WO1999038114A1 - Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees - Google Patents

Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees Download PDF

Info

Publication number
WO1999038114A1
WO1999038114A1 PCT/US1998/025134 US9825134W WO9938114A1 WO 1999038114 A1 WO1999038114 A1 WO 1999038114A1 US 9825134 W US9825134 W US 9825134W WO 9938114 A1 WO9938114 A1 WO 9938114A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
power
operably coupled
terminal
portable data
Prior art date
Application number
PCT/US1998/025134
Other languages
English (en)
Inventor
Ahmad H. Atriss
Steven P. Allen
Original Assignee
Motorola Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc. filed Critical Motorola Inc.
Priority to EP98960458A priority Critical patent/EP1163630A4/fr
Priority to AU16043/99A priority patent/AU719445C/en
Publication of WO1999038114A1 publication Critical patent/WO1999038114A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Definitions

  • the invention relates generally to portable data devices and a method for switching between two modes of operation thereof.
  • Data transmission systems are known to include terminal devices (sometimes called readers or exciters) and portable data devices (sometimes called cards or smartcards). It is well understood that today's portable data devices include memory and processor devices require power from the terminal device. Once such a portable device (which may be contactless or contacted/contactless - sometimes referred to as combicards) enters into the excitation field of the terminal device, power and data can thereafter be transferred from the terminal device to the portable data device.
  • portable data devices have been designed using two antenna structures; one for receiving power and a second for receiving/transmitting data. More recently, designs have focused on having a single antenna structure that is designed to receive power and data from the terminal device. (It should be noted that these antenna structures are commonly made of inductive coils, and such single antenna devices are commonly referred to as single coil cards.) Of course, reducing the number of antennas has the effect of introducing related circuit problems and design challenges.
  • the coil in a single coil portable data device, serves as the power and signal reception element through which power and data signaling is delivered to the card.
  • the power extraction and regulation circuitry regulates and delivers power from the coil while allowing the data signal to coexist on top of the regulated power.
  • the regulated power is used by all circuitry on the portable data device.
  • the receiver couples the data signal from the regulated power and transforms it to digital levels that can be further processed by the digital circuitry.
  • the design of a receiver that optimizes power reception while still being able to accurately detect amplitude shift keying (ASK) modulated data can be rather complex.
  • FIG. 1 shows a data transmission system that includes a terminal device and a portable data device, in accordance with the present invention
  • FIG. 2 shows a more detailed view of the portable data device shown in FIG. 1 ;
  • FIG. 3 shows a more detailed diagram of the shunt regulator circuit shown in FIG. 2;
  • FIG. 4 shows a more detailed schematic diagram of a circuit that includes the mode selector shown in FIG. 2
  • FIG. 5 shows a more detailed circuit diagram of the ASK receiver circuit shown in FIG. 2;
  • FIG. 6 shows a more detailed schematic diagram of enhanced coupling circuit shown in FIG. 5;
  • FIG. 7 shows a flow diagram depicting the mode selection operation, in accordance with the present invention.
  • the present invention encompasses a portable data device that includes a single coil for receiving both power and data from a terminal device.
  • the portable data device further includes a power rectifier and a shunt regulator circuit, which act in concert to extract power from signals emitted by the terminal device.
  • An amplitude shift keyed (ASK) data receiver is also included on the card to receive transmitted data signals and produce demodulated data.
  • a mode selector is employed for switching between the power extraction mode of operation and the data mode of operation.
  • FIG. 1 shows a data transmission system 100 that includes a terminal device 101 and a portable data device 102, in accordance with the present invention.
  • Terminal 101 includes a transmission structure 104, which consists of a single coil for transmitting both power and data. Power and data is transmitted using a signal that is partially modulated with data, typically with a modulation index of 10%. A partially modulated signal provides an uninterrupted power source that is required by the more sophisticated portable data devices, or smart cards, that use microprocessors.
  • the card 102 includes a single coil 106 for receiving power signals and data signals from the terminal 101.
  • a power extractor 108 is employed to extract power for use by the analog and digital circuitry employed by the card, as later described.
  • a data receiver 110 is used to receive and demodulate the data signals transmitted from the terminal 101. Digital processor 110 is used to manipulate the demodulated data and perform various functions thereon.
  • FIG. 2 shows a more detailed diagram of the portable data device 102 shown in FIG. 1.
  • a shunt device 201 placed across the single coil 106, is controlled by a mode selector 203, as later described.
