WO1999035727A1 - Verfahren zum aufladen von akkumulatoren und akkumulator und ladegerät zur durchführung des verfahrens - Google Patents

Verfahren zum aufladen von akkumulatoren und akkumulator und ladegerät zur durchführung des verfahrens Download PDF

Info

Publication number
WO1999035727A1
WO1999035727A1 PCT/EP1999/000029 EP9900029W WO9935727A1 WO 1999035727 A1 WO1999035727 A1 WO 1999035727A1 EP 9900029 W EP9900029 W EP 9900029W WO 9935727 A1 WO9935727 A1 WO 9935727A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
charging
charging station
accumulator
battery
Prior art date
Application number
PCT/EP1999/000029
Other languages
English (en)
French (fr)
Inventor
Frank Steder
Norbert Glappa
Original Assignee
Matsushita Electronic Components (Europe) Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronic Components (Europe) Gmbh filed Critical Matsushita Electronic Components (Europe) Gmbh
Priority to AU24199/99A priority Critical patent/AU2419999A/en
Priority to DE19980017T priority patent/DE19980017D2/de
Publication of WO1999035727A1 publication Critical patent/WO1999035727A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries

Definitions

  • the invention relates to a method for charging accumulators in a charging station and to an accumulator and a charging station for carrying out the method.
  • Accumulators are devices for storing electrical energy in the form of chemical energy, which can be removed again as electrical energy after some time.
  • Accumulators (hereinafter referred to as accumulators) are galvanic elements for generating electrical energy that can be fully recharged after being discharged by a current directed in the opposite direction to the discharge current. All of the reactions that occur during discharge can be reversed by reversing the polarity of the electrodes, which means that in practice, batteries generally have a lifespan of more than 1,000 charging cycles.
  • Nickel-cadmium or nickel-metal hydride batteries are predominantly used for electrically operated devices such as drills.
  • the theoretically unlimited rechargeability of a rechargeable battery is quite limited, since chemical changes or electrolyte losses occur after a number of charge cycles, especially if the charging processes are interrupted more often before fully recharging or the cells are overcharged.
  • the battery types also differ in the number of cells, their capacity, the power density and other parameters that must be taken into account when charging.
  • CONFIRMATION COPY Chargers for batteries are available in a wide variety of designs, especially as quick chargers.
  • the problem with the previously known devices, however, is that the charging process is often inadequately matched to the type of battery to be charged, and the state of charge of the batteries can be different at the start of charging.
  • Battery-powered 'equipment is used under conditions that do not allow a careful attitude and observance of loading conditions, such as etc on construction sites ..
  • another charger must be used either for everyone in use battery type, or a universal charger is used for several battery types of different technology, number of cells and capacity, which, however, cannot guarantee optimal charging of the different battery types.
  • Another object of the invention is to present a battery that can be used in this method and a corresponding charging station.
  • a method for charging batteries with a charging station which is characterized in that before, during and / or after the charging process, data is exchanged between the charging station and the battery, in which a read / write device of the charging station has data with exchanges a readable / readable data carrier of the accumulator.
  • a writable / readable data carrier of the rechargeable battery is preferably read from the charging station before the charging process begins, which provides the charging station with information about the technology, the number of cells, the capacity and the remaining charge of the rechargeable battery.
  • the charging station can be used to optimally charge the battery Determine the required parameters from this information and control the charging process accordingly.
  • information about, for example, the number of charging processes can be stored in the writable area of the writable / readable data carrier of the battery.
  • the data exchange in the method according to the invention preferably takes place without contact. This ensures that under difficult operating conditions, such as on construction sites where heavy contamination of the tools used can often not be avoided, a problem-free connection between charging station and battery can still be established.
  • the energy required to transmit the data from the readable / writable data carrier to the charging station can be supplied externally to the data carrier, preferably from the charging station and without contact. This means that the battery is not charged with the energy required for data transmission and data is only sent if it can also be read by the charging station.
  • the energy flow between the charging station and the data carrier of the rechargeable battery is carried out by electromagnetic waves in the radio frequency range, preferably at approximately 125 kHz.
  • the data exchange takes place by modulating the frequency of the electromagnetic waves that are used for the energy flow.
  • the data exchange can take place bidirectionally, so that both data can be transmitted from the charging station to the battery and the battery data to the charging station.
  • the data transmitted from the rechargeable battery to the charging station preferably relate to the number of cells in the rechargeable battery, the capacity of the rechargeable battery, the number of completed charging cycles and the number of charging cycles terminated before full charging has been achieved.
  • others can accumulator-specific data are transmitted, such as the serial number of the battery, its date of manufacture, etc. This makes it possible to evaluate statistical data during charging. Old and potentially failing batteries can be recognized and replaced in good time. All batteries in circulation can be used evenly or, in the event of a warranty claim, well-founded statements about the previous use of the battery can be made.
  • a rechargeable battery is supplied to a charging station so that it can interact with the rechargeable battery, be it through electrical contacts or in a contactless way through electromagnetic waves
  • the reader / writer of the charging station first reads the information relevant to the charging process, in particular about the battery technology, the number of cells and the capacity of the battery from the readable / writable data carrier of the battery.
  • further information can be read from the data carrier, for example the number of charging cycles completed to date and the number of charging cycles previously terminated prematurely.
  • Information can also be stored on the data carrier as to whether the previous charging cycle has been completed or not. This can be done with a marker.
  • the reading device of the charging station reads a set marker on the data carrier
  • the number of incomplete charging cycles is increased by 1 and the marker is deleted.
  • a marker for incomplete loading is set again. Energy is then supplied to the battery, in accordance with the optimal charging parameters determined from the read data. If the charging process is completed, the previously set marker is deleted and the counter of the completed charging processes is increased by one. If the charging process is interrupted prematurely, the marker remains set, the counter of the completely completed charging processes is not increased. The set markers are recognized during the next charging cycle and the number of incompletely completed charging cycles is increased by one.
