WO1999032787A1 - Fuel injection pump - Google Patents

Fuel injection pump Download PDF

Info

Publication number
WO1999032787A1
WO1999032787A1 PCT/JP1998/005764 JP9805764W WO9932787A1 WO 1999032787 A1 WO1999032787 A1 WO 1999032787A1 JP 9805764 W JP9805764 W JP 9805764W WO 9932787 A1 WO9932787 A1 WO 9932787A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
delivery valve
injection pump
plunger
fuel injection
Prior art date
Application number
PCT/JP1998/005764
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Nagakura
Original Assignee
Yanmar Diesel Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP35091797A external-priority patent/JPH11182383A/en
Priority claimed from JP35091897A external-priority patent/JPH11182382A/en
Application filed by Yanmar Diesel Engine Co., Ltd. filed Critical Yanmar Diesel Engine Co., Ltd.
Priority to EP98961436A priority Critical patent/EP1041273A1/en
Publication of WO1999032787A1 publication Critical patent/WO1999032787A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • F02M59/265Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders characterised by the arrangement or form of spill port of spill contour on the piston

Definitions

  • the present invention relates to a fuel injection pump for a diesel engine, and particularly to a structure that can achieve good combustion performance.
  • FIG. 17 and FIG. 18 show a conventional fuel injection pump.
  • a valve seat (2) is provided at the top of the pump body (1).
  • the delivery valve (3) inside the valve seat (2) is normally closed by a spring (4). Energized in the valve direction.
  • a high-pressure chamber (7) is provided inside the valve holder (6) for fixing the valve sheet (2) to the pump body (1), and a fuel is provided so as to communicate with the high-pressure chamber (7).
  • a high-pressure pipe (8) is connected to the valve holder (6) and communicates with an injection nozzle (not shown).
  • a plunger (10) driven by a cam (not shown) is slidably provided at a lower portion of the pump body (1), and a pressure feed chamber is provided between the upper portion of the plunger (10) and the delivery valve (3). (11) is provided.
  • a lower lead (12) inclined in an oblique direction is formed on the outer peripheral surface of the plunger (10), and the lower lead (12) communicates with the pressure feed chamber (11).
  • the suction operation of the delivery valve (3) has a problem that the negative pressure is generated on the high-pressure pipe (8) side in the low-speed region, and the injection amount becomes unstable. ) Is applied to the sliding surface of () to suppress the suction effect and secure the residual pressure in the high-pressure chamber (7) in the low-speed range to some extent, and inject the fuel to the rotation speed.
  • the quantitative characteristics, that is, the N-Q characteristics are improved.
  • the amount of fuel injection is controlled by rotating the plunger (10) in the circumferential direction within the range of the lower lead (12) to change the range of use, that is, the effective stroke, and using the lower lead (12).
  • the fuel injection is controlled by controlling the cut timing. For example, when the load is low, the injection amount is reduced by using the shallow position of the lead, and when the load is high, the injection amount is increased by using the deep position of the lead.
  • Such a conventional fuel injection pump has the following disadvantages.
  • the force of the cam to push up the plunger is weak, so that the lift amount of the delivery valve (hereinafter referred to as “lift amount”) is small.
  • the plunger push-up force is strong, and this dynamic effect increases the lift of the delivery valve. If the lift amount of the delivery valve is large, the suction effect is also large, and the residual pressure in the high pressure chamber is reduced. In other words, the higher the speed, The residual pressure in the high pressure chamber decreases.
  • the above tendency has been observed, and if the residual pressure in the high-pressure chamber (7) is to be kept low in the low-speed region, the high-pressure chamber ( The residual pressure in 7) may be too low, and the rise of injection during the pumping process, that is, the dynamic injection timing may be delayed. In this case, a misfire is caused at the time of a cold start or the like, and a trouble such as a misfire emitting blue-white smoke is likely to occur.
  • the residual pressure in the low-speed range can be kept to some extent low by using a constant-pressure valve.However, in this case, the spill rate in the high-speed and high-load range is reduced, so that the injection cut-off becomes worse and the combustion performance deteriorates. Was invited.
  • a groove communicating with the lower lead is provided near the upper end of the plunger, and the fuel in the pumping chamber is partially returned to the fuel supply port through the groove during the plunger pumping process.
  • the pressure inside the pumping chamber in low to medium speed range Various fuel injection pumps have been proposed in which the injection time is made longer by increasing the injection time slowly and the injection timing is made variable.
  • the groove formed on the outer peripheral surface of the plunger is a partial groove having one end communicating with the lower lead. This means that it is necessary to increase the effective stroke and maximize the injection amount by using the deepest position of the lead, especially at the start, but if the fuel is returned at this start, it will start. This is because the groove is formed so as to avoid the deepest position of the lead because of the poor performance.
  • the present invention solves the above-mentioned drawbacks and keeps the residual pressure in the high-pressure chamber in the low-speed range to a certain extent, while the residual pressure in the high-pressure chamber in the high-speed range (particularly in the high idling state) becomes too low.
  • the objective is to provide a fuel injection pump that achieves good combustion performance by avoiding it.
  • An object of the present invention is to provide a fuel injection pump in which the plunger groove processing is extremely easy. Disclosure of the invention
  • the present invention relates to a fuel passage connecting a high-pressure chamber to which an injection nozzle or the like is connected and a pressure-feeding chamber.
  • a fuel injection pump in which a delivery valve having a fuel suction function is slidably disposed, the suction collar of the delivery valve is subjected to an angleless cut, and the communication area of the fuel passage is maximized.
  • a communication area expanding means for expanding the communication area of the fuel passage along with the movement of the delivery valve is provided separately from the expansion of the communication area of the fuel passage due to the angle cutter. is there.
  • the injection amount is large, and the delivery valve in the high-pressure chamber lifts to a sufficient height with inertia to obtain a sufficient suction effect. Becomes sufficiently low.
  • the communication area enlarging means includes a cutout formed in at least one of a suction / return collar of the delivery valve and a wall surface of the fuel passage.
  • the notch is formed by cutting out the sliding surface of the suction and return collar in a stepped or inclined shape.
  • the angle cutting and the notch portion can be simultaneously formed by a single cutting operation. The process can be simplified.
  • the present invention also provides a plunger having a lower lead formed on an outer peripheral surface slidably inserted into a pumping chamber, and closing a fuel supply opening opening toward the pumping chamber with a tip of the plunger.
  • a plunger having a lower lead formed on an outer peripheral surface slidably inserted into a pumping chamber, and closing a fuel supply opening opening toward the pumping chamber with a tip of the plunger.
  • an annular groove communicating with the lower lead is formed on the outer peripheral surface of the plunger, Part of the fuel in the pressure storage chamber is returned to the fuel supply port through the annular groove.
  • the annular groove has the same cross-sectional shape over the entire circumference, and the width of the groove is smaller than the diameter of the fuel supply port.
  • the plunger moves at a high speed, and the time required for communication between the fuel supply port and the annular groove is shortened. Therefore, the injection period becomes longer in the low to medium speed range, but in the high speed and high load range, the injection period can be shortened to maintain good combustion performance with good injection termination.
  • annular groove having the same cross-sectional shape it becomes possible to extremely easily perform plunger groove processing using a cutting machine, as compared with the case of forming a conventional partial groove. Manufacturing costs can be reduced. Furthermore, when an annular groove is formed on the outer peripheral surface of the plunger, two communicating portions with the lower lead and the fuel supply port are formed, so that two fuel discharge paths can be obtained with one groove. Fuel efficiency can be increased.
  • FIG. 1 is a longitudinal sectional view of a fuel injection pump according to an embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of the same delivery valve portion
  • FIG. 3 is a longitudinal sectional view of the same when the communication area of the fuel passage is enlarged.
  • Fig. 4 is a perspective view showing the notch of the delivery valve
  • Fig. 5 is a diagram showing the relationship between the lift amount of the delivery valve and the communication area of the fuel passage
  • Fig. 6 is a delivery valve having an inclined notch.
  • Fig. 7 is a front view of a delivery valve in which a cutout portion is formed in a portion where an angle cut is provided
  • Fig. 1 is a longitudinal sectional view of a fuel injection pump according to an embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of the same delivery valve portion
  • FIG. 3 is a longitudinal sectional view of the same when the communication area of the fuel passage is enlarged.
  • Fig. 4 is a perspective view showing the
  • FIG. 8 is a front view of a delivery valve in which a cutout portion is formed in a portion where an angle cut is provided
  • Fig. 9 is FIG. 10 is a longitudinal sectional view showing a state in which a notch is formed in a valve seat.
  • FIG. 10 is a longitudinal sectional view showing a state in which a notch is formed in both a delivery valve and a valve seat. Is a perspective view of the plunger
  • FIG. 12 is a side view showing the positional relationship between the plunger and the fuel supply port during the pumping process
  • FIG. 13 is a side view of the plunger having a pair of upper and lower annular grooves
  • FIG. 14 is a side view of the plunger in which the lower lead communicates with the annular groove through the cutout.
  • FIG. 15 is a side view of the plunger in which the lower lead communicates with the annular groove through the cutout.
  • 6 is a perspective view of another plunger in which an annular groove is formed
  • FIG. 17 is a longitudinal sectional view of a conventional fuel injection pump
  • FIG. 18 is a longitudinal sectional view of the same during the pumping process.
  • a delivery valve (3) is slidably arranged vertically in a fuel passage (18) in a valve seat (2) communicating a high pressure chamber (7) and a pressure feeding chamber (11).
  • the suction valve (16) of the delivery valve (3) is provided with the same angle cutter (17) as the conventional one.
  • the delivery valve (3) moves in the valve opening direction separately from the expansion of the fuel passage (18) by the Ang Reich cut (17). That is, a communication area expanding means for expanding the communication area of the fuel passage (18) according to the lift is provided.