  • the received signals are inputted to rectifier 205 to produce a rectified high voltage (Vdd) 207 and a rectified low voltage (Vss) 209.
  • a shunt regulator circuit 211 which outputs a shunt control signal 213 as later described, is also employed by the card 102, in accordance with the invention.
  • ASK amplitude shift keyed
  • FIG. 3 shows a more detailed block diagram of the shunt regulator circuit 211 shown in FIG. 2.
  • the shunt regulator circuit 211 consists of a reference voltage generator 302 and a differential comparison circuit 304.
  • the reference voltage generator 302 generates a reference voltage for each of the corresponding nodes, Np and Nn.
  • the voltage on node Np is referenced to Vdd and offset from Vdd to a lower potential value by a fixed amount.
  • This offset voltage is set to one PMOS threshold voltage by using a PMOS device in a diode equivalent configuration (i.e., gate connected to the drain).
  • the voltage on node Nn is referenced to Vss and offset from Vss to a higher value by a fixed amount.
  • This offset voltage is set to one NMOS threshold voltage by using a NMOS device in a diode equivalent configuration (i.e., gate connected to the drain).
  • a NMOS device in a diode equivalent configuration (i.e., gate connected to the drain).
  • the potential between Vss and Vdd is below its regulated value
  • the potential on Nn is higher than the potential on Np and the output of the comparison circuit is low.
  • Vdd rises in response to receiving more power
  • Np also rises by the same amount.
  • Vss goes lower, in response to receiving more power, Nn also goes lower by the same amount. This phenomenon is used to effectively determine when the power is at an acceptable level, while still maintaining a level of receive sensitivity to accurately detect data, in accordance with the invention.
  • the differential comparison signal 213 begins to rise.
  • the output level of differential comparison signal 213 rises, it turns on the shunt device 201 , which in turn shunts a portion of the received power across the coil 106.
  • the gain of the differential comparison circuit is kept low so that it does not overdrive the NMOS shunt device.
  • the shunt device is of the 6
  • NMOS type on a P-substrate which results in a more efficient structure without any additional semiconductor wells that can potentially cause a fatal condition commonly referred to as "latch-up.”
  • the potential difference between Vdd and Vss (and correspondingly between Np and Nn) becomes larger.
  • the larger potential between Np and Nn results in the comparison circuit 304 providing more drive to the shunt device 201 .
  • the increased drive results in element 201 shunting most of the increased power across the coil, thus maintaining the rectified voltage within the operational range of the smart card chip.
  • the reference voltage generator 302 develops a differential pair of voltage references (i.e., on nodes Np and Nn) to enhance the overall noise discrimination properties of the voltage regulator.
  • these two reference voltages are generated using similar techniques so that noise coupled onto them has the same characteristics, and is therefor seen as so-called "common mode" by the differential comparison circuit 304.
  • the differential comparison circuit 304 is designed to have a high common mode rejection capability and therefore does not react to any common mode signals.
  • FIG. 4 shows a more detailed view of the mode selector 203, as well as the shunt device 201 , shown in FIG. 2.
  • a time constant is derived from a resistive element 401 and the gate capacitance of the shunt device 201. This time constant determines the delay characteristics between the input of the mode selector 203 and its output.
  • switch 403 When switch 403 is open, as shown, the time constant serves to delay any change in voltage from taking immediate effect at the gate of the shunt device 201.
  • This mode is called the low dynamic mode or data receive mode, and accounts for why the simplified receiver configuration can effectively detect data on top of the received power signal, according to the invention, as next described.
  • a data modulated power signal received from the terminal device 101 (shown in FIG. 1 ), results in a rectified DC power signal that has a differential data component.
  • the differential data component consists of a signal that changes in opposing directions between nodes Vdd and Vss. If the received power signal increases in amplitude, in response to a modulated logic "1 " being transmitted, the differential data component on Vdd and Vss causes Vdd and Vss to diverge from each other. Conversely, when the received power signal is reduced in amplitude, in response to a modulated logic "0", Vdd and Vss converge toward each other.
  • the resident processor e.g., microprocessor or microcontroller, not shown
  • This higher impedance path selection results in a delay of the differential comparison signal 213 being applied to the shunt device 201.
  • This delays the shunt device from responding and eliminating the amplitude change on Vdd and Vss, thereby allowing the data to exist on Vdd and Vss during and shortly after data transitions.
  • the drive to the shunt device returns to the same potential as the differential comparison signal 213 (i.e., after the delay as determined by the time constant).
