WO1999026072A1 - Speed sensor - Google Patents

Speed sensor Download PDF

Info

Publication number
WO1999026072A1
WO1999026072A1 PCT/JP1998/005169 JP9805169W WO9926072A1 WO 1999026072 A1 WO1999026072 A1 WO 1999026072A1 JP 9805169 W JP9805169 W JP 9805169W WO 9926072 A1 WO9926072 A1 WO 9926072A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnetic
detection plate
speed detector
magnetic flux
Prior art date
Application number
PCT/JP1998/005169
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Naruse
Takatomo Hiruma
Kazunari Shibuya
Original Assignee
Sumtak Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumtak Corporation filed Critical Sumtak Corporation
Publication of WO1999026072A1 publication Critical patent/WO1999026072A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors

Definitions

  • the present invention relates to a speed detector used in vehicles such as railroads and automobiles, various automatic machines, machine tools, and the like, and detects the rotational speed of a power source and other power sources.
  • a speed detector used in a conventional vehicle and the like, for example, a speed detector having a structure as shown in FIG. 9 is known.
  • the speed detector shown in FIG. 9 is composed of a magnetic 'electric conversion unit 1' having a permanent magnet 2 ', a pole piece 3', and a coil 4 'wound on the pole piece 3'.
  • a detection plate 8 that rotates in accordance with the rotation of the measurement object. Further, the end face of the pole piece 3 ′ of the magnetic 'electrical conversion section 1 ′ and the end face of the detection plate 8 are arranged so as to face each other with a predetermined gap.
  • the concave portion 8b and the convex portion 8a formed at the ends also move, and the concave portion 8b approaches the pole piece 3 ', or the convex portion 8a approaches. .
  • the detection plate 8 is made of a magnetic material, as a result, the magnetic material approaches or separates from the pole piece 3 ′.
  • the magnetic flux is supplied from the permanent magnet 2 ′ to the pole piece 3 ′, but the magnetic material inside the pole piece 3 ′ changes when the magnetic material approaches or separates from the end of the pole piece 3 ′ . Therefore, the magnetic flux density passing through the coil 4 ′ wound around the pole piece 3 ′ changes, and an electromotive force is generated on the coil 4 ′.
  • This electromotive force usually appears as a sine wave or pulse wave, and its magnitude is proportional to the number of times the concave portion 8b and the convex portion 8a approach each other per unit time, that is, the rotation speed (frequency). Increase. Therefore, the rotation speed of the object can be detected by detecting the wave number (frequency) of the electromotive force from the coil 4 'and its magnitude.
  • these operations do not require a power supply or amplifying element, they can be used as sensors used in places where extremely high safety and reliability are required or where use under severe conditions is required. Useful.
  • the conventional speed detector operates as a single detector with the single magnetic-electric conversion unit 1 'in this way, the rotation direction is determined by using two signals with a 90-degree phase difference using this.
  • two separate magnetic-electrical converters 1 ′ are prepared, and they are opposed to the irregularities on the circumference of the detection plate by the interval of T (0. SinlZA) (T: (Interval, n: integer), and it was necessary to arrange the pole piece 3 'at an angle so that the center line of the pole piece passed through the rotation axis of the detection plate. That is, as shown in FIG. 10, the magneto-electric converters 1A and IB are arranged on a mounting table 21 having a certain angle so as to appropriately face the end face of the detection plate 8.
  • a measuring unit case 22 and a device under test 23 are provided.
  • the size of the magnetic-electrical conversion unit 1 ′ is increased, the size of the case for storing the portion is increased. It is necessary to use a non-magnetic material for the case that houses the magnetic-electric conversion unit 1 ′, but the non-magnetic case material that is usually used has a large coefficient of thermal expansion. The gap of the output fluctuates, and the output voltage also fluctuates.
  • An object of the present invention is to reduce the gap variation due to thermal expansion with a small size, to take up a small space, to easily install and adjust, to obtain two phase difference signals with one detector, and to obtain high electromotive force.
  • An object of the present invention is to realize a speed detector having high reliability without disconnection. That is, the above object is achieved by the following configurations (1) to (7).
  • a disk-shaped magnetic body that rotates in synchronization with the object to be detected, and has, on its end face, a concave portion (8b) and a convex portion (8a) in the circumferential direction, and the concave portion (8b) Or a detection plate (8) for forming a magnetic path with the core (3) via a projection (8a),
  • the magneto-electric converter (1) is arranged so that an end of a core (3) faces an end surface of the detection plate (8) via a predetermined gap, and a concave portion of the detection plate (8).
  • Velocity detectors arranged as a pair at a predetermined interval corresponding to the interval between (8b) and the projection (8a).
  • the speed detector according to any one of the above (1) to (3) which is represented by and is arranged within the range of ⁇ 0.1 ⁇ .
  • the rotation of the detection plate (8) generates a voltage corresponding to a change in magnetic flux density corresponding to the concave portion (8b) and the convex portion (8a) by the rotation of the detection plate (8).
  • the speed detector according to any one of the above (1) to (5), wherein this voltage is equal to or higher than IV when the frequency obtained by the change in the concave portion (8b) and the convex portion (8a) is 30 Hz.
  • FIG. 1 is a partial cross-sectional view showing a basic configuration of a speed detector of the present invention.
  • FIG. 2 is a plan view showing a state where the magneto-electric conversion unit is housed in a case.
  • FIG. 3 is an external plan view of the mounting case.
  • FIG. 4 is an external side view of the mounting case.
  • FIG. 5 is a partial sectional view showing another configuration example of the speed detector of the present invention.
  • FIG. 6 is a diagram showing an output waveform from the speed detector according to the embodiment of the present invention.
  • Fig. 7 is a diagram showing the relationship between the electric / magnetic converter and the detection plate, and shows a state in which the core is arranged parallel to the rotation axis of the detection plate.
  • Fig. 8 is a diagram showing the relationship between the electric / magnetic converter and the detection plate, and shows a state in which the core is arranged perpendicular to the rotation axis of the detection plate.
  • FIG. 9 is a diagram showing a configuration of a conventional speed detector.
  • FIG. 10 is a diagram showing a state in which a conventional speed detector is arranged so that two phase difference signals can be extracted.
  • a speed detector includes a core that is a magnetic body having a U-shaped cross section, a detection coil that is wound on the core, and converts a change in magnetic flux density in the core into an electric signal, and an end portion of the core.
  • a magnetic-electric conversion unit having a permanent magnet that supplies a magnetic flux to the core; and a disk-shaped magnetic body that rotates in synchronization with an object to be detected.
  • a detecting plate that forms a magnetic path with the core via the concave or convex portion.
  • the magneto-electric conversion section is configured such that an end of the core has a predetermined gap therebetween. It is arranged so as to face the end face of the detection plate, and is arranged as a pair at a predetermined position corresponding to the interval between the concave portion and the convex portion of the detection plate.
  • a permanent magnet is arranged at the end of the core, and the end of the core is arranged so as to face the end face of the detection plate, so that the leakage flux is reduced.
  • the magnetic flux density passing inside the core increases, and the electromotive force increases.
  • two phase difference signals can be easily obtained.
  • the two cores can be arranged close to each other, they become an integrated speed detector, which makes installation and adjustment extremely easy. It also has a strong structure in terms of strength.
  • the size and shape of the core are not particularly limited as long as the core has a U-shaped cross section parallel to the magnetic path, and the end can face the end face of the detection plate.
  • the center-to-center size is about 5 to 30 mm
  • the depth from the end to the base is about 5 to 30 strokes
  • the maximum thickness is about 3 to 15 thighs.
  • this cross section is not limited to a U-shape in a strict sense, and may be a U-shape or a shape close to a C-shape.
  • the cross-sectional shape perpendicular to the magnetic path of the core is not particularly limited, and may be circular or square, but preferably circular (including elliptical and the like).
  • the material of the core is not particularly limited as long as it is a magnetic material.
  • a material having a high magnetic permeability such as electromagnetic soft iron, calcium steel, permalloy, ferrite, and Fe—Co alloy is preferably used. it can.
  • the permanent magnet provided at the end of the core is not particularly limited as long as it can supply a magnetic flux for generating a necessary electromotive force, and its size and shape are arbitrary.
  • a column or a prism having a cross-sectional shape equal to the vertical cross-sectional shape of the core is preferable, and more preferably a shape equal to or slightly smaller than the cross-section of the core is preferable.
  • the permanent magnet needs to be arranged at least at one end of the core, but is preferably arranged at both ends of the core.
  • the magnetic flux density B of the magnet surface at this time is preferably about 1000 to 500 OGauss, and particularly preferably about 2000 to 4000 Gauss.