  • the communication area enlarging means includes a cutout portion (20) formed in a suction return collar (16) of the delivery valve (3), and the cutout portion (20) The part of the sliding surface of the collar (16) opposite to the part where the angle cut ( ⁇ ) is applied is cut out stepwise from the center slightly near the upper end to the lower surface.
  • Fig. 5 shows the relationship between the lift amount of the delivery valve (3) and the communication area of the fuel passage 8 ).
  • the solid line in the figure indicates that the delivery valve of the present invention provided with an angle cut (17) and further provided with a notch (20) is used, and the dotted line is the conventional one provided with only the angle cut (17). The case where the delivery valve is used is shown.
  • the communication area was enlarged by the angle bracket (17) immediately after the delivery valve (3) was pushed up, and then until the delivery valve (3) was completely opened.
  • the delivery area is constant, but after the communication area is expanded by the angle cutter (17), the fuel passage (18) reaches the maximum communication area, that is, the delivery valve (3) is completely opened. By the time, the communication area is enlarged by the notch (20).
  • the notch portion (20) secures a sufficient communication area so that the inside of the pressure feed chamber (11) is reduced. Can be pumped into the high-pressure chamber (7).
  • the residual pressure in the high-pressure chamber (7) in the low-speed range is set to be somewhat low, the residual pressure in the high-pressure chamber (7) in the high idling state does not become too low. This makes it possible to prolong the injection period in the low-speed range, reduce combustion noise, and simultaneously eliminate delays in injection timing in the high idling state. In addition, despite suppressing the decrease in residual pressure in the high idling state, the residual pressure can be sufficiently reduced by a sufficient suction effect in a high-speed and high-load range, and the injection is good. High combustion performance.
  • the delivery valve structure that achieves such an operation and effect is not limited to the above, and other delivery valve structures will be described below.
  • the center of the sliding surface of the suction-back force roller (16) is slightly inclined from the upper end to the lower surface, as shown in Fig. 6.
  • a notch (30) may be formed which is tapered toward the bottom. In this case, while the stepped notch (20) gradually increases the communication area of the fuel passage (18), the communication area can be gradually increased, so that the fuel can be pumped smoothly. Thus, better combustion performance can be realized.
  • the portion where the notch is formed does not have to be the portion on the sliding surface of the suction return collar (16) opposite to the portion where the angle cut (17) is applied.
  • FIGS. 7 and 8 As shown in (5), cutouts (31) and (32) may be formed in the portion where the angle cut (17) is to be applied.
  • the notch (31) shown in Fig. 7 is cut diagonally downward from the upper surface to the lower surface of the side of the suction-back collar (16), including the angle cut (17). I will lack it.
  • the notch (32) shown in Fig. 8 first cuts the side of the suction-back collar (16) flat in the sliding direction, as in the case of applying the An Eisen cut (17). It is notched in a tapered shape obliquely downward.
  • the angle cutter ( ⁇ ) and the notches (31), (32) can be formed simultaneously by one cutting operation, and the manufacturing process can be simplified.
  • a plurality of notches as described above may be formed on the side of the suction / retraction force line (16) of the delivery valve (3), and tapered portions having different angles are continuously formed to form an inclined notch. It may be formed.
  • a notch is formed in the wall surface of the fuel passage (18), that is, the inner surface of the valve seat (2), so that the communication area is increased in accordance with the lift of the delivery valve (3) as described above. good.
  • the corner of the seat surface (15) of the valve seat (2) is cut out in a stepped shape over the entire circumference, so that the suction force of the delivery valve (3) in the closed state is reduced.
  • Notch located above (16) (40) may be formed. In this case, when the delivery valve (3) is pushed up and the lower surface of the suction force roller (16) is located above the lower surface of the notch portion (40), the notch portion (40) and the suction collar (16) are connected. An opening is formed between them, and the communication area of the fuel passage (18) increases.
  • the notches (30) and (40) may be formed on both the suction-back collar (16) of the delivery valve (3) and the inner surface of the valve sheet (2).
  • the upper end of the notch (30) is located above the lower surface of the notch (40) of the valve seat (2), an opening is formed between the notches (30) and (40).
  • the notch on the delivery valve (3) side may be a stepped one, and the notch on the valve seat (2) may be a tapered one.
  • the number of cutouts and the formation site may be appropriately changed.
  • the plunger (50) is formed with a vertical groove (51) having a circular cross-section from the center of the upper end face toward the lower part, and substantially halfway in the oblique direction from near the upper end of the outer peripheral face.
  • a lower lead (52) is formed. The lower end of the vertical groove (51) and the center of the lower lead (52) communicate with each other via the horizontal groove (53).
  • annular groove (54) is formed over the entire circumference in the vicinity of the upper end of the outer peripheral surface of the plunger (50) so as to intersect with and communicate with the upper end of the lower lead (52).
  • the annular groove (54) is arranged parallel to the upper end surface of the plunger (50), has the same cross-sectional shape over the entire circumference, and has a groove width larger than the diameter of the fuel supply port (13). Is also set small.
  • the cross-sectional shape of the annular groove (54) is not limited to a rectangle, but may be a semicircle or a wedge.
  • the machining position of the annular groove (54), that is, the distance from the upper end surface of the plunger (50) is determined, and the cutting machine In this case, it is only necessary to press the cutting edge of, fix the plunger (50) and rotate it horizontally. This eliminates the need for high-precision positioning of the plunger and difficult distance management from the upper end surface of the plunger, as is required when machining conventional partial grooves. The process is extremely simple, and the manufacturing cost can be reduced.
  • FIG. 12 shows the positional relationship between the plunger (50) and the fuel supply port (13) during the pumping process.
  • the fuel in the pumping chamber (11) is removed. Pumping begins.
  • the fuel supply port (13) and the annular groove (54) are in communication with each other, and the fuel in the pumping chamber (11) is filled with the vertical and horizontal grooves (51) (53), the lower lead (52) and the annular Discharge to the fuel supply port (13) through the groove (54).
  • the annular groove (54) communicates with the fuel supply port (13) at two locations (55) and (56), and also communicates with the lower lead (52) at two locations (57) as shown in FIG. ) (58), there are two fuel discharge paths from the lower lead (52) to the fuel supply port (13) with one annular groove (54), which Can be efficiently discharged.
  • This fuel discharge is continued until the plunger (50) moves further upward so that the annular groove (54) is located above the fuel supply port (13), and the lower lead (52) is connected to the fuel supply port (13).
  • the movement speed of the plunger (50) is high, and the time for communicating the fuel supply port (13) and the annular groove (54) is short, so that the fuel discharge amount is small and the pumping capacity is almost zero. Does not drop much. Therefore, the injection period becomes longer in the low and medium speed ranges, but in the high speed and high load range, the injection period can be shortened to maintain good combustion performance with good injection termination.
  • the effective stroke is changed by rotating the plunger (50) in the horizontal direction.
  • the relative stroke between the fuel supply port (13) and the annular groove (54) is changed.
  • the total length of the fuel discharge path that is, the total length of the two fuel discharge paths described above, is always the total length of the annular groove (54) and may vary. Absent. Therefore, regardless of the rotational position of the plunger (50), the fuel discharge condition can always be kept constant, and the fuel control in the pumping chamber (11) can be performed with high accuracy.
  • a groove for returning a part of the fuel in the pumping chamber (11) to the fuel supply port (13) during the pumping process is formed in an annular shape formed over the entire outer peripheral surface of the plunger (50) as described above. If the groove (54) is used, a groove is also present at the deepest position of the lower lead (52), and the fuel in the pumping chamber (11) is discharged even at the start when the injection amount needs to be the dog. Will be done. However, the deterioration of the startability caused by the fuel discharge has been eliminated by adjusting the cam speed or changing the size and shape of each groove.
  • the plunger structure that achieves the above-described effects is not limited to the above-described one, and other plunger structures will be described below.
  • a pair of upper and lower annular grooves (54) parallel to each other may be formed on the outer peripheral surface of the plunger (50).
  • FIG. 4 and FIG. 15 cutouts (60) and (61) are formed on the outer peripheral surface of the plunger (50) to connect them.
  • the notch (60) in FIG. 14 has a stepped notch near the upper end of the outer peripheral surface of the plunger (50), and the notch (61) in FIG. 15 has a tapered notch. .
  • the plunger (50) not only has a vertical groove (51) formed at the center thereof, but also has a vertical groove formed on the outer peripheral surface thereof for communicating the pressure feeding chamber (11) and the lower lead (52). Many things can be seen. In the case of such a plunger, as shown in FIG. 16, if an annular groove (54) is formed, the annular groove (54) is inevitably provided through the vertical groove (62). ), So that it is not necessary to form a lateral groove for communicating the vertical groove and the lower lead and the above-mentioned notch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection pump for a diesel engine for attaining a specially excellent combustion performance, specifically comprising a notch part (20) formed in the retraction collar (16) of a delivery valve (3), in addition to an Angleich cut (17), to increase the communicating area of a fuel path (18) between a high pressure chamber (7) and a force-feed chamber (11) according to the lift of the delivery valve (3) so as to suppress the retraction effect of the delivery valve (3) in order to prevent a residual pressure in the high pressure chamber (7) from excessively lowering particularly during high idling. An annular groove (54) communicating with a lower lead (52) is formed in the outer peripheral surface of a plunger (50), and a part of fuel inside the force-feed chamber (11) is returned, during force-feed process, to a fuel feed port (13) through the annular groove (54) so as to increase the length of an injection period in low and medium speed ranges to reduce combustion noise, and to delay the injection timing under low idle condition to reduce the emission of blue white smoke.

Description

明 細 燃料噴射ポンプ 技術分野  Details Fuel injection pump Technical field
この発明は、 ディーゼル機関の燃料噴射ポンプに関し、 特に良好な燃焼性能を 実現し得る構造に係る。 背景技術  The present invention relates to a fuel injection pump for a diesel engine, and particularly to a structure that can achieve good combustion performance. Background art
図 1 7及び図 18は、 従来の燃料噴射ポンプを示している。 図のように、 ボン プ本体(1)の上部には、 バルブシート(2)が設けられており、 このバルブシート (2)に内装されたデリベリバルブ (3)が、 スプリング (4)によって常時閉弁方向に 付勢されている。 そして、 バルブシ一ト(2)をポンプ本体(1)に固定するバルブホ ルダ (6)の内部には、 高圧室(7)が設けられるとともに、 この高圧室(7)に連通す るように燃料高圧管 (8)がバルブホルダ(6)に接続され、 図示しない噴射ノズルへ と連通されている。  FIG. 17 and FIG. 18 show a conventional fuel injection pump. As shown in the figure, a valve seat (2) is provided at the top of the pump body (1). The delivery valve (3) inside the valve seat (2) is normally closed by a spring (4). Energized in the valve direction. A high-pressure chamber (7) is provided inside the valve holder (6) for fixing the valve sheet (2) to the pump body (1), and a fuel is provided so as to communicate with the high-pressure chamber (7). A high-pressure pipe (8) is connected to the valve holder (6) and communicates with an injection nozzle (not shown).
一方、 ポンプ本体(1)の下部には、 図示しないカムによって駆動されるプラン ジャ (10)が摺動自在に内装されており、 プランジャ (10)上部とデリベリバルブ ( 3 ) との間に圧送室 (11)が設けられている。 プランジャ (10)の外周面には、 斜め方向に 傾斜した下部リ一ド (12)が形成されており、 この下部リ一ド (12)が圧送室 (11)に連 通されている。  On the other hand, a plunger (10) driven by a cam (not shown) is slidably provided at a lower portion of the pump body (1), and a pressure feed chamber is provided between the upper portion of the plunger (10) and the delivery valve (3). (11) is provided. A lower lead (12) inclined in an oblique direction is formed on the outer peripheral surface of the plunger (10), and the lower lead (12) communicates with the pressure feed chamber (11).
上記において、 カムによってプランジャ (10)が上動して、 図 18に示すように、 プランジャ (10)の外周面が圧送室 (11)に向かって開口する燃料供給口 (13)を塞ぐと、 圧送室 (11)内の燃料が圧縮されてスプリング( 4 )の付勢力に杭してデリベリバルブ (3)を押し上げる。 これによつて、 高圧室(7)と圧送室 (11)とが連通し、 燃料が高 圧室(7)内に流れ込み、 高圧室(7)内の圧力を上昇させる。 この高圧室(7)の圧力 が噴射ノズルの開弁圧以上になると、 噴射ノズルから燃料が噴射される。 In the above, when the plunger (10) is moved upward by the cam and the outer peripheral surface of the plunger (10) closes the fuel supply port (13) opening toward the pressure feed chamber (11) as shown in FIG. The fuel in the pumping chamber (11) is compressed and piled by the urging force of the spring (4) to push up the delivery valve (3). As a result, the high-pressure chamber (7) and the pressure-feeding chamber (11) communicate with each other, and fuel flows into the high-pressure chamber (7) to increase the pressure in the high-pressure chamber (7). The pressure of this high pressure chamber (7) When the pressure exceeds the valve opening pressure of the injection nozzle, fuel is injected from the injection nozzle.
そして、 プランジャ (10)がさらに上動して下部リ一ド (12)が燃料供給口 (13)を開 放すると、 圧送室 (11)内の燃料が下部リード (12)を介して燃料供給口 (13)に戻され、 圧送室 (11)の圧力が急激に低下するようになる。 これにより、 デリベリバルブ(3 ) がスプリング (4 )の付勢力により押し下げられて、 デリベリバルブ ( 3 )上部の円錐 形状のバルブ部 (14)がバルブシー卜(2 )のシ一ト面に密着して噴射が完了する。 このとき、 デリベリバルブ ( 3 )のバルブ部 (14)よりも下方に設けた吸戻しカラ一 (16)の作用により、 高圧室(7 )内の燃料が吸い戻されてその残留圧力が下がり、 こ れによって噴射の切れを良くするとともに、 後だれを防止するようになっている。 しかしながら、 このようなデリベリバルブ ( 3 )による吸戻作用は、 低速域には 高圧管 (8 )側に負圧を生じさせて噴射量が不安定になるといった問題があるため、 吸戻しカラー (16)の摺動面にアングラィヒカツ卜 (17)を施し、 これによつて吸戻効 果を抑制して低速域での高圧室 (7 )の残留圧力をある程度確保して、 回転数に対 する噴射量特性すなわち N— Q特性の改善を図っている。  When the plunger (10) moves further upward and the lower lead (12) opens the fuel supply port (13), the fuel in the pumping chamber (11) is supplied through the lower lead (12). The pressure is returned to the port (13), and the pressure in the pumping chamber (11) rapidly decreases. As a result, the delivery valve (3) is pushed down by the urging force of the spring (4), and the conical valve portion (14) above the delivery valve (3) is brought into close contact with the sheet surface of the valve sheet (2) and ejected. Is completed. At this time, the fuel in the high-pressure chamber (7) is sucked back by the action of the suction pipe (16) provided below the valve section (14) of the delivery valve (3), and the residual pressure is reduced. As a result, the cut of the injection is improved, and later dropping is prevented. However, the suction operation of the delivery valve (3) has a problem that the negative pressure is generated on the high-pressure pipe (8) side in the low-speed region, and the injection amount becomes unstable. ) Is applied to the sliding surface of () to suppress the suction effect and secure the residual pressure in the high-pressure chamber (7) in the low-speed range to some extent, and inject the fuel to the rotation speed. The quantitative characteristics, that is, the N-Q characteristics are improved.
また、 上記燃料噴射ポンプにおいて、 燃料噴射量の制御は下部リード (12)の範 囲内でプランジャ (10)を円周方向に回転させて使用域すなわち有効ストロークを 変更させ、 下部リード (12)による燃料噴射のカツト時期を制御することで行うよ うにしている。 例えば、 低負荷時にはリードの浅い位置を使用することによって 噴射量を少なくし、 高負荷時にはリードの深い位置を使用することによって噴射 量を増大させるようにしている。  In the above fuel injection pump, the amount of fuel injection is controlled by rotating the plunger (10) in the circumferential direction within the range of the lower lead (12) to change the range of use, that is, the effective stroke, and using the lower lead (12). The fuel injection is controlled by controlling the cut timing. For example, when the load is low, the injection amount is reduced by using the shallow position of the lead, and when the load is high, the injection amount is increased by using the deep position of the lead.
このような従来の燃料噴射ポンプにおいては、 以下のような欠点があった。 一 般に、 低速域では、 カムによるプランジャの押上げ力が弱く、 このためデリベリ バルブの上昇量 (以下、 「リフト量」 と称す。 )は小さくなるのに対して、 高速域 では、 カムによるプランジャの押上げ力が強く、 この動的効果によってデリベリ バルブのリフト量は大きくなる。 デリベリバルブのリフト量が大きいと、 吸戻効 果も大きくなつて高圧室内の残留圧力が低くなる。 すなわち、 高速域になるほど、 高圧室内の残留圧力が低くなる。 Such a conventional fuel injection pump has the following disadvantages. Generally, in the low-speed range, the force of the cam to push up the plunger is weak, so that the lift amount of the delivery valve (hereinafter referred to as “lift amount”) is small. The plunger push-up force is strong, and this dynamic effect increases the lift of the delivery valve. If the lift amount of the delivery valve is large, the suction effect is also large, and the residual pressure in the high pressure chamber is reduced. In other words, the higher the speed, The residual pressure in the high pressure chamber decreases.
従来においても、 上記のような傾向にあり、 低速域での高圧室(7 )内の残留圧 力を低く保とうとすれば、 特に、 高速で噴射量の少ないハイアイドリング状態の ときには、 高圧室 ( 7 )内の残留圧力が低くなり過ぎて、 圧送工程のときの噴射の 立ち上がりすなわち動的噴射時期が遅れてしまうことがある。 この場合、 冷間始 動時等でミスフアイヤーを起こし、 青白煙を排出する失火等の不具合が発生し易 くなる。  Conventionally, the above tendency has been observed, and if the residual pressure in the high-pressure chamber (7) is to be kept low in the low-speed region, the high-pressure chamber ( The residual pressure in 7) may be too low, and the rise of injection during the pumping process, that is, the dynamic injection timing may be delayed. In this case, a misfire is caused at the time of a cold start or the like, and a trouble such as a misfire emitting blue-white smoke is likely to occur.
一方、 ハイアイドリング状態において残留圧力が低くなり過ぎないようにする と、 低速域での残留圧力がアングラィヒカツト (17)による圧力確保と相まって高 くなり、 これによつて噴射期間が短くなつて、 混合気形成及び燃焼が急激となり、 燃焼騒音が発生し易くなる。  On the other hand, if the residual pressure is not made too low in the high idling state, the residual pressure in the low-speed region will increase in conjunction with the securing of the pressure by the angle cutter (17), which will shorten the injection period. As a result, the formation of the air-fuel mixture and the combustion become rapid, and the combustion noise is likely to be generated.
すなわち、 低速域での高圧室 (7 )内の残留圧力を低く保ちながら、 しかもハイ アイドリング状態での高圧室 (7 )内の残留圧力が低くなり過ぎないようにして、 燃焼性能を良好に維持することが困難であった。  That is, while maintaining the residual pressure in the high-pressure chamber (7) in the low-speed range low, and keeping the residual pressure in the high-pressure chamber (7) in the high idling state from becoming too low, the combustion performance is maintained satisfactorily. It was difficult to do.
また、 等圧弁を使用して低速域での残留圧力をある程度低く保つことができる が、 この場合には、 高速高負荷域でのスピルレートが低下して噴射切れが悪くな り、 燃焼性能の悪化を招いていた。  In addition, the residual pressure in the low-speed range can be kept to some extent low by using a constant-pressure valve.However, in this case, the spill rate in the high-speed and high-load range is reduced, so that the injection cut-off becomes worse and the combustion performance deteriorates. Was invited.
さらに、 従来においては、 プランジャ (10)による圧送工程中に圧送室 (11)内の圧 力が連続的に上昇するため、 噴射圧力も連続して上昇し、 これによつて噴射期間 が短くなり、 混合気形成速度が急激となって一気に爆発燃焼し、 この結果大きな 燃焼騒音を発生するといつた不具合がある。 このような燃焼騒音の発生は、 特に 低中速域において顕著である。 また、 噴射量の少ないローアイドル状態では、 噴 射時期が早くなり、 燃焼が悪化して青白煙を発生するといつた不具合もあった。 そこで、 上記のような不具合を解消するために、 プランジャの上端近傍に下部 リードに連通する溝を設けて、 プランジャの圧送工程中に圧送室内の燃料を溝を 介して燃料供給口に一部戻すことによって、 特に低中速域での圧送室内の圧力上 昇を緩やかにして、 噴射期間を長くしたり、 噴射時期を可変するようにした燃料 噴射ボンプが種々提案されている。 Furthermore, conventionally, during the pumping process by the plunger (10), the pressure in the pumping chamber (11) continuously increases, so that the injection pressure also increases continuously, thereby shortening the injection period. However, there is a problem in that the mixture formation speed becomes rapid and explosively burns at once, resulting in a large combustion noise. The generation of such combustion noise is particularly remarkable in low to medium speed ranges. In addition, in the low idle state where the injection amount is small, the injection timing was advanced, and there was a problem that the combustion deteriorated and blue-white smoke was generated. Therefore, in order to solve the above-mentioned problem, a groove communicating with the lower lead is provided near the upper end of the plunger, and the fuel in the pumping chamber is partially returned to the fuel supply port through the groove during the plunger pumping process. In particular, the pressure inside the pumping chamber in low to medium speed range Various fuel injection pumps have been proposed in which the injection time is made longer by increasing the injection time slowly and the injection timing is made variable.
しかし、 何れの提案例においても、 プランジャの外周面に形成した溝は、 その 一端が下部リードに連通する部分溝となっている。 これは、 特に始動時において は、 リードの最も深い位置を利用することによって有効ストロークを大きくし、 噴射量を最大にすることが必要であるが、 この始動時においても燃料を戻すよう にすると始動性が悪くなるため、 リードの最も深い位置を避けるようにして溝を 形成しているからである。  However, in any of the proposals, the groove formed on the outer peripheral surface of the plunger is a partial groove having one end communicating with the lower lead. This means that it is necessary to increase the effective stroke and maximize the injection amount by using the deepest position of the lead, especially at the start, but if the fuel is returned at this start, it will start. This is because the groove is formed so as to avoid the deepest position of the lead because of the poor performance.
このような部分溝を切削機を使用してプランジャの外周面に形成する場合、 ど こまで溝を切るかということに対してのプランジャの高精度な位置決めが要求さ れ、 またプランジャ上端面から溝までの距離の管理も非常に難しくなる。 このた め、 プランジャの溝加工が非常に煩雑で、 製造コストも増大していた。  When such a partial groove is formed on the outer peripheral surface of the plunger using a cutting machine, highly accurate positioning of the plunger with respect to how far the groove is to be cut is required. Managing the distance to the groove is also very difficult. For this reason, the plunger groove machining was very complicated, and the manufacturing cost was increased.
また、 噴射量を変えるためにプランジャを回転させると、 燃料供給口と部分溝 との相対的な位置が変わって燃料排出経路の全長が変化してしまい、 圧送室内の 圧力制御を高精度に行うことができないといった不具合があった。  In addition, when the plunger is rotated to change the injection amount, the relative position between the fuel supply port and the partial groove changes and the overall length of the fuel discharge path changes, and the pressure in the pumping chamber is precisely controlled. There was a problem that it was not possible.
本発明は、 このような上記の欠点を解消して、 低速域での高圧室内の残留圧力 をある程度低く保ちながら、 高速域 (特に、 ハイアイドリング状態)での高圧室内 の残留圧力が低くなり過ぎないようにして、 良好な燃焼性能を実現する燃料噴射 ポンプを提供することを目的としている。  The present invention solves the above-mentioned drawbacks and keeps the residual pressure in the high-pressure chamber in the low-speed range to a certain extent, while the residual pressure in the high-pressure chamber in the high-speed range (particularly in the high idling state) becomes too low. The objective is to provide a fuel injection pump that achieves good combustion performance by avoiding it.
また、 圧送工程中の圧送室内の燃料の一部を良好に排出して、 低中速域での燃 焼騒音の低減や口一アイドル状態での青白煙の低減等を図ることができ、 しかも そのためのプランジャの溝加工が極めて簡単に済む燃料噴射ポンプを提供するこ とを目的としている。 発明の開示  Also, part of the fuel in the pumping chamber during the pumping process can be satisfactorily discharged to reduce combustion noise in low to medium speed ranges, and to reduce blue-white smoke in the mouth-idle state. An object of the present invention is to provide a fuel injection pump in which the plunger groove processing is extremely easy. Disclosure of the invention
本発明は、 噴射ノズル等が接続された高圧室と圧送室とを連通する燃料通路に 燃料吸戻機能を有するデリベリバルブを摺動自在に配設した燃料噴射ポンプにお いて、 前記デリべリバルプの吸戻しカラーにアングラィヒカットを施すとともに、 前記燃料通路の連通面積が最大となる前の段階において、 前記アングラィヒカツ 卜による前記燃料通路の連通面積の拡大とは別に、 前記デリベリバルブの移動に 伴って前記燃料通路の連通面積を拡大する連通面積拡大手段を設けたことを特徴 とするものである。 The present invention relates to a fuel passage connecting a high-pressure chamber to which an injection nozzle or the like is connected and a pressure-feeding chamber. In a fuel injection pump in which a delivery valve having a fuel suction function is slidably disposed, the suction collar of the delivery valve is subjected to an angleless cut, and the communication area of the fuel passage is maximized. In the step, a communication area expanding means for expanding the communication area of the fuel passage along with the movement of the delivery valve is provided separately from the expansion of the communication area of the fuel passage due to the angle cutter. is there.
これにより、 噴射量の少ないハイアイドリング状態のときには、 デリべリバル ブが僅かにリフ卜するだけで、 面積拡大した燃料通路を介して高圧室内に送るベ き燃料を全て送り込めるようになり、 本来であれば大きくなるはずのデリべリバ ルブのリフト量を小さく抑えて吸戻効果を抑制することができ、 従来に比べて高 圧室内の残留圧力を確保することができる。 従って、 低速域での高圧室内の残留 圧力がある程度低くなるように設定しても、 ハイアイドリング状態での高圧室内 の残留圧力が低くなり過ぎることはない。  As a result, in the high idling state where the injection amount is small, all the fuel to be sent into the high-pressure chamber through the fuel passage having an increased area can be sent only by slightly lifting the delivery valve. Then, the lift amount of the delivery valve, which should be large, can be reduced to suppress the suction effect, and the residual pressure in the high-pressure chamber can be secured as compared with the conventional case. Therefore, even if the residual pressure in the high-pressure chamber in the low-speed range is set to be somewhat low, the residual pressure in the high-pressure chamber in the high idling state does not become too low.
一方、 高速高負荷域のときには、 噴射量が多いので、 高圧室内のデリべリバル ブが慣性力を持って十分な高さまでリフトして、 十分な吸戻効果を得ることにな り、 高圧室内の残留圧力が十分に低くなる。  On the other hand, in the high-speed, high-load range, the injection amount is large, and the delivery valve in the high-pressure chamber lifts to a sufficient height with inertia to obtain a sufficient suction effect. Becomes sufficiently low.
このため、 低速域での噴射時期を長くして、 混合気形成及び燃焼を緩慢にさせ ることにより、 急激な熱発生を抑制して燃焼騒音を低減することができるととも に、 ハイアイドリング状態での噴射時期の遅れを同時になくすことができ、 これ によって燃焼性能を格段に向上させることがきる。 しかも、 ハイアイドリング状 態での残量圧力の低下を抑制しているにもかかわらず、 高速高負荷域では、 十分 な吸戻効果によって残留圧力を十分に低くすることができ、 噴射の切れの良い良 好な燃焼性能を実現できる。  Therefore, by prolonging the injection timing in the low-speed range and slowing the mixture formation and combustion, rapid heat generation can be suppressed and combustion noise can be reduced. As a result, the delay in the injection timing can be eliminated at the same time, which can significantly improve the combustion performance. In addition, despite suppressing the decrease in the residual pressure in the high idling state, the residual pressure can be sufficiently reduced by the sufficient suction effect in the high-speed and high-load range, and the injection cutoff can be prevented. Good and good combustion performance can be achieved.
また、 上記連通面積拡大手段は、 前記デリベリバルブの吸戻しカラー又は前記 燃料通路の壁面の少なくともいずれか一方に形成した切欠部からなる。 これによ り、 極めて簡単な構造により上記効果を達成することができる。 さらに、 この切欠部を、 前記吸戻しカラ一の摺動面を段差状若しくは傾斜状に 切り欠いてなるものとしている。 さらにまた、 切欠部を、 吸戻しカラ一における 前記アングラィヒカツ卜を施す部位を切り欠いてなるものとすることによって、 アングラィヒカツ卜と切欠部を一回の切削作業で同時に形成することができ、 製 造工程を簡略化することができる。 Further, the communication area enlarging means includes a cutout formed in at least one of a suction / return collar of the delivery valve and a wall surface of the fuel passage. Thus, the above-described effect can be achieved with a very simple structure. Furthermore, the notch is formed by cutting out the sliding surface of the suction and return collar in a stepped or inclined shape. Furthermore, by forming the notch portion by cutting out a portion of the suction-back collar where the angle cutting is to be performed, the angle cutting and the notch portion can be simultaneously formed by a single cutting operation. The process can be simplified.
また、 本発明は、 外周面に下部リードを形成したプランジャを圧送室内に摺動 自在に挿入するとともに、 その圧送室に向けて開口する燃料供給口を前記プラン ジャの先端によって塞いでから前記下部リードによって開放するまでの間に圧送 室内の燃料を圧送させるようにした燃料噴射ポンプにおいて、 前記プランジャの 外周面に、 前記下部リードに連通する環状溝を形成して、 前記の圧送工程中に前 記圧送室内の燃料の一部を前記環状溝を介して前記燃料供給口に戻すようにした ものである。  The present invention also provides a plunger having a lower lead formed on an outer peripheral surface slidably inserted into a pumping chamber, and closing a fuel supply opening opening toward the pumping chamber with a tip of the plunger. In the fuel injection pump, in which the fuel in the pressure-feeding chamber is pressure-fed before being opened by the lead, an annular groove communicating with the lower lead is formed on the outer peripheral surface of the plunger, Part of the fuel in the pressure storage chamber is returned to the fuel supply port through the annular groove.
そして、 前記環状溝は、 その全周に渡って同一な断面形状とされ、 またその溝 幅が前記燃料供給口の口径よりも小とされている。  The annular groove has the same cross-sectional shape over the entire circumference, and the width of the groove is smaller than the diameter of the fuel supply port.
これにより、 圧送工程において、 プランジャの移動速度が遅い低中速域では、 燃料供給口と環状溝が連通する時間が長くなるので、 多くの燃料が排出されて圧 送能力が十分に低下し、 圧送室内の圧力上昇が緩やかになって噴射期間が長くな り、 これによつて燃焼騒音を低減することができる。 また口一アイドル状態での 噴射時期を遅くして青白煙を低減することができる。  As a result, in the pumping process, in the low to medium speed range where the moving speed of the plunger is slow, the time for which the fuel supply port communicates with the annular groove becomes longer, so that a large amount of fuel is discharged and the pumping capacity is sufficiently reduced. The pressure rise in the pumping chamber becomes gentle and the injection period becomes longer, thereby reducing combustion noise. In addition, it is possible to reduce blue-white smoke by delaying the injection timing in the mouth-idle state.
一方、 高速高負荷域では、 プランジャの移動速度が速く、 燃料供給口と環状溝 が連通する時間が短くなるので、 燃料の排出量も少なく圧送能力もほとんど低下 しない。 従って、 低中速域では噴射期間が長くなるが、 高速高負荷域では、 噴射 期間を短くして噴射切れの良い良好な燃焼性能を維持することができる。  On the other hand, in a high-speed and high-load region, the plunger moves at a high speed, and the time required for communication between the fuel supply port and the annular groove is shortened. Therefore, the injection period becomes longer in the low to medium speed range, but in the high speed and high load range, the injection period can be shortened to maintain good combustion performance with good injection termination.
また、 断面形状が同一の環状溝を採用することによって、 従来のような部分溝 を形成するときと比べて、 切削機を使用したプランジャの溝加工を極めて簡単に 行うことができるようになり、 製造コストの低減を図ることができる。 さらに、 プランジャの外周面に環状溝を形成した場合、 下部リード及び燃料供 給口に対する連通部分が 2ケ所ずつ形成されることになるので、 1つの溝で 2つ の燃料排出経路を得ることができ、 燃料の排出効率を増大することができる。 Also, by adopting an annular groove having the same cross-sectional shape, it becomes possible to extremely easily perform plunger groove processing using a cutting machine, as compared with the case of forming a conventional partial groove. Manufacturing costs can be reduced. Furthermore, when an annular groove is formed on the outer peripheral surface of the plunger, two communicating portions with the lower lead and the fuel supply port are formed, so that two fuel discharge paths can be obtained with one groove. Fuel efficiency can be increased.
さらにまた、 噴射量を変えるためにプランジャを水平方向に回転させると、 燃 料供給口と環状溝との相対的な位置は変わることになるものの、 燃料排出経路の 全長は、 常に環状溝の全長と等しく変化することがない。 このため、 プランジャ の回転位置にかかわらず、 燃料排出条件を常に一定とすることができ、 圧送室内 の燃料制御を高精度に行うことが可能となる。 図面の簡単な説明  Furthermore, if the plunger is rotated horizontally to change the injection amount, the relative position between the fuel supply port and the annular groove will change, but the total length of the fuel discharge path will always be the full length of the annular groove. Does not change equally. Therefore, regardless of the rotational position of the plunger, the fuel discharge condition can be kept constant, and the fuel control in the pumping chamber can be performed with high accuracy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係る燃料噴射ポンプの縦断面図、 図 2は、 同じく そのデリベリバルブ部分の縦断面図、 図 3は、 同じくその燃料通路の連通面積が 拡大したときの縦断面図、 図 4は、 デリベリバルブの切欠部を示す斜視図、 図 5 は、 デリベリバルブのリフト量と燃料通路の連通面積との関係を示す図、 図 6は、 傾斜状の切欠部が形成されたデリベリバルブの正面図、 図 7は、 アングラィヒカツ トを施した部位に切欠部を形成したデリベリバルブの正面図、 図 8は、 アングラ ィヒカツトを施した部位に切欠部を形成したデリベリバルブの正面図、 図 9は、 バルブシートに切欠部を形成したときの状態を示す縦断面図、 図 1 0は、 デリべ リバルブ及びバルブシートの両方に切欠部を形成したときの状態を示す縦断面図、 図 1 1は、 プランジャの斜視図、 図 1 2は、 圧送工程中におけるプランジャと燃 料供給口との位置関係を示す側面図、 図 1 3は、 上下一対の環状溝を形成したプ ランジャの側面図、 図 1 4は、 下部リードと環状溝を切欠部を介して連通したプ ランジャの側面図、 図 1 5は、 下部リードと環状溝を切欠部を介して連通したプ ランジャの側面図、 図 1 6は、 環状溝を形成した他のプランジャの斜視図、 図 1 7 は、 従来の燃料噴射ポンプの縦断面図、 図 1 8は、 同じくその圧送工程中の縦断 面図である。 発明を実施するための最良の形態 FIG. 1 is a longitudinal sectional view of a fuel injection pump according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the same delivery valve portion, and FIG. 3 is a longitudinal sectional view of the same when the communication area of the fuel passage is enlarged. Fig. 4 is a perspective view showing the notch of the delivery valve, Fig. 5 is a diagram showing the relationship between the lift amount of the delivery valve and the communication area of the fuel passage, and Fig. 6 is a delivery valve having an inclined notch. Fig. 7 is a front view of a delivery valve in which a cutout portion is formed in a portion where an angle cut is provided, Fig. 8 is a front view of a delivery valve in which a cutout portion is formed in a portion where an angle cut is provided, and Fig. 9 is FIG. 10 is a longitudinal sectional view showing a state in which a notch is formed in a valve seat. FIG. 10 is a longitudinal sectional view showing a state in which a notch is formed in both a delivery valve and a valve seat. Is a perspective view of the plunger, FIG. 12 is a side view showing the positional relationship between the plunger and the fuel supply port during the pumping process, FIG. 13 is a side view of the plunger having a pair of upper and lower annular grooves, FIG. 14 is a side view of the plunger in which the lower lead communicates with the annular groove through the cutout. FIG. 15 is a side view of the plunger in which the lower lead communicates with the annular groove through the cutout. 6 is a perspective view of another plunger in which an annular groove is formed, FIG. 17 is a longitudinal sectional view of a conventional fuel injection pump, and FIG. 18 is a longitudinal sectional view of the same during the pumping process. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態に係る燃料噴射ポンプは、 そのデリべし  The fuel injection pump according to the embodiment of the present invention
の構造を工夫することによって燃焼性能を良好にしたもので、 その他の構造につ いては従来とほぼ同じである。 なお、 従来と同様の機能を有する部材については 同符号を付してある。 The combustion performance is improved by devising the structure of the above, and the other structures are almost the same as before. Members having the same functions as those in the related art are denoted by the same reference numerals.
この燃料噴射ポンプは、 高圧室 ( 7 )と圧送室 (11)とを連通するバルブシート(2 ) 内の燃料通路 (18)に、 デリベリバルブ ( 3 )を上下摺動自在に配設し、 このデリベリ バルブ (3 )の吸戻しカラ一 (16)に、 従来と同様のアングラィヒカツ卜 (17)を施して ある。 そして、 燃料通路 (18)の連通面積が最大となる前の段階において、 アング ライヒカツト (17)による燃料通路 (18)の連通面積の拡大とは別に、 デリベリバルブ (3 )の開弁方向への移動すなわちリフトに応じて燃料通路 (18)の連通面積を拡大す る連通面積拡大手段を設けている。  In this fuel injection pump, a delivery valve (3) is slidably arranged vertically in a fuel passage (18) in a valve seat (2) communicating a high pressure chamber (7) and a pressure feeding chamber (11). The suction valve (16) of the delivery valve (3) is provided with the same angle cutter (17) as the conventional one. Before the communication area of the fuel passage (18) becomes maximum, the delivery valve (3) moves in the valve opening direction separately from the expansion of the fuel passage (18) by the Ang Reich cut (17). That is, a communication area expanding means for expanding the communication area of the fuel passage (18) according to the lift is provided.
前記連通面積拡大手段は、 図 2乃至図 4に示すように、 デリベリバルブ (3 )の 吸戻しカラ一 (16)に形成した切欠部 (20)からなり、 この切欠部 (20)は、 吸戻しカラ一 (16)の摺動面におけるアングラィヒカツト (Π)が施された部位と反対側の部位を、 その中央やや上端寄りから下面にかけて段差状に切り欠いてなる。  As shown in FIGS. 2 to 4, the communication area enlarging means includes a cutout portion (20) formed in a suction return collar (16) of the delivery valve (3), and the cutout portion (20) The part of the sliding surface of the collar (16) opposite to the part where the angle cut (Π) is applied is cut out stepwise from the center slightly near the upper end to the lower surface.
これにより、 デリベリバルブ (3 )が押し上げられると、 まずアングラィヒカツ ト (17)により燃料通路 (18)の連通面積が僅かに拡大する。 そして、 図 3に示すよう に、 デリベリバルブ (3 )の切欠部 (20)の上端部分 (21)がバルブシート(2 )における シ一ト面 (15)の下端部分よりも上方に位置すると、 切欠部 (20)とシート面 (15)との 間に開口が形成されて、 燃料通路 (18)の連通面積がさらに拡大する。 そして、 さ らにデリベリバルブ (3 )が押し上げられて、 切欠部 (20)の下端部分 (22)すなわち吸 戻しカラー (16)の下面がシート面 (15)の下端部分よりも上方に位置すると、 燃料通 路 (18)の連通面積がさらにまた拡大して最大連通面積に達する。 As a result, when the delivery valve (3) is pushed up, the communication area of the fuel passage (18) is slightly increased by the angle cutter (17). Then, as shown in FIG. 3, when the upper end portion (21) of the notch ( 20 ) of the delivery valve (3) is located above the lower end portion of the seat surface (15) of the valve seat (2), An opening is formed between the notch (20) and the seat surface (15), and the communication area of the fuel passage (18) further increases. When the delivery valve (3) is further pushed up and the lower end portion (22) of the notch (20), that is, the lower surface of the suction collar (16) is located above the lower end portion of the seat surface (15), The communication area of the fuel passage (18) further expands to reach the maximum communication area.
図 5は、 デリベリバルブ (3 )のリフト量と燃料通路 8)の連通面積との関係を示 しており、 図中の実線はアングラィヒカツト (17)を施して切欠部 (20)をさらに設け た本発明のデリベリバルブを使用した場合、 点線はアングラィヒカツ卜 (17)のみ を施した従来のデリベリバルブを使用した場合を示している。 この図からも明ら かなように、 従来においては、 デリベリバルブ (3 )の押し上げ直後にアングラィ ヒカツト (17)によって連通面積が拡大してから、 デリベリバルブ ( 3 )が完全に開弁 するまで連通面積は一定であるが、 本発明においては、 アングラィヒカツト (17) によって連通面積を拡大してから、 燃料通路 (18)が最大連通面積に達するまです なわちデリベリバルブ (3 )が完全に開弁するまでに、 切欠部 (20)によって連通面積 を拡大している。 Fig. 5 shows the relationship between the lift amount of the delivery valve (3) and the communication area of the fuel passage 8 ). The solid line in the figure indicates that the delivery valve of the present invention provided with an angle cut (17) and further provided with a notch (20) is used, and the dotted line is the conventional one provided with only the angle cut (17). The case where the delivery valve is used is shown. As is evident from this figure, in the past, the communication area was enlarged by the angle bracket (17) immediately after the delivery valve (3) was pushed up, and then until the delivery valve (3) was completely opened. In the present invention, the delivery area is constant, but after the communication area is expanded by the angle cutter (17), the fuel passage (18) reaches the maximum communication area, that is, the delivery valve (3) is completely opened. By the time, the communication area is enlarged by the notch (20).
このように、 本実施形態のデリベリバルブ構造においては、 従来に比べてデリ ベリバルブ (3 )のリフト量が小さいときに、 切欠部 (20)によって連通面積を十分に 確保して圧送室 (11)内の燃料を高圧室( 7 )内に圧送することができるようになって いる。  As described above, in the delivery valve structure of the present embodiment, when the lift amount of the delivery valve (3) is smaller than before, the notch portion (20) secures a sufficient communication area so that the inside of the pressure feed chamber (11) is reduced. Can be pumped into the high-pressure chamber (7).
このため、 高速で噴射量の少ないハイアイドリング状態のときに、 デリべリバ ルブ (3 )が僅かにリフトするだけで、 高圧室(7 )内に送るべき燃料を全て送り込め るようになり、 本来であれば大きくなるはずのデリベリバルブ (3 )のリフト量を 小さく抑えて、 吸戻効果を抑制することができる。 一方、 噴射量の多い高速高負 荷域のときには、 高圧室 (7 )内のデリベリバルブ ( 3 )が慣性力を持って高い位置ま でリフトし、 十分な吸戻効果を得ることになる。  For this reason, in a high idling state with a high injection speed and a small injection amount, all the fuel to be sent into the high pressure chamber (7) can be sent by only slightly lifting the delivery valve (3). The lift amount of the delivery valve (3), which would otherwise be large, can be suppressed to a small value, and the suction effect can be suppressed. On the other hand, in a high-speed and high-load region where the injection amount is large, the delivery valve (3) in the high-pressure chamber (7) lifts to a high position with inertial force, and a sufficient suction effect is obtained.
従って、 低速域での高圧室 (7 )内の残留圧力がある程度低くなるように設定し ても、 ハイアイドリング状態での高圧室(7 )内の残留圧力が低くなり過ぎること はなく、 これによつて低速域での噴射期間を長くして、 燃焼騒音を低減すること ができるとともに、 ハイアイドリング状態での噴射時期の遅れを同時になくすこ とができる。 しかも、 ハイアイドリング状態での残留圧力の低下を抑制している にもかかわらず、 高速高負荷域では、 十分な吸戻効果によって残留圧力を十分に 低くすることができ、 噴射の切れの良い良好な燃焼性能を実現できる。 このような作用効果を達成するデリベリバルブ構造は、 上記のものに限定され るものではなく、 以下、 その他のデリベリバルブ構造について説明する。 Therefore, even if the residual pressure in the high-pressure chamber (7) in the low-speed range is set to be somewhat low, the residual pressure in the high-pressure chamber (7) in the high idling state does not become too low. This makes it possible to prolong the injection period in the low-speed range, reduce combustion noise, and simultaneously eliminate delays in injection timing in the high idling state. In addition, despite suppressing the decrease in residual pressure in the high idling state, the residual pressure can be sufficiently reduced by a sufficient suction effect in a high-speed and high-load range, and the injection is good. High combustion performance. The delivery valve structure that achieves such an operation and effect is not limited to the above, and other delivery valve structures will be described below.
例えば、 図 6に示すように、 連通面積拡大手段として、 段差状の切欠部 (20)の 代わりに、 吸戻し力ラー (16)の摺動面の中央やや上端寄りから下面にかけてを、 斜め下方に向かってテーパー状に切り欠いてなる切欠部 (30)を形成してもよい。 この場合、 段差状の切欠部 (20)が燃料通路 (18)の連通面積を段階的に拡大するのに 対して、 連通面積を徐々に拡大することができ、 従って燃料の圧送がスムーズと なってより良好な燃焼性能を実現することができる。  For example, as shown in Fig. 6, instead of the step-shaped notch (20), instead of the stepped notch (20), the center of the sliding surface of the suction-back force roller (16) is slightly inclined from the upper end to the lower surface, as shown in Fig. 6. A notch (30) may be formed which is tapered toward the bottom. In this case, while the stepped notch (20) gradually increases the communication area of the fuel passage (18), the communication area can be gradually increased, so that the fuel can be pumped smoothly. Thus, better combustion performance can be realized.
また、 切欠部を形成する部位は、 吸戻しカラ一 (16)の摺動面におけるアングラ ィヒカット (17)が施された部位と反対側の部位でなくても良く、 例えば、 図 7及 び 8に示すように、 アングラィヒカツト (17)を施す部位に切欠部 (31)(32)を形成し てもよい。 なお、 図 7に示す切欠部 (31)は、 アングラィヒカット (17)分を含めて、 吸戻しカラー (16)の側部を上面から下面にかけてを、 斜め下方に向かってテーパー 状に切り欠いてなる。 図 8に示す切欠部 (32)は、 アングラィヒカット (17)を施すと きと同様にまず吸戻しカラ一 (16)の側部をその摺動方向にフラット状に切り欠い た後、 斜め下方に向かってテーパー状に切り欠いてなる。 この場合、 アングラィ ヒカツ卜 (Π)と切欠部 (31)(32)を一回の切削作業で同時に形成することができ、 製 造工程を簡略化することができる。  In addition, the portion where the notch is formed does not have to be the portion on the sliding surface of the suction return collar (16) opposite to the portion where the angle cut (17) is applied. For example, FIGS. 7 and 8 As shown in (5), cutouts (31) and (32) may be formed in the portion where the angle cut (17) is to be applied. The notch (31) shown in Fig. 7 is cut diagonally downward from the upper surface to the lower surface of the side of the suction-back collar (16), including the angle cut (17). I will lack it. The notch (32) shown in Fig. 8 first cuts the side of the suction-back collar (16) flat in the sliding direction, as in the case of applying the Angleich cut (17). It is notched in a tapered shape obliquely downward. In this case, the angle cutter (Π) and the notches (31), (32) can be formed simultaneously by one cutting operation, and the manufacturing process can be simplified.
さらに、 デリベリバルブ ( 3 )の吸戻し力ラ一(16)の側部に上記のような切欠部を 複数形成するようにしても良く、 また角度の異なるテーパーを連続させて傾斜状 の切欠部を形成しても良い。  Further, a plurality of notches as described above may be formed on the side of the suction / retraction force line (16) of the delivery valve (3), and tapered portions having different angles are continuously formed to form an inclined notch. It may be formed.
さらにまた、 燃料通路 (18)の壁面すなわちバルブシート(2 )の内側面に切欠部を 形成して、 上述と同様にデリベリバルブ (3 )のリフトに応じて連通面積を拡大す るようにしても良い。 例えば、 図 9に示すように、 バルブシート(2 )におけるシ一 ト面 (15)のコーナー部分を全周にわたって段差状に切り欠くことによって、 閉弁 状態にあるデリベリバルブ ( 3 )の吸戻し力ラー (16)よりも上方に位置する切欠部 (40)を形成しても良い。 この場合、 デリベリバルブ ( 3 )が押し上げられて、 吸戻し 力ラー (16)の下面が切欠部 (40)の下面よりも上方に位置すると、 切欠部 (40)と吸戻 しカラー (16)との間に開口が形成されて、 燃料通路 (18)の連通面積が拡大すること になる。 Furthermore, a notch is formed in the wall surface of the fuel passage (18), that is, the inner surface of the valve seat (2), so that the communication area is increased in accordance with the lift of the delivery valve (3) as described above. good. For example, as shown in FIG. 9, the corner of the seat surface (15) of the valve seat (2) is cut out in a stepped shape over the entire circumference, so that the suction force of the delivery valve (3) in the closed state is reduced. Notch located above (16) (40) may be formed. In this case, when the delivery valve (3) is pushed up and the lower surface of the suction force roller (16) is located above the lower surface of the notch portion (40), the notch portion (40) and the suction collar (16) are connected. An opening is formed between them, and the communication area of the fuel passage (18) increases.
また、 図 1 0に示すように、 デリベリバルブ ( 3 )の吸戻しカラー (16)及びバルブ シー卜(2 )の内側面の両方に上記の切欠部 (30)(40)を形成しても良い。 この場合、 切欠部 (30)の上端部分がバルブシート(2 )の切欠部 (40)の下面よりも上方に位置す ると、 両切欠部 (30)(40)の間に開口が形成されて、 燃料通路 (18)の連通面積が拡大 することなり、 連通面積を拡大するのに必要なデリベリバルブ ( 3 )のリフト量を 極めて少なくすることができる。 なお、 デリベリバルブ (3 )側の切欠部として段 差状のものを採用しても良く、 バルブシート(2 )側の切欠部としてテーパー状の ものを採用しても良い。 また、 切欠部の数や形成部位も適宜変更しても良い。 一方、 プランジャ (50)は、 図 1 1に示すように、 その上端面中央から下方に向 かって断面円形状の縦溝 (51)が形成され、 また外周面の上端近傍から斜め方向に ほぼ半周に渡って下部リ一ド (52)が形成されている。 そして、 縦溝 (51)の下端部分 と下部リード (52)の中央部分とが横溝 (53)を介して連通されている。  Further, as shown in FIG. 10, the notches (30) and (40) may be formed on both the suction-back collar (16) of the delivery valve (3) and the inner surface of the valve sheet (2). . In this case, when the upper end of the notch (30) is located above the lower surface of the notch (40) of the valve seat (2), an opening is formed between the notches (30) and (40). As a result, the communication area of the fuel passage (18) is increased, and the lift amount of the delivery valve (3) required for increasing the communication area can be extremely reduced. The notch on the delivery valve (3) side may be a stepped one, and the notch on the valve seat (2) may be a tapered one. In addition, the number of cutouts and the formation site may be appropriately changed. On the other hand, as shown in FIG. 11, the plunger (50) is formed with a vertical groove (51) having a circular cross-section from the center of the upper end face toward the lower part, and substantially halfway in the oblique direction from near the upper end of the outer peripheral face. And a lower lead (52) is formed. The lower end of the vertical groove (51) and the center of the lower lead (52) communicate with each other via the horizontal groove (53).
さらに、 プランジャ (50)の外周面の上端近傍には、 下部リード (52)の上端部分と 交錯してこれに連通する環状溝 (54)が全周に渡って形成されている。 この環状溝 (54)は、 プランジャ (50)の上端面と平行に配されており、 その断面形状が全周に渡つ て同一とされ、 その溝幅が燃料供給口 (13)の口径よりも小さく設定されている。 なお、 環状溝 (54)の断面形状は、 矩形に限らず半円形或いは楔形であっても良い。 このような環状溝 (54)を切削機を使用して形成する際には、 環状溝 (54)の加工位 置すなわちプランジャ (50)の上端面からの距離を決めて、 この部分に切削機の刃 先を押し当て、 プランジャ (50)を固定して水平回転させるだけの切削作業で済む ことになる。 このため、 従来の部分溝を加工するときのようなプランジャの高精 度な位置決めや、 プランジャの上端面からの難しい距離管理を必要とせず、 溝加 ェが極めて簡単になり、 製造コス卜の低減を図ることができる。 Further, an annular groove (54) is formed over the entire circumference in the vicinity of the upper end of the outer peripheral surface of the plunger (50) so as to intersect with and communicate with the upper end of the lower lead (52). The annular groove (54) is arranged parallel to the upper end surface of the plunger (50), has the same cross-sectional shape over the entire circumference, and has a groove width larger than the diameter of the fuel supply port (13). Is also set small. The cross-sectional shape of the annular groove (54) is not limited to a rectangle, but may be a semicircle or a wedge. When such an annular groove (54) is formed using a cutting machine, the machining position of the annular groove (54), that is, the distance from the upper end surface of the plunger (50) is determined, and the cutting machine In this case, it is only necessary to press the cutting edge of, fix the plunger (50) and rotate it horizontally. This eliminates the need for high-precision positioning of the plunger and difficult distance management from the upper end surface of the plunger, as is required when machining conventional partial grooves. The process is extremely simple, and the manufacturing cost can be reduced.
図 1 2は、 圧送工程中におけるプランジャ (50)と燃料供給口 (13)との位置関係を 示している。 この図に示すように、 プランジャ (50)が上動してプランジャ (50)の上 端面が燃料供給口 (13)の上端と同じ高さ位置に到達すると、 圧送室 (11)内の燃料の 圧送が始まる。 この圧送開始状態では、 燃料供給口 (13)と環状溝 (54)とが連通して おり、 圧送室 (11)内の燃料は縦横溝 (51)(53)、 下部リード (52)及び環状溝 (54)を通つ て燃料供給口 (13)側に排出する。 このとき、 環状溝 (54)は燃料供給口 (13)に対して 2ケ所 (55)(56)で連通し、 下部リード (52)に対しても図 1 1に示すように 2ケ所 (57)(58)で連通しているので、 1つの環状溝 (54)で下部リード (52)から燃料供給口 (13)に至る 2つの燃料排出経路が存在することになり、 これによつて燃料を効率 良く排出することができる。 この燃料排出は、 プランジャ (50)がさらに上動して 環状溝 (54)が燃料供給口 (13)の上方に位置するまで続けられ、 下部リード (52)が燃 料供給口 (13)に連通すると噴射が完了する。  FIG. 12 shows the positional relationship between the plunger (50) and the fuel supply port (13) during the pumping process. As shown in this figure, when the plunger (50) moves upward and the upper end face of the plunger (50) reaches the same height position as the upper end of the fuel supply port (13), the fuel in the pumping chamber (11) is removed. Pumping begins. In this pumping start state, the fuel supply port (13) and the annular groove (54) are in communication with each other, and the fuel in the pumping chamber (11) is filled with the vertical and horizontal grooves (51) (53), the lower lead (52) and the annular Discharge to the fuel supply port (13) through the groove (54). At this time, the annular groove (54) communicates with the fuel supply port (13) at two locations (55) and (56), and also communicates with the lower lead (52) at two locations (57) as shown in FIG. ) (58), there are two fuel discharge paths from the lower lead (52) to the fuel supply port (13) with one annular groove (54), which Can be efficiently discharged. This fuel discharge is continued until the plunger (50) moves further upward so that the annular groove (54) is located above the fuel supply port (13), and the lower lead (52) is connected to the fuel supply port (13). When the communication is established, the injection is completed.
この圧送工程において、 プランジャ (50)の移動速度が遅い低中速域では、 燃料 供給口 (13)と環状溝 (54)が連通する時間が長くなるので、 多くの燃料が排出されて 圧送能力が十分に低下し、 圧送室 (11)内の圧力上昇が緩やかになって噴射期間が 長くなり、 これによつて燃焼騒音を低減することができる。  In this pumping process, in the low to medium speed range where the moving speed of the plunger (50) is low, the time for which the fuel supply port (13) communicates with the annular groove (54) becomes long, so that a large amount of fuel is discharged and the pumping capacity is increased. Is sufficiently reduced, the pressure rise in the pumping chamber (11) is moderated, and the injection period is lengthened, whereby the combustion noise can be reduced.
一方、 高速高負荷域では、 プランジャ (50)の移動速度が速く、 燃料供給口 (13)と 環状溝 (54)が連通する時間が短くなるので、 燃料の排出量も少なく圧送能力もほ とんど低下しない。 従って、 低中速域では噴射期間が長くなるが、 高速高負荷域 では、 噴射期間を短くして噴射切れの良い良好な燃焼性能を維持することができ る。  On the other hand, in the high-speed and high-load region, the movement speed of the plunger (50) is high, and the time for communicating the fuel supply port (13) and the annular groove (54) is short, so that the fuel discharge amount is small and the pumping capacity is almost zero. Does not drop much. Therefore, the injection period becomes longer in the low and medium speed ranges, but in the high speed and high load range, the injection period can be shortened to maintain good combustion performance with good injection termination.
また、 噴射量を制御する場合には、 プランジャ (50)を水平方向に回転させて有 効ストロークを変化させるが、 この場合、 燃料供給口 (13)と環状溝 (54)との相対的 な位置は変わることになるものの、 燃料排出経路の全長すなわち上述した 2つの 燃料排出経路を合わせた長さは、 常に環状溝 (54)の全長であって変化することが ない。 このため、 プランジャ (50)の回転位置にかかわらず、 燃料排出条件を常に 一定とすることができ、 圧送室 (11)内の燃料制御を高精度に行うことができる。 なお、 圧送工程中に圧送室 (11)内の燃料の一部を燃料供給口 (13)に戻すための溝 を、 上記のようなプランジャ (50)の外周面全周に渡って形成した環状溝 (54)とした 場合、 下部リード (52)の最も深い位置にも溝が存在することになり、 噴射量を最 犬にする必要がある始動時にも圧送室 (11)内の燃料を排出してしまうことになる。 しかし、 この燃料排出によって生じる始動性の悪化は、 カム速度を調整したり、 各溝の大きさや形状を変更することによって解消している。 To control the injection amount, the effective stroke is changed by rotating the plunger (50) in the horizontal direction. In this case, the relative stroke between the fuel supply port (13) and the annular groove (54) is changed. Although the position will change, the total length of the fuel discharge path, that is, the total length of the two fuel discharge paths described above, is always the total length of the annular groove (54) and may vary. Absent. Therefore, regardless of the rotational position of the plunger (50), the fuel discharge condition can always be kept constant, and the fuel control in the pumping chamber (11) can be performed with high accuracy. In addition, a groove for returning a part of the fuel in the pumping chamber (11) to the fuel supply port (13) during the pumping process is formed in an annular shape formed over the entire outer peripheral surface of the plunger (50) as described above. If the groove (54) is used, a groove is also present at the deepest position of the lower lead (52), and the fuel in the pumping chamber (11) is discharged even at the start when the injection amount needs to be the dog. Will be done. However, the deterioration of the startability caused by the fuel discharge has been eliminated by adjusting the cam speed or changing the size and shape of each groove.
以上のような作用効果を達成するプランジャ構造は、 上記のものに限定される ものではなく、 以下、 その他のプランジャ構造について説明する。  The plunger structure that achieves the above-described effects is not limited to the above-described one, and other plunger structures will be described below.
例えば、 図 1 3に示すように、 互いに平行な上下一対の環状溝 (54)をプランジャ (50)の外周面に形成するようにしても良い。 この場合、 合計 4つの燃料排出経路 ができることになり、 燃料の排出効率を格段に向上させることができる。  For example, as shown in FIG. 13, a pair of upper and lower annular grooves (54) parallel to each other may be formed on the outer peripheral surface of the plunger (50). In this case, there will be a total of four fuel discharge routes, which can significantly improve the fuel discharge efficiency.
また、 有効ストロークを大きく取ったプランジャ (50)では、 環状溝 (54)と下部リ- ド (52)の上端部分とが交錯しない場合がでてくるが、 このような場合には、 図 1 4 及び図 1 5に示すように、 プランジャ (50)の外周面にこれら両者を連通する切欠 部 (60)(61)を形成する。 なお、 図 1 4の切欠部 (60)は、 プランジャ (50)の外周面の 上端近傍を段差状に切り欠いており、 図 1 5の切欠部 (61)は、 テーパー状に切り 欠いている。  Also, in the plunger (50) having a large effective stroke, the annular groove (54) and the upper end of the lower lead (52) may not intersect. In such a case, FIG. As shown in FIG. 4 and FIG. 15, cutouts (60) and (61) are formed on the outer peripheral surface of the plunger (50) to connect them. The notch (60) in FIG. 14 has a stepped notch near the upper end of the outer peripheral surface of the plunger (50), and the notch (61) in FIG. 15 has a tapered notch. .
さらに、 プランジャ (50)は、 その中央部に縦溝 (51)を形成したものばかりではな く、 その外周面に圧送室 (11)と下部リード (52)とを連通する縦溝を形成したものも 数多く見受けられる。 このようなプランジャの場合には、 図 1 6に示すように、 環状溝 (54)を形成すればこの環状溝 (54)が必然的に縦溝 (62)を介して下部リ一ド (52)に連通することになり、 縦溝と下部リードを連通するための横溝や上述した 切欠部を形成しなくて済むことになる。  Further, the plunger (50) not only has a vertical groove (51) formed at the center thereof, but also has a vertical groove formed on the outer peripheral surface thereof for communicating the pressure feeding chamber (11) and the lower lead (52). Many things can be seen. In the case of such a plunger, as shown in FIG. 16, if an annular groove (54) is formed, the annular groove (54) is inevitably provided through the vertical groove (62). ), So that it is not necessary to form a lateral groove for communicating the vertical groove and the lower lead and the above-mentioned notch.

Claims

請 求 の 範 囲 The scope of the claims
1 . 噴射ノズル等が接続された高圧室と圧送室とを連通する燃料通路に、 燃料吸 戻機能を有するデリベリバルブを摺動自在に配設した燃料噴射ポンプにおいて、 前記デリベリバルブの吸戻しカラ一にアングラィヒカットを施すとともに、 前記 燃料通路の連通面積が最大となる前の段階において、 前記アングラィヒカツ卜に よる前記燃料通路の連通面積の拡大とは別に、 前記デリベリバルブの移動に伴つ て前記燃料通路の連通面積を拡大する連通面積拡大手段を設けたことを特徴とす る燃料噴射ポンプ。 1. A fuel injection pump in which a delivery valve having a fuel suction function is slidably disposed in a fuel passage communicating between a high pressure chamber to which an injection nozzle or the like is connected and a pressure feeding chamber. At the stage before the angle communication is performed and before the communication area of the fuel passage is maximized, apart from the enlargement of the communication area of the fuel passage due to the angler cut, the movement of the delivery valve is accompanied by the movement of the delivery valve. A fuel injection pump comprising a communication area expanding means for expanding a communication area of a passage.
2 . 前記連通面積拡大手段は、 前記デリベリバルブの吸戻しカラー又は前記燃料 通路の壁面の少なくともいずれか一方に形成した切欠部からなる請求の範囲第 1 項記載の燃料噴射ポンプ。  2. The fuel injection pump according to claim 1, wherein said communication area expanding means comprises a cutout formed in at least one of a suction / return collar of said delivery valve and a wall surface of said fuel passage.
3 . 前記切欠部は、 前記吸戻しカラ一の摺動面を段差状に切り欠いてなる請求の 範囲第 2項記載の燃料噴射ポンプ。  3. The fuel injection pump according to claim 2, wherein the cutout portion is formed by cutting a sliding surface of the suction and return collar into a stepped shape.
4 . 前記切欠部は、 前記吸戻しカラーの摺動面を傾斜状に切り欠いてなる請求の 範囲第 2項記載の燃料噴射ポンプ。  4. The fuel injection pump according to claim 2, wherein the cutout portion is formed by cutting out a sliding surface of the suction / return collar in an inclined manner.
5 . 前記切欠部は、 前記吸戻しカラーにおける前記アングラィヒカットを施す部 位を切り欠いてなる請求の範囲第 2項乃至第 4項のいずれかに記載の燃料噴射ポ ンプ。  5. The fuel injection pump according to any one of claims 2 to 4, wherein the notch is formed by cutting out a portion of the suction-back collar where the angle reduction is performed.
6 . 外周面に下部リードを形成したプランジャを圧送室内に摺動自在に挿入する とともに、 その圧送室に向けて開口する燃料供給口を前記ブランジャの先端によつ て塞いでから前記下部リードによって開放するまでの間に圧送室内の燃料を圧送 させるようにした燃料噴射ポンプにおいて、 前記プランジャの外周面に、 前記下 部リードに連通する環状溝を形成して、 前記の圧送工程中に前記圧送室内の燃料 の一部を前記環状溝を介して前記燃料供給口に戻すようにしたことを特徴とする 燃料噴射ポンプ。 6. A plunger having a lower lead formed on its outer peripheral surface is slidably inserted into the pumping chamber, and a fuel supply port opening toward the pumping chamber is closed by the tip of the plunger. In the fuel injection pump configured to cause the fuel in the pumping chamber to be pumped before being opened, an annular groove communicating with the lower lead is formed on an outer peripheral surface of the plunger, and the pumping is performed during the pumping step. A fuel injection pump wherein a part of the fuel in the room is returned to the fuel supply port through the annular groove.
7 . 前記環状溝は、 その全周に渡って同一な断面形状とされた請求の範囲第 6項 記載の燃料噴射ポンプ。 7. The fuel injection pump according to claim 6, wherein the annular groove has the same cross-sectional shape over the entire circumference.
8 . 前記環状溝は、 その溝幅が前記燃料供給口の口径よりも小とされた請求の範 囲第 6項又は第 7項記載の燃料噴射ポンプ。  8. The fuel injection pump according to claim 6, wherein the annular groove has a groove width smaller than a diameter of the fuel supply port.
PCT/JP1998/005764 1997-12-19 1998-12-18 Fuel injection pump WO1999032787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98961436A EP1041273A1 (en) 1997-12-19 1998-12-18 Fuel injection pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP35091797A JPH11182383A (en) 1997-12-19 1997-12-19 Delivery valve structure of fuel injection pump
JP9/350918 1997-12-19
JP9/350917 1997-12-19
JP35091897A JPH11182382A (en) 1997-12-19 1997-12-19 Fuel injection pump of diesel engine

Publications (1)

Publication Number Publication Date
WO1999032787A1 true WO1999032787A1 (en) 1999-07-01

Family

ID=26579294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005764 WO1999032787A1 (en) 1997-12-19 1998-12-18 Fuel injection pump

Country Status (2)

Country Link
EP (1) EP1041273A1 (en)
WO (1) WO1999032787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578800A3 (en) * 2018-06-07 2020-02-26 Caterpillar Motoren GmbH & Co. KG Fuel injection system, fuel pump and plunger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775165U (en) * 1980-10-27 1982-05-10
JPS58139575U (en) * 1982-03-17 1983-09-20 ヤンマーディーゼル株式会社 fuel injection pump
JPS59142467U (en) * 1983-03-16 1984-09-22 三菱重工業株式会社 fuel injection pump discharge valve
JPS60128968U (en) * 1984-02-08 1985-08-29 日産自動車株式会社 Diesel engine fuel supply system
JPS62276262A (en) * 1986-05-22 1987-12-01 Yanmar Diesel Engine Co Ltd Fuel injecting pump
JPS6326768U (en) * 1986-08-05 1988-02-22
JPS6331257U (en) * 1986-08-18 1988-02-29
JPH0245652A (en) * 1988-08-03 1990-02-15 Yanmar Diesel Engine Co Ltd Fuel injection pump
JPH0429083U (en) * 1990-06-30 1992-03-09
JPH04132454U (en) * 1991-05-24 1992-12-08 株式会社ゼクセル Fuel injection pump advance device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775165U (en) * 1980-10-27 1982-05-10
JPS58139575U (en) * 1982-03-17 1983-09-20 ヤンマーディーゼル株式会社 fuel injection pump
JPS59142467U (en) * 1983-03-16 1984-09-22 三菱重工業株式会社 fuel injection pump discharge valve
JPS60128968U (en) * 1984-02-08 1985-08-29 日産自動車株式会社 Diesel engine fuel supply system
JPS62276262A (en) * 1986-05-22 1987-12-01 Yanmar Diesel Engine Co Ltd Fuel injecting pump
JPS6326768U (en) * 1986-08-05 1988-02-22
JPS6331257U (en) * 1986-08-18 1988-02-29
JPH0245652A (en) * 1988-08-03 1990-02-15 Yanmar Diesel Engine Co Ltd Fuel injection pump
JPH0429083U (en) * 1990-06-30 1992-03-09
JPH04132454U (en) * 1991-05-24 1992-12-08 株式会社ゼクセル Fuel injection pump advance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578800A3 (en) * 2018-06-07 2020-02-26 Caterpillar Motoren GmbH & Co. KG Fuel injection system, fuel pump and plunger

Also Published As

Publication number Publication date
EP1041273A1 (en) 2000-10-04

Similar Documents

Publication Publication Date Title
KR0166412B1 (en) Fuel injection pump
WO1999032787A1 (en) Fuel injection pump
JPH10231763A (en) Fuel injection pump
JPS63503076A (en) Fuel injection pump for internal combustion engines
KR940000693Y1 (en) Plunger for fuel injection pump
JPH11182382A (en) Fuel injection pump of diesel engine
JPH11182383A (en) Delivery valve structure of fuel injection pump
KR960010290B1 (en) Fuel ejecting pump
JPS6010181B2 (en) distribution type fuel injection pump
JP2582176Y2 (en) Fuel injection pump
JP2704636B2 (en) Fuel injection pump
JPH0650237A (en) Fuel injection pump
JP3200805B2 (en) Fuel injection pump
JP3089603B2 (en) Fuel injection device for internal combustion engine
JPH07189861A (en) Fuel injection pump
JP2597154B2 (en) Relief type fuel injection pump for diesel engine
JPH07189862A (en) Fuel injection pump
JP2573652Y2 (en) Pre-stroke control device for fuel injection pump
JPH0614465U (en) Fuel injection pump
JPH0672580B2 (en) Fuel injection device for diesel engine
JPH10131830A (en) Plunger of fuel injection pump
JPH0315822Y2 (en)
JP2539064Y2 (en) Fuel injection pump
JP2533885Y2 (en) Variable pre-stroke mechanism for fuel injection pump
JP2547126Y2 (en) Fuel injection pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998961436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581592

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998961436

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998961436

Country of ref document: EP