  • the method according to the invention has many advantages over the previous method. First, the optimal charging of different types of batteries is made possible with one and the same charger. It is also possible to determine statistical data on the frequency of charging, operating time, remaining charge, service life etc. of each battery and to read and process it via an interface belonging to the charging station.
  • an accumulator for carrying out the method described above is presented according to the invention.
  • the accumulator is characterized in that it is connected to a writable / readable data carrier.
  • This data carrier can preferably be written / read by a write / read device without contact.
  • the data carrier is preferably connected to an antenna.
  • the battery according to the invention can therefore transmit all the data necessary for carrying out the method to a read / write device, which is preferably arranged in the charger.
  • the data carrier of the rechargeable battery obtains its energy required for storing and transmitting data preferably not from the rechargeable battery but from the connection to the charger, for example from the electromagnetic radiation received in the case of contactless Communication.
  • the data carrier therefore does not burden the battery with its energy requirements.
  • the read / write data carrier has non-changeable, read-only data, data that can be changed during the loading process, that is to say memory areas that can be written to during the loading process, and data areas that can be written to but not during of the charging process.
  • This ensures that certain basic data that do not change are protected.
  • This can be, for example, information about the battery technology, the number of cells, the capacity, but also about the serial number or the date of manufacture of the battery.
  • the data that can be changed during the charging process can relate, for example, to the number of charging cycles that have been completed and the number of charging cycles that have not been completed, or can also have a marker function with which information about the charging process that was previously carried out can be obtained in later charging processes.
  • Writable / readable data carriers are known as chips per se and are used, for example, as identification cards, electronic keys, etc.
  • the batteries according to the invention are provided with a corresponding chip which can be attached to or in the device in a manner known per se, for example by gluing, Welding or similar measures. If the data is transferred from the memory without contact, the chip can preferably be integrated into a plastic carrier, which is arranged in a safe place inside the device and is connected to an antenna.
  • a charging station for carrying out the method described above is also presented according to the invention, which is characterized in that the charging station has a read / write device for reading and writing data on read / write data carriers.
  • the information on the battery according to the invention can be read out and the changeable information can be changed.
  • This is preferably done without contact, and the energy requirement of the data carrier of the battery can also be covered without contact.
  • a transmitter that emits electromagnetic waves in particular in the radio wave range, preferably at a frequency around 125 kHz.
  • a reader / writer with filters, antenna and an interface connected to an external power supply.
  • the interface is also connected to the charger's microcontroller, which can also be used to read information from the charger for further processing. All components of the charger are usually firmly mounted on a base and fully or partially provided with a housing.
  • the energy is preferably transmitted by radio waves, the information being transmitted by modulating the carrier frequency of the radio waves.
  • the range of the electromagnetic waves should be less than 5 cm.
  • the direction of information flow is bi-directional. If a battery is inserted into the charger, it can read the charge-relevant data from the data carrier of the battery and control the charging process accordingly.
  • FIG. 1 schematically shows a charging station according to the invention and an accumulator according to the invention.
  • the charging station 1 has a read / write device 2 which is connected to an antenna 3.
  • the charging station 1 is connected to the mains via the cable 4.
  • An accumulator 5 has accumulator cells 6 and a readable / writable data carrier 7.
  • the data carrier 7 is connected to the antenna 8.
  • the charging station 1 transmits 3 radio waves with a frequency of 125 kHz via the transmitting and receiving antenna.
  • the range of the electromagnetic radiation is about 5 cm.
  • the accumulator 5 with its transmitting and receiving antenna 8 is brought into the area of the radio waves emitted by the charging station, the data storage 7 is first supplied with energy by the radio waves. It sends characteristic data via the antenna 8 to the read / write device of the charging station 1.
  • data are transmitted that relate to the battery technology, the number of cells in the battery, the capacity, the serial number, the date of manufacture, the remaining voltage and the number of charging processes which have been completed completely or incompletely to date.
  • the data that are read by the reading device 2 are processed in the microprocessor 9 of the charging station 1.
  • the interface terminal 10 can be read via the interface terminal 10 and further processed with external computers. For example, a statistical analysis of the number of completed and prematurely terminated charging processes, manufacturing data, etc. can be carried out. On this For example, the remaining service life of the accumulators to be expected can be determined.
  • the microprocessor 9 of the charging station 1 determines the optimal charging parameters of the battery in question from predetermined characteristic data. The battery is then charged according to the determined charge parameters.
  • the data memory 7 of the accumulator 5 contains three different memory areas. Data is stored in a memory area that cannot be changed during the entire life of the battery. This is, in particular, data relating to the battery technology, the number of cells in the battery and the capacity. A further storage area of the accumulator can be changed by the read / write device of the charger 1 during the charging process. This is, in particular, information about the number of fully completed and prematurely terminated charging processes as well as a storage space in which a marker can be set.
  • Another memory area of the data memory 7 cannot be changed during the loading process. However, it can be changed by the user of the battery, for example in order to carry out internal numbering of the batteries.
  • the change in this Storage area is done via data transmission devices that can be connected to a computer.
  • the data can also be changed directly via the charger, which for this purpose is connected via an interface to a computer that is equipped with a special service program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Aufladen von Akkumulatoren mit einer Ladestation, das dadurch gekennzeichnet ist, dass vor, während und/oder nach dem Ladevorgang ein Datenaustausch zwischen Ladestation und Akkumulator erfolgt, bei dem ein Schreib-/Lesegerät der Ladestation Daten mit einem schreib-/lesbaren Datenträger des Akkumulators austauscht und einen in der Abbildung dargestellten Akkumulator sowie eine in der Abbildung dargestellte Ladestation zur Durchführung dieses Verfahrens.

Description

Verfahren zum Aufladen von Akkumulatoren und Akkumulator und Ladegerät zur Durchführung des Verfahrens.
Die Erfindung betrifft ein Verfahren zum Aufladen von Akkumulatoren in einer Ladestation sowie einen Akkumulator und eine Ladestation zur Durchführung des Verfahrens.
Akkumulatoren sind Vorrichtungen zur Speicherung von elektrischer Energie in Form von chemischer Energie, die nach einiger Zeit wieder als elektrische Energie entnommen werden kann. Akkumulatoren (im folgenden kurz Akkus genannt) sind galvanische Elemente zur Erzeugung elektrischer Energie, die nach Entladung durch einen dem Entladungsstrom entgegengesetzt gerichteten Strom wieder voll aufgeladen werden können. Alle bei der Entladung ablaufenden - Reaktionen lassen sich durch Umpolung der Elektroden wieder rückgängig machen, daß heißt also, daß Akkus in der Praxis in der Regel eine Lebensdauer von mehr als 1.000 Ladezyklen aufweisen.
In der Praxis werden unterschiedliche Akkutypen eingesetzt. So gibt es Blei- Säure-, Nickel-Cadmium-, Nickel-Metallhydrid-, Lithium-Ionen-Akkus und noch weitere Akkutypen. Für elektrisch betriebene Geräte wie beispielsweise Bohrmaschinen werden heute überwiegend Nickel-Cadmium oder Nickel- Metall hydrid-Akkus eingesetzt. Die theoretisch nicht beschränkte Wiederaufladbarkeit eines Akkus ist allerdings in der Praxis durchaus begrenzt, da nach einer Reihe von Ladungszyklen chemische Veränderungen oder Elektrolytverluste eintreten, insbesondere, wenn die Ladevorgänge häufiger vor vollständiger Wiederaufladung abgebrochen oder die Zellen überladen werden.
Neben unterschiedlicher Akkutechnologie unterscheiden sich die Akkutypen auch durch die Zellenzahl, ihre Kapazität, die Leistungsdichte und weitere Parameter, die beim Aufladen berücksichtigt werden müssen.
BESTATIGUNGSKOPIE Ladegeräte für Akkus werden in den verschiedensten Ausführungen angeboten, insbesondere auch als Schnelladegeräte. Problematisch bei den bisher bekannten Geräten ist allerdings, daß der Ladevorgang häufig unzureichend auf den zu ladenden Akkutyp abgestimmt ist, und der Ladezustand der Akkus bei Ladebeginn unterschiedlich sein kann. Häufig werden akkubetriebene 'Geräte unter Bedingungen eingesetzt, die eine sorgfältige Einstellung und Beachtung der Ladebedingungen nicht ermöglichen, wie beispielsweise auf Baustellen etc.. Außerdem ist häufig problematisch, daß entweder für jeden im Einsatz befindlichen Akkutyp ein anderes Ladegerät verwendet werden muß, oder ein Universalladegerät für mehrere Akkutypen unterschiedlicher Technologie, Zellenzahl und Kapazität eingesetzt wird, das jedoch keine optimale Ladung der unterschiedlichen Akkutypen gewährleisten kann.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zum Aufladen von Akkumulatoren vorzustellen, das auch unter ungünstigen Bedingungen optimale Ladevoraussetzungen für Akkumulatoren unterschiedlicher Technologie ermöglicht. Eine weitere Aufgabe der Erfindung ist die Vorstellung eines bei diesem Verfahren einsetzbaren Akkus sowie einer entsprechenden Ladestation.
Zur Lösung dieser Aufgabe wird ein Verfahren zum Aufladen von Akkumulatoren mit einer Ladestation vorgeschlagen, das dadurch gekennzeichnet ist, daß vor, während und/oder nach dem Ladevorgang ein Datenaustausch zwischen Ladestation und Akkumulator erfolgt, bei dem ein Schreib-/Lesegerät der Ladestation Daten mit einem schreib-/lesbaren Datenträger des Akkumulators austauscht.
Bei dem erfindungsgemäßen Verfahren wird vorzugsweise vor Beginn des Ladevorgangs von der Ladestation ein schrei b-/lesbarer Datenträger des Akkumulators gelesen, der der Ladestation Informationen über die Technologie, die Zellenzahl, die Kapazität sowie die Restladung des Akkus liefert. Die Ladestation kann die für die optimale Ladung des Akkumulators erforderlichen Parameter aus diesen Informationen ermitteln und den Ladevorgang entsprechend steuern. Außerdem können im beschreibbaren Bereich des schreib-/lesbaren Datenträgers des Akkus Informationen über beispielsweise die Anzahl der Ladevorgänge abgespeichert werden.
Vorzugsweise erfolgt der Datenaustausch bei dem erfindungsgemäßen Verfahren berührungslos. Damit ist sichergestellt, daß sich unter schwierigen Einsatzbedingungen, wie beispielsweise auf Baustellen, bei denen sich eine starke Verschmutzung der verwendeten Werkzeuge oft nicht vermeiden läßt, dennoch eine problemlose Verbindung zwischen Ladestation und Akku herstellen läßt.