  • Examples of the magnet that gives such a magnetic field include Fe—Nd—B, Sm—Co, ferrite, and alnico. Among them, Fe—Nd—B and Sm—Co are preferable because a large magnetic flux density can be obtained. However, ferrite is preferred in terms of price.
  • cores having the same configuration are arranged as a pair in order to obtain two signals with a phase difference.
  • the mounting interval of the cores is not particularly limited as long as the interval is such that two signals with a phase difference can be obtained.However, the signals obtained from the two magneto-electric converters have a predetermined phase difference. However, it is preferable to arrange them so that two signals having a phase difference of about 90 degrees and 36 degrees can be obtained.
  • the magnets provided at the ends are arranged so that the same polarity is adjacent to each other, such as S poles and ⁇ poles, so that the magnets provided at the end portions do not overlap each other.
  • a coil is wound around the core for detecting a change in magnetic flux density inside the core.
  • the coil is divided and wound. By splitting the coil, more windings can be wound in one magnetic path. In addition, more windings can be wound around a portion having a large magnetic flux, and the electromotive force is improved. More preferably, the coil is wound close to the magnet. Since the magnetic flux is concentrated near the magnet, higher electromotive force can be obtained.
  • the winding used for the coil may be any wire used for ordinary coils, transformers, motors, and the like, and is not particularly limited, but preferably includes a polyurethane wire, a cement wire, and the like. be able to.
  • Good winding wire diameter Preferably, it is 0.06-0.1 awake, more preferably, 0.07-0.09 mm. If the wire diameter is too small, there is a risk of disconnection and the resistance will increase. If it is too thick, the coil will be large. Further, the resistance of the winding is preferably equal to or less than lk Q, and more preferably about 100 to 800 ⁇ .
  • the number of turns is preferably 500 turns or less, and more preferably about 2000 to 400 turns. When the number of turns is large, the coil becomes large, and when the number of turns is small, the electromotive force of the coil is reduced.
  • the detection plate is a disk-shaped rotator that is formed of a magnetic material and rotates in synchronization with the object to be measured. At the end, concave portions and convex portions are alternately formed in a gear shape. Preferred materials for the detection plate are the same as those for the core.
  • the size of the detection plate may be an appropriate size depending on the size of the object to be measured, the measurement accuracy, the required electromotive force, and the like, and preferably the module is 2.5 or less. Similar to the above, the number of concave portions and convex portions of the detection plate may be appropriately determined depending on required accuracy, electromotive force and other factors. It is preferably about 30 to 100, more preferably about 50 to 70.
  • the height of the recess is preferably at least 1 corrupt, more preferably about 3 to 2 ram.
  • the arrangement of the core with respect to the detection plate is preferably such that the U-shaped cross section of the core is parallel to the axial direction of the detection plate as shown in FIG.
  • both ends of the core are arranged at positions that simultaneously face the protrusions or recesses due to the rotation of the force detection plate.
  • the change in the magnetic flux density obtained by the convex and concave portions of the detection plate can be maximized, and the signal obtained from the signal has a greater amplitude than the conventional one.
  • the U-shaped cross section of the core corresponds to the rotation axis of the detection plate.
  • the magnetic flux density passing through the inside of the detection plate is reduced, and the increase / decrease ratio of the magnetic flux density due to the concave portion and the convex portion is reduced. I will. Note that h in FIG. 7 indicates the height between the concave portion and the convex portion, and FIG. 7 shows a state in which the convex portion faces the magneto-electric conversion portion (the end of the core including the magnet). I have.
  • the shortest distance between the convex portion of the detection plate and the magnetic-electrical conversion portion (magnet), that is, the gap is preferably 0.1 to 1.5 wake, more preferably 0.5 to 0.9 mm.
  • FIG. 1 is a partial cross-sectional view showing a specific configuration of a speed detector of the present invention
  • FIG. 2 is a plan view of a case in which a magneto-electric conversion unit is housed, as viewed from a detection plate side.
  • the speed detector of the present invention comprises a core 3, two magnets 2a and 2b at both ends of the core, and coils wound around both arms 3a and 3b of the core. 4 a, 4, a core mounting flange 6, and a detection plate 8.
  • the core 3 has a U-shaped cross section parallel to the magnetic path, and has two arms 3a and 3b extending to the ends and a base 3 connecting the two arms 3a and 3b. has c.
  • the cross section perpendicular to the magnetic path is circular, making it easy to wind the coil.
  • columnar permanent magnets 2a and 2b each corresponding to the shape of the core are arranged.
  • the permanent magnets 2 a and 2 b are bonded to the end of the core 3.
  • the mounting flange 6 has four mounting holes identical in shape to the core 3, and the core 3 is fixed by inserting the arms 3a and 3b of each core 3 into these mounting holes. Then, place the two cores in the appropriate positions.
  • the mounting flange is provided with a terminal for wiring from the coil, so that wiring can be relayed.
  • Coils 4 &, 4 b are attached to the arms 3 a, 3 of the core 3.
  • the coils 4a and 4b can be wound directly around the arms 3a and 3b of the core 3, but in this example, PT / JP 8/05169
  • the material wound around the bins 5 a and 5 b is attached to the core 3.
  • the coil becomes compact, the leakage flux decreases, and more magnetic flux is captured. Can be.
  • the magnetic-electrical converters 1 A and IB combined by the mounting flange 6 are housed in the case 9 as shown in FIG. 2, and the tip, that is, the tip of the magnet, is located at almost the same plane position. Is adjusted as follows. The distance from this tip to the end of the detection plate 8, that is, the tip of the projection is adjusted so that the gap is about 0.1 to 1.5 mm.
  • the magnetic-to-electrical converters 1A and 1B are housed in a case 9 as shown in FIG. 2, and further mounted in a fixed case 11 as shown in FIGS.
  • the fixed case 1 1 has a mounting flange, and is mounted on a mounting table (not shown) for the DUT.
  • it has a lid 12 and a cable fitting 13, and the cable 14 is fixed by the cable fitting 13.
  • the material of the case 11 and the lid 12 is preferably a metal having a small coefficient of thermal expansion, such as pig iron. If the coefficient of thermal expansion is large, the gap greatly fluctuates, which may cause a failure.
  • FIG. 5 shows another example of the configuration of the speed detector of the present invention.
  • an auxiliary flange 7 is used in addition to the flange 6 for mounting the core.
  • the material and shape of the auxiliary flange 7 may be the same as those of the flange 6 described above.
  • a predetermined angle between the cores 3 can be provided.
  • a protective cover 9a made of a non-magnetic metal or the like is provided on the end of the core 3 to prevent intrusion of dust and the like.
  • Other components are the same as those in FIG. 1, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the speed detector of the present invention does not require a power supply and has a simple configuration having no amplifying element.
  • the speed detector of a vehicle such as a train or an automobile, an automatic machine, or a rotating body such as a motor or the like as a power source is used.
  • Suitable for speed detection In particular, they exhibit excellent performance in trains and automobiles that require extremely high safety and reliability and are used in harsh environments.
  • a speed detector having the configuration shown in Figs. At this time, S U Y material was used for the core material, and S m—C 0 was used for the magnet. A coil wire with a wire diameter of 0.08 cm was used, and it was wound for 300 turns, and two sets of one coil were prepared and attached to the arm of each coil. . At this time, the resistance value per coil was about 250 ⁇ or less. As the detection plate, a gear with module 2.5 and teeth with 60 was used, and the gap was set to 0.7.
  • the size is small, the fluctuation of the gap due to thermal expansion is small, It can be installed and adjusted easily without taking up any space, can obtain two phase difference signals with one detector, and can realize a highly reliable speed detector with high electromotive force and no risk of disconnection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A speed sensor comprising a core (3) as a magnetic body having a U-shaped cross section, sensing coils (4a and 4b) which are wound around the core (3) and convert a change in the magnetic flux density in the core (3) into an electric signal, a magnetoelectric transducing unit (1) having permanent magnets (2a and 2b) at both ends of the core (3) for supplying a magnetic flux to the core (3), and a sensing plate (8) which is a disc-shaped magnetic body which rotates synchronously with an object to be sensed, and has recesses (8b) and projections (8a) formed sequentially in the circumferential direction at the edge face, in which a magnetic path is formed together with the core via the recesses (8b) and the projections (8a). The magnetoelectric transducing unit is so disposed that the end of the core faces the edge face of the sensing plate via a predetermined air gap and disposed as a set at a predetermined interval corresponding to the interval between each recess (8b) and each projection (8a) of the sensing plate (8). With the construction, the very reliable small speed sensor having a high electromotive force, little fluctuation in the gap caused by thermal expansion, and no danger of a wire break, which does not occupy a large area, is easily installed and adjusted, and can obtain two signals having a phase difference can be realized.