  • resistor 405 resolves an initialization condition that occurs when the portable data device 102 first enters the excitation field from the terminal device 101.
  • the condition occurs as the rectified voltage between Vdd and Vss begins to build, but is still below the operational level of the differential comparison circuit 304. Under this condition, no drive is being supplied from the differential comparison circuit 304, and thus, the only drive at the output of the mode selector 203 is through resistor 405.
  • the drive through resistor 405 keeps shunt device 201 off until the rectified voltage is sufficient for the differential comparison circuit to drive the mode selector circuit.
  • FIG. 5 shows a more detailed view of the receiver 215 shown in FIG. 2, in accordance with the invention.
  • the ASK receiver consists of an enhanced coupling circuit 502, an intermediate amplification stage 504, a signal centering circuit 506 and a high-gain, noise tolerant amplifier 508.
  • the enhanced signal coupling circuit 502 couples the differential data signal from Vdd and Vss onto nodes l and l N B
  • the intermediate amplification stage 504, and the signal centering circuit 506, amplifies and re-centers the differential data signal about a common reference voltage.
  • the final amplifier 508 is a high-gain stage capable of boosting the data signal to digital y levels.
  • amplifier 508 provides a data-dependent hysteresis with respect to the re-centered differential input.
  • the hysteresis characteristic provides some level of noise immunity and additionally serves to maintain a constant digital output level during long periods where there are no data transitions.
  • FIG. 6 shows a more detailed view of the enhanced coupling circuit 502 shown in FIG. 5. As shown, capacitors C b couple the differential data
  • DC coupling component 2 * (R2 - Rl * ( ⁇ Vdd + ⁇ Vss)
  • FIG. 7 shows a data flow diagram 700 depicting operation of the mode selection method of the present invention.
  • the power signal that is received by the card is rectified (704).
  • the two reference voltages Vdd and Vss are generated (706) and compared (708) to produce a differential comparison signal (213 shown in FIG. 2).
  • the rectified power signal is then regulated (710) to arrive at a stable operating voltage level (e.g., 3 volts).
  • This mode of power regulation is referred to herein as the power extraction or high dynamic mode.
  • This regulation step continues until it is determined (712) that the microprocessor is being powered by a stable operating voltage.
  • the processor Upon stabilization, the processor then completes a majority of its digital operations in preparation for receiving data (713).
  • the microprocessor then enters (714) the data mode, and is thereafter able to exchange data with the terminal device 101 shown in FIG. 1.
  • the microprocessor sends a switch control signal 214 to the mode selector circuit 203 (both shown in FIG. 2) to open the switch 403 (shown in FIG. 4).
  • the regulator enters (718) the data receive mode, referred to herein as the low dynamic mode.
  • the circuits presented in FIG.s 1 through 6 offer a unique but simple solution to the problems of effective power regulation and noise isolation for a single coil portable data device.
  • power regulation is achieved through a noise discriminating regulator that supports two modes of operation.
  • a first mode which is highly dynamic
  • the portable data device conducts the majority of its digital operations so that power fluctuations caused by turning on and off large digital functions (and the corresponding switching noise caused by these functions) is effectively eliminated.
  • a second mode which has a slower response time
  • both data and noise are allowed to coexist on Vdd and Vss.
  • the portable data device curtails most of its digital operations while in this mode so that noise produced by turning on and off large digital functions (along with their associated switching noise) does not adversely affect the receiver.
  • this shunt regulator provides two reference voltages having similar characteristics, so that noise is seen and rejected as common mode at the inputs to the comparator circuit.
  • a unique coupling arrangement is provided that maximizes the amount of both AC and DC signal coupling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Cette invention concerne un dispositif portable (102) de stockage de données, lequel comprend une bobine unique (106) qui lui permet de recevoir tant une alimentation électrique que des données depuis un terminal (101). Ce dispositif comprend un redresseur d'alimentation (205) ainsi qu'un récepteur de données ASK (215). Un circuit régulateur parallèle (211) est couplé entre le redresseur d'alimentation (205) et le récepteur de données ASK (215), et permet de commander un sélecteur de mode (203). Le sélecteur de mode (203) assure la commutation entre un mode de fonctionnement assurant l'alimentation et un mode de fonctionnement où l'on échange des données.
PCT/US1998/025134 1998-01-23 1998-11-24 Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees WO1999038114A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98960458A EP1163630A4 (fr) 1998-01-23 1998-11-24 Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees
AU16043/99A AU719445C (en) 1998-01-23 1998-11-24 Portable data device and method of switching between a power and data mode of operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1239298A 1998-01-23 1998-01-23
US09/012,392 1998-01-23

Publications (1)

Publication Number Publication Date
WO1999038114A1 true WO1999038114A1 (fr) 1999-07-29

Family

ID=21754758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/025134 WO1999038114A1 (fr) 1998-01-23 1998-11-24 Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees

Country Status (2)

Country Link
EP (1) EP1163630A4 (fr)
WO (1) WO1999038114A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087333A2 (fr) * 1999-09-22 2001-03-28 Matsushita Electronics Corporation Carte à puce sans contact pour éviter des erreurs de recouvrement de données lors de la démodulation d'une onde porteuse modulée en amplitude
US6993609B2 (en) 2001-09-17 2006-01-31 Canon Kabushiki Kaisha Method for controlling peripheral device, program for executing same method, storage device storing same program, and computer, peripheral device and system for executing same method
WO2019074690A1 (fr) * 2017-10-10 2019-04-18 Tyco Fire & Security Gmbh Systèmes et procédés d'exploitation d'étiquettes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308968A (en) * 1990-03-13 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card which actively attenuates its resonance circuit as it receives data
US5326965A (en) * 1991-07-24 1994-07-05 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card and method of initializing same
US5652423A (en) * 1994-06-21 1997-07-29 Sony Chemicals Corporation Non-contacting RF-ID card for wide voltage range input
US5801372A (en) * 1994-10-06 1998-09-01 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card with antenna switching circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308968A (en) * 1990-03-13 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card which actively attenuates its resonance circuit as it receives data
US5326965A (en) * 1991-07-24 1994-07-05 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card and method of initializing same
US5652423A (en) * 1994-06-21 1997-07-29 Sony Chemicals Corporation Non-contacting RF-ID card for wide voltage range input
US5804811A (en) * 1994-06-21 1998-09-08 Sony Chemicals Corporation Non-contacting RF-ID card for wide voltage range input
US5801372A (en) * 1994-10-06 1998-09-01 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card with antenna switching circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1163630A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087333A2 (fr) * 1999-09-22 2001-03-28 Matsushita Electronics Corporation Carte à puce sans contact pour éviter des erreurs de recouvrement de données lors de la démodulation d'une onde porteuse modulée en amplitude
EP1087333A3 (fr) * 1999-09-22 2002-09-04 Matsushita Electric Industrial Co., Ltd. Carte à puce sans contact pour éviter des erreurs de recouvrement de données lors de la démodulation d'une onde porteuse modulée en amplitude
US6907088B1 (en) 1999-09-22 2005-06-14 Matsushita Electric Industrial Co., Ltd. Contactless IC card for preventing incorrect data recovery in demodulation of an amplitude-modulated carrier wave
US6993609B2 (en) 2001-09-17 2006-01-31 Canon Kabushiki Kaisha Method for controlling peripheral device, program for executing same method, storage device storing same program, and computer, peripheral device and system for executing same method
WO2019074690A1 (fr) * 2017-10-10 2019-04-18 Tyco Fire & Security Gmbh Systèmes et procédés d'exploitation d'étiquettes
US11176335B2 (en) 2017-10-10 2021-11-16 Sensormatic Electronics, LLC Systems and methods for operating a tag

