明 細 書 エステルの製造方法 技術分野 Description Ester production method Technical field
本発明は、 塩化ビニル樹脂に使用される可塑剤等のエステルの製造方法に関す る。 背景技術 The present invention relates to a method for producing an ester such as a plasticizer used for a vinyl chloride resin. Background art
従来より、 酸とアルコールをエステル化反応させ、 可塑剤等に使用するエステ ルを製造する方法は広く工業的に行われている。 このエステルの製造法において は、 触媒として硫酸やパラトルエンスルホン酸等の酸触媒や T i、 S n等の有機 金属触媒が一般に用いられている。 そして、 パラトルエンスルホン酸等の酸触媒 を使用する場合は、 比較的低温で反応させることが可能であるが副生成物を多く 生成する等の問題があり、 有機金属触媒を使用すると副生成物の生成は少ないが 反応温度を高くする必要があり、 エネルギーコストが高くなるという問題がある。 このエステル化反応は典型的な平衡反応であり、 目的とするエステルの収率を 上げるために一般には原料アルコールを理論量 (化学量論量) に比べて過剰に使 用し、 エステル化反応に伴い副生する水を連続的に系外に抜き出すことにより製 造する方法が一般的に行われている。 この系外に水を除去する方法としては、 原 料アルコールと水を共沸により留去し、 留出液を冷却した後、 相分離により水の みを分離し、 アルコールを反応器に還流させる方法が採られている。 アルコール と副生する水の共沸点はアルコールの沸点以下であり、 反応初期に常圧もしくは 減圧下で反応を行えば目的の反応温度より低い温度で沸騰状態が続き、 水が共沸 により除去されて滅少するまでの間は反応液の温度が上がらず、 即ち反応速度が 上がらず、 反応に長時間を要するという問題がある。 また、 共沸により蒸発潜熱
を奪われるため、 反応温度を上げるためのエネルギーが無駄に使われるという問 題もある。 Conventionally, a method for producing an ester used as a plasticizer or the like by subjecting an acid and an alcohol to an esterification reaction has been widely industrially performed. In this ester production method, an acid catalyst such as sulfuric acid or paratoluenesulfonic acid or an organic metal catalyst such as Ti or Sn is generally used as a catalyst. When an acid catalyst such as p-toluenesulfonic acid is used, the reaction can be performed at a relatively low temperature, but there is a problem that a large amount of by-products are generated. However, there is a problem that the reaction temperature needs to be raised and the energy cost increases. This esterification reaction is a typical equilibrium reaction, and in order to increase the yield of the desired ester, the starting alcohol is generally used in excess of the stoichiometric amount (stoichiometric amount). It is common practice to produce by-produced water by continuously drawing it out of the system. As a method of removing water outside the system, the raw material alcohol and water are distilled off by azeotropic distillation, the distillate is cooled, then only water is separated by phase separation, and the alcohol is refluxed to the reactor. The method has been adopted. The azeotropic point of alcohol and by-produced water is lower than the boiling point of alcohol.If the reaction is carried out at normal pressure or reduced pressure in the initial stage of the reaction, the boiling state continues at a temperature lower than the target reaction temperature, and water is removed by azeotropy. There is a problem in that the temperature of the reaction solution does not increase until it decreases, that is, the reaction speed does not increase, and the reaction takes a long time. In addition, the latent heat of evaporation Energy is wasted in raising the reaction temperature.
特開昭 5 5— 3 8 3 3 4号公報、 特開平 6— 1 5 7 4 0 5号公報には、 反応末 期の反応速度を速くするため、 還流アルコール中の水分除去のため脱水カラムを 設置する等の方法が開示されている。 しかしこの方法では反応初期の反応速度の 向上は見られず、 また脱水カラムのような特別な設備を必要とする問題がある。 また、 国際公開 WO 9 5 / 2 9 8 8 8号公報にはアルコールと酸の仕込み比を 変更することにより反応時間を短縮する方法が開示されている。 即ち、 アルコ一 ルを理論量より少な目に加え、 その後アルコールの量をモニターしながら段階的 に加えることにより、 反応液の沸点、 即ち反応温度を上げることにより反応速度 を速くする方法が開示されている。 しかし、 この方法でも過剰のアルコールを加 える場合に比べて反応速度が遅くなる等の問題点がある。 発明の開示 Japanese Unexamined Patent Publications Nos. 55-38334 and 615-405 describe a dehydration column for removing water in refluxing alcohol in order to increase the reaction rate at the end of the reaction. The method of setting up a refuge is disclosed. However, this method does not improve the reaction rate in the initial stage of the reaction, and has a problem that special equipment such as a dehydration column is required. International Publication WO95 / 298888 discloses a method for shortening the reaction time by changing the charging ratio of alcohol and acid. That is, a method is disclosed in which the alcohol is added to a smaller amount than the theoretical amount, and then the amount of alcohol is added stepwise while monitoring the amount thereof, thereby increasing the boiling point of the reaction solution, that is, the reaction temperature to increase the reaction rate. I have. However, this method also has problems such as a slower reaction rate than the case where an excess alcohol is added. Disclosure of the invention
本発明の目的は、 有機カルボン酸および またはその無水物と炭素数 4〜 1 8 のアルコールからエステルを製造する方法において、 反応初期の反応速度を上げ て反応時間を短縮し、 かつエネルギーコストが低く経済的に有利な方法を提供す ることにある。 An object of the present invention is to provide a method for producing an ester from an organic carboxylic acid and / or an anhydride thereof and an alcohol having 4 to 18 carbon atoms, to increase the reaction rate in the initial stage of the reaction, shorten the reaction time, and reduce energy cost. It is to provide an economically advantageous method.
本発明は、 有機カルボン酸および Zまたはその無水物と炭素数 4〜1 8のアル コールからエステルを製造する方法において、 0 . 0 2〜5 k g Z c m2 Gの圧力 で反応させることを特徴とする。 さらには本発明は、 該加圧の条件下で反応させ ることに加えて、 原料の炭素数 4〜1 8のアルコールを反応器内の圧力下におけ る沸点ないしはこれより 2 0 *C低い温度範囲として供給することで反応させるこ とを特徴とするエステルの製造方法、 に存する。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。 The present invention provides a method for producing an ester from an organic carboxylic acid and Z or an anhydride thereof with an alcohol having 4 to 18 carbon atoms, wherein the reaction is carried out at a pressure of 0.02 to 5 kg Z cm 2 G. And Further, in the present invention, in addition to the reaction under the pressurized condition, the starting material alcohol having 4 to 18 carbon atoms has a boiling point under the pressure in the reactor or 20 * C lower than that. A method for producing an ester, characterized in that the reaction is performed by supplying the ester within a temperature range. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
本発明において用いられる有機カルボン酸および/またはその無水物としては、 酢酸、 プロピオン酸、 酪酸等の脂肪族モノカルボン酸類および Zまたはその無水 物、 アジピン酸、 セバシン酸、 ォレイン酸、 フマル酸等の脂肪族ジカルボン酸類 および Zまたはその無水物、 フタル酸、 イソフタル酸、 テレフタル酸等の芳香族 ジカルボン酸類および/またはその無水物、 トリメリ ット酸、 ピロメリ ット酸、 ビフエニルテトラカルボン酸等の芳香族ポリカルボン酸類および zまたはその無 水物等が挙げられる。 これらの中でフタル酸、 イソフタル酸、 テレフタル酸、 ト リメリツト酸、 ビフエニルテトラカルボン酸および/またはその無水物が好まし く、 フタル酸および/またはその無水物が最も好ましい。 つまり本発明は、 フタ ル酸等の芳香族ジカルボン酸のジエステルを得る方法として特に好ましい。 Examples of the organic carboxylic acid and / or anhydride thereof used in the present invention include aliphatic monocarboxylic acids such as acetic acid, propionic acid, and butyric acid, and Z or anhydride thereof, adipic acid, sebacic acid, oleic acid, and fumaric acid. Aliphatic dicarboxylic acids and aromatic dicarboxylic acids such as Z or anhydrides thereof, phthalic acid, isophthalic acid, terephthalic acid and / or aromatics such as trimellitic acid, pyromellitic acid, biphenyltetracarboxylic acid and the like Group polycarboxylic acids and z or its anhydride. Of these, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, biphenyltetracarboxylic acid and / or anhydride thereof are preferred, and phthalic acid and / or anhydride thereof are most preferred. That is, the present invention is particularly preferable as a method for obtaining a diester of an aromatic dicarboxylic acid such as phthalic acid.
本発明において用いられる炭素数 4〜 1 8のアルコールとしては、 ブタノール、 へキサノーノレ、 ヘプタノ一ノレ、 n—ォクタノーノレ、 2—ェチノレへキサノースレ、 ノ ニルアルコール、 デシルアルコール、 ラウリルアルコール等の脂肪族 1級アルコ ール類およびそれらの混合物、 ブチノレべンジルアルコール、 クレジルアルコール 等の芳香族 1級アルコール類、 エチレングリコール、 プロピレングリコール、 ブ タンジオール等のグリコール類、 ペンタエリスリ トール等の多価アルコール類等 およびそれらの混合物が挙げられる。 これらの中で炭素数 7〜1 3の脂肪族 1級 アルコール類が好ましく、 2—ェチルへキシルアルコール、 ノニルアルコール、 デシルアルコールが特に好ましい。 アルコールの使用量は、 有機カルボン酸およ び Zまたはその無水物に対して化学量論量からその 2 . 0倍の範囲で使用するの が好ましいが、 工業的にはその 2 . 5倍がより好ましい。 Examples of the alcohol having 4 to 18 carbon atoms used in the present invention include aliphatic primary acids such as butanol, hexanol nole, heptano monole, n-octano nore, 2-ethynole hexanosle, nonyl alcohol, decyl alcohol and lauryl alcohol. Alcohols and mixtures thereof, aromatic primary alcohols such as butynolebenzyl alcohol and cresyl alcohol, glycols such as ethylene glycol, propylene glycol and butanediol, polyhydric alcohols such as pentaerythritol and And mixtures thereof. Among these, aliphatic primary alcohols having 7 to 13 carbon atoms are preferred, and 2-ethylhexyl alcohol, nonyl alcohol, and decyl alcohol are particularly preferred. The amount of the alcohol used is preferably from the stoichiometric amount to 2.0 times the amount of the organic carboxylic acid and Z or its anhydride, but industrially 2.5 times the amount is used. More preferred.
本発明の製造方法においては 0 . 0 2〜5 k g Z c m2Gの圧力で反応させるこ とが必要である。 圧力の好ましい範囲は 0 . 0 3〜2 k g Z c m 2 Gである。 圧力 が 0 . 0 2 k g Z c m2G未満では、 炭素数 4〜 1 8のアルコールと副生する水と の混合物が共沸し易く、 反応に長時間を要する。 また、 本発明においては、 所定
の反応温度における圧力を炭素数 4〜 1 8のアルコールと副生する水との混合物 が呈する蒸気圧以上にすればその目的は達成されるので、 圧力を 5 k g / c m 2 G を超えてまであげても意味がない。 In the production method of the present invention, it is necessary to carry out the reaction at a pressure of 0.02 to 5 kgZcm2G. The preferred range of pressure is from 0.03 to 2 kg Z cm 2 G. If the pressure is less than 0.02 kg Zcm2G, the mixture of alcohol having 4 to 18 carbon atoms and water as a by-product tends to azeotrope, and the reaction takes a long time. In the present invention, the predetermined Since its purpose if the pressure at the reaction temperature of over vapor pressure exhibited by the mixture of water alcohol by-product of 4-1 8 carbon atoms is achieved, until the pressure exceeds a 5 kg / cm 2 G There is no point in giving it.
また本発明では、 反応器內の温度を速やかに所定の反応温度に上昇させる為に、 原料アルコールを反応器内の圧力下における沸点ないしはこれより 2 0で低い温 度範囲まで加熱して供給することが好ましい。 Further, in the present invention, in order to quickly raise the temperature of the reactor に to a predetermined reaction temperature, the raw material alcohol is heated and supplied to a boiling point under the pressure in the reactor or a temperature range lower by 20 than this. Is preferred.
圧力のかけ方は、 反応の初期より、 窒素等の不活性ガスにより圧力を外部から かけることが運転操作性の面から好ましい。 加圧下で反応を行う期間は、 反応開 始から反応率が 9 0 %になるまでの期間、 より好ましくは反応開始から反応率が 8 0 %になるまでの期間が好ましい。 It is preferable that the pressure be applied from the beginning of the reaction from the outside with an inert gas such as nitrogen from the viewpoint of operability. The period during which the reaction is carried out under pressure is preferably a period from the start of the reaction until the reaction rate reaches 90%, more preferably a period from the start of the reaction until the reaction rate reaches 80%.
(なお、 ここで反応率とは、 原料の有機カルボン酸に対するエステルの収率を言 う。 例えば原料有機カルボン酸がフタル酸等の芳香族ジカルボン酸の場合、 カル ボン酸からモノエステルへの反応は比較的迅速且つ殆ど完全に行われることが多 いので、 ここではカルボン酸からジエステルへの反応を示す。 ) (Here, the reaction rate refers to the yield of ester relative to the starting organic carboxylic acid. For example, when the starting organic carboxylic acid is an aromatic dicarboxylic acid such as phthalic acid, the reaction from carboxylic acid to the monoester is performed.) The reaction from a carboxylic acid to a diester is shown here, since is often relatively quick and almost complete.)
エステル化反応は平衡反応であるため、 反応の後半には副生する水分を除去す ることにより、 エステルの収率を上げる必要がある。 従って、 上述した通り、 反 応率が 9 0 %、 好ましくは 8 0。/0になるまでの期間、 本発明で規定するような反 応圧力が 0 . 0 2〜5 k g Z c m 2 Gの範囲となるように、 反応の初期に加圧し、 適当な時期から滅圧を初めて徐々に水分の除去を促進し、 反応率が 9 0 %を越え る反応末期には、 負圧になるようにすることが望ましい。 Since the esterification reaction is an equilibrium reaction, it is necessary to increase the ester yield by removing by-produced water in the second half of the reaction. Therefore, as described above, the reaction rate is 90%, preferably 80. / 0 becomes up period, as reaction pressure as defined in the present invention is zero. 0 2-5 range kg Z cm 2 G, the initial pressurized reaction, Metsu圧from appropriate time It is desirable to gradually promote the removal of water for the first time, and to make the pressure negative at the end of the reaction when the reaction rate exceeds 90%.
本発明の製造方法は無触媒でも行うことができるが、 硫酸、 脂肪族スルホン酸 類、 パラトルエンスルホン酸等の芳香族スルホン酸類等の酸触媒、 テトラブチル チタネート、 テトライソプロピルチタネート等のアルキルチタネート類、 錫テト ラマレエート、 ブチル錫マレエート等の T i、 S n等の有機金属触媒を用いるこ とができる。 これらの中で T i、 S n等の有機金属触媒が好ましく、 アルキルチ タネ一トが最も好ましい。
本発明の製造方法において、 反応温度は加圧によって達成される、 炭素数 4〜 1 8のアルコールと反応で副生する水との常圧における共沸点よりも高い温度と するものであり、 とりわけ 1 2 0〜 2 5 O ^Cの範囲が好ましい。 1 2 0 ¾未満で は反応速度が遅くなる傾向があり、 2 5 0 °Cを超えると反応液が着色したり、 副 生成物ができて可塑剤性能等を阻害する虞がある。 なお本発明の製造方法におい て、 反応温度の好ましい範囲は用いる触媒によって左右されるが、 特に酸触媒を 用いる場合の反応温度の好ましい範囲は 1 2 0〜1 6 0 であり、 無触媒または 有機金属触媒を用いる場合の好ましい範囲は 1 6 0〜2 5 0 ¾、 より好ましい範 囲は 1 8 0〜 2 3 0 である。 Although the production method of the present invention can be carried out without a catalyst, sulfuric acid, aliphatic sulfonic acids, acid catalysts such as aromatic sulfonic acids such as para-toluenesulfonic acid, alkyl titanates such as tetrabutyl titanate and tetraisopropyl titanate, Organometallic catalysts such as Ti and Sn such as tin tetramaleate and butyltin maleate can be used. Of these, organometallic catalysts such as Ti and Sn are preferred, and alkyl titanates are most preferred. In the production method of the present invention, the reaction temperature is a temperature higher than the azeotropic point at normal pressure of the alcohol having 4 to 18 carbon atoms and water produced as a result of the reaction, which is achieved by pressurization. The range from 120 to 25 O ^ C is preferred. If the temperature is less than 120 ° C., the reaction rate tends to be low. If the temperature exceeds 250 ° C., the reaction solution may be colored or a by-product may be formed, which may impair the performance of the plasticizer. In the production method of the present invention, the preferable range of the reaction temperature depends on the catalyst to be used. In particular, when the acid catalyst is used, the preferable range of the reaction temperature is 120 to 160, with no catalyst or organic catalyst. When a metal catalyst is used, a preferred range is 160 to 250 °, and a more preferred range is 180 to 230.
更に本発明のエステル化反応終了後、 過剰のアルコールの留去、 触媒の除去、 中和、 水洗、 活性炭もしくは活性白土による処理、 濾過など公知の方法で精製を 行い、 製品としてのエステルを得ることができる。 実施例 Further, after the esterification reaction of the present invention is completed, purification is performed by a known method such as distillation of excess alcohol, removal of a catalyst, neutralization, washing with water, treatment with activated carbon or activated clay, and filtration to obtain an ester as a product. Can be. Example
以下、 本発明を実施例、 比較例により、 更に詳細に説明するが、 本発明は、 そ の要旨を越えない限り、 以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples as long as the gist is not exceeded.
なお、 以下の実施例は有機カルボン酸として芳香族ジカルボン酸のフタル酸を 使用した例を示した。 このフタル酸の場合、 フタル酸モノエステルへの反応は極 めて迅速且つ完全に行われる。 以下の実施例での反応率は、 フタル酸ジエステル への転化率を示している。 すなわち、 The following examples show examples in which phthalic acid, an aromatic dicarboxylic acid, was used as the organic carboxylic acid. In the case of this phthalic acid, the reaction to the phthalic acid monoester takes place extremely quickly and completely. The conversion in the following examples indicates the conversion to phthalic diester. That is,
反応率 (%) = [ 1 - (酸価から算出したフタル酸モノエステルモル数) / Reaction rate (%) = [1-(moles of phthalic acid monoester calculated from acid value) /
(原料無水フタル酸モル数) ] X 1 0 0 (Raw material phthalic anhydride moles)] X 100
を示すものである。 It shows.
<実施例 1 > <Example 1>
攪拌機、 蒸留塔、 凝縮器、 油水分離器、 アルコール還流ラインを備えた 2リツ
トルの四つ口フラスコをオイルパスで予熱しておき、 窒素ガスで 100 OmmH g (0. 316 k g/c m2G) に加圧した。 140¾以上に加熱溶融させた無水 フタル酸 459 g (3. 1モル) を 35分かけてポンプを用いて仕込み、 同時に 1 70^の 2—ェチルへキサノール 1009 g (7. 75モル) をポンプを用い てフィードし始め、 最初の 807 gを 40分かけて、 残りの 202 gを 40分か けて仕込んだ。 また触媒としてテトライソプロピルヂタネート 0. 63m l (製 品のフタル酸ジォクチルエステルに対して 0. 05重量%) を無水フタル酸の仕 込み終了後に添加した。 2 liters equipped with stirrer, distillation column, condenser, oil-water separator, alcohol reflux line The four-necked flask Torr leave preheated oil path and pressurized to 100 OmmH g (0. 316 kg / cm 2 G) with nitrogen gas. 459 g (3.1 mol) of phthalic anhydride heated and melted to 140 溶 融 or more was charged using a pump over 35 minutes, and at the same time, 1009 g (7.75 mol) of 170 ^ 2-ethylhexanol was pumped. The first 807 g was charged in 40 minutes and the remaining 202 g was charged in 40 minutes. As a catalyst, 0.63 ml of tetraisopropylbutanate (0.05% by weight based on the product octyl phthalate) was added after the completion of the charging of phthalic anhydride.
無水フタル酸および 2—ェチルへキサノールの仕込みを開始した時点 (これを 反応開始点とする。 ) から圧力を 1 O O OmmHgに保持したまま、 2—ェチル へキサノールの還流を続けた (副生する水と 2—ェチルへキサノールは、 油水分 離器で分離し、 水は系外に除去し、 2—ェチルへキサノールは還流ラインからフ ラスコに戻す。 ) 。 反応開始より 40分後より徐々に減圧し、 反応開始後約 60 分 (減圧開始後約 20分) での圧力は約 90 OmmHg (約 0. 184 k gZc m2G) で、 このときの酸価は 37. 5mgKOHZgであった。 また、 反応開始 後 85分で反応器内は負圧となり、 反応率は 92%を越えた。 そして反応液の酸 価が 0. 1 mgKOHZgになった時点 (=反応率99. 92%) で反応を終了 した。 このときの圧力は 55 OmmH g (—0. 276 k g/ c m2G) であり、 最終的にこの反応に要した時間は 1 50分であった。 From the time when the charging of phthalic anhydride and 2-ethylhexanol was started (this is the reaction starting point), the 2-ethylhexanol refluxing was continued while maintaining the pressure at 1 OO mmHg (by-product). Water and 2-ethylhexanol are separated by an oil / water separator, water is removed out of the system, and 2-ethylhexanol is returned to the flask from the reflux line. The pressure was gradually reduced 40 minutes after the start of the reaction, and the pressure at about 60 minutes after the start of the reaction (about 20 minutes after the start of the depressurization) was about 90 OmmHg (about 0.184 kg gZc m 2 G). The titer was 37.5 mg KOHZg. In 85 minutes after the start of the reaction, the pressure inside the reactor became negative, and the reaction rate exceeded 92%. The reaction was terminated when the acid value of the reaction solution reached 0.1 mgKOHZg (= 99.92% conversion). At this time, the pressure was 55 OmmHg (—0.276 kg / cm 2 G), and the time required for the final reaction was 150 minutes.
<実施例 2〉 <Example 2>
実施例 1と同様の装置を用い、 同様の方法で無水フタル酸 459 g、 2—ェチ ルへキサノール 1009 g、 テトライソプロピルチタネート 0. 63 m lを仕込 んだ。 実施例 1と同様反応開始から圧力を 100 OmmHg (0. 316 k gX c m2G) に保持したまま、 35分かけて反応液の温度を 17 から 220¾に 昇温した。 次いで、 反応液の温度を 220でに保持したまま、 真空ポンプで減圧
を開始した。 反応開始後 75分 (減圧開始後 40分) から減圧を継続したまま 8 0分かけて 185^まで降温し、 以後反応終了 (反応液の酸価が 0. lmgKO HZgになった時点 =反応率 99. 92%) までこの温度で保持した。 反応開始 60分後の圧力は 80 OmmH g (0. 053 k g/c m2G) 、 酸価は 40. 1 mgKOHZg、 反応終了時の圧力は 20 OmmHg (- 0. 737 k g/cm 2G) であり、 最終的にこの反応に要した時間は 180分であった。 Using the same apparatus as in Example 1, 459 g of phthalic anhydride, 1009 g of 2-ethylhexanol and 0.63 ml of tetraisopropyl titanate were charged in the same manner. As in Example 1, the temperature of the reaction solution was raised from 17 to 220 ° C. over 35 minutes while maintaining the pressure at 100 OmmHg (0.316 kg × cm 2 G) from the start of the reaction. Then, while maintaining the temperature of the reaction solution at 220, the pressure was reduced with a vacuum pump. Started. From 75 minutes after the start of the reaction (40 minutes after the start of depressurization), the temperature was lowered to 185 ^ over 80 minutes while continuing the depressurization, and the reaction was terminated thereafter. (When the acid value of the reaction solution reached 0.1 mgKO HZg = reaction rate 99.92%) at this temperature. In - (0. 737 kg / cm 2 G) pressure after reaction initiation 60 minutes 80 OmmH g (0. 053 kg / cm 2 G), an acid value of 40. 1 mgKOHZg, the pressure at the end of the reaction 20 OmmHg The final time required for this reaction was 180 minutes.
<比較例 1〉 <Comparative Example 1>
圧力を 70 OmmH g (—0. 079 k g/cm2G) に保持した以外は実施例 1と同様に仕込みを行い、 オイルバスの昇温速度も実施例 1と同様にして、 反応 液を 170 から昇温した。 反応開始後 70分後から 70 OmmH gから更に減 圧しながら反応液の昇温を継続し、 反応開始後 120分後に反応液の温度が 21 0^に到達した。 以後反応液の温度を 21 に保持したまま反応を継続し、 反 応液の酸価が 0. lmgKOHZgになった時点 (=反応率99. 92%) で反 応を終了した。 このときの圧力は 38 OmmH g (—0. 500 k g/c m2G) であり、 最終的にこの反応に要した時間は 210分であった。 The preparation was carried out in the same manner as in Example 1 except that the pressure was maintained at 70 OmmHg (—0.079 kg / cm 2 G). Temperature. After 70 minutes from the start of the reaction, the temperature of the reaction solution was continuously increased while further reducing the pressure from 70 OmmHg, and the temperature of the reaction solution reached 210 に after 120 minutes from the start of the reaction. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 21, and the reaction was terminated when the acid value of the reaction solution reached 0.1 mg KOHZg (= reaction rate of 99.92%). In this case, the pressure 38 is OmmH g (-0. 500 kg / cm 2 G), finally the time required for the reaction was 210 minutes.
<比較例 2 > <Comparative Example 2>
圧力を 70 OmmH g (—0. 079 k g/cm2G) に保持した以外は実施例 1と同様に仕込みを行い、 オイルパスの昇温速度も実施例 1と同様にして、 反応 液を 120でから昇温した。 反応開始後 88分後から 70 OmmH gから更に滅 圧しながら反応液の昇温を継続し、 反応開始後 140分後に反応液の温度が 21 に到達した。 以後反応液の温度を 210^に保持したまま反応を継続し、 反 応液の酸価が 0. lmgKOHZgになった時点 (=反応率 99. 92 %) で反 応を終了した。 このときの圧力は 38 OmmH g (- 0. 500 k g/ c m2G)
であり、 最終的にこの反応に要した時間は 228分であった。 ぐ結果の評価 > Preparation was performed in the same manner as in Example 1 except that the pressure was maintained at 70 OmmHg (−0.079 kg / cm 2 G). Then the temperature was raised. After 88 minutes from the start of the reaction, the temperature of the reaction solution was continuously increased while further reducing the pressure from 70 OmmHg, and the temperature of the reaction solution reached 21 140 minutes after the start of the reaction. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 210 ^, and the reaction was terminated when the acid value of the reaction solution reached 0.1 mg KOHZg (= conversion of 99.92%). The pressure at this time is 38 OmmH g (-0.5 kg / cm 2 G) The final time required for this reaction was 228 minutes. Evaluation of results
実施例 1、 2および比較例 1、 2の温度、 圧力条件からコンピュータシミュレ ーシヨンを用いて、 加熱に必要なエネルギーの計算を行った。 用いたソフトは、 Γ g P ROMS」 (B a r t o n a n d P a n t e l i d e s, 1 994 I m— p e r i a l C o l l e g e o f S i e n c e, From the temperature and pressure conditions of Examples 1 and 2 and Comparative Examples 1 and 2, the energy required for heating was calculated using computer simulation. The software used is Γg P ROMS ”(B a r t o n a n d P a n t e l i d e s, 1 994 Im — p e r i a l C o l l e g e o f S i e n c e,
T e c h n o l o g y a n d e d i c i n e) である。 反応終了に必要な 時間は、 比較例 2を 1 00%とすると、 実施例 1は 6 5 %、 実施例 2は 79 %で めった。 T e c h n o l o g y a n d e d i c i n e). The time required for terminating the reaction was 65% in Example 1 and 79% in Example 2, assuming that Comparative Example 2 was 100%.
この結果から、 従来の方法 (比較例 2) では、 反応に長時間を要する上、 加熱 に必要なエネルギーも多く要することが明らかである。 なお、 実施例 2は必要な エネルギーを節約するための最適化を行った例である。 この場合でも反応時間は, 比較例 1の 85 %であり、 必要なエネルギーは約 70 %となる。 また比較例 2の 79 %であり、 必要なエネルギーは約 60 %となる。 産業上の利用可能性 From this result, it is clear that the conventional method (Comparative Example 2) requires a long time for the reaction and also requires much energy for heating. The second embodiment is an example in which optimization is performed to save necessary energy. Even in this case, the reaction time is 85% of Comparative Example 1, and the required energy is about 70%. It is 79% of Comparative Example 2, and the required energy is about 60%. Industrial applicability
本発明のエステルの製造方法によれば、 従来の方法に比べ反応時間を短縮でき, なおかつエネルギーの削減ができる。
According to the method for producing an ester of the present invention, the reaction time can be reduced and the energy can be reduced as compared with the conventional method.