Description

明 細 書  Specification
速度検出器 技術分野 Speed detector Technical field
本発明は、 鉄道、 自動車等の車両や、 各種自動機、 工作機器等に用いられ、 モ 一夕、 その他の動力源の回転速度を検出する速度検出器に関する。 背景技術  The present invention relates to a speed detector used in vehicles such as railroads and automobiles, various automatic machines, machine tools, and the like, and detects the rotational speed of a power source and other power sources. Background art
従来の車両等に用いられる速度検出器として、 例えば図 9に示すような構造の ものが知られている。 図 9に示される速度検出器は、 永久磁石 2 ' とポールピー ス 3 ' とこのポールピース 3 ' 上に巻回されているコイル 4 ' とを有す磁気 '電 気変換部 1 ' と、 被測定物の回転に応じて回転する検出板 8とを有する。 また、 磁気 '電気変換部 1 ' のポールピース 3 ' の端面と、 検出板 8の端面とが所定の ギャップをおいて対向するように配置されている。 検出板 8が回転すると、 その 端部に形成されている凹部 8 bと凸部 8 aも移動し、 ポールピース 3 ' には凹部 8 bが接近したり、 凸部 8 aが接近したりする。 検出板 8は磁性材料であるため、 結果としてポールピース 3 ' に磁性材料が接近したり離れたりすることとなる。 ポールピース 3 ' には永久磁石 2 ' から磁束が供給されているが、 ポールピース 3の端部に対して磁性材料が近づいたり離れたりすることで、 ポールピース 3 ' 内部の磁束密度が変化する。 従って、 ポールピース 3 ' に巻回されているコイル 4 ' を通る磁束密度が変化することとなり、 コイル 4 ' 上に起電力が生じる。 こ の起電力は、 通常正弦波ないしパルス波となって現れ、 その大きさは単位時間当 たりの凹部 8 bと凸部 8 aが交互に接近する回数、 つまり回転速度 (周波数) に 比例して増大する。 従って、 コイル 4 ' からの起電力の波数 (周波数) やその大 きさを検出することによって被検出物の回転速度を検知することができる。 また、 これらの動作は電源や増幅素子を必要としないため、 極めて高い安全性 や信頼性の要求される場所や、 過酷な条件下での使用を必要とされる場所等に使 用するセンサとして有用である。 As a speed detector used in a conventional vehicle and the like, for example, a speed detector having a structure as shown in FIG. 9 is known. The speed detector shown in FIG. 9 is composed of a magnetic 'electric conversion unit 1' having a permanent magnet 2 ', a pole piece 3', and a coil 4 'wound on the pole piece 3'. A detection plate 8 that rotates in accordance with the rotation of the measurement object. Further, the end face of the pole piece 3 ′ of the magnetic 'electrical conversion section 1 ′ and the end face of the detection plate 8 are arranged so as to face each other with a predetermined gap. When the detection plate 8 rotates, the concave portion 8b and the convex portion 8a formed at the ends also move, and the concave portion 8b approaches the pole piece 3 ', or the convex portion 8a approaches. . Since the detection plate 8 is made of a magnetic material, as a result, the magnetic material approaches or separates from the pole piece 3 ′. The magnetic flux is supplied from the permanent magnet 2 ′ to the pole piece 3 ′, but the magnetic material inside the pole piece 3 ′ changes when the magnetic material approaches or separates from the end of the pole piece 3 ′ . Therefore, the magnetic flux density passing through the coil 4 ′ wound around the pole piece 3 ′ changes, and an electromotive force is generated on the coil 4 ′. This electromotive force usually appears as a sine wave or pulse wave, and its magnitude is proportional to the number of times the concave portion 8b and the convex portion 8a approach each other per unit time, that is, the rotation speed (frequency). Increase. Therefore, the rotation speed of the object can be detected by detecting the wave number (frequency) of the electromotive force from the coil 4 'and its magnitude. In addition, since these operations do not require a power supply or amplifying element, they can be used as sensors used in places where extremely high safety and reliability are required or where use under severe conditions is required. Useful.
しかし、 従来の速度検出器は、 このように単独の磁気,電気変換部 1' をもつ て一つの検出器として動作するため、 これを用いて 90度位相差 2信号により回 転方向を判別するためには、 例えば、 磁気 ·電気変換部 1 ' を 2つ別個に用意し、 これを検出板の円周の凹凸に対向して T (0. S ni lZA) の間隔 (T:凸部 の間隔、 n :整数) で配置し、 しかもポールピース 3' の中心線が検出板の回転 軸を通るように角度をもたせて配置する必要があった。 すなわち、 図 10に示す ように、 ある角度を有する取り付け台 21にそれぞれの磁気 ·電気変換部 1A, I Bを配置して、 検出板 8の端面と適切に対向するようにしている。 なお、 この 他に図中、 測定部ケース 22および被測定物 23を有する。 この場合それぞれの 位置決めや角度出しのための調整が極めて困難であり、 煩雑な調整作業を要求さ れることとなってしまう。 また、 取り付け角度を無視できるように、 2つの磁 気 ·電気変換部 1 ' を近接して配置することも考えられるが、 従来の磁気 '電気 変換部 1 ' のコイル 4' や磁石 2' は大きく、 そのような位置にまで両者を近づ けることは極めて困難であった。  However, since the conventional speed detector operates as a single detector with the single magnetic-electric conversion unit 1 'in this way, the rotation direction is determined by using two signals with a 90-degree phase difference using this. For this purpose, for example, two separate magnetic-electrical converters 1 ′ are prepared, and they are opposed to the irregularities on the circumference of the detection plate by the interval of T (0. SinlZA) (T: (Interval, n: integer), and it was necessary to arrange the pole piece 3 'at an angle so that the center line of the pole piece passed through the rotation axis of the detection plate. That is, as shown in FIG. 10, the magneto-electric converters 1A and IB are arranged on a mounting table 21 having a certain angle so as to appropriately face the end face of the detection plate 8. In addition, in the figure, a measuring unit case 22 and a device under test 23 are provided. In this case, it is extremely difficult to make adjustments for positioning and angle setting, and a complicated adjustment operation is required. It is also conceivable to arrange the two magnetic-electric conversion units 1 ′ close together so that the mounting angle can be ignored, but the coil 4 ′ and magnet 2 ′ of the conventional magnetic 電 気 electric conversion unit 1 はIt was very difficult to get them close to such a large location.
さらに、 磁気 ·電気変換部 1 ' が大きくなると、 その部分を収納するケースが 大きくなつてしまう。 この、 磁気 ·電気変換部 1 ' を収納するケースは非磁性体 を使用する必要があるが、 通常使用される非磁性体のケース材料は熱膨張係数が 大きく、 温度により、 コアと検出板とのギャップが変動してしまい、 出力電圧も 変動してしまう。  Further, when the size of the magnetic-electrical conversion unit 1 ′ is increased, the size of the case for storing the portion is increased. It is necessary to use a non-magnetic material for the case that houses the magnetic-electric conversion unit 1 ′, but the non-magnetic case material that is usually used has a large coefficient of thermal expansion. The gap of the output fluctuates, and the output voltage also fluctuates.
また、 通常、 起電力を安定して検出するためには、 周波数 30Hzにおける起電 力が IV程度必要であるとされている。 ところが、 従来の検出器ではこのような 起電力を得られるものが極めて少なく、 また、 上記のように磁気 '電気変換部 1 ' を接近させようとしたり、 コンパクトなものを得ようとした場合に、 コイル の巻数が制限されてしまい、 益々必要な起電力が得られなくなってしまうといつ た問題を有していた。 In addition, it is usually stated that an electromotive force at a frequency of 30 Hz is required to be about IV in order to stably detect the electromotive force. However, there are very few conventional detectors that can obtain such an electromotive force. When approaching 1 'or trying to obtain a compact one, the number of turns of the coil was limited and the required electromotive force could not be obtained.
コイルの大きさを小さくするためには線径の小さな巻線を用いることも考えら れる。 しかし、 線径を小さくすると、 巻回時や動作時における振動衝撃による断 線の危険性が大きくなる。 断線が製造時に生じた場合には歩留まりが低下し、 コ スト高を招く要因となる。 またこのような断線を検出するための検査工程が必要 になったりする。 動作時に断線が生じた場合には、 速度検出器の動作が停止する こととなるが、 車両や機械の速度を検出しているセンサーにこのような欠陥が生 じた場合、 致命的な事故を引き起こしかねない。 従って、 細い線径の巻線を使用 することは現実的でない。 発明の開示  In order to reduce the size of the coil, it is conceivable to use a winding with a small wire diameter. However, when the wire diameter is reduced, the risk of disconnection due to vibration and impact during winding and operation increases. If a disconnection occurs during manufacturing, the yield will decrease, causing a cost increase. In addition, an inspection process for detecting such a disconnection may be required. If a disconnection occurs during operation, the operation of the speed detector will stop.If such a defect occurs in the sensor that detects the speed of the vehicle or machine, a fatal accident will occur. Can cause. Therefore, it is not practical to use a winding with a small wire diameter. Disclosure of the invention
本発明の目的は、 小型で熱膨張によるギャップの変動が少なく、 配置場所を取 らず、 取り付け、 調整が容易で、 1つの検出器で位相差 2信号を得ることができ、 高起電力で断線の心配のない高信頼性を有する速度検出器を実現することである。 すなわち、 上記目的は以下の (1 ) 〜 (7 ) の構成により達成される。  An object of the present invention is to reduce the gap variation due to thermal expansion with a small size, to take up a small space, to easily install and adjust, to obtain two phase difference signals with one detector, and to obtain high electromotive force. An object of the present invention is to realize a speed detector having high reliability without disconnection. That is, the above object is achieved by the following configurations (1) to (7).
( 1 ) 断面コ字状の磁性体であるコアと、  (1) a magnetic core having a U-shaped cross section;
このコア (3 ) 上に巻回されコア (3 ) 中の磁束密度の変化を電気信号に変換 する検出コイル (4 a、 4 b ) と、  Detection coils (4a, 4b) wound on the core (3) and converting changes in magnetic flux density in the core (3) into electric signals;
このコア (3 ) の端部にあって前記コア (3 ) に磁束を供給する永久磁石 (2 a、 2 b ) とを有する磁気 ·電気変換部 (1 ) と、  A magneto-electric converter (1) at the end of the core (3) and having permanent magnets (2a, 2b) for supplying magnetic flux to the core (3);
被検出物と同期して回転する円盤状の磁性体であって、 その端面には円周方向 に順次凹部 (8 b ) と凸部 (8 a ) とを有し、 この凹部 (8 b ) ないし凸部 (8 a ) を介して前記コア (3 ) と磁路を形成する検出板 (8 ) とを有し、 前記磁気 ·電気変換部 (1) は、 コア (3) の端部が所定の空隙を介して前記 検出板 (8) の端面と対向するように配置され、 かつ前記検出板 (8) の凹部 (8 b) と凸部 (8 a) の間隔に対応した所定の間隔で一対として配置されてい る速度検出器。 A disk-shaped magnetic body that rotates in synchronization with the object to be detected, and has, on its end face, a concave portion (8b) and a convex portion (8a) in the circumferential direction, and the concave portion (8b) Or a detection plate (8) for forming a magnetic path with the core (3) via a projection (8a), The magneto-electric converter (1) is arranged so that an end of a core (3) faces an end surface of the detection plate (8) via a predetermined gap, and a concave portion of the detection plate (8). Velocity detectors arranged as a pair at a predetermined interval corresponding to the interval between (8b) and the projection (8a).
(2) 前記コア (3) のコ字状断面が、 検出板の軸方向と平行となるよう配 置されている上記 (1) の速度検出器。  (2) The speed detector according to (1), wherein the U-shaped cross section of the core (3) is arranged to be parallel to the axial direction of the detection plate.
(3) 前記一対のコア (3) の端部にある磁石は、 同じ極性同士が隣接する ように配置されている上記 (1) または (2) の速度検出器。  (3) The speed detector according to (1) or (2), wherein the magnets at the ends of the pair of cores (3) are arranged so that the same polarity is adjacent to each other.
(4) 前記コア (3) の取り付け間隔 Pが、 検出板の凸部間の間隔を Tとし たときに、  (4) When the mounting interval P of the core (3) is T, the interval between the convex portions of the detecting plate is T,
P = T (0. 5 η土 1ノ4)  P = T (0.5 η soil 1 4)
(η=整数)  (η = integer)
で表され、 かつ Ρ±0. 1 Τの範囲内に配置されている上記 (1) 〜 (3) のい ずれかの速度検出器。 The speed detector according to any one of the above (1) to (3), which is represented by and is arranged within the range of {± 0.1}.
(5) 前記コイル (4 a、 4b) はコア (3) の各端部にある永久磁石に対 応して分割して巻回されている上記 (1) 〜 (4) のいずれかの速度検出器。  (5) The speed of any of the above (1) to (4), wherein the coils (4a, 4b) are divided and wound corresponding to the permanent magnets at each end of the core (3). Detector.
(6) 前記磁気 ·電気変換部 (1) は、 検出板 (8) の回転により、 その凹 部 (8 b) と凸部 (8 a) に対応した磁束密度の変化に応じた電圧を生じ、 この電圧が、 凹部 (8 b) と凸部 (8 a) の変化により得られる周波数が 30 Hzのときに IV以上である上記 (1) 〜 (5) のいずれかの速度検出器。  (6) The rotation of the detection plate (8) generates a voltage corresponding to a change in magnetic flux density corresponding to the concave portion (8b) and the convex portion (8a) by the rotation of the detection plate (8). The speed detector according to any one of the above (1) to (5), wherein this voltage is equal to or higher than IV when the frequency obtained by the change in the concave portion (8b) and the convex portion (8a) is 30 Hz.
(7) 前記磁気 ·電気変換部 (1) はケース内に一体として収納されている 上記 (1) 〜 (6) のいずれかの速度検出器。 図面の簡単な説明  (7) The speed detector according to any one of (1) to (6), wherein the magnetic-electric conversion unit (1) is housed integrally in a case. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の速度検出器の基本構成を示す一部断面図である。 図 2は、 磁気 ·電気変換部をケース内に収納した状態を示す平面図である。 図 3は、 取り付けケースの外観平面図である。 FIG. 1 is a partial cross-sectional view showing a basic configuration of a speed detector of the present invention. FIG. 2 is a plan view showing a state where the magneto-electric conversion unit is housed in a case. FIG. 3 is an external plan view of the mounting case.
図 4は、 取り付けケースの外観側面図である。  FIG. 4 is an external side view of the mounting case.
図 5は、 本発明の速度検出器の他の構成例を示す一部断面図である。  FIG. 5 is a partial sectional view showing another configuration example of the speed detector of the present invention.
図 6は、 本発明の実施例である速度検出器からの出力波形を示した図である。 図 7は、 電気,磁気変換部と検出板との関係を示した図で、 コアを検出板の回 転軸と平行に配置した状態を示した図である。  FIG. 6 is a diagram showing an output waveform from the speed detector according to the embodiment of the present invention. Fig. 7 is a diagram showing the relationship between the electric / magnetic converter and the detection plate, and shows a state in which the core is arranged parallel to the rotation axis of the detection plate.
図 8は、 電気,磁気変換部と検出板との関係を示した図で、 コアを検出板の回 転軸と垂直に配置した状態を示した図である。  Fig. 8 is a diagram showing the relationship between the electric / magnetic converter and the detection plate, and shows a state in which the core is arranged perpendicular to the rotation axis of the detection plate.
図 9は、 従来の速度検出器の構成を示した図である。  FIG. 9 is a diagram showing a configuration of a conventional speed detector.
図 1 0は、 従来の速度検出器を位相差 2信号が取り出せるように配置した状態 を示した図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing a state in which a conventional speed detector is arranged so that two phase difference signals can be extracted. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の速度検出器は、 断面コ字状の磁性体であるコアと、 このコア上に巻回 されコア中の磁束密度の変化を電気信号に変換する検出コイルと、 このコアの端 部にあって前記コアに磁束を供給する永久磁石とを有する磁気 ·電気変換部と、 被検出物と同期して回転する円盤状の磁性体であって、 その端面には円周方向に 順次凹部と凸部とを有し、 この凹部ないし凸部を介して前記コアと磁路を形成す る検出板とを有し、 前記磁気 ·電気変換部は、 コアの端部が所定の空隙を介して 前記検出板の端面と対向するように配置され、 かつ前記検出板の凹部と凸部の間 隔に対応した所定の位置に一対として配置されている。  A speed detector according to the present invention includes a core that is a magnetic body having a U-shaped cross section, a detection coil that is wound on the core, and converts a change in magnetic flux density in the core into an electric signal, and an end portion of the core. A magnetic-electric conversion unit having a permanent magnet that supplies a magnetic flux to the core; and a disk-shaped magnetic body that rotates in synchronization with an object to be detected. And a detecting plate that forms a magnetic path with the core via the concave or convex portion. The magneto-electric conversion section is configured such that an end of the core has a predetermined gap therebetween. It is arranged so as to face the end face of the detection plate, and is arranged as a pair at a predetermined position corresponding to the interval between the concave portion and the convex portion of the detection plate.
このように断面コ字状のコアを有し、 このコアの端部に永久磁石を配置すると 共に、 このコアの端部を検出板の端面と対向するように配置することで、 漏れ磁 束が極めて少なくなり、 コア内部を通る磁束密度が増大し、 起電力が増大する。 また、 このコアを 2つ用意し、 検出板の凹部と凸部の間隔に対応した所定の間隔 を置いて一対として配置することにより、 位相差 2信号が容易に得られる。 また、 2つのコアを接近して配置することができるため、 これらを一体とした速度検出 器となり、 取り付けや調整が極めて容易になる。 また強度的にも強固な構造とな る。 By having a core having a U-shaped cross section in this way, a permanent magnet is arranged at the end of the core, and the end of the core is arranged so as to face the end face of the detection plate, so that the leakage flux is reduced. Extremely small, the magnetic flux density passing inside the core increases, and the electromotive force increases. Further, by preparing two cores and arranging them as a pair with a predetermined interval corresponding to the interval between the concave portion and the convex portion of the detection plate, two phase difference signals can be easily obtained. Also, since the two cores can be arranged close to each other, they become an integrated speed detector, which makes installation and adjustment extremely easy. It also has a strong structure in terms of strength.
コアの端部にコアに磁束を供給する永久磁石を配置することにより、 製造が容 易になると共に、 磁束が効率よく磁路に供給され、 起電力が向上する。  By arranging a permanent magnet that supplies a magnetic flux to the core at the end of the core, manufacturing becomes easy, and the magnetic flux is efficiently supplied to the magnetic path, so that the electromotive force is improved.
コアは磁路に平行な断面がコ字状であって、 端部を検出板の端面に対向しうる ものであればその大きさや形状は特に限定されるものではないが、 通常、 端部の 中心間の大きさが 5〜3 0删程度、 端部から基部に至る奥行きが 5〜 3 0画程度、 その最大厚さが 3〜1 5腿程度である。 また、 この断面も厳密な意味でのコ字状 のものに限定されるものではなく、 U字状であっても、 C字状に近い形状のもの であってもよい。 コアの磁路に垂直な断面形状としては、 特に限定されるもので はなく円形であっても角型であってもよいが、 好ましくは円形 (楕円形等を含 む) が好ましい。  The size and shape of the core are not particularly limited as long as the core has a U-shaped cross section parallel to the magnetic path, and the end can face the end face of the detection plate. The center-to-center size is about 5 to 30 mm, the depth from the end to the base is about 5 to 30 strokes, and the maximum thickness is about 3 to 15 thighs. Also, this cross section is not limited to a U-shape in a strict sense, and may be a U-shape or a shape close to a C-shape. The cross-sectional shape perpendicular to the magnetic path of the core is not particularly limited, and may be circular or square, but preferably circular (including elliptical and the like).
コアの材質としては、 磁性体であれば特に限定されるものではないが、 電磁軟 鉄、 ケィ素鋼、 パーマロイ、 フェライト、 F e— C o合金等の高透磁率材を好ま しく挙げることができる。  The material of the core is not particularly limited as long as it is a magnetic material.Preferably, a material having a high magnetic permeability such as electromagnetic soft iron, calcium steel, permalloy, ferrite, and Fe—Co alloy is preferably used. it can.
コアの端部に設けられる永久磁石としては、 必要な起電力を生じるための磁束 を供給しうるものであれば特に限定されるものではなく、 その大きさや、 形状は 任意であるが、 好ましくはコアの垂直断面形状に等しい断面形状を有する円柱体 または角柱体が好ましく、 より好ましくはコアの断面と等しいか、 これより多少 小さい形状であることが好ましい。 また、 永久磁石は少なくともコアの一方の端 部に配置されている必要があるが、 コアの両端部に配置することが好ましい。 磁石から得られる磁束密度としては、 コアに装着した状態で検出板を配置した ときの磁石表面の磁束密度 Bが、 好ましくは 1000〜500 OGauss 、 特 に 2000〜4000 Gauss 程度が好ましい。 このような磁場を与える磁石とし て、 例えば、 F e— Nd— B、 Sm— Co、 フェライト、 アルニコ等が挙げられ、 中でも F e— Nd— B、 Sm— Coが大きな磁束密度が得られ好ましいが、 価格 の点からはフェライトが好ましい。 The permanent magnet provided at the end of the core is not particularly limited as long as it can supply a magnetic flux for generating a necessary electromotive force, and its size and shape are arbitrary. A column or a prism having a cross-sectional shape equal to the vertical cross-sectional shape of the core is preferable, and more preferably a shape equal to or slightly smaller than the cross-section of the core is preferable. Further, the permanent magnet needs to be arranged at least at one end of the core, but is preferably arranged at both ends of the core. As for the magnetic flux density obtained from the magnet, the detection plate was placed while attached to the core. The magnetic flux density B of the magnet surface at this time is preferably about 1000 to 500 OGauss, and particularly preferably about 2000 to 4000 Gauss. Examples of the magnet that gives such a magnetic field include Fe—Nd—B, Sm—Co, ferrite, and alnico. Among them, Fe—Nd—B and Sm—Co are preferable because a large magnetic flux density can be obtained. However, ferrite is preferred in terms of price.
通常、 コアは位相差 2信号を得るために、 同じ構成のものが一対として配置さ れる。 コアの取り付け間隔としては、 位相差 2信号が得られるような間隔であれ ば特に限定されるものではないが、 2つの磁気 ·電気変換部から得られる信号が、 所定の位相差を有するようなものであればよく、 特に 90度土 36度程度の位相 差を有する 2つの信号が得られるように配置することが好ましい。 好ましい態様 として、 2つのコアを近接して配置する場合には、 取り付けピッチを Pとしたと き、 検出板の凹部と ΰ部のピッチを Tとすると、 Ρ==Τ (0. 5 η± 1//4) で あって、 Ρ±0. 1 Τの範囲内の位置に両者を配置することが好ましい。  Normally, cores having the same configuration are arranged as a pair in order to obtain two signals with a phase difference. The mounting interval of the cores is not particularly limited as long as the interval is such that two signals with a phase difference can be obtained.However, the signals obtained from the two magneto-electric converters have a predetermined phase difference. However, it is preferable to arrange them so that two signals having a phase difference of about 90 degrees and 36 degrees can be obtained. As a preferred embodiment, when the two cores are arranged close to each other, when the mounting pitch is P and the pitch between the concave portion and the ΰ portion of the detection plate is T, Ρ == Τ (0.5 η ± 1 // 4), and both are preferably arranged at positions within the range of {± 0.1}.
また、 コアを一対として配置する場合、 端部に設けられた磁石が、 お互い千涉 しないよう、 S極同士、 Ν極同士というように同じ極性同士が隣接するように配 置することが好ましい。  Further, when the cores are arranged as a pair, it is preferable that the magnets provided at the ends are arranged so that the same polarity is adjacent to each other, such as S poles and Ν poles, so that the magnets provided at the end portions do not overlap each other.
前記コアにはこのコア内部の磁束密度の変化を検出するためのコイルが巻回さ れている。 コイルは分割して巻回されていることが好ましい。 コイルを分割する ことにより、 一つの磁路内により多くの巻線を巻回することができる。 また、 磁 束の多い部分により多くの巻線を巻回することができ起電力が向上する。 より好 ましくは、 コイルは磁石の近くに巻回されていることが好ましい。 磁石に近い部 分には磁束が集中しているため、 より高い起電力を得ることができる。  A coil is wound around the core for detecting a change in magnetic flux density inside the core. Preferably, the coil is divided and wound. By splitting the coil, more windings can be wound in one magnetic path. In addition, more windings can be wound around a portion having a large magnetic flux, and the electromotive force is improved. More preferably, the coil is wound close to the magnet. Since the magnetic flux is concentrated near the magnet, higher electromotive force can be obtained.
コイルに使用される巻線としては、 通常のコイル、 トランス、 モータ等に使用 される線材であれば使用可能であり、 特に限定されるものではないが、 ポリウレ タン線、 セメント線等を好ましく挙げることができる。 巻線の線径としては、 好 ましくは 0 . 0 6〜 0 . 1醒、 より好ましくは 0 . 0 7〜 0 . 0 9 mmである。 線 径が細すぎると断線の恐れが生じ、 抵抗が高くなる。 太すぎるとコイルが大きく なってしまう。 また巻線の抵抗としては、 好ましくは l k Q以下、 より好ましく は 1 0 0〜 8 0 0 Ω程度である。 コイルの巻数としては、 分割巻きされている場 合には、 好ましくは一つの巻数が 5 0 0 0ターン以下、 より好ましくは 2 0 0 0 〜 4 0 0 0ターン程度である。 巻数が多くなるとコイルが大きくなり、 巻数が少 ないとコィルの起電力が低下する。 The winding used for the coil may be any wire used for ordinary coils, transformers, motors, and the like, and is not particularly limited, but preferably includes a polyurethane wire, a cement wire, and the like. be able to. Good winding wire diameter Preferably, it is 0.06-0.1 awake, more preferably, 0.07-0.09 mm. If the wire diameter is too small, there is a risk of disconnection and the resistance will increase. If it is too thick, the coil will be large. Further, the resistance of the winding is preferably equal to or less than lk Q, and more preferably about 100 to 800 Ω. When the coil is divided and wound, the number of turns is preferably 500 turns or less, and more preferably about 2000 to 400 turns. When the number of turns is large, the coil becomes large, and when the number of turns is small, the electromotive force of the coil is reduced.
検出板は磁性体により形成され、 比測定物と同期して回転する円盤状の回転体 である。 その端部には、 ギア状に凹部と凸部とが交互に形成されている。 好まし い検出板の材質としては、 上記コアと同様である。 検出板の大きさとしては、 比 測定物の大きさや、 測定精度、 要求される起電力などにより適当な大きさとすれ ばよいが、 好ましくはモジュール 2 . 5以下が好ましい。 検出板の凹部と凸部数 は上記同様、 要求される精度、 起電力その他の要因により適当なものとすればよ い。 好ましくは 3 0〜 1 0 0、 より好ましくは 5 0〜 7 0程度である。 凹 ύの高 さとしては、 好ましくは 1墮以上、 より好ましくは 3〜 2 O ram程度である。 検出板に対するコアの配置は、 好ましくは、 図 7に示すようにコアのコ字状断 面が、 検出板の軸方向と平行となるように配置されている。 つまり、 コアの両端 部 (磁石を含む) 力 検出板の回転により同時に凸部または凹部と対向するよう な位置に配置される。 このように配置することで、 コアの両端部が、 検出板の回 転により同時に凸部と対向した場合には、 検出板内を通る磁束を最も多くするこ とができ、 逆に検出板の回転によりコアの両端部が、 同時に凹部と対向した場合 には検出板内を通り磁束密度を最も少なくすることができる。 すなわち、 検出板 の凸部と凹部により得られる磁束密度の変化を最も大きくすることができ、 これ から得られる信号は、 その振幅が従来のものより、 さらに大きなものとなる。 この場合、 例えば図 8に示すように、 コアのコ字状の断面が、 検出板の回転軸 と垂直になるような位置に配置してもよいが、 図 7の場合と比較して、 検出板内 を通る磁束密度が少なくなり、 また凹部と凸部による磁束密度の増減比が小さく なってしまう。 なお、 図 7における hは凹部と凸部の間の高さを示しており、 図 では凸部が磁気 ·電気変換部 (磁石を含むコアの端部) と対向している状態を示 している。 The detection plate is a disk-shaped rotator that is formed of a magnetic material and rotates in synchronization with the object to be measured. At the end, concave portions and convex portions are alternately formed in a gear shape. Preferred materials for the detection plate are the same as those for the core. The size of the detection plate may be an appropriate size depending on the size of the object to be measured, the measurement accuracy, the required electromotive force, and the like, and preferably the module is 2.5 or less. Similar to the above, the number of concave portions and convex portions of the detection plate may be appropriately determined depending on required accuracy, electromotive force and other factors. It is preferably about 30 to 100, more preferably about 50 to 70. The height of the recess is preferably at least 1 corrupt, more preferably about 3 to 2 ram. The arrangement of the core with respect to the detection plate is preferably such that the U-shaped cross section of the core is parallel to the axial direction of the detection plate as shown in FIG. In other words, both ends of the core (including the magnet) are arranged at positions that simultaneously face the protrusions or recesses due to the rotation of the force detection plate. By arranging in this manner, when both ends of the core face the convex portion at the same time due to the rotation of the detection plate, the magnetic flux passing through the detection plate can be maximized. When both ends of the core face the recess at the same time due to the rotation, the magnetic flux density can be minimized by passing through the detection plate. In other words, the change in the magnetic flux density obtained by the convex and concave portions of the detection plate can be maximized, and the signal obtained from the signal has a greater amplitude than the conventional one. In this case, for example, as shown in FIG. 8, the U-shaped cross section of the core corresponds to the rotation axis of the detection plate. However, compared to the case of Fig. 7, the magnetic flux density passing through the inside of the detection plate is reduced, and the increase / decrease ratio of the magnetic flux density due to the concave portion and the convex portion is reduced. I will. Note that h in FIG. 7 indicates the height between the concave portion and the convex portion, and FIG. 7 shows a state in which the convex portion faces the magneto-electric conversion portion (the end of the core including the magnet). I have.
検出板の凸部と、 磁気 ·電気変換部 (磁石) との最短距離、 つまりギャップは、 好ましくは 0 . 1〜 1 . 5醒、 より好ましくは 0 . 5〜 0 . 9 mmである。  The shortest distance between the convex portion of the detection plate and the magnetic-electrical conversion portion (magnet), that is, the gap is preferably 0.1 to 1.5 wake, more preferably 0.5 to 0.9 mm.
次に本発明のより具体的な構成について、 図を参照しつつ説明する。  Next, a more specific configuration of the present invention will be described with reference to the drawings.
図 1は本発明の速度検出器の具体的な構成を示した部分断面図であり、 図 2は 磁気 ·電気変換部の収納されているケースを検出板側から見た平面図である。 図 において、 本発明の速度検出器は、 コア 3と、 このコアの両端部にある 2つの磁 石 2 a, 2 bと、 コアの両腕部 3 a, 3 bに巻回されているコイル 4 a、 4 と コアの取り付けフランジ 6と、 検出板 8とを有する。  FIG. 1 is a partial cross-sectional view showing a specific configuration of a speed detector of the present invention, and FIG. 2 is a plan view of a case in which a magneto-electric conversion unit is housed, as viewed from a detection plate side. In the figure, the speed detector of the present invention comprises a core 3, two magnets 2a and 2b at both ends of the core, and coils wound around both arms 3a and 3b of the core. 4 a, 4, a core mounting flange 6, and a detection plate 8.
この例ではコア 3は磁路に平行な断面がコ字状を成していて、 端部に延びる両 腕部 3 a, 3 bと、 この両腕部 3 a、 3 bを連結する基部 3 cを有する。 また、 磁路に垂直な断面は円形であり、 コイルを巻回し易くなつている。 コアの端部に は、 それぞれコアの形状に合った円柱型の永久磁石 2 a、 2 bが配置されている。 この場合永久磁石 2 a、 2 bはコア 3の端部に接着されている。 取り付けフラン ジ 6にはコア 3の形状と同一の取り付け孔が 4箇所穿孔されていて、 この取り付 け孔に各コア 3の腕部 3 a、 3 bを挿入することにより、 コア 3を固定すると共 に、 2つのコアを適切な位置に配置する。 また、 取り付けフランジには、 コイル からの配線用端子が設けられていて、 配線の中継を行うことができるようになつ ている。  In this example, the core 3 has a U-shaped cross section parallel to the magnetic path, and has two arms 3a and 3b extending to the ends and a base 3 connecting the two arms 3a and 3b. has c. The cross section perpendicular to the magnetic path is circular, making it easy to wind the coil. At the end of the core, columnar permanent magnets 2a and 2b each corresponding to the shape of the core are arranged. In this case, the permanent magnets 2 a and 2 b are bonded to the end of the core 3. The mounting flange 6 has four mounting holes identical in shape to the core 3, and the core 3 is fixed by inserting the arms 3a and 3b of each core 3 into these mounting holes. Then, place the two cores in the appropriate positions. In addition, the mounting flange is provided with a terminal for wiring from the coil, so that wiring can be relayed.
コア 3の腕部 3 a, 3 にはコィル4 &、 4 bが装着される。 コイル 4 a、 4 bは直接コア 3の腕部 3 a , 3 bに巻回することも可能であるが、 この例ではボ P T/JP 8/05169 Coils 4 &, 4 b are attached to the arms 3 a, 3 of the core 3. The coils 4a and 4b can be wound directly around the arms 3a and 3b of the core 3, but in this example, PT / JP 8/05169
10  Ten
ビン 5 a、 5 bに巻回したものをコア 3に装着している。 そして、 コイルを 2つ に分割し、 それぞれコア 3の磁石 2に近い腕部 3 a、 3 bに巻回することにより コンパクトになると共に、 漏れ磁束も少なくなり、 より多くの磁束を捕らえるこ とができる。 The material wound around the bins 5 a and 5 b is attached to the core 3. By dividing the coil into two parts and winding them around the arms 3 a and 3 b near the magnet 2 of the core 3, the coil becomes compact, the leakage flux decreases, and more magnetic flux is captured. Can be.
取り付けフランジ 6により一体として組み合わされた磁気 ·電気変換部 1 A, I Bは、 図 2に示すようにケース 9内に納められ、 その先端部、 つまり磁石の先 端が、 ほぼ同一面位置となるように調整される。 この先端部から検出板 8の端部、 つまり凸部の先端までの距離をギャップとして 0 . 1 ~ 1 . 5 mm程度となるよう に調整する。  The magnetic-electrical converters 1 A and IB combined by the mounting flange 6 are housed in the case 9 as shown in FIG. 2, and the tip, that is, the tip of the magnet, is located at almost the same plane position. Is adjusted as follows. The distance from this tip to the end of the detection plate 8, that is, the tip of the projection is adjusted so that the gap is about 0.1 to 1.5 mm.
前述のように、 磁気 '電気変換部 1 A, 1 Bは、 図 2に示すようなケース 9内 に納められるが、 さらに図 3, 4に示すような固定ケース 1 1に装着される。 固 定ケース 1 1は取り付けフランジを有し、 図示しない被測定物の取り付け台等に 取り付けられる。 また、 蓋 1 2とケーブル取り付け金具 1 3とを有し、 このケー ブル取り付け金具 1 3にてケーブル 1 4を固定するようになっている。 ケース 1 1および蓋 1 2の材料は、 熱膨張係数の小さい金属であることが好ましく、 例え ば銑鉄等を好ましく挙げることができる。 熱膨張係数が大きいと前記ギヤップが 大きく変動し、 故障の原因となる場合がある。 ケース 1 1内にはケーブル 1 4と の接続用端子台があり、 蓋 1 2を取り外すことで、 前記磁気 '電気変換部 1 A, 1 Bからの配線と、 ケーブル 1 4内の電線とを接続できるようになつている。 図 5は本発明の速度検出器の他の構成例を示したもので、 この例ではコアの取 り付けに上記フランジ 6の他に補助フランジ 7を用いている。 補助フランジ 7の 構成材料や形状は上記フランジ 6と同等でよい。 このようにフランジ 6と補助フ ランジ 7の 2箇所でコア 3を保持することにより、 コア 3をより確実に、 高精度 で保持することができる。 この例では 2つのフランジ 6, 7の間にボビン 5 a , 5 bが配置されると共に、 このボビン 5 a , 5 bによりフランジが位置決めされ る。 As described above, the magnetic-to-electrical converters 1A and 1B are housed in a case 9 as shown in FIG. 2, and further mounted in a fixed case 11 as shown in FIGS. The fixed case 1 1 has a mounting flange, and is mounted on a mounting table (not shown) for the DUT. In addition, it has a lid 12 and a cable fitting 13, and the cable 14 is fixed by the cable fitting 13. The material of the case 11 and the lid 12 is preferably a metal having a small coefficient of thermal expansion, such as pig iron. If the coefficient of thermal expansion is large, the gap greatly fluctuates, which may cause a failure. The case 11 has a terminal block for connection to the cable 14 .By removing the lid 12, the wiring from the magnetic-to-electrical conversion units 1 A and 1 B and the wires in the cable 14 are separated. You can connect. FIG. 5 shows another example of the configuration of the speed detector of the present invention. In this example, an auxiliary flange 7 is used in addition to the flange 6 for mounting the core. The material and shape of the auxiliary flange 7 may be the same as those of the flange 6 described above. By holding the core 3 at the two locations of the flange 6 and the auxiliary flange 7 in this manner, the core 3 can be held more reliably and with high accuracy. In this example, bobbins 5a and 5b are arranged between two flanges 6 and 7, and the bobbins 5a and 5b position the flanges. You.
なお、 2つのコア 3間の取り付けピッチを、 フランジ 6と、 補助フランジ 7と で変えることにより、 コア 3間に所定の角度を持たせることもできる。 また、 こ の例ではコア 3の端部上に非磁性金属等による保護カバー 9 aを設けて、 ゴミな どの侵入を防いでいる。 その他の構成要素については図 1と同等であり、 同一構 成要素には同一符号を付して説明を省略する。  By changing the mounting pitch between the two cores 3 between the flange 6 and the auxiliary flange 7, a predetermined angle between the cores 3 can be provided. In this example, a protective cover 9a made of a non-magnetic metal or the like is provided on the end of the core 3 to prevent intrusion of dust and the like. Other components are the same as those in FIG. 1, and the same components are denoted by the same reference numerals and description thereof will be omitted.
本発明の速度検出器は電源を必要とせず、 増幅用の素子を有しない簡単な構成 のため、 例えば、 列車や自動車などの車両や自動機その他の動力源であるモー夕 等の回転体の速度検出に適している。 特に極めて高い安全性や信頼性が要求され、 使用環境が過酷な列車、 自動車等において優れた性能を発揮する。  The speed detector of the present invention does not require a power supply and has a simple configuration having no amplifying element. For example, the speed detector of a vehicle such as a train or an automobile, an automatic machine, or a rotating body such as a motor or the like as a power source is used. Suitable for speed detection. In particular, they exhibit excellent performance in trains and automobiles that require extremely high safety and reliability and are used in harsh environments.
実施例 Example
図 1 , 2に示すような構成の速度検出器を作製した。 このとき、 コア材には S U Y材を用い、 磁石には S m— C 0を用いた。 コイルの線材には線径 0 . 0 8讓 mのものを用いて、 これを 3 0 0 0ターン巻回し、 1つのコイルとしたものを 2 組用意して、 それぞれコイルの腕部に装着した。 このときコイル 1つ当たりの抵 抗値は約 2 5 0 Ω以下であった。 検出板としては、 モジュール = 2 . 5で歯数 6 0のギアを用い、 ギャップを 0 . 7匪とした。  A speed detector having the configuration shown in Figs. At this time, S U Y material was used for the core material, and S m—C 0 was used for the magnet. A coil wire with a wire diameter of 0.08 cm was used, and it was wound for 300 turns, and two sets of one coil were prepared and attached to the arm of each coil. . At this time, the resistance value per coil was about 250 Ω or less. As the detection plate, a gear with module = 2.5 and teeth with 60 was used, and the gap was set to 0.7.
得られた速度検出器を用いて、 周波数 3 0 Hzにおける出力電圧を測定したとこ ろ、 ピーク t oピークで 1 V以上であった。 このときの出力波形を図 6に示す。 図から明らかなように、 本発明の速度検出器は、 小型で一体とした構造にも関わ らず、 ピーク t 0ピークで 1 V以上の出力が得られ、 しかも波形はきれいなサイ ン波形となっている。 発明の効果  When the output voltage at a frequency of 30 Hz was measured using the obtained velocity detector, it was 1 V or more at the peak to peak. Figure 6 shows the output waveform at this time. As is evident from the figure, the speed detector of the present invention can obtain an output of 1 V or more at the peak t0 peak and has a clean sinusoidal waveform despite its compact and integrated structure. ing. The invention's effect
以上のように本発明によれば、 小型で熱膨張によるギャップの変動が少なく、 配置場所を取らず、 取り付け、 調整が容易で、 1つの検出器で位相差 2信号を得 ることができ、 高起電力で断線の心配のない高信頼性を有する速度検出器を実現 できる。 As described above, according to the present invention, the size is small, the fluctuation of the gap due to thermal expansion is small, It can be installed and adjusted easily without taking up any space, can obtain two phase difference signals with one detector, and can realize a highly reliable speed detector with high electromotive force and no risk of disconnection.

Claims

請 求 の 範 囲 The scope of the claims
1 . 断面コ字状の磁性体であるコアと、  1. A magnetic core having a U-shaped cross section,
このコア上に巻回されコア中の磁束密度の変化を電気信号に変換する検出コィ ルと、  A detection coil wound on the core and converting a change in magnetic flux density in the core into an electric signal;
このコアの端部にあって前記コアに磁束を供給する永久磁石とを有する磁気 · 電気変換部と、  A magnetic-electric conversion unit having a permanent magnet at the end of the core and supplying a magnetic flux to the core,
被検出物と同期して回転する円盤状の磁性体であって、 その端面には円周方向 に順次凹部と凸部とを有し、 この凹部ないし凸部を介して前記コアと磁路を形成 する検出板とを有し、  A disk-shaped magnetic body that rotates in synchronization with an object to be detected. The magnetic body has a concave portion and a convex portion on its end surface in the circumferential direction. The core and the magnetic path are connected to each other through the concave portion or the convex portion. A detection plate to be formed,
前記磁気 ·電気変換部は、 コアの端部が所定の空隙を介して前記検出板の端面 と対向するように配置され、 かつ前記検出板の凹部と凸部の間隔に対応した所定 の間隔で一対として配置されている速度検出器。  The magneto-electric conversion unit is disposed so that an end of the core faces an end surface of the detection plate via a predetermined gap, and at a predetermined interval corresponding to an interval between a concave portion and a convex portion of the detection plate. Speed detectors arranged as a pair.
2 . 前記コアのコ字状断面が、 検出板の軸方向と平行となるよう配置されてい る請求の範囲第 1項記載の速度検出器。  2. The speed detector according to claim 1, wherein the U-shaped cross section of the core is arranged so as to be parallel to the axial direction of the detection plate.
3 . 前記一対のコアの端部にある磁石は、 同じ極性同士が隣接するように配置 されている請求の範囲第 1項または第 2項記載の速度検出器。  3. The speed detector according to claim 1, wherein the magnets at the ends of the pair of cores are arranged such that the same polarity is adjacent to each other.
4 . 前記コアの取り付け間隔 Pが、 検出板の凸部間の間隔を Tとしたときに、 P = T ( 0 . 5 η ± 1 4 )  4. When the interval P between the cores is defined as T, the interval between the protrusions of the detection plate is T, P = T (0.5 η ± 14)
( η =整数)  (η = integer)
で表され、 かつ Ρ ± 0 . 1 Τの範囲内に配置されている請求の範囲第 1項〜第 3 項のいずれかに記載の速度検出器。  The speed detector according to any one of claims 1 to 3, wherein the speed detector is represented by the following formula, and is arranged within a range of {± 0.1}.
5 . 前記コィルはコァの各端部にある永久磁石に対応して分割して巻回されて いる請求の範囲第 1項〜第 4項のいずれかに記載の速度検出器。  5. The speed detector according to any one of claims 1 to 4, wherein the coil is divided and wound corresponding to a permanent magnet at each end of the core.
6 . 前記磁気 ·電気変換部は、 検出板の回転により、 その凹部と凸部に対応し た磁束密度の変化に応じた電圧を生じ、 この電圧が、 凹部と凸部の変化により得られる周波数が 3 0 Hzのときに 1 V以 上である請求の範囲第 1項〜第 5項のいずれかに記載の速度検出器。 6. Due to the rotation of the detection plate, the magneto-electric conversion unit generates a voltage corresponding to a change in magnetic flux density corresponding to the concave portion and the convex portion, The speed detector according to any one of claims 1 to 5, wherein the voltage is 1 V or more when a frequency obtained by changing the concave portion and the convex portion is 30 Hz.
7 . 前記磁気 ·電気変換部はケース内に一体として収納されている請求の範囲 第 1項〜第 6項のいずれかに記載の速度検出器。 7. The speed detector according to any one of claims 1 to 6, wherein the magneto-electric converter is housed integrally in a case.
PCT/JP1998/005169 1997-11-18 1998-11-17 Speed sensor WO1999026072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33361897 1997-11-18
JP9/333618 1997-11-18

Publications (1)

Publication Number Publication Date
WO1999026072A1 true WO1999026072A1 (en) 1999-05-27

Family

ID=18268073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005169 WO1999026072A1 (en) 1997-11-18 1998-11-17 Speed sensor

Country Status (1)

Country Link
WO (1) WO1999026072A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281468U (en) * 1988-12-12 1990-06-22
JPH02107021U (en) * 1989-02-15 1990-08-24
JPH0735573A (en) * 1993-07-23 1995-02-07 Sensor Technol Kk Magnetic stroke detecting sensor
JPH09280887A (en) * 1996-04-18 1997-10-31 Tamagawa Seiki Co Ltd Rotation detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281468U (en) * 1988-12-12 1990-06-22
JPH02107021U (en) * 1989-02-15 1990-08-24
JPH0735573A (en) * 1993-07-23 1995-02-07 Sensor Technol Kk Magnetic stroke detecting sensor
JPH09280887A (en) * 1996-04-18 1997-10-31 Tamagawa Seiki Co Ltd Rotation detector

Similar Documents

Publication Publication Date Title
JP3286431B2 (en) DC current sensor
CN101299048B (en) Rotating angular acceleration sensor
EP0217640A2 (en) A torque sensor of the non-contact type
CA1335415C (en) Torque measuring apparatus
JPH07505957A (en) Device for measuring rotational movements
MXPA06014538A (en) Device for controlling a rotating electrical machine.
US6020737A (en) Shaft position detectors with stray magnetic field compensation
CN110224555B (en) Low-magnetic-resistance magnetoelectric device
US3500365A (en) Apparatus for remotely determining the angular orientation,speed,and/or direction of rotation of objects
JPS58162813A (en) Position detector
WO1999026072A1 (en) Speed sensor
JP2000501190A (en) A device for inductively transmitting measured electricity and / or electric energy between a rotor and a stator without contact
JPH11223641A (en) Speed detector
JP2009020057A (en) Vibration detector
CN211178307U (en) Reluctance type angle sensor
EP1171338B1 (en) Current sensor
JP2001082914A (en) Angle detector
JP5793324B2 (en) Rotational speed detector
KR101551468B1 (en) Brush holder apparatus provided with hall sensor
JPH0458881B2 (en)
JP2005351793A (en) Acceleration measuring instrument
JPS62162934A (en) Detecting device for rotary torque
JP2958846B2 (en) Angle detector
JPH09127158A (en) Direct current sensor
SU892592A1 (en) Magnetoelectric torque sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase