater the temperature difference tended to be. However, the change in the temperature difference is extremely small, and it can be considered that the temperature difference is almost constant between 8 ^ and 9 ° C within the range of d.
[予備実験 4 ]
次に、 使用するファンの特性について調べる。 図 1 2は、 実際に市販されてい るプロペラファン (オリエンタルモーター株式会社製) の、 風量—静圧特性を示 した図であり、 同図に示されている各種のプロペラファンのうち、 ここでは MD 925 AMという型番のものを使用する。 このプロペラファンの定格電圧は 12 [V] 、 定格電流は 0. 15 [A] であり、 定格運転を行った場合の消費電力は、 12 [V] X 0. 15 [A] = 1. 8 [W] である。 [Preliminary experiment 4] Next, investigate the characteristics of the fan used. Fig. 12 shows the air flow versus static pressure characteristics of a commercially available propeller fan (manufactured by Oriental Motor Co., Ltd.). Of the various propeller fans shown in the figure, Use the model number MD 925 AM. The rated voltage of this propeller fan is 12 [V], the rated current is 0.15 [A], and the power consumption during the rated operation is 12 [V] X 0.15 [A] = 1.8 [W].
図 12に示した MD 925 AMの特性曲線から、 静圧を 0. 4mmH2 Oに した場合には、 最大 1 [m3 Zm i n] 16. 6 [ 1 /s e c] までの送風 量を確保できることが分かる。 Based on the characteristic curve of MD 925 AM shown in Fig. 12, when the static pressure is set to 0.4 mmH 2 O, it is possible to secure a maximum air flow of 1 [m 3 Zm in] 16.6 [1 / sec]. I understand.
以上の図 9、 図 1 1、 図 12に示した予備実験の結果から、 ファンとして MD 925AMを使用すれば、 断面が 25 OmmX 5mm、 長さが 500mmの寸法 の約 16倍の広さの流通路を持つ布団に対して、 静圧を 0. 4mmH2 〇とし て空気を送ることが可能である。 Based on the results of the preliminary experiments shown in Fig. 9, Fig. 11 and Fig. 12, if MD 925AM is used as a fan, the distribution is about 16 times larger than the dimensions of 25 Omm X 5 mm and 500 mm in length. Air can be sent to a futon with a channel at a static pressure of 0.4 mmH 2 〇.
[予備実験 5] [Preliminary experiment 5]
次に、 高密度綿布がどの程度水蒸気を通すかを調べるために行った予備実験に ついて述べる。 高密度綿布とは、 例えばダウンジャケットなどの表地や羽毛布団 などに用いられるもので、 1 cm当たり 300本程度という多数の糸が使われて いる綿製の布である。 このため、 この綿布を通しての空気の漏れは、 通常の綿布 に比べるとはるかに小さい。 Next, we describe a preliminary experiment conducted to determine how much water vapor can pass through a high-density cotton cloth. High-density cotton cloth is used for the outer material of down jackets and duvets, for example, and is a cotton cloth that uses a large number of yarns, about 300 yarns per cm. Therefore, the leakage of air through this cotton cloth is much smaller than that of ordinary cotton cloth.
図 1 3は、 この実験の様子及ぴその結果を示している。 図 13 (a) に示すよ うに、 2 10mmX 1 10 mm、 深さ 18 mmの容器 140に水を入れ、 各種の 条件のもとで水がどの程度蒸発するかを調べた。 室温は 3 1 °C、 湿度は 33 %、 経過時間は 1 5時間とした。 Figure 13 shows the state of this experiment and the results. As shown in FIG. 13 (a), water was placed in a vessel 140 having a size of 210 mm × 110 mm and a depth of 18 mm, and the amount of water evaporated under various conditions was examined. The room temperature was 31 ° C, the humidity was 33%, and the elapsed time was 15 hours.
図 1 3 (b) はその結果を示している。 (1) は、 容器の上に何も張らなかつ た場合であり、 水の減少量は 92 c cだった。 ( 2 ) は、 容器の上に高密度綿布 ではない通常の布、 すなわち布を構成する糸が通常の密度である綿布を 1枚だけ 張った場合であり、 水の減少量は 36 c cだった。 (3) は、 容器の上に高密度 綿布を張るとともに、 さらにその 5 mm程度上に高密度綿布をもう 1枚張って、 間に空気を流さなかった場合であり、 水の減少量は 34 c cだった。 ( 4 ) は、
( 3) と同様にして 2枚の高密度綿布を張り、 その間に空気を毎秒 0. 5リット ルの割合で流した場合であり、 水の減少量は 6 4 c cだつた。 Figure 13 (b) shows the result. In (1), nothing was put on the container, and the water loss was 92 cc. (2) is a case where a normal cloth, which is not a high-density cotton cloth, is put on the container, that is, only one piece of cotton cloth having a normal density is used for the cloth, and the amount of water reduced is 36 cc. . (3) is the case where a high-density cotton cloth is placed on the container, and another high-density cotton cloth is placed about 5 mm above the container, and no air is flowed between them. It was cc. (4) In the same manner as in (3), two high-density cotton cloths were stretched, and air was flowed at a rate of 0.5 liters per second between them. The water loss was 64 cc.
この結果から次のことが分かる。 まず、 水の減少量は、 高密度綿布の場合も、 通常の綿布の場合と殆ど変わりはなく、 したがって、 水の分子が綿布を通り抜け る通り抜け易さは、 綿布の種類に依存しないと考えてよい。 また、 高密度綿布を 2枚にしても、 1枚の場合と殆ど変わらない。 更に、 2枚の高密度綿布の間に空 気を流すと、 水の減少量は大幅に増える。 これは、 1枚目の高密度綿布を通り抜 けて 2枚の高密度綿布の間に入った水の分子が、 そこを流れる空気によって絶え ず運び去られるため、 2枚の高密度綿布の間の空間における水の蒸気圧が低下し、 そのことが、 更なる水の気化を誘発するためと考えられる。 The following can be seen from the results. First, the amount of water loss is almost the same in the case of high-density cotton cloth as in ordinary cotton cloth, and therefore, the ease with which water molecules can pass through the cotton cloth does not depend on the type of cotton cloth. Good. Even if two high-density cotton cloths are used, it is almost the same as one. Furthermore, flowing air between two high-density cotton cloths greatly increases the amount of water loss. This is because water molecules that pass through the first high-density cotton cloth and enter between the two high-density cotton cloths are constantly carried away by the air flowing therethrough. It is thought that the vapor pressure of the water in the space between the two drops, which causes further vaporization of the water.
[第三実施形態] [Third embodiment]
次に、 第三実施形態について説明する。 まず、 第三本実施形態の空冷式枕およ びこの空冷式枕を用いて行った実験について説明する。 図 1 4は、 第三実施形態 の空冷式枕 1 5 0を示した図であり、 (a) は平面図、 (b) は (a) の x— で示す面で切った枕部 1 5 1の一部を拡大した断面図、 (c) は実際に使用 するときの態様を示した図である。 Next, a third embodiment will be described. First, the air-cooled pillow of the third embodiment and an experiment performed using the air-cooled pillow will be described. FIGS. 14A and 14B are views showing an air-cooled pillow 150 of the third embodiment, wherein FIG. 14A is a plan view and FIG. 14B is a pillow part 15 cut along a plane indicated by x-- in FIG. 1 is a cross-sectional view in which a part of FIG. 1 is enlarged, and FIG.
空冷式枕 1 5 0を使用するときは、 一般的な水枕と同様に、 通常の枕 1 5 2の 上に枕部 1 5 1を置き、 この上に頭部 Αを載せる。 この点を考慮して、 枕部 1 5 1の寸法は、 例えば長さを 5 00mm、 幅を 2 5 Ommとする。 空冷式枕 1 5 0 の枕部 1 5 1には、 空気通路 1 5 3を介してファン 1 54が接続されている。 枕 部 1 5 1は、 図 1 4 (b) に示すように、 上下 2枚の薄いゴム製のシート 1 5 5, 1 5 6の間に、 幅 3mm、 高さ 5 mmので図 1 4 (a ) の左右方向に直線状に延 ぴるゴム製のスぺーサ 1 5 7が適当な間隔で配置されている。 このスぺーサ 1 5 7によって、 上下のシート 1 5 5, 1 5 6の間に約 5mmの空間が形成される。 上下のシート 1 5 5, 1 5 6の厚さは 0. :!〜 0. 2 mm程度である。 スぺーサ 1 5 7によって上下のシート 1 5 5, 1 5 6の間に形成される空間には、 ファン 1 54から供給される空気を通過させる。 この空気は、 図 1 4 (a ) に示した枕 部 1 5 1の右側に設けられた出口 1 5 8から、 外部へ排出される。 When using the air-cooled pillow 150, put the pillow part 15 1 on the normal pillow 15 2 and put the head Α on top of this, as in a general water pillow. In consideration of this point, the dimensions of the pillow part 151 are, for example, 500 mm in length and 25 Omm in width. A fan 154 is connected to the pillow section 15 1 of the air-cooled pillow 150 through an air passage 153. The pillow part 15 1 has a width of 3 mm and a height of 5 mm between the upper and lower two thin rubber sheets 15 5 and 15 6 as shown in Fig. 14 (b). Rubber spacers 157 extending linearly in the left-right direction of a) are arranged at appropriate intervals. With this spacer 157, a space of about 5 mm is formed between the upper and lower sheets 155, 156. The thickness of the upper and lower sheets 15 5 and 15 6 is about 0:! ~ 0.2 mm. Air supplied from the fan 154 is passed through a space formed between the upper and lower sheets 1555, 156 by the spacer 157. This air is exhausted to the outside from an outlet 158 provided on the right side of the pillow part 151 shown in FIG. 14 (a).
図 1 5は、 図 1 4に示した空冷式枕 1 5 0に空気を流さなかった場合に、 頭部
Aと枕部 1 5 1の間の温度がどのように変化するかを調べた実験の結果を示した グラフである。 この場合の室温は 2 2 °Cであった。 図 1 5から分かるように、 測 定温度は、 時間とともに急激に上昇し、 測定開始から 3 0分を経過すると、 ほぼ 体温と同じくらいの温度になっている。 Figure 15 shows the head with no air flowing through the air-cooled pillow 150 shown in Figure 14. 9 is a graph showing the results of an experiment examining how the temperature between A and the pillow part 151 changes. The room temperature in this case was 22 ° C. As can be seen from Fig. 15, the measured temperature rises rapidly with time, and after 30 minutes from the start of the measurement, it is almost the same as body temperature.
次に、 空冷式枕 1 5 0に空気を流したときに温度がどのように変化するかを調 ベる実験を行った。 この場合は、 枕部 1 5 1に空気を流し続けるので、 頭部 Αと 枕部 1 5 1の間の温度は、 約 1 5〜2 0分程度である一定の温度に到達する。 こ の到達温度は、 周囲の室温に依存して変わるが、 一旦この到達温度に達すると、 頭部 Aと枕部 1 5 1の間の温度はそれ以後殆ど変化しない。 Next, an experiment was conducted to examine how the temperature changes when air is flown through the air-cooled pillow 150. In this case, since the air continues to flow through the pillow part 151, the temperature between the head Α and the pillow part 151 reaches a certain temperature of about 15 to 20 minutes. This temperature varies depending on the ambient room temperature, but once the temperature reaches this temperature, the temperature between the head A and the pillow part 151 hardly changes thereafter.
図 1 6は、 この一定温度を求める実験の結果を示したグラフである。 この実験 では、 図 1 4に示す空冷式枕 1 5 0に毎秒 1リットルの割合で空気を流した。 前 述のように、 頭部 Aと枕部 1 5 1の間の温度は約 1 5〜2 0分で一定温度に達す るが、 余裕をみて、 頭部を枕部 1 5 1に載せ送風を開始してから 3 0分経過後の 温度を測定した。 図 1 6から分かるように、 最終的に到達する温度は、 室温が高 いほど高くなつている。 しかし、 いずれの室温においても、 この一定温度は人間 の体温よりかなり低い。 このため、 就寝時から送風を開始すると、 感覚的には時 間の経過とともに徐々に頭部が冷されてゆくように感じられ、 快適な状態が持続 する。 また、 一定の温度に到達した後は、 通常は温度が上がることはないので、 普通の水枕のように数時間ごとに中の水を取り替えるという手間はかからない。 次に、 第三実施形態の空冷式枕 1 5 0について、 十分な冷却効果が得られる程 度の送風を行うのに必要なファン 1 5 4の消費電力を評価する。 そのために、 ま ず、 図 1 4 ( a ) に示す空冷式枕 1 5 0について、 毎秒 1リットルの割合で空気 が流れるようにファン 1 5 4を運転しているときにおける空気通路 1 5 3の圧力 を測定した。 その結果、 図 1 4の空冷式枕 1 5 0に対し、 空気通路 1 5 3の内部 は、 周囲の圧力 (1気圧) に比べて約 0 . 0 0 2 4気圧だけ高いという測定結果 が得られた。 FIG. 16 is a graph showing the result of an experiment for obtaining the constant temperature. In this experiment, air was flowed at a rate of 1 liter per second through the air-cooled pillow 150 shown in FIG. As mentioned above, the temperature between the head A and the pillow part 15 1 reaches a certain temperature in about 15 to 20 minutes, but with some margin, put the head on the pillow part 15 1 and blow air. The temperature was measured 30 minutes after the start of the test. As can be seen from Fig. 16, the temperature finally reached increases as the room temperature increases. However, at any room temperature, this constant temperature is much lower than human body temperature. For this reason, when the air is started to be blown from bedtime, the head feels like the head gradually cools down with time, and the comfortable state is maintained. Also, once the temperature reaches a certain level, the temperature usually does not rise, so there is no need to change the water every few hours like a normal water pillow. Next, with respect to the air-cooled pillow 150 of the third embodiment, the power consumption of the fan 154 required for blowing air to obtain a sufficient cooling effect is evaluated. For this purpose, first, for the air-cooled pillow 150 shown in Fig. 14 (a), the air passage 153 when the fan 154 is operated so that air flows at a rate of 1 liter per second. The pressure was measured. As a result, in comparison with the air-cooled pillow 150 in Fig. 14, the measurement result obtained was that the inside of the air passage 153 was higher than the surrounding pressure (1 atm) by about 0.024 atm. Was done.
この気圧差の測定結果を基に、 ファンの消費電力を導く。 空気を理想気体と考 えると、 断熱変化において次式が成り立つ。
The power consumption of the fan is derived based on the measurement result of the pressure difference. Considering air as an ideal gas, the following equation holds for the adiabatic change.
ここで、 丁。 は初状態の絶対温度、 P。 は初状態の圧力であり、 Tは終状態の 絶対温度、 Pは終状態の圧力である。 また、 γは、 比熱比 (cp zcv ) であ る。 20°Cの乾燥空気については、 γ = 403である。 Here, Ding. Is the initial absolute temperature, P. Is the initial state pressure, T is the final state absolute temperature, and P is the final state pressure. Also, gamma is the specific heat ratio (c p zc v) Ru der. For dry air at 20 ° C., γ = 403.
20°C (絶対温度 293 [K] ) の空気 1リ ットルを、 1気圧から 1. 002 4気圧まで断熱圧縮したとすると、 その終状態における温度 Tは、 Assuming that 1 liter of air at 20 ° C (absolute temperature 293 [K]) is adiabatically compressed from 1 atmosphere to 1.002 4 atmospheres, the temperature T in the final state is
Π.0024 Y一 403 Π.0024 Y-1 403
Τ = 293.0[Κ]· Τ = 293.0 [Κ] ·
V 1上.0 ノ V 1.0 above
= 293. 20 182 = 293. 20 182
となり、 このときの温度上昇分は 0. 20 182 [Κ] である。 空気の定積比熱 を 0. 865 [ Jノ Κ · 1 ] とすると、 この過程で行われた仕事は、 The temperature rise at this time is 0.220 182 [Κ]. Assuming that the specific heat of air is 0.865 [J / Κ1], the work performed in this process is
0. 20182 [K] X 0. 865 [ J/K] =0. 1 746 [ J] 0.20182 [K] X 0.865 [J / K] = 0.1746 [J]
となる。 したがって、 この断熱圧縮過程を 1秒間で行うのに要する仕事率は、 約 0. 18 [W] となる。 Becomes Therefore, the power required to perform this adiabatic compression process in 1 second is about 0.18 [W].
なお、 上記の空気 20°Cにおける定積比熱は、 次のようにして求めた。 標準状 態 (0。C, 1 a tm) における空気の定積モル比熱は、 20. 786 [ J /m o 1 · K] であり、 このとき空気 1モルは 22. 4リ ットルを占める。 20°C、 1 気圧では、 1モルの空気は、 ボイル'シャルルの法則から、 The specific heat at constant volume at 20 ° C in the air was determined as follows. The molar constant specific heat of air in the standard state (0.C, 1 a tm) is 20.786 [J / mo 1 · K], where 1 mole of air occupies 22.4 liters. At 20 ° C and 1 atm, 1 mole of air is, according to Boyle-Charles law,
22. 4 X (293/273) = 24. 04 [ 1 ] 22.4 X (293/273) = 24.04 [1]
を占める。 したがって、 20°C、 1気圧のもとで空気 1リ ットル当たりの比熱は、 20. 786 [ J /m o 1 · Κ] ÷ 24. 04 [ 1 /m ο 1 ] Occupy. Therefore, the specific heat per liter of air at 20 ° C and 1 atm is 20.786 [J / m o 1 · Κ] ÷ 24.04 [1 / m ο 1]
= 0. 865 [ J /Κ · 1 ] = 0. 865 [J / Κ · 1]
となる。 但し、 ここでは、 空気の比熱が温度にほとんど依存しないことを仮定し た。
ところで、 ファンのモーターの効率は 1 0 0 %ではないので、 実際に 0 · 1 8 [W] という仕事率を確保するのに必要な消費電力は、 これよりも大きくなる。 ファンのモーターの効率を、 現実的な値として 3 0 %と仮定すれば、 消費消费電 力は約 0 . 5 5 [W] となる。 Becomes However, it was assumed here that the specific heat of air hardly depends on the temperature. By the way, since the efficiency of the fan motor is not 100%, the power consumption required to actually secure the power of 0 · 18 [W] is larger than this. Assuming a fan motor efficiency of 30% as a realistic value, the power consumption is about 0.55 [W].
図 1 7は、 第三実施形態の三つの変形例を示した図である。 図 1 7 ( a ) の空 冷式枕 1 6 0は、 厚めの板状のゴム 1 6 1に、 図と垂直な方向に平行に多数の細 長い穴 1 6 2を設けたものであり、 多数の穴 1 6 2が、 空気の流通路となる。 こ のため、 空気が穴 1 6 2を流通する過程で頭部の熱を吸収し、 図 1 4に示した空 冷式枕 1 5 0と同様の効果が得られる。 FIG. 17 is a diagram showing three modified examples of the third embodiment. The air-cooled pillow 160 in Fig. 17 (a) is a thick plate-like rubber 161, with many elongated holes 162 provided in parallel to the direction perpendicular to the figure. A large number of holes 162 serve as air passages. For this reason, the air absorbs the heat of the head in the process of flowing through the hole 162, and the same effect as the air-cooled pillow 150 shown in FIG. 14 is obtained.
また、 図 1 7 ( b ) の空冷式枕 1 6 3は、 厚めの板状のゴムからなる下板 1 6 4の上側の表面に多数の平行な溝 1 6 5を設け、 この上に上布として高密度綿布 1 6 6を被せて溝 1 6 5の上部を閉じ、 この溝の部分を空気の流通路としたもの である。 高密度綿布 1 6 6は、 前述のように、 ダウンジャケットなどの表地や羽 毛布団などに用いられるもので、 1 c m当たり 3 0 0本程度の多数の糸が使われ ているため、 空気が比較的漏れにくい。 かかる高密度綿布 1 6 6は、 通常の衣料 品店で入手可能である。 この場合も、 溝 1 6 5を流通する空気によって頭部が効 率よく冷却される点は、 図 1 4や図 1 7 ( a ) の場合と同じである。 更に、 高密 度綿布 1 6 6を用いることによって、 体の表面から蒸発する汗が高密度綿布を通 り、 そこで溝の部分を流通する空気に触れて直ちに外部に運び出されるため、 そ のことによる 適さも得られる。 The air-cooled pillow 1 63 shown in Fig. 17 (b) has a large number of parallel grooves 1 65 on the upper surface of the lower plate 1 64 made of thick plate-like rubber. A high-density cotton cloth 166 is covered as a cloth, the upper part of the groove 165 is closed, and the part of the groove is used as an air passage. As described above, high-density cotton cloth 166 is used for outer materials such as down jackets and duvets.As a large number of yarns of about 300 per cm are used, air Relatively hard to leak. Such high-density cotton cloth 166 is available at regular clothing stores. Also in this case, the point that the head is efficiently cooled by the air flowing through the groove 165 is the same as in the case of FIGS. 14 and 17 (a). In addition, the use of high-density cotton cloth 166 allows sweat evaporating from the body surface to pass through the high-density cotton cloth, where it comes into contact with the air flowing through the groove and is immediately carried out to the outside. Suitability is also obtained.
なお、 上布として高密度綿布を用いると、 空気が漏れにくいため、 流通路内の 圧力をある程度高くできるという利点がある。 し力 し、 本実施形態の空冷式枕で は、 流通路の断面積をできるだけ大きくし、 それによつて流れる空気の抵抗をな るべく小さくして、 ファンの消費電力を低く抑えることを基本的な設計思想とし ている。 したがって、 流通路の断面積を十分に大きくでき、 それにより流通路内 の圧力を十分に低く抑えることができる場合には、 必ずしも、 上布として高密度 綿布を用いる必要はなく、 通常の綿布を使うことも可能である。 いずれにしても、 高密度綿布を用いるか通常の綿布を用いるかは、 流通路内部の圧力との関係で決 められるものである。 この点については、 他の実施形態についても、 同様である。
図 1 7 (c) の空冷式枕 167は、 ファン 168を枕の内部に一体的に設け、 ファン 168が吸入穴 169から吸入した風を頭が接する上布に直接吹きつける という構成とする。 これにより、 より高い冷却効果が得られる。 The use of a high-density cotton cloth as the upper cloth has the advantage that the pressure in the flow passage can be increased to some extent because the air is less likely to leak. Basically, the air-cooled pillow of the present embodiment is to minimize the power consumption of the fan by increasing the cross-sectional area of the flow passage as much as possible, thereby reducing the resistance of the flowing air as much as possible. Design philosophy. Therefore, if the cross-sectional area of the flow passage can be made sufficiently large and the pressure in the flow passage can be kept sufficiently low, it is not always necessary to use a high-density cotton cloth as the upper cloth. It is also possible to use. In any case, whether to use high-density cotton cloth or ordinary cotton cloth is determined by the relationship with the pressure inside the flow passage. This is the same for the other embodiments. The air-cooled pillow 167 in FIG. 17 (c) has a configuration in which a fan 168 is integrally provided inside the pillow, and the fan 168 directly blows the air sucked from the suction hole 169 to the upper cloth with which the head comes in contact. Thereby, a higher cooling effect can be obtained.
[第四実施形態] [Fourth embodiment]
次に、 第四実施形態について説明する。 図 18は、 第四実施形態の空冷式布団 の布団部分 1 70を示しており、 (a) は平面図、 (b) は拡大断面図である。 空冷式布団は、 上記布団部分 1 70の他に、 この布団部分に送風するためのファ ン並びにファンからの空気を布団部分 1 70に送るためのホースを有している力 S、 図 18ではこれらを省略してある。 本実施形態の空冷式布団も、 図 3に示したよ うに、 体に近接した部分の温度を下げることによって温度勾配を大きくし、 それ によって体を冷却する。 Next, a fourth embodiment will be described. FIG. 18 shows a futon portion 170 of the air-cooled futon of the fourth embodiment, where (a) is a plan view and (b) is an enlarged sectional view. The air-cooled futon has, in addition to the above-mentioned futon part 170, a force S having a fan for blowing air to this futon part and a hose for sending air from the fan to the futon part 170. These are omitted. As shown in FIG. 3, the air-cooled futon of this embodiment also increases the temperature gradient by lowering the temperature of the portion close to the body, thereby cooling the body.
布団部分 1 70の寸法は、 一例として縦 180 Omm、 横 120 Ommとする。 図 18 (a) に示すように、 右側に上から下に向かう空気の流通路が設けられ、 そのところどころに穴が設けられ、 そこから、 布団部 1 70の全体に横方向に空 気が流れるようになつている。 The dimensions of the futon part 170 are, for example, 180 Omm long and 120 Omm wide. As shown in Fig. 18 (a), an air passage is provided from the top to the bottom on the right side, and holes are provided in some places, from which air flows laterally through the entire futon part 170 It is like that.
図 18 (b) に示すように、 この空冷式布団の布団部分 1 70は、 第一の布 (上布) 1 71、 第二の布 (下布) 1 72、 そしてこれらの間にある多数のス ぺ一サ 1 73からなる。 そして、 スぺーサ 1 73に支えられた上布と下布の間の 空間が、 空気の流通路となる。 この流通路に対し、 後述のように、 例えば毎秒 5 リ ッ トルの割合で空気が流れるようファンを運転する。 As shown in Fig. 18 (b), the futon portion 170 of this air-cooled futon has a first cloth (upper cloth) 171, a second cloth (lower cloth) 172, and a number of cloths between them. It consists of 1 73 The space between the upper cloth and the lower cloth supported by the spacer 173 serves as an air passage. As will be described later, the fan is operated so that air flows at a rate of, for example, 5 liters per second in the flow passage.
上下の布 1 71, 1 72としては、 前述の高密度綿布を用いることが望ましい。 ただし、 綿だけでなく、 絹や化学繊維などを用いることも可能である。 上下の布 1 7 1, 1 72として、 前述の高密度綿布を用いることによって、 空気が上下の 布の間を流通する間に布から外部へ漏れる量を少なく抑えることができる。 その —方、 前述の予備実験 5の結果からも分かる通り、 上部の布 1 71, 1 72はあ くまでも綿布であるため、 人間が平常状態のときに発汗により体表から生じる微 量の水蒸気は、 十分に通り抜けることができる。 As the upper and lower cloths 171 and 172, it is desirable to use the high-density cotton cloth described above. However, it is possible to use not only cotton but also silk and chemical fibers. By using the high-density cotton cloth described above as the upper and lower cloths 171, 172, the amount of air leaking from the cloth to the outside while flowing between the upper and lower cloths can be reduced. On the other hand, as can be seen from the results of the preliminary experiment 5 described above, since the upper cloths 171 and 172 are made of cotton cloth, a small amount of water vapor generated from the body surface due to sweating when the human is in a normal state Can pass through enough.
各スぺ一サ 1 73は、 円柱形のスポンジでできている。 本実施形態のスぺ一サ 1 73はスポンジ製で、 底面の直径が 3mm、 長さが 5mmである。 上下の布 1
71, 1 72と各スぺ一サ 1 73の上下の底面は、 後述の方法によって接着され ている。 本実施形態では、 スぺーサ 1 73の配置は、 例えば 2 Omm間隔の千鳥 パターンとする。 Each spacer 173 is made of a cylindrical sponge. The spacer 173 of this embodiment is made of sponge, and has a bottom surface diameter of 3 mm and a length of 5 mm. Upper and lower cloth 1 The upper and lower bottom surfaces of 71 and 172 and each of the spacers 173 are bonded by a method described later. In the present embodiment, the spacers 173 are arranged in a staggered pattern at intervals of 2 Omm, for example.
スベーサ 1 73の形成及び上下の布 1 71, 1 72との接着は、 次のようにし て行う。 まず、 厚さ 5mmの適当な大きさ (広さ) の板状のスポンジを用意し、 この両面に適量の接着剤を塗布する。 接着剤としては、 例えば、 東亜合成化学ェ 業 (株) 製のァロンメルト 1 10 P 80HHを用いる。 次に、 接着剤を塗布した 板状のスポンジを加熱し、 塗布された接着剤を固化して、 スポンジの両面に接着 剤の強固な膜を形成する。 The formation of the spacer 173 and the bonding to the upper and lower cloths 171 and 172 are performed as follows. First, prepare a 5mm-thick plate-shaped sponge of appropriate size (width), and apply an appropriate amount of adhesive to both sides. As the adhesive, for example, Alonmelt 110 P80HH manufactured by Toa Gosei Chemical Industry Co., Ltd. is used. Next, the plate-shaped sponge to which the adhesive has been applied is heated, and the applied adhesive is solidified to form a strong adhesive film on both surfaces of the sponge.
次に、 このスポンジを適当な型で打ち抜いて、 図 1 9に示すような、 直径 3m mの円柱形のスポンジ製スぺ一サ 1 73を多数作る。 このスぺーサ 43の上下の 両底面には、 前述の接着剤 1 73 a, 1 73 bが強固に塗布されている。 Next, this sponge is punched out with an appropriate mold, and as shown in FIG. 19, a number of cylindrical sponge-made sponge 173 having a diameter of 3 mm are formed. The adhesives 173a and 173b are firmly applied to both upper and lower bottom surfaces of the spacer 43.
次に、 図 20に示すような治具 1 74を用意する。 この治具 1 74は、 厚さが 約 4mmで、 直径約 3. 1 mmの多数の貫通孔 1 74 aが、 適当な間隔で千鳥状 に設けられている。 この各孔に、 上述のスぺーサ 1 73を入れてゆく。 そして、 一枚の布 1 7 1をこの上に被せ、 アイロン等で加熱する。 この加熱により、 各ス ぺ一サの両面のうちアイロンが当てられた方の底面に塗布された接着剤は一時的 に溶融し、 これが固化するときに、 各スぺーサ 1 73と布 1 7 1が接着する。 次に、 治具 1 74と接着が終わった方の布 1 71を、 布 1 71が下になるよう に裏返して置き、 治具 1 74をはずし、 もう一枚の布 1 72をこの上に載せ、 先 程と同じようにアイロンで加熱し、 布 1 72と各スぺーサ 1 73とを接着させる。 これにより、 空冷式布団の布団部分 1 70が得られる。 このように、 治具 1 74 を用いることによって、 多数のスぺーサ 1 73を、 一括して容易に上下の布 1 7 1, 1 72と接着させることができる。 以上のように、 簡単な工程で、 図 18に 示した空冷式布団の布団部分 1 70を製造することができる。 Next, a jig 174 as shown in FIG. 20 is prepared. This jig 174 has a thickness of about 4 mm, and a large number of through holes 174 a having a diameter of about 3.1 mm are provided in a staggered manner at appropriate intervals. The spacer 173 described above is inserted into each of the holes. Then, a piece of cloth 17 1 is put on this and heated with an iron or the like. Due to this heating, the adhesive applied to the bottom of the ironed side of each spacer is temporarily melted, and when it solidifies, each spacer 173 and cloth 17 1 glue. Next, place the jig 1 74 and the cloth 1 71 on which the bonding has been completed upside down so that the cloth 1 71 is on the bottom, remove the jig 1 74, and place another cloth 1 72 on this Put it on, heat it with an iron as before, and bond the cloth 172 and each spacer 173 together. Thereby, the futon portion 170 of the air-cooled futon is obtained. As described above, by using the jig 174, a large number of spacers 173 can be easily and collectively adhered to the upper and lower cloths 171, 172. As described above, the futon portion 170 of the air-cooled futon shown in FIG. 18 can be manufactured by a simple process.
前述のように、 本実施形態の布団部分 1 70の寸法は縦 1800 mm、 横 12 0 Ommとしたことから、 送風する空気の抵抗は、 第三実施形態の枕に比べて 0. 33倍と推定する。 また、 送風する空気の量は、 毎秒 5リットルとする。 このよ うにすると、 第三実施形態と同程度の冷却効果を得るのに必要な気圧は、
0 . 0 0 2 4 [気圧] X 0 . 3 3 X 5 = 0 . 0 0 4 [気圧] As described above, since the size of the futon part 170 of the present embodiment is 1800 mm in length and 120 Omm in width, the resistance of the air to be blown is 0.33 times that of the pillow of the third embodiment. presume. The amount of air to be blown shall be 5 liters per second. In this way, the pressure required to obtain the same cooling effect as in the third embodiment is 0. 0 0 2 4 [atmospheric pressure] X 0.33 X 5 = 0.04 [atmospheric pressure]
となる。 また、 毎秒 5リットルの空気を送風するためのファンの消費電力は、 理 Becomes In addition, the power consumption of the fan for blowing 5 liters of air per second is
Ϊ冊的には、 In terms of books,
0 . 0 0 4 [気圧] X 5 [ 1 ] = 1 · 5 [W] 0. 0 0 4 [atmospheric pressure] X 5 [1] = 1.5 · [W]
となる。 ここでもファンのモーターの効率を 3 0 %と仮定すると、 消費電力は約 4 . 7 [W] となり、 電力の消費を少なく抑えることができる。 Becomes Again, assuming that the fan motor efficiency is 30%, the power consumption is about 4.7 [W], which can reduce power consumption.
上記第四実施形態の最も一般的な使用態様は、 暑い夏の寝苦しい夜に快適な睡 眠を取るために、 掛け布団として用いるというものである。 し力 し、 これ以外に も有用な用途が考えられる。 例えば、 寝たきりの老人や体の自由がきかない人、 特に下半身に障害がある人が、 寝たままの状態で、 温度を容易にコントローノレす ることができる医療用寝具として用いることができる。 図 2 1は、 このことを説 明するための断面図である。 The most common mode of use of the fourth embodiment is to use it as a comforter in order to take a comfortable sleep on a sultry night in a hot summer. However, other useful applications are also conceivable. For example, bedridden elderly people and people with limited mobility, especially those with disabilities in the lower body, can use it as a medical bedding that can easily control the temperature while sleeping. FIG. 21 is a cross-sectional view for explaining this.
図 2 1 ( a ) では、 第四実施形態の布団部 1 7 0の上に、 更に通常の布団 1 7 5が被せてある。 また、 図 2 1 ( b ) では、 通常の布団 1 7 5の他に布団度 1 7 0の下に毛布 1 7 6も被せてある。 布団 1 7 5又は毛布 1 7 6は、 布団部 1 7 0 と別体でもよいし、 布団部 1 7 0と一体のものとしてもよい。 In FIG. 21 (a), a normal futon 175 is further placed on the futon 170 of the fourth embodiment. Further, in FIG. 21 (b), a blanket 176 is covered under the futon degree 170 in addition to the normal futon 175. The futon 175 or the blanket 176 may be separate from the futon 170, or may be integrated with the futon 170.
図 2 1の例では、 寝ているときの保温効果は、 布団 1 7 5又は毛布 1 7 6によ つて確保する。 そして、 布団の中の温度が高くなりすぎた場合には、 この布団 1 7 5の下、 又は布団 1 7 5と毛布 1 7 6の間に設けた本実施形態の布団度 1 7 0 の流通路に空気を流すことによって温度を下げる。 このような態様での利用は、 夏だけでなく、 その他の季節でも可能である。 布団の中の温度調節は、 布団部 1 7 0の流通路に流す空気の量を適当に変えることによって行うことができ、 また 流す空気の量は、 ファンの回転数によって変えることができるので、 寝たきりの 老人や体の不自由な人でも、 例えば手元のコントローラで簡単に温度調節ができ る。 In the example of FIG. 21, the heat retention effect during sleeping is ensured by the futon 175 or the blanket 176. If the temperature inside the futon becomes too high, the futon having a futon degree of 170 according to the present embodiment provided below the futon 1 75 or between the futon 1 75 and the blanket 176 is provided. The temperature is reduced by flowing air through the road. Use in this manner is possible not only in summer, but also in other seasons. The temperature inside the futon can be adjusted by appropriately changing the amount of air flowing through the flow passage of the futon section 170, and the amount of air flowing can be changed by the number of revolutions of the fan. Even a bedridden elderly person or a person with a disability can easily adjust the temperature with a controller at hand, for example.
従来は、 自分で布団をはいだり寝返りを打つことができない人には、 看護婦又 は付添人がついていて適宜布団を掛け直すなどの世話を行う必要があり、 看護人 の負担が大きかった。 そこで、 本実施形態の布団部 1 7 0を体の不自由な人のた めに上記のような態様で、 特に病院などで利用すれば、 看護人の負担が大幅に軽
減される。 In the past, those who could not put their own futon on or turn over themselves had to be given a nurse or attendant and had to take care of the futon, which was a heavy burden on nurses. Therefore, if the futon section 170 of the present embodiment is used in a manner as described above for a person with a physical disability, especially in a hospital or the like, the burden on nurses is greatly reduced. Is reduced.
患者などの手元で温度コントロールができるものとして、 従来から電気毛布な どがあるが、 特に感覚の鈍くなつている老人などが用いる場合に、 低温火傷とい う問題があった。 また、 ヒータ一に電流を流して温度を上げるという方法のため に、 普通の布団で寝るときのような快適さがなかなか得られないという問題もあ つた。 これに対して、 本実施形態の布団部 1 7 0を図 2 1に示した態様で利用す れぱ、 温度を下げるために室内の空気を流すだけなので、 普通の布団と変わらな い快適さが得られる。 Electric blankets and the like have been used to control temperature at the patient's hand, but there has been the problem of low-temperature burns, especially when used by elderly people with dull sensations. Another problem was that it was not easy to get the comfort of sleeping on a normal futon because of the method of increasing the temperature by passing current through the heater. On the other hand, when the futon part 170 of the present embodiment is used in the mode shown in FIG. 21, since the room air is merely flowed to lower the temperature, the comfort is the same as a normal futon. Is obtained.
なお、 温度コントローラは、 手元で回転つまみなどを回すものが一般的である 、 手が不自由な人の場合などは、 例えば音声コント口一ル方式としてもよいし、 また、 室温や、 布団部 1 7 0の流通路から排出される空気の温度や湿度を検知し て、 最適な温度に保つよう自動的にコントロールさせることもできる。 The temperature controller is generally one that rotates a rotary knob or the like at hand. In the case of a handicapped person, for example, a voice control system may be used. The temperature and humidity of the air discharged from the 170 flow passage can be detected and automatically controlled to maintain the optimum temperature.
[第五実施形態] [Fifth embodiment]
次に、 第五実施形態について説明する。 図 2 2は、 本発明を敷布団に適用した 第五実施形態の空気流通式寝具を示す図であり、 ( a ) は敷布団 2 2 0の側面図、 ( b ) はゴムマットの概略平面図、 (c ) は (a ) の一部拡大図、 (d ) は実際 に人が寝ている状態の概略平面図である。 Next, a fifth embodiment will be described. FIG. 22 is a diagram showing an air-flow bedding of a fifth embodiment in which the present invention is applied to a mattress, (a) is a side view of the mattress 220, (b) is a schematic plan view of a rubber mat, ( c) is a partially enlarged view of (a), and (d) is a schematic plan view of a state where a person is actually sleeping.
図 2 2 ( a ) に示すように、 本実施形態の敷布団 2 2 0は主として、 多数の突 起 2 2 1が設けられたゴムマツト 2 2 2と、 この上に上布として被せた前述の高 密度綿布 2 2 3からなる。 突起は、 スぺーサとしての役割を果たし、 その寸法は、 一例として 1 0〜1 5 m m程度とする。 高密度綿布 2 2 3は、 突起 2 2 1の先端 部の上に配置されており、 更に、 ゴムマツト 2 2 2の頭側及ぴ足側の側面におい て空気が漏れないように接着されている。 突起 2 2 1は、 図 2 2 ( b ) に示すよ うに、 敷布団 2 2 0の横方向に延びる直線状とされ、 突起と突起の間は溝となつ ていてこの部分が空気の流通路となる。 したがって、 図 2 2 ( d ) に示すように、 敷布団 2 2 0の一方の側面にファン 2 2 4及びホース 2 2 5を設け、 反対側の側 面に空気の排気穴を設けると、 空気は横方向に、 すなわち図 2 2 ( d ) の上から 下に向かって流れる。 なお、 ファン 2 2 4から送りだされる空気の量は、 手元の コントローラ 2 2 6によって変えることができ、 これによつて温度を調節できる。
突起同士の間隔は、 一例として 1 O m mとし、 1 c m2 当たり 1 0 0グラム 程度の力が上から加わったときに、 突起の先端部が適度に曲がる程度の強度を持 つたゴムマツトを用いることが望ましい。 このようなゴムマツト 2 2 2を用いる と、 敷布団 2 2 0の上に人が寝たときでも空気の流通路が詰まることはなく、 か つ、 寝心地もよい。 また、 ゴムマツト 2 2 2の上に直接上布 2 2 3を載せる代わ りに、 間に目の細かい網状の間揷部材 (図示せず) を設けてもよい。 このような 間揷部材をゴムマツト 2 2 2と上布 2 2 3の間に設けると、 寝ている人の体にゴ ムマツトの突起の跡がつくのを防ぐことができる。 As shown in FIG. 22 (a), the mattress 220 of the present embodiment is mainly composed of a rubber mat 222 provided with a number of protrusions 221, and the above-mentioned high mat covered thereon as an upper cloth. It consists of dense cotton cloth 2 2 3. The projection serves as a spacer, and its dimension is, for example, about 10 to 15 mm. The high-density cotton cloth 223 is placed on the tip of the projection 221 and is further adhered to the rubber mat 222 so as to prevent air from leaking to the head and foot sides. . As shown in FIG. 22 (b), the projections 222 are formed in a straight line extending in the lateral direction of the mattress 220, and a groove is formed between the projections, and this portion serves as an air flow passage. Become. Therefore, as shown in Figure 22 (d), if a fan 2 24 and a hose 2 25 are provided on one side of the mattress 220 and an air exhaust hole is provided on the opposite side, air will It flows laterally, that is, from top to bottom in Figure 22 (d). The amount of air sent from the fan 224 can be changed by the controller 226 at hand, and thereby the temperature can be adjusted. The spacing between the projections is, for example, 1 O mm.Use rubber mat with enough strength that the tips of the projections bend appropriately when a force of about 100 g per cm 2 is applied from above. Is desirable. When such rubber mat 222 is used, even when a person sleeps on the mattress 220, the air passage is not clogged and the comfort is good. Further, instead of placing the upper cloth 22 3 directly on the rubber mat 22 2, a fine mesh-shaped spacer (not shown) may be provided between them. If such a spacer is provided between the rubber mat 222 and the upper cloth 222, it is possible to prevent traces of the rubber mat from being formed on the body of a sleeping person.
寝苦しい夏の暑い夜などは、 寝ていて敷布団が温まって不快になると、 そのた びに寝返りを打たなければならず、 そのことが更に寝苦しさを助長する場合があ る。 このような場合に、 本実施形態の敷布団を利用すると、 例えば仰向けに寝て いるときは、 背中の表面の温度がほぼ室温もしくはこれよりやや高い温度で一定 に保たれ、 し力も、 寝ている人の重みによって人と敷布団との密着性が高まるた め、 背中の表面から有効に放熱が行われる。 これにより、 同じ姿勢で長時間寝て いた場合でも、 布団のその部分が温まることはなく、 快適な状態が持続する。 こ のようなことから、 本実施形態の空冷式の敷布団は、 特に、 体が不自由で寝返り を打つのが困難な人にとって非常に有用であると考えられる。 On hot summer nights when it is hard to sleep, if you sleep and the mattress becomes warm and uncomfortable, you will have to turn over each time, which may further increase sleepiness. In such a case, when using the mattress of the present embodiment, for example, when lying on the back, the temperature of the surface of the back is kept constant at almost room temperature or slightly higher temperature, and the stiffness is also sleeping. Because the weight of the person increases the adhesion between the person and the mattress, heat is effectively radiated from the back surface. This ensures that even if you sleep for a long time in the same position, that part of the futon will not warm up and stay comfortable. Thus, the air-cooled mattress of the present embodiment is considered to be very useful especially for those who are physically disabled and have difficulty turning over.
また、 図 2 2 ( d ) では、 ファン 2 2 4を敷布団 2 2 0と別体に設け、 両者を ホース 2 2 5でつなぐ構成としたが、 ファンを敷布団と一体的なものとして設け る構成にもできる。 更に、 枕として図 1 4に示した第三実施形態の空冷式枕又は 図 1 7にその変形例として示した空冷式枕を用い、 ファン 2 2 4から供給される 空気の一部を当該空冷式枕に供給することもできる。 これによつて、 敷布団によ る冷却効果だけでなく、 枕による冷却効果も得られる。 In Fig. 22 (d), the fan 2 24 is provided separately from the mattress 220, and both are connected by the hose 2 25.However, the fan is provided integrally with the mattress. Can also be. Further, the air-cooled pillow of the third embodiment shown in FIG. 14 or the air-cooled pillow shown as a modification thereof in FIG. 17 is used as the pillow, and a part of the air supplied from the fan 222 is cooled by the air-cooled pillow. It can also be supplied on a pillow. As a result, not only the cooling effect of the mattress but also the cooling effect of the pillow can be obtained.
なお、 図 2 2では、 突起 2 2 1を直線状としたが、 これは単なる一例に過ぎな い。 例えば、 突起を直線状ではなく、 上から見たときに波形になるような態様で 設けたり、 あるいは点状に設けることも可能である。 特に波形にすると、 突起の 先端部が曲がる方向が多様になるので、 人が寝たときの突起の強度が特定の向き に偏らず、 すべての方向について適当な強度が得られるという利点がある。 In FIG. 22, the projections 221 are linear, but this is merely an example. For example, the projections may be provided not in a straight line but in a form that forms a waveform when viewed from above, or may be provided in a point shape. In particular, when the shape is corrugated, the direction in which the tip of the projection bends is varied, so that the strength of the projection when a person sleeps is not biased to a specific direction, and there is an advantage that appropriate strength can be obtained in all directions.
[第六実施形態]
次に、 本発明の第六実施形態について説明する。 本実施形態の温風式寝具は、 これまで説明してきた各実施形態とは異なり、 特に冬場の寒い時期に使用するこ とを意図した寝具である。 [Sixth embodiment] Next, a sixth embodiment of the present invention will be described. The hot-air bedding of the present embodiment is different from the embodiments described so far, and is a bedding intended to be used particularly in a cold winter season.
図 2 3は、 第六実施形態の温風式寝具を示した概略平面図である。 本実施形態 の温風式寝具は、 図 2 3に示すように、 ファン 2 3 6と敷布団 2 3 0の間にヒ一 タ 2 3 7が設けられており、 このヒータ 2 3 7によってファン 2 3 6から敷布団 2 3 0に送られる空気を温める。 温度調節は、 コントローラ 2 3 6によって、 ファン 2 3 4の送風量やヒータ 2 3 7の温度を変えることによって行うことがで きる。 但し、 それ以外の部分については、 第五実施形態の空気流通式寝具とほぼ 同じである。 すなわち、 敷布団 2 3 0は、 スぺーサとしての役割を果たす多数の 突起が設けられたゴムマツトと、 この上に上布として被せた前述の高密度綿布か らなる。 高密度綿布は、 ゴムマットの上、 すなわち突起の先端部の上に配置され ており、 更に、 ゴムマットの頭側及び足側の側面において空気が漏れないように 接着されている。 突起は、 敷布団の横方向に延びる直線状とされ、 突起と突起の 間は溝となってていこの部分が空気の流通路となる。 FIG. 23 is a schematic plan view showing a hot-air bedding of the sixth embodiment. As shown in FIG. 23, the warm air-type bedding of this embodiment has a heater 237 provided between the fan 23 and the mattress 230, and the heater 2 Warm the air sent from 36 to mattress 230. The temperature can be adjusted by changing the air volume of the fan 23 and the temperature of the heater 237 by the controller 236. However, other parts are almost the same as the air-flow type bedding of the fifth embodiment. That is, the mattress 230 is composed of a rubber mat provided with a number of protrusions serving as spacers, and the above-mentioned high-density cotton cloth covered thereon as an upper cloth. The high-density cotton cloth is disposed on the rubber mat, that is, on the tip of the protrusion, and is further adhered to the head side and the foot side of the rubber mat so that air does not leak. The projection is a straight line extending in the lateral direction of the mattress. A groove is formed between the projections, and this portion serves as an air passage.
したがって、 同一の寝具を夏は空冷式寝具に、 冬は温風式寝具にと、 使い分け ることができ、 効率的である。 ただし、 温風式寝具の場合は、 空冷式寝具の場合 に比べ送風量は少なくて済む。 また、 温めた空気を排気穴からそのまま外に逃が すと温風が無駄になるので、 排気穴の部分にファスナーを設け、 これを閉じるこ とによって排気穴から空気が外へ逃げにくくなるような工夫を行うのが望ましい 。 この場合、 必要に応じて、 別途空気が外に出るための小さな排気穴をゴムマツ トに設けてもよい。 但し、 この排気穴は、 空気が無駄に排出されないように、 空 冷式寝具として用 、る場合に比べて十分小さなものとする。 Therefore, the same bedding can be used for air-cooled bedding in summer and hot-air bedding in winter, which is efficient. However, warm air-type bedding requires less airflow than air-cooled bedding. If warm air is allowed to escape from the exhaust hole as it is, hot air will be wasted, so a zipper is provided at the exhaust hole and closing it will make it difficult for air to escape from the exhaust hole. It is desirable to take some ingenuity. In this case, if necessary, a small exhaust hole may be provided in the rubber mat to allow air to escape. However, this exhaust hole shall be sufficiently smaller than that used for air-cooled bedding so that air is not exhausted.
冬の寒い時期は、 布団に入るときに布団がひんやりと冷たく、 不快に感じるこ とがあるが、 そのような場合に本実施形態の温風式寝具を用いると効果的である。 たとえば、 布団に入る前の一定時間だけ本実施形態の温風式寝具のスィツチを入 れておけば、 寝るときには布団全体が温まって、 快適に眠りに就くことができる。 もちろん非常に寒い場合には、 夜通しスィッチを入れておいてもよいし、 一定時 間経過後に自動的にスィッチが切れるようにしておいてもよい。 また、 ファンや
ヒーターを断続的に運転し、 それによつて温度調節を行うようにしてもよい。 更に、 冬の寒い時期は空気が乾燥している場合が多く、 その場合に空気をヒー タ 2 3 7で温めると、 空気がさらに乾燥し、 健康上好ましくない場合がある。 そ のような場合には、 ファン 2 3 4やヒータ 2 3 7に加湿手段を設け、 敷布団 2 3 0へ送る空気に強制的に湿気を与え、 より快適な睡眠を確保することができる。 上記の説明では、 原則として室内の空気をそのままファンで流通路に流してい たが、 空冷式寝具の場合には、 空気を冷却する手段を別体で設け、 その冷却手段 により冷却された空気を流通路に送るようにして、 より高い冷却効果を得るよう 以上説明したように、 本発明にかかる空気流通式寝具によれば、 部屋全体を冷 却するのではなく、 寝ている人の周囲の僅かな範囲の温度勾配を大きくするだけ で、 十分に涼しさや快適さを得ることが出来る。 このため、 消費電力が少なくて 済み、 またこの空気流通式寝具が広く普及した場合でも、 それによる社会全体の 電力消費を少なく抑えることができる。 このため、 現在使用されているェアーコ ンディショナ一に置き換えられれば、 化石燃料の消費が減つて地球温暖化の防止 にもつながる。 During the cold winter season, when entering the futon, the futon may feel cool and uncomfortable, but in such a case, it is effective to use the warm-air bedding of this embodiment. For example, if the switch of the warm-air type bedding of the present embodiment is inserted only for a certain period of time before entering the futon, the entire futon can be warmed up when sleeping so that the user can sleep comfortably. Of course, if the temperature is very cold, the switch may be turned on overnight, or the switch may be turned off automatically after a certain period of time. Also, fans and The heater may be operated intermittently, thereby controlling the temperature. Furthermore, in the cold winter months, the air is often dry. In such a case, heating the air with a heater 237 may further dry the air, which may be unfavorable for health. In such a case, humidifying means is provided for the fan 234 and the heater 237 to forcibly humidify the air sent to the mattress 230, thereby ensuring more comfortable sleep. In the above description, indoor air was flowed through the flow passage with a fan in principle, but in the case of air-cooled bedding, means for cooling the air is provided separately, and the air cooled by the cooling means is cooled. As described above, according to the air-flow type bedding of the present invention, instead of cooling the entire room, By increasing the temperature gradient in a small area, it is possible to obtain sufficient cooling and comfort. For this reason, power consumption is low, and even if this air-flow type bedding becomes widespread, the power consumption of society as a whole can be reduced. For this reason, if replaced by the currently used hair conditioner, the consumption of fossil fuels will be reduced, which will also help prevent global warming.
また、 本発明の空気流通式寝具を枕や布団に適用すると、 体の不自由な人でも 簡単に温度調節ができるので、 例えば病院などにおける看護の負担が大幅に軽減 する。 更に、 本発明の温風式寝具の場合には、 冬などの寒い時期に、 布団を温め ておくことによって、 快適に就寝できるという効果も併せ持つ。 In addition, when the air-flow type bedding of the present invention is applied to a pillow or a futon, even a person with a physical disability can easily adjust the temperature, thereby greatly reducing the burden of nursing at a hospital or the like. Furthermore, in the case of the warm-air bedding of the present invention, it is possible to sleep comfortably by warming the futon during a cold season such as winter.
[第七実施形態] [Seventh embodiment]
次に、 第七実施形態について説明する。 図 2 4は、 第七実施形態の空気流通式 寝具の本体部分を広げた状態を示す平面図、 図 2 5は、 図 2 4に示した空気流通 式寝具をべッドのマツトレスの部分に装着した状態を示す横断面図、 図 2 6は、 エアーマットを拡大して示した斜視図である。 Next, a seventh embodiment will be described. FIG. 24 is a plan view showing a state in which the main body portion of the air-flow bedding of the seventh embodiment is expanded, and FIG. 25 is a plan view of the air-flow bedding shown in FIG. FIG. 26 is a cross-sectional view showing a state in which the air mat is mounted.
第七実施形態の空気流通式寝具は、 エア一マツトに多数のェアークッションを 形成し、 隣合うエア一クッション同士の間を流路として空気を流通させ、 寝てい る人の体を冷却する点を特徴とする。 The air-flowing bedding of the seventh embodiment is characterized in that a large number of air cushions are formed in an air mat, air is circulated as a flow path between adjacent air cushions, and the body of a sleeping person is cooled. It is characterized by.
エアーマット 3 5 0には、 図 2 6に示すように、 内部に高圧で空気が充填され
た多数のェアークッシヨン 3 5 5が設けられている。 このエアークッシヨン 3 5 5は、 荷重支持部としての役割を果たす。 エアーマツト 3 5 0およびこの上に形 成されるエア一クッシヨン 3 5 5は、 たとえば高密度ポリエチレンで製造できる。 エアークッションとエアークッションの間の空間は、 空気の流路となって、 この 部分を空気が流通する。 エアーマット 3 5 0は、 包装材に用いるエアーキャップ (商品名)と同様の製法で、 安価かつ容易に製造できる。 As shown in Fig. 26, the air mat 350 is filled with air at high pressure. There are also a number of other ear cushions. This air cushion 355 serves as a load supporting portion. The air mat 350 and the air cushion formed thereon can be made, for example, of high density polyethylene. The space between the air cushions serves as an air flow path, through which air flows. The air mat 350 can be manufactured inexpensively and easily by the same manufacturing method as the air cap (trade name) used for the packaging material.
エアークッション 3 5 5に対する空気の充填には、 図示しないポンプを用いる このポンプは、 シリコンゴム製のチューブを介して、 エア一マット 3 5 0の一つ のエアークッションと接続される。 各エアークッションは、 図 2 6に示すように、 互いに連通されているので、 一箇所での充填作業によって、 すべてのエアークッ ションに空気が充填され、 しかもどのエアークッションも内部の圧力は均一とな る。 A pump (not shown) is used to fill the air cushion 355 with air. This pump is connected to one air cushion of the air mat 350 through a silicone rubber tube. As shown in Fig. 26, the air cushions are connected to each other, so that all the air cushions are filled with air by one filling operation, and the internal pressure of each air cushion is uniform. You.
図 2 6では、 エアークッション 3 5 5のみを示し、 この上を覆っている外布を 省略してある。 このため、 流路は上に開かれているが、 実際の使用時には外布が エアーマット 3 5 0の上を全体的に覆うので、 隣り合うエアークッション 3 5 5 同士とその上の外布とによって、 閉じられた空間が端だ形成され、 この部分が流 路となる。 流路の断面積を大きくして、 ファンから供給される空気の圧力を十分 に低くすれば、 外布を通り抜けで流路の上側に逃げる空気の量は僅かであり、 ほ とんどの空気が流路内を流れるようにすることができる。 In FIG. 26, only the air cushion 355 is shown, and the outer cloth covering the air cushion is omitted. For this reason, although the flow path is open upward, the outer cloth covers the entire air mat 350 during actual use, so that the adjacent air cushions 35 Thus, a closed space is formed at the end, and this part becomes a channel. If the cross-sectional area of the flow path is increased and the pressure of the air supplied from the fan is sufficiently reduced, the amount of air passing through the outer cloth and escaping to the upper side of the flow path is small, and most of the air is It can be made to flow in the flow path.
図 2 6に示すように、 各エアークッション 3 5 5は、 横連通部 3 3 1および縦 連通部 3 3 2によって互いに連通されている。 このため、 いずれかのエアークッ シヨンを足で踏むなどしても、 踏まれたエアークッションは簡単につぶれ、 力 Π わった圧力も周囲のエアークッションに広く分散される。 このため、 エアークッ シヨン 3 5 5は、 容易には破裂しない。 As shown in FIG. 26, each air cushion 355 is communicated with each other by a horizontal communication portion 331 and a vertical communication portion 332. Therefore, even if one of the air cushions is stepped on with a foot, the stepped air cushion is easily crushed, and the applied pressure is widely distributed to the surrounding air cushions. Thus, the air cushion 355 does not burst easily.
ただし、 必ずしもすべてのエアークッション 3 5 5を連通させる必要はなく、 たとえば、 エアーマツト 3 3 1を複数の領域に分割し、 それぞれの分割領域内の エア一クッションだけを連通させるようにしてもよい。 このように、 複数の領域 に分割すると、 ある領域の空気は他の領域へは逃げないので、 エア一クッション 3 5 5の沈み込みが少なくなる。 したがって、 寝たときの快適さを考慮して、 実
験的に、 すべてのエアークッションを連通させるかどう力、 また、 分割する場合 にはその数をいくつにするかを决めることが望ましい。 However, it is not always necessary to connect all the air cushions 355. For example, the air mat 331 may be divided into a plurality of areas, and only the air cushion in each of the divided areas may be connected. As described above, when the air is divided into a plurality of areas, the air in one area does not escape to the other area, so that the air cushion 355 sinks less. Therefore, considering the comfort when sleeping, It is desirable to experimentally determine how much air cushions can communicate and, if split, how many.
エアーマツト 3 5 0全体のうちで、 ェアークッシヨン 3 5 5が形成されている 部分の面積は全体の約 3分の 1〜 4分の 1であり、 残りの部分は流路となる。 こ の上にかなりの体重の人が寝たときを考えて、 エア一マット 3 5 0に 1平方セン チメートル当たり 4 5グラムの荷重がかかるとすると、 ェアークッシヨン 3 5 5 には、 1 4 5グラム程度の荷重がかかる。 この程度の荷重が加わっても、 エアー クッションとェアークッションの間の流路が塞がらないことを考慮してエアー クッション 3 5 5に空気を充填するのに必要な圧力を計算すると、 1 . 1 5気圧 前後となる。 この程度の圧力は、 たとえば一般家庭に置く鑑賞魚用の水槽で使わ れているポンプ、 あるいはこれと同程度の性能の小型ポンプで十分に達成できる。 したがって、 ポンプの価格は低く抑えられる。 Of the entire air mat 350, the area of the portion where the ear cushion 365 is formed is about one-third to one-fourth of the entire area, and the remaining part is a flow path. Assuming that a person of considerable weight lies on this, assuming that the air mat 350 is loaded with 45 g per square centimeter, the gravity 3.55 will have 14.5 g Load is applied. Considering that the flow path between the air cushion and the air cushion is not obstructed even when such a load is applied, the pressure required to fill the air cushion 355 with air is calculated as 1.15 It is around atmospheric pressure. This level of pressure can be achieved satisfactorily by pumps used in aquariums for aquarium fish, for example, or small pumps of similar performance. Therefore, the price of the pump can be kept low.
エアーマツト 3 5 0の素材として、 たとえば厚さ 3 0ミクロン程度の高密度ポ リエチレンを用いると、 1 . 2気圧の圧力を掛けたときに、 1時間に 1平方セン チメートル当たり約 0 . 0 0 l ccの空気が漏れ出る。 これから計算すると、 ェ ァークッション内の圧力は 1 . 1 5気圧程度に下がる。 このため、 空気流通式寝 具を使用するたぴに、 上記のポンプを用いてェアークッションに空気の充填を行 うことが必要となる。 ただし、 この充填作業に要する時間はほんの十数秒であり、 これだけでほぼ 1回の就寝時間 (約 8時間) にわたつて必要な圧力を維持できる ので、 実用上特に不便はない。 なお、 エアーマット 3 5 0の素材となるポリェチ レンとしてもう少し厚手のものを用いれば、 気圧の低下をより少なく抑えること もできる。 If high-density polyethylene with a thickness of, for example, about 30 microns is used as the material of the Air Mat 350, when applied at a pressure of 1.2 atm, about 0.001 l per square centimeter per hour cc of air leaks out. From this calculation, the pressure in the air cushion drops to about 1.15 atm. For this reason, it is necessary to fill the air into the air cushion by using the above-mentioned pump in order to use the air-flow type bedding. However, the time required for this filling operation is only about several tens of seconds, and this alone can maintain the necessary pressure for almost one bedtime (about 8 hours), so there is no practical inconvenience. If a slightly thicker polyethylene is used as the material of the air mat 350, the decrease in the atmospheric pressure can be further suppressed.
ェアークッシヨン 3 5 5に充填する空気の圧力は、 寝心地に影響を与えるので、 充填時間を適当に調節して、 快適な寝心地となるよう圧力を調節することもでき る。 また、 多少コストがかさむが、 ポリエチレンの表面をサランでコーティング すると、 空気の漏れは 1 0 0 0分の 1程度に減少する。 したがって、 このような サランコーティングを施せば、 長期間にわたってポンプによる充填作業が不要と なる。 Since the pressure of the air filled into the emulsion 3.55 affects the comfort of the bed, the pressure can also be adjusted by adjusting the filling time appropriately to achieve a comfortable sleep. At a slightly higher cost, coating the surface of the polyethylene with Saran reduces air leakage by a factor of about 1000. Therefore, applying such a Saran coating eliminates the need for a pumping operation over a long period of time.
なお、 エアーマット 3 5 0とこの上を覆う外布との間に、 多数の粗い隙間が設
けられたメ ッシュ状の間揷材 (図示せず) を挿入してもよい。 このような間揷材 を設けると、 冷却効果の低下を招くことなく、 この上に寝る人の荷重を適度に分 散させ、 体が過度に沈み込まないようにするとともに、 エアーマット 3 5 0に形 成された個々のエア一クッシヨン 3 5 5が体にあたる感じを少なくすることがで きる。 There are many coarse gaps between the air mat 350 and the outer cloth that covers it. A hollow mesh member (not shown) may be inserted. By providing such a spacer, the load of a person lying thereon can be appropriately dispersed without lowering the cooling effect, so that the body does not sink excessively, and the air mat 350 The feeling of the individual air cushions 355 formed on the body can be reduced.
なお、 図 2 4及び図 2 5では、 図示を省略しているが、 実際には、 ファンポッ タス、 コントローラ、 ホース、 ポンプなどが別途設けられている。 Although illustration is omitted in FIGS. 24 and 25, a fan pot, a controller, a hose, a pump, and the like are actually provided separately.
図 2 5に示したマットレス 3 0 5は、 一般的なベッド用のものであり、 本実施 形態の空気流通式寝具は、 このような一般的なマットレス 3 0 5とともに、 この 上に装着して用いることができる。 本実施形態のエアーマット 3 5 0には、 図 2 4に示すように、 横方向 (左右方向) に広く延在する横布 3 5 1と、 縦方向 (上 下方向) に広く延在する縦布 3 5 2が設けられている。 横布 3 5 1及び縦布 3 5 2は、 エアーマット 3 5 0の下部に、 このエアーマット 3 5 0と一体的に取り付 けられている。 エア一マット 3 5 0はポリエチレンで作ることができるが、 横布 3 5 1及ぴ縦布 3 5 2については、 エアーマツト 3 5 0と同じポリエチレン製で あってもよいし、 その他の素材であってもよい。 The mattress 300 shown in Fig. 25 is for a general bed, and the air-flowing bedding of the present embodiment is mounted on this mattress 300 together with such a general mattress. Can be used. As shown in FIG. 24, the air mat 350 of the present embodiment has a horizontal cloth 351 extending widely in the horizontal direction (left-right direction) and a horizontal cloth 351 extending widely in the vertical direction (up-down direction). A warp cloth 35 2 is provided. The horizontal cloth 35 1 and the vertical cloth 35 52 are attached to the lower part of the air mat 350 integrally with the air mat 350. The air mat 350 can be made of polyethylene, but the horizontal cloth 350 and the vertical cloth 350 can be made of the same polyethylene as the air mat 350, or other materials. You may.
横布 3 5 1は左右に十分な長さを有しており、 実際に使用するときは、 図 2 5 に示すようにこの部分をマットレス 3 0 5 (図 2 4では一点鎖線で示す) の下に たくし込む。 縦布 3 5 2についても同様であり、 こちらは上下方向からマツ トレ ス 3 0 5の下にたくし込む。 こうすることにより、 エアーマット 3 5 0はマット レス 3 0 5上でほとんどずれることなく、 しっかりと固定される。 The weft cloth 35 1 has a sufficient length on the left and right, and when it is actually used, this portion of the mattress 30 5 (shown by a dashed line in FIG. 24) is used as shown in FIG. 25. Tuck down below. The same applies to the warp cloth 352, which is squeezed under the pine traces 205 from above and below. In this way, the air mat 350 is firmly fixed on the mattress 350 with almost no displacement.
エアーマット 3 5 0は、 外布 3 5 6で被われており、 この外布 3 5 6の一部が、 ポンプから送られた空気をマツトレスの横で縦方向に流すためのダクトを形成す る。 また、 エアーマット 3 5 0には、 特別に空気の流出口は特に設けられておら ず、 流路のうち、 ダクトがある側と反対の端部が、 必然的に流出口としての役割 を果たす。 外布 3 5 6は、 エアーマツト 3 5 0の上部を被って流路を形成すれば 十分であるため、 本実施形態では、 エア一マツト 3 5 0及び外布 3 5 6の外縁部 にマジックテープを設け、 両方のマジックテープを張りつけることによって、 ェ ァーマット 3 5 0上に外布 3 5 6を固定するようにしている。
エアーマツト 3 5 0には、 前述のように多数のェアークッション 3 5 5が形成 されており、 これらが横連通部 3 3 1及ぴ縦連通部 3 3 2によって互いに連通さ れている。 エア一クッション 3 5 5は、 場所によって長さ (マットレス 3 0 5の 横方向の長さ) が異なり、 図 2 4に示したように、 側方部に形成されたェアーク ッシヨン 3 5 5 bの長さを、 中央部に形成されたエアークッション 3 5 5 aより も短くしてある。 The air mat 350 is covered with an outer cloth 356, and a part of the outer cloth 356 forms a duct for flowing the air sent from the pump in a vertical direction beside the mattress. You. In addition, the air mat 350 has no special air outlet, and the end of the flow channel opposite to the side where the duct is provided necessarily functions as the outlet. . Since it is sufficient for the outer cloth 350 to cover the upper part of the air mat 350 and form a flow path, in this embodiment, a magic tape is attached to the outer edges of the air mat 350 and the outer cloth 350. The outer cloth 356 is fixed on the format 350 by attaching both pieces of magic tape. As described above, the air mat 350 has a number of hair cushions 35 formed therein, and these are connected to each other by the horizontal communication portion 331 and the vertical communication portion 332. The air cushion 355 has a different length (the lateral length of the mattress 305) depending on the location, and as shown in FIG. 24, the air cushion 355 b formed on the side portion. The length is shorter than the air cushion 355 a formed in the center.
図 2 4に示すように、 ェアークッシヨン 3 5 5が形成されている領域の横幅は、 一般的なマツトレス 3 0 5の横幅よりも幾分広くしてある。 これは、 横布 3 5 1 及び縦布 3 5 2をたくし込んでマツトレス 3 0 5に固定したときに、 図 2 5に示 すように、 エアークッション 3 5 5がマットレス 3 0 5の側方端部の縁に沿って 直角に曲がり、 下向きにマツトレス 3 0 5の側面まである程度延在するようにす るためである。 このようにすると、 エアーマット 3 5 0を装着しょうとするマツ トレスによって横幅の寸法に多少の違いがあっても、 その違いをこの部分で吸収 でき、 より広い範囲のマットレスに適用できる。 また、 側方部に形成した一つ一 つのエア一クッション 3 5 5 bの長さを短くしてあるので、 マットレス 3 0 5の 縁に沿って直角に曲げるときに、 マツトレス 3 0 5の縁に一番近い横連通部の部 分でエアーマツト 3 5 0を曲げることができ、 曲げ易くなる。 As shown in FIG. 24, the width of the region in which the shadows 355 are formed is somewhat wider than the width of a general mattress 305. This is because when the horizontal cloth 35 1 and the vertical cloth 35 52 are tucked and fixed to the mattress 30 05, the air cushions 35 5 This is to make a right angle bend along the edge of the end, and extend downward to some extent to the side surface of the mattress 305. In this way, even if there is a slight difference in the width of the mattress to which the air mat 350 is to be attached, the difference can be absorbed by this portion, and the mattress can be applied to a wider range of mattresses. Also, since the length of each air cushion 355 b formed on the side is shortened, when bent at right angles along the edge of mattress 305, the edge of mattress 305 The air mat 350 can be bent at the part of the horizontal communication part closest to the wing, making it easy to bend.
更に、 ェアークッシヨン 3 5 5を形成した領域の横幅を一般的なマツトレスの 横幅よりも広くして、 エア一マツト 3 5 0を装着したときにェアークッシヨン 3 5 5 bがマットレス 3 0 5の側方まで延在するようにしたので、 ダクト 3 5 7の 反対側の端部から流路を流れた空気が流れ出るときに、 その空気は下向きに吹き 出す。 このように流出口が下を向くことから、 上に掛けた布団や毛布が流出口を 塞ぐことはなく、 このため流出口の形状に特別な工夫を施す必要はなレ、。 Furthermore, the width of the area in which the hair cushion 355 is formed is made wider than the width of a general mattress so that when the air mat 355 is attached, the hair cushion 355 b extends to the side of the mattress 305. Because it extends, when the air flowing through the flow path flows out from the opposite end of the duct 357, the air blows downward. Since the outlet faces downward, the futon or blanket hung on the outlet does not block the outlet, so it is not necessary to take special measures for the shape of the outlet.
また、 本実施形態のエアーマット 3 5 0は、 通常の敷布団とは異なり、 気体で ある空気がその大部分を占める。 周知のように、 気体は固体に比べて断熱効果が 非常に高い。 このため、 寒い冬場などにエアーマット 3 5 0を敷布団として用い れば、 その断熱効果によって普通の敷布団を用いる場合よりも暖かく感じられる。 このとき、 流出口が下を向いていることから、 温められた空気は逃げにくく、 さ らに保温効果が高まる。
更に、 本発明の冷却作用の原理は、 寝具だけでなく、 その他のものにも応用で きる。 特に、 体を比較的長い時間密着させておくもの、 例えば椅子、 ソファー、 自動車のシート等は、 使用時に体を密着させるが故に、 本発明の基本的原理、 す なわち体に接する部分に周囲とほぼ同じ温度の空気を流通させ、 体の近傍の温度 勾配を大きくすることによって涼しさを感じさせるという原理が有効に働き、 そ の効果が高くなる。 Further, the air mat 350 of the present embodiment is different from a usual mattress, and most of the air is a gas. As is well known, gas has a much higher heat insulation effect than solids. For this reason, when the air mat 350 is used as a mattress in cold winter, etc., it feels warmer than when using a normal mattress due to its heat insulating effect. At this time, since the outlet faces downward, the warmed air is difficult to escape, and the heat retention effect is further enhanced. Further, the principle of the cooling action of the present invention can be applied not only to bedding but also to other things. In particular, objects that keep the body in contact for a relatively long time, such as chairs, sofas, and car seats, adhere to the body when used, so the basic principle of the present invention, that is, around the part in contact with the body The principle of flowing air at approximately the same temperature as that of the air and increasing the temperature gradient near the body to make people feel cooler works effectively and the effect is enhanced.
以上説明したように、 第七実施形態によれば、 各荷重支持部同士の間を流路と し、 ここに室内の空気を絶えず流すことによって、 この上に寝ている人の体のご く近傍における温度勾配を大きくするという原理によって、 簡単に寝ている人が 涼しさを感じることができるので、 全体の構造が非常にシンプルになり、 しかも 十分な冷却効果が得られるため、 暑い夏の夜などでも快適な睡眠を確保できる。 また、 送風手段から送出される空気の圧力を低く抑えることにより、 送風手段の モ一ターの消費電力はわずかで済み、 運用コス トを非常に低く抑えることができ る。 更に、 前記荷重支持部を、 内部に空気が充填されたエアークッションとする ことによって、 この上に寝たときの寝心地もよく、 また、 空気は断熱性に優れる ので、 冬期などにこの上に寝る場合は、 いったん暖まったあとは冷えにくく、 効 率がよい。 As described above, according to the seventh embodiment, the flow path is formed between the load supporting portions, and the air in the room is constantly flown through the flow path, so that the body of the person sleeping on this The principle of increasing the temperature gradient in the vicinity allows people who are sleeping easily to feel cool, so the overall structure is very simple, and a sufficient cooling effect is obtained, so it can be used in hot summer Comfortable sleep can be secured even at night. Also, by keeping the pressure of the air sent from the blowing means low, the power consumption of the motor of the blowing means is small and the operating cost can be kept very low. Further, the load supporting portion is made of an air cushion filled with air, so that it is comfortable to sleep on the air cushion, and since the air has excellent heat insulation properties, it can be sleep on the air in winter or the like. In this case, it is difficult to cool once it has warmed up, and it is efficient.
また、 固定手段として、 マット手段と一体的に、 かつ前記マット手段の外側に 広く延在するよう設けられ、 前記外側に広く延在する部分を既存の寝具の下にた くし込むことにより前記マット手段を前記既存の寝具の上部に固定するものを用 いると、 上記の各効果に加え、 枠状の固定手段を用いる場合に比べて、 余分なス ペースが不要となり、 コス トも安く、 これを固定したマッ トレスなどに腰掛けた ときの感じも自然であり、 ずれにくく、 また、 構造もりよシンプルになるという 効果がある。 Further, as the fixing means, the mat is provided integrally with the mat means and so as to extend widely outside the mat means. The use of the means for fixing the means on the top of the existing bedding, in addition to the above-described effects, requires no extra space and reduces the cost as compared with the case where the frame-shaped fixing means is used. The feeling when sitting on a mattress with a fixed surface is natural, and it is less likely to slip and the structure is simpler.
[第八実施形態] [Eighth Embodiment]
次に、 第八実施形態について説明する。 図 2 7は、 第八実施形態の空冷式衣服 の正面図及び背面図、 図 2 8は、 図 2 7に示した空冷式衣服を人が着用した状態 を示す図、 図 2 9は、 図 2 7に示した空冷式衣服のファンの部分における拡大断 面図である。 図 2 7乃至図 2 9に示すように、 本実施形態の空冷式衣服は、 主と
して衣服部 4 0 1と、 空気を吸入するためのファン 4 0 2からなる。 Next, an eighth embodiment will be described. FIG. 27 is a front view and a rear view of the air-cooled garment of the eighth embodiment, FIG. 28 is a diagram showing a state in which a person wears the air-cooled garment shown in FIG. 27, and FIG. FIG. 27 is an enlarged cross-sectional view of the fan portion of the air-cooled garment shown in 27. As shown in FIGS. 27 to 29, the air-cooled garment of the present embodiment mainly includes It consists of a clothing section 401 and a fan 402 for inhaling air.
衣服部 4 0 1に用いる素材は、 後述のように、 二枚の布の間にスぺーサでほぼ 一定間隔の空間を形成したものである。 この空間を空気の流通路として、 ファン 4 0 2から送られてくる空気を全体に流通させる。 衣服部 4 0 1を流通した空気 は、 首の部分及び脇の下の部分に設けられた排気口 4 0 3から排出される。 空気 は、 衣服部 4 0 1を流通する過程で体表から発せられる熱を吸収して着用者を冷 却する。 更に、 活発な発汗が行われる首及び脇の下に設けられた排出口 4 0 3か ら空気が吹き出されると、 その部分の汗の蒸発が促され、 その気化熱によってよ り高い冷却効果が得られる。 As described later, the material used for the clothing portion 401 is a material in which a spacer is formed between two pieces of cloth at a substantially constant interval. This space is used as a flow passage for air, and the air sent from the fan 402 is circulated throughout. The air that has flowed through the clothing section 401 is exhausted from exhaust ports 403 provided at the neck and under the armpits. The air absorbs the heat generated from the body surface in the process of flowing through the clothing section 401 and cools the wearer. Furthermore, when air is blown out from the outlets 400 provided on the neck and armpits where active sweating is performed, the evaporation of the sweat in that part is promoted, and a higher cooling effect is obtained by the heat of vaporization. Can be
ファン 4 0 2としては、 例えばシロッコファンを用いることができる。 シロッ コファンは、 図 2 9に示すように、 厚さ 2 0 m m程度で、 羽根の軸方向から吸入 した空気を、 羽根の外周方向へ放射状に送り出す。 このようなシロッコファンを 用いることによって、 空気を効率よく衣服部 4 0 1の全体に行き渡らせることが できる。 本実施形態では、 このシロッコファン 4 0 2を図 2 8に示すように衣服 部 4 0 1の背中の下部に設け、 空気の送出口を側面と上面に設ける。 なお、 シ ロッコファンの電源は、 着用者に取り付けたバッテリー 4 0 4から供給する方式 としてもよいし、 デスクワークのようにほぼ一定の場所で作業する場合には、 商 用電源などから電力の供給を受けるようにしてもよい。 As the fan 402, for example, a sirocco fan can be used. As shown in Fig. 29, the sirocco fan has a thickness of about 20 mm and radially sends out the air taken in from the axial direction of the blade toward the outer periphery of the blade. By using such a sirocco fan, air can be efficiently distributed to the entire clothing section 401. In the present embodiment, the sirocco fan 402 is provided at the lower part of the back of the clothing section 401 as shown in FIG. 28, and the air outlets are provided on the side and upper surfaces. The power supply of the sirocco fan may be supplied from the battery 404 attached to the wearer, or supplied from a commercial power supply when working in almost constant places such as desk work. May be received.
図 3 0は、 衣服部 4 0 1に用いた素材を示しており、 (a ) が平面図、 (b ) が断面図である。 図 3 0に示すように、 衣服部 4 0 1の素材は、 第一の布 (上布 ) 4 1 1、 第二の布 (下布) 4 1 2、 ならびにこれらの間にある多数のスぺーサ 4 1 3からなる。 スぺーサ 4 1 3があることによって、 前述のように上布 4 1 1 と下布 4 1 2の間に空気の流通路が形成される。 このように、 ファン 4 0 2から 送られてくる空気が上布 4 1 1と下布 4 1 2の間を流通するので、 以下ではこの 素材を 「空気流通素材」 と呼ぶ。 この空気流通素材には、 前述の第四実施形態に おける布団部分 1 Ί 0と同じ素材および製造方法を適用することができる。 FIGS. 30A and 30B show the materials used for the clothing section 401, wherein FIG. 30A is a plan view and FIG. 30B is a cross-sectional view. As shown in Fig. 30, the material of the clothing section 401 is composed of a first cloth (upper cloth) 411, a second cloth (lower cloth) 412, and a number of cloths between them. Pisa 4 1 3 The presence of the spacers 4 13 forms an air flow passage between the upper cloth 4 11 and the lower cloth 4 12 as described above. As described above, since the air sent from the fan 402 flows between the upper cloth 411 and the lower cloth 412, this material is hereinafter referred to as “air circulating material”. The same material and manufacturing method as those of the futon portion 100 in the fourth embodiment can be applied to the air circulating material.
ここでは上布 4 1 1又は下布 4 1 2として、 ダウンジャケットの表地などとし て使われる密度綿布を用いる。 高密度綿布は、 前述のいくつかの実施形態で使わ れていたものと同じであり、 1センチメ一トル当たりの糸の数が 3 0 0本程度と、
通常の綿布と比べると非常に高い密度で糸が織られている。 本実施形態の空冷式 衣服は、 体表から発せられる熱を流通している空気に吸収させるものであるため、 空気が流通の途中で布から漏れないようにする必要がある。 高密度綿布は糸の密 度が高いため、 糸の間から外部へもれる空気の量が非常に少なく、 ほとんどの空 気が空気流通路の全行程を通って排出口から排出される。 このため、 高密度綿布 は、 本実施形態の空冷式衣服として非常に望ましい。 Here, as the upper cloth 411 or the lower cloth 412, a density cotton cloth used as a surface material of a down jacket or the like is used. The high-density cotton cloth is the same as that used in some of the above-described embodiments, and the number of yarns per centimeter is about 300, The yarn is woven at a very high density compared to ordinary cotton cloth. The air-cooled garment of the present embodiment absorbs the heat generated from the body surface into the circulating air, so it is necessary to prevent the air from leaking from the cloth during the circulating. Since the density of the high-density cotton cloth is high, the amount of air leaking from the space between the yarns to the outside is very small, and most of the air is exhausted from the outlet through the entire stroke of the air flow passage. For this reason, high-density cotton cloth is very desirable as the air-cooled garment of the present embodiment.
また、 高密度綿布は、 あくまでも綿布であるため、 汚れた場合には家庭用の洗 濯機などで容易に洗うことができるという利点もある。 なお、 このような高密度 綿布は、 一般的な衣料品店で容易に入手できる。 ただし、 高密度綿布のような綿 性の布だけでなく、 絹や化学繊維などから出来ている布を上布又は下布として用 いることも可能である。 In addition, since high-density cotton cloth is purely cotton cloth, there is an advantage that if it becomes dirty, it can be easily washed with a household washing machine. Note that such high-density cotton cloth can be easily obtained from general clothing stores. However, not only cotton cloth such as high-density cotton cloth but also cloth made of silk or chemical fiber can be used as the upper cloth or lower cloth.
上布 4 1 1と下布 4 1 2の間に設けられる多数のスぺーサ 4 1 3は、 円柱形の スポンジでできている。 本実施形態のスぺーサ 4 1 3は、 底面の直径が 3 m m、 長さが 5 m mであり、 前述のように板状のスポンジから得られる。 また、 上下の 布 4 1 1, 4 1 2と各スぺーサ 4 1 3の上下の底面は接着剤によって接着されて いる。 本実施形態では、 スぺーサ 4 1 3の配置は、 図 3 0 ( a ) 示すように 2 0 m m間隔の千鳥パターンとするが、 これは単なる一例に過ぎず、 空冷式衣服の用 途ゃ、 上布又は下布として用いる布の特†¾に応じて、 それぞれに最適な間隔及び パターンを見いだすことが望ましい。 Many spacers 4 13 provided between the upper cloth 4 11 and the lower cloth 4 12 are made of cylindrical sponge. The spacer 413 of the present embodiment has a bottom surface diameter of 3 mm and a length of 5 mm, and is obtained from a plate-like sponge as described above. The upper and lower cloths 4 11 and 4 12 and the upper and lower bottom surfaces of the spacers 4 13 are adhered by an adhesive. In the present embodiment, the spacers 4 13 are arranged in a staggered pattern at intervals of 20 mm as shown in FIG. 30 (a). However, this is merely an example, and the application of the air-cooled garment is not limited. It is desirable to find the optimum spacing and pattern for each of the upper and lower cloths, depending on the characteristics of the cloth used.
予備実験 5 (図 1 3参照) において説明したように、 上布 4 1 1及び下布 4 1 2として高密度綿布を用い、 両者の間にスぺーサ 4 1 3で空間を形成し、 更にこ の空間に空気を流通させることによって、 着用している人の体から汗が出てこれ を下布 4 1 1が吸い取っても、 流通している空気によって、 水分が容易に外部へ 運び出されるため、 着ている人は快適に過ごすことができる。 As described in Preliminary Experiment 5 (see FIG. 13), a high-density cotton cloth was used as the upper cloth 4 11 and the lower cloth 4 12, and a space was formed between them by a spacer 4 13. By circulating air through this space, even if sweat is released from the body of the wearer and the lower cloth 4 11 absorbs it, moisture is easily carried out to the outside by the circulating air. Therefore, the wearing person can spend comfortably.
ところで、 実際にどの程度の温度のときに人は快適さを感じるかを調べるため に、 次のような実験を行った。 1 5人の被験者に対し、 下着と通常の作業服を着 てもらい、 下着と作業服の間の胸部及び背中の部分に温度センサを取り付けて、 簡単な作業を行ってもらった。 そして、 室内の温度を徐々に変化させて、 被験者 が最も快適に感じる温度になった時点で、 自己申告してもらった。 図 3 1は、 そ
の結果を表にして示したものであり、 平均すると、 快適と感じられる温度は約 3 1 . 5 °Cであった。 なお、 温度センサを体の表面から比較的近い部分に取り付け たため、 得られた温度は被験者の体温の影響をかなり受けており、 室温よりもか なり高めとなっている。 By the way, the following experiment was conducted to find out at what temperature people actually feel comfortable. Fifteen subjects were asked to wear underwear and normal work clothes, and temperature sensors were attached to the chest and back between the underwear and work clothes to perform simple tasks. Then, the room temperature was gradually changed, and when the temperature reached the temperature that the subject felt most comfortable, they were asked to self-report. Figure 31 shows that The results are shown in a table. On average, the temperature at which comfort was felt was about 31.5 ° C. Since the temperature sensor was attached to the part relatively close to the body surface, the obtained temperature was considerably affected by the subject's body temperature, and was considerably higher than room temperature.
このように、 体表の近傍の温度が 3 0 °C〜 3 2 くらいであると、 概ね快適に 感じられることが分かる。 図 3 ( b ) から分かるように、 体表の近傍でこの程度 の温度になるのは、 室温が 2 0 °C程度のときである。 本実施形態の空冷式衣服を 着用すると、 たとえ室温が 3 0 °C程度であっても、 体表の近傍については、 図 3 ( c ) に示すように、 図 3 ( b ) と同程度の温度勾配となる。 Thus, it can be seen that when the temperature near the body surface is about 30 ° C to 32, the person feels almost comfortable. As can be seen from Fig. 3 (b), this temperature near the body surface is reached when the room temperature is about 20 ° C. When the air-cooled garment of the present embodiment is worn, even when the room temperature is about 30 ° C., as shown in FIG. 3 (c), the vicinity of the body surface is substantially the same as FIG. 3 (b). A temperature gradient results.
前述のように、 被験者の快適さに最も影響を与えるのは温度勾配であり、 本実 施形態の空冷式衣服を着用して空気をその全体に流通させ、 体の表面から比較的 近い部分の温度を体温よりも低い温度とすることによって、 体表の近傍において 大きな温度勾配を実現することができる。 この大きな温度勾配によって、 人の体 表から発せられる熱は容易に温度の低い空冷式衣服の側に放射され、 そして空冷 式衣服の流通路内を流れる空気によって素早く吸収される。 As described above, the temperature gradient has the greatest effect on the comfort of the subject, and the air-cooled garment of the present embodiment is worn to allow air to flow through the garment, and the part of the body relatively close to the body surface is By setting the temperature lower than the body temperature, a large temperature gradient can be realized in the vicinity of the body surface. Due to this large temperature gradient, the heat emanating from the human body surface is easily radiated to the side of the cool air-cooled garment and is quickly absorbed by the air flowing through the passage of the air-cooled garment.
空冷式衣服を流通する空気は、 内部を流通する過程において着用者の体温で温 められ、 徐々に温度が上昇する。 空気の温度が高くなると、 体表近傍の温度勾配 が小さくなるので、 冷却効果は低下する。 しかし、 空気の流通量を多くして空気 が温まる前に全体を流通して排出されるようにすれば、 温度の上昇は少なくなり、 冷却効果も維持される。 このことを利用して、 ファンの回転数を変えることに よって、 冷却効果を制御することができる。 The air flowing through the air-cooled clothes is heated by the wearer's body temperature in the process of flowing through the inside, and the temperature gradually rises. When the temperature of the air increases, the cooling effect decreases because the temperature gradient near the body surface decreases. However, if the air is circulated and exhausted before the air is warmed by increasing the air flow, the rise in temperature will be reduced and the cooling effect will be maintained. By utilizing this fact, the cooling effect can be controlled by changing the number of revolutions of the fan.
更に、 空気が流通する過程で徐々に温められると、 空気の温度が、 ファンの近 くでは低く排出口に近づくにつれて高くなり、 空冷式衣服の場所によつて温度に ムラが生じる場合がある。 このような温度のムラを抑える方法として、 ファンが オンのときの回転数を通常よりも上げて空気の流通量を意図的に多くすると共に、 ファンがオンの状態とオフの状態を繰り返すようにしてもよい。 このようにする と、 ファンがオンのときは、 空気は温まる前に高速に流通し排出されるので、 空 冷式衣服全体で均一に高い冷却効果が得られ、 一方、 ファンがオフのときには衣 服の全体で均一に温められる。 そのため、 ファンがオンの状態とオフの状態を操
り返すことによって、 全体として一定の温度に収束する。 そして、 ファンをオン にする時間とオフにする時間の比率を適当に変えることによって、 調節を行 うことができる。 Furthermore, if the air is gradually heated in the course of air circulation, the temperature of the air will be lower near the fan and higher as it approaches the outlet, and the temperature may become uneven depending on the location of the air-cooled clothing. As a method of suppressing such temperature unevenness, the number of rotations when the fan is on is set higher than usual to intentionally increase the air flow, and the fan is repeatedly turned on and off. You may. In this way, when the fan is on, the air circulates at high speed before being warmed up and is discharged, so that a high cooling effect is obtained uniformly throughout the air-cooled garment, while on the other hand when the fan is off the garment is Warm evenly throughout the clothes. Therefore, the fan can be turned on and off. By returning, the temperature converges to a constant value as a whole. The adjustment can be made by appropriately changing the ratio of the time to turn the fan on and the time to turn it off.
また、 本実施形態の空冷式^服は、 高密度綿布を用いているため、 着用者が軽 作業を行って汗をかいても、 その汗は容易に肌に近い方の高密度綿布に吸収され、 あるいはこれを通り抜けて 2枚の高密度綿布の間に入り込む。 この水分は流通路 を流れる空気によって容易に外部に運び出され、 そのことが作業者の更なる発汗 を促し、 発汗による気化熱の吸収によって体が冷やされる。 このため、 作業者は 更に涼しさを感じ、 快適に過ごすことができる。 In addition, since the air-cooled clothing of this embodiment uses high-density cotton cloth, even if the wearer performs light work and sweats, the sweat is easily absorbed by the high-density cotton cloth that is closer to the skin. Or through it and into between two high density cotton cloths. This moisture is easily carried out to the outside by the air flowing through the flow passage, which encourages the worker to further sweat, and the body is cooled by absorbing the heat of vaporization caused by the sweat. Therefore, the worker feels cooler and can spend more comfortably.
上記実施形態は、 発明の技術的範囲内において種々の変更が可能である。 例え ば、 上記実施形態の空冷式衣服では、 図 2 7に示すように、 腕の部分がないタイ プとしたが、 これは一例にすぎず、 腕の部分があるものや、 腕の部分だけ取り外 し可能にしたものも本発明の範囲に含まれることはいうまでもない。 また、 上記 実施形態では、 ファン 4 0 2を背中の下部に設けたが、 ファンの位置もこれに限 定されるものではなく、 用途に合わせて適当な位置に設けることができる。 更に、 ファン 4 0 2によって吸入した空気は、 必ずしも空冷式衣服の全体に行き渡らせ る必要はなく、 用途によっては、 例えば流通路を胸部と背中だけに限定してもよ い。 The above embodiment can be variously modified within the technical scope of the invention. For example, in the air-cooled garment of the above embodiment, as shown in FIG. 27, the type without the arm portion was used. However, this is only an example, and the type having the arm portion or only the arm portion is used. Needless to say, those which can be removed are also included in the scope of the present invention. Further, in the above-described embodiment, the fan 402 is provided at the lower part of the back. However, the position of the fan is not limited to this, and the fan can be provided at an appropriate position according to the application. Further, the air taken in by the fan 402 does not necessarily have to be distributed throughout the air-cooled garment, and depending on the application, for example, the flow passage may be limited to only the chest and the back.
以上説明したように、 上記実施形態では、 人の体の表面近傍における温度勾配 の大きさが涼しさと密接に関連することに着目し、 部屋全体を冷却するのではな く、 人の体の表面の近傍の温度を室温と同程度にするだけで涼しさ、 快適さを得 ることができる。 また、 エアーコンディショナー等に比べると消費電力が極めて 少なくて済むので、 この空冷式衣服が広く普及した場合でも、 社会全体の電力消 費を少なく抑えることができ、 その結果、 現在の化石燃料の消費が減って地球温 暖化の防止にもつながる。 産業上の利用可能性 As described above, in the above embodiment, noting that the magnitude of the temperature gradient in the vicinity of the surface of the human body is closely related to coolness, rather than cooling the entire room, the surface of the human body Cooling and comfort can be obtained simply by making the temperature near the room equal to room temperature. In addition, power consumption is extremely low compared to air conditioners, etc., so even if this air-cooled garment spreads widely, the power consumption of society as a whole can be reduced, resulting in the current consumption of fossil fuels. And reduce global warming. Industrial applicability
以上説明したように、 本発明は、 周囲の空気を体の表面の近傍を流通させ体表 近傍の温度勾配を強制的に大きくすることによつて体の熱を吸収するという原理
に基づいたものであり、 高温で寝苦しい夜などに快適な睡眠を確保するための寝 具、 並びに、 高温の環境下でも快適に過ごすことができる衣服に適用することが できる。
As described above, the present invention is based on the principle that the heat of the body is absorbed by circulating the surrounding air near the surface of the body and forcibly increasing the temperature gradient near the body surface. It can be applied to bedding for ensuring comfortable sleep at night when it is difficult to sleep at high temperatures, and to clothing that can be comfortably used even in a high-temperature environment.