Also Published As

Publication number Publication date
AU719445B2 (en) 2000-05-11
EP1163630A1 (fr) 2001-12-19
EP1163630A4 (fr) 2002-07-31
AU1604399A (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP4854604B2 (ja) 半導体集積回路、それを搭載したカードおよびその動作方法
EP0993652B1 (fr) Porteuse de donnees possedant des moyens de redressement et des moyens ameliores de limitation de tension
US8635472B2 (en) Semiconductor integrated circuit device and IC card using the same
JP5183800B2 (ja) 半導体集積回路装置およびそれを実装したicカード
US7003680B2 (en) Contactless apparatus and card-type device having clock rectifier that is independent of power rectifier and demodulator with RC time constant based on selectable resistor
US7876150B2 (en) ASK demodulator, communication module, communication device, and ASK demodulation method
KR19990082448A (ko) 단말기와 휴대 장치간의 접촉 또는 비접촉 통신에 의한 데이터교환 시스템
JP4574683B2 (ja) 信号抽出回路
US6323728B1 (en) Data carrier for the contactless reception of amplitude-modulated signals
CN101019308A (zh) 用于调幅信号的解调器
US20080237354A1 (en) Semiconductor integrated circuit device
US6659352B1 (en) Semiconductor integrated circuit, a contactless information medium having the semiconductor integrated circuit, and a method of driving the semiconductor integrated circuit
US6213402B1 (en) Data carrier for contactless reception of data and energy, and a method of operating such a data carrier
US6474558B1 (en) Data carrier for operation with and without contacts
US6307428B1 (en) Method for ASK demodulation, and ASK demodulator
KR20010023401A (ko) 휴대용 데이타 장치의 에너지 변동을 감소시키기 위한장치 및 방법
US9544043B2 (en) Electronic circuit arrangement for receiving low frequency electro-magnetic waves with an adjustable attenuator element
WO1999038114A1 (fr) Dispositif portable de stockage de donnees et procede de commutation entre un mode de fonctionnement alimentation et un mode de fonctionnement donnees
US6262903B1 (en) Direct-current power supply circuit having control sections with at least one control section having priority over another control section
AU719445C (en) Portable data device and method of switching between a power and data mode of operation
JP4022401B2 (ja) Icチップおよびicカード
US6581842B2 (en) Data carrier with regulation of the power consumption
US6828853B2 (en) Wide dynamic range demodulator for smart cards or contactless tickets
JP2006501553A (ja) 非接触データキャリア
US20050133603A1 (en) Integrated circuit comprising a clock generator, a chip card comprising one such integrated circuit and the associated clock generation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998960458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 16043/99

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWG Wipo information: grant in national office

Ref document number: 16043/99

Country of ref document: AU

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1998960458

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998960458

Country of ref document: EP