Die zur Übermittlung der Daten vom les-/schreibbaren Datenträger zur Ladestation notwendige Energie kann dem Datenträger extern zugeführt werden, vorzugsweise von der Ladestation und berührungslos. Dadurch wird der Akku nicht mit dem Energiebedarf für die Datenübermittlung belastet und es werden nur dann Daten gesendet, wenn sie auch von der Ladestation gelesen werden können.
In einem bevorzugten Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird der Energiefluß zwischen Ladestation und Datenträger des Akkus durch elektromagnetische Wellen im Radiofrequenzbereich, vorzugsweise bei etwa 125 kHz, durchgeführt. Der Datenaustausch erfolgt durch eine Modulation der Frequenz der elektromagnetischen Wellen, die für den Energiefluß verwendet werden. Der Datenaustausch kann bidirektional erfolgen, so daß sowohl Daten von der Ladestation an den Akku übermittelt werden können, als auch die Akkumulatordaten an die Ladestation.
Die vom Akkumulator an die Ladestation übermittelten Daten beziehen sich vorzugsweise auf die Zellenzahl des Akkus, die Kapazität des Akkus, die Anzahl der vollendeten sowie die Anzahl der vor Erreichen der vollständigen Ladung abgebrochenen Ladezyklen. Außerdem können noch weitere akkumulatorspezifische Daten übermittelt werden, wie beispielsweise die Seriennummer des Akkus, sein Herstellungsdatum usw.. Damit wird es möglich, bei der Ladung statistische Daten auszuwerten. Alte und damit möglicherweise ausfallgefährdete Akkus können rechtzeitig erkannt und ausgetauscht werden. Alle im Umlauf befindlichen Akkus können gleichmäßig eingesetzt oder im Garantiefall fundierte Aussagen über den bisherigen Einsatz des Akkus gemacht werden.
In einer bevorzugten Weiterentwicklung des Verfahrens werden die nachfolgenden Verfahrensschritte ausgeführt. Wird ein Akku einer Ladestation zugeführt, so daß diese mit dem Akku in Wechselwirkung treten kann, sei dies durch elektrische Kontakte oder auf berührungslosem Weg durch elektromagnetische Wellen, so liest das Lese-/Schreibgerät der Ladestation zunächst die für den Ladevorgang relevanten Informationen, insbesondere über die Akkutechnologie, die Zellenanzahl und die Kapazität des Akkus aus dem les-/schreibbaren Datenträger des Akkus aus. Außerdem können noch weitere Informationen aus dem Datenträger gelesen werden, beispielsweise die Anzahl der bisher abgeschlossenen Ladezyklen sowie die Anzahl der bisher vorzeitig abgebrochenen Ladezyklen. Außerdem kann auf dem Datenträger eine Information darüber gespeichert sein, ob der vorangegangene Ladezyklus vollständig abgeschlossen wurde oder nicht. Dies kann durch einen Marker geschehen. Im Falle, daß die Lesevorrichtung der Ladestation einen gesetzten Marker auf dem Datenträger liest, wird die Anzahl der nicht vollständig abgeschlossenen Ladezyklen um 1 erhöht und der Marker gelöscht. Nach Abschluß dieses Datenaustausches wird erneut ein Marker für nicht vollständig abgeschlossenen Ladevorgang gesetzt. Dem Akku wird dann Energie zugeführt, und zwar entsprechend der aus den ausgelesenen Daten ermittelten optimalen Ladungsparameter. Wird der Ladevorgang vollständig abgeschlossen, wird der zuvor gesetzte Marker gelöscht und der Zähler der abgeschlossenen Ladevorgänge um eins erhöht. Wird der Ladevorgang vorzeitig abgebrochen, bleibt der Marker gesetzt, der Zähler der vollständig abgeschlossenen Ladevorgänge wird nicht erhöht. Der gesetzte Marker wird beim nächsten Ladezyklus erkannt und somit die Anzahl der unvollständig abgeschlossenen Ladezyklen um eins erhöht.
Das erfindungsgemäße Verfahren hat gegenüber dem bisherigen Verfahren vielfältige Vorteile. Zunächst wird die optimale Ladung verschiedener Akkutypen mit ein und demselben Ladegerät ermöglicht. Außerdem besteht die Möglichkeit, statistische Daten über Ladehäufigkeit, Betriebsdauer, Restladung, Lebensdauer usw. eines jeden Akkus zu ermitteln und über ein zur Ladestation gehöriges Interface auszulesen und weiterzuverarbeiten.
Erfolgt die Energie- und Informationsübertragung berührungslos, so entfallen alle Probleme mit unterschiedlich geformten Kontakten. Unterschiedliche Akkus können mit ein und demselben Ladegerät ohne Adapter geladen werden. Außerdem spielen Verschmutzungen des Akkus oder des Ladegerätes unter ungünstigen Bedingungen keine Rolle. Die Kontakte können nicht durch unvorsichtiges Einführen in die Ladestation beschädigt werden.
Außerdem wird erfindungsgemäß ein Akkumulator zum Durchführen des oben beschriebenen Verfahrens vorgestellt. Der Akkumulator ist dadurch gekennzeichnet, daß er mit einem schreib-/lesbaren Datenträger verbunden ist. Vorzugsweise ist dieser Datenträger berührungslos von einer Schreib-/ Lesevorrichtung schreib-/lesbar. Um dies zu ermöglichen ist der Datenträger vorzugsweise mit einer Antenne verbunden.
Der erfindungsgemäße Akku kann deshalb alle für die Durchführung des Verfahrens notwendigen Daten an eine Schreib-/Lesevorrichtung, die vorzugsweise im Ladegerät angeordnet ist, übermitteln. Der Datenträger des Akkus bezieht seine zur Speicherung und Übertragung von Daten notwendige Energie vorzugsweise nicht aus dem Akku sondern aus der Verbindung mit dem Ladegerät, beispielsweise aus der empfangenen elektromagnetischen Strahlung im Falle der berührungslosen Kommunikation. Der Datenträger belastet daher den Akku nicht durch seinen Energiebedarf.
In einer bevorzugten Ausführungsform verfügt der schreib-/lesbare Datenträger über nicht veränderbare, lediglich lesbare Daten, über während des Ladevorgangs veränderbare Daten, also über Speicherbereiche, die während des Ladevorgangs beschreibbar sind, und über solche Datenbereiche, die zwar beschreibbar sind, nicht jedoch während des Ladevorgangs. Damit kann erreicht werden, daß bestimmte Grunddaten, die sich nicht verändern, geschützt sind. Dies können beispielsweise Informationen über die Akkutechnologie, die Zellenzahl, die Kapazität, aber auch über die Seriennummer oder das Herstelldatum des Akkus sein. Die während des Ladevorgangs veränderbaren Daten können beispielsweise die Anzahl der vollständig und die Anzahl der nicht vollständig abgeschlossenen Ladezyklen betreffen oder auch eine Markerfunktion haben, mit der bei späteren Ladevorgängen Informationen über den vorher durchgeführten Ladevorgang entnommen werden können. Es kann auch sinnvoll sein, das letzte Ladedatum abzuspeichern, damit vor dem Einsatz eine Kontrolle möglich ist, wann der Akku zuletzt geladen wurde. Darüber hinaus besteht die Möglichkeit, beispielsweise eine betriebsinterne Seriennummer oder eine Werkzeugnummer abzuspeichern, so daß der Anwender eigene Ordnungskriterien für die Vielzahl von Akkus, die im Einsatz sind, anwenden kann. Beispielsweise könnte auf einer Baustelle jedem Arbeiter oder jedem akkubetriebenen Gerät eine bestimmte Anzahl an Akkus zugeordnet sein, deren Kennung im Speicherchip abgespeichert ist. Dies sind Daten, die während des Ladevorgangs nicht verändert werden können, jedoch grundsätzlich vom Anwender frei wählbar sind.
Schreib-/Iesbare Datenträger sind als Chips an sich bekannt und werden beispielsweise als Identifizierungskarten, elektronische Schlüssel usw. eingesetzt. Die erfindungsgemäßen Akkus werden mit einem entsprechenden Chip versehen, der in an sich bekannter Weise am oder im Gerät angebracht werden kann, beispielsweise durch Verklebung, Verschweißung oder ähnliche Maßnahmen. Werden die Daten aus dem Speicher berührungslos übertragen, kann der Chip vorzugsweise in einen Kunststoffträger integriert werden, der im Geräteinnern an einer sicheren Stelle angeordnet und mit einer Antenne verbunden ist.
Weiter wird erfindungsgemäß auch eine Ladestation zur Durchführung des oben beschriebenen Verfahrens vorgestellt, die dadurch gekennzeichnet ist, daß die Ladestation über eine Schreib-/Lesevorrichtung zum Lesen und Schreiben von Daten auf schreib-/lesbaren Datenträgern verfügt. Mit dieser Ladestation können die Informationen auf dem erfindungsgemäßen Akku ausgelesen und die veränderbaren Informationen verändert werden. Vorzugsweise geschieht dies berührungslos, wobei außerdem der Energiebedarf des Datenträgers des Akkus berührungslos gedeckt werden kann. Dies geschieht insbesondere durch einen Sender, der elektromagnetische Wellen aussendet, insbesondere im Radiowellenbereich, bevorzugt bei einer Frequenz um 125 kHz.
In der Ladestation befindet sich eine Lese-/Schreibvorrichtung, in der sich Filter, Antenne und ein Interface befinden, das mit einer äußeren Energieversorgung verbunden ist. Das Interface ist außerdem mit dem Mikrokontroller des Ladegerätes verbunden, über das außerdem Informationen aus dem Ladegerät zur weiteren Verarbeitung ausgelesen werden können. Alle Bestandteile des Ladegerätes sind in der Regel fest auf einer Unterlage montiert und ganz oder teilweise mit einem Gehäuse versehen.
Im Falle der berührungslosen Übertragung von Energie und Daten erfolgt die Energieübertragung vorzugsweise durch Radiowellen, wobei die Informationsübertragung durch Modulation der Trägerfrequenz der Radiowellen erfolgt. Die Reichweite der elektromagnetischen Wellen sollte unterhalb von 5 cm liegen. Die Informationsflußrichtung ist bidirektrional. Wird ein Akku in das Ladegerät eingesetzt, kann dieses die ladungsrelevanten Daten aus dem Datenträger des Akkus ablesen und den Ladevorgang entsprechend steuern.
Die Erfindung wird im folgenden anhand der beigefügten Abbildung näher erläutert:
Fig. 1 zeigt schematisch eine erfindungsgemäße Ladestation und einen erfindungsgemäßen Akkumulator.
Die erfindungsgemäße Ladestation 1 verfügt über eine Schreib- /Lesevorrichtung 2, die mit einer Antenne 3 verbunden ist. Die Ladestation 1 ist über das Kabel 4 mit dem Stromnetz verbunden. Ein Akkumulator 5 verfügt über Akkumulatorzellen 6 sowie einen les-/schreibbaren Datenträger 7. Der Datenträger 7 ist mit der Antenne 8 verbunden.
Die Ladestation 1 sendet über die Sende- und Empfangsantenne 3 Radiowellen mit einer Frequenz von 125 kHz aus. Die Reichweite der elektromagnetischen Strahlung beträgt etwa 5 cm. Wird der Akkumulator 5 mit seiner Sende- und Empfangsantenne 8 in den Bereich der von der Ladestation ausgesendeten Radiowellen gebracht, wird zunächst der Datenspeicher 7 durch die Radiowellen mit Energie versorgt. Er sendet Kenndaten über die Antenne 8 an die LeseVSchreibvorrichtung der Ladestation 1 . Es werden u. a. Daten übermittelt, die die Akkumulatortechnologie, die Zellenzahl des Akkumulators, die Kapazität, die Seriennummer, das Herstelldatum, die Restspannung und die Anzahl der bisher vollständig oder unvollständig abgeschlossenen Ladevorgänge betreffen. Die Daten, die von der Lesevorrichtung 2 gelesen werden, werden im Mikroprozessor 9 der Ladestation 1 verarbeitet. Sie können über den Interfaceanschluß 10 ausgelesen und mit externen Datenverarbeitungsgeräten weiterbearbeitet, werden. Beispielsweise kann eine statistische Analyse über die Anzahl der abgeschlossenen und vorzeitig abgebrochenen Ladevorgänge, Herstellungsdaten usw. durchgeführt werden. Auf diesem Wege kann beispielsweise die noch zu erwartende Restlebensdauer der Akkumulatoren bestimmt werden.
Der Mikroprozessor 9 der Ladestation 1 ermittelt aus vorgegebenen Kenndaten die optimalen Ladeparameter des betreffenden Akkumulators. Der Akku wird sodann entsprechend der ermittelten Ladungsparameter geladen.
Falls aus dem vorherigen 'Ladevorgang im Datenspeicher 7 des Akkumulators 5 noch ein Marker gesetzt ist, wir der Zähler für vorzeitig abgebrochene Ladevorgänge um eins erhöht und der Marker zu Beginn des Ladevorgangs gelöscht. Ein neuer Marker wird gesetzt, der bei Erreichen der vollen Ladung wiederrum gelöscht wird. Wird der Ladevorgang vor Erreichen der vollständigen Ladung abgebrochen, bleibt der Marker gesetzt. Zu Beginn des nächsten Ladevorgangs wird der gesetzte Marker erkannt, die Anzahl der abgebrochenen Ladezyklen um eins erhöht und der Marker gelöscht.
Der Datenspeicher 7 des Akkumulators 5 enthält drei verschiedene Speicherbereiche. In einem Speicherbereich werden Daten gespeichert, die während der ganzen Lebensdauer des Akkumulators nicht verändert werden können. Dabei handelt es sich insbesondere um Daten, die die Akkumulatortechnologie, die Zellenanzahl des Akkumulators und die Kapazität betreffen. Ein weiterer Speicherbereich des Akkumulators kann während des Ladevorgangs durch die Schreib-/Lesevorrichtung des Ladegeräts 1 verändert werden. Dabei handelt es sich insbesondere um Informationen über die Anzahl der vollständig abgeschlossenen und der vorzeitig abgebrochenen Ladevorgänge sowie um einen Speicherplatz, in dem ein Marker gesetzt werden kann.
Ein weiterer Speicherbereich des Datenspeichers 7 kann während des Ladevorganges nicht verändert werden. Er kann jedoch vom Benutzer des Akkus verändert werden, beispielsweise um eine betriebsinterne Numerierung der Akkumulatoren durchzuführen. Die Veränderung dieses Speicherbereichs geschieht über Datenübertragungsgeräte, die an einen Computer angeschlossen sein können. Die Daten können auch direkt über das Ladegerät verändert werden, das zu diesem Zweck über ein Interface mit einem Computer verbunden wird, der mit einem speziellen Serviceprogramm ausgerüstet ist.

Claims

Patentansprüche
1. Verfahren zum Aufladen von Akkumulatoren (5) mit einer Ladestation (1 ), dadurch gekennzeichnet, daß vor, während und/oder nach dem Ladevorgang ein Datenaustausch zwischen Ladestation (1 ) und Akkumulator (5) erfolgt, bei dem ein Schreib-/Lesegerät (2) der Ladestation (1 ) Daten mit einem schreib-/lesbaren Datenträger (7) des Akkumulators (5) austauscht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß dem schreib-/lesbaren Datenträger des Akkumulators (5) die zur Datenübertragung notwendige Energie vom Ladegerät zugeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Energiefluß zum schreib-/lesbaren Datenträger des Akkumulators (5) und/oder der Datenaustausch berührungslos erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Energiefluß zwischen Ladestation (1 ) und Datenträger des Akkumulators (5) durch elektromagnetische Wellen, insbesondere im Radiofrequenzbereich, vorzugsweise bei etwa 125 kHz, erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Datenaustausch durch eine Modulation der Frequenz der Energieübertragung erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Datenaustausch bidirektional erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß Daten über Akkumulatortechnologie, Zellenzahl des Akkumulators, Kapazität des Akkumulators, Anzahl der vollendeten und Anzahl der abgebrochenen Ladevorgänge ausgetauscht werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das LeseVSchreibgerät der Ladestation vor Beginn des Ladevorgangs Informationen über Akkumulatortechnologie, Zellenzahl, Zellenkapazität, Anzahl der bisherigen abgeschlossenen und unvollendeten Ladezyklen und im vorherigen Ladevorgang gesetzte Marker ließt, den Zähler für unvollständige Ladung erhöht, gesetzte Marker löscht, einen neuen Marker im schreib-/lesbaren Datenträger setzt, dem Akkumulator Energie entsprechend der gelesenen Daten zuführt, bei vollständiger Ladung den Zähler der abgeschlossenen Ladevorgänge erhöht und den zuvor gesetzten Marker löscht.
9. Akkumulator (5) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Akkumulator (5) mit einem schreib-/lesbaren Datenträger (7) verbunden ist.
10. Akkumulator (5) nach Anspruch 9, dadurch gekennzeichnet, daß der schreib-/lesbare Datenträger (7) berührungslos von einer schreib- /lesbaren Vorrichtung (2) schreib-/lesbar ist.
1 1 . Akkumulator (5) nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der Datenträger (7) des Akkumulators (5) mit einer Antenne (8) verbunden ist.
12. Akkumulator (5) nach einem der Ansprüche 9 bis 1 1 , dadurch gekennzeichnet, daß der Energiebedarf des Datenträgers (7) zur Übertragung von Informationen durch externe Energiezufuhr gedeckt wird.
1 3. Akkumulator (5) nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der schreib-/lesbare Datenträger (7) über nicht veränderbare Daten, über während des Ladevorganges veränderbare Daten und/oder über während des Ladevorganges nicht, außerhalb des Ladevorganges aber veränderbare Daten verfügt.
14. Ladestation (1 ) zur Durchführung des Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Ladegerät über eine Schreib-/Lesevorrichtung zum Lesen und Schreiben von Daten auf einem schreib-/lesbaren Datenträger verfügt.
1 5. Ladestation (1) nach Anspruch 14, dadurch gekennzeichnet, daß der der Datenfluß von und zum Akkumulator (5) berührungslos durchführbar ist.
16. Ladestation (1) nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Ladestation Energie zur Versorgung eines schreib-/lesbaren Datenträgers auf einen Akkumulator (5) übertragen kann, vorzugsweise berührungslos.
1 7. Ladestation (1 ) nach Anspruch 1 5 oder 16, dadurch gekennzeichnet, daß Energie für den Datenspeicher bzw. Daten durch Radiowellen, insbesondere mit einer Frequenz von 125 kHz, übertragbar sind.
1 8. Ladestation (1 ) nach einem der Ansprüche 1 5 bis 1 7, dadurch gekennzeichnet, daß Energie für den Datenspeicher mit einer Trägerfrequenz und Daten mit einer auf die Trägerfrequenz aufmodulierten Frequenz übertragbar sind.
19. Ladestation (1 ) nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, daß die Energieübertragung und/oder die Datenübermittlung mittels einer Antenne (3) erfolgt.
20. Ladestation (1) nach Anspruch 19, dadurch gekennzeichnet, daß die Reichweite der Antenne (3) unter 5 cm liegt.
PCT/EP1999/000029 1998-01-06 1999-01-06 Verfahren zum aufladen von akkumulatoren und akkumulator und ladegerät zur durchführung des verfahrens WO1999035727A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU24199/99A AU2419999A (en) 1998-01-06 1999-01-06 Method for charging batteries, and a battery and charging unit for carrying out said method
DE19980017T DE19980017D2 (de) 1998-01-06 1999-01-06 Verfahren zum Aufladen von Akkumulatoren und Akkumulator und Ladegerät zur Durchführung des Verfahrens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19800212A DE19800212A1 (de) 1998-01-06 1998-01-06 Verfahren zum Aufladen von Akkumulatoren und Akkumulator und Ladegerät zur Durchführung des Verfahrens
DE19800212.2 1998-01-06

Publications (1)

Publication Number Publication Date
WO1999035727A1 true WO1999035727A1 (de) 1999-07-15

Family

ID=7854038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000029 WO1999035727A1 (de) 1998-01-06 1999-01-06 Verfahren zum aufladen von akkumulatoren und akkumulator und ladegerät zur durchführung des verfahrens

Country Status (3)

Country Link
AU (1) AU2419999A (de)
DE (2) DE19800212A1 (de)
WO (1) WO1999035727A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103200A1 (de) * 2001-01-24 2002-08-01 Geometrie Concern Verwaltungs Versorungsvorrichtung und Verfahren zur Versorgung einer Verbrauchervorrichtung
DE10153083B4 (de) * 2001-10-30 2006-08-10 Fahrzeugausrüstung Berlin GmbH Ladeeinrichtung
US8154857B2 (en) 2007-01-04 2012-04-10 Whirlpool Corporation Appliance host with multiple service interfaces for coupling multiple consumer electronic devices
US7651368B2 (en) 2007-01-04 2010-01-26 Whirpool Corporation Appliance with an adapter to simultaneously couple multiple consumer electronic devices
US7980088B2 (en) 2007-01-04 2011-07-19 Whirlpool Corporation Removable adapter providing a wireless service to removable consumer electronic device
US7871300B2 (en) 2007-01-04 2011-01-18 Whirlpool Corporation Host with multiple sequential adapters for multiple consumer electronic devices
US7765332B2 (en) 2007-01-04 2010-07-27 Whirlpool Corporation Functional adapter for a consumer electronic device
US7870753B2 (en) 2007-01-04 2011-01-18 Whirlpool Corporation Appliance door with a service interface
US7865639B2 (en) 2007-01-04 2011-01-04 Whirlpool Corporation Appliance with an electrically adaptive adapter to alternatively couple multiple consumer electronic devices
US7810343B2 (en) 2007-01-04 2010-10-12 Whirlpool Corporation Dispenser with a service interface for a consumer electronic device
US8018716B2 (en) 2007-01-04 2011-09-13 Whirlpool Corporation Adapter for docking a consumer electronic device in discrete orientations
US7618295B2 (en) 2007-01-04 2009-11-17 Whirlpool Corporation Adapter and consumer electronic device functional unit
US7686127B2 (en) 2007-01-04 2010-03-30 Whirlpool Corporation Acoustic chamber as part of adapter or appliance
US7869201B2 (en) 2007-01-04 2011-01-11 Whirlpool Corporation Host and adapter for selectively positioning a consumer electronic display in visible and concealed orientations
US7826203B2 (en) 2007-01-04 2010-11-02 Whirlpool Corporation Transformative adapter for coupling a host and a consumer electronic device having dissimilar standardized interfaces
US8040666B2 (en) 2007-01-04 2011-10-18 Whirlpool Corporation Door with a service interface on an edge
US20080164758A1 (en) * 2007-01-04 2008-07-10 Mccoy Richard A Electrical accessory charging compartment for a cabinet and retrofit components therefor
US7798865B2 (en) 2007-01-04 2010-09-21 Whirlpool Corporation Service supply module and adapter for a consumer electronic device
US7898812B2 (en) 2007-01-04 2011-03-01 Whirlpool Corporation Alternative hosts for multiple adapters and multiple consumer electronic devices
DE102007021921B4 (de) * 2007-05-10 2009-03-19 Siemens Ag Vorrichtung zum Überwachen eines Energiespeichers
DE102009016624A1 (de) * 2009-04-08 2010-09-09 Rwe Ag Verfahren und Vorrichtung zum Laden von Elektrofahrzeugen
EP2404358B1 (de) 2009-03-03 2014-09-24 Rwe Ag Verfahren und vorrichtung zum laden von elektrofahrzeugen
DE102010036397A1 (de) * 2010-07-14 2012-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Automatische Erkennung einer Zellchemie bzw. eines Batterietyps einer Batterie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150031A (en) * 1988-09-30 1992-09-22 Motorola, Inc. Battery charging system
DE19502223A1 (de) * 1995-01-25 1996-08-14 Daimler Benz Ag Batterieladestationssystem für Elektrofahrzeuge
WO1996030960A1 (en) * 1995-03-31 1996-10-03 Motorola Inc. Battery charging system
US5619117A (en) * 1982-06-07 1997-04-08 Norand Corporation Battery pack having memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619117A (en) * 1982-06-07 1997-04-08 Norand Corporation Battery pack having memory
US5150031A (en) * 1988-09-30 1992-09-22 Motorola, Inc. Battery charging system
DE19502223A1 (de) * 1995-01-25 1996-08-14 Daimler Benz Ag Batterieladestationssystem für Elektrofahrzeuge
WO1996030960A1 (en) * 1995-03-31 1996-10-03 Motorola Inc. Battery charging system

Also Published As

Publication number Publication date
AU2419999A (en) 1999-07-26
DE19980017D2 (de) 2000-07-06
DE19800212A1 (de) 1999-07-08

Similar Documents

Publication Publication Date Title
WO1999035727A1 (de) Verfahren zum aufladen von akkumulatoren und akkumulator und ladegerät zur durchführung des verfahrens
CN102596515B (zh) 手持式工具模块
EP0124739B2 (de) Schaltungsanordnung zur kapazitätsabhängigen Nachladung eines Akkumulators
DE60133128T2 (de) Zellularer fernsprecher mit sicherungsbatterie
EP3336954B1 (de) Konfigurierbares akkupack
JPH06333602A (ja) 電気化学的発電装置の検査・管理システム
EP2145373B1 (de) Vorrichtung und system zur batterieerkennung
DE10121772A1 (de) System für das automatische Laden der Batterie eines Fernsteuerungssenders für die Verwendung in einem Fahrzeugsicherheitssystem
DE10006420A1 (de) Betriebssteuersystem für wiederaufladbare Batterien und Betriebsverfahren dafür
DE10213570A1 (de) Lebensverlängernder Batterieadapter für Multichemie-Batteriesysteme
DE112006002653T5 (de) Karte und System zur Übertragung von elektrischer Energie
DE102004043531A1 (de) Batteriepaket, mit einem Batteriepaket verbindbares Elektrogerät und Verfahren zum Identifizieren eines Batteriepaket-Typs
EP2110922B1 (de) Datenaustausch zwischen einer Batterieeinheit und einer Steuereinheit
CN110027439A (zh) 电动车电池交换回收系统与方法
EP2828946B1 (de) Speicher für elektrische energie sowie aufnahmevorrichtung für mindestens einen speicher für ein elektrisch antreibbares fahrzeug
DE4235049C1 (de) Wechselsystem für wiederaufladbare Batterien
DE4236811C1 (de) Verfahren zum Laden von Akkumulatoren in schnurlosen Kommunikationsendeinrichtungen und Anordnung zur Durchführung des Verfahrens
DE4204237A1 (de) Solar-ladestation fuer diktiergeraete
DE102020216263A1 (de) Adapter für einen Wechselakkupack
DE102007057552A1 (de) Ladestation und Verfahren zum Laden von Akkumulatoren sowie Ladesystem mit einer Ladestation und mit wenigstens einem Akkumulator
CN101599554A (zh) 电池备用单元及电池备用单元开关控制方法
DE102019214493A1 (de) System mit einem ersten und einem zweiten Akkupack
DE102010041510A1 (de) Elektrisches Energiespeichersystem und Aufladeverfahren
CN214564755U (zh) 一种电动汽车换电模式下动力电池智能追踪系统
DE4023976C2 (de) Transportables elektrisches Gerät mit Energiespeicherelementen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REF Corresponds to

Ref document number: 19980017

Country of ref document: DE

Date of ref document: 20000706

WWE Wipo information: entry into national phase

Ref document number: 19980017

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase